ΕΠΙΔΡΑΣΗ ΤΗΣ ΠΡΟΣΘΗΚΗΣ ΠΙΤΑΜΕΝΗΣ ΤΕΦΡΑΣ ΛΙΓΝΙΤΗ ΚΑΙ ΛΙΘΑΝΘΡΑΚΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΕΤΑΛΛΙΚΗΣ ΜΗΤΡΑΣ ΚΡΑΜΑΤΩΝ ΑΔΟΥΜΙΝΙΟΥ

Διδακτορική Διατριβή

ΓΡΗΓΟΡΙΟΣ Σ. ΙΤΣΚΟΣ

Τριμελής Συμβουλευτική Επιτροπή: Α. Μουτσάτσου (επιβλέπουσα)
Σ. Τσίμας
Ν. Κούκουζας

Επταμελής Εξεταστική Επιτροπή

Α. Μουτσάτσου, Καθηγήτρια ΕΜΠ, Σχολή Χημικών Μηχανικών
Ν. Κούκουζας, Ερευνητής Α’, ΕΚΕΤΑ / ΙΤΕΣΚ
Κ. Κορδάτος, Επ. Καθηγήτρια ΕΜΠ, Σχολή Χημικών Μηχανικών

Σ. Τσίμας, Καθηγήτρις ΕΜΠ, Σχολή Χημικών Μηχανικών
Β. Κασελούρη - Ρηγοπούλου, Ομ. Καθηγήτρια ΕΜΠ, Σχολή Χημικών Μηχανικών
Ε. Τσετσέκου, Επ. Καθηγήτρια ΕΜΠ, Σχολή Μηχανικών Μετάλλευσης - Μεταλλουργών

Ε. Κακαράς, Καθηγητής ΕΜΠ, Σχολή Μηχανολόγων Μηχανικών

Αθήνα, Μάιος 2012
ΑΦΙΕΡΩΣΗ

Η διαηπείρωση αφιερώνεται στους γονείς μου οι οποίοι μου έδωσαν τη δυνατότητα των σπουδών του είδους και του εύρους της απολύτως επιλογής μου και στη Νέλλη η οποία αποτέλεσε τον καθοριστικότερο παράγοντα διατήρησης της εξαιρετικής ψυχολογίας μου κατά την τετραετία της εκπόνησης της διδακτορικής μου έρευνας.
Περιεχόμενα

ΕΙΣΑΓΩΓΗ... 1
A. Διεθνή Επιστημονικά Περιοδικά (SCI-indexed, International Peer-Reviewed Scientific Journals) .. 2
B. Διεθνή Επιστημονικά Συνέδρια.. 3
Γ. Πανελλήνια Συνέδρια ... 3
ΕΥΧΑΡΙΣΤΙΕΣ .. 4
A.1 ΣΥΝΘΕΤΑ ΥΛΙΚΑ ΜΕΤΑΛΛΙΚΗΣ ΜΗΤΡΑΣ .. 6
A.1.1. Εισαγωγή στα σύνθετα υλικά μεταλλικής μήτρας .. 6
A.1.2 Αύξηση μηχανικών αντοχών μέσω ενίσχυσης της μεταλλικής μήτρας 10
 A.1.2.1 Αύξηση δυσκαμψίας και ελαστικότητας .. 10
 A.1.2.2 Ενίσχυση αντοχών ... 12
 A.1.2.3 Ενίσχυση της αντίστασης ερπυσμού ... 14
 A.1.2.4 Ενίσχυση τριβολογικών επιδόσεων ... 14
 A.1.2.5 Μείωση βάξνπο ... 20
 A.1.2.6 Συντελεστής θερμικής διαστολής ... 21
 A.1.2.7 Θερμική και ηλεκτρική αγωγιμότητα .. 21
 A.1.2.8. Ιδιότητες μηχανικής απόσβεσης ταλαντώσεων .. 22
 A.1.2.9. Ανθεκτικότητα στην οξείδωση και τη διάβρωση .. 23
 A.1.2.9.1 Υποβάθμιση της επιφάνειας των MMC’s σε περιοχές υψηλών θερμικοφιασίων ... 23
 A.1.2.9.2 Διάβρωση υδατικού περιβάλλοντος των MMC’s ... 24
A.2 ΚΟΝΙΟΜΕΤΑΛΛΙΟΥΡΓΙΑ ... 25
 A.2.1. Έγχυση κόνων μετάλλου σε καλούπι με ψεκασμό .. 27
 A.2.2. Θερμή ισοστατική συμπίεση ... 27
 A.2.3. Συνθετική αντίδραση καύσης ... 27
 A.2.4. Συμπίεση εν ψυχρώ .. 28
 A.2.5 Ανάμιξη και πυροσυσσωμάτωση .. 28
 A.2.6. Παράγοντες που επηρεάζουν την πυροσυσσωμάτωση ... 31
Α.2.7 Ιδιότητες των πρώτων υλών που επιρρέαζουν την πυροσβεσμόταση

Α.2.8. Παράγοντες που επιρρέαζουν τις διαστάσεις του συνθέτου υλικού

Α.3 ΤΕΧΝΙΚΕΣ ΤΗΣ ΜΕΤΑΛΛΟΥ

Α.3.1 Χύτευση-υπό-ανάδευση

Α.3.1.1 Διασπορά Σοματιδίων

Α.3.1.2 Περιόδες

Α.3.1.3 Διαβροχή

Α.3.1.3.a Παράγοντες που μειώνουν τη διαβροχή

Α.3.1.3.b Βελτίωση της διαβροχής

Α.3.1.4 Παράμετροι που επηρεάζουν τη διεργασία της χύτευσης-υπό-ανάδευση

Α.3.2 Χύτευση με έγχυση-υπό-πίεση

Α.3.2.1. Χύτευση με έγχυση-υπό-πίεση και πλήρωση από τον πυθμένα

Α.3.2.2. Χύτευση με έγχυση-υπό-πίεση με πλήρωση από την κορυφή

Α.3.2.3. Χύτευση με έγχυση-υπό-πίεση και περίχυση από την κορυφή

Α.4 ΠΙΤΑΜΕΝΗ ΣΕΦΡΑ

Α.4.1 Σχηματισμός σιωπατιδίων υπάμενης τέφρας

Α.4.2 Σύσταση και ταξινόμηση υπάμενων τεφρών

Α.4.3 Χρήσεις υπάμενων τεφρών

Α.5 ΣΥΝΘΕΤΑ ΥΑΙΚΑ ΑΛΟΥΜΙΝΙΟΥ / ΠΙΤΑΜΕΝΩΝ ΣΕΦΡΩΝ

Α.5.1 Μελέτη διαβροχής Al – υπάμενων τεφρών

Α.5.2 Μέθοδοι παρασκευής MMC’s αλουμινίου – υπάμενων τεφρών

Α.5.2.1. Χύτευση-υπό-ανάδευση

Α.5.2.2 Παράμετροι που επηρεάζουν τη χύτευση-υπό-ανάδευση

Α.5.2.2.1 Ανάμειξη και ρυθμός προσθήκης υπάμενης τέφρας

Α.5.2.2.2 Επεξεργασία του τήγματος και έγχυσή του στο καλούπι μορφοποίησης

Α.5.3 Άλλες τεχνικές που έχουν αναπτυχθεί για την παραγωγή σύνθετων υλικών αλουμινίου – υπάμενης τέφρας

Α.5.3.1 Χύτευση σε άμμο

Α.5.3.2 Φυγοκεντρική χύτευση

Α.5.3.3 Compocasting
Α.5.3.4 Χύτευση με έγχυση-υπό-πίεση... 58
Α.5.3.5 Κονιομεταλλουργία ... 59
Α.5.4 Μηχανικές ιδιότητες συνθέτων υλικών αλουμινίου – τεφρών............................. 60
Α.5.4.1 Ιδιότητες απόσβεσης ταλαντώσεων.. 60
Α.5.4.2 Σκληρότητα .. 60
Α.5.4.3 Αντοχές εφελκυσμού και μέτρο ελαστικότητας... 60
Α.5.4.4 Ιδιότητες ανθεκτικότητας στη φθορά... 62
Α.5.4.5 Ηλεκτρομαγνητική θοράκιση .. 62
Α.5.5 Χημική αντίδραση ανάμεσα σε αλουμίνιο και υπάρμενη τέφρα........................... 63
Α.6 ΒΙΒΛΙΟΓΡΑΦΙΑ ΘΕΩΡΗΤΙΚΟΥ ΜΕΡΟΥΣ .. 65
ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ - ΤΟΙΟΘΕΤΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ.......................... 73
Β.1 ΚΟΝΙΟΜΕΤΑΛΛΟΥΡΓΙΑ .. 76
Β.1.1 Πρότεις Όλες... 76
Β.1.1.1 Μεταλλικές κόνεις... 76
Β.1.1.2 Ιστάμενες τέφρες... 76
Β.1.2 Παραγωγή συνθέτων υλικών με τη μέθοδο της κονιομεταλλουργίας............................ 79
Β.1.2.1 Συνθετική πορεία των υλικών κονιομεταλλουργίας ... 79
Β.1.2.2 Επίδραση της πυροσβεσμότητάς στη μάζα και στις διαστάσεις των συνθέτων
δοκιμίων μεταλλικής μήτρας/υπάρμενου τεφρών ... 86
Β.1.2.2.α Επίδραση της πυροσβεσμότητάς στη μάζα και τις διαστάσεις των
συνθέτων δοκιμίων μήτρας Al .. 86
Β.1.2.2.β Επίδραση της πυροσβεσμότητάς στη μάζα και τις διαστάσεις των
συνθέτων δοκιμίων μήτρας Al/Si... 89
Β.1.2.3 Εξέταση της μικροδομής των συνθέτων υλικών της κονιομεταλλουργίας...................... 91
Β.1.2.3.α Εξέταση της μικροδομής των συνθέτων υλικών μήτρας Al................................ 92
Β.1.2.3.β Εξέταση της μικροδομής των συνθέτων υλικών μήτρας Al/Si........................ 99
Β.1.3 Αξιολόγηση των τριβολογικών ιδιοτήτων των συνθέτων υλικών που παρήχθησαν με
τη μέθοδο της κονιομεταλλουργίας .. 111
Β.1.3.1 Συνθήκες διεξαγωγής των έλεγχων των τριβολογικών ιδιοτήτων των συνθέτων
υλικών Al- και Al/Si/υπάρμενου τεφρών ... 111
Β.1.3.2 Έλεγχος τριβολογικής συμπεριφοράς ξηρής ολίσθησης των συνθέτων υλικών μήτρας Al... 113
Β.1.3.3 Έλεγχος μικροδομής ξυστός φθοράς τριβολογικών δοκιμών υλικών μήτρας Al... 116
Β.1.3.4 Έλεγχος τριβολογικής συμπεριφοράς ξηρής ολίσθησης των συνθέτων υλικών μήτρας Al/Si... 122
Β.1.3.5 Μελέτη μικροδομής ξυστός φθοράς τριβολογικών δοκιμών υλικών μήτρας Al/Si 125
Β.1.3.6 Μελέτη της επίδρασης του χρόνου της πυροσβεστικής στις τριβολογικές
ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si ... 132
Β.1.3.6.α Επίδραση του χρόνου της πυροσβεστικής στις τριβολογικές ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si, ενσχεμένων με ιστόμενη τέφρα Καρδίας. 133
Β.1.3.6.β Επίδραση του χρόνου της πυροσβεστικής στις τριβολογικές ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si, ενσχεμένων με ιστόμενη τέφρα
Μεγαλόπολης ... 134
Β.1.3.7 Μελέτη της σύστασης των επιφανειακών υπολειμάτων που προκύπτουν από τις
τριβολογικές δοκιμές των συνθέτων ... 137
Β.1.4 Μέτρηση επιφανειακής σκληρότητας των συνθέτων υλικών που παρήχθησαν με τη
μέθοδο της κονιομεταλλουργίας ... 138
Β.1.4.1 Επιφανειακή σκληρότητα υλικών μήτρας Al... 139
Β.1.4.2 Επιφανειακή σκληρότητα υλικών μήτρας Al/Si... 141
Β.1.5 Διάβρωση των συνθέτων υλικών που παρήχθησαν με τη μέθοδο της
κονιομεταλλουργίας. .. 143
Β.1.5.1 Υλικά και μέθοδοι για τη διεξαγωγή της μελέτης διάβρωσής......................... 145
Β.1.5.2 Αποτελέσματα των δοκιμών διάβρωσης των υλικών Al-ITK........................... 146
Β.1.5.3 Αποτελέσματα των δοκιμών διάβρωσης των υλικών Al-ITM........................... 160
Β.1.6 Συνοπτικά συμπεράσματα της Ενότητας B1 ... 170
Β.2 ΠΑΡΑΣΚΕΥΗ ΤΩΝ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΕ ΤΕΧΝΙΚΕΣ ΤΗΣ ΜΕΝΟΥ ΜΕΤΑΛΛΟΥ ... 172
Β.2.1 Υλικά και χαρακτηρισμός των τετρών σε συνάρτηση με το μέγεθος των σωματιδίων
tους... 173
Β.2.2 Χαρακτηρισμός των ιστάμενων τετρών Καρδίας και Μεγαλόπολης σε συνάρτηση
με τη διάμετρο των σωματιδίων τους... 174
Β.2.3 Παρασκευή συνθέτων υλικών A356 Al – ιστάμενων τετρών Καρδίας και
Μεγαλόπολης με την τεχνική της έγχυσης-υπό-πίεση ... 182
Β.2.3.1 Πρώτες ύλες για την παρασκευή των συνθέτων υλικών A356 Al/υπάμενων
teφρών Καρδίας και Μεγαλόπολης με την τεχνική της έγχυσης-υπό-πίεση 182

Β.2.3.2 Υλικά και μέθοδοι για την παρασκευή των συνθέτων υλικών A356
Al/υπάμενων τεφρών Καρδίας και Μεγαλόπολης με την τεχνική της χύτευσης με
έγχυση-υπό-πίεση ... 183

Β.2.3.3 Εξέταση της μικροδομής των συνθέτων υλικών που παρασκευάστηκαν με την
teχνική της έγχυσης-υπό-πίεση .. 185

Β.2.3.4 Έλεγχος τριβολογικής συμπεριφοράς ξηρής ολίσθησης των συνθέτων υλικών
A356 Al / ITK και ITM, παραχθέντων με την τεχνική της έγχυσης-υπό-πίεση 191

Β.2.3.5 Έλεγχος μικροδομής ήχους τριβολογικής φθοράς των υλικών A356 – ITK και
ITM έγχυσης-υπό-πίεση .. 194

Β.2.3.6 Επιραφαινική σκληρότητα υλικών A356 – ITK και ITM έγχυσης-υπό-πίεση 200

Β.2.3.7 Συνοπτικά συμπεράσματα αναφορικά με την εφαρμογή της τεχνικής της
έγχυσης-υπό-πίεση για την παρασκευή των συνθέτων υλικών A356 Al – ITK και ITM... 202

Β.2.4 Παρασκευή συνθέτων υλικών A356 Al – ITK και ITM με την τεχνική της χύτευσης-
υπό-ανάδευση... 203

Β.2.4.1 Υλικά και Μέθοδοι για την παρασκευή των συνθέτων υλικών A356 Al – ITK
και ITM με την τεχνική της χύτευσης-υπό-ανάδευση... 204

Β.2.4.2 Εξέταση της μικροδομής των συνθέτων υλικών που παρασκευάστηκαν με την
teχνική της χύτευσης-υπό-ανάδευση.. 208

Β.2.4.3 Έλεγχος τριβολογικής συμπεριφοράς ξηρής ολίσθησης των συνθέτων υλικών
A356 Al / ITK και ITM, παραχθέντων με την τεχνική της χύτευσης-υπό-ανάδευση.
Έλεγχος μικροδομής του ήχους της τριβολογικής φθοράς τους................................. 211

Β.2.4.4 Συνοπτικά συμπεράσματα αναφορικά με την εφαρμογή της τεχνικής της
χύτευσης-υπό-ανάδευση για την παρασκευή των συνθέτων υλικών A356 Al – ITK και
ITM.. 215

Β.3 ΣΥΝΟΠΤΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΠΕΙΡΑΜΑΤΙΚΟΥ ΜΕΡΟΥΣ ΚΑΙ ΜΕΛΛΟΝΤΙΚΗ ΈΡΕΥΝΑ........ 217

Β.4 ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΕΙΡΑΜΑΤΙΚΟΥ ΜΕΡΟΥΣ.. 220
Κατάλογος Εικόνων

Εικόνα Α.1. Απεικόνιση συνθέτων υλικών μεταλλικής μήτρας με ενίσχυση συνεχών, ασυνεχών ινόν και σωματιδίων ... 6

Εικόνα Α.2. Μέτρο ελαστικότητας διαφόρων MMCs του εμπορίου ... 11

Εικόνα Α.3. Αντοχή σε εφελκυσμό σε συναρτήσεις με το ποσοστό ενισχυτικού υλικού. 12

Εικόνα Α.4. Είδη αστοχίας και θραύσης στα σύνθετα υλικά μεταλλικής μήτρας: α) Αξονική
εφελκυστική τάση β) Εγκάρσια εφελκυστική τάση γ) Διαμετρική εφελκυστική τάση. 13

Εικόνα Α.5. Είδη μηχανισμών απόβεσης ταλάντωσης .. 23

Εικόνα Α.6. Βασικά βήματα παραγωγής MMC’s με τη χρήση της κονιομεταλλουργίας 25

Εικόνα Α.7. Σχηματισμός λαμπά μεταξύ των σωματιδίων κατά την πυροσυσσωμάτωση 29

Εικόνα Α.8. Στάδια της πυροσυσσωμάτωσης. ... 30

Εικόνα Α.9. Επίδραση της αύξησης της θερμοκρασίας και του χρόνου της
πυροσυσσωμάτωσης στην πυκνότητα του υλικού. ... 32

Εικόνα Α.10. Είδη μηχανικών αναδευτήρων ... 37

Εικόνα Α.11. Γωνία διαβροχής (θ) ... 40

Εικόνα Α.12.α. Έγχυση-υπό-πίεση με πλήρωση από την κορυφή ... 45

Εικόνα Α.12.β. Έγχυση-υπό-πίεση με πλήρωση από τον πυθμένα ... 45

Εικόνα Α.12.γ. Έγχυση-υπό-πίεση με περίχυση από την κορυφή ... 46

Εικόνα Α13. Εικόνα SEM διαφόρων σωματιδίων των υπόγειων τεφρών 52

Εικόνα ΕΠ.1 Διάγραμμα Ροής Πειραματικού Μέρους Διδακτορικής Διατριβής 75

Εικόνα Β1.α. Κοκκομετρική σύσταση ΙΤΚ (ως παρελήφθη από τα Α/Φ των Μονάδων του
Σταθμού).. 79

Εικόνα Β1.β. Κοκκομετρική σύσταση ΙΤΚ (κατόπιν άλεσης ός ικανότητας σωματιδίων
διαμέτρου < 56 μm))... 79

Εικόνα Β1.γ. Κοκκομετρική σύσταση ΙΤΚ (ως παρελήφθη από τα Α/Φ των Μονάδων του
Σταθμού).. 79

Πίνακας Β1.δ. Κοκκομετρική σύσταση ΙΤΚ (κατόπιν άλεσης ός ικανότητας σωματιδίων
dιαμέτρου < 56 μm))... 79

Εικόνα Β2. Διαχωρισμός επιπέδων δειγμάτων Al/Si/πυκνώς τεφρών. 81
Εικόνα B3. Συμπιεσμένα μήγιμα Al/ITM < 56 μm και «ως έχει» 82
Εικόνα B4.a. Διάγραμμα διαφορικής θερμικής ανάλυσης δείγματος Al / αλφα (ITM < 56 κ.β. 83
Εικόνα B4.b. Διάγραμμα διαφορικής θερμικής ανάλυσης δείγματος Al / ITK 5% κ.β. 84
Εικόνα B5.a. Υπολογισμός των διαφορών συνθέτων δοκιμίων μήτρας Al μετά την πυροσβεστικότητα (με κόκκινο: το μέσο ύψος του άνθητου δοκιμίου με περιεκτικότητα 10% ITK) ... 89
Εικόνα B5.b. Διάμετρος των δοκιμίων μήτρας Al μετά την πυροσβεστικότητα (με κόκκινο: 89
η μέση διάμετρος του άνθητου δοκιμίου με περιεκτικότητα 10% ITK) ... 89
Εικόνα B6. Επιφανειακά σφαιρικά και ημισφαιρικά, συμπαγή και κοιλά σωματιδία, αναπτυγμένα την πυροσβεστικότητα των συνθέτων μήτρας Al/Si-υλικού πλήρωσης ITK ... 90
Εικόνα B8.a.CO3, κλίμακα: 500 μμ. .. 93
Εικόνα B8.b.CO3, κλίμακα: 100 μμ. .. 93
Εικόνα B8.γ.CO3, κλίμακα: 20 μμ. .. 93
Εικόνα B8.δ.CO3, κλίμακα: 5 μμ. .. 93
Εικόνα B8.ε.CO3, κλίμακα: 2 μμ. .. 94
Εικόνα B8.ε. CO3, κλίμακα: 2 μμ. .. 94
Εικόνα B9.a. C15, περιοχές συνένωσης κόκκων. ... 95
Εικόνα B9.β.C15, κλίμακα: 2 μμ. .. 95
Εικόνα B10.a. C17, περιοχές συνένωσης των κόκκων κατά την πυροσβεστικότητα, 96
κλίμακα: 5 μμ. ... 96
Εικόνα B10.β. C17, περιοχές συνένωσης των κόκκων κατά την πυροσβεστικότητα, 96
κλίμακα: 2 μμ. ... 96
Εικόνα B11.γ. C11, κλίμακα: 5 μμ. .. 97
Εικόνα B11.δ. C12, κλίμακα: 20 μμ. .. 97
Εικόνα B12.a. C22, κλίμακα: 50 μμ. .. 98
Εικόνα B12.α. C22, κλίμακα: 20 μμ. .. 98
Εικόνα B12.γ. C22, κλίμακα: 2 μμ. .. 98
Εικόνα B12.δ. C22, κλίμακα: 2 μμ. .. 98
Εικόνα B13.a. Επιφανειακές συμπαγείς και κοιλές δομές, δοκιμίου C34, κλίμακα 500 μμ... 100
Εικόνα B13.β. Επιφανειακή κοιλή δομή, δοκίμιο C34, κλίμακα 100 μμ. 100
Εικόνα B13.γ. Κοίλη επιφανειακή δομή, δοκίμιο C45, κλίμακα: 5 μμ................................. 100
Εικόνα B13.δ. Επιφανειακό άσβεστο-πυριτικό συσσωμάτωμα, δοκίμιο C35, κλίμακα: 100 μμ................................. 100
Εικόνα B13.ε. Πανοραμική εικόνα δοκίμιου C26, κλίμακα: 5 μμ.. 100
Εικόνα B13.στ. Συμπαγές συσσωμάτωμα δοκίμιου C48, κλίμακα: 100 μμ................................. 100
Εικόνα B14.a. Δοκίμιο C31, κλίμακα: 20 μμ (Χημ. σύσταση επισήμασμα. περιοχής: Πίνακας B11)... 103
Εικόνα B14.β. Δοκίμιο C43, κλίμακα: 2 μμ (Χημ. σύσταση επισήμασμα. περιοχής: Πίνακας B11)... 103
Εικόνα B15.α. Δοκίμιο D01, κλίμακα: 50 μμ... 104
Εικόνα B15.β. Δοκίμιο D01, κλίμακα: 10 μμ... 104
Εικόνα B15.γ. Δοκίμιο D04, κλίμακα: 100 μμ... 105
Εικόνα B15.δ. Δοκίμιο D04, κλίμακα: 100 μμ... 105
Εικόνα B15.στ. Δοκίμιο D08, κλίμακα: 100 μμ... 105
Εικόνα B16.a. Δοκίμιο C40, κλίμακα: 20 μμ... 106
Εικόνα B16.β. Δοκίμιο C40, κλίμακα: 5 μμ... 106
Εικόνα B16.γ. Δοκίμιο D08, κλίμακα: 5 μμ... 106
Εικόνα B16.δ. Δοκίμιο D08, κλίμακα: 2 μμ... 106
Εικόνα B17.α. Δοκίμιο C41, κλίμακα: 2 μμ... 107
Εικόνα B17.β. Δοκίμιο C41, κλίμακα: 1 μμ... 107
Εικόνα B17.γ. Δοκίμιο D08, κλίμακα: 1 μμ... 107
Εικόνα B17.δ. Δοκίμιο D08, κλίμακα: 5 μμ... 107
Εικόνα B17.ε. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C31................................. 109
Εικόνα B17.στ. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C33................................. 109
Εικόνα B17.η. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C35................................. 109
Εικόνα B17.θ. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C25................................. 109
Εικόνα B17.ι. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C37................................. 109
Εικόνα B17.κ. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C27................................. 109
Εικόνα B17.λ. Ακτινοδιάγραμμα επιφανειακού συσσωμάτωμα του δοκίμιου C29................................. 110
Εικόνα B18.a. Τριβόμετρο CSEM υψηλών θερμοκρασιών... 113
Εικόνα B18.β. Δοκίμιο TC02 μετά την τριβολογική δοκιμή. ... 113
Εικόνα B19. Συντελεστής τριβής των συνθέτων υλικών μήτρας Al που παρήχθησαν τη μέθοδο της κονιομεταλλουργίας. ... 114
Εικόνα B20. Συντελεστής φθοράς των διαφόρων συνθέτων υλικών μήτρας Al που παρήχθησαν τη μέθοδο της κονιομεταλλουργίας. ... 116
Εικόνα B21.a. Μικροφωτογραφία φθαρμένου δοκιμίου Al - κλίμακα: 500 μμ. 117
Εικόνα B21.b. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al - κλίμακα: 50 μμ. .. 117
Εικόνα B21.c. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al - κλίμακα: 20 μμ. .. 117
Εικόνα B22.a. Πανοραμική μικροφωτογραφία φθαρμένου δοκιμίου TC03 - κλίμακα: 200 μμ. 118
Εικόνα B22.b. Πανοραμική μικροφωτογραφία φθαρμένου δοκιμίου TC03 - κλίμακα: 100 μμ. .. 118
Εικόνα B22.c. Μικροφωτογραφία της δομής του ίχνους φθοράς στο δοκίμιο TC03 - κλίμακα: 50 μμ. .. 118
Εικόνα B22.d. Μικροφωτογραφία της δομής του ίχνους φθοράς στο δοκίμιο TC03 - κλίμακα: 50 μμ. .. 118
Εικόνα B23.a. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC03. Επισήμανση των διαφόρων περιοχών με ερυθρές ενδείξεις A, B, C - κλίμακα: 10 μμ .. 120
Εικόνα B23.b. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC05. Επισήμανση των επιφανειακών σχηματισμών εντός ερυθρών και λευκών - κλίμακα: 50 μμ. 120
Εικόνα B23.c. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC05. Επιφανειακός ασβεστούχος σχηματισμός - κλίμακα: 10 μμ ... 120
Εικόνα B23.d. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC06. Επιφανειακές αποκολλήσεις και ρηγματώσεις στα άκρα του ίχνους της φθοράς - κλίμακα: 50 μμ... 120
Εικόνα B24.a. Μικροφωτογραφία απεικονίζουσα το όριο των περιοχών ίχνους φθοράς-παραμένουσας επιφάνειας του δοκιμίου TC11 -κλίμακα: 100 μμ ... 122
Εικόνα Β24.β. «Οργαμενή» επιφάνεια εντός του ίχνους φθοράς στο σύνθετο TC11 -κλίμακα:
10 μμ...122
Εικόνα Β25. Συντελεστής τριβής των συνθέτων υλικών μήτρας Al/Si που παρήχθησαν τη μέθοδο της κονιομεταλλουργίας ...124
Εικόνα Β26. Συντελεστής φθοράς των συνθέτων υλικών μήτρας Al/Si που παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας ...125
Εικόνα Β27.a. Μικροφωτογραφία φθαρμένου δοκιμίου Al/Si -κλίμακα: 500 μμ.126
Εικόνα Β27.b. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς δοκιμίου Al/Si -
κλίμακα: 50 μμ ...126
Εικόνα Β27.g. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al/Si -
κλίμακα: 50 μμ ...126
Εικόνα Β27.d. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al/Si -
κλίμακα: 20 μμ ...126
Εικόνα Β28.a. Μικροφωτογραφία φθαρμένου δοκιμίου TC13 -κλίμακα: 200 μμ.............127
Εικόνα Β28.b. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC13 -
κλίμακα: 50 μμ ...127
Εικόνα Β28.g. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC13-
κλίμακα: 50 μμ ...128
Εικόνα Β28.d. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC13 -
κλίμακα: 50 μμ ...128
Εικόνα Β29.a. Μικροφωτογραφία φθαρμένου δοκιμίου TC15 -κλίμακα: 200 μμ.............129
Εικόνα Β29.b. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC15 -
κλίμακα: 100 μμ ..129
Εικόνα Β29.g. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC15-
κλίμακα: 50 μμ ..130
Εικόνα Β29.d. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC15 -
κλίμακα: 50 μμ ..130
Εικόνα Β30.a. Πανοραμική μικροφωτογραφία ίχνους φθοράς του δοκιμίου TC22 -κλίμακα:
100 μμ ...131
Εικόνα Β30.b. Μικροφωτογραφία ίχνους φθοράς του δοκιμίου TC22 -κλίμακα: 20 μμ........131
Εικόνα Β31.a Ραβδογράμματα σύγκρισης των συντελεστών τριβής των διαφόρων συνθέτων υλικών ενισχυμένων με ΙΤΚ, έχουντας υποστεί πυροσβεστικόματιση για 2 και 6 ώρες.133
Εικόνα B31.β Ραβδογράμματα σύγκρισης των συντελεστών φθοράς των διαφόρων συνθέτων υλικών ενισχυμένων με ITK, έχοντας υποστεί πυροσβεσσμότοση για 2 και 6 ώρες 134

Εικόνα B32.a Ραβδογράμματα σύγκρισης του συντελεστή φθοράς των διαφόρων συνθέτων υλικών ενισχυμένων με ITM, έχοντας υποστεί πυροσβεσσμότοση για 2 και 6 ώρες 135

Εικόνα B32.β Ραβδογράμματα σύγκρισης του συντελεστή τριβής των διαφόρων συνθέτων υλικών ενισχυμένων με ITM, έχοντας υποστεί πυροσβεσσμότοση για 2 και 6 ώρες 136

Εικόνα B33.a Μορφολογία πυραμίδας αποτυπώματος φορτίου / βάρους με τημεθόδοδVickers. .. 139

Εικόνα B33.β Ραβδογράμματα σύγκρισης της τιμής της σκληρότητας των συνθέτων δοκιμίων μήτρας Al. ... 141

Εικόνα B33.γ Ραβδογράμματα σύγκρισης της τιμής της σκληρότητας των συνθέτων δοκιμίων μήτρας Al/Si. ... 143

Εικόνα B34 Χαρτογράφηση του δοκιμίου M01 με α) AFM, β) SKP-FM και γ) SEM-BSE. ... 146

Εικόνα B35 Χαρτογράφηση του δοκιμίου C11 με α) AFM, β) SKP-FM και γ) SEM-BSE. 148

Εικόνα B36. Χαρτογράφηση του δοκιμίου D05 με α) AFM, β) SKP-FM και γ) SEM-BSE. ... 149

Εικόνα B37. Αποτελεσματικές καμπύλες πόλωσης των δειγμάτων M01, C11 και D05 150

Εικόνα B38.a. Μικροφωτογραφία δοκιμίου Alπροτού εμβάπτισης τους διάλυμα NaCl 0.05M. ... 152

