ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ IV: Σύνθεσης και Ανάπτυξης Βιομηχανικών Διαδικασιών
Εργαστήριο Χημείας και Τεχνολογίας Τροφίμων

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σύγκριση φαινολικών συστατικών σταφυλιού και κρασιού των
ποικιλιών Malbec και Αγιωργίτικου

Βοσκίδη Ελένη

Επιβλέπουσα Καθηγήτρια
Βασιλική Ωραιοπούλου

Αθήνα, 2012
ΙΔΙΑΙΤΕΡΕΣ ΕΥΧΑΡΙΣΤΙΕΙΣ ΣΤΟΥΣ

κ. Τσιμογιάννη Δημήτρη και κ. Ζουμπούλη Πάνο
για την πολύτιμη βοήθειά τους
5.5 ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ... 37
5.5.1 Προκατεργασία ρωγιών σταφυλιού .. 37
5.5.2 Εκχύλιση φαινολών από σκόνη φλοιών, στεμφύλων ή απολύτασμένων
γιγάρτων 37
5.5.3 Απομάκρυνση λιπιδίων από κονιοποιημένα γίγαρτα 37
5.5.4 Υδρόλυση ανθοκυανινών και λοιπών φαινολικών γλυκοζιτών και ταννινών 38
5.5.5 Καταβολή ταννινών ... 38
5.5.6 Προσδιορισμός ολικών φαινολών ... 38
5.5.7 Μέθοδος ανάλυσης HPLC .. 38
5.5.8 Προσδιορισμός ποιοτικών χαρακτηριστικών .. 39

6 ΑΠΟΤΕΛΕΣΜΑΤΑ – ΣΥΖΗΤΗΣΗ .. 39
6.1 ΜΕΛΕΤΗ ΡΩΓΑΣ ΣΤΑΦΥΛΙΟΥ .. 39
6.2 ΜΕΛΕΤΗ ΑΝΘΟΚΥΑΝΙΔΙΝΩΝ ΣΤΟ ΣΤΑΦΥΛΙ ... 40
 6.2.1 Προσδιορισμός ανθοκυανινών στα διάφορα μέρη του καρπού 41
 6.2.2 Προσδιορισμός ταννινών στα διάφορα μέρη των ρωγιών της σταφυλής 47
6.3 ΜΕΛΕΤΗ ΤΟΥ ΟΙΝΟΥ ... 53
 6.3.1 Μελέτη φαινολικών συστατικών ... 53
6.4 ΠΟΣΟΤΙΚΟΠΟΙΗΣΕΙΣ .. 56
6.5 ΜΕΛΕΤΗ ΠΟΙΟΤΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ... 61
 6.5.1 Δείκτης ολικών πολυφαινολών (d280) ... 61
 6.5.2 Ένταση (IC') .. 62
 6.5.3 Απόχρωση ... 63
ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία, μελετήθηκαν ως προς το φαινολικό τους προφίλ, οι ποικιλίες Malbec και Αγιωργίτικο. Το Malbec αποτελεί μια γαλλική ποικιλία η οποία καλλιεργείται σε μεγάλη έκταση στην Αργεντινή. Το δείγμα Malbec που μελετήθηκε στην παρούσα εργασία, καλλιεργήθηκε για πρώτη φορά στην Ελλάδα, με σκοπό να εξεταστεί η ποιότητά του και το προφίλ του ώστε να αδειοδοτηθεί τελικά για καλλιέργεια και στην Ελλάδα. Τα αμπελιά της ποικιλίας Malbec αναπτύχθηκαν, καλλιεργήθηκαν και οινοποιήθηκαν σε χώρο του Εθνικού Ιδρύματος Αγροτικών Ερευνών στο Κεφαλάρι. Το Αγιωργίτικο, αποτελεί μια από τις κύριες ελληνικές ποικιλίες που καλλιεργούνται ευρέως σε πολλές περιοχές της Ελλάδας. Το δείγμα που χρησιμοποιήθηκε προέρχεται από τη Νεμέα και το οινοποιείο Χαρλαύτη.

Η μελέτη των δύο ποικιλιών, έγινε με σκοπό να τις συγκρίνουμε ως προς το φαινολικό τους προφίλ και να αξιολογήσουμε τη δυνατότητα καλλιέργειας μιας νέας ποικιλίας, όπως το Malbec, στην Ελλάδα.

Αρχικά μελετήθηκαν οι δύο ποικιλίες ως προς κάποιους ποιοτικούς δείκτες που χρησιμοποιούνται ευρέως στην οινοποιεία για αξιολόγηση του προϊόντος κατά την πορεία της οινοποίησης αλλά και του τελικού προϊόντος. Πιο συγκεκριμένα μελετήθηκαν, ο δείκτης ολικών πολυφαινολών, η ένταση του χρώματος και η απόχρωση, σε δείγματα από όλα τα στάδια της οινοποίησης των δύο ποικιλιών. Οι δύο ποικιλίες παρουσίασαν την ίδια συμπεριφορά κατά τη μεταβολή των δεικτών στα διάφορα στάδια της οινοποίησης, καθώς και μεγάλη σύγκλιση στις τιμές των τελικών δειγμάτων.

Στη συνέχεια πραγματοποιήθηκαν αναλύσεις στην HPLC σε δείγματα της ταφυλής και του τελικού οίνου. Πιο συγκεκριμένα, κρίθηκε χρήσιμο να αναλύουμε ως προς το φαινολικό τους προφίλ, όλα τα μορφολογικά μέρη του καρπού των δύο ποικιλιών (φλοιοί, γίγαρτα, σάρκα) και να συγκριθούν με το φαινολικό προφίλ των δύο οίνων. Από τις αναλύσεις στους καρπούς, προκύπτει ότι η κύρια ανθοκυανίνη των φλοιών είναι η μαλβιδίνη, η οποία απαντάται σε μορφή γλυκοηιλιωμένης ανθοκυανίνης ως κουμαρυλωμένος-3-γλυκοζίτης της μαλβιδίνης (228,6±1,6mg/L για το Malbec και 96,5±1,3mg/L για το Αγιωργίτικο) και ως 3-γλυκοζίτης της μαλβιδίνης (187,0±3,0mg/L για το Malbec και 152,0±0,0mg/L για το Αγιωργίτικο). Αντίστοιχες μετρήσεις πραγματοποιήθηκαν και στους δύο οίνους, με τη μαλβιδίνη να αποτελεί τη κύρια ανθοκυανίνη των δειγμάτων. Οι δύο γλυκοζίτες της μαλβιδίνης εντοπίστηκαν και στον οίνο, σε μικρότερη περιεκτικότητα. Το συνολικό τους προφίλ ως προς τις ανθοκυάνες που αναλύθηκαν, μας οδηγεί στο συμπέρασμα ότι το Malbec είναι πιο πλούσιο από το Αγιωργίτικο, εάν στον καρπό όσο και στον οίνο.

Τέλος, οι δύο ποικιλίες αναλύθηκαν ως προς το πολυφαινολικό τους προφίλ και με τη μέθοδο Folin-Ciocalteu. Τα αποτελέσματα που προέκυψαν επιβαρύνοναν έξαιρες τη φαινολική επικράτηση της ποικιλίας Malbec σε σχέση με το Αγιωργίτικο, τόσο σε ταννίνες όσο και σε μι ολικές φαινόλες. Πιο συγκεκριμένα, ο καρπός του Malbec περιέχει 56% περισσότερες ολικές φαινόλες και 88% περισσότερες ταννίνες, ενώ στον οίνο τα αντίστοιχα
ποσοστά είναι παρόμοιες περιεκτικότητες σε ολικές φαινόλες, 157% περισσότερες ταννίνες και στατιστικά επικράτηση του Αγιοργίτικου στις μη ταννικές φαινόλες κατά 210%.

Τα αποτελέσματα λοιπόν δείχνουν μια σύγκλιση των δύο ποικιλιών όσον αφορά στο φαινολικό τους προφίλ, ενώ το Malbec αποτελεί μια πιο ενδυναμωμένη ποικιλία σε σχέση με το Αγιοργίτικο και η οποία θα ήταν ενδιαφέρον να εξετασθεί εκτενέστερα και σε άλλες συνθήκες καλλιέργειας (μεγαλύτερο υψόμετρο).

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

1 ΚΕΦΑΛΑΙΟ

1.1 ΣΥΣΤΑΣΗ ΤΩΝ ΣΤΑΦΥΛΙΩΝ

Το σταφύλι αποτελείται από το βόστρυχο (τσάμπουρο ή κοτσάνι) και τις ρίγες. Κατά μέσο όρο οι βόστρυχοι αποτελούν το 2,5-7% του σταφυλιού και οι ρίγες το 93-97,5%. Οι αναλογίες αυτές εξαρτώνται από την ποικιλία του σταφυλιού, τις κλιματολογικές συνθήκες, το έδαφος, την ηλικία των πρέμινων, τον χρόνο τρυγίσματος κ.α.

Οι ρίγες αποτελούνται από το φλοιό, τη σάρκα και τα γίγαρτα.

1.1.1 Σύσταση του βοστρύχου (τσάμπουρου):
Οι βόστρυχοι είναι φτωχοί σε σάκχαρα με σημαντική περιεκτικότητα σε εξουδετερωμένα οξέα, γιατί περιέχουν μεγάλη ποσότητα ανόργανων ιόντων. Οι βόστρυχοι είναι ιδιαίτερα πλούσιοι σε πολύφαινολες (ταννίνες). Η συμμετοχή τους στην εκχύλιση έχει ως αποτέλεσμα τη μείωση της ολικής οξύτητας και την αύξηση της ενεργού οξύτητας (pH) [Τσακίρης, 1988].

1.1.2 Σύσταση των κουκουτσιών (γιγάρτων):
Τα γίγαρτα είναι τα όργανα αναπαραγωγής της αμπελού. Κανονικά, κάθε ρύγα περιέχει 4 γίγαρτα. Συχνά υπάρχουν λιγότερα έως και καθόλου. Αποτελούν το 3-6% του συνολικού βάρους του σταφυλιού. Τα συστατικά που περιέχουν είναι νερό, σάκχαρα και πολυσακχαρίτες, έλαια, ταννίνες, αζωτούχα και ανόργανα συστατικά και λιπαρά οξέα. Η σύσταση τους σε ταννίνες είναι 4 – 6 g/100g.

Ορισμένα από τα συστατικά που βρίσκονται στην περιφέρεια όπως τα φαινολικά, τα αζωτούχα και τα φωσφοφορύχα είναι ιδιαίτερα διαλυτά κατά τη διάρκεια της εκχύλισης. Ορισμένα άλλα συστατικά που βρίσκονται στο εσωτερικό του κουκουτσιά και κυρίως τα έλαια, είναι δυνατά να υποβαθμίσουν την ποιότητα του κρασιού στην περίπτωση που εξαρθούν και διαλυθούν στο γλεφκόσ. Γι αυτό το λόγο πρέπει να δίνουμε μεγάλη προσοχή
και να αποφεύγουμε με κάθε τρόπο το σπάσιμο των κουκουτσιϊν κατά τη διάρκεια των μηχανικών κατεργασιών του σταφυλιού [Τσακίρης, 1988].

1.1.3 Σύσταση της φλοιού
Ο φλοιός αποτελείται από την επιδερμίδα και μερικά στρώματα κυττάρων κάτω από αυτήν. Αποτελεί το 6-9% του βάρους του σταφυλιού. Ο ρόλος του στην ουσιωδή είναι σημαντικός. Από τον τρόπο που θα τον μεταχειριστούμε εξαρτάται κατά ένα μεγάλο μέρος το είδος του κρασιού που θα φτιάξουμε. Τα στρώματα των κυττάρων προς την επιδερμίδα είναι λεπτά και γίνονται παχύτερα προς το εσωτερικό. Τα σταφύλια που προορίζονται για οινοποίηση έχουν συνήθως σκληρό φλοιο και χυμώδη σάρκα αντίθετα με τα επιτραπέζια που έχουν φλοιό λεπτό και σάρκα τραγανή.

Ο φλοιός είναι εξίσου πλούσιος με τους βοστρέφους σε πολυφαινόλες. Οι ερυκρότερες ποικιλίες περιέχουν δυσλία ποσότητα πολυφαινολών στο φλοιό τους από αυτή των λευκών ποικιλιών. Οι ανθοκυανίες βρίσκονται σε 2 ή 3 στρώματα κυττάρων κάτω από την επιδερμίδα αν και σε ορισμένες ποικιλίες υπάρχουν και στη σάρκα [Τσακίρης, 1988].

1.1.4 Σύσταση της σάρκας
Η σάρκα είναι το πιο σημαντικό μέρος της ρώγας. Αποτελείται από μεγάλα κύτταρα. Κάτω από τη λεπτή κυτταρική μεμβράνη υπάρχει ένας πολύ λεπτός ιστός κυτταροπλάσματος με τον πυρήνα προς τα τοιχίματα και δυσκλήρο το εσωτερικό του καταλαμβάνεται από τον κυτταρικό χυμό, το γλεύκο. Τα στερεά μέρη της σάρκας αποτελούνται από τα κυτταρικά τοιχίματα και τις αγχειώδεις δέξεις, μέσα από τις οποίες επικοινώνει η ρώγα με το υπόλοιπο φυτό. Τα στερεά αυτά μέρη αποτελούν το 0,5% της σάρκας και συμμετέχουν στη δημιουργία της λάσπης του γλευκούς [2]. Η σάρκα αποτελείται σχεδόν αποκλειστικά από νερό (65-80%), ενώ περιέχει σάρκα (10-30%) και λοιπές ουσίες όπως οργανικά οξέα, ανόργανα συστατικά, αζωτούχες και αρωματικές ουσίες, ταννίνες κ.α. [Σουφλερός, 2000].

1.2 ΟΙ ΦΑΙΝΟΛΙΚΕΣ ΕΝΩΣΕΙΣ
Φαινολικές καλούνται οι ενώσεις που περιέχουν στο μόριό τους την χαρακτηριστική ομάδα φαινόλης:

Τα φαινολικά συστατικά στο ερυθρό κρασί είναι υπεύθυνα για το χρώμα και άλλα όργανοληπτικά χαρακτηριστικά (στυφάδα, τραχύτητα στη γεύση). Παράλληλα παρέχουν στους οίνους αντιοξειδωτική και αντιβακτηριακή προστασία, ενώ παίζουν αποφασιστικό ρόλο στην ψημάνη και παλαίωση τους. Οι ποσότητες των φαινολικών συστατικών εξαρτώνται από την ποικιλία του σταφυλιού, το χρόνο τρυγήσαν και τον τρόπο οινοποίησης.

Οι φαινολικές ουσίες των οίνων ομαδοποιούνται σε δύο κατηγορίες, τις φλαβονοειδείς και τις μη φλαβονοειδείς και τις μεγάλες υποομάδες τους [Τσακίρης, 1988].

1.2.1 ΜΗ ΦΛΑΒΟΝΟΕΙΔΕΙΣ ΦΑΙΝΟΛΕΣ
Στις μη φλαβονοειδείς υπάγονται μονομοριακάφαινολικά παράγωγα του βενζοϊκού οξέος, (γαλλικό οξύ, σαλικυλικό, π – υδροβενζοϊκό, βανιλλικό, συρυγγικό, πρωτοκατεχινικό οξύ) ή του κιναμωμικού οξέος (καφεϊκό οξύ, φερουλικό οξύ, π – κουραμικό οξύ), αλλά και άλλες
ενώσεις όπως, τα στιλβζνια (ρεςβερατρόλθ). Βρίςκονται στο σταφύλι υπό μορφή ετεροηιν ι εςτζρων, ςτα χυμοτόπια των κυττάρων του φλοιοφ και τθσ ςάρκασ. Τα κφρια φαινολικά συςτατικά τθσ ςάρκασ είναι φαινολικά οξέα. Η περιεκτικότθτα εξαρτάται από το είδοσ σταφυλιοφ.

Το ςφνολο των φαινολικϊν οξέων, ελεφκερων ι με μορφή ενϊςεων, φτάνει τα 100 – 150 mg/L στουσ ερυκροφσ οίνουσ, ενϊ στουσ λευκοφσ περιορίηεται στα 10-15 mg/L [Τσακίρης, 2005].

Τα φαινολικά οξέα είναι σημαντικά για τον οίνο, γιατί έχουν αντιβιοτικζσ και αντιςθπτικζσ ιδιότθτεσ και χρθςιμοποιοφνται για τθ ςυντιρθςθ τροφίμων. Ενδζχεται τα οξείδωςθ των φαινολϊκϊν οξζων, όπωσ και όλων των ανδαιφαινολϊν, οδθγεί σε ενϊςεισ κινό

Σχήμα 1: γλυκοηίτθσ τθσ trans-ρεςβερατρόλθσ

1.2.2 ΦΛΑΒΟΝΟΕΙΔΕΙΣ ΦΛΑΒΟΝΟΛΕΣ
Σε αυτζσ ανικουν οι φλαβανόνεσ, οι φλαβονόλεσ, οι κατεχίνεσ, οι προανκοκυανιδίνεσ, καθωσ και οι ανθοκυάνεσ και οι ταννίνεσ.

Οι φλαβανόνεσ δεν είναι συςτατικό των σταφυλιϊν, αλλά του ξόλου του βαρελιοφ, ενϊ στο ςταφφλι υπό μάλιςτα αποκλειςτικά εντοπιςμζνεσ στο φλοιό. Έχουν κίτρινο χρϊμα και βρίςκονται τόςο σε λευκά όςο και σε ερυκρά ςταφφλια. Οι φλαβανόλεσ ι κατεχίνεσ και οι προανκοκυανιδίνεσ βρίςκονται κυρίωσ στα γίγαρτα και λιγότερο στο φλοιό. Οι κατεχίνεσ και οι προανθοκυανιδίνεσ, κατά τθν ωρίμανςθ των οίνων σχθματίζουν πολυμερή, τισ ταννίνεσ [Τσακίρης, 2005].

1.2.2.1 Φλαβανόλεσ (κατεχίνεσ)
Οι φλαβανόλεσ είναι η πιο άφκονθ κατθγορία των φλαβονοειδϊν στα σταφφλια και το κραςί. Στη ρώγα των σταφυληϊν βρίςκονται στα γίγαρτα αλλά και στον φλοιό.

Οι πιο διαδεδομζνεσ φλαβανόλεσ στο σταφύλι και στον οίνο είναι οι φλαβανόλεσ – 3, υδροζυλιωμζνα παράγωγα των οποίων αποτελοφν η (+)-κατεχίν και η (-)-επικατεχίν. Η συγκέντρωςθ τους στους ερυθρούς οίνουσ φτάνει μεχρί τα 200mg/L, ενϊ στους λευκούς δεν ξεπερνά τα 50mg/L.
Οι φλαβανόλες – 3 συναντώνται σε διμερή (προκυανιδίνες) ή και σε μεγαλύτερα πολυμερή. Τα πολυμερή της φλαβανόλης – 3 αναφέρονται και ως προκυανιδίνες ή συμπυκνωμένες τανίνες. Οι κατεχίνες είναι υπεφυμένες για την αμάχρωση των λευκών και ερυθρών οίνων, όπως επίσης και την πρόσδωση πικρής γεύσης στους τελευταίους. [Waterhouse, 2002]

Σχήμα 2: Cis και trans μορφές της 3-φλαβανόλης

Σχήμα 3: προκυανιδίνη B1

1.2.2.2 Φλαβονόλες
Αυτή η κατηγορία, συναντάται πάντα σε μορφή γλυκοζή στον φλοιό του σταφυλιού. Το σάκχαρο με το οποίο συνδέονται είναι η γλυκοζή.

Στους νέους ερυθρούς οίνους, η συγκέντρωση φλαβονολών υπολογίζεται πάνω από 50mg/L, ενώ σε παλαιώμενα ερυθρά κρασιά περίπου 10mg/L.

Η κερκετίνη αποτελεί την κύρια φλαβονόλη στα σταφύλια [Waterhouse, 2002].

Σχήμα 4: κερκετίνη
1.2.2.3 Ανθοκυάνες
Οι ανθοκυάνες είναι οι ερυθρές χρωστικές του σταφυλιού, οι οποίες βρίσκονται στα 3 με 4 πρώτα κυτταρικά στρώματα της επιδερμίδας, στους ανθοκυανοπλάς των χυμοτυπίων. Καθώς το σταφύλι ισχυράζεται καταλαμβάνουν διαρκώς περισσότερο χώρο και μάλιστα σε κύτταρα που βρίσκονται πιο κοντά στη σάρκα από ότι σε αυτά της επιδερμίδας. Η σύσταση τους διαφοροποιείται ανάλογα με την ποικιλία. Για την ίδια ποικιλία διαφοροποιούνται ανάλογα με τη χρονική και το σμήνο. Το χρώμα τους εξαρτάται από τη σύστασή του στους επεξεργασίες και κυρίως από το pH. Από τα σταφύλια των λευκών ποικιλιών απουσιάζουν ή υπάρχουν σε άριστη μορφή [Σακίρης, 2005].

Από χημική άποψη, είναι παράγωγα ή υπολογίζεται ως ανθοκυάνες. Οι ανθοκυάνες είναι παράγωγα των ανθοκυανιδινών, όπου στο μόριο των τελευταίων υπάρχει προτεκτό μόριο με κατανόηση, ο καθάρος γενετικής. Αυτό σημαίνει ότι σε ποικιλίες σταφυλιών που γίνεται αισθητή η υπαράθυρα συκελεύστικα διγλυκοζιτών ή συνυπαράθυρο, μικρό και διγλυκοζιτών, οι ποικιλίες αυτές είναι καθαρά αμερικάκικες ή προέρχονται από διασταυρώσεις ανάμεσα στους μορίους της αμερικάκικης και ευρωπαϊκής αμερικάκικης και ευρωπαϊκής ποικιλίας. Το μόριο αυτό παρέχει παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές. Το υβρίδιο που παρέχει παραγωγικότητα και αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές, χαρακτερίζεται από υψηλή παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές. Το υβρίδιο που παρέχει υψηλή παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές, χαρακτερίζεται από υψηλή παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές. Το υβρίδιο που παρέχει υψηλή παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές, χαρακτερίζεται από υψηλή παραγωγικότητα και μεγάλη αντοχή σε αυτές τις ανάμεσα αμερικάκικας και ευρωπαϊκές.
παρουσίας των υδροξυλίων σε ορθο-θέση, μετασχηματίζεται σε πετουνιδίνη με μεθοξυλίωση, με επακόλουθο την μείωση της συγκέντρωσής της. Όμως και η πετουνιδίνη έχει δύο –OH σε ορθο-θέση. Παρόλο που είναι σταθερότερη της κυανιδίνης και της δελφινιδίνης, το ποσοστό της εξαρτάται από τον μετασχηματισμό της σε μαλβιδίνη, η οποία συνεχώς συσσωρεύεται, με αποτέλεσμα να αποτελεί την κύρια ανθοκυάνη σε σχέδον όλες τις ποικιλίες αμπέλου [Σουφλέρας, 2000, Κουράκου-Δραγινά, 1998]. Παρακάτω παρουσιάζονται οι δομές των βασικών ανθοκυανιδίνων που με τη μορφή γλυκοζιτών συναντάμε στο σταφύλι και τον οίνο.

![Σχήμα 5: δομές ανθοκυανιδίνων (Anthocyanidin)](image)

![Σχήμα 6: μορφές ανθοκυανίν που βρίσκονται στο κρασί (Anthocyanin)](image)

1.2.2.4 Ταννίνες
Οι ταννίνες είναι οι πιο ευρέως συναντόμενες φαινολικές ενώσεις στους οίνους. Είναι προϊόντα πολυμερισμού των απλών φαινολιών και το μοριακό τους βάρος κυμαίνεται μεταξύ 500 και 3000. Αν τα μόρια των ταννινών είναι πολύ μικρά δεν υπάρχουν αρκετές
ενεργές θέσεις και έτσι οι ενώσεις που σχηματίζονται με τις πρωτεΐνες είναι ασταθείς. Αλλά και στην περίπτωση που τα μόρια των ταννινών είναι πολύ μεγάλα, τότε αυτά δεν μπορούν να πληρούν αρκετά τις πρωτεΐνες και παραμονοδίεται έτσι ο σχηματισμός ενώσεων. Επίσης, η ιδιαίτερη στοιχ. γεύση ορισμένων οίνων οφείλεται στην παρουσία ορισμένων ταννινών. Οι «επιθετικές» αυτές ταννίνες έχουν την ιδιότητα να ενώνονται με τις πρωτεΐνες και να απομακρύνονται, ενώ οι «μη επιθετικές» δεν ενώνονται με τις πρωτεΐνες και παραμένουν στον οίνο.

Οι ταννίνες των σταφυλιών βρίσκονται στο φλοιό και τα γίγαρτα και κατανομείται σε διάφορες φαινολικές ενώσεις, όπως το γαλλικό και το ελλαγικό οξύ. Επιπλέον, οι υδρολυόμενες ταννίνες δεν περιέχονται στα σταφύλια αλλά είναι δυνατόν να βρεθούν σε οίνους γιατί αποτελούν τις κύριες εμπορικές ταννίνες που χρησιμοποιούνται στις διάφορες κατεργασίες αυτών. Πιο συγκεκριμένα, απαντούν ως συστατικό του ξύλου. Συναντώνται μόνο σε οίνους που έχουν παλαιώσει σε δρύινα βαρέλια ή έχουν δεχθεί προσθήκη οινολογικής ταννίνης.

Οι ταννίνες των σταφυλιών βρίσκονται στα στερεά μέρη τους και παραλαμβάνονται είτε με εκχύλιση είτε με συμπίεση. Από την ποσότητα των ταννινών που περιέχονται στο σταφύλι, ένα ελάχιστο ποσότητα μεταφέρεται στον οίνο. Το ποσοστό αυτό μετά από τις μειώσεις που συμβαίνουν κατά τα στάδια της κατεργασίας στους ερυκροί οίνους, κυμαίνεται μεταξύ 1,5 και 4 g/L, ενώ στους λευκοφί οίνους μεταξύ 40 και 200 mg/L.

Οι ταννίνες χαρακτηρίζονται για την αντιοξειδωτική τους δράση, με την οποία προστατεύονται οι ερυθροί οίνοι από τις επιδράσεις του οξυγόνου. Επίσης, διακρίνονται για τις ενώσεις που σχηματίζουν με τον σιδήρο (Fe), λόγω των δύο -OH που βρίσκονται σε θέση ορθό- του πλάγιου δακτύλου (κατεχολική δομή). Οι ενώσεις αυτές συμμετέχουν στο σιδηρικό θόλωμα των οίνων που είναι ανεπιθύμητα.