Εικόνα B38.b. Μικροφωτογραφία δοκιμίου Alέπειται από 50h εμβάπτισης σε διάλυμα NaCl 0.05M. ... 152

Εικόνα B38.g. Μικροφωτογραφία δοκιμίου Alέπειται από 100h εμβάπτισης σε διάλυμα NaCl 0.05M. ... 152

Εικόνα B38.d. Μικροφωτογραφία δοκιμίου Alέπειται από 200h εμβάπτισης σε διάλυμα NaCl 0.05M. ... 152

Εικόνα B39.a. Μικροφωτογραφία δοκιμίου Al – 10% ITK, προτού εμβάπτισης του σε διάλυμα NaCl 0.05M... 154

Εικόνα B39.b. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 50h εμβάπτισης σε διάλυμα NaCl 0.05M ... 154

Εικόνα B39.g. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 100h εμβάπτιση σε διάλυμα NaCl 0.05M ... 154

Εικόνα B39.d. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 200h εμβάπτιση σε διάλυμα NaCl 0.05M ... 154
Εικόνα Β40.α. Μικροφωτογραφία δοκιμίου Al – 20% ITK, πρωτού εμβάπτισης του σε διάλυμα NaCl 0.05M... 157
Εικόνα Β40.β. Μικροφωτογραφία δοκιμίου Al – 20% ITK, έπειτα από 50h εμβάπτισης σε διάλυμα NaCl 0.05M... 157
Εικόνα Β40.γ. Μικροφωτογραφία δοκιμίου Al – 20% ITK, έπειτα από 100h εμβάπτισης σε διάλυμα NaCl 0.05M... 157
Εικόνα Β40.δ. Μικροφωτογραφία δοκιμίου Al – 20% ITK, έπειτα από 200h εμβάπτισης σε διάλυμα NaCl 0.05M... 157
Εικόνα Β41. Μικροφωτογραφίες Ηλεκτρονικού Μικροσκοπίου Σάρωσης της επιφάνειας του δοκιμίου D05, κατόπιν της εμβάπτισης του σε διάλυμα NaCl 0.05 M... 159
Εικόνα Β42. Μικροφωτογραφίες Ηλεκτρονικού Μικροσκοπίου Σάρωσης της επιφάνειας του δοκιμίου D05, κατόπιν της εμβάπτισης του σε διάλυμα NaCl 0.05 M. Σημαδια ανάπτυξης διάβρωσης σε σχημές... 160
Εικόνα Β43. Χαρτογράφηση του δοκιμίου C03 (Al/10% ITM) με α) AFM, β) SKP-FM και γ) SEM-BSE.. 161
Εικόνα Β44. Χαρτογράφηση του δοκιμίου D01 (Al/20% ITM) με α) AFM, β) SKP-FM και γ) SEM-BSE.. 162
Εικόνα Β46. Μικροφωτογραφία δοκιμίου C03 πριν από την εμβάπτισή του σε διάλυμα NaCl 0.01M... 164
Εικόνα Β47.α. Μικροφωτογραφία δοκιμίου C03 50h μετά την εμβάπτισή του σε διάλυμα NaCl 0.01M... 165
Εικόνα Β47.β. Μικροφωτογραφία δοκιμίου C03 100h μετά την εμβάπτισή του σε διάλυμα NaCl 0.01M... 165
Εικόνα Β47.γ. Μικροφωτογραφία δοκιμίου C03 200h μετά την εμβάπτισή του σε διάλυμα NaCl 0.01M... 165
Εικόνα Β47.δ. Μικροφωτογραφία δοκιμίου C03 300h μετά την εμβάπτισή του σε διάλυμα NaCl 0.01M... 165
Εικόνα Β48. Μικροφωτογραφία δοκιμίου D01 πριν από την εμβάπτισή του σε διάλυμα NaCl 0.01M... 168
Εικόνα Β49.α. Μικροφωτογραφία δοκιμίου D01 50h μετά από την εμβάπτισή του σε διάλυμα NaCl 0.01M... 168
Εικόνα Β49.β. Μικροφωτογραφία δοκιμίου D01 100h μετά από την εμβάπτισή του σε διάλυμα NaCl 0.01M... 168
Εικόνα Β.49.γ. Μικροφωτογραφία δοκιμίου D01 200h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.. 169
Εικόνα Β.49.δ. Μικροφωτογραφία δοκιμίου D01 300h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.. 169
Εικόνα Β.50. Διάγραμμα ροής του πειραματικού μέρους της ενότητας Β.2 της διδακτορικής διατριβής... 174
Εικόνα Β.51. Φάσματα Περιβάλλοντος Ακτινών-Χ των σωματιδιακών κλασμάτων της ΙΤΚ........ 176
Εικόνα Β.52. Φάσματα Περιβάλλοντος Ακτινών-Χ των σωματιδιακών κλασμάτων της ΙΤΜ........ 177
Εικόνα Β.53. Ραβδογράμματα σύγκρισης των τιμών της θερμοκρασίας μαλάκωνσης των σωματιδιακών κλασμάτων της ΙΤΚ. .. 182
Εικόνα Β.54. Ραβδογράμματα σύγκρισης των τιμών της θερμοκρασίας μαλάκωνσης των σωματιδιακών κλασμάτων της ΙΤΜ. .. 182
Εικόνα Β.55.α. Τροποποιημένος φούρνος για την παρασκευή των δοκιμίων PI-C01-PI-C08. 185
Εικόνα Β.55.β. Απεικόνιση των τιμών πίεσης και θερμοκρασίας σε πραγματικό χρόνο........... 185
Εικόνα Β.55.γ. Κάψουλα δοκιμίων πρώτων υλών για την παρασκευή των δοκιμίων PI-C01-PI-C08. ... 185
Εικόνα Β.55.δ. Δοκίμιο A356 Al-ITM (Εγχύση-υπό-Πίεση).. 185
Εικόνα Β.56.α. Μικροφωτογραφία του δοκιμίου PI-C02, κλίμακα: 100 μμ................................. 190
Εικόνα Β.56.β. Μικροφωτογραφία του δοκιμίου PI-C04, κλίμακα: 100 μμ................................. 190
Εικόνα Β.56.γ. Μικροφωτογραφία του δοκιμίου PI-C04, κλίμακα: 50 μμ................................. 190
Εικόνα Β.56.δ. Μικροφωτογραφία του δοκιμίου PI-C08, κλίμακα: 50 μμ................................. 190
Εικόνα Β.56.ε. Σφαιρίδιο (διαμέτρου ~10μμ), πλούσιο σε Fe. Δοκίμιο PI-C06, κλίμακα: 5 μμ... 190
Εικόνα Β.56.ζ. Πόρος στο εσωτερικό του δοκιμίου PI-C08, κλίμακα: 20 μμ............................. 190
Εικόνα Β.57.α. Μικροφωτογραφία του δοκιμίου PI-C06, κλίμακα: 50 μμ................................. 191
Εικόνα Β.57.β. Μικροφωτογραφία του δοκιμίου PI-C06, κλίμακα: 20 μμ................................. 191
Εικόνα Β.57.γ. Αποκολλήσεις σωματιδίων τεφρών στο δοκίμιο PI-C06, κλίμακα: 10 μμ...... 191
Εικόνα Β.57.δ. Πλούσιο-σε-Fe σωματίδιο στο δοκίμιο PI-C06, κλίμακα: 10 μμ.................. 191
Εικόνα Β.57.ε. Μικροφωτογραφία του δοκιμίου PI-C01, κλίμακα: 20 μμ................................. 192
Εικόνα Β.58. Συντελεστής τριβής (επάνω) και συντελεστής φθοράς (κάτω) των δοκιμίων που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση................................. 195
Εικόνα Β.59.a. Μικροφωτογραφία της φθαρμένης επιφάνειας του δοκιμίου PI-C03, κλίμακα: 200 μ... 197
Εικόνα Β.59.b. Μικροφωτογραφία της φθαρμένης επιφάνειας του δοκιμίου PI-C06, κλίμακα: 200 μ... 197
Εικόνα Β.59.γ. Υμένια Al2O3 εντός του ήχους φθοράς του δοκιμίου PI-C06, από την τριβή της επιφάνειας του δοκιμίου με την ακίδα Al2O3, κλίμακα: 100 μ... 197
Εικόνα Β.59.δ. Διασπασμένα σωματίδια ITM, εντός του ήχους φθοράς του δοκιμίου PI-C07, κλίμακα: 10 μ... 197
Εικόνα Β.59.e. Μικροφωτογραφία ρογμών εντός του ήχους φθοράς του δοκιμίου PI-C06, κλίμακα: 10 μ... 198
Εικόνα Β.59.στ. Πανοραμική μικροφωτογραφία ρηγματώσεων στο ήχο φθοράς του δοκιμίου PI-C08, κλίμακα: 100 μ... 198
Εικόνα Β.60.a. Μικροφωτογραφία του φθαρμένου δοκιμίου PI-C01, κλίμακα: 500 μ........... 199
Εικόνα Β.60.β. Πανοραμική μικροφωτογραφία του φθαρμένου δοκιμίου PI-C01, κλίμακα: 200 μ... 199
Εικόνα Β.60.γ. Ρηγμάτωση στην επιφάνεια του φθαρμένου δοκιμίου PI-C01, κλίμακα: 50 μ.
... 199
Εικόνα Β.61.a. Μικροφωτογραφία του φθαρμένου δοκιμίου PI-C07, κλίμακα: 500 μ........... 200
Εικόνα Β.61.β. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C07, κλίμακα: 200 μ... 200
Εικόνα Β.61.γ. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C08, κλίμακα: 100 μ... 200
Εικόνα Β.61.δ. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C08, κλίμακα: 20 μ... 200
Εικόνα Β.62. Επιφανειακή σκληρότητα των συνθέτων που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεσην. ... 202
Εικόνα Β.65.α. Διάταξη παρασκευής των συνθέτων υλικών A365 Al... 207
Εικόνα Β.65.β. Μίγμα ITM - τεμαχίων Mg... 207
Εικόνα Β.65.γ. Αναδεικνύει από γραφίτη που κατασκευάστηκε για τις ανάγκες της διδακτορικής διατριβής. Επικάλυψη με BN... 207
Εικόνα Β.66.α. Προσθήκη σωματιδίων ΙΤΚ στο υπό-ανάδευση τηγμα του κράματος A356 Al... 208
Εικόνα Β.66.α. Ανάμιξη τήγματος A356 Al – σωματιδίων υπτάμενων τεφρών.......................... 208
Εικόνα Β.66.β. Χώτευση συνθήτου A356 Al – ΙΤΚ 10% σε κυλινδρικό καλούπι. 208
Εικόνα Β.66.γ. Απόθεση υπολειμματικού υλικού της χώτευσης... 208
Εικόνα Β.66.δ. Στερεοποίηση συνθήτων A356 Al – ΙΤΚ 10% σε κυλινδρικό καλούπι. Κάτω δεξιά: Υπόλειμμα της χώτευσης. ... 208
Εικόνα Β.66.ε. Δοκίμια του συνθήτου A356 Al – ΙΤΚ 10%.. 208
Εικόνα Β.67.α. Επιφάνεια του συνθήτου SC-C01 (οπτικό μικροσκόπιο). 209
Εικόνα Β.67.β. Επιφάνεια του συνθήτου SC-C01 (οπτικό μικροσκόπιο). 209
Εικόνα Β.67.γ. Επιφάνεια του συνθήτου SC-C02 (οπτικό μικροσκόπιο)...................................... 210
Εικόνα Β.67.δ. Συμμετέχον τέφρας ITM στο συνθήτο SC-C02 (οπτικό μικροσκόπιο). 210
Εικόνα Β.68.α. Μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης της επιφάνειας του κράματος A356 Al .. 211
Εικόνα Β.68.β. Μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης της επιφάνειας του συνθήτου SC-C01. ... 211
Εικόνα Β.68.γ. Συσσωμάτωμα τεφρών στο δοκίμιο SC-C01... 211
Εικόνα Β.68.δ. Μικρο-κρατήρας που έχει προκύψει λόγω αποκόλλησης συσσωμάτωματος υπτάμενων τεφρών λόγω της δυνατής ανάδειξης. Δοκίμιο SC-C01... 211
Εικόνα Β.69.α. Συμμετέχον τέφρων σε σχετική απόσταση μεταξύ τους, στο δοκίμιο SC-C02... 212
Εικόνα Β.69.β. Συμμετέχον του λεπτόκοκκου κλάσματος ITM στο δοκίμιο SC-C02. 212
Εικόνα Β.70.α. Συντελεστής τριβής του κράματος A356 Al και των δοκιμίων SC-C01 και SC-C02. .. 214
Εικόνα Β.70.β. Συντελεστής φθοράς (10^{-14} \text{ m}^3/\text{N} \cdot \text{m}) του κράματος A356 Al και των δοκιμίων SC-C01 και SC-C02. ... 214
Εικόνα Β.71.α. Απεικόνιση του ίχνους της τριβολογικής φθοράς του δοκιμίου SC-C02 (500 \text{ μm}). ... 214
Εικόνα Β.71.β. Απεικόνιση του ίχνους της τριβολογικής φθοράς του δοκιμίου SC-C02 – Οπισθοσκόπες ηλεκτρονίων (500 μm). ... 214
Εικόνα Β.71.γ. Ίχνος τριβολογικής φθοράς στο δοκίμιο SC-C01(100 μm). 214
Εικόνα Β.71.δ. Ίχνος τριβολογικής φθοράς στο δοκίμιο SC-C01 – Οπισθοσκόπες ηλεκτρονίων (100 μm). ... 214
Εικόνα Β.72.α. Μικροφωτογραφία εντός του ήχους της τριβολογικής φθοράς στο δοκίμιο SC-C01 – Οπισθοσκέδαση ηλεκτρονιών, κλίμακα: 50 μι. ... 215

Εικόνα Β.72.β. Μικροφωτογραφία εντός του ήχους της τριβολογικής φθοράς στο δοκίμιο SC-C02, κλίμακα: 5 μι. .. 215
Πίνακας Α.1. Ιδιότητες σύνθετων υλικών που κατασκευάζονται υπό ελεγχόμενες συνθήκες. 8
Πίνακας Α.2. Πιθανές εφαρμογές σύνθετων υλικών. ... 9
Πίνακας Α.3. Συμπεράσματα που χρησιμοποιούνται για την αύξηση της σκληρότητας των MMC's. ... 14
Πίνακας Α.4. Χαρακτηριστικά και παράμετροι ιόνων για βελτίωση τριβολογικών ιδιοτήτων. 16
Πίνακας Α.5. Χαρακτηριστικές ιδιότητες για επιλεγμένα ενισχυτικά υλικά. 17
Πίνακας Α.6. Συγκριτική αξιολόγηση τεχνικών παραγωγής σύνθετων υλικών. 34
Πίνακας Α.7. Γενικές επαφής μεταξύ τήματος αλουμινίου και κεραμικών υλικών. 40
Πίνακας Α.8: Τοπική χημική σύσταση ορισμένων ελληνικών υπάρχον τεφρών 53
Πίνακας Β1. Χημική σύσταση των μεταλλικών κόνεων των σύνθετων υλικών.......................... 76
Πίνακας Β2. Χημική σύσταση τεφρών Καρδίας και Μεγαλόπολης. .. 77
Πίνακας Β3. Ορυκτολογική σύσταση υπάρχον τεφράς Καρδίας.. 78
Πίνακας Β4. Ορυκτολογική σύσταση υπάρχον τεφράς Μεγαλόπολης. .. 78
Πίνακας Β5. Κωδικοποίηση των σύνθετων υλικών μήτρας Al ... 85
Πίνακας Β6. Κωδικοποίηση των σύνθετων υλικών μήτρας Al/Si. .. 85
Πίνακας Β7. Μεταβολή βάρους των διαφόρων συνθέτων μήτρας Al και Al/Si 88
Πίνακας Β8. Χημική χαρτογράφηση περιοχών του συνθέτου C03, επισημασμένων στην Eικόνα B8. 94
Πίνακας Β9. Χημική χαρτογράφηση περιοχών του συνθέτου C15, επισημασμένων στην Eικόνα B9.b.......................... 95
Πίνακας Β9. Χημ. σύσταση συσσωματωμάτων δοκιμών Al/Si με ενίσχυση ΙΤΚ 102
Πίνακας Β10. Χημ. σύσταση συσσωματωμάτων δοκιμών Al/Si με ενίσχυση ΙΤΜ. 102
Πίνακας Β11. Χημ. χαρτογράφηση επισημασμένων περιοχών των δοκιμών της Εικόνας B14. .. 103
Πίνακας Β12. Ορυκτολογική σύσταση επιφανειακών συσσωματωμάτων των συνθέτων ΙΤΚ και ΙΤΜ. 108
Πίνακας Β12. Εξισώσεις υπολογισμού των μεγεθών του τριβολογικού χαρακτηρισμού των συνθέτων υλικών ... 112
Πίνακας Β13. Συνοπτικά αποτελέσματα του τριβολογικού ελέγχου των συνθέτων υλικών μήτρας Al. .. 113
Πίνακας Β14. Χημ. σύσταση επιλεγμένων περιοχών εντός του ίχνους φθοράς των δοκιμών TC03 και TC05 .. 121
Πίνακας Β15. Συνοπτικά αποτελέσματα του τριβολογικού ελέγχου των υλικών μήτρας Al/Si. .. 123
Πίνακας Β16. Χημ. σύσταση επιλεγμένων περιοχών εντός του ίχνους φθοράς των δοκιμών TC13, TC15 και TC22. .. 131
Πίνακας Β17. Χημική σύσταση επιφανειακών υπολειμμάτων συλλέγοντα στο ίχνος φθοράς (wear debris – WD) και η αντίστοιχη του πλήρους υλικού.................. 138

Πίνακας Β18. Σύσταση επιλεγμένων περιοχών εντός του ίχνου φθοράς των δοκιμών TC13, TC15 και TC22 (+++: έντονη παρουσία, +: μέτρια παρουσία, ±: ασθενής παρουσία, -: απουσία) 138

Πίνακας Β19. Επιφανειακή σκληρότητα Vickers των συνθέτων δοκιμών μήτρας Al............ 140

Πίνακας Β20. Επιφανειακή σκληρότητα Vickers των συνθέτων δοκιμών μήτρας Al/Si 141

Πίνακας Β21. Συγκέντρωση ορισμένων στοιχείων στις διαβρωμένες περιοχές των -υπό εξέταση- δοκιμών.. 152

Πίνακας Β22. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 1 στις Εικόνες B39.a-d... 154

Πίνακας Β23. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 2 στις Εικόνες B39.a-d... 155

Πίνακας Β24. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 1 στις Εικόνες B40.a-d... 157

Πίνακας Β25. Συγκέντρωση (%) επιλεγμένων στοιχείων στις επισημασμένες περιοχές της Εικόνας B41... 158

Πίνακας Β26. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 2 στις Εικόνες B40.a-d... 159

Πίνακας Β27. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «1» στην Εικόνα B38.a... 165

Πίνακας Β28. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «2» στην Εικόνα B38.a... 166

Πίνακας Β29. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «3» στην Εικόνα B46... 166

Πίνακας Β30. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «4» στην Εικόνα B46... 166

Πίνακας Β31. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «1» στην Εικόνα B48... 168

Πίνακας Β32. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειομένη περιοχή με ένδειξη «2» στην Εικόνα B48... 168

Πίνακας Β33. Σύννοια παρουσίας των διαφόρων ορυκτών στα διάφορα σωματιδιακά κλάσματα των ΙΤΚ και ΙΤΜ (xxx: έντονη, xx: κανονική, x: απουσία, -: απουσία) 174

Πίνακας Β34. Συγκέντρωση (%) των κυρίων οξείδιων των σωματιδιακών κλάσματων της ΙΤΚ.. 177

Πίνακας Β35. Συγκέντρωση (%) των κυρίων οξείδιων των σωματιδιακών κλάσματων της ΙΤΜ.. 178

Πίνακας Β36. CaO, pH, ΑΠ (%) των σωματιδίων ΙΤΚ και ΙΤΜ.. 179

Πίνακας Β37. Θερμοκρασίες μαλάκυνσης των σωματιδιακών κλάσματων της ΙΤΚ.. 180

Πίνακας Β38. Θερμοκρασίες μαλάκυνσης των σωματιδιακών κλάσματων της ΙΤΜ.. 180
Πίνακας Β.39. Κωδικοποίηση δοκιμών συνθέτων υλικών έγχυσης-υπό-πίεση (PI) 183
Πίνακας Β.40. Χημική σύσταση των περιοχών που επισημαίνονται στις Εικόνες Β.61.γ και δ 190
Πίνακας Β.41. Αποτελέσματα τριβολογικών δοκιμών των συνθέτων της -υπό πίεση-έγχυσης 191
Πίνακας Β.42. Ανάλυση EDS στα σημεία A-D της Εικόνας Β.66.δ 199
Πίνακας Β.43. Χημική σύσταση των επιφανειακών υπολειμμάτων (wear debris) των φθαρμένων δοκιμών PI-C03 και PI-C07 200
Πίνακας Β.44. Επιφανειακή σκληρότητα (Vickers) των συνθέτων υλικών που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση 201
Πίνακας Β.45. Γωνία διαμερισμένων ιπτάμενων τεσσάρων (Class F) / Al σε συνάρτηση με τη θερμοκρασία (χρόνος 120 min) .. 206
Πίνακας Β.46. Κωδικοποίηση δοκιμών συνθέτων υλικών χύτευσης-υπό-ανάδευση 208
Πίνακας Β.47. Αποτελέσματα τριβολογικών δοκιμών των συνθέτων υλικών χύτευσης-υπό-ανάδευση 211
Πίνακας Β.48. Ανάλυση EDS στα σημεία A, B της Εικόνας B.77.α 215
Πίνακας Β.49. Ανάλυση EDS στα σημεία A, B και C της Εικόνας B.77.β 215
Πίνακας Β.49. Συνοπτικά συμπεράσματα του πειραματικού μέρους της διδακτορικής διατριβής 217
ΕΙΣΑΓΩΓΗ

Η διδακτορική διατριβή αναφέρεται στην αξιοποίηση των ελληνικών ανθρωπίνων υπάρχον τεθρών στον ιστό της παραγωγής συνθέσεων υλικών μήτρας αλουμινίου και κραμάτων του. Η εργαστηριακή σύνθεση των υλικών έγινε με τη χρήση της τεχνικής της κονιομεταλλουργίας και τεχνικόν τηγμένου μετάλλου (χώθεση υπό ανάδειπνη και χώθεση με έγχυση υπό πίεση) και υλοποιήθηκε από τον Γρηγόριο Ίτσκο στο Γραφείο Ανάργραγης και Αναλυτικής Χημείας της Σχολής Χημικών Μηχανικών ΕΜΠ, στο Composites Lab / College of Engineering & Applied Science / University of Wisconsin-Milwaukee και στο SPD Lab / Department of Materials Science and Engineering / Norwegian University of Science and Technology (NTNU, Trondheim). Ο σκοπός εκπόνησης της συγκεκριμένης διδακτορικής διατριβής αναφέρεται σε δύο άξονες: α) Στην επωφελή αξιοποίηση ενός υλικού σε υπερεπάρκεια (λιγνιτική υπάρχηκι τεφρα), το μεγαλύτερο μέρος του οποίου εναποθέτεται στους χώρους των ορυχείων της εκάστοτε ιδιοκτήτριας εταιρείας του υλικού σε Ελλάδα και εξωτερικό, με ιδιαίτερα δυσιμενείς περιβαλλοντικές και οικονομικές επιπτώσεις και β) στη δυνατότητα παρασκευής συνθέσεων υλικών μήτρας Al με οικονομικές έμπνευσες, χρησιμοποιώντας ένα βιομηχανικό παραπροί και επιτυγχάνοντας την ενίσχυση ορισμένων κρισίμων ιδιοτήτων τους και διατήρηση ορισμένων άλλων, καθιστώντας τα κατάλληλα για χρήση σε πληθώρα βιομηχανικών εφαρμογών.

Ως σύνθετα υλικά μεταλλικής μήτρας παρουσιάζουν αντιώες σε κάμψη και κλίση, χαμηλότερο συντελεστή θερμικής διαστολής, καλές τριβολογικές επιδόσεις και ενίσχυσες ιδιότητες απόβεβτης ταλαντώσεως και συνεπός μπορούν να χρησιμοποιηθούν σε γενικές μηχανικές εφαρμογές. Η αντικατάσταση του μονολιθικού μεταλλικού τμήματος διαφόρων μηχανικών μερών και εξαρτημάτων από σύνθετα μεταλλικά μήτρας, μπορεί να οδηγήσει σε σημαντική μείωση βάρους του συνολικού υλικού, με προφανή οικονομική και περιβαλλοντική οφέλη, ανάλογα με την εφαρμογή. Η παρασκευή συνθέσεων υλικών Al – υπάρχον τεθρών έχει στο παρελθόν επιτυχθεί μόνο για την περίπτωση των πυρηνικών τεθρών (Class F, ASTM C618) και έχει καταστεί δυνατό να ενισχυθούν η σκληρότητα και οι τριβολογικές επιδόσεις των συνθέσεων, με ταυτόχρονα μείωση του κόστους παραγωγής τους. Αντίθετα, έχει επιτυχθεί ενίσχυση των μηχανικών τους αντιών, λόγω προβλημάτων συσσωμάτωσης των σωματίων των τεθρών και ομοιογενής κατανομής τους στη μήτρα του συνθέτου. Το βασικό τεχνολογικό και επιστημονικό κενό που κλήθηκε να καλύψει η συγκεκριμένη διδακτορική διατριβή αφορά στην πρώτη απόψεις ενίσχυσης του αλουμινίου και κραμάτων του με τέφρας πολύ υψηλής περιεκτικότητας σε Ca και αφότου αυτό κατέστη δυνατόν, μετά από πολυδιάστατη εργαστηριακή προσπάθεια,

Διδακτορική Διατριβή, Γρηγόριος Σ. Ίτσκος
στην διερεύνηση της επίδρασής τους στις ιδιότητες των συνθέτων υλικών. Το είδος αυτό των
tεφρών ήταν πολύ δύσκολο να ενσωματωθεί σε τήγματα Al και κραμάτων του λόγω πολύ
περιορισμένης διαβροχής, ενώ η δυνατότητα σχηματισμού νέων ορυκτολογικών φάσεων με την
αντίδραση του ελευθέρου Ca των τεφρών και του Si των κραμάτων προσέδιδε ιδιαίτερη αξία
μελέτης του φαινομένου, λόγω της πιθανής ενεργετικής επίδρασής τους στις ιδιότητες των
tελικών συνθέτων υλικών. Επίσης, για πρώτη φορά με βάση τη διεθνή βιβλιογραφία, διερευνάται
η επίδραση της χρήσης τεφρών διαφορετικής κοκκομετρίας στις ιδιότητες των συνθέτων, καθώς
επίσης και η χρήση συγκεκριμένων σωματιδιακών κλασσάτων των τεφρών. Η ισχυρότητα και η
ακρίβεια των εφαρμοσμένων πειραματικών μεθόδων, είχαν ως αποτέλεσμα τη δημοσίευση του
συνόλου, σχεδόν, των ερευνητικών αποτελεσμάτων της διδακτορικής διατριβής σε έγκριτα
dιεθνή επιστημονικά περιοδικά και διεθνή επιστημονικά συνέδρια. Παρακάτω δίδεται η
αναλυτική λίστα:

A. Διεθνή Επιστημονικά Περιοδικά (SCI-indexed, International Peer-Reviewed Scientific
Journals)

1. Itskos, G., Rohatgi P.K., Moutsatsou, A., DeFouw J.D., Koukouzas, N., Vasilatos, Ch.
infiltration technique and their characterization. Journal of Materials Science; 47 (9):
4042-52.

microstructure and tribological performance. Coal Combustion and Gasification
Products; 3: 75-82 (Co-published by the University of Kentucky and the American Coal
Ash Association).

Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with
lignite fly ash. Materials Science and Engineering: A; 527 (18-19): 4788-4795

Comparative uptake study of toxic elements from aquatic media by the different particle
B. Διεθνή Επιστημονικά Συνέδρια

Γ. Πανελλήνια Συνέδρια

Εισαγωγή

ΕΥΧΑΡΙΣΤΙΕΣ

Αισθάνομαι την ανάγκη να ευχαριστήσω τους παρακάτω ανθρώπους, χωρίς τους οποίους δεν θα ήταν δυνατή η εκπόνηση της συγκεκριμένης διδακτορικής διατριβής:

- Την Καθηγήτρια ΕΜΠ κυρία Αγγελίκη Μουτσάτσου για την ανάθεση της συγκεκριμένης διδακτορικής διατριβής. Η κυρία Μουτσάτσου με καθοδήγηση εξαιρετικά καθ’ όλη τη διάρκεια εκπόνησης της διατριβής μου ενώ παράλληλα η στήριξή και η συμπεριφορά της σε διαπραγματευτικό επίπεδο υπήρξαν παρομοιώδεις. Την ευχαριστώ επίσης γιατί με την καθημερινή μας επαφή τα τελευταία χρόνια έχει συμβάλει σημαντικά στη σωστή διαμόρφωση του επαγγελματικού, ερευνητικού και προσωπικού μου προσανατολισμού.

- Τον Δρ. Νικόλαο Κούκουζα, Δ/ντή Ερευνών ΕΚΕΣΑ/ΙΤΕΣΚ. Το ΙΤΕΣΚ και ο κ. Κούκουζας προσωπικά στάθηκε αρρώστο, τόσο υλικοτεχνικά, όσο και επιστημονικά στην εκπόνηση των όλων των ερευνητικών αντικειμένων της συγκεκριμένης διατριβής. Τον κ. Κούκουζα τον ευχαριστώ επίσης γιατί πάντοτε έδαφε προτεραιότητα στο διδακτορικό μου, παρέχοντάς μου τον αναγκαίο χρόνο να αντιμετωπίσω όλα τα ζητήματα που ανέκυπταν με την απαιτούμενη προσοχή.

- Τον Dr. Pradeep K. Rohatgi, University of Wisconsin-Milwaukee & State of Wisconsin Distinguished Professor. Ο Καθηγητής Rohatgi είναι ο εμπνευστής και παγκόσμιος «πατέρας» της ιδέας των συνθέτων υλικών αλουμινίου/κραμάτων αλουμινίου-υπόμενων τεφρών. Η 3-μηνη παρουσία μου στο εργαστήριο του υπήρξε το καθοριστικότερο, ίσως, στάδιο πραγματοποίησης της διατριβής μου καθώς επίσης και της γενικότερης κατάρτισης μου στον τομέα των συνθέτων υλικών. Επίσης, στο πλαίσιο αυτό θέλω να ευχαριστήσω θερμά τον μεταδιδακτορικός ερευνητές του University of Wisconsin-Milwaukee, Dr. Benjamin F. Schultz και Dr. John D. Defouw.

- Τον Χάρη Βασιλάτο από το Τμήμα Γεωλογίας και Γεωπεριβάλλοντος του ΕΚΠΑ. Ο Χάρης υπήρξε όντας ιδιαίτερα πολύτιμος συνεργάτης στην εκπόνηση της διδακτορικής μου διατριβής. Με την προθεσμία του και την επιστημονική του πληρότητα, συνέβαλε τα μέγιστα στην επιτυχία υλοκλήρωσης ορισμένων από τα πιο σημαντικά ερευνητικά αντικείμενα της συγκεκριμένης διατριβής.

- Τον Prof. Hans J. Roven από το Norwegian University of Science and Technology (NTNU) / Dept. of Materials Science and Engineering, στο εργαστήριο του οποίου στο Trondheim της Νορβηγίας πραγματοποίησα ένα σημαντικό μέρος της διδακτορικής μου.
Εισαγωγή

ήρευνας. Η ευκαιρία να εργασθώ στο συγκεκριμένο ιδρύμα μου δόθηκε κατόπιν επιλογής μου για υποτροφία κινητικότητας ερευνητών από τον Χρηματοδοτικό Οργανισμό του Ευρωπαϊκού Οικονομικού Χώρου (ΕΟΧ) και το ΕΜΠ. Τους ευχαριστώ ιδιαίτερα για την τιμητική αυτή διάκριση και τη σημαντική υποστήριξή της έρευνάς μου.

- Τη Δρ. Μαρία Λέκκα, τον Elia Marin, τον Dr. F. Andreatta και τον Prof. L. Fedrizzi από το University of Udine, Department of Chemistry, Physics and Environment. Με τη συγκεκριμένη εξαιρετική ερευνητική ομάδα συνεργαστήκαμε στο πλαίσιο του ελέγχου της συμπεριφοράς στη διάβρωση των υλικών που παράχηκαν στη διδακτορική διατριβή και το γεγονός αυτό αποτελεί ιδιαίτερη χαρά και τιμή μου.

- Τα παιδιά με τα οποία συνεργαστήκαμε στο πλαίσιο της διπλωματικής τους στο Εργαστήριο Ανόργανης και Αναλυτικής Χημείας της Σχολής Χημικών Μηχανικών ΕΜΠ και ιδιαίτερα τον πρώτο κατά χρονολογική σειρά και μετέπειτα φίλο και συνάδερφο μου, Παναγιώτη Βουνάτσο. Επίσης τους συναδέρφους και συνοδοιπόρους μου στο ΙΤΕΣΚ, οι οποίοι με ανέχονται σε καθημερινή βάση.

Θα ήθελα τέλος να σημειώσω ότι η επαγγελματική μου εμπειρία και η διαρκής εκπαίδευσή μου στο ΕΚΕΤΑ/ΙΤΕΣΚ συνέβαλαν στα μέγιστα στην υλοποίηση των στόχων της διδακτορικής μου έρευνας. Στο πλαίσιο αυτό, θα ήθελα να ευχαριστήσω θερμά τον Καθηγητή ΕΜΠ κ. Εμμανουήλ Κακαρά ο οποίος μου έδωσε τη δυνατότητα από μικρή ηλικία να εργασθώ και να σταδιοδοτήσω στο σημαντικό αυτό Οργανισμό.

Καλή Ανάγνωση,
Γρηγόρης Ιτσκος

Διδακτορική Διατριβή, Γρηγόρης Σ. Ιτσκος
Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Α. Θεωρητικό Μέρος

A.1 Σύνθετα Υλικά Μεταλλικής Μήτρας

A.1.1. Εισαγωγή στα σύνθετα υλικά μεταλλικής μήτρας

Σύνθετα υλικά μεταλλικής μήτρας (Metal Matrix Composites, MMC’s), ονομάζονται τα μηχανικά παρασκευασθέντα υλικά, τα οποία προέρχονται από το συνδυασμό υλικών δύο ή περισσότερων φάσεων, μια εκ των οποίων είναι μεταλλικής φύσεως, ούτως ώστε το τελικό υλικό να αποκτήσει βελτιωμένες ιδιότητες, σε σχέση με τα δύο ή περισσότερα τα οποία το συνθέτουν. Όπως θα αναλυθεί παρακάτω, ανάλογα με το είδος των πρώτων υλών που αποτελούν τα σύνθετα, μπορεί να προκύψει αναβάθμιση σε ένα μεγάλο εύρος ιδιοτήτων τους, συμπεριλαμβανομένων αντοχής, δυσκαμψίας, καθώς επίσης και μικροτέρων συντελεστών τριβής και φθοράς [1].

Στην οικογένεια των MMC’s περιλαμβάνονται ένα μεγάλο εύρος υλικών, τα οποία διαφέρουν ως προς την κλίμακα και τον εσωτερικό μικροδομή τους. Τα ενισχυτικά υλικά είναι συνήθως κεραμικά, κυρίως οξείδια, καρβιδία, ή νιτρίδια, ενώ σε συγκεκριμένες περιπτώσεις προτιμάται η χρήση πυρήμαχου μετάλλου (σύνθετο υλικό με ενισχυτική φάση σε μορφή καλωδίων). Ανάλογα με το είδος της ενισχυτικής φάσης, η οποία προφανώς μεταβάλλει τη μικροδομή του συνθέτου, προκύπτει ο διαχωρισμός τους, στις εξής πέντε μεγάλες κατηγορίες: Σύνθετα μεταλλικής μήτρας, με ενισχυτικό υλικό σε μορφή: α) συνεχών ιών μεγάλου μήκους, β) ασυνεχών ιών μικρού μήκους, γ) σωματίδιων, δ) λεπτών νιφάδων (whiskers) και ε) καλωδίων (wires). Η Εικόνα A.1 αποδίδει σχετικά το διαχωρισμό στις κατηγορίες των συνθέτων υλικών.

![Συνέχεια Μακρέος Ίνες](image1.png)

![Ασυνεχές Ίνες](image2.png)

![Σωματίδια](image3.png)

Εικόνα A.1. Απεικόνιση συνθέτων υλικών μεταλλικής μήτρας με ενίσχυση συνεχών, ασυνεχών ιών και σωματίδιων [2].

Οι ίνες βορίου (B), γραφίτη (C), αλούμινας (Al₂O₃) και ανθρακοπυρίτου (SiC), γνωρίζουν τις ευρύτερες εφαρμογές. Οι ίνες B παρασκευάζονται με χημική εναπόθεση ατμόν (Chemical Vapor Deposition, CVD) πάνω σε πυρήνα βολφραμίου ή άνθρακα. Με την ίδια τεχνική...
παρασκευάζονται και οι ίνες SiC. Οι συνεχείς ίνες Al₂O₃ παρασκευάζονται είτε από πολυακυρολιτρίλο, είτε από πίσσα. Τα βασικά υλικά που χρησιμοποιούνται για την παρασκευή ασυνεχών ινών μικρού μήκους, έχουν ως βάση τους, είτε Al₂O₃, είτε Al₂O₃.2SiO₂. Και τα δύο, αυτά, υλικά είχαν, προσταριγκά, αναπτυχθεί προκειμένου να χρησιμοποιηθούν ως μονωτικά. Τα μεταλλικά καλώδια που χρησιμοποιούνται για την ενίσχυση μετάλλων ή μεταλλικών κραμάτων αποτελούνται κυρίως από βολφράμιο (W), βηρύλλιο (Be), τιτάνιο (Ti) και μολυβδαίνιο (Mo) [3]. Αναφέρεται ότι, σε αντίθεση π.χ. με τα σύνθετα υλικά μήτρας πολυμερούς, στα σύνθετα υλικά μεταλλικής μήτρας, λόγω της δυνατότητας μεγάλου εύρους μορφοποιήσης τους, δεν υπάρχουν σημαντικοί περιορισμοί όσον αφορά το είδος της ενισχυτικής φάσης που θα χρησιμοποιηθεί, ανάλογα με την εφαρμογή. Τουναντίον, ακόμα και τα σύνθετα υλικά με ενισχυτικό υλικό ινών μεγάλου μήκους μπορεί να καταπολεμήσει και να υποστούν συγκεκριμένη μορφοποίηση [3].

Ανάμεσα στα διάφορα υλικά ενίσχυσης, τα σωματίδια (στα οποία αναφέρεται και η συγκεκριμένη διδακτορική διατριβή) είναι τα περισσότερο συνήθη στις διάφορες εμπορικές εφαρμογές, λόγω και του χαμηλού τους κόστους (μάλιστα, όπως θα αναλυθεί αργότερα, η επίτιμην τέφρα είναι από τα φθηνότερα, ίσως το πιο φθηνό, ανάμεσά στα διαθέσιμα). Η διασπορά κεραμικών σωματιδίων εντός της μεταλλικής μήτρας δίνεται να οδηγήσει στην ανάπτυξη ισοτροπικών ιδιοτήτων από το σύνθετο υλικό, υποχάμομες δυνατότητα χρήσης σε κατασκευαστικές εφαρμογές. Σε ιδανικές συνθήκες (οι οποίες επιχειρήθηκε να επιτευχθούν και στις πειραματικές συνθήκες της συγκεκριμένης διδακτορικής διατριβής), τα ενισχυτικά σωματίδια θα πρέπει να είναι ομογενοποιημένα, λεπτόκοκκα και να κινούνται σε ένα ιδιαίτερα στενό εύρος μεγεθών (διαμέτρουν), προκειμένου, κατά κύριο λόγο, να αποφευχθούν ενδεχόμενα φαινόμενα ανισοτροπίας, τα οποία μπορεί να προκύψουν λόγω προσανατολισμού συγκεκριμένων ομάδων σωματιδίων. Επίσης, επιλέγεται συνήθως οι σωματίδια ενίσχυσης της μεταλλικής μήτρας να είναι χημικά αδρανή, ούτως ώστε να μην προκύπτουν χημικές αντιδράσεις, οι οποίες μπορεί να αποδειχθούν επιβλαβείς για τις ιδιότητες του υλικού [4]. Στη συγκεκριμένη διδακτορική διατριβή, επιλέχθηκε σκοπός η χρήση ενεργών, χημικά, σωματιδίων (ιπτάμενη τέφρα από τους ΑΗΣ Καρδιάς και Μεγαλόπολης), προκειμένου τα τελικά σύνθετα υλικά να επωφελούνται από την αντιδράση των Ca και Si με το Si και Al της μήτρας των υλικών αντίστοιχα, έτσι ώστε να σχηματισθούν καινούργιες, σκληρότερες, ορυκτολογικές φάσεις, ενισχύοντας την επιφανειακή σκληρότητα και τις τριβολογικές αντοχές των συνθέτων.

O Rohatgi [5] αναφέρει ότι τα τελευταία γενιάς σύνθετα υλικά διαφέρουν από τα υλικά που παράγονταν στα χρόνια σε σχέση με τον όγκο, το σχήμα και το μέγεθος του ενισχυτικού υλικού που μπορεί να προστεθεί στη μήτρα του μετάλλου. Τα σύγχρονα σύνθετα υλικά είναι μη
Α. Θεωρητικό Μέρος

ισορροπημένοι συνδυασμοί μετάλλων και κεραμικών, όπου υπάρχουν αρκετά λιγότεροι
θερμοδυναμικοί περιορισμοί όσον αφορά στα ποσοστά, στο σχήμα και στο μέγεθος των
κεραμικών φάσεων. Με προσεκτικό έλεγχο των σχετικών ποσοτήτων και της κατανομής των
συστατικών που απαρτίζουν το σύνθετο υλικό, καθώς επίσης και των συνθηκών της διεργασίας,
tα σύνθετα υλικά που θα δημιουργηθούν μπορεί να έχουν πολύ ανώτερες ιδιότητες από
αντίστοιχα μονολιθικά υλικά. Στους Πίνακες A1 και A2 δίδονται ενδεικτικά οι μεταβολές στις
ιδιότητες σύνθετων υλικών τα οποία κατασκευάζονται υπό ελεγχόμενες συνθήκες, καθώς επίσης
και το είδος των ιδιοτήτων που βελτιώνονται.

Πίνακας Α.1. Ιδιότητες σύνθετων υλικών που κατασκευάζονται υπό ελεγχόμενες συνθήκες.

<table>
<thead>
<tr>
<th>Υλικό</th>
<th>Ποσοστό Ιών (%</th>
<th>Ειδική αντοχή (Nm/kg)</th>
<th>Ειδικό μέτρο ελαστικότητας (10^7 m/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃(FP)Al-Li</td>
<td>0°</td>
<td>60</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>60</td>
<td>5000-6000</td>
</tr>
<tr>
<td>SiC/Ti-6 Al-4V</td>
<td>0°</td>
<td>35</td>
<td>45300</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>35</td>
<td>10200</td>
</tr>
<tr>
<td>C/Mg Thomel</td>
<td>38</td>
<td></td>
<td>28300</td>
</tr>
<tr>
<td>C/Al</td>
<td>30</td>
<td></td>
<td>28200</td>
</tr>
<tr>
<td>6061 Al</td>
<td>-</td>
<td></td>
<td>11500</td>
</tr>
<tr>
<td>2014 Al</td>
<td>-</td>
<td></td>
<td>17100</td>
</tr>
<tr>
<td>SiC (f)</td>
<td>100</td>
<td></td>
<td>78400</td>
</tr>
<tr>
<td>SiC (w)</td>
<td>100</td>
<td></td>
<td>6.67*10^2</td>
</tr>
<tr>
<td>Al₂O₃(F)</td>
<td>100</td>
<td></td>
<td>50000</td>
</tr>
<tr>
<td>B (f)</td>
<td>100</td>
<td></td>
<td>1.54*10^2</td>
</tr>
<tr>
<td>C (f)</td>
<td>100</td>
<td></td>
<td>1.62*10^2</td>
</tr>
<tr>
<td>Be (f)</td>
<td>100</td>
<td></td>
<td>59500</td>
</tr>
<tr>
<td>W (f)</td>
<td>100</td>
<td></td>
<td>15000</td>
</tr>
<tr>
<td>B/Al</td>
<td>50</td>
<td></td>
<td>56600</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>5280</td>
</tr>
<tr>
<td>SiC/Al</td>
<td>50</td>
<td></td>
<td>8800</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>3700</td>
</tr>
</tbody>
</table>

Όπου f: ινες, w: νιφάδες

Διδακτορική Διατριβή, Γρηγόριος Σ. Τσακός 8
Α. Θεωρητικό Μέρος

Πίνακας Α.2. Πιθανές εφαρμογές σύνθετων υλικών.

<table>
<thead>
<tr>
<th>Σύνθετο Υλικό (Μέταλα / Ενίσχυση)</th>
<th>Εφαρμογή</th>
<th>Ιδιαίτερα Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αλουμίνιο/Γραφίτης</td>
<td>ρουλεμάν</td>
<td>Φθηνότερα, ελαφρότερα,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>αντολλιπανόμενα</td>
</tr>
<tr>
<td>Αλουμίνιο/Al₂O₃</td>
<td>Κολλνορι, πιστόνια</td>
<td>Εξοικονομεί καύσιμο,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>βελτιωμένη απόδοση,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>τριβολογικές εφαρμογές</td>
</tr>
<tr>
<td>Αλουμίνιο/SiC – Al₂O₃</td>
<td>Δακτύλιο/μπιέλες</td>
<td>Πολύ καλή αγωγιμότητα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>και καλή μηχανική επεξεργασία</td>
</tr>
<tr>
<td>Χαλκός/Γραφίτης</td>
<td>Συρόμενες ηλεκτρικές επαφές</td>
<td>Αντοχή σε υψηλή θερμοκρασία,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>τριβολογικές εφαρμογές</td>
</tr>
<tr>
<td>Αλουμίνιο/SiC</td>
<td>Πτεροτές μπέρσπιμπιστή</td>
<td>Μηδενική θερμική διαστολή,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Αντοχή σε υψηλή θερμοκρασία,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>καλή ειδική αντοχή και καλή</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ειδική δυσκαμψία</td>
</tr>
<tr>
<td>Μαγνήσιο/Ινές άνθρακα</td>
<td>Σαλαφνοειδή σύνθετα υλικά για διαστημικές κατασκευές</td>
<td>Σκληρό, αντοχή στην τριβή,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>τριβολογικές εφαρμογές</td>
</tr>
<tr>
<td>Αλουμίνιο/Ζερκόνιο</td>
<td>Κοπτικά εργαλεία,</td>
<td>Αντοχή και ελαφρό υλικό για</td>
</tr>
<tr>
<td>Αλουμίνιο/SiC</td>
<td>Καλυμμένες πτεροτές</td>
<td>κατασκευές</td>
</tr>
<tr>
<td>Αλουμίνιο/silica</td>
<td></td>
<td>Φθηνό και ελαφρό υλικό για</td>
</tr>
<tr>
<td>Αλουμίνιο/τέφρα</td>
<td></td>
<td>κατασκευές</td>
</tr>
<tr>
<td>Αλουμίνιο/πυλός</td>
<td>Υλικά χαμηλού κόστους με απαίτηση χαμηλών ενέργειας</td>
<td></td>
</tr>
</tbody>
</table>

Συγκρίνοντας τα σύνθετα υλικά μεταλλικής μήτρας με τα αντίστοιχα καθαρά μετάλλα, τα πρώτα είναι δυνατά να αποκτήσουν τα εξής πλεονεκτήματα: α) Υψηλότερο λόγο αντοχής / πικνότητας, β) Υψηλότερο λόγο δυσκαμψίας / πικνότητας, γ) Καλύτερη αντοχή στην κόπωση, δ) Καλύτερες ιδιότητες σε υψηλές θερμοκρασίες (υψηλότερη αντοχή & χαμηλότερο λόγο ερπυσιμού), ε) Χαμηλότερο συντελεστή θερμικής διαστολής και στ) Καλύτερη αντίσταση στην φθορά. Συγκρίνοντας τα σύνθετα υλικά μεταλλικής μήτρας, με τα αντίστοιχα πολυμεταλλικά μήτρας, τα πρώτα είναι δυνατά να αποκτήσουν τα εξής πλεονεκτήματα: α) Μεγαλύτερη αντοχή σε υψηλές θερμοκρασίες, β) Μεγαλύτερη εγκάρσια αντοχή και δυσκαμψία, γ) Μη-απορροφητικότητα υγρασίας, δ) Υψηλότερους συντελεστές ηλεκτρικής και θερμικής αγωγιμότητας και ε) Δυνατότητα κατασκευής τους με τεχνικές και εξοπλισμό χαμηλού κόστους [3]. Αντιθέτως, κάποια από τα σημαντικά μειονέκτημα των MMC’s σε σχέση με τα προηγούμενα, είναι ότι το κόστος κατασκευής τους μπορεί να είναι πολύ μεγαλύτερο, ενώ, ειδικά στην περίπτωση της ενίσχυσης με ίνες, η μέθοδος εισαγωγής τους στη μεταλλική μήτρα μπορεί να απαιτεί περιπλοκές διεργασίες.

Διδακτορική Διατριβή, Γρηγόριος Σ. Τσικος
9
A. Θεωρητικό Μέρος

A.1.2 Αύξηση μηχανικών αντοχών μέσω ενίσχυσης της μεταλλικής μήτρας

Οι μηχανικές ιδιότητες των συνθέτων εξαρτώνται από το πλήθος, το μέγεθος, τη μορφή και τη διαστορά του ενισχυτικού υλικού, εκτός από τις ιδιότητες αυτοδύσιας της μήτρας. Εξ’ ορισμού ένα σύνθετο υλικό χρειάζεται φάση ενίσχυσης σε ποσοστό πάνω από 1% κ.ο., το οποίο της επιτρέπει να μπορεί να συμμετάσχει μέσω της δυνατότητάς της να φέρει προφίλ και όχι απλώς να δρα για τον έλεγχο της κίνησης των μετατοπίσεων. Η μορφή της διεσπαρμένης φάσης είναι τόσο σημαντική στον καθορισμό της ικανότητας του συνθέτου να φέρει προφίλ, ώστε αυτά έχουν διαχωρίστει ως εξής:

1) Ενισχυμένα σύνθετα υλικά με συνεχείς και ασυνεχείς ίνες και

2) Ενισχυμένα σύνθετα υλικά με σωματίδια ή νιφάδες

Η αναλογία μήκους/διαμέτρου της ίνας καθορίζει τελικά και την κατηγοριοποίησή της. Σε σύνθετα υλικά με συνεχείς ίνες, το προφίλ εφαρμόζεται απ’ ευθείας στη μήτρα και στην ίνα. Σε σύνθετα υλικά με ασυνεχείς ίνες ή σωματίδια, το προφίλ μεταδίδεται στο διεσπαρμένο ενισχυτικό υλικό μέσω της μήτρας. Στην περίπτωση όπου δεν υπάρχει καλή διαστορά, τότε αυτό συνεπάγεται διατυπικές τάσεις. Οι μηχανικές ιδιότητες των συνθέτων με ασυνεχείς ίνες είναι παρόμοιες με αυτές των συνθέτων που έχουν ενισχυθεί με σωματίδια ή νιφάδες, με τη διαφορά ότι η αντοχή των συνθέτων υλικών με ασυνεχείς ίνες αυξάνεται όσο αυξάνεται ο λόγος του μήκους τους προς τη διάμετρο.

A.1.2.1 Αύξηση δυσκαμψίας και ελαστικότητας

Η δυνατότητα για αύξηση της δυσκαμψίας και της ειδικής δυσκαμψίας του μετάλλου / κράματος, μέσω της ενίσχυσης του με σωματίδια, αλλά και ίνες ή νιφάδες, αποτελεί έναν από τους σημαντικότερους λόγους επιλογής παρασκευής των MMC’s. Η δυσκαμψία είναι μία κρίσιμη σχεδιαστική παράμετρος για πολλά μηχανικά μέρη διαφόρων κατασκευών. Μηχανικά μέρη τα οποία περιστρέφονται ή χρησιμοποιούνται για κατασκευή σκελετών αμαξομάτων και για τα οποία τα μέταλλα προσφέρουν σημαντικούς συνδυασμούς σκληρότητας, ικανότητας για μορφοποίηση, σταθερότητα στο περιβάλλον και αντοχής. Παρόλα αυτά -με μικρές εξαιρέσεις- δεν υπάρχει σκοπός αύξησης της δυσκαμψίας ενός μετάλλου με μικρές προσθήκες ή με έλεγχο της μικροδομής του [2]. Παραδείγματα εφαρμογών οι οποίες στηρίζονται κυρίως στη δυσκαμψία του μετάλλου, περιλαμβάνουν στροφαλόφορους άξονες, σχάρες οργάνων, πλαίσια ποδηλάτων, ακόμα και μέρη πυραύλων (οι οποίοι αποτελούνται κατά 40% κ.β. από SiC/Al, αντικαθιστώντας
Α. Θεωρητικό Μέρος

to Be) [6]. Η Εικόνα Α.2 απεικονίζει την αύξηση δυσκαμψίας που επιτυγχάνεται κατά την παρασκευή των κυριότερων εμπορικών MMC’s, με τα διάφορα είδη ενισχυτικής φάσης.

Εικόνα Α.2. Μέτρο ελαστικότητας διαφόρων MMCs του εμπορίου [2].

Σε μελέτη που έκαναν ο Rohatgi και άλλοι [7], αναφέρουν ότι πηγάζοντας πέρα από το πλαίσιο της θεωρίας ελαστικότητας, η παρουσία διεσπαρμένων σκληρών σωματιδίων θα προκαλέσει πρόσθετη σκληρύνση, γεγονός το οποίο δεν είναι σημαντικό στην περίπτωση μαλακών σωματιδίων με μέτρο διάτμησης χαμηλότερο από εκείνο του κράματος της μήτρας. Έτσι, σύνθετα υλικά με μαλακά σωματίδια όπως ο γραφίτης, έχουν χαμηλότερη αντοχή σε σύγκριση με το κράμα της μητρικής φάσης, όπως φαίνεται στην Εικόνα Α.3. Η αντοχή των σύνθετων υλικών που περιέχουν σκληρά σωματίδια αυξάνεται με την αύξηση της περιεκτικότητάς τους σε αυτά. Ωστόσο, η ολικότητα των σύνθετων υλικών που περιέχουν τόσο μαλακά, όσο και σκληρά σωματίδια, μειώνεται σε σύγκριση με εκείνη του απλού κράματος, πιθανός λόγω της αποκόλλησης της διεπιφάνειας σε χαμηλές τάσεις εφέλκυσμού.
Α. Θεωρητικό Μέρος

Εικόνα Α3. Αντοχή σε εφελκυσμό σε συνάρτηση με το ποσοστό ενισχυτικού υλικού.

A.1.2.2 Ενίσχυση αντοχών

Η ενίσχυση των αντοχών του μετάλλου, εκφρασμένη σε όρους τάσης διαρροής ή τάσης αστοχίας, μπορεί να είναι αρκετά σημαντική για πληθώρα εφαρμογών. Επιπλέον, η αντίσταση στην κόψη σε μικρές διαφορές θερμοκρασίων μπορεί να αυξηθεί, παρόλο που η δυσθεραστότητα και η πλαστικότητα συνήθως μειώνονται κατά την ενίσχυση του υλικού. Γενικότερα όμως, υπάρχουν λίγες περιπτώσεις στις οποίες τα MMC's χρησιμοποιούνται για την καλύτερη αντοχή που προσφέρουν, τουλάχιστον σε θερμοκρασία δομάτιο. Όρισμένες όμως εφαρμογές, κρίνουν αναγκαία τη χρήση ελαφροβαρών υλικών με αυξημένη αντοχή και αντίσταση σε μηχανική καταπόνηση. Το συνηθιστέρο MMC για τον σκοπό αυτό είναι το Ti – 6Al – 4V. Επιπλέον, οι αντοχές είναι σημαντικές σε περιπτώσεις όπου η ενισχυμένη δυσκαμψία χρησιμοποιείται από λεπτότερα τμήματα, τα οποία υποφέρουν και τις μεγαλύτερες τάσεις [8]. Η Εικόνα Α.3 παρουσιάζει τα τρία είδη αστοχίας και θραύσης ενός MMC.
Εικόνα Α.4. Είδη αστοχίας και θραύσης στα σύνθετα υλικά μεταλλικής μήτρας: α) Αξονική εφελκυστική τάση β) Εγκάρσια εφελκυστική τάση γ) Διατμητική εφελκυστική τάση.

Ο Kulkarni και άλλοι [9] μελέτησαν τις δυνάμεις θραύσης των ινών κοκκοφοίνικα, των οποίων το μήκος κυμαίνεται από 0.001 m ως 0.065 m και η διάμετρος από 0.15*10⁻³ m έως 0.35*10⁻³ m. Στη συγκεκριμένη μελέτη, για την ικανοποιητική ανάλυση των αποτελεσμάτων χρησιμοποιήθηκε στατιστική ανάλυση Weibull δύο παραμέτρων. Διαπιστώθηκε ότι η κατανομή δύναμης σε οποιοδήποτε μήκος (και για οποιοδήποτε διάμετρο των ινών) μπορεί να εκπροσωπηθεί ικανοποιητικά από μονοτροπικές κατανομές Weibull. Το διάγραμμα του μέσου της δύναμης θραύσης δείχνει μια γραμμική σχέση μεταξύ 0.065 m και 0.006 m. Για μήκη κάτω από 0.006 m, η δύναμη είναι σχετικά ανεξάρτητη του μήκους.

Η αύξηση των παραμέτρων της κατανομής Weibull, m, με αύξηση της διαμέτρου του, δείχνει ότι η κατανομή των τιμήτων που έχουν παρουσιάσει θραύση είναι περισσότερο ομοιόμορφη σε ινές μεγάλης διαμέτρου. Η προέλευση των αστοχίων σε ινές κοκκοφοίνικα μπορεί να είναι από δύο πηγές: a) ελαττώματα κατά την ανάπτυξη και b) ελαττώματα κατά την επεξεργασία. Αυτές οι ατέλειες και η διασπορά αστοχίων σε ινές κοκκοφοίνικα είναι υπεύθυνες για την παρατηρηθείσα κατανομή των τιμών της δύναμης θραύσης.

Α. Θεωρητικό Μέρος

Πίνακας A.3. Σωματίδια που χρησιμοποιούνται για την αύξηση της σκληρότητας των MMC’s.

<table>
<thead>
<tr>
<th>Είδος Σωματίδιου</th>
<th>Πυκνότητα (g/cm³)</th>
<th>Σκληρότητα κατά Mohs</th>
<th>Σκληρότητα (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiC</td>
<td>4.93</td>
<td>9</td>
<td>20-30</td>
</tr>
<tr>
<td>SiC</td>
<td>3.22</td>
<td>9.95</td>
<td>24.5-29</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.97</td>
<td>9</td>
<td>18.26</td>
</tr>
<tr>
<td>WC</td>
<td>15.63</td>
<td>8.9</td>
<td>24</td>
</tr>
<tr>
<td>TiN</td>
<td>5.22</td>
<td>-</td>
<td>20.61</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>3.44</td>
<td>-</td>
<td>16-20</td>
</tr>
<tr>
<td>VC</td>
<td>5.77</td>
<td>-</td>
<td>16-18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.26</td>
<td>6-6.5</td>
<td>12.7</td>
</tr>
<tr>
<td>ZrSiO₄</td>
<td>4.56</td>
<td>7.5</td>
<td>11</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>5.89</td>
<td>-</td>
<td>6.5-10</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.65</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>MgO</td>
<td>3.55-3.68</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>Γυαλί</td>
<td>2.48-2.54</td>
<td>4-6.5</td>
<td>4</td>
</tr>
<tr>
<td>Μίκα</td>
<td>2.7-2.8</td>
<td>2.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Τάλκης</td>
<td>2.58-2.83</td>
<td>1-2</td>
<td>-</td>
</tr>
<tr>
<td>MoS₂</td>
<td>4.62-4.8</td>
<td>1-1.5</td>
<td>-</td>
</tr>
<tr>
<td>Γραφίτης</td>
<td>2.09-2.23</td>
<td>0.5-1</td>
<td>0.25</td>
</tr>
<tr>
<td>PTFE (a)</td>
<td>2.13</td>
<td>-</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>

A.1.2.3 Ενίσχυση της αντίστασης ερπυσμού

Βελτίωση της αντίστασης ερπυσμού προκύπτει, κυρίως, μέσω της προσθήκης κεραμικών συνεχών ιόντων στα περισσότερα είδη μεταλλικής μήτρας. Η στοιχειώτερη εμπειρική εφαρμογή η οποία είναι δυνατή να επωφεληθεί σημαντικά από την αύξηση της αντίστασης στον ερπυσμό, αναφέρεται στις τούρμπινες των μηχανών τζετ, όπου ο σκοπός είναι η αντικατάσταση των πτερυγίων της τούρμπινας που έχουν ως βάση το νικέλιο με μέρη φτιαγμένα από ελαφρύτερα υλικά [2].

A.1.2.4 Ενίσχυση τριβολογικών επιδόσεων

Σε μελέτη του Prasad και Rohatgi [10], γίνεται αναφορά στο γεγονός ότι αρκετά κράματα Al και συγκεκριμένα Al/Si, χρησιμοποιούνται εκτενώς σε εφαρμογές που απαιτούν τριβολογικές αντοχές όπως πιστώνια σε μηχανές εσωτερικής καύσης. Έχει γίνει επίσης προσπάθεια ρύθμισης υπερευκτικής καμάτων Al-Si για χιτώνα κυλίνδρων, ώστε να αντικαταστήσουν τον κατά πολύ βαρύτερο χυτοσιδήρο. Παρότι όμως τα κράματα Al εμφανίζουν ελκυστικές ιδιότητες για τριβολογικές εφαρμογές, η χαμηλή τους αντοχή seizure τα κάνει ευάλωτα σε συνθήκες ελλιπούς.

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτσάκος 14
Α. Θεωρητικό Μέρος

λίπανσης. Η αντοχή σείζυρα του Al είναι αρκετά υψηλή σε συνθήκες οριακής λίπανσης. Με βάση αυτό του γεγονός, έχει προταθεί από τους Badia και Rohatgi, η διασπορά σωματιδίων γραφίτη μέσα στο αλουμίνιο μέσω τεχνικής τηγμένου μετάλλου. Ως αποτέλεσμα, δημιουργήθηκε μία σειρά συνθέτων υλικών μήτρας Al η οποία περιέχει διεσπαρμένα λιπαντικά σωματίδια όπως ο γραφίτης και η μίκα αλλά και σκληρά κεραμικά σωματίδια όπως η ζηκκονία (ZrO₂) ή η αλουμίνα (Al₂O₃) και το καρβίδιο του πυρηνίου (SiC).