Από την ποικιλία των σταφυλιών, τις κλιματολογικές συνθήκες και το είδος της οινοποίησης, εξαρτάται και η ανομοιογένεια της υφισ των ταννινών. Η ικανότητα παλαιώσης, εκτός βέβαια από την ποικιλία του σταφυλίου, εξαρτάται από την ωρίμανση του σταφυλίου, από την οποία εξαρτάται ο βαθμός πολυμερισμού των ταννινών. Κατά την παλαιώση, παρατηρείται σχηματισμός μεγάλων πολυμερών, χάρη στην επιδράση του αρωμού, που είναι απαραίτητο για την πραγματοποίηση της. Γίνεται λοιπόν αντιληπτή, η μεγάλη σπουδαιότητα του οξυγόνου στο σχηματισμό μεγάλων μορίων.
1.3 ΦΑΙΝΟΛΙΚΕΣ ΕΝΩΣΕΙΣ ΚΑΙ ΟΡΓΑΝΟΛΗΠΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΟΙΝΩΝ
Οι φαινολικές ενώσεις είναι υπεύθυνες για το χρώμα και τη γεύση (στυφάδα) του κρασιού.

Στους λευκούς οίνους, το κανονικό φωτεινό κίτρινο χρώμα τους όπως και το ανεπιθύμητο καφετί χρώμα οφείλεται στα φαινολικά συστατικά. Επίσης, το χρώμα των ερυκρών οίνων οφείλεται στις ανθοκυάνες των ταννίνες και άλλα φαινολικά συστατικά, τα οποία παραλαμβάνονται από τους φλοιούς των σταφυλιών κατά τη διάρκεια της ζύμωσης. Η σταθερότητα του χρώματος των οίνων είναι ανάλογη με τον βαθμό πολυμερισμού ανάμεσα στις ανθοκυάνες και στις άλλες φαινολικές ενώσεις.

Στους λευκούς οίνους, η ύστερη δυνατή χαμηλή περιεκτικότητα σε φαινολικά συστατικά θεωρείται και πιο επιθυμητή. Γι' αυτό το λόγο, έχει σημασία η διαδικασία παραλαβής γλέφκους με χαμηλές ή καθόλου πιέσεις. Επιπλέον, η δημιουργία ή μη χρωστικών στους λευκούς οίνους, οφείλεται στην επιλογή της ποικιλίας, στο χρόνο τρυγοτητής και στην κατάσταση ωριμότητας. Η οξείδωση των φαινολιών μπορεί να οδηγήσει σε ανεπιθύμητες αλλαγές όπως στην εξασθένηση της γεύσης και του χρώματος και μάλιστα στο να γίνει η αιτία της ανάπτυξης καφέ χρώματος στα γλέφκι.

Στους ερυθρούς οίνους, τα φαινολικά συστατικά είναι επιθυμητά και η αλκοολική ζύμωση διενεργείται παρουσία των στεμφύλων για να οδηγήσει στο επιθυμητό χρώμα και στα γευστικά χαρακτηριστικά των οίνων. Στη διάρκεια της γήρανσης του κρασιού, έχουμε μια μείωση του κόκκινου χρώματος που οφείλεται στη μείωση των ανθοκυανών (που είναι οι κυρίως κόκκινες χρωστικές των νέων κρασιών), εξαιτίας της φυσιολογικής ένωσης τους με τις ταννίνες. Σ’ αυτές τις πιο σύνθετες ενώσεις ανθοκυανών - ταννίνων που είναι επίσης ερυθρές, οφείλεται το κόκκινο χρώμα των παλιών κρασιών όπου τελικά παύουν να περιέχονται ανθοκυάνες.

Στους μέγιστους της έντασης χρώματος από ερυθρές ποικιλίες, επιτυγχάνεται αφού διατηρηθεί το ζυμούμενο γλέφκο με τα στέμφυλα επί 3 – 5 ημέρες. Κατόπιν, η σχηματιζόμενη λόγω της αλκοολικής ζύμωσης αιθανόλη, θα εκχυλίζει τις ανθοκυάνες από τους φλοιούς των ρογών, που είναι διαλυτές στο ουόπνευμα και θα δώσει το κόκκινο χρώμα στο κρασί. Αμέσως μετά το ξυπνητικό διάστημα εκχύλισης των 3 – 5 ημερών, πρέπει να γίνει χωρισμός του γλέφκιου από τα στέμφυλα, γιατί αυξάνονται άλλοι ανεπιθύμητοι παράγοντες (π.χ. ταννίνες, χορτούλες γεύσεις κ.τ.λ.), που δίνουν τη γνωστή γευστική τραχύτητα στους οίνους. Παρ’ όλα αυτά, σε πολλές περιπτώσεις που δεν έχει επιτυχεί το επιθυμητό χρώμα στον οίνο, τα στέμφυλα παραμένουν στη δεξαμενή μέχρι το τέλος της ζύμωσης ή ακόμα και για κάποιες μέρες ακόμα, κατά τη μεταξυμική εκχύλιση [Bravo, 1998].

Η ένταση χρώματος εκφράζεται με το άθροισμα των απορροφήσεων που εμφανίζει ο οίνος στα 420nm και στα 520nm [ένταση (IC) = A420 + A520]. Η απόχρωση εκφράζεται με το
πηλίκο αυτών των δύο απορροφήσεων [απόχρωση (teinte) = A420/A520]. Η μέθοδος αυτή επιτρέπει την ευχερή παρακολούθηση της μεταβολής του ερυθρού χρώματος, κατά την κλασική ερυθρή οινοποίηση και επομένως το διαχωρισμό του γλεύκους από τα σταφύλια, όταν επιτευχθεί το επιθυμητό χρώμα. Τέλος, αξιώνει να σημειωθεί ότι για τους λευκούς οίνους, η τιμή της απορρόφησης στα 420nm, πρέπει να κυμαίνεται από 0,068 έως 0,150, ενώ στους ερυθρούς οίνους, η ένταση του χρωματισμού (IC), πρέπει να βρίσκεται σε τιμές μεταξύ 1,50 έως 13,50 και ο δείκτης απόχρωσης (teinte) στις τιμές από 0,47 έως 1,02 [Zoecklein et al., 1999].

Όσον αφορά στη γεύση των ερυθρών κρασιών και πιο συγκεκριμένα στη συμφυή τους αίσθηση, οι ταννίνες είναι αυτές που την καθορίζουν. Πιο συγκεκριμένα, η δράση των ταννινών είναι χημική. Προκαλούν τη συγκάλληση του σάλιου χάρη στην ένωση τους με τις πρωτεΐνες που περιέχει το σάλι και το τελικό φράξιμο των σιελογόνων αδένων. Έτσι το εμποδίζουν να παίζει τον ρόλο του λιπαντικού, δημιουργώντας τη συμφυή αίσθηση που περιγράφεται σαν σύσφιξη, συστολή, σκληρύνση [Bravo, 1998].

1.4 ΚΡΑΣΙ ΚΑΙ ΥΓΕΙΑ

Στο κρασί περιέχονται συστατικά που καθορίζουν τη θρεπτική του αξία. Αυτά είναι η αλκοόλη, που περιέχεται σε μεγάλες ποσότητες (9-17%vol), η γλυκερίνη και τα ζάχαρα, όταν πρόκειται για γλυκούς οίνους, ενώ περιέχει και διάφορα είδη βιταμινών. Επίσης κάποια οξέα όπως και τα ανόργανα και οργανικά άλατα τους, οι πολυφαινόλες κ.α. παίζουν επίσης σημαντικό ρόλο στη θρέψη και τη λειτουργία του οργανισμού. Όσον αφορά στα χημικά συστατικά, η θετική επίδραση του κρασιού αποδίδεται σε μικροσυστατικά του σταφυλιού όπως η θεσβερατρόλη, το φλαβονοειδί και ανκοκυανίνες. Συγκεκριμένα οι μέχρι τώρα μελέτες έχουν αποδείξει ότι το κρασί εμφανίζει:

- Αγγειοδιασταλτική δράση
- Αντιμικροβιακή και αντιβακτηριαδική δράση
- Αντιφλεγμονική δράση
- Αντιοξειδωτική δράση
- Αντικαρκινική δράση
- Αντιαλλεργική δράση

Πιο συγκεκριμένα:

1.4.1 Βακτηριοκτόνος Δράση

Από μελέτες, έχει προκύψει ότι οι σαλμονζλεσ, οι κολικοβάκιλοι και οι πακογόνοι σταφυλόκοκκοι εισαγόμενοι σε έναν ερυθρό οίνο θανατώνονται σε μερικά λεπτά. Ο ίδιος οίνος αραιώνεται με νερό σε αναλογία 1:1 ή ακόμα 1:3 διατηρεί τη βακτηριοκτόνο δράση του με την προϋπόθεση όμως να επιμηκυνθεί ο χρόνος επαφής. Επιπλέον, ένας ερυθρός οίνος που έχει βακτηριοκτόνο δράση πάνω στην escherichia-coli, μετά την επεξεργασία του με φυτικό άνθρακα χάνει κάθε ίχνος των αντισηπτικών ιδιοτήτων του και μετατρέπεται σε ένα καλό υπόστρωμα καλλιέργειας του βακτηρίου αυτού. Γνωρίζοντας ότι ο άνθρακας
δεσμεύει τις πολυφαινόλες, δηλαδή χρωστικές-ταννίνες, συμπεραίνουμε ότι ανάμεσα σε αυτές φαίνεται να βρίσκεται η αντιβακτηριακή ιδιότητα του οίνου [Weisse et al., 1995]

1.4.2 Επίδραση στα καρδιαγγειακά νοσήματα
Το κόκκινο κρασί και τα συστατικά του, αποτελούν παράγοντες ιδιαίτερου ενδιαφέροντος όσον αφορά την επίδρασή του σε καρδιαγγειακά νοσήματα. Πιο συγκεκριμένα, στη N. Γαλλία παρατηρήθηκε αυξημένη κατανάλωση λίπους και ιδιαίτερα κορεςμάτων. Παρ’ όλη τη συσχέτιση της πρόσληψης κορεμένων λιπαρών με καρδιαγγειακές παθήσεις, σ’ αυτήν την περιοχή της Γαλλίας, η εμφάνιση τέτοιων παθήσεων είναι σημαντικά μειωμένη σε σύγκριση με άλλες περιοχές. Αυτό το αξιοπερίεργο φαινέται ο νομίζει ότι «Γαλλικό παράδοξο» και αποδίδεται στην αυξημένη κατανάλωση κόκκινου κρασιού στην περιοχή αυτή της Γαλλίας [Renaud et al., 1992].

Τα τελευταία χρόνια, ολοένα και αυξανόμενα είναι ο αριθμός των επιδημιολογικών μελετών που υποστηρίζουν ότι η κατανάλωση κόκκινου κρασιού ελαττώνει τον κίνδυνο θανάτου από στεφανιαία νόσου. Η καρδιοπροστατική δράση της κατανάλωσης οίνου, προέρχεται κυρίως από τις αντιοξειδωτικές και αγγειοδιασταλτικές ικανότητες του κόκκινου κρασιού.

Πιο συγκεκριμένα, η ρεσβερατρόλη, αντιοξειδωτική ουσία η οποία βρίσκεται στο κόκκινο κρασί φαίνεται να επηρεάζει τη χαλάρωση της εσωτερικής αρτηρίας του μυοκαρδίου σε άτομα που πάσχουν από στεφανιαία νόσο.

Οι διάφορες πολυφαινόλες που βρίσκονται στο κόκκινο κρασί, έχουν συγχρηστεί με μείωση του κινδύνου εκδήλωσης στεφανιαίας νόσου, μέσω διαφόρων μηχανισμών όπως η μείωση της επιδεκτικότητας της LDL σε οξειδώσεις ή μείωση της συσσώρευσης αμιαπεταλίων, αλλά και η βελτίωση της λειτουργίας του ενδοθηλίου. Η τελευταία αυτή δράση των συστατικών του κόκκινου κρασιού, έχει ιδιαίτερη σημασία, καθώς τα τελευταία χρόνια αυξάνεται σταδιακά η αποδοχή της υπόθεσης ότι η δυσλειτουργία του ενδοθηλίου παίζει μείζονα ρόλο στην εμφάνιση και εξέλιξη της αθηροματικής διαδικασίας και της στεφανιαίας νόσου γενικά [Novakovic et al., Karatzis et al., 2004].

1.4.3 Επίδραση στον καρκίνο
Το κρασί μπορεί να δράσει εναντίον του καρκίνου και των εκφυλιστικών νόσων.

Ερευνητές πήραν κύτταρα από καρκίνο του μαστού και του προστάτη, δηλαδή από ορμονοεξαρτώμενους καρκίνους, έκαναν καλλιέργεια και πρόσθεσαν μικρή ποσότητα από αντιοξειδωτικές ουσίες (πολυφαινόλες) που πήραν από το κόκκινο κρασί. Από τη δεύτερη μέρα οι ουσίες αυτές άρχισαν να δρούν. Μετά από 5-6 μέρες παρατηρήθηκε η μέγιστη δράση τους: τα καρκινικά κύτταρα είτε είχαν σκοτωθεί είτε είχαν σταματήσει ο πολλαπλασιασμός τους.

Φαίνεται επίσης ότι οι προκυανιδίνες του κόκκινου κρασιού καθώς και του φλοιού των σταφυλιών, καταστέλλουν τη βιοσυνθέση οιστρογόνων. Τα οιστρογόνα έχουν δραστικό ρόλο στην ανάπτυξη καρκινού του μαστού.

Παρόμοια αποτελέσματα φαίνεται να παρουσιάζονται και σε άλλες μελέτες, όπως φαίνεται ότι τα φαινολικά συστατικά του κόκκινου κρασιού και ιδιαίτερα η ρεσβερατρόλη και η
κερκετίνθ, να καταπολεμοφν τθ δράςθ μιασ πρωτεϊνθσ, θ οποία προςταθεφει τα καρκινικά κφτταρα του μαστοφ από τθν καρκινική δράςθ [Webb et al., 2004, Jing-Jing, et al., 2003].

Όταν το κραςί δεν περιλαμβάνεται στθ συνολική ημερήσια κατανάλωση αλκοόλθσ, τότε ο καρκίνοσ του ανωτζρου πεπτικοφ ςυςτιματοσ ζχει μεγαλφτερεσ πικανότθτεσ αφξθςθσ. Ο κακθγθτισ Φαρμακολογίασ των Ρανεπιςτθμίων του Bordeaux και του Montpellier κ. Josef Vercauteren μάλιςτα, αναφφρεται στθν έντονθ αντιοξειδωτικι δράςθ των πολυφαινολϊν, οι οποίεσ βρίςκονται σε ιδιαίτερα υψθλι πυκνότθτα ςτο κόκκινο κραςί και οι οποίεσ ζχουν τθ δυνατότθτα να απομακρφνουν και τισ τοξικζσ ελεφκερεσ ρίηεσ.

2 ΚΕΦΑΛΑΙΟ

2.1 MALBEC

Το Malbec είναι μια ποικιλία η οποία παρ’ όλο που προζρχεται από τθν Γαλλία, συναντά τισ ιδανικζσ συνθικεσ για τθν ανάπτυξι τθσ ςτθν Αργεντινι (ςτοσ πρόποδεσ των Άνδεων, ςτισ άςεισ τθσ εριμοσ RioNegro, ςτθν Παταγονια κ.α.). Στθν περιοχθ τθσ Mendoza μάλιςτα, το Malbec κεωρείται το καλφτερο ςτον κόςμο. Στθ Γαλλία, θ ποικιλία αυτι χρθςιμοποιοφταν ιςτε να ενδυναμϊνει το χρϊμα των κόκκινων οίνων. Σε πολλά μζρθ του κόςμου αποκαλείται «μαφρο ςταφφλι», από το γεγονόσ του ότι το ανοιχτό μωβ χρϊμα των πρϊιμων οίνων, μετατρζπεται ςχεδόν ςε μαφρο κατά τθν ωρίμανςι του.

Η ευαιςκθςία του ςτον παγετό και ροπι για υποβάκμιςθ ζωσ και καταςτροφι του φυτοφ και του καρποφ, είναι οι κφριοι λόγοι που ζχει μειωκεί θ καλλιζργεια του Malbec ςτο μεγαλφτερο μζροσ τθσ Γαλλίσ. Ραρ’ όλα αυτά, ςε κάποιεσ περιοχζσ τθσ Γαλλίσ όπωσ ςτθν Cahor, το Malbec είναι σήμερα η κφρια ποικιλία για τθν παρασκευι κόκκινου οίνου.

Στα μζςα του 19ου αιϊνα, το Malbec καλλιεργείται πρϊτθ φορά ςτθν Αργεντινι και από τότε αποτελεί τθν κφρια κόκκινθ ποικιλία ςτθ χϊρα. Το Malbec καλλιεργείται επίςθσ ςτθν Χιλι όπωσ επίςθσ και ςε μικρζσ εκτάςεισ ςτθν Καλιφόρνια και τθν Αυςτραλία. Σ' αυτζσ τισ χϊρεσ ςυνικωσ χρθςιμοποιείται ςτθν ανάμειξθ με οίνουσ από άλλεσ κόκκινεσ ποικιλίεσ.

Οι ρϊ γεσ του ζχουν μικρό μζγεκοσ ζντονου μαφρου χρϊματοσ και λεπτι επιδερμίδα, ενϊ ςαν ποικιλία είναι ευαίςκθτθ ςτο κρφο. Τα φφλλα του είναι μαλακά, ακανόνιςτα και ηαρωμζνα, με τρείσ μικροφσ λοβοφσ και ζαρωμένα, με τρεις μικροφσ λοβοφσ και έναν πολύ μακρφ κεντρικό λοβό.

Ο οίνοσ Malbec ζχει πλοφςια, ςτρογγυλι και μαλακι γεφςθ, ςτακερι δομι και ζντονθ παρουςία ταννινϊν (ςτακερότερεσ ταννίνεσ). Εμφανίηει ζνα χαρακτθριςτικ βακφ ςκοφρο χρϊμα και πλοφςια ςκοτεινά αρϊματα φροφτων ςτο χαρμάν. Από αμπελϊνεσ που βρίςκονται ςε μεγάλο φψοσ, παράγονται κραςιά με πολύ καλή επιδομάτικαι κόκκινων tannins (σταθερότερεσ tannines). Εμφανίζει ένα χαρακτηριστικό βαθύ σκούρο κόκκινο χρϊμα και πλούσια σκοτεινά αρώματα φρούτων ςτο χαρμάνι. Από αμπελϊνεσ που βρίςκονται σε μεγάλο ύψοσ, παράγονται κραςιά με πολύ καλή επιδομάτικαι μεταξί του χρϊματοσ, τθσ οξύτθτασ και των γλυκϊν και άφκονων ταννινϊν. Τα αρώματα που διακρίνονται στον οίνο Malbec είναι κυρίωσ από κόκκινα φρούτα όπωσ το μαύρο κεράσι, το βατόμουρο, η φράουλα, το δαμάςκθνο, αλλά και μια αίςκθςθ μαφρου πιπεριοφ και το
καπνιστό άρωμα του ξιφου, χαρακτηριστικά τα οποία επηρεάζονται και από τον χρόνο της
συγκομιδής. Παρ’ όλα αυτά τα οργανολήπτικά του χαρακτηριστικά μεταβάλλονται ανάλογα
με τον τόπο καλλιέργειας (υψόμετρο, υγρασία, χημική και φυσική σύσταση εδάφους) και
τον τρόπο της καλλιέργειας (άρδευση, κλάδεμα, οργάνωση αμπελιοφ), καθώς και της
οινοποίησης [5*, 6*, 7*, 8*].

Πίνακας 1: Φαινολικό περιεχόμενο οίνου Malbec [Fanzone et al., 2010]

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΣ</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP (ολικές φαινόλες)</td>
<td>1932-3507</td>
</tr>
<tr>
<td>TA (ολικές ανθοκυανίνες)</td>
<td>261-803</td>
</tr>
<tr>
<td>TT (ολικές ταννίνες)</td>
<td>2783-4943</td>
</tr>
<tr>
<td>IC’</td>
<td>9-25χ.μ.</td>
</tr>
<tr>
<td>Βενζούκα οξέα</td>
<td>Γαλλικό</td>
</tr>
<tr>
<td></td>
<td>Συνολικά</td>
</tr>
<tr>
<td>Υδροξυκινναμωνικά Οξέα</td>
<td>Καφεύνικό</td>
</tr>
<tr>
<td></td>
<td>π-κουραμικό</td>
</tr>
<tr>
<td></td>
<td>Συνολικά</td>
</tr>
<tr>
<td>Ανθοκυανίνες</td>
<td>Δελφινιδίνη</td>
</tr>
<tr>
<td></td>
<td>Κυανίδινη</td>
</tr>
<tr>
<td></td>
<td>Πετουνιδίνη</td>
</tr>
<tr>
<td></td>
<td>Πεονιδίνη</td>
</tr>
<tr>
<td></td>
<td>Μαλβίδινη</td>
</tr>
<tr>
<td></td>
<td>Ακέτυλωμενημαλβίδινη</td>
</tr>
<tr>
<td></td>
<td>Κυανιδίνη μαλβίδινη</td>
</tr>
<tr>
<td>Φλαβανόλες</td>
<td>Κατεχίνη</td>
</tr>
<tr>
<td></td>
<td>Επικατεχίνη</td>
</tr>
<tr>
<td></td>
<td>Προκυανίδινη B1</td>
</tr>
<tr>
<td></td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td>dimer</td>
</tr>
<tr>
<td></td>
<td>Συνολικά</td>
</tr>
<tr>
<td>Φλαβονόλες</td>
<td>Μυρικετίνη</td>
</tr>
<tr>
<td></td>
<td>Κερκετίνη</td>
</tr>
<tr>
<td></td>
<td>Συνολικά</td>
</tr>
</tbody>
</table>

Στον Πίνακα 1 παρουσιάζονται κάποια ποσοτικά στοιχεία για το φαινολικό περιεχόμενο του
οίνου Malbec από διάφορα υψίπεδα της Αργεντινής. Τα αποτελέσματα που προέκυψαν,
επιβεβαιώνουν μια έντονη διακύμανση στο φαινολικό περιεχόμενο των δειγμάτων οίνου
που αναλήθηκαν, η οποία είναι ενδεικτική του πολυφαινολικού «πλούτου» των Malbec
οίνων που μελετήθηκαν. Η διακύμανση αυτή οφείλεται πιθανότατα στις διαφορετικές
τοποκομίσεις στις οποίες καλλιεργήθηκαν τα δείγματα που μελετήθηκαν. Κάποιες περιοχές
στην αργεντινική επαρχία Mendoza, διακρίνονται για το εξαιρετικό πολυφαινολικό
δυναμικό τους. Τα υψόλεπτα περιοδικά σε αυτές τις φαινολικές ομάδες (ολικές φαινόλες,
ταννίνες, ανθοκυανίνες) εμφανίζονται κυρίως σε ζιώνες που βρίσκονται σε μεγαλύτερο
υψόμετρο (1000-1500m). Επιπλέον, όλα τα δείγματα Malbec οίνου είναι ιδιαίτερα υψηλά σε
συνολικό ταννικό περιεχόμενο και θα μπορούσαν ενδεχομένως να χρησιμοποιηθούν σε
μείγματα με άλλες ποικιλίες φτωχές σε ταννίνες, με σκοπό να παραχθούν ισορροπημένα, τόσο στο χρώμα, το
στόμια όσο και στη δομή και το σώμα, κρασιά.
Τέλος, παρατηρούνται σημαντικά αυξήμενες τιμές στον δείκτη του χρώματος (IC=9-25), κάτι το οποίο δεν συνάδει με τις αντίστοιχες τιμές που συναντάμε στη διεθνή βιβλιογραφία, οι οποίες κυμαίνονται από 0,5 έως 3 [Fanzone et al., 1997].

Το φαινόμενο περιεχόμενο και το χρώμα των οίνων όπως αναφέρθηκε παραπάνω, εξαρτάται σημαντικά από τις συνθήκες καλλιέργειας όπως το έδαφος, την υγρασία, την ακτινοβολία, το υψόμετρο κ.α. Η εξάρτηση του ολικού πολυφαινολικού περιεχομένου (d280) και του χρώματος (C') από το υψόμετρο, καταγράφεται στον Πίνακα 2:

| Πίνακας 2: Σχέση δείκτη ολικών πολυφαινολικών και έντασης με το υψόμετρο |
|-------------------|---------|---------|---------|
| | 1500m | 1000m | 500m |
| d280 | 42,06 | 35,43 | 25,24 |
| C' | 1,72 | 1,69 | 0,51 |

Από τον πίνακα διαπίστωνουμε ότι το υψόλετο πολυφαινολικό περιεχόμενο, καθώς και η υψηλότερη τιμή χρώματος, παρατηρούνται στο μεγαλύτερο υψόμετρο (1500m). Σε σχέση λοιπόν με τις συνθήκες που επικρατούν στην Ελλάδα στον τομέα της καλλιέργειας αμπελιών (μεγαλύτερο ποσοστό καλλιέργειας σε χαμηλά υψόμετρα 250 και 700m), θα μπορούσαμε να συμπεράνουμε ότι το Malbec είναι μια ορεινή ποικιλία [Berli et al., 2008].

2.2 ΑΓΙΩΡΓΙΤΙΚΟ

Το Αγιώργιτικό θεωρείται μια από τις πιο εκλεκτές ελληνικές ποικιλίες αμπελιών. Συναντάται σποραδικά σε πολλά διαμερίσματα της χώρας, σε εκτάσεις που φτάνουν τα 25.000 στρέμματα.

Σύμφωνα με τον κανονισμό 3800/81 της Ε. Ο. Κ. και μετά τις τελευταίες τροποποιήσεις με τον 2548/99, η ποικιλία αυτή καλλιεργείται κυρίως στους Νομούς Αργολίδας, Αρκαδίας, Αττικής, Βουθίας, Ευβοίας, Κορινθίας, και Λακωνίας και επιτρέπεται προσωρινά στους Νομούς Αιτωλοακαρνανίας, Δράμας, Ηλείας, Λακωνίας, Λασιθίου και Φλώρινης. Καλλιεργείται κυρίως στη ζώνη παραγωγής οίνων Ο.Π.Α.Π. «Νεμέα» καταλαμβάνοντας μια έκταση 19.000 στρεμμάτων περίπου και σε υψόμετρο 250 – 800m.

Καλλιεργείται από αρχαιότατων χρόνων στην περιοχή της Νεμέας. Είναι επίσης γνωστό με το όνομα του οίνου της εποχής αυτής ως “φλυάσιος οίνος”. Το Αγιωργιτικό ξεχωρίζει σε τρεις ποιότητες ανάλογα με το υψόμετρο καλλιέργειας:

i. Πεδινή περιοχή με υψόμετρο έως 250 - 300 μέτρα.

ii. Ημιορεινή περιοχή με υψόμετρο 300 - 600 μέτρα. Αυτή η ζώνη παράγει τα καλύτερα κρασιά.

iii. Ορεινή περιοχή με υψόμετρο 650 έως 800 μέτρα με ιδιαίτερα χαρακτηριστικά χαμηλόβαθμα κρασιά, υψηλής οξύτητας και ανοιχτόχρωμα.

Παρατηρούνται συνήθως δυο σταφύλια ανά καρποφόρο βλαστό, κυρίως στον τέταρτο και πέμπτο κόμβο, πολλές φορές όμως παρατηρούνται μέχρι και τέσσερα σταφύλια ανά βλαστό.
Τα σταφύλια της ποικιλίας αυτής είναι συνήθως μεσαίου μεγέθους (μέσο βάρος σταφυλού περίπου 500g), πυκνόρωγα, κυλινδροκωνικού σχήματος. Ενίοτε παρατηρούνται και πτερυγωτά σταφύλια.

Οι ρώγες είναι μικρού έως μετρίου μεγέθους, στρογγυλές, κυανομελανοχρώματος, με μαλακά εύχυμη σάρκα. Η πλήρης ωρίμανση των σταφυλιών στην περιοχή της Αττικής παρατηρείται κατά τα μέσα Σεπτεμβρίου, ενώ στην Ζώνη Ο. Π. Α. Π. της Νεμέας ο χρόνος ωρίμανσης επηρεάζεται άμεσα από το υψόμετρο της καλλιέργειας, ξεκινώντας από τις αρχές Σεπτεμβρίου στα χαμηλότερα υψόμετρα μέχρι τα μέσα Οκτωβρίου στις πιο ορεινές περιοχές.

Τα πιο κατάλληλα σχήματα μόρφωσης για την ποικιλία αυτή είναι το κυπελλοειδές (με φύσις κορμοφ 20-40 cm και το αμφίπλευρο γραμμοειδές Royat με φύσις κορμοφ 50 cm και φύσις βλαστικοφ τειχοφ 120-150 cm). Οι πιο κατάλληλες πυκνότητες φύτευσης είναι 400-500 πρεμνά ανά στρέμμα.

Η απόδοση κυμαίνεται κατά μέσο όρο στα 1000–1200 kg/στρέμμα, ενώ έχουν αναφερθεί και αποδόσεις της τάξης των 2500 kg/στρέμμα σε γραμμικά σχήματα μόρφωσης.

Το Αγιωργίτικο είναι μια από τις πιο πλούσιες σε χρώμα ελληνικάς ερυκράς ποικιλίες αμπελών. Τα ερυκρά κραςιά που παράγει είναι πλούσια σε ανθοκύανες και χαρακτηρίζονται από βακτικό κόκκινο χρώμα, ζωντανές αρίματα κόκκινων φρούτων, κεράς, μοφρο. Στόμα πλούσιο, με πολύ μαλακές ταννίνες και χαμηλή οξύτητα. Χαρακτηριστικό είναι το ωίδα χρώμα των νέων οίνων που παράγονται από αυτή την ποικιλία, το οποίο οφείλεται στον μονογλυκοηίτη τους δελφινιδίνθς που περιέχουν. Το Αγιωργίτικο είναι μια ποικιλία η οποία μπορεί να δώσει διαφορετικούς τύπους προϊόντων, ανάλογα με το περιβάλλον στο οποίο καλλιεργείται. Παράγονται κυρίως ερυθρά ξηρά κρασιά που έχουν ένα βαθύ ρουμπινιά χρώμα και επιδείχνουν παλαίωση. Η συμπαραμορφή του μούστου με τα στέμφυλα κατά την οινοποίηση διαρκεί συνήθως λίγες μέρες. Κρασά όμως που προορίζονται για παλαίωση θα πρέπει κατά την οινοποίηση να μένουν πάνω από 6 μέρες με τα στέμφυλα, όπως την δυνατότητα παλαίωσης φτάνει τα δέκα χρόνια. Το φρέσκο κρασί έχει ένα φρουτώδες αρώμα (όπως το γεράνι). Όταν το κρασί υποστεί μηλογαλακτική ζύμωση αναπτύσσονται αρίματα καραμέλας γάλακτος. Έχει μαλακές ταννίνες και με την παλαίωση αποκτά ένα πλούσιο μπουκέτο όπου κυριαρχούν αρίματα μπαχαρικών (μοσχοκάρυδο) ή ακόμα και βαλσαμικά αρίματα (δενδρολίβανο).

Έτσι λοιπόν από τη συγκεκριμένη ποικιλία μπορούμε να πάρουμε και μεγάλη ποικιλία προϊόντων, όπως αξιόλογα ερυθρά γλυκά κρασιά, φρουτώδη ερυθρά κρασιά πρώιμης κατανάλωσης (τύπου πουνεναυ), βαθύχρωμα ερυθρά ξηρά κρασιά, είτε νεαρά, φρουτώδη, ευκολόπιτα, με μαλακή και στρογγυλή γεύση, είτε παλαιωμένα με χαρακτηριστικό σύνθετο μπουκέτο κόκκινων φρούτων, αποξηραμένων δαμάσκηνων και μπαχαρικών, και πλούσια, ισορροπημένη γεύση, με βελουδίνες ταννίνες και μακρά επίγευση. Επίσης παράγονται ζωηρό χρώμα ροζ κρασιά, με φρουτώδη αρώματα, γεμάτη και δροσερή γεύση. Από την ποικιλία αυτή παράγονται τα ξηρά αλλά και τα ημίγλυκα και γλυκά ερυθρά κρασιά Ονομασίας Προελεύσεως Ανωτέρας Ποιότητος "Νεμέα". Το Αγιωργίτικο συμμετέχει στη σύνθεση αρκετών Τοπικών οίνων (Πελοποννησιακός, Πλαγιές Ορεινής Κορινθίας κ.α.)
καθώς και Επιτραπέζιων, ιδιαίτερα με τις ποικιλίες Ξινόμαυρο και Cabernet-Sauvignon [Kallithraka et al., 2006, 9*, 10*]

Στον Πίνακα 3 δίνονται στοιχεία για το φαινολικό περιεχόμενο του οίνου Αγιωργίτικο:

Πίνακας 3: φαινολικό περιεχόμενο οίνου Αγιωργίτικο [Kallithraka et al., 2006]

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΣ</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΤΡ (ολικές φαινόλες)</td>
<td>2283</td>
</tr>
<tr>
<td>ΤΑ (ολικές ανθοκυάνες)</td>
<td>402,7</td>
</tr>
<tr>
<td>Βενζοίκα οξέα</td>
<td></td>
</tr>
<tr>
<td>Γαλλικό</td>
<td>79,8</td>
</tr>
<tr>
<td>Συνολικά</td>
<td>99,9</td>
</tr>
<tr>
<td>Υδροξυκυννυμωνικά οξέα</td>
<td></td>
</tr>
<tr>
<td>Καφενίκικο</td>
<td>11,85</td>
</tr>
<tr>
<td>Π-κουραμικό</td>
<td>0,67</td>
</tr>
<tr>
<td>Φερουλικό</td>
<td></td>
</tr>
<tr>
<td>Συνολικά</td>
<td>0,98</td>
</tr>
<tr>
<td>Ανθοκυάνες</td>
<td></td>
</tr>
<tr>
<td>Δελφινιδίνη</td>
<td>2,89</td>
</tr>
<tr>
<td>Κυανιδίνη</td>
<td>Δεν ανιχνεύθηκε</td>
</tr>
<tr>
<td>Πετουνιδίνη</td>
<td>4,51</td>
</tr>
<tr>
<td>Πεονιδίνη</td>
<td>4,36</td>
</tr>
<tr>
<td>Μαλβιδίνη</td>
<td>311,26</td>
</tr>
<tr>
<td>Ακετυλωμένη μαλβιδίνη</td>
<td>27,75</td>
</tr>
<tr>
<td>Κουμαρυλωμένη μαλβιδίνη</td>
<td>46,50</td>
</tr>
<tr>
<td>Φλαβανόλες</td>
<td></td>
</tr>
<tr>
<td>Κατεχίνη</td>
<td>53,2</td>
</tr>
<tr>
<td>Επικατεχίνη</td>
<td>108,4</td>
</tr>
<tr>
<td>Προκατεχίνη B1</td>
<td>16,9</td>
</tr>
<tr>
<td>Προκατεχίνη B2</td>
<td>6,95</td>
</tr>
<tr>
<td>Προκατεχίνη B2 C1</td>
<td>17,16</td>
</tr>
<tr>
<td>Προκατεχίνη B2 A2</td>
<td>6,63</td>
</tr>
<tr>
<td>Συνολικά</td>
<td>129,15</td>
</tr>
<tr>
<td>φλαβονόλες</td>
<td></td>
</tr>
<tr>
<td>Χαμηλίκτινη</td>
<td>3,43</td>
</tr>
<tr>
<td>Καμπφερόλη</td>
<td>6</td>
</tr>
<tr>
<td>Κερκετίνη</td>
<td>9,35</td>
</tr>
<tr>
<td>Ισοκαμπφερόλη</td>
<td>2,56</td>
</tr>
<tr>
<td>Ροτίνη</td>
<td>17,27</td>
</tr>
<tr>
<td>Συνολικά</td>
<td>21,51</td>
</tr>
</tbody>
</table>

2.3 Σύγκριση των δύο ποικιλιών

Από τα χαρακτηριστικά που παρατέθηκαν παραπάνω, καθώς και από τους πίνακες που περιγράφουν ποσοτικά το φαινολικό φορτίο των δύο ποικιλιών, παρατηρούμε ότι και το Malbec αλλά και το Αγιωργίτικο, είναι οίνοι με σημαντικό φαινολικό περιεχόμενο και έντονο κόκκινο χρώμα. Από τα στοιχεία που παραθέσαμε μάλιστα, παρατηρούμε ότι και οι δύο ποικιλίες χρησιμοποιούνται για την ενδυνάμωση οίνων από άλλες ποικιλίες. Επίσης, εμφανίζουν κοντινά αρωματικά στοιχεία, κυρίως από κόκκινα φρούτα.
Παρ’ όλα αυτά, παρατηρείται μία αξιοσημείωτη φαινολική επικράτηση του οίνου Malbec. Πιο συγκεκριμένα, οι δείκτες TP (ολικές φαινόλες) και TA(ολικές ανθοκυάνες) είναι σημαντικά μεγαλύτεροι σε σχέση με τον οίνο του Αγιωργίτικου, καθώς και οι επιμέρους φαινολικές ενώσεις που αναλύθηκαν στους δύο οίνους. Η σύγκριση αυτή ιστόσο, μπορεί μόνο να μας δώσει μια ένδειξη μόνο σε σχέση με την φαινολική επικράτηση του Malbec, καθώς οι τιμές που του Αγιωργίτικου αναφέρονται σε ένα μόνο δείγμα και τοποθετούνται περίπου στη μέση της διακύμανσης των διαφόρων δειγμάτων Malbec. Το αξιοσημείωτο του Pinakia 1 που αναφέρεται στην ποικιλία Malbec είναι η έντονη διαφοροποίηση του φαινολικού περιεχομένου σε σχέση με τις συνθήκες καλλιέργειας του, κάτι που μπορεί να το κατατάσσει στα πολύ πλούσια σε φαινολικές ενώσεις κρασιά.

3 ΚΕΦΑΛΑΙΟ

3.1 ΕΡΥΘΡΗ ΟΙΝΟΠΟΙΗΣΗ

3.1.1 ΤΑ ΣΤΑΔΙΑ ΤΗΣ ΕΡΥΘΡΗΣ ΟΙΝΟΠΟΙΗΣΗΣ

Το πρώτο στάδιο της ερυθρής οινοποίησης αφορά στη μηχανική επεξεργασία των σταφυλιών. Αρχικά πραγματοποιείται ο εκραγισμός που λαμβάνει χώρα στο εκραγιστήριο. Το εκραγιστήριο αποτελείται από ένα διάτρητο κύλινδρο που περιστρέφεται. Στο εσωτερικό του βρίσκεται ένας άξονας με πτερύγια που περιστρέφεται με αντίθετη φορά. Εδώ οι ρώγες διαχωρίζονται από τα κοτσάνια τους και περνούν από τις τροχες του κυλίνδρου, ενώ τα κοτσάνια βγαίνουν από το αντίθετο άκρο και απομακρύνονται (αποβοστρύχωση).

Στη συνέχεια οι ρώγες περνούν ανάμεσα από τους κυλινδρούς του θλιπτηρίου, οι οποίοι επίσης περιστρέφονται. Η ταχύτητα και η μεταξύ τους απόστασης ρυθμίζονται ανάλογα με την ποικιλία των σταφυλιών και το βαθμό ωριμότητάς τους. Έτσι ενώ σταξούν οι φλοιοί αποφέρεται το σπάσιμο των κοκκινιών που θα προσθέτει στη φυσική γεύση στο κρασί. Συνήθως, η διαδικασία του εκραγισμού (αποβοστρύχωση) και της έκθλψης (πάσμου ραγών των σταφυλιών), συνδέονται μεταξύ τους, σε ένα ενιαίο μηχάνημα. Με την σύνθλψη των ρωγών, απελευθερώνεται ο χυμός τους και όλος ο σταφυλοπολτός που δημιουργείται μεταφέρεται με τη βοήθεια μιας αντλίας στις ανοξείδωτες δεξαμενές. Ακολουθεί η χημική επεξεργασία της σταφυλόμαζας, δηλαδή η θείωση (προσθήκη ανυδρίτη θειώδους οξέος, SO₂) για προστασία από την οξείδωση και αν χρειαστεί κάποια διόρθωση των σακχάρων και της οξύτητας [Σουφλέρος, 2000].

Στο σημείο αυτό της οινοποίησης, ξεκινάει η αλκοολική ζύμωση, η μετατροπή δηλαδή του φρέσκου χυμού σταφυλιών (γλεφκού) σε κρασί. Η διαδικασία αυτή προκαλείται από
τις ζύμες, μονοκύτταρους οργανισμούς που βρίσκονται στον φλοιό του σταφυλιού και έχουν πλέον περάσει στο σταφυλοπολτό. Η κυρίωτερη δράση των ζυμών είναι να μετατρέψουν τα σάκχαρα του σταφυλιού σε αλκοόλ. Ταυτόχρονα απελευκερίνεται διοξείδιο του άνθρακα που δημιουργεί φυσαλίδες. Αυτές ανεβάζουν τους φλοιούς στην επιφάνεια των δεξαμενών όπου σχηματίζουν πυκνό «καπέλο». Εναλλακτικά χρησιμοποιούνται επιλεγμένες ζύμες με τις οποίες εμβολιάζεται το γλεφκού, προκειμένου να υπάρχει καλύτερος έλεγχος της ζύμωσης και των επιθυμητών χαρακτηριστικών του κρασιού που θα παραχθεί. Αν δεν γίνει προσοχή ζυμών από τον παραγωγό η αλκοολική ζύμωση λέγεται φυσική, ενώ αλλιώς ελεγχόμενη.

Η διάρκεια παραμονής των στέμφυλων με το γλεφκού, είναι ένας από τους βασικούς παράγοντες που επιρρέει στην εκχύλιση των διαφόρων συστατικών του σταφυλιού. Πιο συγκεκριμένα, όσον αφορά τις ερυθρές χρωστικές ουσίες στις οποίες οφείλεται το κόκκινο χρώμα του κρασιού, κατά κύρια λόγο βρίσκονται στο εσωτερικό των φλοιών του σταφυλιού, όπως αναφέρθηκε στο κεφάλαιο 1. Μόνο το επαφό του χυμού με το φλοιό, στη σωστή θερμοκρασία και για συγκεκριμένα χρόνο, δίνει το ποιότητα αποτέλεσμα του χρωματισμού του. Για αυτό, αντλείται ο χυμός από τον πυκνό της δεξαμενής και ανακυκλώνεται από την κορυφή της. Με αυτόν τον τρόπο, διαβρέχονται τα στέμφυλα. Ρυθμίζοντας λοιπόν το χρόνο αυτής της εκχύλισης, επιτυγχάνεται το επιθυμητό χρώμα. Στα ερυθρά κρασιά, ο χρόνος εκχύλισης μπορεί να διαρκέσει από ελάχιστες μέρες έως και αρκετές εβδομάδες.

Κατά τη διάρκεια της αλκοολικής ζύμωσης αυξάνεται η θερμοκρασία του γλεφκού, στον χορό οι ζύμες παράγουν ενέργεια. Συνήθως επιδιόρθωται να διατηρηθεί η θερμοκρασία ζύμωσης στο όριο των 20-28 °C που είναι ιδανικά για την παραγωγή των ερυθρών οίνων, καθώς μας επιτρέπει να παραλάβουμε τα συστατικά που διαφοροποιούν την γεύση τους, διατηρώντας συγχρόνως τη φρεσκάδα των αρωμάτων τους. Η ψύξη των δεξαμενών γίνεται με μανδύα ψυχρού νερού ή εμβαπτίζοντας τα εσωτερικά τους συγχρόνως με το εξωτερικό τους. Μόλις ο χυμός αποκτήσει την εκχύλιση και γευστικό χαρακτήρα, απομακρύνεται από τους φλοιούς και μεταφέρεται σε άλλη δεξαμενή.

Όταν ολοκληρωθεί η αλκοολική ζύμωση, μπορεί να εκδηλωθεί μία δεύτερη, η μηλογαλακτική. Η τελευταία ονομάζεται ζύμωση αν και προκαλείται από βακτήρια, σε αντίθεση με την αλκοολική ζύμωση που πραγματοποιείται από ζυμομύκητες. Είναι δε τόσο σημαντική για την εξέλιξη των ερυθρών κρασιών ώστε αν δεν εκδηλωθεί από μόνη της, συχνά προκαλείται με προσθήκη βακτηρίων. Η παρουσία του μηλικού οξέος στους οίνους, τους προσδίδει γεύση και ομήρια πράσινων μη ώριμων φρούτων, ένα ειδός στυφλός και μια τραχύτητα ανεπιθύμητη. Τα χαρακτηριστικά αυτά αποτελούν ένα σοβαρό μειονέκτημα στην ποιότητα των ερυθρών οίνων, καθώς επίσης και των λευκών γλυκών [Σουφλέρος, 2000]. Στη φάση της μηλογαλακτικής ζύμωσης, το μηλικό οξύ μετατρέπεται σε γαλακτικό, μια αλλαγή που «μαλακώνει» το κρασί, μειώνει δηλαδή τον άγουρο χαρακτήρα του και βοηθά στην ψριμότητά του. Με αυτή τη μέθοδο επιτυγχάνεται φυσική μείωση της οξύτητας και βιολογική σταθερότητα του κρασιού [1°]. Η διαδικασία ολοκληρώνεται με την αποθήκευση του οίνου. Ακολουθεί δηλαδή εμφιάλωση είτε σε δρύινα βαρέλια για την παλαίωση του οίνου, είτε σε γυάλινες φιάλες.

22
Ο φρέσκοςωμένος οίνος είναι θολός στην όψη, τραχύς και στυφός στη γεύση, με οσμή μαγιάς και χωρίς bouquet (μπουκέτο, ευωδία). Μπορούμε ωστόσο να διακρίνουμε διάφορα χαρακτηριστικά αρώματα που προέρχονται από την εκάστοτε ποικιλία του σταφυλιού. Τα χαρακτηριστικά αυτά αδυνατίζουν αυτόματα – σιγά και από την πρώτη ακόμη χρονιά παρατηρείται βελτίωση του οίνου, τόσο στην όψη όσο και στη γεύση και την οσμή, ενώ αργότερα αρχίζει και η ανάπτυξη του μπουκέτου και η εξέλιξη του χρώματος.

Όλες αυτές οι μεταβολές οφείλονται σε μια σειρά από φυσικά, χημικά, φυσικοχημικά ή βιοχημικά φαινόμενα, όπως συσωματώσεις, καθιζήσεις, εστεροποιήσεις, οξειδώσεις, αναγωγές, ζωμώσεις κ.α. Με το πέρασμα του χρόνου, προκύπτει τελικά το χαρακτηριστικό μπουκέτο του οίνου και η πληρότητα της ποιότητάς του.

Ο απαιτούμενος χρόνος της παλαίωσης, αλλά και ο χρόνος κατά τη διάρκεια του οποίου ο οίνος παραμένει ευχάριςτος για κατανάλωση, δεν είναι σταθερός για όλους τους οίνους. Ο χρόνος αυτός κυμαίνεται σημαντικά και εξαρτάται από πολλούς παράγοντες, μερικοί από τους οποίους είναι ο τύπος του οίνου, η προέλευσή του, η χρονιά παραγωγής, η τεχνική οινοποίησης κ.α. Στην περίπτωση των ερυκρόν οίνων, η περιεκτικότητα σε φαινολικές ενώσεις και το ύψος της οξύτητας ασκούν πρωταρχικό ρόλο στη διάρκεια ζωής του οίνου [Σουφλέρος, 2000].

Όταν λοιπόν η σύσταση του οίνου το επιτρέπει (ανθοκυάνες-ταννίνες) παλαιώνεται. Τόσο στους ερυθρούς όσο και στους λευκούς οίνους, η παλαιώση περιλαμβάνει:

- Την ωρίμανση των οίνων ή εκλείπτυνση των οργανοληπτικών χαρακτηριστικών τους, που οφείλεται σε οξειδωτικά φαινόμενα (βραχύχρονη παραμονή σε βαρέλι).
- Την ανάπτυξη του μπουκέτου (bouquet), που οφείλεται σε αναγωγικά φαινόμενα (παραμονή σε φιάλη).

Οι διάφοροι τρόποι παλαίωσης:

- Παλαιώση σε δρύινο βαρέλι. Το ξύλο προοδεύει αρώματα όπως βανίλια και μπαχαρικά, διαμορφώνει το αρωματικό μπουκέτο προσφέροντας οίνους εξαιρετικής ποιότητας.
- Παλαιώση σε φιάλη.

Για να είναι βιολογικά και χημικά σταθερός ο οίνος χρησιμοποιούνται διάφορες μέθοδοι. Στις φυσικές μεθόδους περιλαμβάνεται η θέρμανση και η ψύξη του οίνου. Στις χημικές περιλαμβάνεται η αφαίρεση του σιδήρου (Fe) και του χαλκού (Cu) και τέλος, στις φυσικοχημικές μεθόδους περιλαμβάνεται η προσθήκη του μπετονίτη, του αραβικού κόμμου, του μετατρυγικού οξέους κ.α. Επίσης ο οίνος υποβάλλεται σε διαδικασίες όπως μεταγγίσεις, διαύγαση και φιλτράρισμα. Με τις μεταγγίσεις επιτυγχάνουμε την απομάκρυνση βιολογικών λασπών, τρυγικών αλάτων και διάφορων στερεών. Η διαύγαση βοηθάει στην απομάκρυνση σωματιδίων, ώστε να αποφύγουμε τη δημιουργία ιζήματος και πρωτεϊνικού θολώματος. Τέλος, φιλτράρεται και αφού είναι απολύτως βιολογικά και χημικά σταθερός εμφιαλώνεται [Σουφλέρος, 2000, 2*].
3.1.2 ΤΕΧΝΟΛΟΓΙΚΗ ΒΕΛΤΙΩΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΕΡΥΘΡΩΝ ΟΙΝΩΝ

Η ωριμότητα των οίνων είναι πολύ σημαντική παράμετρος για την παραλαβή κρασιών υψηλής ποιότητας.

Στις περιπτώσεις ανεπαρκούς ωριμότητας οδηγούμαστε στην παραγωγή οίνων με αδύνατο χρώμα, γυμνή γεύση και στυφό επίγευση. Αντίθετα, όταν η ωριμότητα είναι καλή, έχουμε βαθύχρωμους οίνους, με σώμα, δομή και διάρκεια καθώς και επιδεκτικότητα στην παλαίωση. Υπενθυμίζεται ότι το έντονο χρώμα των οίνων αυτών οφείλεται στο υψηλό ποσοστό συμπλόκων ταννινών - ανθοκυανίν καθώς και στον υψηλό βαθμό ιονισμού των ανθοκυανίν τους.

Συνεπώς, πρωταρχικός στόχος της οινοποιήσης τέτοιων ποικιλιών, είναι η παραλαβή κατά την εκχύλιση του μέγιστου δυνατού ποσοστού ανθοκυανίν από τους φλοιούς, ενώ στην περίπτωση των ταννινών η διαδικασία πρέπει να είναι εκλεκτική και να σταματά πριν την παραλαβή έντονα στυφών συστατικών. Οι ανθοκυάνες και οι ταννίνες των φλοιών, θεωρούνται "μαλακές" και εκχυλίζονται σε υδατικό διάλυμα. Αντίθετα, οι ταννίνες των γιγάτων παραλαμβάνονται παρουσία αλκοόλης, αφού δηλαδή έχει προχωρήσει η αλκοολική ζύμωση.

Η εκχύλιση των φαινολικών ουσιών επηρεάζεται σημαντικά από την θερμοκρασία της ζύμωσης, τον χρόνο παραμονής του οίνου με τα στεφύλια και από τις ανακυκλώσεις. Εναλλακτικά χρησιμοποιείται σε κάποιες περιπτώσεις (Pinot Noir) η τεχνική εμβάπτισης του καπζλου (pigeage). Άλλες τεχνικές που στοχεύουν στην ενίσχυση του παραλαμβανόμενου κατά την οινοποίηση φαινολικού δυναμικού είναι η αφαίμαξη (saignée), η χρήση πηκτινολυτικών ενζύμων, η μεταξυμωτική εκχύλιση (macération post-fermentaire) και η εν κερμί μεταηυμωτική εκχύλιση (macération finale a chaud). Η επίδραση των παραπάνω τεχνικών στη χημική σύσταση και τα οργανοληπτικά χαρακτηριστικά των οίνων είναι πολύ σημαντική [Επίσης οινοπαραγωγικός Αμπελικός Β.Ε.]. Οι συνηθότερες χρησιμοποιούμενες θα αναπτυχθούν στη συνέχεια.

3.1.2.1 Προζυμωτική κρυοεκχύλιση

Η κρυοεκχύλιση είναι μια τεχνική η οποία, όπως δείχνει και το όνομά της, βασίζεται στη διαδικασία της εκχύλισης και λαμβάνει χώρα σε χαμηλές θερμοκρασίες.

Η βασική ιδέα αυτής της τεχνικής, που ονομάζεται και προζυμωτική κρυοεκχύλιση επειδή προηγείται από τη διαδικασία της αλκοολικής ζύμωσης, είναι η ψυξή του σταφυλοπολτού για ικανό χρονικό διάστημα, με στόχο την ενίσχυση του χρώματος, της γεύσης και των αρωματικών χαρακτηριστικών του παραγόμενου οίνου. Η διαδικασία αυτή γίνεται με απουσία οινοπνευματίστας καθώς η ζύμωση δεν έχει ξεκινήσει και για την αποφυγή έναρξης της, προστίθεται ελεγχόμενη ποσότητα SO₂. Η προζυμωτική κρυοεκχύλιση είναι ιδανική εκχύλιση. Έτσι, οι οίνοι που παράγονται με αυτόν τον τρόπο χαρακτηρίζονται ως περισσότερο φρουτώδεις, πιο πολύπλοκοι και με αυξημένη αρωματική και χρωματική ένταση.