Ενώσω διαφορετικές εφαρμογές σε υλικά που φθείρονται απαιτούν διαφορετικούς τύπους ενίσχυσης, έτσι ώστε να πετύχουν το βέλτιστο ρυθμό φθοράς, είναι σύνηθες παινόμενοι ο ρυθμός φθοράς να μειώνεται έως και δέκα φορές με την χρήση ενίσχυσης στο υλικό. Επιπλέον, είναι οφέλιμο να γίνεται έλεγχος της κατανομής της ενίσχυσης, έτσι ώστε το υλικό να αποκτά μεγάλη αντίσταση στις φθορές σε επιλεγμένες επιφάνειες, αφήνοντας άλλες περιοχές ικανές για μεταφορά θερμότητας κλπ. Αυτό μπορεί να γίνει με επιλεκτική ενίσχυση κρίσιμων περιοχών, για παράδειγμα με προσθήκη ενός μέσα στο καλώστη πριν από τη χύνευση. Συνήθως είναι σημαντικό η αντίσταση στην φθορά να συνδυάζεται και με άλλες ιδιότητες, όπως π.χ. υψηλή θερμική αγωγιμότητα (για την απαγορεύση της θερμότητας που παράγεται κατά την τριβή) και υψηλή δυσκαμψία [11]. Η συγκεκριμένη διαδικασία ασχολείται εκτενώς με τις τριβολογικές επιδόσεις των παρασκευασθέντων συνθέτων, μελετώντας τις ανυξειμότεις του ρυθμού φθοράς και του συντελεστή τριβής, ως αποτέλεσμα της επίδρασης της προσθήκης των ασβεστούχων υπάρχουσεν τεφρών στο Al και σε κράματα του.

Ο Pai και άλλοι [12], μελέτησαν το ρυθμό φθοράς διαφορετικών σωματιδίων μήτρας κραμάτων Al σε περιβάλλον λίπανσης, σε περιστρεφόμενο σιδερένιο δίσκο. Βρήκαν ότι οι ρυθμοί φθοράς των συνθέτων υλικών με μήτρα Al-Si-Ni και ενίσχυστο υλικό γραφίτη ήταν αρκετά χαμηλότεροι από αυτούς των καθαρών κραμάτων Al, Al-Si και Al-Si-Ni και ειδικότερα για πιέσεις πάνω από 0.02 kg/mm². Η υψηλή αντοχή στην τριβή αποδείχθηκε στην ύπαρξη των σωματιδίων γραφίτη στη μήτρα, τα οποία μπορούν να δρούν ως στερεό λιπαντικό. Η προσθήκη Ni σε κράμα Al-Si από μόνη της υποβαθμίζει τις τριβολογικές επιδόσεις του συνθέτου. Σύνθετα υλικά με Al-Si-Ni και συγκέντρωση γραφίτη πάνω από 2% κ.β. μπορούν να αφήσουν χωρίς λίπανση πάνω στον περιστρεφόμενο σιδερένιο δίσκο μετά από δοκιμή με λίπανση διάρκειας ενός λεπτού. Τα σωματίδια του γραφίτη είναι ικανά να αντικαταστήσουν ένα μέρος του Zn στα κράματα Al-Zn. Τέλος, συμπέρανε πως καλές τριβολογικές επιδόσεις των συνθέτων υλικών με κράματα Al και γραφίτη πάνω από κάποιες πιέσεις οφείλεται στο σχηματισμό συνεχούς φιλμ οξειδίων στην επιφάνεια επαφής.

Ο Surappa και άλλοι [13], μελέτησαν το ρυθμό φθοράς για σύνθετα υλικά με κράματα Al και Al-Si τα οποία περιέχουν σωματίδια γ-Al₂O₃ μεγέθους 100 μμ σε ποσοστό 5% κ.β. Σε αυτή την

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτσάκος 15
Α. Θεωρητικό Μέρος

την μελέτη, βρήκαν ότι ο ρυθμός φθοράς σε συνθήκες συνεχούς τριβής του Al και των κράματων Al–11.8Si και Al–16Si μειώνεται με την προσθήκη σωματιδίων γ-Al2O3 μεγέθους 100 μ.Μ. Με τη διασπορά 5% κ.β σωματιδίων Al2O3, η αντοχή στο εν λόγω είδος τριβής του Al είναι συγκρίσιμη με αυτή του ευτικτικού κράματος Al–11.8Si και του υπερευτικτικού κράματος Al–16Si. Επιπλέον, οι τριβολογικές επιδόσεις του σύνθετου Al-5% κ.β. Al2O3 είναι χειρότερες από αυτές του ευτικτικού κράματος Al–11.8Si και του υπερευτικτικού κράματος Al–16Si. Ακόμα, η μελέτη της επιφάνειας του σύνθετου υλικού Al-5% κ.β. Al2O3 έδειξε ότι υπήρξε απλά μετατόπιση συγκεκριμένων στρωμάτων του υλικού, σε αντίθεση με τα κράματα Al–11.8Si και Al–16Si, περιπτώσεις όπου εμφανίστηκαν ρωγμές στην επιφάνεια επαφής. Τέλος, τα αποτελέσματα αυτές της μελέτης δείχνουν ότι τα σωματίδια Al2O3μπορούν να αντικαταστήσουν το Si με το πλεονέκτημα απόκτησης παρόμοιων τριβολογικών επιδόσεων.

Ο Murali και άλλοι [14], μελέτησαν τις τριβολογικές επιδόσεις του κράματος Al-11.8%Si με ενισχυτικό υλικό τέφρα γεωργικών εφαρμογών σε ποσοστό 10-25% κ.ο. με μέση διάμετρο σωματιδίων 125 μ. Οι δοκιμές έγιναν σε μηχάνημα με περιστρεφόμενο δίσκο και σταθερή ακίδα. Σε χαμηλές ταχύτητες περιστροφής (0.56 m/s), ο ρυθμός φθοράς και ο συντελεστής τριβής του σύνθετου υλικού μειώνταν όσο αυξάνονταν η (%) περιεκτικότητα σε σωματίδια τέφρας στην μήτρα. Σε μεγαλύτερες ταχύτητες περιστροφής (5.38 m/s), ο ρυθμός φθοράς αυξάνονταν με την αύξηση του ποσοστού της τέφρας στη μήτρα κράματος Al. Από τη μελέτη με Ηλεκτρονικό Μικροσκόπιο Σάρωσης (SEM), της φθοραμένης επιφάνειας του σύνθετου υλικού, δεν διαπιστώνεται η ύπαρξη προσκολμημένων σωματιδίων τέφρας. Ο μειωμένος ρυθμός φθοράς και ο συντελεστής τριβής σε χαμηλές ταχύτητες περιστροφής, αποδίδεται στην ύπαρξη προσκολμημένων σωματιδίων τέφρας στην επιφάνεια του σύνθετου υλικού.

Με βάση τις προαναφερθείσες μελέτες, δίδεται Ο Πίνακας Α.4 με τις ιδιότητες των ινών που προστέθηκαν και ερευνήθηκαν όσον αφορά τις τριβολογικές ιδιότητές τους σε MMC’ς.

Πίνακας Α.4. Χαρακτηριστικά και παράμετροι ινών για βελτίωση τριβολογικών ιδιοτήτων.

<table>
<thead>
<tr>
<th>Τες</th>
<th>Σύνθετο υλικό</th>
<th>Διάμετρος(μμ)</th>
<th>Πυκνότητα (g/cm³)</th>
<th>Αντοχή (GPa)</th>
<th>Μέτρο ελαστικότητας Young (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thornel 50</td>
<td>Ανθρακάς</td>
<td>6</td>
<td>1.67</td>
<td>2.40</td>
<td>413</td>
</tr>
<tr>
<td>Thornel 300</td>
<td>Ανθρακάς</td>
<td>7</td>
<td>1.75</td>
<td>2.65</td>
<td>227</td>
</tr>
<tr>
<td>Hm 3000</td>
<td>Ανθρακάς</td>
<td>7</td>
<td>1.90</td>
<td>2.43</td>
<td>365</td>
</tr>
<tr>
<td>Modmor I</td>
<td>Ανθρακάς</td>
<td>8</td>
<td>1.85</td>
<td>2.05</td>
<td>317</td>
</tr>
<tr>
<td>Celion 6000</td>
<td>Ανθρακάς</td>
<td>7</td>
<td>1.75</td>
<td>2.92</td>
<td>228</td>
</tr>
<tr>
<td>VSA-11</td>
<td>Ανθρακάς</td>
<td>11</td>
<td>1.99</td>
<td>1.20</td>
<td>380</td>
</tr>
<tr>
<td>Saffil RF/Safimax</td>
<td>δ-Al2O3</td>
<td>3</td>
<td>3.30</td>
<td>2.00</td>
<td>300</td>
</tr>
</tbody>
</table>
Οι Prasad και Asthana [15], αναφέρουν ότι όταν ένα μαλακό μέταλλο όπως το αλουμίνιο κινείται πάνω σε σκληρό χάλυβα χωρίς οποιαδήποτε εξωτερική υγρή ή στερεή λίπανση, το πρώτο αναμένεται να εισρέεσαι και να προσκολληθεί στο τελευταίο, δημιουργώντας περιβάλλον χαμηλής διατμητικής αντοχής. Η μεταφορά αλουμινίου προς το χάλυβαντα σφαιρά κατά τη διάρκεια ενός τυπικού πειράματος τρηθείς με τη μέθοδο ακίδας–δίσκου επιβεβαιώνει την υπόθεση αυτή. Η απόλεια υλικού του αλουμινίου θα συνεχίζει καθόλη την διάρκεια της ολίσθησης και μπορεί να σχηματισθούν υπολείμματα φθοράς, ως αποτέλεσμα της χάραξης της μαλακής επιφάνειας του αλουμινίου από την τραχεία επιφάνεια του σκληρού χάλυβα, ή την αποκόλληση επιφανειακών στρωμάτων αλουμινίου.

Πίνακας A.5. Χαρακτηριστικές ιδιότητες για επιλεγμένα ενισχυτικά υλικά.

<table>
<thead>
<tr>
<th>Πικνότητα (kg/m³)</th>
<th>Αντοχή σε εφέλκυμα (MPa)</th>
<th>Μέτρο Ελαστικότητας (GPa)</th>
<th>Συντελεστής Θερμικής Διαστολής (10⁻⁶°Κ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borsic</td>
<td>2710</td>
<td>3100</td>
<td>400</td>
</tr>
<tr>
<td>Ζαφείρι</td>
<td>4000</td>
<td>2000</td>
<td>470</td>
</tr>
<tr>
<td>PRD 166</td>
<td>4200</td>
<td>2500</td>
<td>385</td>
</tr>
<tr>
<td>Nextel 480</td>
<td>3050</td>
<td>2275</td>
<td>224</td>
</tr>
<tr>
<td>PAN υψηλής αντοχής C</td>
<td>1700</td>
<td>3500-5000</td>
<td>240-300</td>
</tr>
<tr>
<td>PAN υψηλής ελαστικότητας C</td>
<td>1900</td>
<td>2300-3000</td>
<td>350-450</td>
</tr>
<tr>
<td>Λεπτές νυφάδες SiC</td>
<td>3200</td>
<td>21000</td>
<td>840</td>
</tr>
<tr>
<td>Al₂O₃ Saffil</td>
<td>3300</td>
<td>>2000</td>
<td>300</td>
</tr>
<tr>
<td>Al₂O₃ FP</td>
<td>3900</td>
<td>1380-2070</td>
<td>380</td>
</tr>
<tr>
<td>SiC Nicalon</td>
<td>2550</td>
<td>2480-3240</td>
<td>179-207</td>
</tr>
<tr>
<td>Ιστάμενη τέρφα</td>
<td>1600-2600</td>
<td>143-310</td>
<td>-</td>
</tr>
<tr>
<td>Κενόσφαιρες Ιστάμενης τέρφας</td>
<td>400-600</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fiberfrax</td>
<td>2730</td>
<td>1600</td>
<td>104</td>
</tr>
</tbody>
</table>

Επίσης οι Prasad και Asthana [15], αναφέρουν ότι για τις ανάγκες της αυτοκινητοβιομηχανίας, έχει δηθεί έμφαση στην ανάπτυξη οικονομικών προστίτων συνθέτων μήτρας Al, με ενισχυτικό υλικό SiC και Al₂O₃, με σκοπό τη μείωση του βάρους και την αύξηση του βαθμού απόδοσης του
κινητήρα και προφανή οφέλη αναφορικά με την κατανάλωση καυσίμου και τις εκπομπές του οχήματος. Ως εκείνη, η αντικατάσταση εξαρτημάτων του κινητήρα από χυτοσιδηρό με άλλα, αντιστοίχως ελαφροβαρή κράματα Al, απαιτεί την υπέρβαση της κακής πρόσφυσης και της αντοχής θραύσης του αλουμινίου με τη διασπορά σωματιδίων SiC, Al₂O₃ και γραφίτη σε αυτό.
Επιπλέον, είναι δυνατόν να επιτευχθεί αυξημένη πίεση στον κύλινδρο (και ως εκ τούτου υψηλότερες επιδόσεις του κινητήρα) καθώς τα σύνθετα υλικά μήτρας Al μπορούν να αντέχουν σε υψηλότερο μηχανικό και θερμικό φορτίο και να μειώσουν τις απώλειες θερμότητας του συστήματος.
Οι Sudarshan και Surappa [16] μελέτησαν την τριβολογική συμπεριφορά συνθέτων μήτρας κράματος Al (A356) που περιέχει υπάρμενη τέφρα σε ποσοστό 6 και 12 % κ.ο.. Η συμπεριφορά της τριβής ξηρής ολίσθησης του μη-ενισχυμένου κράματος και του συνθέτου υλικού μελετήθηκε με τη χρήση τριβομετρών ακίδας σε δίσκο (pin on disk) σε φορτία 2, 10, 20, 50, 65 και 80 N με σταθερή ταχύτητα ολίσθησης 1 m/s. Τα αποτελέσματα έδειξαν ότι η αντίσταση της τριβής ξηρής ολίσθησης του μη-ενισχυμένου κράματος αλουμινίου με υπάρμενη τέφρα είναι σχεδόν παρόμοια με εκείνη των σύνθετων υλικών με Al₂O₃ και SiC. Τα σύνθετα εμφανίζουν καλύτερη αντοχή στη φθορά σε σχέση με το μη-ενισχυμένο κράμα μέχρι φορτίου της τάξεως των 80 N. Το μέγεθος των σωματιδίων της υπάρμενης τέφρας και της κ.ο. συμμετοχής τους στο σύνθετο επηρεάζει σημαντικά τις ιδιότητες της αντίστασης στη φθορά και της τριβής του σύνθετου υλικού. Σε μεγάλα φορτία (>50N), όπου τα σωματίδια υπάρμενης τέφρας λειτουργούν ως συστατικά που φέρουν φορτίο, η αντίσταση στη φθορά του σύνθετου υλικού με σωματίδια τέφρας μεγέθους 53 έως 106 μπήταν ανώτερη από εκείνη του σύνθετου υλικού με σωματίδια μεγέθους 0.5-400 μπ. Συμπεραίνεται ότι: α) Η ενσωμάτωση υπάρμενης τέφρας 6% κ.ο. σε κράμα A356 Al έχει ως αποτέλεσμα τη μείωση της τριβής ξηρής ολίσθησης (10 και 20 N), β) Τα σύνθετα υλικά ενισχυμένα με 12% κ.ο. υπάρμενη τέφρα παρουσιάζουν χαμηλότερο ρυθμό φθοράς σε σχέση με το μη-ενισχυμένο κράμα στην περιοχή φορτίων 20-80 N και γ) Όσον αφορά στα σύνθετα υλικά με υπάρμενη τέφρα 12% κ.ο., παρατηρήθηκε ότι όσο μικρότερο είναι το μέγεθος των σωματιδίων, τόσο χαμηλότερος είναι και ο ρυθμός φθοράς των υλικών.
Ο Ipek [17] μελέτησε τα χαρακτηριστικά της φθοράς πρόσφυσης του σύνθετου υλικού μήτρας A4147 Al και ενισχυτικού υλικού B₄C σε ποσοστά 10, 15 και 20% κ.β. και του σύνθετου υλικού με μήτρα Al και ενισχυτικού υλικό σωματίδια SiC σε ποσοστό 20% κ.β. Τα δύο σύνθετα υλικά παρήχθησαν με μεθόδους τημένου μετάλλου και μελετήθηκαν σε συνθήκες ξηρής τριβής και η συμπεριφορά τους συγκρίνονται με σύνθετο υλικό μήτρας A4147 Al και ενίσχυσης SiC 20% wt. Τα αποτελέσματα έδειξαν τα παρακάτω:
Α. Θεωρητικό Μέρος

1. Η ανθεκτικότητα των συνθέτων υλικών A4147 Al/B4C στη φθορά πρόσφυσης εξαρτάται από την ποσότητα των σωματιδίων B4C,

2. Η διακόμανση του ρυθμού φθοράς των συνθέτων υλικών δεν αλλάζει με την αύξηση της ποσότητας του εμπεριεχομένου B4C σε ποσοστά άνω του 15% κ.β., υπό αυτές τις συνήθεις πειραματισμού, λόγω ελάχιστης αποκόλλησης επιφανειακών τμημάτων του συνθέτου,

3. Ο μηχανισμός φθοράς άλλαξε από φθορά πρόσφυσης σε φθορά εκτριβής, με την αύξηση του ποσοστού συμμετοχής του B4C,

4. Τα θρυμματισμένα σωματίδια κατά τη διάρκεια των δοκιμών της φθοράς έχουν, ως επί το πλείστον, ενσωματωθεί στην μήτρα αλουμινίου. Συνεπώς η μήτρα αλουμινίου είναι δυνατόν να συγκρατήσει τα αποκολλώμενα σωματίδια κατά την διάρκεια της φθοράς,

5. Η τραχύτητα του φθορμένου τμήματος της επιφάνειας μπορεί να γίνει ένας αποδεκτός δείκτης για τον μηχανισμό φθοράς,

6. Το περιεχόμενο του συνθέτου υλικού Al/B4C για τη βέλτιστη αντίσταση στην φθορά δεν αντιτίθεται πλήρως στην πλαστική παραμόρφωση της μήτρας αλουμινίου,

7. Τα σωματίδια SiC έχουν ισχυρότερη επίδραση στις ιδιότητες φθοράς του κράματος A4147 Al σε σύγκριση με τα σωματίδια B4C, είτε λόγω ισχυρότερης προσκόλλησης στη μήτρα κράματος αλουμινίου, είτε γιατί τα σωματίδια SiC έχουν καλύτερη διαμορφωτική από το κράμα A4147 Al σε σχέση με τα σωματίδια B4C.

Ο Arik και άλλοι [18], ασχολήθηκαν με την παραγωγή και τη μελέτη της αντοχής στη φθορά χωρίς λίπανση, του συνθέτου υλικού Al-Al4C3 που παράχθηκε με τη μέθοδο της μηχανικής κραματοποίησης. Οι τριβολογικές ιδιότητες του συνθέτου μελετήθηκαν με τη μέθοδο ακίδας σε δίσκο. Στην περίπτωση κατά την οποία εφαρμόζονταν μικρή δύναμη, σχηματίστηκαν ένα μηχανικά σταθερό στρώμα Fe στην ακίδα, το οποίο μείωσε το ρυθμό φθοράς του συνθέτου. Ωστόσο, σε εύρος μεγάλων φορτιών, σχηματίζονταν ένα μηχανικά παραμορφωμένο στρώμα στην επιφάνεια των δειγμάτων, το οποίο αύξανε το ρυθμό της φθοράς του υλικού. Γενικότερα παρατήρησαν ότι ο σχηματισμός σταθερού στρώματος Fe στην επιφάνεια του συνθέτου Al-Al4C3 σε μικρό εύρος δυνάμεων οδηγούσε σε μικρότερο ρυθμό φθοράς, ενώ υπό ισχυρότερα φορτία οδηγούσε σε παραμόρφωση αυτού του στρώματος, το οποίο λόγω δημιουργίας θραυσμών ή θραυσματισμών αύξανε σημαντικά τον ρυθμό φθοράς.

Ο Mondal και άλλοι [19] μελέτησαν τη συμπεριφορά της φθοράς του κράματος AE42 Mg και του συνθέτου υλικού με κράμα AE42 Mg και 20% κ.β. μικρές ίνες saffil (τύπου κεραμικού ενυπνικτικού υλικού) σε κατάσταση τριβής ξηρής ολίσθησης με τη μέθοδο της ακίδας σε δίσκο για φορτία από 5–40Ν και ταχύτητες περιστροφής 0.838, 1.676 και 2.513 m/s για συνολικά
Α. Θεωρητικό Μέρος

dιανυθείσα απόσταση ίση με 2.5 km. Τόσο στην περίπτωση του Mg όσο και των συνήθων υλικών του, αυξάνεται ο ρυθμός φθοράς με την αύξηση του επιβαλλομένου φορτίου. Για όλες τις ταχύτητες ολίσθησης, παρατηρείται διασταύρωση των τιμών ρυθμού φθοράς με την αύξηση των τιμών του φορτίου. Παραδείγματος χάριν, πάνω από ορισμένο φορτίο, ο ρυθμός φθοράς των συνθέτων γίνεται μεγαλύτερος από αυτόν του κράματος, και η διασταύρωση αλλάζει σε χαμηλότερα φορτια με αύξηση της ταχύτητας ολίσθησης. Επιπλέον, παρατήρησαν ότι οι βασικοί μηχανισμοί βρέθηκαν να είναι η φθορά εκτριβής και η οξεία πλαστική παραμόρφωση για το μη ενισχυμένο κράμα. Όσον αφορά στο σύνθετο υλικό, ο κύριος παράγοντας που επηρεάζει το ρυθμό φθοράς του, είναι η θραύση των εμπειρεχόμενων ινών του.

Ο Zeng [20] μελέτησε συγκριτικά την παρασκευή και τις ιδιότητες συνθέτων υλικών μήτρας μπρούτζου με ίνες C, με και χωρίς επικάλυψη Cu. Τα σύνθετα υλικά στην περίπτωση αυτή, παρασκευάσθηκαν με τις μεθόδους της χημικής επικάλυψης και της κονιομεταλλουργίας αντίστοιχα. Τα αποτελέσματα έδειξαν ότι η χημική επικάλυψη Cu σε συνδυασμό με θερμή συμπίεση και πυροσβεστικό μπορεί να χρησιμοποιηθεί για την παρασκευή σύνθετων υλικών μπρούτζου και ινών άνθρακα με καλές φυσικές ιδιότητες, καλές τριβολογικές επιδόσεις και καλή αντίσταση στον εφελκυσμό. Οι ίνες C με επικάλυψη Cu μπορούν να υποβοηθήσουν τη δημιουργία διεπιφανειακών δεσμών μεταξύ των ινών άνθρακα και της μήτρας Cu. Επιπλέον, οι δοκιμές εφελκυσμού έδειξαν αναβάθμιση των σύνθετων υλικών Cu/ινών C, όσον αφορά την αντοχή τους στον εφελκυσμό.

Α.1.2.5 Μείωση βάρους

Η ανάγκη για ελαφροβαρείς πρότεις όλες γίνεται όλο και μεγαλύτερη σε διαφορές βιομηχανικές και εμπορικές εφαρμογές, με την αύξηση των αναγκών εξοικονόμησης ενέργειας και φυσικών πόρων. Στην κατεύθυνση αυτή, η κατασκευή και χρήση ελαφροβαρών MMC's, μπορεί να προσφέρει καίριες λύσεις. Σε πολλές περιπτώσεις, η προσθήκη ενσωματικής φάσης αυξάνει την πυκνότητα κατά ένα μικρό ποσοστό, αλλά η αύξηση αυτή είναι συνήθως αποτέλεσμα επιδόσεις για ενίσχυση των αντοχών, δυσκαμψίας κλπ. Ωστόσο, υπάρχει μια πληθώρα περιπτώσεων, όπου η προσθήκη ενίσχυσης σε μορφή σωματιδίων (συμπεριλαμβανομένων των υπάρχων τεφρών) ή ινών μειώνει αποφασιστικά την πυκνότητα των τελικών συνθέτων υλικών. Κλασσικό παράδειγμα αποτελεί η τεχνολογία τροποποίησης των υπερκραμών Ni, έτσι ώστε να μειωθεί η πυκνότητά τους. Ένα από τα σημαντικά προβλήματα που αντιμετωπίζονται είναι αυτό της χημικής αντίδρασης του Ni με το εκάστοτε υλικό ενίσχυσης. Επίσης, ακόμα και χωρίς παράγονα
Α. Θεωρητικό Μέρος

Κάποιες αντίδρασες, η παρουσία μεγάλων εύθραυστων συστατικών τείνει να διαταράσσει τους περίπλοκους μηχανισμούς αύξησης αντοχής οι οποίοί λαμβάνουν χώρα σε αυτά τα υλικά [2].

A.1.2.6 Συντελεστής θερμικής διαστολής

Κατά τον ίδιο τρόπο με τον οποίο η διαφορά στη δυσκαμψία μεταξύ μετάλλων και κεραμικών μπορεί να χρησιμοποιηθεί προκειμένου να ληφθούν τελικά σύνθετα υλικά μεγαλύτερου μέτρου ελαστικότητας, έτσι και η χαμηλή θερμική διαστολή των κεραμικών μπορεί να χρησιμοποιηθεί για την προσαρμογή αυτής των σύνθετων σε τιμές συμβατές με τις απαιτήσεις διαφόρων υλικών. Το γεγονός αυτό μπορεί να φανεί χρήσιμο σε ένα μεγάλο εύρος εφαρμογών, από την κατασκευή πλακετών ηλεκτρονικών συσκευών, έως την κατασκευή τμημάτων οπτικών πλατφορμών και καθρεφτών laser.

A.1.2.7 Θερμική και ηλεκτρική αγωγιμότητα

Στο σχεδιασμό των συνθέτων υλικών, το σύνηθες πρόβλημα που παρουσιάζεται αφορά στον επιθυμητό συνδυασμό καλής θερμικής και ηλεκτρικής αγωγιμότητας με καλές μηχανικές ιδιότητες, καθώς η ενίσχυση του μετάλλου για αύξηση των μηχανικών ιδιοτήτων του, οδηγεί σε σημαντική μείωση της αγωγιμότητάς του. Εφόσον η χρήση κεραμικών εγκλίσεων επιφέρει σημαντική ενίσχυση των αντοχών του υλικού, υπάρχει ενδιαφέρον αναφορικά με τη μεταβολή της αγωγιμότητας των συνθέτων συναρτήσεως των ιδιοτήτων οι οποίες ενισχύονται.

Η θερμική διαχείται εντός των υλικών μέσω της μετάδοσης φωτονιών και ελεύθερων ηλεκτρονίων. Και οι δύο αυτοί φορείς διανύουν συγκεκριμένη μέση ελεύθερη διαδρομή λ μεταξύ των συγκρούσεων όπου γίνεται η μεταφορά της ενέργειας, έχοντας μέση ταχύτητα ν. Η θερμική αγωγιμότητα συνδέεται με αυτές τις δύο παραμέτρους μέσα του παρακάτω τύπου:

\[
K = \frac{1}{3} C \cdot v \cdot \lambda
\]

, όπου Κ ο συντελεστής θερμικής αγωγιμότητας και C η θερμοχωρητικότητα [2].

Παρόμοιο νόμο μετάδοσης ακολουθεί και η διάδοση του ηλεκτρικού ρεύματος:

\[
j = \sigma \cdot E
\]

, όπου j η πυκνότητα του ρεύματος (A/m²), σ η αγωγιμότητα 1/(Ω⋅m) και E το δυναμικό (V/m).
Α. Θεωρητικό Μέρος

Στην αγωγή του ρεύματος ως φορείς λειτουργούν μόνο τα ηλεκτρόνια και τα ιόντα. Επειδή τα ιόντα είναι λιγότερο κινητικά από τα ηλεκτρόνια, τα υλικά με ελεύθερα ηλεκτρόνια όπως π.χ. τα μέταλλα παρουσιάζουν πολύ μεγαλύτερη ηλεκτρική αγωγιμότητα από άλλα υλικά. Συνεπώς τα MMC's αντιμετωπίζονται σαν να έχουν ενισχυθεί με μονοτικά υλικά. Υπάρχει επομένως πρόθεση σχεδιασμού σύνθετων υλικών βασισμένων σε καθαρά μέταλλα για να δώσουν βελτιωμένες μηχανικές ιδιότητες αλλά και ηλεκτρική αγωγιμότητα [2].

A.1.2.8. Ιδιότητες μηχανικής απόσβεσης ταλαντώσεων

Σε πολλές πρακτικές εφαρμογές, είναι καθοριστικής σημασίας ο ρυθμός με τον οποίο τα ελαστικά κύματα αποσβένονται σε ένα υλικό. Ένα χαρακτηριστικό πλεονέκτημα των υψηλών τέτοιων ρυθμών είναι η μείωση του θορύβου και των δονήσεων των μηχανημάτων που καρασκευάζονται από τα υλικά αυτά. Η ικανότητα απόσβεσης ταλαντώσεων είναι δείγμα ανελαστικής συμπεριφοράς του υλικού, δηλαδή της αντιδρασής του σε χρονικά εξαρτώμενο φορτίο και ποικίλει σημαντικά στα διάφορα είδη μετάλλων. Όσον αφορά στα MMC's, υπάρχουν πέντε διαφορετικά είδη μηχανισμός απόσβεσης των ταλαντώσεων:

1. Η τοπική κίνηση μετατοπίσεων, είτε καθός αποδεσμεύονται από τα σημεία όπου είναι στερεά, είτε χαλαρώνονται σε χαμηλότερες ενεργειακές στάθμες. Τέτοιου είδους κίνηση μπορεί να προκύψει με τον ιδίο τρόπο όπως και στα μη-ενισχυμένα μέταλλα και αποτελεί τον πιο σημαντικό μηχανισμό απόσβεσης ταλαντώσεων στα MMC's.

2. Η κίνηση ολισθήσεως μεταξύ των κόκκων, η οποία λαμβάνει χώρα στην περιοχή των ορίων τους, δημιουργεί δύναμη τριβής η οποία μπορεί να αποσβέσει την ταλάντωση. Συνεπώς, μέσω της δυνατότητας ελέγχου της κοκκομετρίας των σωματιδίων ενίσχυσης, είναι δυνατόν να ελεγχθούν και οι αποσβέσεις της ταλάντωσης.

3. Η τριβή ξηρής ολίσθησης υπό την επιφορά διεπιφανειακής διατμήτικης τάσης, όταν αυτή γίνεται υπό την επίδραση υψηλών μεγεθών τάσεων.

4. Η διάχυση κενών θέσεων η οποία συνήθως απαιτεί αρκετά μεγάλες θερμοκρασίες και χαμηλές συχνότητες ταλάντωσης.

5. Οι τοπικές διεργασίες διεπιφανειακής διάχυσης, οι οποίες λαμβάνουν χώρα όταν ο δεσμός που αναφέρεται στην έννοια των σωματιδίων είναι ασθενής. Ετσι είναι δυνατόν να αποφευχθεί ποσότητα ενέργειας ικανή για την απόσβεση της ταλάντωσης [21]. Στην Εικόνα A.5 παρουσιάζονται σχηματικά τα πέντε είδη των μηχανισμών αυτών.
Α. Θεωρητικό Μέρος

Εικόνα Α.5. Είδη μηχανισμών απόσβεσης ταλάντωσης [21].