Στα ερυθρά σταφύλια, η τεχνική αυτή εκφράζει την επιθυμία να αυξήσουμε την χρωματική ένταση και τις αρωματικές, ενώ ταυτόχρονα να πάρουμε έναν οίνο με απαλότερη και
ελαφρότερη στυπτικότητα. Ειδικά εφαρμόζεται σε ποικιλίες που παρουσιάζουν χαμηλά φαινολικά συστατικά και χαμηλή χρωματική ένταση.

Στα λευκά κρασιά αντίθετα, για τον λόγο του ότι έχουν λιγότερα φαινολικά συστατικά από τα ερυθρά, η κρυοεκχύλιση δεν είναι τόσο χρήσιμη. Παρόλα αυτά, κάποια λευκά κρασιά και ειδικά αυτά που προερχόνται από πιο αρωματικές ποικιλίες, ωφελούνται από μια περιορισμένη κρυοεκχύλιση. Αυτό επιτρέπει την διάχυση φροτούδων αρωμάτων και προδρόμων αρωμάτων από τους φλοιούς των σταφυλιών.

Με τη διαδικασία της κρυοεκχύλισης, εκχυλίζονται επίσης κάποια επιθυμητά φαινολικά συστατικά τα οποία συνεισφέρουν στο "σώμα" και την ενδεχόμενη παλαιώση του παραγόμενου οίνου. Μια αρνητική συνέπεια είναι ότι ταυτόχρονα εκχυλίζονται λιγότερο επιθυμητά συστατικά, πικρά και στυπτικά συστατικά. Μια κατάλληλη εκχύλιση μεταξύ αρωματικών και κατάλληλων συστατικών κατάλληλων συστατικών μπορεί να επιτευχθεί με ελεγχόμενο χρόνο εκχύλισης και ελεγχόμενη θερμοκρασία. Η θερμοκρασία είναι προτιμώτερη να διατηρείται κάτω από 15 °C και ανάμεσα σε 10-15 °C και ο χρόνος μπορεί να είναι από μερικές ώρες μέχρι και μερικές μέρες.

Ένα ακόμα πρόβλημα που μπορεί να δημιουργηθεί, είναι η μειωμένη ολική οξύτητα και το αυξημένο pH στα γλεφκά. Αυτό πιθανόν να συμβαίνει λόγω της απελευκρινότητας ιόντων καλίου και της ελαφρότητας του σύστατοις. Στα γλεφκά που πρόκειται να πραγματοποιηθεί κρυοεκχύλιση, προστίθεται οξύπασο, αν και όχι πάντα, SO2. Τα πιο συνηθισμένα επίπεδα θέσης κυμαίνονται γύρω στα 30-150 μg/L. Το SO2 δρα κυρίως ως μικροβιακό ανασταλτικό, αλλά η παρουσία του στο γλεφκός προκαλεί σημαντική εκχύλιση φαινολικών συστατικών, έτσι ώστε να προστίθεται πάντα σε λευκά γλεφκά που θα περάσουν κρυοεκχύλιση. Σε πολλές περιπτώσεις, για την προστασία της οξειδωσής, χρησιμοποιείται σαν αντικαταστάτη του SO2, το CO2.

Ένα άλλο σημαντικό κομμάτι κατά τη διαδικασία της κρυοεκχύλισης, είναι η επίδραση των γαλακτικών και οξίκων βακτηριών και των γρίπων ζωμών. Θεωρείται ότι οι όγκοι ζωμών και οι βακτήριες όταν είναι η επικράτηση γαλακτικά και οξιά βακτήρια, Acetobacter, Brettanomyces και Kloekera/Hansienaspora μένουν ενεργά στη γλεφκά κατά τη διάρκεια της κρυοεκχύλισης. Η δράση τους είναι μάλλον θετική, διότι εκκρίνουν ενζύμα τα οποία αλληλεπιδρούν με τα συστατικά των πρόδρομων αρωμάτων και έχουν χαμηλή δράση την παραγωγή αρωματικών συστατικών τα οποία τελικά, συνεισφέρουν στην πολυπλοκότητα του κρασιού.

Συνοψίζοντας, θα μπορούσαμε να απαριθμήσουμε τις οργανοληπτικές επιδράσεις της προμητωτικής κρυοεκχύλισης ως εξής:

- Αύξηση των φτουτώδων αρωμάτων και ειδικά της συγκέντρωσης των τερπενίων στα λευκά γλεφκά.
- Αύξηση της αρωματικής έντασης και πολυπλοκότητας.
- Αύξηση αρώματος στόματος, πιθανόν εξ αιτίας των αυξημένων συγκέντρωσεων φαινολικών και πολυσακχαριτών.
- Αύξηση χρωματικής έντασης και χροιάς (αποχρώσεις).
- Παραγωγή οίνων με απαλότερη στυφότητα και πλουσιότερο "σώμα" [2*].
3.1.2.2 Θερμοοινοποίηση
Η θέρμανση του σταφυλοπολτού πριν την έναρξη της αλκοολικής ζύμωσης, είναι γνωστή στους οινοπαραγωγούς από τον 18ο αιώνα, οι οποίοι χρησιμοποιούσαν αυτή την τεχνική για να βελτιώσουν το χρώμα του οίνου τους σε ένα μέρος της παραγωγής τους. Άλλωστε με την ανάπτυξη των βιομηχανικών τεχνικών η θέρμανση μπορεί να εφαρμοσθεί σχεδόν στο σύνολο της παραγωγής.

Η θερμοοινοποίηση είναι η τεχνική στην οποία το γλεφκό καράθι με τα στέμφυλα θερμαίνονται άμεσα σε θερμοκρασία 65 °C με 75 °C για 10 έως 20 min. Αυτό έχει σαν αποτέλεσμα τη γρήγορη και ποσοτική εκχύλιση των φαινολικών συστατικών από το φλοιό των ερυθρών σταφυλιών με πλούσια σε σχέση με τα φαινολικά συστατικά και συγχρόνως σε χρωματική ένταση. Η επιτυχία της τεχνικής αυτής εξαρτάται κυρίως από δύο παράγοντες: το βαθμό θέρμανσης του σταφυλοπολτού και το χρόνο εκχύλισης των ουσιών [2*].

Η θερμοοινοποίηση παρουσιάζει συνοπτικά τα παρακάτω πλεονεκτήματα:

- Ταχεία εκχύλιση των χρωστικών ουσιών της σταφυλής: με τη θερμοοινοποίηση επιτυγχάνεται η εκχύλιση μεγαλύτερης ποσότητας χρωστικών σε σχετικά μικρότερο χρόνο, σε σχέση με την κλασική οινοποίηση.
- Αδρανοποίηση των οξειδωτικών ενηφμών: ορισμένα ζύμωμα που εκκρίνονται από τον μύκητα Botrytiscinerea, προκαλούν οξείδωση των χρωστικών ουσιών του σταφυλιού, με αποτέλεσμα την συμπλήρωση του χρώματος του οίνου. Η επιβλαβείς αυτή δραστηριότητα των οξειδωτικών ενηφμών εκμετάλλευεται με τη θερμική επεξεργασία της προσβεβλήμενης σταφυλόμαζας.
- Επιτάχυνση και υποβολήθηση των ζυμώσεων: η θερμοοινοποίηση χαρακτηρίζεται από μια αυθόρμητη, ορμητική και ταχεία εξάλειψη της αλκοολικής ζύμωσης. Η ιδίατερη αυτή εξάλειψη της αλκοολικής ζύμωσης αποδίδεται στην παρουσία διαφόρων ουσιών που παίζουν το ρόλο των παραγόντων ανάπτυξης ή των δραστηριοποιητών στην ανάπτυξη των ζυμών. Οι ουσίες αυτές παράγονται ή εκλύονται κατά τη θερμική επεξεργασία της σταφυλόμαζας. Συντελεί επίσης στην ανάπτυξη των γαλακτικών βακτηρίων και στη γρήγορη εκδήλωση και εξάλειψη της μηλωγαλακτικής ζύμωσης, με αποτέλεσμα τη μείωση της ολικής οξύτητας του οίνου και τη βελτίωση των οργανοληπτικών χαρακτηριστικών αυτού. Επομένως, η διάσταση του μηλικού οξέος – του οποίου η παρουσία δίνει στους οίνους σεμι και γεύση πρασινάδας – μειώνει την οξύτητα και απαλύνει και βελτιώνει τα χαρακτηριστικά του οίνου.
- Βελτίωση της οινότητας του οίνου. Με τη θερμική επεξεργασία της σταφυλόμαζας μειώνεται το παραγόμενο κατά τη ζύμωση ποσοστό μεθανόλης, ενώ παράλληλα αυξάνει η περιεκτικότητα σε γλυκερίνη.
- Ομαλότητα εμβολιασμού του γλεκλέους με επιθυμητές καλλιέργειες ζυμών και γαλακτικών βακτηρίων. Πράγματι, η θερμοοινοποίηση παρέχει τη δυνατότητα αυτή δεδομένου ότι η θερμική επεξεργασία της σταφυλόμαζας καταστρέφει ολότελα τους υγιεινούς εμπόρουντας μικροοργανισμούς.

Ως μειονεκτήματα ή δυσμενείς επιδράσεις της θερμοοινοποίησης θεωρούνται:

26
Η ενδεχόμενη υποβάθμιση των οργανοληπτικών χαρακτηριστικών του οίνου, όταν η εφαρμοζόμενη θερμική επεξεργασία της σταφυλόμαζας δεν είναι ενδεδειγμένη. Ως παράδειγμα αναφέρονται οι υψηλές θερμοκρασίες και ο παρατεταμένος χρόνος θέρμανσης, που δύνανται να προκαλέσουν την καραμελοπώμηση των σακχάρων του γλεφκουσ με αποτέλεσμα την αλλοίωση των οργανοληπτικών χαρακτηριστικών του παραγόμενου οίνου.

Ο εμπλουτισμός του γλεφκουσ σε κάλιο, νάτριο, ασβέστιο, σίδηρο και άλλα στοιχεία, τα οποία σε μεγάλες συγκέντρωσεις επηρεάζουν δυσμενώς την ποιότητα του οίνου.

Η τεχνική αυτή απαιτεί πολυδάπανο αποτετμένη πολυπλάσιο και επιπλέον σημαντική κατανάλωση ενέργειας, για τη θέρμανση της σταφυλόμαζας και την ψύξη αυτής ή του προκύπτοντος γλεφκουσ.

Η χρωστική ουσία που εκχύλιζεται από τα στερεά μέρη της σταφυλόμαζας, είναι ασταθής και μειώνεται κατά τη διάρκεια της διατήρησης του οίνου. Ετσι, μετά από παλαίωση ενός έτους, ουσιαστικά δεν υπάρχει διαφορά ως προς το χρώμα ανάμεσα σε οίνους που παράγονται με την κλασική οινοποίηση και τη θερμοαιμοειδή υποβάθμιση.

Η θερμοαιμοειδή υποβάθμιση δεν ενδείκνυται για την παραγωγή όλων των τύπων οίνου. Αποτελεσματικότερα εφαρμόζεται σε ιδιαίτερες περιπτώσεις, όπως είναι τα σταφύλια με λίγες χρωστικές και τα προσβεβλημένα από σιμέλα *Σουφλέρος Ε.*, 2000.

3.1.2.3 Μεταζυμωτική εκχύλιση - επίδραση του χρόνου παραμονής με τα στέμφυλα

Στην κατεύθυνση της ενίσχυσης του φαινολικού πλούτου των οίνων και της μεγαλύτερης αντοχής στο χρόνο, κινείται και η τεχνική της μεταζυμωτικής εκχύλισης. Οι διαφορετικές προσεγγίσεις που έχουν διερευνηθεί αφορούν την απλή μεταζυμωτική εκχύλιση (maceration postfermentaire, παραμονή οίνου με στεμφύλα χωρίς ανακυκλώσεις) και τη μεταζυμωτική εκχύλιση εν θερμία (macerationfinale a chaud, παραμονή στεμφύλων-οίνου σε υψηλή θερμοκρασία για μικρό χρονικό διάστημα μετά τη ζύμωση).

Όπως ήδη έχει αναφερθεί, η παρατεταμένη παραμονή των οίνων με τα στέμφυλα αυξάνει το φαινολικό τους φορτίο (αύξηση τιμής δείκτη φαινολικών ουσιών) μέσω της αύξησης της συγκέντρωσης των ταννίδων και άλλων φαινολικών ουσιών.

Όσο προς τον ταννικό χαρακτήρα των οίνων, η μεταζυμωτική εκχύλιση προκαλεί αύξηση της συγκέντρωσης των ταννίδων στον οίνο, όμως, ταυτόχρονα βελτιώνει τη δομή τους (αύξηση βαθμού πολυμερισμού τους, μεγαλύτερη ποιότητα πολυσακχαρίτων, μείωση στυφάδας), με αποτέλεσμα, οι οίνοι να εμφανίζονται με εντονότερο χρώμα, πλουσιότερο σώμα, δομή, διάρκεια και επιδεκτικότητα στην παλαίωση. Γενικά, η συνέχιση της εκχύλισης μετά το τέλος της ζύμωσης είναι τεχνική που πρέπει να εφαρμόζεται σε κρασιά με προσπιτική παλαίωση.

Όμως, πρέπει να λαμβάνεται σοβαρά υπόψη ο βαθμός υριμότητας των σταφυλιών και γιγάντων καθώς, σε χρονιές κακής υριμότητας (με πολλές βροχοπτώσεις μετα τον περκαςμό), η παρατεταμένη παραμονή με τα στέμφυλα μπορεί να οδηγήσει στην παραγωγή οίνων με άγριες και στυφές ταννίνες, αλλά και έντονα χορτώδεις εντυπώσεις, στοιχεία που υποβαθμίζουν την ποιότητα.
Στην ίδια κατεύθυνση κινείται και η επίδραση της μεταξυμωτικής εκχύλισης εν θερμώ, ως προς τη χημική σύσταση και τα οργανωλητικά χαρακτηριστικά των παραγόμενων οίνων. Συγκριτικά, μπορούμε να πούμε ότι οδηγεί στην παραγωγή ακόμη πλουσιότερων οίνων, με πολυπλοκότερο άρωμα και υψηλή επιδεικτικότητα σε παλαίωση.

Πρέπει όμως να επισημανθεί ότι οίνοι που παράγονται με αυτή την τεχνική συχνά εμφανίζουν υψηλές περιεκτικότητες σε ουρεκάνθ, συστατικό επικίνδυνο για την υγεία και με περιορισμούς ως προς την παρουσία του στους οίνους. Το γεγονός αυτό αποτελεί σημείο προβλήματισμού στην εφαρμογή της τεχνικής. [Ένωση ουσιαστικών αμπελών Β.Ε.]

3.1.2.4 Μηλογαλακτική ζύμωση

Στην οινοποίηση του οίνου μια δεύτερη ζύμωση παίρνει μέρος μετά την αλκοολική ζύμωση κατά την οποία το L-μηλικό οξύ μετατρέπεται σε L-γαλακτικό οξύ από τα γαλακτικά βακτήρια. Η μετατροπή γίνεται μέσω με την ύπαρξη του μηλογαλακτικού ενζύμου το οποίο βρίσκεται στα γαλακτικά βακτήρια. Η διαδικασία αυτή συναντά μηλογαλακτική ζύμωση, ένα φαινόμενο σχετικά απλό αλλά με μεγάλη πρακτική αξία διότι επηρεάζει όλες τις τεχνικές οινοποίησης και παλαίωσης.

Μετά το τέλος της αλκοολικής ζύμωσης τα σάκχαρα ζητούν καταναλωθεί από τις ζύμες με αποτέλεσμα η ανάπτυξη των γαλακτικών βακτηρίων να οφείλεται κυρίως στην αποκομιδή του μηλικού οξέος το οποίο βιοδιασπάται εύκολα. Η αντίδραση είναι μια απλή αποκαρβοξυλίωση:

$$\text{COOH-CH}_2\text{-CHOH-COOH \rightarrow CH}_2\text{-CHOH-COOH + CO}_2$$

Κάθε φορά που ένα μόριο μηλικού οξέος σε ελεύθερη μορφή ή σε μορφή άλλας αποκομιδείται προς γαλακτικό έχουμε μείωση της αξίας και αύξηση του pH, η οποία βελτιώνει την επικεφαλής σταθερότητα του οίνου. Επίσης εξαφανίζεται το μηλικό οξύ το οποίο είναι ένα βιολογικό μόριο πολύ ασταθές. Βέβαια οι χημικές μετατροπές του οίνου κατά την μηλογαλακτική ζύμωση είναι πολύ πιο πολύπλοκες. Πολλά δευτερεύοντα προϊόντα προϊόντα δημιουργούνται, ένα από τα πιο σημαντικά είναι το διακετύλιο που σε μικρές ποσότητες συμμετέχει στην αρωματική πολυπλοκότητα του οίνου ενώ σε ποσότητα μεγαλύτερη των 4 mg/L δίνει άσχημα αρωματά βουτάρια.

Μια άλλη μετατροπή είναι η αποκαρβοξυλίωση της υποδινής σε υποδινή (τοξικό στοιχείο) από τα βακτήρια. Αυτό το φαινόμενο δημιουργείται σπάνια και από συγκεκριμένα στελέχη βακτηρίων.

Η μηλογαλακτική ζύμωση επηρεάζει και το χρώμα των οίνων. Ο οίνος χάνει την ένταση του χρώματος λόγω του αποχρωσματισμού των ανθοκυανών με την αύξηση του pH. Από οργανωλητικής άποψης, η μηλογαλακτική ζύμωση συμβάλει στη δημιουργία αρωματικών ενώσεων, όπως ο γαλακτικός αιθυλεστέρας, που βελτιώνουν το bouquet του οίνου. Οι ερυθροί οίνοι χάνουν τον κλειστό και οξύ χαρακτήρα, γίνοντας λιγότερο επιθετικά στο στόμα. Όταν μια μηλογαλακτική ζύμωση πραγματοποιείται μέσα σε βαρέλια, η πιοτική βελτίωση των ερυθρών οίνων είναι ακόμη πιο μεγάλη. Το bouquet γίνεται πιο πολύπλοκο δίνοντας αρώματα καβουρδισμένου καφέ και ξύλου.
Ο έλεγχος της μηλογαλακτικής ζύμωσης είναι πολύ σημαντικός διότι μετά το τέλος της, τα βακτήρια είναι ικανά να αποκουδομήσουν τις πεντόξες, τη γλυκέρινη, το τρυγικό οξύ με αποτέλεσμα την εμφάνιση ασθενειών στον οίνο όπως και την αύξηση της πτητικής οξύτητας και του γαλακτικού οξέος [Τσακίρης Α., 1988, 2*].

3.1.2.5 Μικροοξυγόνωση
Παρόλο που το οξυγόνο αποτελεί έναν από τους σημαντικότερους εγχρώς του κρασιού, χρησιμοποιείται ελεγχόμενα σε διάφορα στάδια της οινοποίησης. Μια τεχνική ελεγχόμενης χρήσης οξυγόνου, λέγεται μικροοξυγόνωση και έχει παρόμοια λογική με την εισχώρηση οξυγόνου από τους πόρους του βαρελιού, κατά την ωρίμαση του κρασιού μέσα σε αυτό. Πρόκειται λοιπόν για ένα σύστημα «εμπλουτισμού» του ερυκροφ κρασιού με μικρές και απόλυτα ελεγχόμενες ποσότητες οξυγόνου, με σκοπό, ανάμεσα σε άλλα, τη βελτίωση της χρωματικής του σταθερότητας, της αρωματικής και γευστικής του εκόνας, μετρίαζοντας ανεπιθύμητα αρώματα (όπως, για παράδειγμα, τα χορτιάδια που μπορεί να οφείλονται σε ελλιπή ωρίμαση της πρώτης ώρας), αλλάζοντας την πολυφαινολική του σύσταση, «μαλακώνοντας» τη γεφύρα του κ.ά. [1*].

3.1.2.6 Επίδραση ανακυκλώσεων και θερμοκρασίας στην εκχύλιση των φαινολικών
Συγκριτικά με την κλασική τεχνική, πολλές ανακυκλώσεις στην αρχή της παραμονής του χυμού με τα στέμφυλα και σε χαμηλή θερμοκρασία, ευνοούν την διαλυτοποίηση των ανθοκυανίν και τη σταθεροποίησή τους, με αποτέλεσμα τελικά να καθαρίζονται η μέγιστη δυνατή ποσότητα σταθερών ανθοκυανίν. Όμως οι παραγόμενες οίνοι δεν χαρακτηρίζονται ως επιδεκτικοί σε παλαίωση. Αντίθετα, οι πολλές ανακυκλώσεις στο τέλος της ζύμωσης όπου η θερμοκρασία της σταθερομάζει είναι υψηλότερη, επιτείνεται την εκχύλιση των ταννινϊν των γιγάρτων και πολυσακχαρίτων. Το κρασί είναι και πάλι πλούσιο και γεμάτο και αποκτά μεγαλύτερη επιδεκτικότητα παλαίωσης. Όμως, ο ταννικός χαρακτήρας γίνεται στυφόσ, άγριοσ όταν η ωρίμαση των σταφυλιϊν και των γιγάρτων δεν είναι ικανοποιητική.

Στην περίπτωση που η τεχνική των ανακυκλώσεων αντικατασταθεί με αυτή της εμβάπτισης του καπέλου (Pigeage: διαδικασία κατά την οποία ανοίγονται τρόπες στο καπέλο των στεμφών με ένα ειδικό κοντάρι), η διαδικασία εκχύλισης των φαινολικών συστατικών ενισχύεται, η συγκέντρωση των ανθοκυανίν και ταννινϊν αυξάνει, όπως και ο βαθμός συμπλοκοποίησης τους. Γεγονός που οδηγεί σε μεγαλύτερη σταθερότητα του χρώματος στο χρόνο και αναπεται το σχετικό μειονέκτημα της τεχνικής των πολλών ανακυκλώσεων στο τέλος της ζύμωσης [Ενώση οινοπαραγωγών αμπελώνα Β.Ε.].

3.1.2.7 Επίδραση της αφαίμαξης χυμού στην εκχύλιση των φαινολικών
Αφαίμαξη είναι μια διαδικασία κατά την οποία αφαιρείται ένα μέρος του χυμού από τον μούστο κατά τη διάρκεια της ζύμωσης έτσι ώστε αυτός που μένει να συνεχίσει να ζυμώνεται μέχρι να γίνει πιο πυκνό και να αποκτήσει πιο έντονο χρώμα.

Η τεχνική της αφαίμαξης ενός ποσοστού γλεύκους είχε ως στόχο να αυξήσει το βαθμό εκχύλισης των φαινολικών συστατικών από τα στέμφυλα, δηλαδή να αυξήσει τη συγκέντρωσή τους στο γλεύκο και να οδηγηθούμε στην παραγωγή «πυκνότερων» οίνων.
Οι επιπτώσεις της τεχνικής επί της σύστασης των οίνων είναι η ρύθμιση του όξινου χαρακτήρα τους (αύξηση του pH εξαιτίας της εκχύλισης μεγαλύτερης ποσότητας καλίου από τους φλοιούς), αύξηση του δείκτη φαινολίνας, της περιεκτικότητας σε ανθοκυάνες, σε ταννίνες και σε πολυσακχαρίτες, χωρίς όμως να προκαλεί μεταβολές στον δείκτη στυφάδας. Είναι φανερό ότι η αφαιμάξη του μοφςτου ως τεχνικι βελτιώνει τα οργανολήπτικα χαρακτηριστικά των οίνων (όξινος χαρακτήρας, χρωςτικός, δομή και όγκος), χωρίς να αυξάνει την ταννικότητα [Ενωση οινοπαραγωγών αμπελώνα Β.Ε.].

3.1.3 ΕΚΧΥΛΙΣΗ ΣΥΣΤΑΤΙΚΩΝ ΠΟΥ ΠΕΡΙΕΧΟΝΤΑΙ ΣΤΑ ΣΤΕΜΦΥΛΑ (ΣΥΝΟΛΟ ΦΛΟΥΔΑΣ, ΚΟΥΚΟΥΤΣΙΩΝ ΚΑΙ ΒΟΣΤΡΥΧΩΝ)

Τα ερυθρά κρασιά είναι κρασιά εκχύλισης. Η εκχύλιση αυτή πρέπει να επιτρέπει την παραλαβή από τα συστατικά του σταφυλιού μόνο αυτών που είναι χρήσιμα, δηλαδή αυτά που έχουν ευχάριστο άρωμα και μαλακή γεφύρα στην επιθυμητή ποσότητα.

Το πέρασμα στο γλεφκός των διαφόρων συστατικών που περιέχουν τα στέμφυλα εξαρτάται από διάφορους παράγοντες.

- Παράγοντες που επηρεάζουν την εξαγωγή των συστατικών
- Παράγοντες που εξασφαλίζουν τη διάχυση αυτών των συστατικών στο σύνολο του γλεφκος
- Παράγοντες που επηρεάζουν τη δέσμευση με προσοφόρηση συστατικών που ήδη έχουν εξαφανεί από τα στέμφυλα
- Παράγοντες που επηρεάζουν την τροποποίηση ή καταστροφή των συστατικών που έχουν εξαφανεί

Η διάλυση, δηλαδή το πέρασμα ενός συστατικού που περιέχεται στα κύτταρα των στερεών σωμάτων (στέμφυλα) του σταφυλοπολτού μέσα στο γλεφκός, διευκολύνεται από την εκβλησία, όπως και από κάθε άλλη επέμβαση που έχει ως αποτέλεσμα τη διάρρηξη των κυττάρων των στερεών σωμάτων όπως η θείωση (o θείωδης ανυδρίτης καταστρέφοντας τα φυτικά κύτταρα διευκολύνει την εξαγωγή συστατικών από τα στέμφυλα. Ο θείωδης ανυδρίτης επίσης προστατεύει τις χρωστικές από την επίδραση των οξειδωτικών ενόχων).

Την εκχύλιση επίσης επηρεάζει η παρουσία αιθανόλης, αύξηση του χρόνου επαφής και της θερμοκρασίας. Η αιθανόλη εξασφαλίζει καλύτερη εκχύλιση και σταθεροποίηση του χρώματος, γι' αυτό τα υψηλόβαθμα κρασιά είναι αναλογικά πιο πλούσια σε χρώμα. Είναι γενικά παραδεκτό ότι αυξημένη θερμοκρασία ζύμωσης ευνοεί την εκχύλιση των φαινολικών συστατικών. Παρά όλα αυτά, για θερμοκρασίες μεγαλύτερες των 30°C δεν έχουμε βελτίωση εκχύλισης.

Η διάχυση των εξαχθέντων συστατικών επιταχύνεται με την ανακίνηση του γλεφκούς κατά τη ζύμωση και κυρίως με την κυκλοφορία του γλεφκούς ανάμεσα από τα στέμφυλα με τη βοήθεια της ανακύκλωσης ή της ενεργητικής ανάμειξης των στεμφύλων στη μάζα του γλεφκούς.

Επαναπροσρόφηση ήδη διαχυθέντων συστατικών μπορεί να γίνει από τα στέμφυλα ή από τους μύκητες μετά την περίοδο της έντονης αυξήσης τους.
Η περιεκτικότητα του κρασιού σε χρωστικές είναι συνδεδεμένη με την αρχική περιεκτικότητα τους μέσα στο σταφύλι. Στο κρασί δεν ξαναβρίσκουμε παρά μόνο μικρό μέρος των συστατικών που αρχικά υπάρχουν στο σταφύλι, περίπου το 20 με 30%.

3.1.3.1 Επίδραση της διάρκειας εκχύλισης
Διάρκεια εκχύλισης είναι ο χρόνος που πρέπει να παραμείνει το γλεφκοσ στην ίδια δεξαμενή με τα στέμφυλα. Ο χρόνος αυτός συμπαραμονής είναι βασικός παράγοντας της ποιότητας του κρασιού και των χαρακτηριστικών του. Ο βέλτιστος χρόνος παραμονής είναι συνάρτηση του τύπου του κρασιού που θέλουμε να παράγουμε, των συνθηκών της χρονιάς, δηλαδή της ωρίμανσης, της θερμοκρασίας και του τρόπου δεξαμενισμού. Όταν θέλουμε να φτιάξουμε κρασί με σκοπό να καταναλωθεί νέο έχουμε ανάγκη από ερυθρά σταφύλια καλά ωριμασμένα. Η συμπαραμονή του γλεφκού και των στέμφυλα πρέπει να είναι σύντομη. Τα κρασιά παλαιώσης έχουν ανάγκη από μεγαλύτερο χρόνο συμπαραμονής ώστε να έχουμε μεγαλύτερο χρόνο εκχύλισης. Διακρίνουμε τρία είδη διάρκειας εκχύλισης:

i. Διαχωρισμό του γλεφκού (γλεφκοσ σε ζύμωση ή κρασί σε ζύμωση) πριν από το τέλος της ζύμωσης, δηλαδή όσο ακόμα περιέχει σάκχαρα. Πρόκειται για σύντομη εκχύλιση, διάρκειας 3 – 4 ημερών που ενδείκνυται για κρασί που προορίζονται να καταναλωθούν νέα. Αυτός ο γρήγορος διαχωρισμός έχει αποτέλεσμα τη μείωση των κυνήγιων που παρουσιάζονται προς το τέλος της αλκοολικής ζύμωσης αφαιρώντας μεγάλο μέρος από τα βακτήρια.

ii. Διαχωρισμό αμέσως μετά το τέλος της αλκοολικής ζύμωσης, δηλαδή τη στιγμή κατά την οποία έχουν ζυμωθεί όλα τα σάκχαρα του γλεφκού το οποίο έχει μετατραπεί σε κρασί. Εφαρμόζεται στην περίπτωση κρασιών που πρόκειται να καταναλωθούν χωρίς μεγάλη παλαιώση. Η ίδια διαδικασία ισχύει και για τις χρονιές που έχουμε καλή ωρίμανση ταννισίν και το κρασί προορίζεται για παλαιώση.

iii. Διαχωρισμό αρκετές μέρες μετά το τέλος της ζύμωσης. Εφαρμόζεται σε κρασί που προορίζονται για παλαιώση και βέβαια είναι δυνατόν να πραγματοποιηθεί μόνο σε κλειστές δεξαμενές [Τσακής Α., 1988].

Κατά την εκχύλιση παρατηρείται ελάττωση της έντασης χρώματος ύστερα από ένα μέγιστο στην 8η περίπου μέρα, που οφείλεται στη μεταβολή της φυσικοχημικής κατάστασης των χρωστικών. Στο παράδειγμα που απεικονίζεται στο σχήμα, το μέγιστο των ανθοκυανίν

31
είναι την 6ο μέρα. Ανάμεσα στην 6ο και την 8ο, η αύξηση της περιεκτικότητας σε ταννίνες (απορρόφηση στα 420nm) είναι πιο σημαντική από την ελάττωση των ανθοκυανών (απορρόφηση στα 520nm). Η μεταβολή της φυσικοχημικής τους κατάστασης οφείλεται στη συνεχώς μεταβαλλόμενη τιμή του pH.

Οι ταννίνες αυξάνονται διαρκώς. Έντονα στην αρχή, στις 2 – 3 πρώτες μέρες, και πιο αργά στη συνέχεια. Για τις ανθοκυάνες που είναι σε σχετικά μικρή περιεκτικότητα στον φλοιό της ρώγας, πολύ γρήγορα οι παράγοντες που ελαττώνουν τη συγκέντρωσή τους γίνονται επικρατέστεροι και η περιεκτικότητά τους μειώνεται. Αντίθετα οι ταννίνες που είναι πιο άφθονες στον φλοιό του σταφυλιού αυξάνονται διαρκώς γιατί οι παράγοντες που επιδρούν στη μείωση δεν γίνονται ποτέ επικρατέστεροι.

Οι παρατεταμένες εκχύλισεις προκαλούν αύξηση της έντασης χρώματος. Αυτό εξηγείται με την αύξηση του κίτρινου χρώματος των ταννίνων που αντισταθμίζει τη μείωση του χρώματος που οφείλεται στη συνεχή ελάττωση των ανθοκυανών [Τσακίρης, 1988].

4 ΚΕΦΑΛΑΙΟ

4.1 ΔΙΑΔΙΚΑΣΙΕΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΛΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΣΤΗ ΣΤΑΦΥΛΗ ΚΑΙ ΣΤΟΝ ΟΙΝΟ

4.1.1 ΜΕΘΟΔΟΙ ΕΚΧΥΛΙΣΗΣ ΦΑΙΝΟΛΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ

Για την εκχύλιση των φαινολικών ενώσεων από τους φλοιούς και κουκουτσία του σταφυλιού, χρησιμοποιείται κυρίως κάποιος αλκοολικός διαλφτθσ, μαζί με προσθήκη μέσου οξίνης για τη σταθεροποίηση των ανθοκυανών. Όπως φαίνεται και στον παρακάτω πίνακα, ο διαλφτθσ που χρησιμοποιείται είναι κυρίως ο αλκοόλης και πιο σπάνια ο ανθυγιόλη και η ακετόνη, καθώς και συνδυασμό των παραπάνω με νερό. Τα μέσα οξίνης που χρησιμοποιούνται κυρίως είναι το υδροχλωρικό οξύ με συγκεντρώσεις που κυμαίνονται μεταξύ 0,5% και 10% και το μυρμεγκίκο οξύ με συγκεντρώσεις από 1-5%. Μπορούν να προστεθούν επίσης τρυγικό και οξικό οξύ. Για την αποτελεσματικότερη εκχύλιση των φαινολικών στους συνέχεις ακολουθεί συνήθως χρήση λουτρού υπερήχου, ανάδευση και παραμονή του δείγματος σε οκοτενινό μέρος.

Εκτός από τις παραπάνω συμβατικές μεθόδους εκχύλισης, χρησιμοποιούνται και άλλες μη συμβατικές, όπως η εκχύλιση με υπερήχους (ultrasound-assisted extraction, UAE), η εκχύλιση με μικροκύματα (microwave-assisted extraction, MAE) και η εκχύλιση υψηλής πίεσης και θερμοκρασίας (high pressure and temperature extraction, HPTE) με καλή αποτελεσματικότητα στην παραλαβή του φαινολικού φορτίου και ειδικά της trans-ρεοβερατρόλης [Casazza et al., 2010].
Η αποτελεσματικότητα της εκχύλισης με βάση τον αλκοολικό διαλύτη, παρουσιάζει σημαντικές διαφορές, με τον συνδυασμό αιθανόλης/νεροφ 1:1 να δίνει το μέγιστο εκχυλίσμο ποσοστό φαινολικών ουσιών. Με χρήση μεθανόλης το ποσοστό αυτό μειώνεται στο 95,9%. Ακολουθεί η αιθανόλη με αποτελεσματικότητα εκχύλισης της τάξης του 66,8% [Lafka et al., 2007].
4.1.2 ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΦΑΙΝΟΛΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ

Οι μέθοδοι ανάλυσης που χρησιμοποιούνται ευρέως για τον προσδιορισμό των φαινολικών συστατικών στους καρπούς της σταφυλικής και το κραςί είναι:

4.1.2.1 HPLC

Η υψηλά απόδοσης χρωματογραφία (High Performance Liquid Chromatography, HPLC) αποτελεί την πιο ευρέως χρησιμοποιούμενη μέθοδο προσδιορισμού των φαινολικών ενώσεων. Είναι μια ενδρέγγα χρωματογραφική μέθοδος η οποία βασίζεται στη διαβίβαση διαλυτών μέσα από συγκεκριμένη στήλη, με χρήση αντλίας και τα διαχωριζόμενα συστατικά καταγράφονται μέσω ανιχνευτή. Με την χρήση διαφορετικών στατικών φάσεων στη στήλη της HPLC είναι εφικτό ο διαχωρισμός μεγάλης ποικιλίας ενώσεων.

Πάνω στη βασική αρχή, μπορούν να χρησιμοποιηθούν διάφορες μέθοδοι HPLC με κάποιες μετατροπές είτε στους διαλύτες, είτε στη στήλη, είτε στον ανιχνευτή. Έτσι προκύπτουν μέθοδοι υψηλά απόδοσης χρωματογραφίας όπως η HPLC-DAD που κάνει χρήση diode-array ανιχνευτή. Χρησιμοποιείται επίσης και η HPLC-ESI-MS/MS (υψηλά απόδοσης-electrospray tandem φασματομετρία μάζας), μια τεχνική που συνδυάζει τη διαχωριστική ικανότητα της HPLC με την ευαισθησία και τη φασματομετρία μάζας.

4.1.2.2 CZE(τριχοειδής ηλεκτροφόρηση)

Στην παραδοσιακή ηλεκτροφόρηση, τα ηλεκτρικά φορτία προς ανάλυση στοιχεία κινούνται μέσα σε ένα αγωγό υγρό υπό την επίδραση ηλεκτρικού πεδίου. Με την τεχνική αυτή τα στοιχεία διαχωρίζονται με βάση το μέγεθός τους, μέσα από μια τριχοειδή στήλη με ηλεκτρολύτη.

4.1.2.3 UV-Vis (φασματοσκοπία υπεριώδους-ορατού)

Η φασματοσκοπία UV-Vis είναι η πιο ευρέως χρησιμοποιούμενη αναλυτική μέθοδος στο κομμάτι της οινολογίας. Όλες οι αναλυτικές μέθοδοι που βασίζονται σε φασματοσκοπία UV-Vis, είναι εμπειρικές καθώς παρέχουν αναλυτικά αποτελέσματα για μεγάλες ομάδες φαινολικών ουσιών (π.χ. δείκτες ολικών πολυφαινολών, ταννινών, ανθοκυανίων) και όχι για μεμονωμένα συστατικά. Παρ’ όλα αυτά είναι μια φθηνή και γρήγορη μέθοδος η οποία μας παρέχει σημαντικές πληροφορίες για το φαινολικό φορτίο των αναλυόμενων δειγμάτων.

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

5 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

5.1 ΠΡΩΤΕΣ ΥΔΕΣ

Τα υλικά που χρησιμοποιήθηκαν ήταν καρποί σταφυλιού ποικιλίας Αγιωργίτικο με ημερομηνία τρύγου 10 Σεπτεμβρίου 2010 από την περιοχή της Νεμέας και του οινοποιείου Χαρλαύτη, καθώς και οίνος από διάφορα στάδια της οινοποιητικής διαδικασίας που
ακολούθησε το παραπάνω οινοποιείο. Χρησιμοποιήθηκαν επίσης καρποί από την ποικιλία Malbec, με ημερομηνία τρόγυο επίσης 10 Σεπτεμβρίου 2010 που καλλιεργήθηκε πρώτη φορά πειραματικά στην Ελλάδα σε χώρο του Εθνικού Ιδρύματος Αγροτικών Ερευνών στο Κεφαλάρι, καθώς και δείγματα οίνου από διάφορα στάδια της οινοποιητικής διαδικασίας που ακολουθήθηκε.

5.2 ΣΧΕΔΙΑΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ

Στόχος της συγκεκριμένης διπλωματικής εργασίας είναι η σύγκριση των ποικιλιών Αγιωργίτικο και Malbec, σε σχέση με το φαινολικό τους περιεχόμενο και τα χρωματικά χαρακτηριστικά που εμφανίζουν.

Πιο συγκεκριμένα, σε πρώτη φάση πραγματοποιήθηκε η μελέτη των καρπών τρύγου των δύο ποικιλιών. Σε κάθε δείγμα προηγήθηκε διαχωρισμός των φλοίων, της σάρκας και των γυάρτων. Σε κάθε ένα μορφολογικό μέρος των καρπών μελετήθηκαν διάφορες ποιοτικές παράμετρους. Συγκεκριμένα, μελετήθηκε η περιεκτικότητα τους σε ανθοκυανίνες, ολικές φαινόλες και ταννίνες.

Σε δεύτερο στάδιο, πραγματοποιήθηκαν αναλύσεις για ποιοτικά χαρακτηριστικά των δύο οίνων, κατά τη διάρκεια της οινοποιητικής τους διαδικασίας. Πιο συγκεκριμένα μελετήθηκαν χαρακτηριστικά όπως το χρώμα, η ένταση και ο δείκτης ολικών πολυφαινολικών. Τα στάδια της οινοποιητικής διαδικασίας που ακολουθήθηκαν για τους δύο οίνους, καθώς και η δειγματοληψία που πραγματοποιήθηκε, παρουσιάζονται στα παρακάτω διαγράμματα ροίς.

Οι δειγματοληψίες πραγματοποιήθηκαν σε όλα τα στάδια των διεργασιών μέχρι και την τελική μέρα παραγωγής του πρώτου οίνου.

Σχήμα 1: διάγραμμα ροίς της οινοποιητικής διαδικασίας και δειγματοληψίες του οίνου Malbec
5.3 ΑΝΤΙΔΡΑΣΤΗΡΙΑ-ΔΙΑΛΥΤΕΣ

Τα αντιδραστήρια που χρησιμοποιήθηκαν είναι τα εξής: αιθανόλη (95°), μηρμυρικό οξύ (Merck, 98-100%), υδροχλωρικό οξύ (Panreac, 37%), ανθρακικό νάτριο (Mallinckrodt), αλβουμίνη από ορό αυγού (Bovine Serum Albumin, BSA, Biochemica, fraction V≥96%(GE), Fluka), οξικό οξύ (Panreac quimica sau), οξικό νάτριο (Panreac), γαλλικό οξύ (Arcos Organics, 98%), Folin Ciocalteu (Merck), Μαλβιδίν (Assay (HPLC) > 97%), (τριφοροξικό οξύ (Arcos Organics, 99%), εξάνιο ποιότητας pro analysis της Merck. Οι αναλύσεις, οι φωτομετροκοί προσδιορισμοί και οι παρασκευές διαλύματων επεξεργάστηκαν με διαλύτες HPLC (gradient grade) της Merck και συγκεκριμένα με νερό, μεθανόλη και σκορδονιτρίλιο.

5.4 ΣΥΣΚΕΥΕΣ

Για τις συμπυκνώσεις των εκχυλισμάτων χρησιμοποιήθηκε περιστροφικό αετμιστήριο Büchi RE 111 με ενσωματωμένο υδρόλουτρο Büchi 461 (Büchi Laboratoriums Technik AG, Flawil, Switzerland).

Για τον προσδιορισμό του στερεού υπολείμματος των εκχυλισμάτων, πυριαντικό Büchi vacutherm VT6025 (Heraeus Instruments, Hanau, Germany).

Οι αναλύσεις των εκχυλισμάτων και του οίνου πραγματοποιήθηκαν σε υγρό χρωματογράφο υψηλής απόδοσης (HPLC) που αποτελούσαν από αντλία βαθμιτής έκλουσης , HP 1100 και ανιχνευτή παράταξης φωτοδιόδων (Diode Array Detector, DAD) (Hewlett-Packard, Waldbronn, Germany), συνδεδεμένα με στήλη Hypersil C18 column ODS 5μm, 250x 4.6mm (MZ Analysentechnik, Mainz, Germany). Τα χρωματογραφικά δεδομένα επεξεργάστηκαν με το λογισμικό ChemStation for LC 3D software (Agilent Technologies, 1999–2000, Waldbrook, Germany).

Η λυσιφιλίωση των μορφολογικών μερών του σταφυλιού πραγματοποιήθηκε σε συσκευή λυσιφιλίωσης (Freeze Dry, Christ, Alpha 1-4 LD plus).

Χρησιμοποιήθηκε φυγόκεντρος (Thermo Scientific, Heraeus Megafuge 16R Centrifuge).
Για αποτελεσματικότερη εκχύλιση χρησιμοποιήθηκε λουτρό υπερήχων (Sonication, Elma, S30H Elmasonic).

Οι φασματοφωτομετρικές μέθοδοι πραγματοποιήθηκαν στο ψηφιακό φασματοφωτόμετρο Unicam Helios (Spectronic Unicam EMEA, Cambridge, United Kingdom).

Για τον υπολογισμό των δεικτών χρώματος (a, b, L), χρησιμοποιήθηκε χρωματόμετρο Minolta (Konica Minolta, CR-200, Japan).

5.5 ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

5.5.1 Προκατεργασία ρωγών σταφυλιού
Αρχικά, παραλαμβάνονται ρώγες 500 g και προσδιορίζεται το μέσο βάρος 100 ρωγών εις τριπλοφν. Προσδιορίζεται με παχύμετρο η μέση διάμετρος σε 20 ρώγες τυχαία επιλεγμένες. Στη συνέχεια κάθε ρώγα τεμαχίζεται με πριονωτό μαχαίρι στη μέση κατά το μήκος της μεγαλύτερης διάστασής της. Η σάρκα μαζί με τα γύρα απομακρύνεται με σπάτουλα με κούλη άκρη και οι φλοιοί στραγγίζονται σε διθητικό χαρτί. Τόσο οι φλοιοί όσο και οι σάρκες ζυγίζονται σε ζιγό δύο δεκαδικών ψηφίων. Τα δείγματα τοποθετούνται σε κατάλληλα δοχεία, καταφύγωνται και λυφιλιώνονται. Μετά την αφυδάτωση ακολουθεί σταθμική ανάλυση. Ακολουθεί η κονιοποίηση σε blender τόσο των φλοιών όσο και της σάρκας και των διαχωρισμένων γιγάρτων. Η διαδικασία ολοκληρώνεται με τη ζύγιση των δειγμάτων.

5.5.2 Εκχύλιση φαινολών από σκόνη φλοιών, στεμφύλων ή απολιπασμένων γιγάρτων
Αρχικά ζυγίζονται 8 g δείγματος και διαμοιράζονται σε δύο σωλήνες φυγοκέντρου των 70 mL. Προστίθενται 40 mL μεθανολικού διαλύματος με HCOOH 1% w/v (οξινισμένη μεθανόλη) σε κάθε σωλήνα. Ακολουθεί sonication σε λουτρό υπερήχων για 10 min και στη συνέχεια φυγοκέντρηση στις 10.000 rpm για 10 min. Το εκχύλισμα αποχύνεται σε σκόνη έξοδους των 400 mL και το στερεό υποβάλλεται στην ίδια διαδικασία άλλες δύο φορές. Τα εκχυλίσματα αναμυνόνται και μεταφέρονται σε σφαιρική φιάλη των 500 mL. Ακολουθεί συμπύκνωση του εκχυλίσματος σε περιστροφικό εξατμιστήρα μέχρι όγκου περίπου 70 mL. Η διαδικασία ολοκληρώνεται με διήθηση και μεταφορά του εκχυλίσματος σε ογκομετρική φιάλη των 100 mL και πλήρωση με τον μεθανολικό διαλύτη μέχρι τη χαραγή.

5.5.3 Απομάκρυνση λιπιδίων από κονιοποιημένα γίγαρτα
Ζυγίζονται 10 g δείγματος και μεταφέρονται σε σκόνη έξοδους των 100 mL. Προστίθενται 50 mL εξανίου και το μίγμα αναδεικνύεται με μαγνήτη για 20 min, ενώ στο τέλος παραμένει σε πρεμία για 10 min. Ακολουθεί απόχυση του εξανικού εκχυλίσματος σε προσημισμένη σφαιρική φιάλη των 250 mL, ενώ το στερεό επανεκχυλίζεται εις διπλοφν. Οι οργανικές φάσεις των τριών εκχυλίσεων αναμυνόνται και συμπυκνώνονται σε περιστροφικό εξατμιστήρα μέχρι ξηρού. Στη συνέχεια το δείγμα ζυγίζεται και πραγματοποιείται σταθμική ανάλυση. Ακολουθεί η απομάκρυνση του εξανίου από το στερεό υπόλειμμα σε φούρνο κενού και εν συνεχεία διαβιβάζεται άξωτο.
5.5.4 Υδρόλυση ανθοκυανινών και λοιπών φαινολικών γλυκοζιτών και ταννινών
Σε τρίλαιμθ φιάλθ των 100 mL τοποκετοφνται 8.5 mL διαλφματοσ πυκνοφ HCl-EtOH 1:1, θερμόμετρο, κάθετος ψυκτήρα με κυκλοφορία νερού και ακροφύσιο για διαβίβαση αξίτου. Η σφαιρική φιάλθ βυθίζεται σε υδατόλουτρο θερμοκρασίας 75 °C και ακολουθεί η προσθήκη του δείγματος (20 mL οίνου ή εκχυλισμάτων φλοιών, σάρκας ή γιγάρτων). Το μίγμα υδρολύεται για 2 ώρες σε θερμοκρασία 75 °C και ροί αξίτου περίπου 4 mL/min. Μετά το πέρας της υδρόλυσης ακολουθεί ψυξή σε παγόλουτρο και προσθήκη 14.9 mL υδατικοφ διαλφματοσ Na₂CO₃ 20%w/v και πραγματοποιείται μαγνητική ανάδευση. Το διάλυμα μεταφέρεται σε ογκομετρικό φιάλθ των 50 mL και αραιίνεται μέχρι τη χαραγή με EtOH 96°. Ο βαθμός αραιώσεως του αρχικοφ οίνου είναι τϊρ α 1:2.5.

5.5.5 Καταβύθιση ταννινών
Τα απαιτούμενα διαλφματα για την διαδικασία είναι τα εξισ: διάλυμα BSA 3 g/L σε buffer οξικοφ οξικοφ νατρίου 0,2 Μ, δείγμα αναφοράσ (διάλυμα ταννικοφ οξικοφ 2,25 g/L). Τα διάλυμα που ακολουθήθηκε είναι τα εξισ: αρχικά αναμιγνύονται 20 mL εκχυλίςματοσ με 30 mL διαλφματοσ BSA σε σωλινα φυγοκζντρου και παραμένει σε θερμοκρασία δωματίου για 15 min για καταβύθισθ των ταννινϊν. Ακολουχεί φυγοκζντρθςθ στισ 10.000 rpm για 5 min και απόχυςθ του διάλυματοσ.

5.5.6 Προσδιορισμόσ ολικών φαινολών
Το φαινολικό περιεχόμενο τόςο του οίνου, όσο και των εκχυλισμάτων των φλοιών, της σάρκας και των γιγάρτων, υπολογίζεται με τη μέθοδο Folin - Ciocalteu. Η διαδικασία έχει ως εξής: σε δοκιμαςτικό σωληνά προστίκεται 1,58 mL απιονιςμζνου νεροφ και 20 μL το δείγματοσ προσ ανάλυςθ (ι 20 μl απιονιςμζνου νεροφ για το τυφλό), κακϊσ και 100 μL αντιδραςτθρίου Folin Ciocalteu Reagent. Μετά από ανάδευςθ και σε χρόνο μεταξφ 30s και 8min, προστίκεται 300 μL κορεμζνου διαλφματοσ ανκρακικοφ νατρίου και ακολουθεί ανάδευςθ και παραμονι των δοκιμαςτικϊν υδρόλουτρο θερμοκρασίας 40°C για 30min. Μετά το πέρας του χρόνου αυτοφ πραγματοποιείται φωτομζτρθςθ του δείγματοσ ζναντι του τυφλοφ, ςτ α 765 nm. Η συσχζτιςθ τισ τιμισ τθσ απορρόφθςθσ του δείγματοσ με το φαινολικό περιεχόμενο γανε με καμπφλθ αναφοράσ γαλλικοφ οξικοφ σε ςυγκεντρϊςεισ 50, 100, 150, 250, 500 ppm με 12% αιθανόλη.

5.5.7 Μέθοδοσ ανάλυςησ HPLC
Τα εκχυλίςματα από τουσ φλοιούσ, τα γίγαρτα και τα σάρκα, κακϊσ και τα δείγματοσ οίνου, αναλύθηκαν με Υγρι Χρωματογραφία Υψθλισ Απόδοςθσ (HPLC) και συγκεκριμζνα με τθ μζκοδο τθσ βακμωτισ ζκλουςθσ.

Το σύστημα διαλυτών αποτελούνταν από νερό (διαλύτθς A), μεθανόλη (διαλύτθς B) και ακετονιτρίλιο (διαλύτθς Γ), έκαστος των οποίων περιείχε τριφκοροξικό οξύ (TFA) 0,2%. Ο ρόλοσ του τριφκοροξικοφ είναι αφενόσ θ δθμιουργία όξινου περιβάλλοντοσ, ϊςτε οι φαινολικζσ ενϊςεισ (αςκενι οξικοφ) να βρίςκονται εξολοκλιρου ςτθ μθ ιοντιςμζνθ τουσ μορφι αφετθρου η παραλαβή οξεϊων κορυφών με περιορισμένεσ «ουρές» ςτα χρωματογραφήματα.
Η αρχική σύσταση της κινητής φάσης ήταν 90% Α, 6% Β και 4% Γ ενώ μεταβαλλόταν γραμμικά σε 85% Α, 9% Β και 6% Γ στα πρώτα 5 min της ανάλυσης, 71% Α, 17,4% Β και 11,6% Γ στα 30 min και τέλος 0% Α, 85% Β και 15% Γ στα 60 min. Εν συνεχεία επανερχόταν γραμμικά στην αρχική σύσταση στα 61 min και ολοκληρωνόταν η ανάλυση. Η ροή του διαλυτικού συστήματος παρέμεινε σε όλα τα στάδια στα 1mL/min ενώ ο όγκος του εισαγόμενου δείγματος ήταν 20μL. Ως βασικά μήκη κύματος για την ανίχνευση των συστατικών επιλέχθηκαν τα 280, 360, 420, 520 nm που ανταποκρίνονται σε χαρακτηριστικά σημεία των ζωνών απορρόφησης των φλαβονοειδών και λοιπών φαινολικών συστατικών.