A.1.2.9. Ανθεκτικότητα στην οξείδωση και τη διάβρωση

A.1.2.9.1 Υποβάθμιση της επιφάνειας των MMC’s σε περιοχές υψηλών θερμοκρασιών

Υπάρχουν αρκετές εφαρμογές των MMC’s στις οποίες η ανθεκτικότητά τους στην οξείδωση ή σε κάποια άλλη μορφή διάβρωσης σε περιοχή υψηλών θερμοκρασιών διαδραματίζει ιδιαίτερα σημαντικό ρόλο. Ένα χαρακτηριστικό παράδειγμα είναι η ενίσχυση του Ti για την αύξηση της αντίστασής του στον ερπισμό και την αύξηση της δυσκαμψίας του σε υψηλές θερμοκρασίες. Αυτά τα πλεονεκτήματα δεν θα έχουν παρά μικρή μόνο αξία, εφόσον υπάρχει έντονο πρόβλημα οξείδωσης του σε υψηλές θερμοκρασίες. Η πρόταση περίπτωση η οποία θα πρέπει να διερευνηθεί είναι εφόσον το ενισχυτικό υλικό επηρεάζει την ανθεκτικότητα του μητρικού υλικού στην οξείδωση. Συνήθως η ύπαρξη ενίσχυσης για την αύξηση μηχανικών αντοχών μειώνει την αντίσταση σε οξείδωση του υλικού της μήτρας [2]. Τα προβλήματα διάβρωσης της επιφάνειας, αλλά και του εσωτερικού του σύνθετου υλικού είναι μεγαλύτερα όταν η ενίσχυση γίνεται με συνεχείς μακρές ίνες, καθώς όταν η επιφάνεια τους εξαρτάται στην ελεύθερη επιφάνεια τότε αυτές δροντο οι μεταφορές O₂ στο εσωτερικό του υλικού. Ωστόσο αφορά στην υποβάθμιση της ενίσχυσης, τα περισσότερα κεραμικά πρόσθετα είναι ανθεκτικά στην διάβρωση [22].

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακός

23
Α. Θεωρητικό Μέρος

A.1.2.9.2 Διάβρωση υδατικού περιβάλλοντος των MMC’s

Η ανθεκτικότητα των MMC’s στη διάβρωση σε περιβάλλον πλούσιο σε ηλεκτρολύτες, υποβαθμίζεται όταν υπάρχει ενισχυτική φάση, εκτός από την περίπτωση κατά την οποία το υλικό της ενίσχυσης δεν δύναται να διαβρωθεί από τη φύση του. Για παράδειγμα, οι ίνες W μέσα σε κράμα U παραμένουν ανέπαφες ενώ το κράμα διαβρώνεται με τον ίδιο ρυθμό της μητρικής φάσης.

Ο Saxena και άλλοι [23] μελέτησαν τη συμπεριφορά των συνθέτων υλικών αλουμινίου-γραφίτη ως προς την ανθεκτικότητά τους στη διάβρωση. Στη συγκεκριμένη μελέτη, οι έρευνητές συμπέραναν ότι τα σύνθετα υλικά αλουμινίου-γραφίτη δεν παρουσίαζαν καθόλου διάβρωση σε λάδι μηχανής SAE-40 στους 150°C μετά από 1000 h έκθεσής τους σε αυτό. Επιπλέον, από μελέτες που έγιναν σε προσομοίωση θαλάσσιου περιβάλλοντος (ψεκασμός με αλατόνερο και βότηση σε αυτό), βρέθηκε ότι ο γραφίτης οδήγησε σε αύξηση του ρυθμού διάβρωσης από 2.5 mdd σε 40.8 mdd. Αντίστοιχη μελέτης διαφορετικών ενισχυτικών υλικών δείχνουν μικρή αύξηση του ρυθμού διάβρωσης από 2.8 σε 16.10 mdd. Παρόμοιες μελέτες στο σύστημα αλουμινίου-γραφίτη έχουν γίνει από τους Chandrasekhan και άλλοι [24], Chandrasekhar και άλλοι [25] και Krishnan και άλλοι [26].

Οι Prabhakaran και Roy [27] μελέτησαν το ανοξείδωτο ατσάλι τύπου 422 σε εσωτερικές τάσεις θραύσης λόγω διάβρωσης καθώς και την τοπική διάβρωση σε ουδέτερα και όξινα υδατικά διαλύματα σε θερμοκρασία περιβάλλοντος, και σε πιο υψηλές από αυτήν. Παρατήρησαν ότι δεν βρέθηκαν αστοχίες σε ουδέτερο διάλυμα, σε οποιαδήποτε θερμοκρασία κατά την εφαρμογή σταθερού φορτίου. Επιπλέον, τα δείγματα δεν παρουσίασαν καμία αστοχία σε όξινο διάλυμα στους 30°C.
Α. Θεωρητικό Μέρος

Α.2 Κονιομεταλλουργία

Η κονιομεταλλουργία είναι μία από τις συνηθέστερες μεθόδους παραγωγής συνθέτων υλικών μεταλλικής μήτρας. Η αξιοσημείωτη ανάπτυξη της μεθόδου αυτής οφείλεται στο γεγονός ότι σχεδιάστηκε, αναπτύχθηκε και εφαρμόζεται στην παραδοσιακή μεταλλουργία και ενδείκνυται και στην περίπτωση των συνθέτων υλικών μεταλλικής μήτρας. Στην Εικόνα Α.6 απεικονίζονται τα θεμελιώδη βήματα για την παραγωγή συνθέτων υλικών μεταλλικής μήτρας με κονιομεταλλουργία.

Εικόνα Α.6. Βασικά βήματα παραγωγής MMC’s με τη χρήση της κονιομεταλλουργίας.

Η παρασκευή συνθέτων υλικών με τη μέθοδο της κονιομεταλλουργίας εξελίσσεται σε τρεις φάσεις οι οποίες, ξεκινώντας από την επεξεργασία των πρώτων υλών, καταλήγουν στο τελικό προϊόν:

Η πρώτη φάση αφορά στην ανάμιξη και στην προετοιμασία των κόνων που θα είναι τα συστατικά του μίγματος που θα επεξεργασθεί στα επόμενα βήματα. Σχετικά με το βήμα της ανάμιξης, αυτό είναι μια απλή λειτουργία μεταξύ της ξηρής κόνως του κράματος και της κόνως του ενσωματωμένου υλικού, επιτρέποντας αποτελεσματικό έλεγχο κατά την προετοιμασία του μίγματος. Ωστόσο, η απόκτηση ενός ενιαίου μίγματος κατά τη διάρκεια της ανάμιξης είναι δύσκολη, ειδικά με ενσωματωμένο υλικό νιφάδες, οι οποίες τέννουν να συσσωματώνονται σε πυρήνες και είναι πρακτικά δύσκολο να πληρωθούν με σωματίδια της μήτρας. Για τη διαμόρφωση αυτών των συσσωματωμάτων, ένας σημαντικός παράγοντας είναι το σχετικό μέγεθος των σωματιδίων. Συγκεκριμένα, σε ορισμένες εφαρμογές, για να αντιμετωπισθεί αυτό το πρόβλημα αναπτύσσεται μια τεχνική με ψεκασμό τηγμένου μετάλλου, η οποία οδηγεί στην δημιουργία σωματιδίων διάμετρου ~100 μ, με σπογγώδη δομή, επιτρέποντας στην ενσωματωμένη υλικά να εισχωρήσουν αποτελεσματικά στη μήτρα. Αντίθετα, τα σωματίδια με μεγάλο ποσοστό αντιοεικόνεται για τη διεργασία αυτή καθώς έχουν χαμηλή ικανότητα ροής και χαμηλή πυκνότητα συμπίεσης, λόγω της μορφολογίας τους. Η άλεση είναι οστόσο η διαδικασία με την οποία οι κόνες θα συγχωνευθούν προκειμένου να επιτευχθεί η μέγιστη δυνατή ομογενοποίηση των σωματιδίων των πρώτων υλών. Η πιο συνηθισμένη τεχνική είναι η μηχανική άλεση κατά την οποία ένα μηχάνημα
Α. Θεωρητικό Μέρος

σύνθετης δημιουργεί υψηλή θερμότητα λόγω τριβής από υψηλής ενέργειας σύνθλψης, προκαλώντας στις διεπιφάνειες των σωματιδίων μικρο-συγχονεύσεις που μπορεί να διευκολύνουν την επόμενη φάση της συμπίεσης. Παρά την αποτελεσματικότητα της διαδικασίας, είναι σημαντικό να αποδειχθεί ιδιαίτερη προσοχή στην πιθανότητα μόλυνσης του μίγματος από το υλικό του αλεστικού εξοπλισμού.

Η τρίτη φάση είναι η διαδικασία της συμπίεσης, κατά την οποία οι κόνες του μίγματος συγκαλύπτονται μεταξύ τους μέσω της πυροσυσσωμάτωσης για να (συν)αποτελέσουν το τελικό προϊόν. Η συμπίεση λαμβάνει χώρα σε θερμοκρασία όσο το δυνατόν υψηλότερη, προκειμένου να φέρει τη μήτρα σε πιο έλατη κατάσταση, χωρίς όμως να προκληθεί η δημιουργία υψηλής φάσης, η οποία θα μπορούσε να επηρεάσει δυσμενώς τις μηχανικές ιδιότητες του προϊόντος, προκαλώντας το διαχωρισμό των κόκκων και τη δημιουργία επιβλαβών διαμεταλλικών ενώσεων. Εντούτοις, μια μικρή ποσότητα υγρού μετάλλου επιτρέπει τη μείωση της πίεσης που απαιτείται για την ολοκλήρωση της ενοποίησης. Επιπλέον, η παρουσία μη-παραμορφώσιμων κεραμικών εγκλείσεων βοηθάει στην ελάττωση του απαιτούμενου χρόνου για την αρχική μορφοποίηση, επειδή με τις οδοντωτές και αιχμηρές άκρες τους προκαλούν ενίσχυση των τοπικών τάσεων στην μεταλλική μήτρα. Παρόλα αυτά, τα συσσωματώματα κεραμικών σωματιδίων που ενδέχεται να σχηματισθούν μπορεί να αποτελέσουν σημαντικό εμπόδιο στην ολοκλήρωση της διαδικασίας.

Πιο αποτελεσματικός τεχνικός εκπαιδευτικός μέθοδος συμπίεσης μπορεί να είναι η συμπίεση μέσω κυλίνδρων, όπου εφαρμοζόταν υψηλές πίεσες σε μίλιο, τόσο σε υψηλή θερμοκρασία (υψηλότερη από τη θερμοκρασία ανακρυστάλλωσης της μήτρας) όσο και σε χαμηλή θερμοκρασία (κάτω από την ανακρυστάλλωση της μήτρας). Με το ίδιο όριο θερμοκρασίας, άλλες, είτε θερμές είτε ψυχρές διαδικασίες συμπίεσης μπορούν να εφαρμοσθούν, και αφού (υψηλότερη) οι αποδοτικότερες συμπίεσης (extrusion) και (υψηλότερη) εξοπλισμοί (forging).

Ολοκληρώνοντας τη φάση της συμπίεσης-μορφοποίησης, συνήθως σε σύνθετα υλικά με ασυνεχή ενισχυτικά υλικά, εφαρμόζονται και άλλες τεχνικές παραμόρφωσης με στόχο να βελτιώθηκε η μικροδομή και κατ’ επέκταση οι μηχανικές ιδιότητες του σύνθετου υλικού. Στη συνέχεια γίνεται η μορφοποίηση και μερικές φορές κάποια δεύτερογενής επεξεργασία. Για παράδειγμα, η εξόρθωση συνήθως χρησιμοποιείται για να δημιουργηθεί επαρκής διατμική παραμόρφωση στο εσωτερικό των υλικών, νέα σύνορα στους κόκκους, καθώς επίσης και ισχυρότερες διεπιφάνειες. Για να ελαττωθεί το κόστος της όλης διαδικασίας, υπάρχει η δυνατότητα συνδυασμού της εξόρθωσης με τη συμπίεση. Το πορώδες του υλικού εξαλείφεται χάρη στην ύπαρξη διατμικής ροής και υδραυλικής συμπίεσης κατά την εξόρθωση. Αυτές οι τεχνικές βοηθούν να ευθυγραμμίστει το ενισχυτικό υλικό με το μητρικό. Παρακάτω (A.2.1-
A. Θεωρητικό Μέρος

A.2.5) αναφέρονται ορισμένες πολύ σημαντικές μέθοδοι για τη συμπίεση και μορφοποίηση των σύνθετων υλικών μεταλλικής μήτρας.

A.2.1. Έγχρηση κόνεως μετάλλου σε καλούπι με ψεκασμό

Η έγχρηση κόνεως μετάλλου σε καλούπι συνδυάζει τα πλεονεκτήματα της έγχρησης, η οποία προσδίδει μεγάλη ικανότητα μορφοποίησης στο μίγμα των κόνεων, και της κονιομεταλλουργίας όσον αφορά στη δυνατότητα κατεργασίας κόνεων μετάλλων και κεραμικών. Η τεχνική αυτή προσφέρει τη δυνατότητα για την παραγωγή MMC's σε διαφορετικά σχήματα και μεγέθη. Τα βήματα που ακολουθούνται για τη διαδικασία αυτή είναι τέσσερα: στην αρχή γίνεται η ανάμιξη των πρώτων υλών, δηλ. του μετάλλου και του ενισχυτικού υλικού. Έπειτα λαμβάνει χώρα η έγχρηση του μίγματος σε καλούπι, στη συνέχεια η αποδέσμευση του καλούπιο και τέλος η έγχρηση και πυροσυσσομάτωση του μορφοποιημένου αντικειμένου [28].

A.2.2. Θερμή ισοστατική συμπίεση

Η θερμή ισοστατική συμπίεση περιλαμβάνει την ταυτόχρονη εφαρμογή υψηλής πίεσης μέσω αδρανούς αερίου και τη θέρμανση σε ανυψωμένη θερμοκρασία μέσα σε ειδικό δοχείο. Η πίεση που εφαρμόζεται είναι ισοστατική λόγω της χρήσης του αερίου και έτσι δεν υπάρχουν μεταβολές στη γεωμετρία του αντικειμένου. Κάτω από κατάλληλες συνθήκες θέρμανσης και πίεσης, οι εσωτερικοί πόροι και οι ατέλειες στο στερεό σώμα καταρρέουν και ενώνονται. Ακόμα δεν υπάρχει πλήρης κατανόηση της επίδρασης της θερμής ισοστατικής συμπίεσης στη μικροδομή και στις ιδιότητες των MMC’s [29].

A.2.3. Συνθετική αντίδραση καύσης

Διδεται μεγάλο βάρος στην εύρεση τεχνικών για την in situ παρασκευή σύνθετων υλικών μεταλλικής μήτρας. Η συνθετική αντίδραση καύσης είναι μία τέτοια μέθοδος, η οποία είναι επίςης γνωστή και ως «σύνθεση αυτοπαραγωγής υψηλής θερμοκρασίας». Στην τεχνική αυτή, η θερμότητα που παράγεται κατά την αντίδραση των συστατικών είναι αρκετή ώστε να χρησιμοποιηθεί για την συγκάλληση τους και τη σύνθεση των MMC’s [30].

Διδακτορική Διατριβή, Γρηγόριος Σ. ιτακος

27
Α. Θεωρητικό Μέρος

A.2.4. Συμπίεση en ψηφρό

Η τεχνική αυτή είναι όμοια με τη θερμή συμπίεση, με τη διαφορά ότι στην περίπτωση αυτή παρέχεται η δυνατότητα είτε μονοαζονικής, είτε ισοστατικής συμπίεσης. Η εν ψηφρό συμπίεση εξασφαλίζει ότι το άγητο υλικό θα είναι διαστασιολογικά ακριβές, καθώς τελικά λαμβάνει το σχήμα (μέγεθος και διαστάσεις) του καλωσιού στο οποίο και συμπιέζεται. Όσον αφορά στη μονοαζονική συμπίεση, απαιτούνται σωματίδια ακανόνιστου μεγέθους, έτσι ώστε να εξασφαλιστεί στο άγητο αντικείμενο μεγαλύτερη αντοχή από την ελαστική παραμόρφωση των ξεχωριστών σωματιδίων με τα γειτονικά τους. Ενα μιονέκτημα της μονοαζονικής συμπίεσης είναι η διαφοροποίηση στην πυκνότητα η οποία μπορεί να προκύψει εντός των διαφόρων περιοχών του συμπτιμημένου μήγατος, λόγω δυνάμεων τριβής, είτε μεταξύ των σωματιδίων των πρώτων υλών, είτε μεταξύ σωματιδίων και τοιχώματος της μήτρας μορφοποίησης [31, 32].

Συγκεκριμένα, η μορφολογία της κόνως Al αλλάζει κατά τη συμπίεση λόγω πλαστικής παραμόρφωσης [1].

A.2.5 Ανάμιξη και πυροσυσσωμάτωση

Όπως αναφέρθηκε προηγουμένως, η ανάμιξη και η πυροσυσσωμάτωση είναι δύο πολύ σημαντικά στάδια για την παρασκευή του σύνθετου υλικού, από τα οποία το ένα προηγείται της συμπίεσης και το άλλο έπεται αυτής.

Η ανάμιξη των πρώτων υλών, δηλαδή του μετάλλου και του ενισχυτικού υλικού, γίνεται πριν από τη συμπίεση και τη μορφοποίησή τους σε κάποιο καλώσι. Η ανάμιξη διαδραματίζει πολύ σημαντικό ρόλο στην ομοιογένεια του υλικού και στην ομοιόμορφη διασπορά του ενισχυτικού υλικού στη μεταλλική μήτρα. Συνεπώς, οι μετέπειτα ιδιότητες του σύνθετου όπως η αντοχή και η σκληρότητα εξαρτώνται σε μεγάλο βαθμό από την καλή ανάμιξη των πρώτων υλών. Η ανάμιξη μπορεί να γίνει με διάφορους τρόπους σε βιομηχανική κλίμακα, από μεγάλα περιστροφικά mixers μέχρι mixers κορδέλας–λεπίδων [32].

Σε εργαστηριακή κλίμακα, η όλη διαδικασία μπορεί να συμπτυχθεί μέσα σε ένα χρόνο. Ο χρόνος στον οποίο γίνεται η ανάμιξη είναι ιδιαίτερης σημασίας καθώς από ένα ορισμένο σημείο και έπειτα το μήγαμα παίζει να είναι ομοιόμορφο και αρχίζει να διαχωρίζεται. Επίσης, επειδή η ανάμιξη περιλαμβάνει την επιβολή μηχανικών δυνάμεων, η πολύσωρη ανάμιξη προκαλεί την πλάτυνση των σωματιδίων και αυτό έχει συνέπεια στις αντοχές του συνθέτου υλικού [32].

Πυροσυσσωμάτωση ορίζεται ως η θερμική κατεργασία κόνως σε θερμοκρασία κάτω από το σημείο τήξης των κυρίων συστατικών της, με στόχο την ενίσχυση των αντοχών μέσω της

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακος
Α. Θεωρητικό Μέρος

συνέννοσης των κόκκων της. Οι βασικές διεργασίες οι οποίες λαμβάνουν χώρα κατά την πυροσφυσσωμάτωση είναι οι εξής δύο: α) αναδιάταξη των σωματιδίων και β) μεταφορά μάζας από δίαφορα μέρη του στερεού προς τους πόρους του μετάλλου οι οποίοι δεν εξαλείφονται, όσο ελατό και να είναι το μέταλλο [33]. Η κάλυψη των πόρων του ιδίου του μετάλλου γίνεται για θερμοδυναμικούς λόγους και για τη μείωση της ελεύθερης επιφάνειας του υλικού. Κατά την ανάπτυξη του κρυσταλλικού πλήγματος και έξω από τα όρια επαφής των σωματιδίων, σχηματίζονται λαμιό, όπως φαίνεται στην Εικόνα A.7.

Εικόνα A.7. Σχηματισμός λαμιόν μεταξύ των σωματιδίων κατά την πυροσφυσσωμάτωση.

Κατά τη διάρκεια της πυροσφυσσωμάτωσης, το υλικό τείνει να μεταβάλλει την πυκνότητά του και τις διαστάσεις του, ανάλογα με τα όρια των σωματιδίων που αλληλεπιδρούν.

Ένα άλλο μοντέλο πυροσφυσσωμάτωσης που έχει προταθεί από τους Thummler και Thomma είναι το παρακάτω: η διαδικασία της πυροσφυσσωμάτωσης μπορεί να θεωρηθεί ότι εξελίσσεται σε τρία στάδια: Στο πρώτο στάδιο λαμβάνει χώρα η δημιουργία λαμιόν μεταξύ των σωματιδίων η οποία προχωρά γρήγορα, αλλά τα σωματίδια παραμένουν διακριτά. Στο δεύτερο, η δομή ανακρυσταλλώνεται και λαμβάνει χώρα επιφανειακή διάχυση από το ένα σωματίδιο στο άλλο. Στο τρίτο στάδιο, οι μεμονωμένοι πόροι τείνουν να γίνουν σφαιρειδείς και η πύκνωση συνεχίζεται με πολύ χαμηλότερο ρυθμό [34]. Στο διάγραμμα ροής της Εικόνας A.8 παρουσιάζονται πιο αναλυτικά τα στάδια της πυροσφυσσωμάτωσης.
Εικόνα A.8. Στάδια της πυροσβεστικής.

Όσον αφορά στο ενισχυτικό υλικό, αυτό ενσωματώνεται στη μήτρα μέσω φαινομένων διάχυσης τα οποία δημιουργούνται σε υψηλές τιμές θερμοκρασίας και πίεσης. Σε αυτή την περίπτωση, είναι σημαντική η επιστημονική παρακολούθηση των φαινομένων αυτών ώστε να αποφευχθεί η δημιουργία ανεπιθύμητων φάσεων ή ενώσεων στις διεπιφάνειες. Αυτός είναι και ο λόγος για τον οποίο συνήθως λαμβάνει χώρα προ-επεξεργασία των σωματιδίων του ενισχυτικού υλικού, η οποία έχει στόχο την κατάλληλη προετοιμασία των επιφανειών τους πριν δημιουργηθούν οι δεσμοί με το μητρικό υλικό. Εφαρμόζονται υψηλές θερμοκρασίες για να διευκολύνθει η ροή του ενισχυτικού υλικού στη μήτρα, αλλά ο κίνδυνος επίθεσης επιβλαβών χημικών ενώσεων στο ενισχυτικό υλικό πρέπει να εξεταστεί περαιτέρω. Για το λόγο αυτό, η διαδικασία της πυροσβεστικής συνίσταται να λαμβάνει χώρα σε αδρανή ατμόσφαιρα.

Το βήμα της πυροσβεστικής είναι αρκετά σημαντικό και έχουν γίνει αρκετές προσπάθειες δημιουργίας μαθηματικών μοντέλων προσομοίωσης της διαδικασίας σχηματισμού λαμών και γενικότερα ολόκληρης της διαδικασίας από την αρχική σύνδεση των σωματιδίων μέχρι τη συνολική μείωση του πορώδους.

Α. Θεωρητικό Μέρος

A.2.6. Παράγοντες που επηρεάζουν την πυροσβεστική αντιμετώπιση

Οι σημαντικότεροι παράγοντες που επηρεάζουν την πυροσβεστική αντιμετώπιση είναι η θερμοκρασία, ο χρόνος και η ατμόσφαιρα της εστίας της θέρμανσης. Η επίδραση των παραγόντων αυτών στην πυροσβεστική αντιμετώπιση περιγράφεται παρακάτω:

- Θερμοκρασία Πυροσβεστικής. Η αύξηση της θερμοκρασίας πυροσβεστικής αυξάνει σημαντικά το ρυθμό και την έκταση των αλλαγών που διαδραματίζονται κατά τη διάρκεια της συσσωμάτωσης. Στην Εικόνα Α.9 παρουσιάζεται η επίδραση της αύξησης της θερμοκρασίας συναρτήσεις της πυκνότητας του άτομου υλικού.

- Χρόνος Πυροσβεστικής. Αν και η αποτελεσματικότητα της πυροσβεστικής αυξάνεται με την αύξηση του χρόνου παραμονής του μήκος των πρώτων υλών στην εστία θέρμανσης, η εξάρτηση αυτή δεν είναι τόσο σημαντική όσο αυτή της θερμοκρασίας. Η απόλυτη της κινητήριας δύναμης με την αύξηση του χρόνου σε οποιαδήποτε θερμοκρασία είναι ένας από τους λόγους για τους οποίους είναι δύσκολο να εξαλλιωθεί πλήρως το πορώδες μέσο της πυροσβεστικής. Για να επιτευχθούν οι επιθυμητές ιδιότητες των μηχανών χρειάζεται να εφαρμοσθούν μικρότεροι χρόνοι πυροσβεστικής και αντίστοιχα υψηλότερες θερμοκρασίες. Ωστόσο, οι δαπάνες συντήρησης και λειτουργίας του φούρνου αυξάνονται με την αύξηση της επιβαλλόμενης θερμοκρασίας.

- Ατμόσφαιρα Πυροσβεστικής. Η ατμόσφαιρα στην εστία της θέρμανσης διαδραματίζει σημαντικό ρόλο στην πυροσβεστική αντιμετώπιση καθώς μπορεί να καθορίσει επιφανειακές αντιδράσεις μεταξύ των σωματιδίων και του αερίου, αλλά και μέσω της εφαρμογής πιέσεων να επηρεάσει ολόκληρη την διαδικασία.
Εικόνα A.9. Επίδραση της αύξησης της θερμοκρασίας και του χρόνου της πυροσυσσωμάτωσης στην πυκνότητα του ύλικου.

A.2.7 Ιδιότητες των πρώτων υλών που επηρεάζουν την πυροσυσσωμάτωση

Οι ιδιότητες των πρώτων υλών που επηρεάζουν την πυροσυσσωμάτωση συνοψίζονται ως εξής:

- **Μέγεθος σωματιδίων.** Όσον αφορά στα βασικά στάδια της πυροσυσσωμάτωσης, μειώνονται τα μέγεθη των σωματιδίων, αυξάνεται και η αποτελεσματικότητα της διεργασίας. Όσο μικρότερο είναι το μέγεθος των σωματιδίων, τόσο μεγαλύτερη είναι η διεπιφάνεια ύλης/στερεού.

- **Σχήμα σωματιδίων.** Ο βασικός παράγοντας που οδηγεί σε μεγαλύτερη επιφάνεια επαφής μεταξύ των σωματιδίων και σε αύξηση της εσωτερικής επιφάνειας προώθησης της πυροσυσσωμάτωσης. Η μείωση της σφαιρικότητας και η αύξηση της μάκρο- και μικρο-επιφανειακής τραχύτητας βοηθούν καθοριστικά σε αυτή την κατεύθυνση.

- **Σύσταση Σωματιδίων.** Συστάσεις κραμάτων ή ακαθαρσιών μέσα σε ένα μέταλλο μπορεί να επηρεάζουν την κινητική της συσσωμάτωσης. Το αποτέλεσμα μπορεί να είναι είτε επιβλαβές είτε ενεργειτικό, ανάλογα με τη κατανομή και την αντίδραση της πρόσμης. Επιφανειακές επιμολύνσεις είναι συνήθως ανεπιθύμητες. Διασκορπισμένες φάσεις στη μήτρα μπορούν να βελτιώσουν την συσσωμάτωση αναστέλλοντας την κίνηση των ορίων των κόκκων. Η αντίδραση μεταξύ ακαθαρσιών είτε με το μέταλλο είτε με το κράμα σε σχετικά υψηλή θερμοκρασία μπορεί να είναι ανεπιθύμητη.
Α. Θεωρητικό Μέρος

- Πυκνότητα άνηστου υλικού. Μείωση της πυκνότητας του άνηστου υλικού σημαίνει αύξηση της εσωτερικής επιφάνειάς του και, κατά συνέπεια, μεγαλύτερη κινητήριο δύναμη για την πυροσβεσσώματος.

A.2.8. Παράγοντες που επηρεάζουν τις διαστάσεις του συνθέτου υλικού

Οι αλλαγές στις διαστάσεις των συνθέτων που προκύπτουν κατά τη διάρκεια της πυροσβεσσώματος αποτελούν μια σημαντική παράμετρο στην κονιομεταλλουργία, ιδίως όσον αφορά στην παραγωγή υλικών σε μεγάλη κλίμακα, με μικρά περιθώρια αποκλίσεων των ιδιοτήτων τους. Η θεμελιώδης διαδικασία της πυροσβεσσώματος οδηγεί σε μείωση του όγκου, λόγω συσφίκνωσης της μάζας του υλικού και εξάλειψης των πόρων του. Παρακάτω διδόνται οι παράγοντες που παίζουν το σημαντικότερο ρόλο στη μεταβολή των διαστάσεων του υλικού:

- Εγκλοβισμένα Λέρια. Η διόγκωση αερίου σε κλειστό πορώδες παράγει ανεπιθύμητες διογκώσεις στα τελικά σύνθετα δοκίμα.

- Χημικές Αντιδράσεις. Το H₂ είναι ένα κοινό συστατικό της ατμόσφαιρας πυροσβεσσώματος και πολύ συχνά τα μόρια αυτά μπορεί να διαχέονται μέσω του μετάλλου σε απομονωμένα τμήματα του συμπεσμένου δείγματος, όπου αντιδρά με το O₂ προς τον σχηματισμό υδρατμών. Η πίεση των υδρατμών μπορεί να οδηγήσει σε διόγκωση του δείγματος. Είναι επίσης δυνατό να υπάρχουν αντιδράσεις που οδηγούν στην απώλεια κάποιου στοιχείου από το δείγμα στην ατμόσφαιρα, όπως η εξάτμιση των πετητικών, με αποτέλεσμα τη συσφίκνωση του υλικού.

- Κραματοποίηση. Η κραματοποίηση που μπορεί να λάβει χώρα μεταξύ δύο ή περισσότερων κόνων διαφορετικών στοιχείων πολύ συχνά οδηγεί σε συμπαγείς επεκτάσεις των τελικών συνθέτων δοκιμών. Το φαινόμενο αυτό οφείλεται στο σχηματισμό στέρεων διαλύματος που συχνά αντισταθμίζεται από συσφίκνωση του αρχικού πορώδους. Μεταβολή διαστάσεων μπορεί επίσης να προκύψει σε ένα δυαδικό σύστημα, όπου ο ρυθμός διάχυσης του κάθε μετάλλου στην άλλη φάση είναι διαφορετικός.

- Αλλαγή στο σχήμα. Τα άνηστα δείγματα παρουσιάζουν πάντοτε διακυμάνσεις στην πυκνότητά τους. Τέτοιου είδους διαφορές μπορούν να οδηγήσουν σε σημαντικές αλλαγές στο σχήμα, λόγω της ισχυρής εξάτμισης της πυροσβεσσώματος, ειδικά της συσφίκνωσης, από την πυκνότητα του άνηστου υλικού. Περιοχές χαμηλής πυκνότητας γενικά παρουσιάζουν μεγαλύτερη συσφίκνωση.
Α. Θεωρητικό Μέρος

Α.3 Τεχνικές τηγμένου μετάλλου

Το κύριο πλεονέκτημα των τεχνικών τηγμένου μετάλλου για την παραγωγή συνθέτων υλικών μεταλλικής μήτρας με ενισχυτικό υλικό κεραμικά σωματίδια, είναι το σχετικά χαμηλότερο κόστος που έχουν αυτές συγκρινόμενες με την τεχνική της κονιομεταλλουργίας και η δυνατότητα που παρέχουν για τη δημιουργία ογκοδέστερων σχηματισμών [38]. Σύμφωνα με τον Skibo και άλλους [39], το κόστος παρασκευής σύνθετων υλικών με μια μέθοδο χύνεσης είναι περίπου το ένα τρίτο από αυτό άλλων ανταγωνιστικών μεθόδων, ενώ για παραγωγή υλικών μεγάλου όγκου, αυτό μπορεί να κατέχει έως και στο ένα δέκατο της τιμής τους. Στον Πίνακα Α.6 παρουσιάζεται μία συγκριτική αξιολόγηση διαφορετικών τεχνικών που χρησιμοποιούνται για παραγωγή σύνθετων υλικών μεταλλικής μήτρας με ενισχυτικό υλικό ασυνεχών ινών.

Πίνακας Α.6. Συγκριτική αξιολόγηση τεχνικών παραγωγής σύνθετων υλικών.