5.5.8 Προσδιορισμός ποιοτικών χαρακτηριστικών
Κατά τη διάρκεια της διπλωματικής εργασίας προσδιορίστηκαν ποιοτικοί δείκτες στα δείγματα οίνου που παραλάβαμε κατά την οινοποιητική διαδικασία. Οι δείκτες αυτοί αφορούν στα εξής:

Δείκτης ολικών πολυφαινολικών (d280): οι χαρακτηριστικοί βενηολικοί δακτύλιοι των φαινολικών ενύσεως του γλέφκουσ και του οίνου παρουσιάζουν ισχυρή απορρόφηση στο υπεριδεσ φάσμα, το μέγιστο της οποίας παρατηρείται γύρω στα 280nm. Ετσι η διαδικασία που ακολουθείται είναι αρχικά η αραίωση του οίνου 100 φορές και η οπτική του πυκνότητας (D.Ο.) μετρείται σε φαςματοφωτόμετρο UV-Vis στα 280nm. Τελικά ο δείκτης ολικών πολυφαινολικών προκύπτει ως εξής: d280=D.0.*αραίωση

Ένταση (IC, IC’): τα φάσματα των νέων, κόκκινων κρασιών, παρουσιάζουν μια μέγιστη απορρόφηση στα 520nm (χαρακτηριστικό του κόκκινου χρώματος) και μια ελάχιστη στα 420 (χαρακτηριστικό του κίτρινου χρώματος), καθώς και μια αρκετά σημαντική απορρόφηση στα 620nm (χαρακτηριστικό του μωβ χρώματος). Οι δείκτες αυτοί λοιπόν, εμπεριέχοντας τις παραπάνω απορροφήσεις, προσδιορίζουν το σύνολο του χρώματος του οίνου: IC=d420+d520, IC’=d420+d520+d620

Απόχρωση (teinte): η σχέση της οπτικής πυκνότητας στα 420nm και αυτής στα 520nm, καταδεικνύει την αναλογία του κίτρινου χρώματος σε σχέση με το κόκκινο, και προσδιορίζει την απόχρωση των κόκκινων οίνων: teinte=d420/d520

Δείκτες χρώματος: προσδιορίζουν τη συνεισφορά του κάθε χρωματισμού στο συνολικό χρώμα του οίνου: κίτρινο d420%=d420/IC’*100, κόκκινο d520%=d520/IC’*100, μωβ d620%=d620/IC’*100, ενώ o δείκτης που υποδεικνύει το κόκκινο χρώμα του οίνου είναι dA%=[1-(d420+d520)/(2*d520)]*100.

6 ΑΠΟΤΕΛΕΣΜΑΤΑ – ΣΥΖΗΤΗΣΗ

6.1 ΜΕΛΕΤΗ ΡΩΓΑ΢ ΣΣΑΥΤΛΙΟΤ
Τα χαρακτηριστικά των καρπών του σταφυλιού των δύο ποικιλιών παρατίθενται στον Πίνακα 1.1:
Πίνακας 1.1: στοιχεία ρωγών των ποικιλιών Malbec και Αγιωργίτικο

<table>
<thead>
<tr>
<th></th>
<th>Malbec</th>
<th>Αγιωργίτικο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γίγαρτα (ποσοστό επί ξηρής μάζας καρπού)</td>
<td>2,7%</td>
<td>2,7%</td>
</tr>
<tr>
<td>Φλοιοί (ποσοστό επί ξηρής μάζας)</td>
<td>7,7%</td>
<td>7,5%</td>
</tr>
<tr>
<td>Σάρκα (ποσοστό επί ξηρής μάζας)</td>
<td>15,5%</td>
<td>28%</td>
</tr>
<tr>
<td>Ποσοστό γιγαρτέλαιου (επί ξηρής μάζας)</td>
<td>9,8%</td>
<td>8,8%</td>
</tr>
<tr>
<td>Ποσοστό υγρασίας</td>
<td>72,2%</td>
<td>72,3%</td>
</tr>
<tr>
<td>dμέθυρ ρώγας (mm)</td>
<td>12,48</td>
<td>15,63</td>
</tr>
<tr>
<td>mμέθυρ ρώγας (g)</td>
<td>1,27</td>
<td>1,96</td>
</tr>
</tbody>
</table>

Η έξαρση των μορφολογικών μερών της ρώγας πραγματοποιήθηκε με λυσιτικό. Η απόδοση της διεργασίας της λυσιτικότητας που επιτεύχθηκε και για τις δύο ποικιλίες είναι 30%.

Από τα στοιχεία των δύο σταφυλιών, οδηγούμενα στο συμπέρασμα ότι ο καρπός του Αγιωργίτικου είναι μεγαλύτερος και πιο βαρύς κατά 25% και 54% αντίστοιχα, δηλαδή περιέχει μεγαλύτερο ποσοστό νερού, κάτι που φαίνεται και από το μεγαλύτερο ποσοστό σάρκας που εμφανίζει σε σχέση με το Malbec (28% έναντι 15,5%). Τα ποσοστά της σάρκας και των φλοιών στη συνολική μάζα του καρπού είναι παρόμοια, ενώ η περιεκτικότητα των γιγάρτων του Malbec σε έλαιο είναι περισσότερη κατά 11% σε σχέση με το Αγιωργίτικο.

6.2 ΜΕΛΕΤΗ ΑΝΘΟΚΥΑΝΙΔΙΝΩΝ ΣΤΟ ΣΤΑΦΥΛΙ
Το φάςμα που δίνουν τα ερυθρά κρασία παρουσιάζει ένα μέγιστο απορρόφθησης στα 520 nm που είναι χαρακτηριστικό του κόκκινου χρώματος τους. Το μέγιστο της απορρόφθησης που παρουσιάζουν οι νεόειρυθροί οίνοι στα 520nm οφείλεται στο κακαρό ερυθρό χρώμα των ελεύθερων ανθοκυανιν. Συνεπώς, για τον εντοπισμό και την ταυτοποίηση των ανθοκυανιν στα διάφορα δείγματα προς ανάλυση, έγινε χρωματογραφική ανάλυση.

Για την ταυτοποίηση των αντίστοιχων ανθοκυανιδίνων, μελετήσαμε τα χρωματογραφήματα των υδρολυμένων δειγμάτων και έγινε σύγκριση τόσο με τα φάςματα που δίνουν πρότυπες ανθοκυανιδίνες, όσο και με τους χρόνους έκλουσης τους στα 520nm. Έτσι πραγματοποιήσαμε στο εργαστήριο αναλύσεις στην HPLC-DAD και παραλάβαμε τα φάςματα και τους χρόνους έκλουσης για δύο βασικές πρότυπες ανθοκυανιδίνες, την μαλβιδίνη και την κυανιδίνη.
6.2.1 Προσδιορισμός ανθοκυανών στα διάφορα μέρη του καρπού

6.2.1.1 Φλοιοί
Το χρώμα των ερυθρών οίνων, οφείλεται στις ανθοκυάνες, οι οποίες βρίσκονται κατά κύριο λόγο στους φλοιούς των σταφυλιών. Με βάση τα παραπάνω λοιπόν μελετήσαμε τα χρωματογραφήματα στα 520 nm που ελήφθησαν από τα εκχυλίσματα των φλοιών που παρασκευάσαμε για τις δύο ποικιλίες.

MALBEC

Από το χρωματογράφημα που παρουσιάζεται στο Σχήμα 2.1, παρατηρούμε ότι έχουμε τρεις κύριες κορφές και μία αρκετά σημαντική, μικρότερη όμως από τις υπόλοιπες. Καταγράφοντάς τες κατά σειρά έκλογας προκύπτει ο Πίνακας 2:
Πίνακας 2.1: Στοιχεία κορυφών χρωματογραφήματος του ακατζραγμάτου και υδρολυμζνου εκχυλίςματοσ φλοιϊν Malbec

<table>
<thead>
<tr>
<th>α/α</th>
<th>tέκλουσης (min)</th>
<th>Εμβαδόν</th>
<th>λmin-λmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36,126</td>
<td>16196,5</td>
<td>278-530</td>
</tr>
<tr>
<td>II</td>
<td>43,586</td>
<td>7,522,3</td>
<td>280-534</td>
</tr>
<tr>
<td>III</td>
<td>45,398</td>
<td>2611,8</td>
<td>282-534</td>
</tr>
<tr>
<td>IV</td>
<td>46,723</td>
<td>19849,5</td>
<td>284-536</td>
</tr>
<tr>
<td>Μαλβιδίνη</td>
<td>44,816</td>
<td>20643,8</td>
<td>274-540</td>
</tr>
</tbody>
</table>

Τα φάςματα απορρόφθςθσ στο UV-Vis των δύο κύριων (κορυφή I, 36,126min], [κορυφή IV, 46,723min]), δίνονται στο Σχήμα 2.2 και Σχήμα 2.3 αντίστοιχα.

Από τα παραπάνω φάςματα και σύμφωνα με τη διεθνή βιολογική, μπορούμε να διαπιστώσουμε ότι οι κορυφές αυτές ανήκουν σε γλυκοξυλιωμένες ανθοκουμαριδίνες και πιο συγκεκριμένα γλυκοξίτες της μαλβιδίνης [Giusti et al., 2001, Baldi et al., 1995]. Σύμφωνα με τη μορφολογία των φασμάτων που αντίστοιχον στις κορυφές αυτές, μπορούμε να συμπεράνουμε ότι πιθανότατα οι γλυκοξίτες αυτοί είναι για τη μεν [κορυφή Ι] ο 3-γλυκοξίτης της μαλβιδίνης (Malvidin 3-O-glucoside), ενώ για τη δε [κορυφή IV], οκουμαρυλιωμένος-3-γλυκοξίτης της μαλβιδίνης (Malvidin 3-O-p-coumaroylglucoside). Πιο συγκεκριμένα, τα φάςματα που λάβαμε από τις κορυφές του χρωματογραφήματος, συμπίπτουν με αυτά των χαρακτηριστικών φασμάτων στοUV-Vis των δύο αυτών γλυκοξιτών μαλβιδίνης της διεθνούς βιολογικής, τόσο στα μέγιστα και ελάχιστα μήκη κύματος όσο και στη χαρακτηριστική μορφολογία των καμπυλών τους. Όπως φαίνεται και από το Σχήμα 2.4 [Baldi et al., 1995], ο κουμαρυλιωμένος γλυκοξίτης εμφανίζει μια χαρακτηριστική ασύμμετρη καμπυλότητα μεταξύ 300-320nm, κάτι που δεν συμβαίνει με τον 3-γλυκοξίτη της μαλβιδίνης, ο οποίος στο διάστημα αυτό εμφανίζει συμμετρία, ενώ εμφανίζει μία
επιπλέον μικρή κορυφή μεταξύ 320-360nm [Manhita et al., 2006, Pomar et al., 2005, Baldi et al., 1995].

Σχήμα 2.4: πρότυπα φάσματα στο UV-Vis του κουμαρολιωμένου γλυκοζίτη της μαλβίδινης και του 3-γλυκοζίτη της μαλβίδινης [Baldi et al., 1995]

Για να επιβεβαιωθούν οι παραπάνω υποθέσεις, προσπαθήσαμε να ταυτοποιήσουμε την ανθοκυανιδίνη (αγλυκόν) που αντιστοιχεί στις παραπάνω ανθοκυανίνες. Έτσι, μελετήσαμε το χρωματογράφημα που παράλαβαμε από την υδρόλυση του εκχυλίσματος των φλοιών στα 520nm.

Σχήμα 2.5: Χρωματογράφημα υδρολυμένων φλοιών Malbec στα 520nm

Από το παραπάνω χρωματογράφημα του υδρολυμένου εκχυλίσματος συμπεραίνουμε ότι οι δύο κύριες κορυφές [I και IV] που εμφανίστηκαν στο χρωματογράφημα του ακατέργαστου δείγματος φλοιών, αποτελούν την ίδια ανθοκυανιδίνη, αφού στο χρωματογράφημα των υδρολυμένων φλοιών εμφανίζεται μόνο μία κορυφή. Μελετώντας μάλιστα το φάσμα αυτής της κορυφής (Σχήμα 2.6) και συγκρίνοντάς το με το πρότυπο της μαλβίδινης που παρουσιάζεται στο Σχήμα 1, καθώς και τον χρόνο έκλουσής της (44,816 min), διαπιστώνεται ότι οντως είναι η μαλβίδινη.
Σχήμα 2.6: φάσμα στο UV-Vis της κύριας κορυφής του Σχήματος 5, χρόνος έκλογης 44,816 min

Τα παραπάνω συμπεράσματα επιβεβαιώνονται μάλιστα, λαμβάνοντας υπό όψιν διπλωματική εργασία, στην οποία ταυτοποιήθηκαν οι δύο γλυκοζίτες της μαλβιδίνης, ο κουμαρυλωμένος-3-γλυκοζίτης της μαλβιδίνης (Malvidin 3-O-p-coumaroylglucoside) και ο 3-γλυκοζίτης της μαλβιδίνης (Malvidin 3-O-glucoside) με τη μέθοδο LC-MS, με τις ίδιες μεθόδους και πρωτόκολλα ανάλυσης που χρησιμοποίησαμε στην παρούσα διπλωματική εργασία [Μυλωνά Κ., 2011].

ΑΓΙΩΡΓΙΤΙΚΟ

Αντίστοιχα, παρατίθενται τα χρωματογραφήματα στα 520nm από το ακατέργαστο και το υδρολυμένο εκχύλημα των φλοιών Αγιωργίτικου.

Σχήμα 2.7: Χρωματογράφημα εκχύληματος φλοιών Αγιωργίτικου

Σχήμα 2.8: Χρωματογράφημα υδρολυμένου εκχύληματος φλοιών Αγιωργίτικου
Από το χρωματογράφημα των φλοιών, παρατηρούμε την εμφάνιση δύο κορυφών οι οποίες είναι με διαφορά οι επικρατέστερες, καθώς και μία τρίτη η οποία εμφανίζεται, αλλά σε μικρότερη έκταση. Καταγράφοντας τις λουπον προκύπτει ο Πίνακας 2.2:

Πίνακας 2.2: Στοιχεία κορυφών χρωματογραφήματος του ακατέργαστου και υδρολυμένου εκχυλίσματος φλοιών Αγιωργίτικου

<table>
<thead>
<tr>
<th>α/α</th>
<th>tεύξεως (min)</th>
<th>Εμβαδόν</th>
<th>λmin-λmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36,118</td>
<td>13688,7</td>
<td>278-530</td>
</tr>
<tr>
<td>II</td>
<td>43,621</td>
<td>2511,2</td>
<td>280-532</td>
</tr>
<tr>
<td>III</td>
<td>46,819</td>
<td>8701,1</td>
<td>284-536</td>
</tr>
<tr>
<td>Μαλβιδίνη</td>
<td>44,978</td>
<td>10037,0</td>
<td>274-540</td>
</tr>
</tbody>
</table>

Σε αντιστοιχία με το σχετικό που αναλύσαμε για την ποικιλία Malbec, μπορούμε να βγάλουμε τα εξής συμπεράσματα: οι δύο κορυφές [I και III] αποτελούν γλυκοξυλωμένες μορφές της μαλβιδίνης, ενώ μελετώντας τα φάσματα και τους χρόνους έκλουσης που ταυτίζονται με τα αντίστοιχα των κορυφών I και IV του Malbec, οδηγούμε στο συμπέρασμα ότι η μεν [κορυφή I] είναι ο 3-γλυκοζίτης της μαλβιδίνης (Malvidin 3-O-glucoside), ενώ η δε [κορυφή III] ο κουμαρυλωμένος-3-γλυκοζίτης της μαλβιδίνης (Malvidin 3-O-p-coumaroylglucoside).

6.2.1.2 Γίγαρτα

Τα γίγαρτα των σταφυλιών είναι πολύ πλούσια σε ταννίνες και πολύ φτωχά σε ανθοκυάνες. Αυτό διαπιστώνεται και από την απουσία χρώματος (κυρίως όσων αφορά στο κόκκινο) στα εκχυλίσματα των γιγάρτων. Από τα χρωματογραφήματα που πήραμε από τα εκχυλίσματα των γιγάρτων, η υπόθεση αυτή επαληθεύτηκε και για τις δύο ποικιλίες. Συγκεκριμένα, διαπιστώθηκε μηδενική περιεκτικότητα των γιγάρτων και των δύο ποικιλιών σε ανθοκυάνες, όπως παρουσιάζεται στο Σχήματα 2.8 και 2.9.
6.2.1.3 Γ. Σάρκα
Όπως ήδη έχει αναφερθεί στο θεωρητικό τμήμα, η σάρκα των σταφυλιών είναι τελείως φτωχή σε φαινολικά συστατικά. Η απουσία χρώματος είναι ένα πρώτο δείγμα που επαληθεύει την παραπάνω άποψη. Η χρωματογραφική ανάλυση των εκχυλισμάτων σάρκας των δύο ποικιλιών παρουσιάζεται στα Σχήματα 2.10 και 2.11.

Από το χρωματογράφημα του εκχυλίσματος σάρκας Malbec, είναι εμφανής η απουσία ανθοκυανών.

Αντίστοιχα αποτελέσματα προκύπτουν και για το Αγιωργίτικο. Κάποια ίχνη που εμφανίζονται στο χρωματογράφημα, οφείλονται πιθανότατα σε ένα φαινολικό φορτίο που μεταφέρθηκε στις σάρκες κατά τον διαχωρισμό τους από τους φλοιούς.
6.2.1.4 ΣΥΤΚΡΙΣΗ ΤΩΝ ΔΥΟ ΠΟΙΚΙΛΙΩΝ

Από τα χρωματογράφημα που παραθέσαμε και με βάση το σκεπτικό που αναλύθηκε παραπάνω, μπορούμε αρχικά να παρατηρήσουμε ότι η κύρια ανθοκυανιδίνη στους φλοιούς και των δύο ποικιλιών είναι η μαλβιδίνη, ενώ οι δύο κύριοι γλυκοζίτες της είναι ο 3-γλυκοζίτης της μαλβιδίνης και ο κουμαρυλωμένος 3-γλυκοζίτης της μαλβιδίνης. Οι περιεκτικότητες των δύο γλυκοζίτων θα αναλυθούν στη συνέχεια.

Όσον αφορά στα γίγαρτα και τη σάρκα, από τα χρωματογραφήματα των δύο ποικιλιών συμπεράνουμε ότι το περιεχόμενο τους σε ανθοκυανίνες είναι μηδενικό. Τα αποτελέσματα αυτά συμφωνούν με τη διεθνή βιβλιογραφία.

6.2.2 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΑΝΝΙΝΩΝ ΣΤΑ ΔΙΆΦΟΡΑ ΜΈΡΗ ΤΩΝ ΡΩΓΩΝ ΤΗΣ ΣΤΑΦΥΛΗΣ

Η ανίχνευση των ταννινών στα δείγματα πραγματοποιήθηκε έμμεσα, με καταβύκιση τους με διάλυμα BSA, ενώ για την ταυτοποίηση τους χρησιμοποιήθηκε η μέθοδος της όξινης υδρόλυσης και της ανάλυσής μέσω της υγρής χρωματογραφίας.

Πιο συγκεκριμένα, οι ταννίνες δημιουργούν σύμπλοκα με τις πρωτεϊνές και καταβυκίζονται. Χρησιμοποιώντας λοιπόν μια πρωτεΐνη και καταβυκίζοντας τις ταννίνες από το διάλυμα του εκάστοτε δείγματος, λαμβάνουμε ένα επιπλέον δείγμα, το υποκείμενο υγρό το οποίο είναι πιο ελεύθερο από ταννίνες. Με σύγκριση των δύο χρωματογραφημάτων στα 280nm – μήκος κύματος στο οποίο παρουσιάζουν τη μέγιστη απορρόφθης οι ταννίνες – του ακατέργαστου δείγματος (εκχυλίσματος ή οίνου) και του διαλύματος μετά την καταβύκιση των ταννινών, μπορούμε να βγάλουμε ένα πρώτο συμπέρασμα σχετικά με την ύπαρξη ή όχι ταννινών στα δείγματα. Στις εργαστηριακές μας αναλύσεις χρησιμοποιήσαμε την αλβουμίνη (BSA) για την καταβύκιση των ταννινών.

Στη συνέχεια πραγματοποιήσαμε την ταυτοποίηση των ταννινών με τη μέθοδο της όξινης υδρόλυσης. Πιο συγκεκριμένα, όπως έχει αναφερθεί στο θεωρητικό μέρος, οι ταννίνες είναι πολυμερή κατεχινές και επικατεχινές. Για να ταυτοποιήσουμε λοιπόν τη φύση των ταννινών που βρίσκονται στα δείγματα, πραγματοποιήσαμε διάσπαση των πολυμερών στα μονομερή τους με όξινη υδρόλυση. Λαμβάνουμε έτσι ένα καινούριο διάλυμα προς ανάλυση.
το οποίο περιέχει τα μονομερή των ταννινών. Η ανάλυση του νέου αυτού δείγματος στην HPLC και στα 520nm θα εμφανίσει δύο είδη ανθοκυανιδίνων:

- ανθοκυανιδίνες (αγλυκόνες πια) οι οποίες προ ουδρόλυσης βρισκόντουσαν σε μορφή γλυκοζίτη
- ανθοκυανιδίνες οι οποίες αποτελούσαν τα μονομερή ή διμερή των ταννινών.

Για τον λόγο αυτό θα μελετήσουμε συγκριτικά και τα δείγματα με το υπερκείμενο υγρό που λάβαμε μετά την καταβύθιση των ταννινών. Με τον τρόπο αυτό θα διαπιστώσουμε ποιο ποσοστό αφορά μόνο στις ανθοκυανιδίνες των ανθοκυανινίν που βρίσκονται στα αρχικά δείγματα. Από τα παραπάνω λοιπόν, βγαίνει το συμπέρασμα ότι συγκρίνοντας τα χρωματογράφημα στα 520nm των δειγμάτων στα οποία πραγματοποιήθηκε απευκεία υδρόλυση και τα χρωματογράφημα των υδρολυμένων δειγμάτων ελεύθερων ταννινών, θα διαπιστώσουμε έμμεσα (με αφαίρεση) τη φύση των μονομερών ή διμερών που αποτελούν τις ταννίνες των αρχικών δειγμάτων.

Παρ’ όλα αυτά, δεν μπορούμε να πραγματοποιήσουμε ποσοτικοποίησεις ταννινών με τη μέθοδο της HPLC παρά μόνο να βγάλουμε κάποια ενδεικτικά συμπεράσματα για την ύπαρξη ή μη των ταννινών στα δείγματα.

Έτσι λαμβάνουμε για κάθε μορφολογικό μέρος της σταφυλής τα εξής συμπεράσματα:

6.2.2.1 Φλοιοί

MALBEC

Από τα χρωματογράφημα στα 280nm του ακατέργαστου δείγματος φλοιών και του υπερκείμενου υγρού μετά την καταβύθιση των ταννινών, διαπιστώνουμε ότι στους φλοιούς δεν περιέχονταν μετρήσιμα ποσά ταννινών, παρά μόνο ίχνη. Αυτό το συμπεράνουμε από την πολύ μικρή μεταβολή μεταξύ των δύο χρωματογραφημάτων σε σχέση με τις επικρατούσες κορυφές, που σημαίνει ότι στο αρχικό δείγμα δεν υπήρχαν άρκετες ταννίνες ώστε να παρατηρηθεί ορατή διαφορά μετά την καταβύθισις τους.

Σχήμα 2.12: Χρωματογράφημα εκχυλίσματος φλοιών Malbec στα 280nm

48
ΑΠΩΡΓΙΤΙΚΟ

Το ίδιο συμπέρασμα προκύπτει και κατά την παρατήρηση των αντίστοιχων χρωματογραφημάτων για το Αγιωργίτικο. Οι κύριες κορυφές δεν μεταβληθήκαν ορατά μετά τη διαδικασία της καταβύθισης, αφού δεν υπήρχαν μετρήσιμα ποσά ταννινών ώστε να παρατηρηθεί σημαντική διαφορά μετά την καταβύθιση τους.
6.2.2.2 Γίγαρτα
Οι ταννίνες που βρίσκονται στον οίνο, προέρχονται κατά κύριο λόγο από τα γίγαρτα, τα οποία είναι πολύ πλούσια σε ταννίνες. Η παραπάνω υπόθεση επαληθεύτηκε με τη μελέτη των χρωματογραφημάτων των δύο ποικιλιών από τα εκχυλίσματα των γιγάρτων.

MALBEC

Το χρωματογράφημα από το εκχύλισμα γιγάρτων στα 280nm, παρουσιάζει αρκετές κορυφές, κάτι που δείχνει την έντονη παρουσία ταννινών σε αυτά. Από το χρωματογράφημα μάλιστα του δείγματος μετά την καταβύθιση τους, παρατηρούμε σχεδόν μηδενική παρουσία ταννινών, αφού όσες υπήρχαν στο αρχικό δείγμα καταβυθίστηκαν.

Σχήμα 2.16: Χρωματογράφημα εκχυλίσματος γιγάρτων Malbec στα 280nm

Σχήμα 2.17: Χρωματογράφημα εκχυλίσματος γιγάρτων Malbec μετά την καταβύθιση των ταννινών στα 280nm

Μετά από την άδεια υδρόλυση του εκχυλίσματος των γιγάρτων παρατηρήθηκε η ύπαρξη μιας μόνο κορυφής στα 41,244min (Σχήμα 2.18), η οποία συμπεραίνουμε ότι είναι μια ανθοκυανιδίνη. Το φάσμα της κορυφής αυτής, δίνεται στο Σχήμα 2.19.
Από τα μορφολογικά χαρακτηριστικά του φάσματος, καθώς και από τον χρόνο έκλοισης του, οδηγούμαστε στο συμπέρασμα ότι η ανθοκυανιδίνη των ταννινών είναι η κυανιδίνη.

ΑΓΙΩΡΓΙΤΙΚΟ

Στα Σχήματα 2.20 και 2.21 παρατίθενται τα χρωματογραφήματα του εκχυλίσματος των γιγάρτων της ποικιλίας Αγιωργίτικο πριν και μετά την καταβύσκη των ταννινών, ενώ στο Σχήμα 2.22 το χρωματογράφημα του υδρολυμένου εκχυλίσματος γιγάρτων.
Από τα παραπάνω φαίνεται ότι και για την ποικιλία Αγιωργίτικο, οι υδρόλυση οδηγεί σε ένα μονομερές. Ο χρόνος έκλουσης και το φάσμα της κορυφής συμπίπτουν με τα αντίστοιχα του Malbec. Επομένως, οδηγούμαστε στο συμπέρασμα η ανθοκυανιδίνη που αποτελεί την «πρώτη ύλη» των ταννινών είναι η κυανιδίνη.

6.2.2.3 Σάρκα
Όπως έχει αναφερθεί στο θεωρητικό, στη σάρκα των καρπών της σταφυλής δεν περιέχονται ταννίνες, κάτι που επιβεβαιώθηκε για τις δύο ποικιλίες σύμφωνα με τα χρωματογραφήματα που παρατίθενται στα Σχήματα 2.23 και 2.24.
6.3 ΜΕΛΕΤΗ ΤΟΥ ΟΙΝΟΥ

6.3.1 Μελέτη φαινολικών συστατικών

MALBEC

Η χρωματογραφική ανάλυση του οίνου Malbec εδείξε την ύπαρξη τριών κύριων κορυφών, όπως παρουσιάζεται στο Σχήμα 3.1. Τα χαρακτηριστικά των κορυφών δίνονται στον Πίνακα 3.

Πίνακας 3: Στοιχεία κορυφών χρωματογραφήματος του ακατέργαστου οίνου Malbec

<table>
<thead>
<tr>
<th>α/α</th>
<th>t_εκλογής (min)</th>
<th>Εμβαδόν</th>
<th>λ_{min}-λ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36,347</td>
<td>8413,4</td>
<td>278-530</td>
</tr>
<tr>
<td>II</td>
<td>43,777</td>
<td>1794,3</td>
<td>280-534</td>
</tr>
<tr>
<td>III</td>
<td>46,999</td>
<td>1379,6</td>
<td>284-530</td>
</tr>
</tbody>
</table>
Οι κορυφές [I] και [III] αφορούν στους γλυκοζίτες της μαλβιδίνης (3-γλυκοζίτης της μαλβιδίνης, κουμαρυλωμένο-3-γλυκοζίτης της μαλβιδίνης αντίστοιχα) που εκχυλίστηκαν από τους φλοιούς. Η τρίτη κορυφή [II] θα αφορά λοιπόν πυθανώς σε μία ανθοκυάνθη που εμφανίστηκε λόγω της ζύμωσης. Το συμπέρασμα αυτό όμως επιδεέχεται περεταίρω διερεύνησης. Το φάσμα της κορυφής αυτής παρατίθεται παρακάτω:

Σχήμα 3.2: φάσμα στο UV-Vis της κορυφής [II]

Από το χρωματογράφημα του υδρολυμένου οίνου Malbec, παρατηρούμε την εμφάνιση τριών κορυφών που καταγράφονται στον Πίνακα 4:

Πίνακας 4: Στοιχεία κορυφών χρωματογραφήματος του υδρολυμένου οίνου Malbec

<table>
<thead>
<tr>
<th>α/α</th>
<th>tεκλουσης (min)</th>
<th>Εμβαδόν</th>
<th>λmin-λmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36,872</td>
<td>1155,5</td>
<td>270-534</td>
</tr>
<tr>
<td>II (κυανιδίνη)</td>
<td>40,652</td>
<td>4841,0</td>
<td>276-528</td>
</tr>
<tr>
<td>III (μαλβιδίνη)</td>
<td>44,947</td>
<td>5850,8</td>
<td>274-540</td>
</tr>
</tbody>
</table>

Η κορυφή III αντιστοιχεί στη μαλβιδίνη, ενώ η κορυφή II στην κυανιδίνη που προέρχεται από υδρόλυση των ταννινών του οίνου. Εμφανίζεται επιπλέον μια κορυφή που αντιστοιχεί πυθανώς σε μια ανθοκυάνθη η οποία οφείλεται όπως έχει προαναφερθεί στη διαδικασία της ζύμωσης. Με ανάλυση του φάσματος της κορυφής αυτής και του χρόνου έκλουσης της (36,872min), δεν ήταν δυνατό να πραγματοποιηθεί ταυτοποίησή της με κάποια από τις πρότυπες ανθοκυάνθες που διαθέτουμε.
ΑΠΩΡΩΤΙΚΟ

Αντίστοιχα, στο χρωματογράφημα του ακατέργαστου οίνου Αγιωργίτικου εμφανίζονται τρεις κύριες κορυφές, όπως φαίνεται στο Σχήμα 3.5, των οποίων τα χαρακτηριστικά δίνονται στον Πίνακα 5:

Πίνακας 5: Στοιχεία κορυφών χρωματογραφήματος του ακατέργαστου οίνου Αγιωργίτικο

<table>
<thead>
<tr>
<th>α/α</th>
<th>tέλους (min)</th>
<th>Εμβαδόν</th>
<th>λmin-λmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36,440</td>
<td>5942,0</td>
<td>278-530</td>
</tr>
<tr>
<td>II</td>
<td>43,762</td>
<td>666,0</td>
<td>280-534</td>
</tr>
<tr>
<td>III</td>
<td>46,927</td>
<td>1505,3</td>
<td>284-530</td>
</tr>
</tbody>
</table>

Οι κορυφές I και III αποτελούν τους γλυκοζίτες μαλβίδινης και 3-γλυκοζίτης της μαλβίδινης και κουμαρυλιωμένος-3-γλυκοζίτης της μαλβίδινης αντίστοιχα. Η κορυφή II έχει ίδιο χρόνο έκλουσης και φάσμα με την κορυφή II που παρατηρήθηκε στον οίνο Malbec.

Η υδρόλυση του οίνου από Αγιωργίτικο έδωσε το χρωματογράφημα του Σχήματος 3.6. Όπως προκύπτει από το χρωματογράφημα, εμφανίζονται δύο κύριες κορυφές που αντιστοιχούν στη μαλβίδινη και κυανιδίνη, σύμφωνα με τους χρόνους έκλουσης και τα φάσματά τους, καθώς και μία τρίτη σε χρόνο 37,627min, η οποία είναι ταυτόσημη με την
αντίστοιχη κορυφή I του υδρολυμένου οίνου Malbec, και δεν μπορεί να ταυτοποιηθεί με τα στοιχεία που διατίθενται για τις πρότυπες ανθοκυανίδες.

Οι κορυφές I και III αποτελούν τους γλυκοζώτες μαλβιδίνης, 3-γλυκοζώτης της μαλβιδίνης και κομμαρυλωμένος-3-γλυκοζώτης της μαλβιδίνης αντίστοιχα. Η ταυτοποίηση της άγνωστης κορυφής II θα προκύψει από τη μελέτη του χρωματογράφηματος του υδρολυμένου οίνου στα 520nm και ανάλυση του φάσματος της αντίστοιχης κορυφής της αγλυκόνης. Όπως προκύπτει από το χρωματογράφημα, εμφανίζονται τρείς κορυφές (μαλβιδίνη, κυανίδινη), καθώς και μία τρίτη σε χρόνο 37,627 min, η οποία με τα στοιχεία που διατίθενται για τις πρότυπες ανθοκυανίδες, δεν μπορεί να ταυτοποιηθεί.

6.4 ΠΟΣΟΤΙΚΟΠΟΙΗΣΕΙΣ
Οι ποσοτικοποιήσεις των φαινολικών συστατικών, πραγματοποιήθηκαν με βάση την καμπύλη αναφοράς πρότυπης μαλβιδίνης στην HPLC (Διάγραμμα 1), συναρτήσει της συγκέντρωσης της. Η καμπύλη αναφοράς που παρατίθεται, ελήφθη από τη διπλωματική εργασία της Κατερίνας Μυλωνά, με βάση τις ίδιες μεθόδους κατεργασίας και ανάλυσης των δειγμάτων που ακολουθήθηκαν στην παρούσα διπλωματική. Σύμφωνα ποσοτικοποιήθηκαν οι ανθοκυάνες που ταυτοποιήσαμε, εκφρασμένες ως μαλβιδίνη. Τα αποτελέσματα παρουσιάζονται στους Πίνακες 6.1 και 6.2 για το Malbec και 7.1, 7.2 για το Αγιωργίτικο.
Πίνακας 6.1.: Ποσοτικοποιήσεις στα δείγματα φλοιών και οίνου Malbec, ppm ισοδύναμης μαλβίνης, φλοιοί: mg/kg νυστού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Κουμαρυλωμένος-3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Συνολικές ανθοκύανες (ppm)</th>
<th>3-γλυκοζίτης μαλβίνης / Συνολ. Ανθ.</th>
<th>Κουμαρ-γλυκ-μαλβ / Συνολ. ανθόκυανες</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>187,0±3,0</td>
<td>228,6±4,2</td>
<td>597,2±6,2</td>
<td>0,31</td>
<td>0,38</td>
</tr>
<tr>
<td>Οίνος</td>
<td>99,3±0,5</td>
<td>17,0±0,3</td>
<td>167,4±0,8</td>
<td>0,59</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Πίνακας 6.2.: Ποσοτικοποιήσεις στα δείγματα φλοιών και οίνου Malbec, ppm ισοδύναμου γλυκοζίτης της μαλβίνης, φλοιοί: mg/kg νυστού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Κουμαρυλωμένος-3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Συνολικές ανθοκύανες (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>298,8±4,8</td>
<td>365,3±6,7</td>
<td>954,3±9,9</td>
</tr>
<tr>
<td>Οίνος</td>
<td>158,7±0,8</td>
<td>27,2±0,5</td>
<td>267,5±1,3</td>
</tr>
</tbody>
</table>

Πίνακας 7.1.: Ποσοτικοποιήσεις στα δείγματα φλοιών και οίνου Αγιωργίτικο, ppm ισοδύναμης μαλβίνης, φλοιοί: mg/kg νυστού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Κουμαρυλωμένος-3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Συνολικές ανθοκύανες (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>151,8±0,1</td>
<td>96,5±1,2</td>
<td>353,5±6,2</td>
</tr>
<tr>
<td>Οίνος</td>
<td>69,4±0,5</td>
<td>17,3±1,4</td>
<td>108,1±0,7</td>
</tr>
</tbody>
</table>

Πίνακας 7.2.: Ποσοτικοποιήσεις στα δείγματα φλοιών και οίνου Αγιωργίτικο, ppm ισοδύναμου γλυκοζίτης της μαλβίνης, φλοιοί: mg/kg νυστού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Κουμαρυλωμένος-3-γλυκοζίτης μαλβίνης (ppm)</th>
<th>Συνολικές ανθοκύανες (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>242,6±0,2</td>
<td>154,2±1,9</td>
<td>564,9±9,9</td>
</tr>
<tr>
<td>Οίνος</td>
<td>110,9±1,6</td>
<td>27,6±2,2</td>
<td>172,7±1,1</td>
</tr>
</tbody>
</table>

Τα συμπεράσματα που βγαίνουν από τους Πίνακες 6 και 7, είναι ιδιαίτερα ενδιαφέροντα αφού παρουσιάζουν μια στατιστικά σημαντική διαφορά της ποικιλίας Malbec σε σχέση με το Αγιωργίτικο σε χρωστικά ουσίες (ανθοκύανες), τόσο στους φλοιούς όσο και στον οίνο.
Πιο συγκεκριμένα, το Malbec περιέχει 69% περισσότερες ανθοκυάνες στους φλοιούς και 55% περισσότερες στον οίνο, σε σχέση με το Αγιωργίτικο. Όσον αφορά στους γλυκοζίτες της μαλβιδίνης, οι φλοιοί και ο οίνος Malbec περιέχουν 23% και 43% περισσότερο 3-γλυκοζίτη της μαλβιδίνης αντίστοιχα, ενώ όσον αφορά στον κουμαρυλιωμένο-3-γλυκοζίτης της μαλβιδίνης, το Malbec περιέχει στους φλοιούς 37% περισσότερο από το Αγιωργίτικο. Στον οίνο αντίθετα, το περιεχόμενο των δύο οίνων στον κουμαρυλιωμένο γλυκοζίτη δεν παρουσιάζει στατιστικά κάποια διαφοροποίηση.

Συγκριτικά με τη διεθνή βιβλιογραφία, τα συμπέρασμα που βγάζουμε είναι ότι τα δείγματα με τα οποία ασχολήθηκαμε στην παρούσα εργασία, παρουσιάζουν παρόμοιο φαινολικό περιεχόμενο με αντίστοιχες μελέτες, ταυτόχρονα όμως κάπως μειωμένο. Για να γίνουν συγκρίσεις οι τιμές μας με αυτές της διεθνούς βιβλιογραφίας, πραγματοποιήσαμε μετατροπή των μονάδων ppm σε ισοδύναμες γλυκοζίτες μαλβιδίνης με τη διαφορά του μοριακού βάρους των δύο φαινολικών ενώσεων ως προς τις οποίες πραγματοποιήσαμε οι συστοιχισμοί (Table 6.2. και 7.2.). Πιο συγκεκριμένα, από τις συγκρίσεις, προκύπτει ότι το Malbec που μελετήσαμε παρουσιάζει μειωμένο περιεχόμενο σε συνολικές ανθοκυάνες, καθώς και στους δύο γλυκοζίτες της μαλβιδίνης ειδικότερα, σε σχέση με εκείνα που καλλιεργήθηκαν στην Αργεντινή [Fanzone et al., 2010]. Η περιεκτικότητα του οίνου σε ανθοκυάνες όπως αναλύθηκαν με την HPLC, φαίνεται στον Πίνακα 8:

<table>
<thead>
<tr>
<th>Πίνακας 8: Οίνος Malbec, φαινολικό φορτίο [Fanzone et al., 2010]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-γλυκοζίτης μαλβιδίνης</td>
</tr>
<tr>
<td>κουμαρυλιωμένος-3-γλυκοζίτης μαλβιδίνης</td>
</tr>
<tr>
<td>Συνολικές ανθοκυάνες</td>
</tr>
</tbody>
</table>

Οδηγούμαστε λοιπόν στο συμπέρασμα ότι το Malbec που μελετήσαμε είναι πιο φτωχό σε ανθοκυάνες, σε σχέση με τον οίνο Malbec που καλλιεργείται στην Αργεντινή. Παρ’ όλα αυτά, πρέπει να τονισθεί ότι οι οίνοι που μελετήθηκαν στη δημοσίευση που αναφέρεται, έχουν καλλιεργηθεί σε υψηλά υψόμετρα, από 750m έως 1450m. Όπως έχει αναφερθεί και στο θεωρητικό μέρος, το Malbec είναι μια ποικιλία που καλλιεργείται στην Αργεντινή σε μεγάλα υψόμετρα, διότι δίνει πολύ καλής ποιότητας οίνο και πολύ πλούσιο σε φαινολικά συστατικά γενικά και σε ανθοκυάνες ειδικότερα. Αντίθετα, το δείγμα Malbec που μελετήθηκε στην παρούσα εργασία, καλλιεργήθηκε σε αρκετά χαμηλά υψόμετρα και πιο συγκεκριμένα στα 200-300m. Αυτό το στοιχείο θα μπορούσε ενδεχομένως να δικαιολογήσει την διαφορά αυτή μεταξύ των δύο μελετών.

Αντίστοιχα, το Αγιωργίτικο που μελετήθηκε στην παρούσα εργασία παρουσιάζει και αυτό μειωμένη περιεκτικότητα σε ανθοκυάνες σε σχέση με τα στοιχεία που έχουμε από επιστημονικές δημοσιεύσεις. Πιο συγκεκριμένα, από άρθρο που ασχολήθηκε με τη φαινολική ανάλυση ελληνικών οίνων γενικά και με το Αγιωργίτικο ειδικά, με τη μέθοδο HPLC, λάβαμε τα εξής αποτελέσματα:
Τέλος, από τους Πίνακες 6 και 7, παρατηρούμε ότι ο 3-γλυκοζύτης της μαλβιδίνης παρουσιάζει πολύ μεγαλύτερη εκχυλισμότητα από τον κουμαρυλωμένο-3-γλυκοζύτη της μαλβιδίνης. Η διαπίστωση αυτή προκύπτει από το γεγονός ότι τα ποσοστά περιεκτικότητας σε 3-γλυκοζύτη της μαλβιδίνης από τους φλοιούς στον οίνο είναι πιο αυξημένα από τα αντίστοιχα του κουμαρυλωμένου. Η διαφορά αυτή δικαιολογείται από το γεγονός ότι οι εστερικές ενώσεις γενικότερα και άρα και ο κουμαρυλωμένος-3-γλυκοζύτης της μαλβιδίνης ειδικότερα, είναι λιγότερο πολικές ενώσεις. Για τον λόγο αυτό δεν εκχυλίζεται στην αρχή της οινοποιητικής διαδικασίας, όπου το νερό επικρατεί κατά πολύ της αλκοόλης, αλλά παραλαμβάνεται τελευταίος και πάντα σε μικρότερο ποσοστό από τις υπόλοιπες φαινολικές ενώσεις.

Επιπλέον, χρησιμοποιήθηκε και η μέθοδος Folin–Ciocalteau όπως αυτή περιγράφθηκε στην πειραματική διαδικασία, για τον προσδιορισμό του συνολικού φαινολικού περιεχομένου των δειγμάτων εκφρασμένων σε γαλλικό οξύ. Η καμπύλη αναφοράς που χρησιμοποιήθηκε, παρασκευάσθηκε με γαλλικό οξύ και δίνεται στο Διάγραμμα 2.

Από τον πίνακα: Οίνος Αγιωργίτικο, φαινολικό φορτίο [Kalithraka et al., 2005]

| κουμαρυλωμένος-3-γλυκοζύτης μαλβιδίνης | 46,5±0,4 |
| Συνολικές ανθοκυάνες | 402,7 |

Διάγραμμα 2: Καμπύλη Folin-Ciocalteau

Ετσι προκύπτουν τα εξής:
Πίνακας 10: Ποσοτικοποιήσεις στα δείγματα καρπών και οίνου Malbec, ppm ισοδύναμου γαλλικού οξέος στον καρπό, φλοιοί: mg/kg νωπού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>Ολικές Φαινόλεσ (ppm)</th>
<th>Ταννίνες (ppm)</th>
<th>Μη Ταννικές Φαινόλεσ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>2019±27</td>
<td>798±12</td>
<td>1221±10,6</td>
</tr>
<tr>
<td>Γίγαρτα</td>
<td>4223,9±192,2</td>
<td>3373±66</td>
<td>850,9±89,2</td>
</tr>
<tr>
<td>Σάρκα</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σύνολο σταφυλής</td>
<td>6242,9±116,8</td>
<td>4171±38,2</td>
<td>2071,9±55,6</td>
</tr>
<tr>
<td>Οίνος</td>
<td>2314±59</td>
<td>1837±71</td>
<td>477±8,5</td>
</tr>
</tbody>
</table>

Πίνακας 11: Ποσοτικοποιήσεις στα δείγματα καρπών και οίνου Αγιωργίτικο, ppm ισοδύναμου γαλλικού οξέος στον καρπό, φλοιοί: mg/kg νωπού καρπού, οίνος: mg/L οίνου

<table>
<thead>
<tr>
<th></th>
<th>Ολικές Φαινόλεσ (ppm)</th>
<th>Ταννίνες (ppm)</th>
<th>Μη Ταννικές Φαινόλεσ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φλοιοί</td>
<td>1102±14</td>
<td>138±22</td>
<td>964±5,7</td>
</tr>
<tr>
<td>Γίγαρτα</td>
<td>2894,9±213,8</td>
<td>2076±57</td>
<td>818,9±110,9</td>
</tr>
<tr>
<td>Σάρκα</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σύνολο σταφυλής</td>
<td>3996,9±141,3</td>
<td>2214±24,7</td>
<td>1782,9±38,1</td>
</tr>
<tr>
<td>Οίνος</td>
<td>2192±150</td>
<td>714±74</td>
<td>1478±53,7</td>
</tr>
</tbody>
</table>

Από τους Πίνακες 10 και 11, παρατηρούμε την έντονη επικράτηση στο φαινολικό περιεχόμενο του Malbec σε σχέση με το Αγιωργίτικο, στα μορφολογικά μέρη του καρπού (φλοιοί, γίγαρτα). Πιο συγκεκριμένα έχουμε για τη σταφυλή, τα δείγματα είναι στατιστικά συγκρίσιμα και περιέχουν 56% περισσότερες ολικές φαινόλεσ στο Malbec καθώς και 88% περισσότερες ταννίνες. Για τις μη ταννικές φαινόλες, δεν μπορούμε να βγάλουμε ασφαλή συμπεράσματα για τη διαφοροποίηση των δύο ποικιλιών, καθώς τα δείγματα δεν παρουσιάζουν στατιστικό συσχετισμό. Αντίστοιχα, στον οίνο οι δύο ποικιλίες εμφανίζουν στατιστικά παρόμοιες περιπτώσεις σε ολικές φαινόλεσ, 15% περισσότερες ταννίνες στον οίνο Malbec και 210% περισσότερες μη ταννικές φαινόλες στο Αγιωργίτικο, καθώς και στις δύο περιπτώσεις τα δείγματα είναι στατιστικά συγκρίσιμα.

Συγκριτικά με τη διεθνή βιβλιογραφία, για το Malbec, οι τιμές τόσο για το συνολικό φαινολικό περιεχόμενο, όσο και για το ταννικό, είναι της ίδιας τάξης μεγέθους. Πιο συγκεκριμένα, σύμφωνα με δημοσίευση που ασχολήθηκε με αναλύσεις στον οίνο Malbec από διάφορα μέρη της Αργεντινής [Fanzone et al., 2010], οι τιμές των ολικών φαινόλων κυμαίνονται από 1932 έως 3507 mg/L εκφρασμένες ως γαλλικό οξύ. Οι τιμές που υπολογίστηκαν στην παρούσα εργασία, βρίσκονται εντός αυτού του εύρους τιμών (2314±59mg/L εκφρασμένα σε γαλλικό οξύ). Αντίστοιχα για το Αγιωργίτικο, συγκριτικά με εργασία πάνω στη συγκεκριμένη ποικιλία [Kallithraka, 2005], το περιεχόμενο σε ολικές φαινόλες που υπολογίσαμε είναι της ίδιας τάξης μεγέθους, με μικρή διαφορά (2192±150mg/L εκφρασμένα ως γαλλικό οξύ, έναντι 2283mg/L επίσης εκφρασμένα ως γαλλικό οξύ).
6.5 ΜΕΛΕΤΗ ΠΟΙΟΤΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

6.5.1 Δείκτης ολικών πολυφαινολών (d280)

Ο δείκτης ολικών πολυφαινολών αποτελεί μια γρήγορη και εύκολη ένδειξη των ολικών φαινολικών συστατικών που βρίσκονται στον οίνο. Όπως έχει αναφερθεί και στην πειραματική διαδικασία, υπολογίζεται από την απορρόφηση του ερυκροφ οίνου (αραιωμένου 1/100 με νερό) σε μήκος κύματος 280nm. Η τιμή του δείκτη ολικών πολυφαινολών κυμαίνεται από 6 έως 120 [Ribereau-Gayon et al., 2006].

Διάγραμμα 3: Δείκτης ολικών πολυφαινολών συναρτισει της διάρκειασ οινοποίθσησ των οίνων Malbec και Αγιωργίτικο

Από το Διάγραμμα 3, παρατηρούμε ότι οι τιμές του δείκτη ολικών πολυφαινολών κυμαίνονται στα ίδια επίπεδα στους οίνους των δύο ποικιλιών. Παρατηρείται μια έντονη άνοδος του δείκτη κατά τη διάρκεια της εκχύλισης-ζύμωσης (από 28 την πρώτη μέρα έως 62 την τελευταία για το Malbec και από 34 έως 60 για το Αγιωργίτικο). Η άνοδος αυτή του δείκτη οφείλεται στην αύξηση της περιεκτικότητας σε φαινόλες στον οίνο. Η κλίση της καμπύλης μάλιστα είναι πιο έντονη κατά τη διάρκεια της ζύμωσης, περιόδου κατά την οποία εκχυλίζεται το μεγαλύτερο ποσοστό φαινολικών στον οίνο, λόγω αύξησης του περιεχομένου σε αλκοόλη. Οι τιμές του δείκτη στα τελικά δείγματα οίνου των δύο ποικιλιών παρουσιάζουν σημαντική σύγκλιση (62 για το Malbec και 60 για το Αγιωργίτικο).

Συγκριτικά με τις μελέτες [Συμεού, 2010], που έγινε για το Αγιωργίτικο, ο δείκτης ολικών πολυφαινολών κυμαίνεται στον τελικό οίνο από 36 έως 41. Μπορούμε λοιπόν να συμπεράνουμε ότι η τιμή που λάβαμε για το τελικό δείγμα του οίνου (60,4), είναι αρκετά ικανοποιητική και μέσα στα πλαίσια τιμών που δίδονται στη διεθνή βιβλιογραφία για τον συγκεκριμένο δείκτη. Αντίστοιχα για το Malbec και σε σύγκριση με τις μελέτες των Béguin et al. και Berli et al. (2008), όπου η τιμή του δείκτη ολικών πολυφαινολών υπολογίστηκε 32,9-33,4, και 25 έως 42 αντίστοιχα, διαπιστώνουμε ότι το δείγμα οίνου Malbec που μελετήθηκε στην παρούσα εργασία παρουσιάζει μεγάλη συγκριτικά περιεκτικότητα σε πολυφαινόλες.
6.5.2 Ένταση (IC')
Η χρωματική ένταση μπορεί να παρουσιάζει μεγάλη διαφοροποίηση μεταξύ των διαφόρων ποικιλιών.

Η τιμή της έντασης των δύο ποικιλιών παρουσιάζουν σημαντική σύγκλιση (4,1 για το Malbec και 4,4 για το Αγιωργίτικο). Οι τιμές αυτές είναι αρκετά χαμηλές συγκριτικά με τη διεθνή βιβλιογραφία, όπου για μέτρια ερυθρούς οίνους η ένταση κυμαίνεται από 6 ως 10 και για βαθιά ερυθρούς από 10 και πάνω. Για τιμές 0 έως 6, οι οίνοι χαρακτηρίζονται ανοιχτόχρωμοι [Ribereau et al., 2006, Κουράκου, 1998, Συμέου, 2010]. Σε παρόμοια έρευνα μάλιστα που έγινε για το Αγιωργίτικο, οι τιμές της έντασης του χρώματος του κυμάνθηκαν από 11 έως 18. Για το Malbec στην βιβλιογραφία συναντάμε μεγάλες αποκλίσεις για το δείκτη της έντασης. Σε κάποιες δημοσιεύσεις [Fanzone et al., 2010], οι τιμές κυμαίνονται από 9 έως 25, ενώ σε κάποιες άλλες [Berli et al., 2008, Baldi et al., 1995] από 0,5 έως 2.