<table>
<thead>
<tr>
<th>Μέθοδος</th>
<th>Εύρος μορφών και μεγεθών</th>
<th>Περιεκτικότητα σε μεταλλική μήτρα</th>
<th>Εύρος ποσοστός κατ’ όγκον</th>
<th>Φθορά στο ενισχυτικό υλικό</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χύνεση υπό ανάδειξη</td>
<td>Μεγάλο εύρος μορφών, μέγιστη μάζα έως 500kg</td>
<td>Πολύ υψηλή >90%</td>
<td>Έως 0.3</td>
<td>Καμία φθορά</td>
</tr>
<tr>
<td>Χύνεση υπό μηχανική συμπίεση</td>
<td>Περιορισμός από την μορφή του προμορφώματος, έως 2cm ύψος</td>
<td>Χαμηλή</td>
<td>Έως 0.45</td>
<td>Μεγάλη φθορά</td>
</tr>
<tr>
<td>Κονιομεταλλουργία</td>
<td>Ευρύ φάσμα μορφών, περιορισμένο μέγεθος</td>
<td>Υψηλή</td>
<td>0.3 – 0.7</td>
<td>Θεραύση ενισχυτικού υλικού</td>
</tr>
<tr>
<td>Χύνεση με ψεκασμό</td>
<td>Περιορισμένες μορφές, μεγάλο μέγεθος</td>
<td>Μέτρια</td>
<td>0.3 – 0.7</td>
<td>-</td>
</tr>
<tr>
<td>Τεχνική Lanxide</td>
<td>Περιορισμένες μορφές, περιορισμένο μέγεθος</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Μια βασική απαίτηση των τεχνικών τηγμένου μετάλλου για την παρασκευή MMC’s είναι η στενή επαφή και σύνδεση μεταξύ του τηγμένου μετάλλου και του ενισχυτικού υλικού [5]. Αυτό επιτυγχάνεται, είτε με προτερή ανάμιξη των συστατικών τους, είτε μέσω χύνεσης υπό πίεση του τήγματος στην προμορφοποιημένη ενισχυτική φάση. Όπως προαναφέρθηκε, λόγω της χαμηλής διαβροχής των περισσότερων ενισχυτικών φάσεων με το τηγμένο μετάλλο, μπορεί να δημιουργηθεί τεχνητά η στενή επαφή μεταξύ των κεραμικών σωματιδίων και του τηγμένου.
Α. Θεωρητικό Μέρος

μετάλλου ή χρησιμοποιούντας εξωτερικές δυνάμεις για να ξεπεραστεί το όριο της
θερμοδυναμικής ενέργειας της επιφάνειας και των τριβών. Για την εφαρμογή αυτών των
teχνικών χρησιμοποιείται θερμαινόμενο χονευτήριο καθόλου την διάρκεια της διαδικασίας, ώστε
να διατηρεί το τηγμένο μέταλλο σε σταθερή επιθυμητή θερμοκρασία [34].

A.3.1 Χώτευση-υπό-ανάδευση

Σε γενικές γραμμές, η χώτευση-υπό-ανάδευση για την παραγωγή συνθέτων υλικών μεταλλικής
μήτρας περιλαμβάνει την τήξη του επιλεγμένου μετάλλου/κράματος-μήτρας ακολουθούμενη από
tην εισαγωγή του ενισχυτικού υλικού στο τήγμα και τη διασπορά αυτού υπό ανάδευση. Η
anάδευση γίνεται σε υψηλό ρυθμό έτσι ώστε να σχηματισθεί δίνη στην οποία θα εισαχθούν τα
σωματίδια ενίσχυσης της μήτρας. Σημειώνεται ότι ο σχηματισμός της δίνης δεν θα παρασύρει
μόνο τα σωματίδια μέσα στο τήγμα, αλλά και όλες τις ακαθαρσίες οι οποίες σχηματίζονται στην
eπιφάνεια αυτού. Επιπλέον θα εγκλοβίσει αέρα μέσα στο καλώδιο ο οποίος είναι πολύ δόσκολο
nα αφαιρεθεί όσο αυξάνεται το ιζόδες του μίγματος [40]. Κατά την προετοιμασία συνθέτων
υλικών μεταλλικής μήτρας με την μέθοδο χώτευσης-υπό-ανάδευση, υπάρχουν αρκετοί
παράγοντες οι οποίοι χρησιμοποιούνται προσοχής, όπως π.χ.:

1) Η δυσκολία επιτέλεσης ομοιόμορφης κατανομής του ενισχυτικού υλικού,
2) Η διαβροχή μεταξόν κύριων συστατικών,
3) Το πορώδες του συνθέτου υλικού και
4) Οι χημικές αντιδράσεις μεταξόν των σωματιδίων ενίσχυσης και της μεταλλικής μήτρας.

A.3.1.1 Διασπορά Σωματιδίων

Προκειμένου να επιτευχθούν οι βέλτιστες ιδιότητες του συνθέτου υλικού, η διασπορά του
ενισχυτικού υλικού στην μεταλλική μήτρα πρέπει να είναι ενιαία και η διαβροχή ή οι
σχηματιζόμενοι δεσμοί μεταξόν των συστατικών πρέπει να βελτιστοποιηθούν. Το πορώδες πρέπει
nα ελαχιστοποιηθεί και οι χημικές αντιδράσεις μεταξόν των ενισχυτικών υλικών -τόσο μεταξόν
tους όσο και με την μεταλλική μήτρα- θα πρέπει να είναι γνωστές και να τίθενται υπό έλεγχο.
Ένα από τα σημαντικά προβλήματα που αντιμετωπίζονται στην παραγωγή των συνθέτων υλικών
μεταλλικής μήτρας είναι η καθίζηση των σωματιδίων του ενισχυτικού υλικού κατά τη διάρκεια
tης έγχυσης ή κατά τη διάρκεια της χώτευσης. Αυτό προκύπτει ως αποτέλεσμα της διαφοράς
πυκνότητας των σωματιδίων του ενισχυτικού υλικού και του τηγμένου μετάλλου. Η διασπορά
tης ενισχυτικής φάσης δύναται να επηρεαστεί σε διάφορα στάδια: (α) κατά τη διασπορά στο
Α. Θεωρητικό Μέρος

tηγμένο μέταλλο ως αποτέλεσμα της ανάμιξης, (β) κατά τη διασπορά στο τηγμένο μέταλλο μετά την ανάμιξη και πριν τη στερεοποίηση και (γ) κατά την ανακατανομή της διασποράς ως αποτέλεσμα της στερεοποίησης. Ο χρησιμοποιούμενος μηχανικός αναδευτήρας (κατά τη διάρκεια της τήξης) για την ανάδευση, η θερμοκρασία του τήγματος και το είδος, η ποσότητα και η φόση των σωματιδίων είναι μερικοί από τους κύριους παράγοντες που πρέπει να λαμβάνονται υπόψη κατά τη μελέτη αυτών των φαινομένων. Η σωστή διασπορά των σωματιδίων μέσα στην τηγμένη μήτρα επηρεάζεται επίσης από τον ρυθμό έκχυσης, χαμηλώνοντας τη θερμοκρασία [41].

Οι τεχνικές ανάμιξης που χρησιμοποιούνται γενικότερα για την εισαγωγή και την ομοιόμορφη κατανομή της ενσυσχηματικής φάσης στο τήγμα συνοψίζονται ακολούθως [41-42]:

1) Πρόσθεση των σωματιδίων σε ένα ισχυρά αναδεισμένο, είτε πλήρως είτε μερικός τηγμένο μέταλλο,
2) εγχύση της ασυνεχούς φάσης στο τηγμένο μέταλλο με τη βοήθεια εγχύσης (Injection gun),
3) εισαγωγή πελετών ή μπρικετών, παρασκευασμένων από συμπίεση σκόνης ενσυσχηματικού υλικού και κράματος, μέσα σε ελαφρά αναδεπτόμενο τηγμένο μέταλλο,
4) φυσικευτική διάχυση των σωματιδίων στο τήγμα [43],
5) εναπόθεση μέσω ψεκασμού σταγονιδίων τηγμένου μετάλλου μαζί με σωματίδια ενσυσχηματικού υλικού πάνω σε συγκεκριμένο υπόστρωμα,
6) έγχυση των σωματιδίων πνευματικά μέσω αδρανούς αερίου-φορέα μέσα στο τηγμένο μέταλλο, όπου τα σωματίδια αναμεταχνώνονται με τη μήτρα καθώς οι φυσαλίδες του αερίου αναδέουνται στο τήγμα,
7) εισαγωγή των σωματιδίων στο τήγμα το οποίο αναδειέται συνεχώς από υψηλής έντασης υπερήχους,
8) επεξεργασία σε μηδενική βαρύτητα, τεχνική η οποία περιλαμβάνει τη χρήση ενός συνδυασμού υψηλού κενού και υψηλής θερμοκρασίας για παρατεταμένο χρονικό διάστημα.

Η δημιουργία δύνης στο τήγμα είναι μία από τις πιο γνωστές μεθόδους που χρησιμοποιούνται για να προκύψει και να διατηρηθεί μια καλή κατανομή του ενσυσχηματικού υλικού μέσα στην μεταλλική μήτρα. Σε αυτή τη μέθοδο, αφού το κράμα/μετάλλο τακεί, αναδείεται μηχανικά έως ότου δημιουργηθεί στροβιλισμός στην επιφάνεια του τήγματος και ύπαρξη του ενσυσχηματικού υλικού εισάγεται, είτε στην άκρη, είτε στο κέντρο της δύνης. Η ανάδευση συνεχίζεται για αρκετά λεπτά μέχρι να γίνει η τελική χώνευση του μείγματος. O Harnby και άλλοι [44] μελέτησαν την αποτελεσματικότητα διαφοροποιικών σχεδίων μηχανικών αναδευτήρων όπως παρουσιάζονται στην
Α. Θεωρητικό Μέρος

Εικόνα A.10. Μεταξύ αυτών, ο πιο συνήθης είναι ο αναδευτήρας τριών πτερυγίων. Κατά τη χρήση της ανάδευσης έχει διπλή συνειδησία στην διασπορά των σωματιδίων: α) μεταφέρει τα σωματίδια σε όλο τον όγκο του τήγματος και β) διατηρεί τα σωματίδια σε κατάσταση αναστολής (επιβραδύνει την αντίδραση).

Εικόνα A.10. Είδη μηχανικών αναδευτήρων [44].

Αρκετές από τις μεθόδους που παρατίθενται έχουν μειονεκτήματα και περιορισμούς. Η δημιουργία της δίνης κατά την ανάδευση είναι χρήσιμη για τη μεταφορά των σωματιδίων στην τηγμένη μήτρα καθώς η διαφορά πίεσης μεταξύ της εσωτερικής και της εξωτερικής επιφάνειας του τηγμένου μετάλλου μεταφέρει τα σωματίδια μέσα στο ρευστό [45]. Ωστόσο, φυσικά δείχνει αέρα και όλες οι ακαθαρσίες στην επιφάνεια του τήγματος αναρροφούνται στο τηγμένο μέταλλο με βάση τον ιδίο μηχανισμό, έχοντας ως απόρροια τους τη δημιουργία μεγάλου πορώδους και την αύξηση της συγκέντρωσης των ακαθαρσιών στο τελικό προϊόν. Επιπλέον, ένα έντονα αναδευτήριο τήγμα εγκλωβίζει αέριο μέσα του, τα μόρια του οποίου αποδεικνύονται πολύ δύσκολο να αφαιρεθούν καθώς αυξάνεται το εξώδες του μίγματος. Η εισαγωγή των κεραμικών σωματιδίων στο τηγμένο μέταλλο σε ατμόσφαιρα αδρανούς αερίου, έχει ως αποτέλεσμα την
Α. Θεωρητικά Μέρος

eισαγωγή σημαντικής ποσότητας αερίου στο μήγια. Άλλες μέθοδοι, όπως π.χ. η ανάδευση με τη
βοήθεια υπερήχων, είναι πολύ ακριβείς και πρακτικά δύσκολες στην διαστασιολόγησή τους σε
βιομηχανική κλίμακα. Η επεξεργασία σε μηδενική βαρύτητα είναι μία πολύ σύνθετη διαδικασία
και παρουσιάζει μια σειρά από τεχνολογικές δυσκολίες. Όσον αφορά στη φυγοκεντρική
dιαδικασία, η κατανομή των σωματιδίων διαφέρει από το εσωτερικό προς το εξωτερικό μέρος,
λόγω διαφοράς στην φυγόκεντρο δύναμη [46]. Εισάγοντας τα σωματίδια του ενσυγχυτικού υλικού
από σχετικό ύψος στο -ποτανάδευση- τηγμένο μετάλλιο, μερικές φορές θα εγκλοβισθούν
ακαθαρσίες στα σωματίδια, όπως π.χ. οξείδια μετάλλων και σκουριά που σχηματίζονται στην
επιφάνεια του τήγματος. Καθώς ολοκληρώνεται η εισαγωγή των σωματιδίων στο τήγμα,
δημιουργούνται ψυσαλίδες αέρα μεταξύ των σωματιδίων, μεταβάλλοντας κατ’ αυτόν τον τρόπο
τις ιδιότητες της διεπιφάνειας μεταξύ των σωματιδίων και του τήγματος και συνεπώς
εμποδίζοντας τη μεταξύ τους διαβροχή. Σε περίπτωση κατά την οποία τα σωματίδια που
προστίθενται δεν βρίσκονται στην ίδια θερμοκρασία με το μήγια, θα μεταβληθεί πολύ γρήγορα η
θερμοκρασία και κατά συνέπεια το εξόδες του μήγατος.

Η κατανομή των σωματιδίων σε σύνθετα υλικά που παρασκευάζονται με μεθόδους χύνευσης
μπορεί να είναι ανοιμιογενής, ακόμη και όταν καταβάλλεται προσπάθεια διατήρησης μιας
ομοιογενούς διαστοράς των κεραμικών σωματιδίων στην τηγμένη μεταλλική/κραματική μήτρα.
Κατά τη διάρκεια της στερεοποίησης (solidification) του ρευστού μήγατος του σύνθετου υλικού
που περιέχει διάσπαρτα σωματίδια άλλης φάσης, τα σωματίδια αυτά μέσα στο τήγμα μπορούν να
μεταναστεύουν προς ή από το μέτωπο ψύξης, και το σωματίδιο πλησίον του μετώπου ψύξης
eίτε θα απορριφθεί είτε θα ενσωματωθεί στο τήγμα. Αυτά τα δύο φαινόμενα οδηγούν στην
ανακατανομή των σωματιδίων κατά τη στερεοποίηση. Αυτό σημαίνει ότι ο ρυθμός
στερεοποίησης επηρεάζει την κατανομή των σωματιδίων του ενσυγχυτικού υλικού στο τελικό
προϊόν. Οι λεπτοί δενδροειδείς βραχιόνες συντελούν σε μια περισσότερο ομοιόμορφη κατανομή
tων σωματιδίων, ενώ αυτές των μεγαλύτερων διαστάσεων οδηγούν σε δημιουργία
συσσωματωμάτων [47]. Συνεπώς, οι ταχείς στερεοποιημένες δομές εμφανίζουν καλύτερη
κατανομή των σωματιδίων.

Δευτερεύουσες διαδικασίες παρασκευής όπως η εξόδηση (extrusion), μπορούν να μεταβάλλουν
tην κατανομή των σωματιδίων αλλά δεν μπορεί να επιτευχθεί η πλήρης διάσπαση των
συσσωματωμάτων [48]. Μια επιτυχημένη διαδικασία χύνευσης πρέπει να είναι σε θέση να
παράγει σύνθετο υλικό στο οποίο τα σωματίδια θα είναι ομοιόμορφα κατανεμημένα στη μήτρα.
Η πληρότητα της ανάδευσης καθορίζεται από πολλούς παράγοντες, όπως το σχήμα του
αναδευτήρα, η ταχύτητα περιστροφής του και η τοποθέτησή του σε σχέση με την επιφάνεια του
tηγμένου μετάλλου και των τοιχωμάτων της κάψας. Προτείνεται, τόσο η μήτρα όσο και το

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακος 38
Α. Θεωρητικό Μέρος

ενισχυτικό υλικό να θερμαίνονται στην ιδία θερμοκρασία πριν από την ανάμειξή τους, έτσι ώστε να αποβάλουν όλη την υγρασία αλλά και τον εγκλωβισμένο αέρα μεταξύ των σωματιδίων. Ο αναδευτήρας πρέπει να είναι σχεδιασμένος έτσι ώστε να αποφεύγεται η ανάδειξη της επιφάνειας του τηγμένου μετάλλου, αλλά και να ελαχιστοποιείται η πιθανότητα δημιουργίας υπερβολικά ισχυρής δίνης.

Α.3.1.2 Πορώδες

Η δημιουργία πορώδους δεν μπορεί να αποφευχθεί πλήρως, είναι όμως δυνατό το φαινόμενο αυτό να μετριαστεί. Σε γενικές γραμμές, το πορώδες προκύπτει από τρεις διαφορετικές αιτίες: (α) Εγκλωβισμός αερίου κατά την ανάδειξη του τήγματος, (β) έκλυση H_2 και (γ) συρρίκνωση κατά τη στερεοποίηση. Σύμφωνα με τους Ghosh και Ray [49], οι τρεις σημαντικότερες παράμετροι της διαδικασίας που επηρεάζουν τον σχηματισμό του πορώδους είναι:

- α) Ο χρόνος παραμονής,
- β) η ταχύτητα ανάδειξης και
- γ) το μέγεθος και η θέση του αναδευτήρα.

Έχει προταθεί [50], ότι ένας αναδευτήρας με τρία περίπτωση θα πρέπει να τοποθετείται έτσι ώστε περίπου το 35% του ρευστού να βρίσκεται κάτω από αυτών και το 65% από πάνω. Σύμφωνα με τον Lloyd [51] και τον Samuel [52], οι διαφορετικές ατέλειες, όπως p_c, το πορώδες, τα συσσωματώματα, οι εγκλείσεις οξειδίων και οι διεξαγοραστικές αντιδράσεις οφείλονται σε μη ικανοποιητική χώτευση. Διαπιστώθηκε ότι η ποσότητα του πορώδους στη χώτευση εξαρτάται περισσότερο από το κλάσμα του όγκου των εγκλείσεων από ότι από το ποσό του διαλυμένου H_2 [53]. Πορώδες σε ένα σύνθετο υλικό σχηματίζεται κυρίως λόγω φωσφολιδίων αέρα που εισέρχονται στο τηγμένο μείγμα, είτε αυτοτελώς, είτε συμπαρασπορόμενος από τα σωματίδια του ενισχυτικού υλικού [54].

Α.3.1.3 Διαβροχή

Η διαβροχή αποτελεί ένα από τα σημαντικότερα ζητήματα κατά την παραγωγή συνθέτων υλικών με μέθοδο χώτευσης μετάλλου. Ως διαβροχή μπορεί να ορισθεί η ικανότητα ενός υγρού να «εξαπλωθεί» σε μια στερεή επιφάνεια [55]. Περιγράφει επίσης την έκταση της επαφής μεταξύ ενός υγρού και ενός στερεού. Για να υπάρχει δηλαδή, επιτυχημένη ενσωμάτωση των στερεών σωματιδίων του ενισχυτικού υλικού στο τηγμένο μετάλλο, είναι απαραίτητο το μέταλλο να

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακος 39
A. Θεωρητικό Μέρος

dιαβρέζει επαρκώς τη στερεή επιφάνεια. Το πρόβλημα της διαβροχής του ενισχυτικού υλικού από το λιωμένο μετάλλο ανάγεται σε ζήτημα χημικής συγγένειας των αλληλεπιδρώντων επιφανειών, καθώς επίσης και σε ζήτημα μεγέθους των αναπτυσσομένων επιφανειακών τάσεων.
Είναι επομένως ιδιαίτερα σημαντικό να εξετασθεί επιστημονικά η χημική σύσταση των σωματιδίων ενίσχυσης (αποδίδεται ιδιαίτερη προσοχή σε οποιασδήποτε μόλυνση ή οξείδωση), της επιφάνειας του τήγματος και του στρώματος του οξείδιου. Η δύναμη συγκόλλησης μεταξύ της υγρής και στερεής φάσης μπορεί να εκφραστεί ως συνάρτηση της γονίας επαφής που αναφέρεται στην εξίσωση των Young-Dupre [55]. Το μέγεθος των γονίων επαφής (θ) σε αυτήν την εξίσωση, όπως φαίνεται στην Εικόνα Α.11, περιγράφει τη διαβροχή ως εξής: (α) θ = 0°, τέλεια διαβροχή, (β) θ = 180°, δεν υπάρχει διαβροχή, και (γ) 0° <θ <180°, μερική διαβροχή.

Εικόνα Α.11. Γονία διαβροχής θ [55].

Στον Πίνακα Α.7 δίδονται ενδεικτικά γονίες επαφής μεταξύ τηγμένου Al και κάποιων χαρακτηριστικών κεραμικών ενισχυτικών υλικών.

Πίνακας Α.7. Γονίες επαφής μεταξύ τήγματος αλουμινίου και κεραμικών υλικών [56].

<table>
<thead>
<tr>
<th>Ενισχυτικό Υλικό</th>
<th>Θερμοκρασία (°C)</th>
<th>Γονία Διαβροχής (°)</th>
<th>Κενό (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>900</td>
<td>150</td>
<td>2.7*10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>34</td>
<td>1.5*10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>42</td>
<td>2.7*10⁻⁴</td>
</tr>
<tr>
<td>B₄C</td>
<td>900</td>
<td>135</td>
<td>10⁻³*10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>120</td>
<td>10⁻³*10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>119</td>
<td>1.5*10⁻⁵</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>900</td>
<td>90</td>
<td>2.6*10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>120</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>70</td>
<td>2.6*10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>80</td>
<td>10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>83</td>
<td>10⁻⁴</td>
</tr>
</tbody>
</table>
Α. Θεωρητικό Μέρος

Έως σήμερα έχουν διεξαχθεί αρκετές ερευνητικές προσπάθειες με στόχο τη βελτίωση της
dιαβροχής διαφόρων κεραμικών σωματιδίων με τηγμένο κράμα [57], συμπεριλαμβανομένης της
eπικάλυψης των σωματιδίων, της προσθήκης στοιχείων κραματοποίησης (alloying elements) στο
tήγμα, της επεξεργασίας των σωματιδίων και της χρήσης υπερήχου στο τήγμα, για υψηλότερο
eπίπεδο ανάμιξης. Σε γενικές γραμμές, η επιφάνεια των μη-μεταλλικών σωματιδίων δεν μπορεί
να διαβραχεί από το μετάλλιο, ανεξάρτητα από τις τεχνικές καθαρισμού που χρησιμοποιούνται. Η
ζητούμενη διαβροχή μπορεί να επιτευχθεί με την επίστρωση του ενισχυτικού υλικού με κάποιο
διαβρέξιμο μετάλλο. Η μεταλλική επίστρωση σε κεραμικά σωματίδια αναζει τη συνολική
eπιφανειακή ενέργεια του στερεού και βελτιώνει τη διαβροχή με την ενίσχυση της επιφάνειας
επαφής μέσω διασύνδεσης του μετάλλου με μετάλλο αντί του μετάλλου με ενισχυτικό υλικό. Το
Ni και ο Cu έχουν καλή διαβροχή από πολλά κράματα και έχουν χρησιμοποιηθεί ως στοιχεία
eπιστρώσεων σε αρκετές περιπτώσεις όπου τα κράματα τήκοντα σε σχετικά χαμηλές
θερμοκρασίες. Σε γενικές γραμμές, αυτές οι επιστρώσεις χρησιμοποιούνται για τρεις λόγους: α)
για την προστασία του οπλισμού από την πρόκληση φθοράς κατά την παραγωγή των συνθέτων,
β) για τη βελτίωση της διαβροχής και γ) για τη βελτίωση της διαστοράς πριν προστεθεί ο
οπλισμός στην μήτερα. Ο τύπος της επικάλυψης, όσον αφορά στη διαβροχή, μπορεί να
dιαχωρισθεί σε σχέση με: α) την ικανότητα αντίδρασης της με το υπόστρωμα και β) την
ικανότητα αντίδρασης της με το στρώμα οξειδίου του μετάλλου.

Η προσθήκη ορισμένων στοιχείων κραματοποίησης (alloying elements) μπορεί να μεταβάλλει
την μεταλλική μήτρα δημιουργώντας ένα παροδικό στρώμα μεταξύ των σωματιδίων και του
tηγμένου μετάλλου. Αυτό το μεταβατικό στρώμα θα πρέπει: α) να έχει μικρή γονία διαβροχής,
β) να συνεισφέρει στη μείωση της επιφανειακής τάσεως του υγρού και γ) να περιβάλλει τα
σωματίδια με μια δομή η οποία είναι παρόμοια και προς το σωματίδιο αλλά και προς το κράμα.
Τα σύνθετα υλικά που παρέχονται με χρήση τεχνικών τηγμένου μετάλλου εμφανίζουν πολύ καλή
πρόσφυση μεταξύ του ενισχυτικού υλικού και του μετάλλου όταν στοιχεία όπως τ.χ. Mg, Ca, Ti,
ή Zr προστίθενται στο μίγμα για να μειώσει η γονία διαβροχής τηγμένου κράματος – κεραμικών
σωματιδίων [58]. Η προσθήκη Mg στο τηγμένο Al για τη βελτίωση της διαβροχής της αλουμίνας
είναι μερικώς επιτυχημένη [59] και έχει επιπλέον χρησιμοποιηθεί ευρέως ως προσθετικός
παράγοντας για τη βελτίωση της διαβροχής διαφόρων άλλων κεραμικών σωματιδίων ενίσχυσης,
όπως τ.χ. το καρβίδιο του πυριτίου και η μίκα.

Η θερμική επεξεργασία των σωματιδίων πριν από την εισαγωγή τους στο τήγμα βοηθά στη
μεταφορά τους, προκαλώντας εκρόφηση των προσσοριζόμενων αερίων από την επιφάνεια των
σωματιδίων. Θερμαινόμενα σωματίδια καρβίδιο του πυριτίου στους 900 °C, επιτυγχάνεται η
απομάκρυνση επιφανειακών ακαθαρσιών και η εκρόφηση αερίων, καθώς επίσης μεταβάλλει

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακος 41
Α. Θεωρητικό Μέρος

και η σύνθεση της επιφάνειας του σωματιδίου με το σχηματισμό ενός στρώματος οξειδίου [60]. Έχει παρατηρηθεί ότι η προσθήκη προ-θερμασμένων σωματιδίων αλουμίνια σε τήγαμα Al-Mg βελτιώνει τη διαβροχή τους [61]. Μια καθαρή επιφάνεια παρέχει μεγαλύτερη δυνατότητα αλληλεπίδρασης μεταξύ τήγματος και σωματιδίων και ως εκ τούτου βελτιώνει επίσης τη διαβροχή.

Τεχνικές υπηρέτησης καθώς επίσης και θέρμανση σε κατάλληλη ατμόσφαιρα μπορούν να χρησιμοποιηθούν για τον καθαρισμό της επιφάνειας του σωματιδίου. Η μέθοδος δόνησης με υπηρέτηση έχει εφαρμοσθεί σε τηγμένα αλουμίνιο για να βελτιώσει την διαβροχή σωματιδίων αλουμίνια [62]. Υπάρχουν ακόμα πολλές μέθοδοι οι οποίες έχουν αναπτυχθεί για τη βελτίωση της διαβροχής κεραμικών σωματιδίων με τηγμένο Al ή κράμα του. Αυτές περιλαμβάνουν: α) διάφορες μεθόδους επεξεργασίας ιών με τηγμένο Na για την ενίσχυση του Al με ινες C ή σωματίδια αλουμίνια [63], β) την εναπόθεση Ti-B στις ινες C πριν αυτές χρησιμοποιηθούν σε ατμόσφαιρα χωρίς οξυγόνο, για την καλύτερη διείσδυση τους στο Al ή στο Mg [64], γ) προεπεξεργασία καρβιδίου του πυρίτιου με τεταρβορικό νάτριο για την καλύτερη διείσδυσή του στο τηγμένο Al [65], δ) προ-επεξεργασία του άνθρακα με διάλυμα τετρα-ισοπροπυτιττανίου για τη καλύτερη διείσδυση στο τηγμένο Al ή Mg [66], ε) προ-επεξεργασία του B_{2}C με αλκοολικό ή άλλο οργανικό διαλύτη για τον ιδίο σκοπό [67]), στ) διασπορά στερεού νιτρίου του μαγνήσιου μεταξύ ιών άνθρακα για την καλύτερη διείσδυσή του στο τηγμένο Mg [68], ζ) τη διεργασία Lanxide™ η οποία χρησιμοποιεί Mg ως πρόσθετο σε κράμα, σε ατμόσφαιρα αξότου και μη δημιουργούσε της διεργασίας για τη διείσδυση του αλουμινίου σε διάφορα είδη ενυχτερικών υλικών [69, 70], η) τη χρήση του αζώτου στην υποβοηθήσεις της διαβροχής σωματιδίων καρβιδίου του πυρίτιου και αλουμίνια από Mg [71] και θ) την προσθήκη τεταρβορικού νατρίου για την βελτίωση της διαβροχής σωματιδίων αλουμίνια από κράματα Al [72].

Θεωρητικά, για την αντιμετώπιση των επιφανειακών αναπτυσσόμενων τάσεων, ώστε να βελτιωθεί η διαβροχή, μπορεί να χρησιμοποιηθεί κάποιο είδους μηχανική δύναμη. Ωστόσο, σε πειράματα του Zhou και άλλων [73], τα προβλήματα κακής διαβροχής δεν μπορούν να λυθούν μέσω βελτιστοποίησης της μηχανικής ανάδευσης. Αντιθέτως, οι ιδιοτήτες συγγραφέως προέρχονται ότι είναι κρίσιμο να διασπασθεί το στρώμα των αερίων που περιβάλλει τα σωματίδια έτσι ώστε να επιτευχθεί η επιθυμητή γωνία διαβροχής. Όταν διασπασθεί το στρώμα των αερίων και επιτευχθεί το επιθυμητό επίπεδο διαβροχής, τα σωματίδια έχουν την τάση να βυθίζονται στο τήγαμα αντί να επιπλέουν, βελτιώνοντας την ομοιογενεία του τελικού συνθέτου. Βελτιώσεις στη διαβροχή μεταξύ του ενυχτερικού υλικού και του τηγμένου μετάλλου έχουν επιτευχθεί με τη χρήση διαφόρων χημικών μεταλλικών επιστρώσεων στο ενυχτερικό υλικό και τη δυνατότητα αλληλεπίδρασης της επίστρωσης με το υγρό μετάλλου κατά τη διείσδυση των σωματιδίων στο τήγαμα ή κατά την

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακος
ανάδειξη τους με αυτό. Ο ακριβής αντίκτυπος της αλληλεπίδρασης αυτής στη μικροδομή του υλικού κατά τη στερεοποίησή του και τις μηχανικές ιδιότητές του, δεν έχει γίνει πλήρως κατανοητός. Επιπλέον, αναφέρεται ότι μερικές τεχνικές επίστρωσης είναι ακριβείς και πολύπλοκες κατά την εφαρμογή τους. Στη συνήθισμένη τεχνική παρασκευής συνθέτων υλικών μέσο γύναικης, είναι απαραίτητο να αφεθούν τα σωματίδια για μεγάλο χρονικό διάστημα μέσα στη μήτρα, έτσι ώστε να δοθεί ο κατάλληλος χρόνος για την ανάπτυξη δεσμών μεταξύ τους [74].