Παράλληλα, η μεταβολή του χρώματος κατά τη διάρκεια της εκχύλισης-ζύμωσης παρουσιάζει παρόμοια συμπεριφορά και για τις δύο ποικιλίες. Από το Διάγραμμα 4 παρατηρούμε ότι η ένταση του χρώματος, παρουσιάζει την 13η μέρα μια μέγιστη τιμή και μετά ελαττώθηκε. Η συμπεριφορά αυτή του δείκτη της έντασης είναι αναμενόμενη. Πιο συγκεκριμένα, η ένταση του χρώματος αυξάνεται πολύ γρήγορα στα πρώτα στάδια της εντατικής παραγωγής αιθανόλης κατά τη ζύμωση λόγω της σταδιακής εκχύλισης των ανθοκυανίων από τα χυμοτόπια των φλοίων και στη συνέχεια παρουσιάζει μια ελάττωση, λιγότερο ή περισσότερο απότομη. Η ελάττωση αυτή συμβαίνει όταν η αιθανόλη φτάσει σε ορισμένα επίπεδα. Τότε η εκχύλιση των ανθοκυανίων έχει σχεδόν ολοκληρωθεί και αρχίζουν να ενεργοποιούνται διάφοροι μηχανισμοί οι οποίοι έχουν σαν αποτέλεσμα τη μείωση της συγκέντρωσής τους. Πρόκειται για την προσφόρθηση των ανθοκυανίων από τους φλοιούς των ρυγών και τα κύτταρα των ζυμών, αλλά και την καταστροφή των έγχρωμων ενώσεων ταννινίων ανθοκυανίων από τη σχηματιζόμενη αλκοόλη. Έτσι στην αρχή η ένταση του χρώματος φτάνει σε ένα μέγιστο, αλλά σε ορισμένες περιπτώσεις μπορεί να αυξηθεί ξανά σε επόμενο στάδιο λόγω επανασχηματισμού συμπλόκων ανθοκυανίων – ταννινίων [Κουράκου, 1998, Συμέου, 2010].
6.5.3 Απόχρωση
Η απόχρωση αντιπροσωπεύει την εξέλιξη του χρώματος προς το πορτοκαλί. Οι νέοι οίνοι παρουσιάζουν τιμές απόχρωσης της τάξης του 0,5-0,9.

![Diagram 5: Absorbance vs Time](image)

Διάγραμμα 5: Δείκτης απόχρωσης συναρτήσει της διάρκειας υινοποίησης των οίνων Malbec και Αγιωργίτικο

Από το Διάγραμμα 5, παρατηρούμε ότι οι τιμές της απόχρωσης των δύο οίνων είναι της ίδιας τάξης μεγέθους (από 0,74 την 1η μέρα συνοποίησης έως 0,83 την τελευταία για το Malbec και 0,75-0,88 αντίστοιχα για το Αγιωργίτικο). Οι τιμές αυτές βρίσκονται μέσα στα πλαίσια τμήμα για τον συγκεκριμένο δείκτη. Με σύγκριση μάλιστα των τιμών της απόχρωσης Αγιωργίτικου με αντίστοιχη έρευνα [Συμένοι, 2010], όπου οι τιμές του τελικού δείγματος οίνου υπολογίστηκαν από 0,61 έως 0,82, παρατηρούμε ότι το δείγμα Αγιωργίτικου που μελετήθηκε στην παρούσα εργασία παρουσιάζει τιμές της ίδιας τάξης μεγέθους μεν, λίγο αυξημένες δε.

ΣΥΜΠΕΡΑΣΜΑΤΑ

Οι δύο ποικιλίες Malbec και Αγιωργίτικο που αναλύθηκαν, παρουσιάζουν παρόμοιο φαινολικό προφίλ, τόσο όσον αφορά στη φύση των ανθοκυανίν που ανιχνεύθηκαν, όσο και στα ποιοτικά τους χαρακτηριστικά.

Πιο συγκεκριμένα, όσον αφορά στα μορφολογικά χαρακτηριστικά των δύο ποικιλιών, διαπιστώθηκε ότι ο καρπός του Αγιωργίτικου είναι μεγαλύτερος και πιο βαρύς κατά 25% και 54% αντίστοιχα από τον καρπό του Malbec.

Από τις αναλύσεις που πραγματοποιήθηκαν με την HPLC, διαπιστώθηκε ότι το μορφολογικό μέρος του καρπού που είναι πολύ πλούσιο σε ανθοκυανίνες και ευθύνεται για το χρώμα του τελικού οίνου, είναι οι φλοιοί. Προσδιορίστηκαν παράλληλα οι ανθοκυανίνες που βρίσκονται σε μεγαλύτερη περιεκτικότητα στους φλοιούς και στο κρασί. Αυτές είναι ο 3-γλυκοζίτης της μαλβιδίνης και ο κουμαρυλωμένος γλυκοζίτης της μαλβιδίνης. Αντίστοιχα, τα γίγαρτα είναι πολύ
πλούσια σε ταννίνες, ενώσεις που προσδίδουν τη χαρακτηριστική στυφάδα στο κραςί. Για τα γίγαρτα των δύο ποικιλιών προσδιορίστηκε η ανθοκυανίδινη που αποτελεί το μονομερές των ταννινών και βρέθηκε ότι είναι η κυανιδίνη. Οι σάρκες αντίθετα περιέχουν μηδενικό φαινολικό φορτίο.

Σύμφωνα με τις ποσοτικοποιήσεις που πραγματοποιήθηκαν για τις δύο ποικιλίες, διαπιστώσαμε ότι τόσο ο οίνος, όσο και ο καρπός Malbec, είναι πιο ενδυναμωμένος ως προς το φαινολικό περιεχόμενο, από το Αγιωργίτικο. Πιο συγκεκριμένα, το Malbec περιέχει 69% περίπουστερές συνολικές ανθοκυανίδες στους φλοιούς και 55% περισσότερες στον οίνο, σε σχέση με το Αγιωργίτικο. Όσον αφορά στις ολικές φαινόλες, οι δύο οίνοι παρουσιάζουν στατιστικά παρόμοιες περιοχές περιεκτικότητες.

Συγκριτικά με στοιχεία από τη διαθήνη βιβλιογραφία, τα συμπέρασμα που προκύπτουν είναι ότι τα δείγματα με τα οποία ασχολήθηκαμε στην παρούσα εργασία, παρουσιάζουν κάπως μειωμένο φαινολικό περιεχόμενο με αντίστοιχες μελέτες, που ασχολήθηκαν με τις δύο αυτές ποικιλίες.

Κατά την ανάλυση των ποιοτικών χαρακτηριστικών των δύο οίνων, που μελετήθηκαν σε δείγματα που ελήφθησαν σε διάφορα στάδια της οινοποιητικής διαδικασίας (δείκτης ολικών πολυφαινολών, ένταση και απόχρωση χρώματος), διαπιστώθηκε ότι τόσο οι τιμές όσο και οι μεταβολές των δεικτών είναι αναμενόμενες και μέσα στα πλαίσια τιμών που εμφανίζονται στη διεθνή βιβλιογραφία.

Τα στοιχεία που αναλύθηκαν στην παρούσα διπλωματική εργασία, μπορούν να δώσουν μια πρώτη ένδειξη για τη δυνατότητα ή μη της καλλιέργειας της ποικιλίας Malbec στην Ελλάδα. Από τα αποτελέσματα διαπιστώνουμε ότι το δείγμα Malbec που μελετήθηκε, παρουσιάζει ένα φαινολικό προφίλ πλουσιότερο από το Αγιωργίτικο, που θα μπορούσε να οδηγήσει σε έναν πολύ ποιοτικό κραςί. Το Malbec εξάλλου χαρακτηρίζεται τόσο για το εξαιρετικό αρωματικό και χρωματικό του προφίλ, όσο και ως κατάλληλο κραςί για την ενδυνάμωση αδύναμων οίνων. Αυτό είναι και ένα στοιχείο που μπορεί να συμπεριλάβει το Malbec στις ελληνικές καλλιέργειες αμπέλων.

Παρ’ όλα αυτά, θα πρέπει να μελετηθούν οι συνθήκες καλλιέργειας και οινοποιήσης του που θα ήταν οι βέλτιστες για την παραγωγή ενός ποιοτικού οίνου. Πιο συγκεκριμένα, στην εργασία αυτή, μέσα από διεθνείς δημοσιεύσεις και έρευνες για την ποικιλία Malbec, παρατηρήσαμε ότι το πιο πλούσιο πολυφαινολικό περιεχόμενο εμφανίζεται σε περιοχές με μεγάλο υψόμετρο (1000-1500m). Για τον λόγο αυτό θα μπορούσαμε να συμπεράνουμε ότι το δείγμα Malbec που μελετήθηκε στην παρούσα εργασία (καλλιεργημένο στα 200-300m υψόμετρο), παρουσίαζε αρκετά μειωμένο φαινολικό περιεχόμενο σε σχέση με άλλες παρόμοιες μετρήσεις για την ποικιλία αυτή συγκριτικά με τη διεθνή βιβλιογραφία.
Anastasiadi Maria, Harris Pratsinis, Dimitris Kletsas, Alexios-Leandros Skaltsounis, Serkos A. Haroutounian, Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts

Béguin J., Cuinier C., Guyot F., Bruetschy A, Morard J.Y., Hygiene stricte des équipements et qualité des vins

Berli Federico, José D’angelo, Bruno Cavagnaro, Rubén Bottini, Rodolfo Wuilloud, M. Fernanda Silva, Phenolic Composition in Grape (Vitis vinifera L. cv. Malbec) Ripened with Different Solar UV-B Radiation Levels by Capillary Zone Electrophoresis

Casazza A., Bahar Aliakbarian, Stefano Mantegna, Giancarlo Cravotto, Patrizia Perego, journal of food engineering, Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques, 2010

Changmou Xu, Yali Zhang, Lei Cao, Jiang Lu - Phenolic compounds and antioxidant properties of different grape cultivars grown in China - College of Food Science and Nutritional Engineering, China Agricultural University, Beijing China, Center for Viticulture and Small Fruit Research, Florida Agricultural and Mechanical University of Tallahassee

Greenrod W., C.S. Stockley, P. Burcham, M. Abbey and M. Fenech, Moderate acute intake of de-alcoholised red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo—Results of a comparative in vivo intervention study in younger men, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005
Guendez Ramila, Stamatina Kallithraka, Dimitris P. Makris, Panagiotis Kefalas.
An Analytical Survey of the Polyphenols of seeds of Varieties of Grape (Vitis vinifera) cultivated in Greece: Implications for exploitation as a Source of Value-added phytochemicals.

Ivanova Violeta, Marina Stefova, Fabio Chinnici, Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods.

Jing Jing Ye, Elizabeth T. Eng., Dudley Wiliams, Sheryl Phung, Roger E. Moore, Mary K. Young, Ugis Gruntmanis, Glenn Braunstein, Shiuan Chen, Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds, Cancer research, December 2003.

Lafka Theodora-Ioanna, Vassilia Sinanoglou, Evangelos S. Lazos, On the extraction and antioxidant activity of phenolic compounds from winery wastes, 2007.

Manhita Ana C., Dora M. Teixeira, Cristina T. da Costa. 2006. Application of sample disruption methods in the extraction of anthocyanins from solid or semi-solid vegetable samples, Journal of Chromatography A.

Mulinacci Nadia, Marzia Innocenti 1, Anna Rita Santamaria, Giancarlo laMarca, Gabriella Pasqua, High-performance liquid chromatography/electrospray ionization tandem mass spectrometric investigation of stilbenoids in cell cultures of Vitis vinifera L., cv. Malvasia.

Quan Zhao, Chang-Qing Duan, Jun Wang, Anthocyanins Profile of Grape Berries of Vitis amurensis, Its Hybrids and Their Wines.

Torresa C., M.C. Diaz-Marotoa, I. Hermosin-Gutierrezc, M.S. Perez-Coello, Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin

Waterhouse Andrew L., Wine Phenolics, Department of Viticulture and Enology, University of California, USA, 2002

Webb Penelope, David M. Purdie, Christopher J. Bain, Adele C., Green alcohol, Wine and risk of epithelial ovarian cancer, Cancer epidemiology biomarkers and prevention, April 2004

Zan-Min Jin, Jian-Jun He, He-Qiong Bi, Xiang-Yun Cui and Chang-Qing Duan, Phenolic Compound Profiles in Berry Skins from Nine Red Wine Grape Cultivars in Northwest China - Centre for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China

Zoecklein Bruce W., Kenneth C. Fugelsang, Barry H. Gump, Fred S. Nury, Wine analysis and production, Kluwer academic/plenum publishers, N.Y 1999

Δρόςου Ευφροσύνη Γ., Η επίδραση της άρδευσης στα φαινολικά συστατικά σταφυλιών και οίνων της ποικιλίας Άγιωργίτικο (Vitis Vinifera L.), μεταπτυχιακή διατριβή, Γεωπονικό πανεπιστήμιο Αθηνών, Αθήνα 2010

Ένωση οινοπαραγωγών του αμπελώνα της Βορείου Ελλάδος Α.Ε., Μελέτη «Επαναπροσδιορισμός των Η.Ο.Α.Ρ. Νάουςασ και Γουμένιασ», Περιφέρεια Κεντρικής Μακεδονίας, Διαδημοτικό ΕΠΤΑ

Κουράκου-Δραγώνα Σ., Θέματα Οινολογίας, Τροχαλία, Αθήνα 1998

Μυλωνά Κατερίνα, Μελέτη Μεταβολών των Ποιοτικών Χαρακτηριστικών κατά τη Ζύμωση και Ωρίμανση του Οίνου, 2011

Σουφλερός Ηρ. Ευάγγ., Οινολογία, επιστήμη και τεχνογνωσία, τόμοι I και II, Θεσσαλονίκη 2000

Συμεωύ Ε., Μελέτη των φαινολικών συστατικών σταφυλιών και οίνου, Χίου και Νεμέας και της επίδρασης των ενζύμων και άλλων παραμέτρων σε αυτά, Διδακτορική Διατριβή, Αθήνα 2010

Τσακίρης Αργύρης, Ελληνική οινογνωσία, εκδόσεις Ηνίοχος, Αθήνα 1995

Τσακίρης Αργύρης, Οινολογία – από το σταφύλι στο κρασί, έκδοσεις τρόφιμα και ποτά, Αθήνα 1988

Τσακίρης Αργύρης, Οινολογία, εκδόσεις Ψυχάλου, Αθήνα 1994
ΔΙΚΤΥΑΚΟΙ ΤΟΠΟΙ

Αναφέρονται ως παραπομπή με την απεικόνιση: [αριθμός]

1. Βιοτεχνικό Επιμελητήριο Πειραιά,
2. Δικτυακός τόπος οινοποιείου οικ. Σαμαρτζή, Samartzis Vineyards,
 http://www.samartziswines.gr
3. www.comoutos.gr
4. www.pelopnet.gr
10. http://www.wines.gr/portal/el/poikilia/%CE%B1%CE%B3%CE%B9%CF%89%CF%81%CE%B3%CE%B7%CF%84%CE%B9%CE%BA%CE%BF-agiorgitiko
11. http://pikilies.blogspot.com/
ΠΑΡΑΡΤΗΜΑ

Folin-Ciocalteu

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9740641</td>
<td>1</td>
<td>9740641</td>
<td>21129,37</td>
<td>0,000047</td>
</tr>
<tr>
<td>"Var2"</td>
<td>840889</td>
<td>1</td>
<td>840889</td>
<td>1824,05</td>
<td>0,000548</td>
</tr>
<tr>
<td>Error</td>
<td>922</td>
<td>2</td>
<td>461</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ΦΛΟΙΟΙ

Ολικές φαινόλες: ξεχωριστά και συγκρίσιμα δείγματα

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0,05000 Error:
Between MS = 461,00, df = 2,0000

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2</td>
<td></td>
<td>1102,000</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>2019,000</td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>

Ταννίνες: ξεχωριστά και συγκρίσιμα δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>874225,0</td>
<td>1</td>
<td>874225,0</td>
<td>2797,520</td>
<td>0,000357</td>
</tr>
<tr>
<td>"Var2"</td>
<td>435600,0</td>
<td>1</td>
<td>435600,0</td>
<td>1393,920</td>
<td>0,000717</td>
</tr>
<tr>
<td>Error</td>
<td>625</td>
<td>2</td>
<td>312,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Var2</td>
<td>Var1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>137,500</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>797,500</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4778596</td>
<td>1</td>
<td>4778596</td>
<td>6283,492</td>
<td>0,000159</td>
</tr>
<tr>
<td>"Var2"</td>
<td>66049</td>
<td>1</td>
<td>66049</td>
<td>86,849</td>
<td>0,011319</td>
</tr>
<tr>
<td>Error</td>
<td>1521</td>
<td>2</td>
<td>761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ГИГАРТА

Oλικές φαινόλες: ξεχωριστά και συγκρίσιμα δείγματα

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>50678025</td>
<td>1</td>
<td>50678025</td>
<td>1225,815</td>
<td>0,000815</td>
</tr>
<tr>
<td>"Var2"</td>
<td>176664</td>
<td>1</td>
<td>176664</td>
<td>436,686</td>
<td>0,002282</td>
</tr>
<tr>
<td>Error</td>
<td>82685</td>
<td>2</td>
<td>41342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ταννίνες: ξεχωριστά και συγκρίσιμα δείγματα

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>29697050</td>
<td>1</td>
<td>29697050</td>
<td>7715,022</td>
<td>0,000130</td>
</tr>
<tr>
<td>"Var2"</td>
<td>1680912</td>
<td>1</td>
<td>1680912</td>
<td>436,686</td>
<td>0,002282</td>
</tr>
<tr>
<td></td>
<td>Error</td>
<td>7698</td>
<td>2</td>
<td>3849</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = .05000 Error: Between MS = 3849.2, df = 2.0000

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2076.500</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3373.000</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>

Mη ταννικές φαινόλες: μη συγκρίσιμα δείγματα

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2786729</td>
<td>1</td>
<td>2786729</td>
<td>60.93553</td>
<td>0.016018</td>
</tr>
<tr>
<td>"Var2"</td>
<td>1066</td>
<td>1</td>
<td>1066</td>
<td>0.02331</td>
<td>0.892665</td>
</tr>
<tr>
<td>Error</td>
<td>91465</td>
<td>2</td>
<td>45732</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = .05000 Error: Between MS = 45732.0, df = 2.0000

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>818.350</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>851.000</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>

ΣΥΝΟΛΙΚΟΣ ΚΑΡΠΟΣ

Ολικές φαινόλες: εξεχωριστά και συγκρίσιμα δείγματα

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>104854528</td>
<td>1</td>
<td>104854528</td>
<td>2643.948</td>
<td>0.000378</td>
</tr>
<tr>
<td>"Var2"</td>
<td>5045190</td>
<td>1</td>
<td>5045190</td>
<td>127.216</td>
<td>0.007769</td>
</tr>
<tr>
<td>Error</td>
<td>79317</td>
<td>2</td>
<td>39658</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = .05000 Error: Between MS = 39658.0, df = 2.0000

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3996.850</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6243.000</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>
Ταννίνες: ξεχωριστά και συγκρίσιμα δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>40761840</td>
<td>1</td>
<td>40761840</td>
<td>11001.10</td>
<td>0.000091</td>
</tr>
<tr>
<td>"Var2"</td>
<td>3827892</td>
<td>1</td>
<td>3827892</td>
<td>1033.10</td>
<td>0.000967</td>
</tr>
<tr>
<td>Error</td>
<td>7410</td>
<td>2</td>
<td>3705</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0.05000 Error:
Between MS = 3705.2, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2214.000</td>
<td>****</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4170.500</td>
<td>****</td>
</tr>
</tbody>
</table>

Μη ταννικές φαινόλες: μη συγκρίσιμα δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>14863724</td>
<td>1</td>
<td>14863724</td>
<td>307.7817</td>
<td>0.003233</td>
</tr>
<tr>
<td>"Var2"</td>
<td>83897</td>
<td>1</td>
<td>83897</td>
<td>1.7372</td>
<td>0.318203</td>
</tr>
<tr>
<td>Error</td>
<td>96586</td>
<td>2</td>
<td>48293</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0.05000 Error:
Between MS = 48293.0, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1782.850</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2072.500</td>
</tr>
</tbody>
</table>

ΟΙΝΟΣ
Ολικές φαινόλες: μη συγκρίσιμα δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization
Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>20308542</td>
<td>1</td>
<td>20308542</td>
<td>1549.531</td>
<td>0.000645</td>
</tr>
<tr>
<td>"Var2"</td>
<td>14762</td>
<td>1</td>
<td>14762</td>
<td>1.126</td>
<td>0.399769</td>
</tr>
<tr>
<td>Error</td>
<td>26213</td>
<td>2</td>
<td>13106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ταννίνες: συγκρίσιμα και ξεχωριστά δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>6505050</td>
<td>1</td>
<td>6505050</td>
<td>1237,584</td>
<td>0.000807</td>
</tr>
<tr>
<td>"Var2"</td>
<td>1262252</td>
<td>1</td>
<td>1262252</td>
<td>240,143</td>
<td>0.004138</td>
</tr>
<tr>
<td>Error</td>
<td>10513</td>
<td>2</td>
<td>5256</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Μη ταννικές φαινόλες: ξεχωριστά και συγκρίσιμα δείγματα

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3825936</td>
<td>1</td>
<td>3825936</td>
<td>113,3779</td>
<td>0.008705</td>
</tr>
<tr>
<td>"Var2"</td>
<td>1004004</td>
<td>1</td>
<td>1004004</td>
<td>29,7527</td>
<td>0.032006</td>
</tr>
<tr>
<td>Error</td>
<td>67490</td>
<td>2</td>
<td>33745</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = .05000 Error:

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2192,500</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2314,000</td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>713,500</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1837,000</td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>477,000</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1479,000</td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>
HPLC

ΦΛΟΙΟΙ

3-γλυκοζίτης της μαλβιδίνης: συγκρίσιμα και ξεχωριστά δείγματα

<table>
<thead>
<tr>
<th>Effective hypothesis decomposition</th>
<th>Intercept</th>
<th>"Var2"</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>104393,6</td>
<td>380,3</td>
<td>25,9</td>
</tr>
<tr>
<td>Degr. of SS</td>
<td>104393,6</td>
<td>380,3</td>
<td>13,0</td>
</tr>
<tr>
<td>MS</td>
<td>8048,852</td>
<td>29,318</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0,00124</td>
<td>0,032458</td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = ,05000 Error: Between MS = 12,970, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>151,800</td>
<td>****</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>171,300</td>
<td>****</td>
</tr>
</tbody>
</table>

Κουμαρυλιωμένος γλυκοζίτης της μαλβιδίνης: συγκρίσιμα και ξεχωριστά δείγματα

<table>
<thead>
<tr>
<th>Effective hypothesis decomposition</th>
<th>Intercept</th>
<th>"Var2"</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>93086,01</td>
<td>12566,41</td>
<td>67,30</td>
</tr>
<tr>
<td>Degr. of SS</td>
<td>93086,01</td>
<td>12566,41</td>
<td>33,65</td>
</tr>
<tr>
<td>MS</td>
<td>2766,300</td>
<td>373,445</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0,000361</td>
<td>0,002667</td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = ,05000 Error: Between MS = 12,970, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>96,500</td>
<td>****</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>208,600</td>
<td>****</td>
</tr>
</tbody>
</table>

Συνολικές ανθοκυάνες: συγκρίσιμα και ξεχωριστά δείγματα

<table>
<thead>
<tr>
<th>Effective hypothesis decomposition</th>
<th>Intercept</th>
<th>"Var2"</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>903830,5</td>
<td>59389,7</td>
<td>153,8</td>
</tr>
<tr>
<td>Degr. of SS</td>
<td>903830,5</td>
<td>59389,7</td>
<td>76,9</td>
</tr>
<tr>
<td>MS</td>
<td>11756,38</td>
<td>772,50</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0,000085</td>
<td>0,001292</td>
<td></td>
</tr>
</tbody>
</table>

74
ΟΙΝΟΣ

3-γλυκοζίτης της μαλβιδίνης: συγκρίσιμα και ξεχωριστά δείγματα

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>597,2000</td>
<td>****</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>353,5000</td>
<td>****</td>
</tr>
</tbody>
</table>

Κουμαρυλιωμένος γλυκοζίτης της μαλβιδίνης: μη συγκρίσιμα δείγματα

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99,30000</td>
<td>****</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17,30000</td>
<td>****</td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0.05000 Error: Between MS = 76,880, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17,00000</td>
<td>****</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17,30000</td>
<td>****</td>
</tr>
</tbody>
</table>

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization

Effective hypothesis decomposition

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>28476,56</td>
<td>1</td>
<td>28476,56</td>
<td>19208,47</td>
<td>0,000052</td>
</tr>
<tr>
<td>"Var2"</td>
<td>891,02</td>
<td>1</td>
<td>891,02</td>
<td>601,03</td>
<td>0,001660</td>
</tr>
<tr>
<td>Error</td>
<td>2,96</td>
<td>2</td>
<td>1,48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0.05000 Error: Between MS = 1,4825, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1176,490</td>
<td>1131,240</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0,090</td>
<td>0,087</td>
</tr>
</tbody>
</table>

Univariate Tests of Significance for Var1 (Spreadsheet1) Sigma-restricted parameterization

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1176,490</td>
<td>1</td>
<td>1176,490</td>
<td>1131,240</td>
<td>0,000883</td>
</tr>
<tr>
<td>"Var2"</td>
<td>0,090</td>
<td>1</td>
<td>0,090</td>
<td>0,087</td>
<td>0,796347</td>
</tr>
<tr>
<td>Error</td>
<td>2,080</td>
<td>2</td>
<td>1,040</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan test; variable Var1 (Spreadsheet1) Homogenous Groups, alpha = 0.05000 Error: Between MS = 1,0400, df = 2,0000

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17,00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17,30000</td>
</tr>
</tbody>
</table>
Ολικές ανθοκυάνες: συγκρίσιμαι και ξεχωριστά δείγματα

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Degr. of</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>83088,06</td>
<td>1</td>
<td>83088,06</td>
<td>860,6372</td>
<td>0,001160</td>
</tr>
<tr>
<td>"Var2"</td>
<td>4428,90</td>
<td>1</td>
<td>4428,90</td>
<td>45,8752</td>
<td>0,021110</td>
</tr>
<tr>
<td>Error</td>
<td>193,08</td>
<td>2</td>
<td>96,54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Var2</th>
<th>Var1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>110,8500</td>
<td>****</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>177,4000</td>
<td>****</td>
</tr>
</tbody>
</table>