Η επίπεδη πλήρους διαβροχής γίνεται πιο δύσκολη με τη μείωση του μεγέθους των σωματιδίων ενίσχυσης του μετάλλου/κράματος. Αυτό οφείλεται στην αύξηση της επιφανειακής ενέργειας που απαιτείται για να παραμορφωθεί η επιφάνεια του μετάλλου, σε μια μικρή ακτίνα, καθώς τα σωματίδια ξεκινούν την εισχώρησή τους σε αυτό. Τα μικρότερα σωματίδια είναι επίσης πιο δύσκολα να διασπαρθούν ομοιογενώς στο τήγμα λόγω της μεγαλύτερης επιφάνειάς τους. Ο δεύτερος άξονας του προβλήματος είναι ότι τα λεπτά σωματίδια λόγω ηλεκτροστατικών δυνάμεων εμφανίζουν έντονη τάση δημιουργίας συσσωματωμάτων.

Στο ζήτημα της διαβροχής του τηγμένου Al και κραμάτων του με κεραμικά σωματίδια έχουν γίνει, στοχευμένα, διεξοδικές μελέτες από μια σειρά ερευνητικών ομάδων: Ο Ωπ και άλλοι [75] μελέτησαν τη διαβροχή του γραφίτη από το αλουμίνιο. Παρατήρησαν ότι το αλουμίνιο δεν διαβρέχει το γραφίτη και η επικαλυμμένη επιφάνεια του γραφίτη με Ni παρουσίασε τα καλύτερα αποτελέσματα. Επιπλέον, προτάθηκε ο παρακάτω μηχανισμός για την αντίδραση μεταξύ υγρού Al και στερεού Ni στους 740°C: α) διάλυση του Ni στο Al, β) καθίζηση Al3Ni στην επιφάνεια και γ) αντίδραση μεταξύ Ni και Al3Ni για το σχηματισμό στρώματος Al3Ni2. Ο Shao και άλλοι [76] μελέτησαν την διαβροχή του Al2O3 από τηγμένο αλουμίνιο και κράμα Al-La. Παρατήρησαν ότι το Al2O3 διαβρέχεται όταν η σπάνια γαία La προστίθεται στο τήγμα και η γωνία διαβροχής μειώνεται από 90.5° σε κάτω από 80°. Αυτό το φαινόμενο οφείλεται κυρίως στο σχηματισμό του La2O3 στη διεπιφάνεια από την αντίδραση του Al2O3 και La.

Α.3.1.3.α Παράγοντες που μειώνουν τη διαβροχή

Σε γενικές γραμμές, η παρουσία φύλων οξείδιων σε μια επιφάνεια οδηγεί σε μη-διαβροχή των ενισχυτικών κεραμικών σωματιδίων από το τηγμένο μετάλλο. Το στρώμα των οξείδιων δημιουργεί αντίσταση στη διείσδυση του τηγμένου μετάλλου στα ενισχυτικά σωματίδια και ειδικότερα στην περίπτωση όπου αυτά προστίθενται στην κορυφή του τήγματος. Το αλουμίνιο έχει καλή συνάφεια με το οξυγόνο, πχ. στους 400° C ένα στρώμα πάχους ύψος και 50 nm διαμορφώνεται στο κράμα αλουμινίου σε χρονικό διάστημα 4 ωρών [77]. Επομένως, είναι πολύ δύσκολο να αποφευχθεί ο σχηματισμός οξείδιων σε συστήματα που έχουν ως βάση τους το
Α. Θεωρητικό Μέρος

αλουμίνιο. Σε τέτοιες περιπτώσεις δεν παρατηρείται διαβροχή σε θερμοκρασία κάτω από τους 900°C. Ο Eustathopoulos και άλλοι [78] απέδειξαν ότι το συγκεκριμένο φαινόμενο λαμβάνει χώρα λόγω της ύπαρξης στρώματος οξειδίων του αλουμινίου, το οποίο εμποδίζει την άμεση επαφή του αλουμινίου με το ενισχυτικό υλικό. Επιπλέον, έχει παρατηρηθεί ότι τα ενισχυτικά σωματίδια περιβάλλονται συνήθως από ένα στρώμα αερίου [59]. Οι Zhou και Xu [73] έχουν προτείνει ότι αυτό το στρώμα μπορεί να είναι ο κύριος παράγοντας για την κακή διαβροχή.

Α.3.1.3.β Βελτίωση της διαβροχής

Συνοψίζοντας, σημειώνεται ότι έχουν γίνει αρκετές ερευνητικές προσπάθειες για τη βελτίωση της διαβροχής των ενισχυτικών υλικών από τηγέμενο κράμα [79-81]. Αυτές περιλαμβάνουν:
α) Την προσθήκη στοιχείων κραματοποίησης στην μεταλλική μήτρα,
β) τη δημιουργία επιστρώσεων στα ενισχυτικά σωματίδια και
γ) τη χρήση ειδικών τρόπων ανάδευσης [82].
Οι βασικές επιδιώξεις των διαφόρων μεθόδων που χρησιμοποιούνται για την αύξηση της διαβροχής συστημάτων τηγέμενου Al – κεραμικών σωματιδίων συνοψίζονται ως εξής [83-84]: a) αύξηση της επιφανειακής ενέργειας του στερεού, β) μείωση της επιφανειακής τάσης του τηγέμενου μετάλλου, και γ) μείωση της ενέργειας στερεού-υγρού στη διεπιφάνεια κεραμικών σωματιδίων - μήτρας.

Α.3.1.4 Παράμετροι που επηρεάζουν τη διεργασία της χύτευσης-υπό-ανάδευση

Οι ακόλουθες παράμετροι είναι από τις σημαντικότερες που πρέπει να λαμβάνονται υπ’ όψη κατά τη χύτευση-υπό-ανάδευση: η σταθερή θερμοκρασία, η ταχύτητα ανάμιξης, το μέγεθος του αναδευτήρα και η θέση του αναδευτήρα μέσα στο τηγέμενο μέταλλο, καθώς επηρεάζουν καθοριστικά τις μηχανικές ιδιότητες των συνθέτων υλικών μεταλλικής μήτρας που παρασκευάζονται με την τεχνική αυτή. Οι μηχανικές ιδιότητες με τη σειρά τους, καθορίζονται από τη συγκέντρωση του ενισχυτικού υλικού, τη διασπορά του, το επίπεδο της διαβροχής των διεπαινιών, καθώς επίσης και το πορώδες. Συνεπώς, με τον έλεγχο των συνθηκών της διεργασίας, καθώς επίσης και της ποσότητας του ενισχυτικού υλικού, είναι πιθανό, δυνητικά, να ληφθούν οι επιθυμητές ιδιότητες από το υλικό.

Α.3.2 Χύτευση με έγχυση-υπό-πίεση
Σήμερα, κυριαρχούν τρεις βασικές μορφές της μεθόδου της χύνσεως με έγχυση-υπό-πίεση:

1. Χύνση με έγχυση-υπό-πίεση και πλήρωση από την κορυφή (pressure infiltration – top fill casting), όπου το τηγμένο μέταλλο πιέζεται μέσω συμπιεσμένου αερίου προς τα κάτω σε ένα προκαταρκτικό καλούπι (κάψα).

2. χύνση με έγχυση-υπό-πίεση και πλήρωση από τον πυθμένα (pressure infiltration – bottom fill casting), όπου το τηγμένο μέταλλο πιέζεται μέσω συμπιεσμένου αερίου (το οποίο ενεργεί στην επιφάνεια του τήματος) προς τα πάνω μέσω ενός σωλήνα σε ένα προκαταρκτικό καλούπι,

3. χύνση με έγχυση-υπό-πίεση και περίχυνση από την κορυφή (pressure infiltration – top pour casting), μια μέθοδος που αναπτύχθηκε για τη διείσδυση κραμάτων υψηλής θερμοκρασίας, όπου οι διαδικασίες της ενίσχυσης και της τήξης πρέπει να διαχωρίζονται.

Στην Εικόνα Α.12 παρουσιάζονται τα σχεδιαγράμματα των διατάξεων των προαναφερθέντων τεχνικών.
Εικόνα Α.12.7. Έγχυση-υπό-πίεση με περίχυση από την κορυφή [80].

Σε όλες τις προαναφερθείσες περιπτώσεις, χρησιμοποιείται μεν δυναμικός έλεγχος της εφαρμοζόμενης πίεσης, εντούτων όμως η καθεμία από αυτές έχει τις δυκές της μοναδικές δυνατότητες. Ο εξοπλισμός για τη μέθοδο της έγχυσης-υπό-πίεση παρέχει μέγιστο έλεγχο της διαδικασίας έγχυσης και προέρχεται από τεχνικές που αναπτύχθηκαν για τη μελέτη και τον έλεγχο των παραμέτρων της διεργασίας. Το κλειστό περιβάλλον χώτευσης, ο ανεξάρτητος έλεγχος των προκαταρκτικών καλουπιών, οι θερμοκρασίες τήξης, η επιλογή των συστημάτων στερεοποίησης καθώς και ο δυναμικός έλεγχος της πίεσης παρέχουν δυνατότητες ελέγχου, ο συνδυασμός των οποίων είναι αδύνατος σε άλλες διαδικασίες χώτευσης.

Οι παράμετροι οι οποίες ελέγχονται με σχετική ευκολία κατά την έγχυση-υπό-πίεση είναι οι παρακάτω:
(1) η θερμοκρασία των προκαταρκτικών καλουπιών (από 200 έως πάνω από 1700 °C),
(2) η θερμοκρασία τήξης (από 200 έως πάνω από 1700 °C),
(3) το ποσοστό και η πίεση διείσδυσης του μέταλλου,
(4) ο βαθμός στερεοποίησης και
(5) η πίεση που ασκείται στο καλούπι.

Στη συνέχεια εξετάζονται οι βασικές έννοιες κάθε μίας από τις προαναφερθείσες τεχνικές για τη χώτευση με έγχυση-υπό-πίεση. Ορισμένα συστητικά και κράματα βρίσκουν καλύτερη
Α. Θεσσαλομεσσα

εφαρμογή στη μία μέθοδο σε σύγκριση με κάποια άλλη, αλλά για τη σωστή επιλογή απαιτείται σε κάθε περίπτωση πειραματισμός.

A.3.2.1 Χύνεση με έγχυση-υπό-πίεση και πλήρωση από τον πυθμένα

Η μέθοδος της χύνεσης με έγχυση-υπό-πίεση και πλήρωση από τον πυθμένα, χρησιμοποιεί ένα προκαταρκτικό καλύπτο το οποίο τοποθετείται σε ένα καλύπτο του εμπορίου με λεπτά τουχώματα, στο δοχείο του τίγματος, και στη συνέχεια στην εστία θέρμανσης. Το σύστημα βρίσκεται τοποθετημένο σε ένα δοχείο υψηλής πίεσης. Το δοχείο πίεσης μπορεί να διαμορφωθεί με πολλούς τρόπους, έτσι ώστε να επιτρέπεται η εύκολη πρόσβαση και φόρτωση του καλωπιού. Στη μέθοδο της έγχυσης με πλήρωση από τον πυθμένα, το καλύπτο έχει εγκατασταθεί με σωλήνα πλήρωσης (fill tube) και έχει τοποθετηθεί πάνω από το τίγμα. Το καλύπτο και το τίγμα είναι διαχωρισμένα έτσι ώστε οι θερμοκρασίες του ενός και του άλλου να μπορούν να ελέγχονται ανεξάρτητα. Ένας σωλήνας ελέγχου (control tube) μπορεί επίσης να συνδεθεί στην κορυφή του καλωπιού για την εκκένωση και την έναρξη της στερεοποίησης.

Μόλις ο θάλαμος κλείσει, το προκαταρκτικό καλύπτο και το μίγμα έρχονται σε μια επιθυμητή θερμοκρασία, υπό κενό. Το δοχείο του τίγματος στη συνέχεια ανασκοπίζεται έτσι ώστε ο σωλήνας πλήρωσης να εισέλθει μέχρι το κέντρο του. Το μέταλλο σφραγίζει το σωλήνα και απομονώνει το κενό μέσα στο θάλαμο. Στη συνέχεια, ο θάλαμος συμπίεζεται με αδρανές αέριο ενώ η πίεση στην επιφάνεια του τίγματος εξαναγκάζει το υλικό να εισέλθει στο καλύπτο. Η πίεση αυξάνεται στο εσωτερικό του θαλάμου έως ότου το προκαταρκτικό καλύπτο έχει πλήρους γεμίσει με το τηγμένο μέταλλο. Στη συνέχεια χρησιμοποιείται ψυχρός αέρας για να ξεκινήσει η στερεοποίηση και να μεταφέρεται προς το δοχείο του τίγματος, έτσι ώστε να υπάρξει συμφυγονοσ και το καλύπτο να τροφοδοτηθεί με επιπλέον τηγμένο μέταλλο. Η πίεση διατηρείται μέχρι την ολοκλήρωση της στερεοποίησης.

Η διαδικασία διείσδυσης του μετάλλου λαμβάνει χώρα κατά κανόνα μεταξύ του 5ου και του 30ου δευτερολέπτου και το μορφοποιημένο υλικό μπορεί να αφαιρεθεί αφότου ολοκληρωθεί η στερεοποίηση. Ο ρυθμός στερεοποίησης εξαρτάται από το μέγεθος του καλωπιού που χρησιμοποιείται, το σύστημα στερεοποίησης, καθώς επίσης και τη θερμοκρασία του προκαταρκτικού καλωπιού. Είναι εφικτό να επιβληθεί ρυθμός ανόδου της θερμοκρασίας από 1°C/s και πάνω.

Η μέθοδος της χύνεσης με έγχυση-υπό-πίεση και πλήρωση από τον πυθμένα είναι κατάλληλη για σύνθετα υλικά, τόσο συνεχούς όσο και ασυνεχούς ενίσχυσης. Το καλύπτο μπορεί να διατηρείται σε χαμηλότερη θερμοκρασία από αυτή του τίγματος, η οποία επιτρέπει την ταχύτερη
Α. Θεωρητικό Μέρος

στερεοποίηση και μειώνει το χρόνο αντίδρασης μεταξύ μητρικής και ενσχυτικής φάσης. Το σύστημα αυτό είναι ιδανικό για μήτρα κραμάτων με θερμοκρασία τήξης κάτω από 1200°C. Οι τιμές της θερμοκρασίας λειτουργίας περιορίζονται από τα υλικά του σωλήνα πλήρωσης.

A.3.2.2 Χύνση με έγχυση-υπό-πίεση με πλήρωση από την κορυφή

Στη μέθοδο της χύνσης με έγχυση-υπό-πίεση και πλήρωση από την κορυφή, το εκμαγείο και το τήγμα είναι μέρος του ιδίου καλούπιού. Το καλότης και το τήγμα θερμαίνονται στην ίδια θερμοκρασία και συχνά χρησιμοποιείται ένα κεραμικό φίλτρο για να τα διαχωρίσει. Το φίλτρο αποτρέπει το μέταλλο από το να εισέλθει στο καλότης μέχρι να ανεξηθεί η πίεση στο θάλαμο της θέρμανσης.

Τα καλύπτα (κάψες) μπορεί να είναι βιδωμένα, μανδαλωμένα ή να κρατούνται σε ένα κοινό δοχείο. Αφού το καλύπτα «φορτωθεί», ένα κομμάτι του μετάλλου (μητρική φάση) τοποθετείται στην κορυφή της κάψας και, στη συνέχεια, ολόκληρο το σύστημα στην εστία όπου το μέταλλο θα τακεί. Το καλύπτα στη συνέχεια θερμαίνεται εν κενό μέχρι να λιώσει το μέταλλο και να σχηματίσει επισφράγισμα στην κορυφή του καλούπιού, απομονώνοντας το δημιουργημένο κενό στο εσωτερικό του προκαταρκτικού καλούπιού. Κατόπιν, στο θάλαμο αυξάνεται η πίεση μέχρι να γεμίσει το καλότης και να λάβει χώρα διεύθυνση υλικού εντός της κάψας. Ο θάλαμος στη συνέχεια ψύχεται για να υπάρχει έλεγχος του σχηματισμού και της κατεύθυνσης του «μετόπου» της στερεοποίησης, κατά τέτοιο τρόπο ώστε η συρρίκνωση να περιορίζεται στη δεξαμενή του τόγματος. Αυτή η μέθοδος λειτουργεί καλύτερα σε συστήματα όπου το προκαταρκτικό καλότης και το τίγμα μπορούν να βρίσκονται στην ίδια θερμοκρασία. Επειδή η τήξη πραγματοποιείται στο καλότης, οι χρόνοι στερεοποίησης είναι συνήθως μεγαλύτεροι από αυτούς στην έγχυση-υπό-πίεση με πλήρωση από τον πυθμένα. Αυτό επιτρέπει στη μέθοδο της έγχυσης με πλήρωση από την κορυφή να μπορεί να εφαρμοσθεί αρτιότερα σε σύνθετα συστήματα με μικρότερα ποσοστά αντίδρασης μεταξύ μητρικής και ενσχυτικής φάσης. Αυτή η μέθοδος χρησιμοποιείται σήμερα για κράματα με σημείο τήξης έως και 1200 °C και φαίνεται να οδηγεί σε υλικά με μεγαλύτερη πυκνότητα.

Η μέθοδος της χύνσης με έγχυση-υπό-πίεση και πλήρωση από την κορυφή μπορεί να διαμορφωθεί με πολλούς διαφορετικούς τρόπους έτσι ώστε να επιτρέπει η εύκολη φόρτωση και εκφόρτωση του καλούπιού και το γρήγορο ανοιγμα και κλείσιμο του δοχείου πίεσης. Η μέθοδος της χύνσης με πλήρωση από πάνω είναι ένας από τους πιο γρήγορους και λιγότερο δαπανηρούς τρόπους για την παραγωγή πρωτότυπων και μεγάλων σε μάζα και όγκο σύνθετων υλικών μεταλλικής μήτρας λόγω της απλότητας κατασκευής του καλούπιού.
Α. Θεωρητικό Μέρος

Α.3.2.3. Χώτευση με έγχυση-υπό-πίεση και περίχυση από την κορυφή

Η μέθοδος της χώτευσης με έγχυση-υπό-πίεση και περίχυση από την κορυφή συνδυάζει τα καλύτερα στοιχεία των μεθόδων της χώτευσης με έγχυση-υπό-πίεση με πλήρωση από την κορυφή και τον πυθμένα, με κάποια επιπλέον προτερήματα. Η χώτευση με περίχυση από την κορυφή μπορεί να χρησιμοποιηθεί για κράματα υψηλής θερμοκρασίας τα οποία έχουν σημείο τήξης πάνω από 1600°C, διότι δεν χρησιμοποιείται σωλήνας πλήρωσης. Οι ζόνες θερμοκρασίας του θαλάμου μπορούν να διαχωρίζονται πλήρως με μόνο μια μικρή τρύπα που τις συνδέει. Μπορούν να χρησιμοποιηθούν κεραμικά χωνευτήρια και κεραμικά καλούπια και τα προκαταρκτικά καλούπια μπορούν να διατηρηθούν σε χαμηλότερη θερμοκρασία και να ψυχθούν γρήγορα. Επίσης, η μέθοδος αυτή επιτρέπει τη χρήση ενός μεγάλου εκμαγείου το οποίο μπορεί να γεμίσει πολλά καλούπια προτού χρειαστεί να εξαναγκαστεί.

Η μέθοδος της χώτευσης με περίχυση από την κορυφή μπορεί να χρησιμοποιηθεί για την παραγωγή μικρών ή μεγάλων εξαρτημάτων. Χρησιμοποιώντας θαλάμους με πολλαπλά καλούπια, ένα καλούπι μπορεί να εκφορτώνεται, καθώς ένα άλλο χρησίμεται. Η επιλογή της βέλτιστης διαδικασίας χώτευσης για ένα συγκεκριμένο σύνθετο συστατικό μεταλλικής μήτρας τυπικά περιλαμβάνει χώτευση υλικού με πλήρωση προς τα πάνω και προς τα κάτω για τον προσδιορισμό των βέλτιστων παραμέτρων χώτευσης.
Α. Θεωρητικό Μέρος

A.4 ΙΠΤΑΜΕΝΗ ΤΕΦΡΑ

Η υπάμενη τέφρα είναι το ανόργανο παραπροϊόν της καύσης του λιγνίτη, το οποίο διαχωρίζεται από τα καυσαέρια στα εργοστάσια παραγωγής ηλεκτρικής ενέργειας με χρήση ηλεκτροστατικών φίλτρων (ΗΦ). Αποτελείται κυρίως από λεπτά σφαιρικά σωματίδια. Τα κύρια χημικά συστατικά της ελληνικής λιγνιτικής υπάμενης τέφρας είναι το διοξείδιο του πυρήνου (SiO₂), το οξείδιο του ασβεστίου (CaO) και τα οξείδια του σιδήρου και του αργύρου (Fe₂O₃ και Al₂O₃). Λόγω της λεπτότητάς της, της ποξολακικής και μερικές φορές ουδαμικής φύσης της, η υπάμενη τέφρα χρησιμοποιείται ως πρόσθετο στο τσιμέντο και στο σκυρόδεμα [86-87]. Η υπάμενη τέφρα έχει χρησιμοποιηθεί επιτυχώς σε αρκετές κατασκευαστικές εφαρμογές και σε άλλα ειδικά υλικά.

Κατά την καύση του κονισσομενού λιγνίτη στους καυστήρες των σταθμών παραγωγής ηλεκτρικής ενέργειας, η πτητική ύλη ατμοποιείται και το μεγαλύτερο ποσοστό του άνθρακα καίγεται. Η ορυκτή ύλη που συσχετίζεται με το γαιάνθρακα όπως ο πηλός, ο χαλαζίας και οι άστροι υπόκειται σε διασπάσεις διαφόρων βαθμών. Τα καμένα σωματίδια μαζί με ότι έχει απομείνει από άκαντο άνθρακα, συλλέγονται, είτε ως τέφρα βάσης, είτε ως υπάμενη τέφρα, είτε ως τέφρα οικονομίτηρα [88]. Η καύση του λιγνίτη έχει υπόλειμμα το οποίο αποτελείται από ορυκτή αλλά και οργανική ύλη, η οποία δεν καίγεται πλήρως. Διαφορετικά είδη λιγνίτη παράγουν διαφορετικές ποσότητες τέφρας, ανάλογα με τη συγκέντρωση των ανόργανων ορυκτών συστατικών στην καύση ύλης [89].

A.4.1 Σχηματισμός σωματιδίων υπάμενης τέφρας

Η υπάμενη τέφρα προέρχεται από ανόργανη ύλη κατά την διάρκεια της καύσης του λιγνίτη. Η ανόργανη ύλη διαχωρίζεται σε δύο κατηγορίες, την εμπεριεχόμενη και την επιγενετική. Η εμπεριεχόμενη ανόργανη ύλη προκύπτει ως μέρος των ανόργανων συστατικών που συνιστούν τα φυτά και υπάρχει υπό μοριακή κατανομή εντός του καυσίμου σε ποσοστό 2-3%. Η επιγενετική ανόργανη ύλη συνίσταται από μεγάλα τεμάχια ορυκτής και ανόργανης ύλης του περιβάλλοντος χώρου και είναι αποτέλεσμα διάβρωσης πετρωμάτων του περιβάλλοντος της λιγνιτοφόρου λεκάνης.

• Κατά την καύση, τα σωματίδια του καυσίμου εμφανίζουν την τάση να θρυμματοποιούνται λόγω της ανάφλεξης καυσίμων συστατικών που βρίσκονται στο εσωτερικό τους. Κάθε τεμάχιο καυσίμου που θρυμματοποιείται απελευθερώνει 3-5 σωματιδια τέφρας τα οποία στην συνέχεια υπόκεινται σε άλλες διαδικασίες. Τέτοιου
Δύο πιθανοί μηχανισμοί έχουν προταθεί για το σχηματισμό των σωματιδίων υπάρχοντας τέφρας.

Ο μηχανισμός έκρηξης είναι ο πρώτος και βασίζεται στην απελευθέρωση αερίων από το εσωτερικό μεγάλου σωματιδίου με αποτέλεσμα τον σχηματισμό μεγάλου αριθμού μικρών σωματιδίων. Έπειτα, τα μικρότερα σωματίδια έχουν τη δυνατότητα να συσσωματώνουν προς τον σχηματισμό νανοσωματιδίων. Αυτό που οδήγησε στην διατύπωση αυτού του μηχανισμού είναι η κατανομή μεγάλους σωματιδίων υπάρχοντας τέφρας μικρών διαστάσεων σε μεγαλύτερο ποσό και είναι αναμενόμενο. Επομένως, μετά την έκρηξη μπορεί να σχηματιστεί αερογέλη σωματιδίων διαστάσεων < 1 μ.μ.

Ο δεύτερος μηχανισμός βασίζεται στην σχηματισμό της αερογέλης σωματιδίων στη συμπύκνωση των περισσότερων πτητικών εξαερισμένων συστατικών που σχηματίζουν σωματίδια μετά την ψυχρή πλευρά της εγκατάστασης. Επίσης, είναι δυνατόν να ισχύει ένας συνδυασμός και τον δύο μηχανισμόν δηλαδή συμπύκνωση πτητικών συστατικών τα οποία προήλθαν από τον μηχανισμό έκρηξης. Ο μηχανισμός συναξής των σωματιδίων οδηγεί σε μικρό αριθμό submicron σωματιδίων και επομένως η ισχύς του περιορίζεται σε σχέση με αυτή του μηχανισμού της έκρηξης [90]. Επίσης υπάρχει και ο σχηματισμός κενοσφαιριδιών και πλεροσφαιρίδιων. Οι κενόσφαιρες σχηματίζονται από την καύση του λιγνίτη όταν αυτός βρίσκεται λιωμένος. Ρέοντας μαζί με το ρεύμα αερίων της καύσης, η θερμοκρασία των λιωμένων σωματιδίων μειώνεται με σημαντική γρήγορο ρυθμό με αποτέλεσμα να αποχωρούν και να διατηρούν σφαιρική μορφή. Επιπλέον μέσα στις κενόσφαιρες εγκλωβίζονται και φυσικότερες αερίων οι οποίες προοιμίζονται μέσα στα λιωμένα σωματίδια. Αυτές οι φυσικότερες σχηματίζουν τις κενόσφαιρες. Το πάχος των τοπικών του κενοσφαιριδιών είναι αρκετά μικρό με αποτέλεσμα οι κενόσφαιρες να έχουν μικρή πυκνότητα της τάξης >1 gm/cm³ [91]. Είναι δυνατό να εγκλωβιστούν και άλλα -ήδη σχηματισμένα- σφαιρίδια μικρότερου διαμέτρου από αυτή της κενόσφαιρας μέσα σε κενόσφαιρες. Ετσι σχηματίζονται τα πλεροσφαιρίδια. Πολλά από τα οργανά συστατικά παρευρίσκονται υπό ενδιαφέρον μορφή ή υπό μορφή ανθρακικόν αλότα του διασπάνται για τον σχηματισμό H2O ή CO2 κατά την θερμική καταπόνηση [90]. Η Εικόνα A.13 παρουσιάζει
A. Θεωρητικό Μέρος

επιλεγμένες φωτογραφίες σωματιδίων των υπάρμενων τεφρών από Ηλεκτρονικό Μικροσκόπιο Σάρωσης (SEM).

Εικόνα A13. Εικόνα SEM διαφόρων σωματιδίων των υπάρμενων τεφρών [16].

A.4.2 Σύσταση και ταξινόμηση υπάρμενων τεφρών

Η σύσταση των υπάρμενων τεφρών εξαρτάται κυρίως από την αρχική σύσταση του καυσίμου και από τις παραγόμενες εξόρυξης και καύσης του. Οι τέφρες χαρακτηρίζονται γενικά είτε ως πυρηνικές, είτε ως ασβεστολιθικές. Οι πυρηνικές τέφρες που προέρχονται κυρίως από την καύση του λιθάνθρακα εμπίπτουν στο Ευρωπαϊκό πρότυπο EN 450-1 και επιτρέπεται η χρήση τους στο σκυρόδεμα σύμφωνα με το Ευρωπαϊκό πρότυπο EN 260-1. Γενικότερα ισχύουν μεγάλα εύρη τιμών, και για τις δύο τέφρες, όσον αφορά στα τέσσερα κύρια συστηματικά τους. Περιέχονται SiO₂ από 25% έως 60%, CaO από 1% έως 35%, Al₂O₃ από 10% έως 30% και Fe₂O₃ από 5% έως 25% [92]. Οι ελληνικές υπάρμενες τέφρες κατατάσσονται σε δύο βασικές κατηγορίες:

- Στις πλούσιες σε άσβεστο, όπως είναι οι τέφρες των ΑΗΣ Πτολεμαίδας και Καρδιάς, οι οποίες έχουν ως επί το πλείστον υδραυλικές ιδιότητες

- Στις πλούσιες σε αργιλοπυρηνικά συστηματικά που έχουν ως επί το πλείστον ποξολανικές ιδιότητες, όπως η τέφρα του ΑΗΣ Μεγαλόπολης

Το αυξημένο ποσοστό CaO στις τέφρες Καρδιάς και Πτολεμαίδας αποδίδεται στην αυξημένη συμμετοχή ασβεστίτη στα ενδοστρωμένα στο λιγνίτη υλικά. Στην Π Μεγαλόπολης (υψηλό ποσοστό SiO₂ και χαμηλό ποσοστό συνυλικού και ελευθέρου CaO) υπερτερούν οι άργιλοι, ο κλασικός χαλαζιάς και οι άστριοι. Ο χαλαζιάς και οι άστριοι συνεισφέρουν στο συνυλικό πυρίτιο και το αδιάλλατο υπόλοιπο. Αντίθετα, τα ορυκτά των αργιλών τα οποία κατά την καύση του λιγνίτη καταστρέφονται, συνεισφέρουν στο συνυλικό και στο δραστικό πυρίτιο. Σημειώνεται επίσης ότι το ποσοστό του αυξημένου CaO στις υπάρμενες τέφρες του βορείου συστήματος είναι κυρίως σε ελεύθερη μορφή. Το γεγονός αυτό είναι υπέρυθρο για τα σημαντικά ποσοστά φυσικής
Α. Θεωρητικό Μέρος

αποθεώσεις των καυσαερίων που επιτυγχάνονται, και κατά συνέπεια του σχετικά υψηλού ποσοστού SO
3 στην Ιπτάμενη Τέφρα. Το SO
3 εμφανίζεται αυξημένο στις ιπτάμενες τέφρες τοπολογιδάς σε σχέση με την ιπτάμενη τέφρα Μεγαλόπολης, γεγονός που οφείλεται πιθανόν στην παρουσία οργανικών ενώσεων πλούσιων σε θείο, αλλά και την παρουσία αυθεντικής σιδηροπυρίτη και δευτερογενών θείων ορυκτών του σιδήρου, των αλκαλίων και των αλκαλικών γαϊών, καθώς και του αυτοφυούς θείου σε σχέσεις και ασυνέχειες του λιγνίτη. Το ποσοστό του MgO είναι σε όλα τα δείγματα χαμηλότερο από 3% και δεν παρουσιάζεται με την μορφή περίκλαστου.

Τυπικές χημικές συστάσεις των ελληνικών ιπτάμενων τεφρών των διαφόρων ΑΗΣ της ΔΕΗ Α.Ε. δίδονται στον Πίνακα Α.8 [92].

Πίνακας Α.8: Τυπική χημική σύσταση ορισμένων ελληνικών ιπτάμενων τεφρών [92].

<table>
<thead>
<tr>
<th>Συγκέντρωση</th>
<th>Αγίον Λεμνηρίου</th>
<th>Καρδάκι</th>
<th>Πτολεμαδάς</th>
<th>Αμορτήματος</th>
<th>Μεγαλόπολης</th>
</tr>
</thead>
</table>
| SiO
2 | 28.0-42.0 | 24.1-39.2 | 24.2-30.2 | 30.9-39.4 | 47-52 |
| Al
2O
3 | 5.6-14.5 | 9.4-15.5 | 9.0-15.1 | 16.5-20.5 | 12-22 |
| Fe
2O
3 | 5.2-7.5 | 4.5-5.6 | 4.6-6.3 | 2.4-4.7 | 5-10 |
| CaO | 28.0-51.0 | 28.0-48.0 | 31.9-44.2 | 22.2-34.3 | 5-15 |
| MgO | 1.5-6.3 | 1.4-5.7 | 3.1-4.3 | 1.3-4.7 | 1.5-3 |
| K
2O | 0.6-1.4 | 0.5-0.8 | 0.9-1.2 | 0.6-1.4 | 1.5-3 |
| Na
2O | 0.3-1.0 | 0.3-0.6 | 0.3-0.5 | 0.4-1.0 | 0.3-0.7 |
| SO
3 | 4.3-8.5 | 4.0-8.5 | 5.7-7.7 | 4.1-8.3 | 3-5 |

A.4.3 Χρήσεις ιπτάμενων τεφρών

Η ιπτάμενη τέφρα έχει χρησιμοποιηθεί μέχρι στιγμής σε ποικίλες εφαρμογές, όπως π.χ.: Χρήση της ιπτάμενης τέφρας για την παραγωγή τσιμέντου, χρήση της ιπτάμενης τέφρας στο σκυρόδεμα, σκυρόδεμα μεγάλων διατομών, σκυρόδεμα πεζοδρόμησης, κονιάματα, τσιμεντενέσεις, δομικά υλικά τυποποιημένα στοιχεία, αγογοί από σκυρόδεμα, οδοποιία, ανάκτηση μετάλλων, σταθεροποίηση εδαφών / στερεοποίηση επικίνδυνων αποβλήτων, βελτίωση αλκαλικότητας όξινων εδαφών, εξυγίανση βιομηχανικών αποβλήτων, αποκατάσταση λιγνιτοφόρων περιοχών, παραγωγή συνθετικών ζεόλίθων, παρασκευή σύνθετων υλικών μεταλλικής μήτρας.
Α. Θεωρητικά Μέρος

Α.5 ΣΥΝΘΕΤΑ ΥΛΙΚΑ ΑΛΟΥΜΙΝΙΟΥ / ΙΠΤΑΜΕΝΩΝ ΤΕΦΡΩΝ

Στα σύνθετα υλικά μεταλλικής μήτρας, η ιπτάμενη τέφρα μπορεί να αντικαταστήσει ισόποσο όγκο μετάλλου, και κατ’ αυτόν τον τρόπο να μειώσει το κόστος, το βάρος και η ποσότητα της ενέργειας που απαιτείται για την παρασκευή ενός τέτοιου υλικού. Παρότι τα σύνθετα υλικά μεταλλικής μήτρας τα οποία έχουν κατασκευαστεί έως σήμερα, με τη χρήση ιπτάμενων τεφρών δεν είναι μεγάλα σε όγκο ή υψηλής προστιθέμενης αξίας, στο μέλλον αυτό μπορεί να αλλάξει, δεδομένου ότι θα γίνει εφικτό να αποκτήσουν συγκεκριμένες ιδιότητες οι οποίες δεν έχουν επιτευχθεί έως σήμερα. Προς το παρόν, τα MMC’s με ιπτάμενη τέφρα θα μπορούσαν να χρησιμοποιηθούν σε μη-κατασκευαστικές εφαρμογές όπου το χαμηλό βάρος και η χαμηλή τιμή είναι ενδεχομένως πιο χρήσιμα από ότι οι πολύ υψηλές μηχανικές αντοχές.

Τα σύνθετα υλικά μήτρας Al / ιπτάμενων τεφρών μπορούν να παρασκευασθούν μέσω τεχνικών τηγμένου μετάλλου, χρησιμοποιώντας μία ευρεία γκάμα τέτοιων τεχνικών όπως p.x. η χύνευση υπό ανάδεια και η χύνευση με έγχυση υπό πίεση. Κατά τη σύνθεση των MMC’s, τα σωματίδια της τέφρας πρέπει να διαβραχυνθούν από το τηγμένο Al, ώστε να μπορέσουν να ενσωματωθούν στη μήτρα. Εφόσον η διεπιφάνεια μεταξύ των σωματιδίων και του τηγμένου μετάλλου επηρεάζεται από την επιφανειακή ενέργεια, η διαδικασία της επιφανειακής διαβροχής των τεφρών οδηγεί είτε σε έκλεση είτε ή σε κατανάλωση ενέργειας. Για την ακρίβεια, η διαδικασία της δημιουργίας δεσμών στη διεπιφάνεια τέφρας – μετάλλου είναι γενικά αργή και συνεπή λόγω της δημιουργίας του κύριου ενεργειακού φράγματος για την παραγωγή του συνθέτου υλικού. Ως εκ τούτου, η καλή διαβροχή των σωματιδίων της ιπτάμενης τέφρας από το τηγμένο αλουμίνιο είναι ένας από τους πιο σημαντικούς παράγοντες για την επιτυχή παρασκευή συνθέτων υλικών αλουμινίου/ιπτάμενων τεφρών με τεχνικές τηγμένου μετάλλου.

Α.5.1 Μελέτη διαβροχής Al – ιπταμένων τεφρών

Ο Sobczak και άλλοι [93] μελέτησαν το σύστημα Al-ιπτάμενης τέφρας σε σχέση με τους κύριους παράγοντες οι οποίοι συμβάλλουν στη διαβροχή των σωματιδίων ιπτάμενης τέφρας από τήγμα αλουμινίου. Τα πειράματα διαβροχής έγιναν με τη μέθοδο sessile drop σε θερμοκρασίες από 973Κ έως 1273Κ. Μελετήθηκε συγκριτικά η επίδραση της ατμόσφαιρας αέρα και Αr, υπό πίεση 1MPa, για χρονική διάρκεια 2 ωρών. Οι πρώτες ώλες για τη διεξαγωγή αυτών των πειραμάτων ήταν Al καθαρότητας 99.998% και ιπτάμενες τέφρες διαφορετικών ειδών.

Παρατηρήθηκε ότι η διαβροχή των τεφρών από το τηγμένο Al διαφοροποιείται σε ατμόσφαιρα αέρα και Αr. Όπως φαίνεται στις εικόνες Α.14 α και Α.14β, στα δείγματα όπου έγινε η διεργασία
Α. Θεωρητικό Μέρος

υπό ατμόσφαιρα Ar στους 1073Κ και στους 1173Κ, το τηγμένο αλουμίνιο δεν διέβρεξε την
ιπτάμενη τέφρα. Σε υψηλότερες θερμοκρασίες, και ειδικότερα πάνω από 1273 K, η γωνία επαφής
μειώνεται, από > 90°, για χρόνο επαφής 14 λεπτά, σε 34° μετά από 120 λεπτά επαφής. Αντιθέτως,
σε ατμόσφαιρα αέρα η διαβροχή ήταν καλύτερη σε χαμηλή θερμοκρασία (1073Κ και 1173Κ
μετά από 8 και 4 λεπτά αντίστοιχα), καθώς και μετά από εκατόν είκοσι λεπτά επαφής στους
1023Κ. Επιπλέον, τα δείγματα που παρασκευάσθηκαν με κενόσφαιρες ιπτάμενης τέφρας και των
οποίων η χύσευση έγινε σε ατμόσφαιρα αέρα, παρουσίαζαν γωνίες επαφής συγκρίσιμες με τα
υπόλοιπα δείγματα που παρασκευάστηκαν στην ίδια ατμόσφαιρα. Για τις ίδιες συνθήκες, η
ιπτάμενη τέφρα με μεγαλύτερη συγκέντρωση SiO2 παρουσίασε καλύτερη διαβροχή σε
χαμηλότερες θερμοκρασίες επεξεργασίας. Μέσω επισταμένου καθαρισμού των σωματιδίων της
ιπτάμενης τέφρας προτού της εισαγωγής τους στο τήγμα, η διαβροχή βελτιώνεται αισθητά.
Τέλος, άλλο ένα ενδιαφέρον φαινόμενο παρατηρήθηκε στους 1173Κ και μετά από την πάροδο
πενήντα λεπτών. Στην αρχή έλαβε χώρα μείωση του όγκου του τήγματος, λόγω της διείσδυσης
tου στο πορώδης της ιπτάμενης τέφρας. Όμως, με την πάροδο κάποιου χρόνου (διαφορετικά για
cάθε δείγμα), παρατηρήθηκε αύξηση του όγκου από τρεις έως και πέντε φορές, πιθανόν λόγω
σχηματισμού άρων προϊόντων μέσω μιας αλληλοουχίας χημικών αντιδράσεων.

Α.5.2 Μέθοδοι παρασκευής MMC's αλουμινίου – ιπτάμενων τεφρών

Οι κύριες μέθοδοι παρασκευής σύνθετων υλικών μεταλλικής μήτρας – ιπτάμενων τεφρών είναι
οι ίδιες με αυτές που έχουν συζητηθεί σε προηγούμενες παραγράφους. Παρόλα αυτά, επειδή η
ιπτάμενη τέφρα είναι ένα ιδιαίτερο υλικό, χρήζουν αναφοράς οι σημαντικότερες μέθοδοι
παραγωγής σύνθετων υλικών μεταλλικής μήτρας Al με ιπτάμενη τέφρα.

Α.5.2.1. Χύσευση-υπό-ανάδευση

Η τεχνική της χύσευσης-υπό-ανάδευση περιλαμβάνει την πρόσθεση σωματιδίων τέφρας ως
ενισχυτικό υλικό σε συνεχής αναδεικτόν τήγμα αλουμινίου. Πέραν του πλεονεκτήματος που
παρέχει αυτή η τεχνική σχετικά με τη δυνατότητα δευτερογενούς μορφοποίησης, παρουσιάζει
επίσης πολύ απλή μεθοδολογία κατά την εφαρμογή της και μεγάλη προσαρμοστικότητα για την
παραγωγή συνθέτων διαφορετικής μορφολογίας και όγκου. Το βασικό, όμως, μειονέκτημα είναι
ότι εξαρτάται εντός από τη διαβροχή της ιπτάμενης τέφρας από το τηγμένο αλουμίνιο και
καθώς αυτή είναι γενικά μειωμένη, τα σωματίδια της τέφρας, όντας ελαφρώτερα από το
αλουμίνιο, ανεβαίνουν στην επιφάνεια του μίγματος κατά τη χύσευση και απορρίπτονται. Τόσο,
Α. Θεωρητικό Μέρος

λοιπόν, η μη-διαβροχή της τέφρας από το αλουμίνιο λόγω της σύστασης της, όσο και η μικρή πυκνότητά της, συνεπειόταν στην δημιουργία συσσωματωμάτων, στην επίπλευση των σωματιδίων και τελικά στην εκτεταμένη απόρριψή τους από το τηγένο αλουμίνιο. Στα σύνθετα υλικά AI – ιστάμενον τεφρών, η συστηματική μηχανική ανάδευση από μόνη της δε στάθηκε ικανή για την επιτυχήμενη ενσωμάτωση των τεφρών στο τύμχ. Για το λόγο αυτό απαιτείται επιφανειακή προ-επεξεργασία των σωματιδίων των ιστάμενων τεφρών.

Η διαβροχή μεταξύ ιστάμενης τέφρας και τηγένου αλουμίνιου μπορεί να βελτιωθεί με θερμική ή χημική επεξεργασία. Ένα παράδειγμα θερμικής επεξεργασίας που βελτιώνει αισθητά τη διαβροχή είναι η προ-θέρμανση των τεφρών για 8 ώρες σε θερμοκρασία πάνω από 800 °C. Παράλληλα, με τον τρόπο αυτό επιτυγχάνονται ακόμη τρεις στόχοι:

- Απομακρύνονται και άλλου είδους επιφανειακά αέρια εκτός από την υγρασία,
- Μειώνονται οι πιθανότητες θραύσης των σωματιδίων λόγω θερμικού σοκ κατά την έγχυσή τους στο τύμχα,
- Εξασφαλίζεται έτσι ώστε να προκύψει μεγάλη πτώση της θερμοκρασίας του τηγένου μετάλλου κατά την έγχυση μεγάλης ποσότητας ενισχυτικού υλικού, με παράλληλη αποφυγή τυχόν μερικής στερεοποίησης.

Στην περίπτωση αυτή, η ιστάμενη τέφρα πρέπει να προστεθεί στο τύμχα πριν προλάβει να γίνει προσφόρση της υγρασίας στην επιφάνεια. Τα σωματίδια μπορούν επίσης να ενεργοποιούνται από χημικά επιλεγμένους παράγοντες διαβροχής. Επιστρέφονται τα σωματίδια σε τεφρών με ένα κατάλληλο παράγοντα διαβροχής ή χαράσσοντας την επιφάνειά τους, μπορεί να βελτιωθεί η διαβροχή τους από το τηγένο μέταλλο. Επιπλέον, αυτές οι μέθοδοι έχουν την ικανότητα να αυξήσουν την επιφανειακή ενέργεια των σωματιδίων καθώς επίσης και να μειώσουν το ρυθμό με τον οποίο δημιουργούνται τα συσσωματώματα των τεφρών. Μετά από την επεξεργασία, τα σωματίδια μπορούν πρακτικά να διαβραχούν πιο εύκολα από το τηγένο αλουμίνιο.

A.5.2.2 Παράμετροι που επηρεάζουν τη χρύσωση-υπό-ανάδευση

A.5.2.2.1 Ανάμιξη και ρυθμός προσθήκης ιστάμενης τέφρας

Ο τύπος του αναδευτήρα, οι διαστάσεις και η θέση του, διαδραματίζουν σημαντικό ρόλο αναφορικά με την ανάμιξη και την -όσο το δυνατόν καλύτερη- διασπορά των τεφρών στο τύμχα του μετάλλου. Επίσης, και η ποσότητα του αέρα που εισάγεται κατά την ανάδευση εξαρτάται από τον τύπο του αναδευτήρα. Ένα επιπλέον πρόβλημα που έχει παρατηρηθεί σε διάφορες μελέτες, είναι η πιθανή τήξη του αναδευτήρα και για αυτόν ακριβώς το λόγο προκύπτει η ανάγκη.

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτσάκος 56
A. Θεωρητικό Μέρος
εξεύρεσης νέων υλικών. Αναδειντήρες οι οποίοι έχουν την ικανότητα, κατά τη λειτουργία τους, να αλλάξουν τη φορά περιστροφής τους, συμβάλλουν στη διάσπαση των συσσωματωμάτων των τεφρών.

Κατά την προσθήκη των τεφρών στο τήγμα, εφόσον το πάχος του αερίου που καλύπτει τα σωματιδιά τους είναι σχετικά μεγάλο, τότε αυτά τείνουν εντόνως να συνσωματώνουν. Ως εκ τούτου, η μεγάλη ποσότητα τεφρών οδηγεί σε υψηλό βαθμό συσσωμάτωσης και κατ’ επέκταση σε υψηλή πιθανότητα απόρριψης της από το τηγμένο Αl. Αντιθέτως, η προσθήκη του ενισχυτικού υλικού υπό χαμηλό ρυθμό (g/sec) ανεξάνει τον απαιτούμενο χρόνο για την εισαγωγή όλου του ενισχυτικού υλικού και παράλληλα αυξάνει το χρόνο της διαβροχής, βοηθώντας έτσι στην πληρέστερη αφομοίωση των σωματιδίων από το τήγμα.

A.5.2.2.2 Επεξεργασία του τήγματος και έγχυσή του στο καλώπι μορφοποίησης

Η κατάλληλη επεξεργασία του τήγματος βελτιώνει τη διαβροχή μεταξύ της υπάρμενης τέφρας και του τηγμένου αλουμινίου και ταυτόχρονα δύναται να αναχωτίσει τη δημιουργία συσσωματωμάτων. Η προσθήκη Mg σε μικρά κομμάτια στο τήγμα ακριβώς πριν από την προσθήκη των σωματιδίων υπάρμενης τέφρας, ή και παράλληλα με αυτή, οδηγεί σε καλύτερη διαβροχή από ότι η προσθήκη τους κατάπιν της υπάρμενης τέφρας. Αυτό συμβαίνει διότι τα κομμάτια Mg που προστίθεται πριν από την τέφρα, τήκονται και το Mg «διαχέτεται» στην επιφάνεια του τήγματος και έτσι έρχονται σε επαφή με τα σωματιδια κατά την έγχυσή τους. Αυτή η αρχική αλληλεπίδραση του ενεργού Si των τεφρών με το Mg, ανεξάνει σημαντικά τη διαβροχή της τέφρας από το τήγμα.

Η θερμοκρασία του τήγματος -ανά πάσα στιγμή κατά τη διεργασία- είναι επίπεδη μια πολύ σημαντική παράμετρος. Οι υψηλότερες θερμοκρασίες έχουν δείξει βελτίωση της διαβροχής μεταξύ του αλουμινίου και της υπάρμενης τέφρας. Ωστόσο, οι υψηλότερες θερμοκρασίες μπορούν να οδηγήσουν επίπεδο σε σημαντική διάβρωση του αναδειντήρα, χημική αντίδραση σε μεγάλο βαθμό μεταξύ της υπάρμενης τέφρας και του τηγμένου μετάλλου, καθώς επίπεδη και σε μεγαλύτερες ποσότητες προσφορμένου αερίου. Η θερμοκρασία της έγχυσης του υγρού συνθέτου υλικού στο καλώπι μορφοποίησης του παίζει επίπεδο πολύ σημαντικό ρόλο στην κατανομή των σωματιδίων μέσα σε αυτό. Όσο περισσότερο αυξημένη είναι η θερμοκρασία της έγχυσης, τόσο αυξάνεται και ο χρόνος που έχουν διαθέσιμο τα σωματίδια της τέφρας ώστε να ανέβουν ως την επιφάνεια του μίγματος, προτού προλάβει να γίνει η στερεοποίηση. Συνεπώς, η θερμοκρασία έγχυσης πρέπει να είναι όσο το δυνατό χαμηλότερη, ώστε να διατηρείται μια σχετική έκμειγή στο τήγμα.
Α. Θεωρητικό Μέρος

Α.5.3 Άλλες τεχνικές που έχουν αναπτυχθεί για την παραγωγή σύνθετων υλικών αλουμινίου – ιπτάμενης τέφρας

Α.5.3.1 Χύτευση σε άμμο

Ο χαμηλός ρυθμός στερεοποίησης που εφαρμόζεται στα καλούπια άμμου τα οποία λειτουργούν ως μονωτικά, επιτρέπει σημαντική πλευστότητα, με στόχο τον όσο το δυνατόν καλύτερο διαχωρισμό των σωματιδίων της ενισχυτικής φάσης. Ανάλογα με τη σκληρότητα των διάστασεων σωματιδίων, επιφάνειες με υψηλή συγκέντρωση σωματιδίων μπορούν να χρησιμεύσουν ως επιλεκτικά ενισχυτικές περιοχές.

Α.5.3.2 Φυγοκεντρική χύτευση

Η φυγοκεντρική χύτευση των τηγμάτων που περιέχουν διασπαρμένα σωματίδια, έχει ως αποτέλεσμα το σχηματισμό δύο ξεκάθαρων ζωνών στο στερεοποιημένο υλικό: α) μια ζώνη υψηλής συγκέντρωσης σωματιδίων και β) μια ζώνη φτωχή σε σωματίδια. Εάν τα σωματίδια είναι ελαφρύτερα του τηγμένου μετάλλου, τότε η ζώνη (α) σχηματίζεται στο εσωτερικό του σύνθετου υλικού.

Α.5.3.3 Compcasting

Τα σωματίδια των ιπτάμενων τεφρών έχουν ενσωματωθεί σε ένα δυναμικά αναδευόμενο, μερικώς στερεοποιημένο κράμα Al, με την εφαρμογή της μεθόδου compocasting. Τα σωματίδια παγιδεύονται μηχανικά στην προσευτικτική φάση στο κράμα, η οποία σχηματίζεται όταν το κράμα διατηρείται μεταξύ της θερμοκρασίας τήξης του και στερεοποίησης του. Υπό μηχανική ανάδευση, σε τέτοιοι είδους τήξεων, το έξοδος μειώνεται όσο αυξάνεται ο ρυθμός διάτμησης.

Α.5.3.4 Χύτευση με έγχυση-υπό-πίεση

Η τεχνική της έγχυσης του τηγμένου μετάλλου σε κλίνη σωματιδίων τεφρών, υπό πίεση αερίου, έχει μελετηθεί για διάφορα σύνθετα υλικά [94-96]. Η τεχνική αυτή έχει το πλεονέκτημα της δυνατότητας εφαρμογής χαμηλών πίεσεων κατά τη διάρκεια της έγχυσης του μετάλλου στην τέφρα και συνήθως απαιτεί σχετικά σύντομο χρονικό διάστημα. Αυτό βοηθάει στην παραγωγή...
Α. Θεωρητικό Μέρος

μεγαλύτερων ποσοστών συνθέτων υλικών, καθώς, εκτός των άλλων, περιορίζει και τη διεπαφανειακή αντίδραση μεταξύ του υγρού αλουμινίου και της τέφρας κατά τη διαδικασία της έγχυσης. Η χαμηλές πίεσες, καθώς επίσης και το σύντομο χρονικό διάστημα που απαιτείται για την ολοκλήρωση της διεργασίας, μειώνουν το κόστος παραγωγής των συνθέτων και συνεπώς ενισχύουν τη δυνατότητα εμπορευματοποίησής τους.

Ο Rohatgi και άλλοι [94] μελέτησαν την έγχυση υπό χαμηλή πίεση, τηγμένου Al σε κενόσφαιρες ιπτάμενες τέφρες, οι οποίες έχουν επικαλυφθεί με Ni. Η τέφρα στην προκειμένη περίπτωση χρησιμοποιήθηκε σε ποσοστό 50-60% κ.ο. Η πυκνότητα των παραχθέντων συνθέτων υλικών είναι περίπου ίση με 1.4 g·cm\(^{-3}\) για κενόσφαιρες επικαλυμμένες με Ni και περίπου ίση με 1.2 g·cm\(^{-3}\) για μή-επικαλυμμένες κενόσφαιρες, έναντι 2.68 g cm\(^{-3}\) του Al. Η οριακή πίεση έγχυσης του τηγμένου Al σε μή-επικαλυμμένη ιπτάμενη τέφρα βρέθηκε μεταξύ 20.68 και 27.58 kPa, και η αντίστοιχη πίεση έγχυσης σε επικαλυμμένα σωματίδια βρέθηκε περίπου στα 6.7kPa.

Τα δεδομένα αυτά χρησιμοποιήθηκαν για να υπολογισθεί μια αποτελεσματική γονία επιφάνειας μεταξύ του τηγμένου Al και της ιπτάμενης τέφρας, χρησιμοποιώντας τις σχέσεις των Young και Washburn. Η μέση γονία για τη μή-επικαλυμμένη τέφρα βρέθηκε περίπου ίση με 111°. Στην ιδιαίτερα εργασία μελετήθηκε επίσης η μικροδομή και η χημική σύσταση των παραχθέντων συνθέτων υλικών, όπου παρατηρήθηκε η μεταφορά Ni από τη βάση προς την κορυφή του δείγματος όταν χρησιμοποιήθηκαν επικαλυμμένα σωματίδια ιπτάμενης τέφρας. Επιπλέον, παρατηρήθηκε ότι το Ni υποβοηθεί τη διάλυση συσσωματωμάτων ιπτάμενης τέφρας στην οποία έχει διεισδύσει.

A.5.3.5 Κονιομεταλλουργία

Η κονιομεταλλουργία έχει χρησιμοποιηθεί προκειμένου να παραχθούν σύνθετα υλικά με ομοσπονδική κατανομή σωματιδίων ιπτάμενων τεφρών σε διάφορες συγκεντρώσεις. Αυτή η μέθοδος περιλαμβάνει την έξαρση του αλουμινίου ή των κραμάτων του αλουμινίου και στη συνέχεια την ανάμειξή του και την τροφοδότησή τους σε καλούπι για την απόκτηση της επιθυμητής μορφής. Με την άσκηση πίεσης επιτυγχάνονται δύο στόχοι: α.) Η περεταίρω πίεση και μείωση του όγκου του υλικού και β.) η δημιουργία καλύτερων δεσμών μεταξύ των σωματιδίων. Στην πιέσεις το συμπιεσμένο υλικό υπόκειται σε πυροσβεστική διαδικασία για την καλύτερη δημιουργία δεσμών και ενός μεταξύ των σωματιδίων.
Α. Θεωρητικό Μέρος

A.5.4 Μηχανικές ιδιότητες συνθέτων υλικών αλουμινίου – τεφρών

A.5.4.1 Ιδιότητες απόσβεσης ταλαντώσεων

Ο Wu και άλλοι [97] μετρήσαν τις ιδιότητες απόσβεσης ταλαντώσεων συνθέτων υλικού μήτρας A 6061 Al με ενίσχυση κενοσφαιρών υπάμενης τέφρας, διαφόρων διαμέτρων, και με συνολικό πορώδες περίπου ίσο με 40%. Οι μετρήσεις έγιναν με χρήση εξαναγκασμένης δόνησης και κάμψης κραδασμόν (bending vibration) σε πολυμορφική συσκευή εσωτερικής φθοράς (multifunctional internal friction apparatus). Τα αποτελέσματα έδειξαν ότι, και για τις δύο δοκιμές, η ικανότητα απόσβεσης ταλαντώσεων των συνθέτων υλικών με μικρότερες διαμέτρους υπάμενης τέφρας ήταν καλύτερης από ότι σε τα αυτά με τέφρα μεγαλύτερης διαμέτρου. Στη μέθοδο κάμψης κραδασμόν, εμφανίζεται περίπου δυπλάσια αύξηση στην τιμή της απόσβεσης των ταλαντώσεων, η οποία είναι ίση με ~2-3×10^2, έναντι της μεθόδου εξαναγκασμένης δόνησης.

A.5.4.2 Σκληρότητα

Τα αποτελέσματα που προκύπτουν σε σχέση με την ενίσχυση της επιφανειακής σκληρότητας του αλουμινίου και επιλεγμένων κραμάτων του λόγου της προσθήκης υπάμενων τεφρών, είναι ιδιαιτέρως ενθαρρυντικά. Σε σχετικά περιόματα [98], το δοκίμιο καθαρού Al παρουσίασε σκληρότητα ίση με 46 VHN κατά Vickers, ενώ το ίδιο υλικό με προσθήκη πυρηνικής υπάμενης τέφρας κατά 25% κ.β., παρουσίαζε τιμή σκληρότητας Vickers 57 VHN, μια αύξηση δηλαδή της τάξεως του 23%. Παρόμοια συμπεριφορά παρατηρείται για το κράμα Al-12% Si με προσθήκη υπάμενης τέφρα σε ποσοστό 33% κ.β., με μικρότερη ποσοστιαία αύξηση της σκληρότητας όμως (6%).

A.5.4.3 Αντοχές εφελκυσμού και μέτρο ελαστικότητας

Οι δοκιμές εφελκυσμού των συνθέτων υλικών κραμάτων αλουμινίου/υπάμενων τεφρών (AlSi_{6}Zn_{2.5}Cu_{2.5}Fe και AlSi_{6}Cu/υπάμενη τέφρα) που παρασκευάζονται με διαιρετικές τεχνικές χύτευσης (χύτευση υπό την επίδραση της βαρότητας και χύτευση συμπίεσης) δείχνουν ότι οι αντοχές εφελκυσμού ενός συνθέτου με περιεχόμενο χως και 0.8% κ.β. υπάμενη τέφρα ενισχύονται ελαφρώς, ενώ σε μεγαλύτερες συγκεντρώσεις τεφρών, μειώνονται. Προκύπτει ότι οι αντοχές εφελκυσμού των συνθέτων υλικών Al-υπάμενων τεφρών δεν διαφοροποιούνται με τη
Α. Θεωρητικό Μέρος

θερμική επεξεργασία τους. Επομένως, η επιβολή θερμικής επεξεργασίας σε αυτή την περίπτωση
συσχετίζεται μόνο με μεταβολές στη μικροδομή του συνθέτου.

Λαμβάνοντας υπόψη το γεγονός ότι η αλληλεπίδραση μεταξύ υγρού Al και υπάρμενης τέφρας
exαρτάται από το είδος και τη σύσταση των τεφρών, καθώς επίσης και από το είδος της
επεξεργασίας που ενδέχεσθε έχουν υποστεί [98], η θερμοδυναμική ανάλυση δείχνει ότι
υπάρχει πιθανότητα χημικών αντιδράσεων μεταξύ αλουμινίου και τέφρας. Αυτά τα σωματίδια
περιέχουν Al₂O₃, SiO₂ και Fe₂O₃, τα οποία κατά την φάση της στερεοποίησης του συνθέτου είναι
πιθανό να αναχθούν. Η χημική αντίδραση τέφρας - αλουμινίου έχει μελετηθεί επιστημενά με
χρήση μεταλλογραφικών εργαλείων, Διαφορικής Θερμικής Ανάλυσης (DTA) και Ηλεκτρονικού
Μικροσκοπίων Σάρωσης (SEM).

Οι μηχανικές ιδιότητες των συνθέτων υλικών A380 Al-υπάρμενων τεφρών τα οποία
παρασκευάζονταν μέσω έγχυσης του κράματος υπό υψηλή πίεση σε κλίνη σωματιδίων της
tέφρας, και ιδιαίτερα η αντοχή σε εφελκυσμό, είναι πολύ χαμηλότερες από τις αντίστοιχες του
κράματος. Αυτό οφείλεται στην παρουσία πορώδους στα σύνθετα, το οποίο προκύπτει ως
αποτέλεσμα της διαδικασίας της χότευσης με έγχυση υπό πίεση, κυρίως σε σημεία χαμηλών
πιέσεων. Μετά τις δοκιμές εφελκυσμού, τα εξετασθέντα σύνθετα δοκίμα δεν εμφανίζουν
σημάδια πλαστικής παραμόρφωσης, γεγονός που υποδηλώνει ψαθήρη θραύση. Πρέπει να
σημειωθεί ότι η θραύση των δεσμών στη διεπιφάνεια μεταξύ της υπάρμενης τέφρας και του
κράματος λαμβάνει χώρα πριν από τη θραύση του δοκιμίου, όπως προκύπτει από τη
μικροσκοπική μελέτη της υπάρμενης τέφρας. Η ψαθήρη θραύση προκύπτει ως αποτέλεσμα ολικής
και απότομης αποκόλλησης η οποία είναι πιθανό να συμβαίνει λόγω μικρών ρογγών στα άτομα
tων κόκκων. Στα σύνθετα, η θραύση λαμβάνει χώρα στη διεπιφάνεια κράματος-ενισχυτικού
υλικού εφόσον οι δεσμοί μεταξύ τους είναι ασθενείς. Αυτό σημαίνει ότι ο σχηματισμός ρογγών
ζεικνύει στο επίπεδο της διεπιφάνειας υπάρμενης τέφρας-κράματος, τη στιγμή ακριβώς κατά την
οποία οι τοπικές τάσεις θα εξερεύνησαν την ισχύ των δεσμών. Ετσι, η διάδοση των ρογγών κατά
μήκος της επιφάνειας επαφής μεταξύ των σωματιδίων τέφρας και μεταλλικής μήτρας θεωρείται η
πρωτορχική αττίκη της αστοχίας κατά την δοκιμή.

Τα σύνθετα υλικά A356 Al-υπάρμενων τεφρών που παρασκευάστηκαν με τη μέθοδο της
χότευσης υπό ανάδευση επέδειξαν καλές επιδόσεις αναφορικά με το μέτρο ελαστικότητάς τους
παρόλο που οι τιμές ολικότητας είναι, γενικά, χαμηλές. Το σύνθετο με 20% κ.ο. περιεκτικότητα
σε υπάρμενη τέφρα παρουσίασε τις καλύτερες επιδόσεις. Αυτό είναι πιθανό να οφείλεται στο
συνδυασμό μεγαλυτέρου ποσοστού Mg με την ταυτόχρονη ύπαρξη της υπάρμενης τέφρας στο
σύνθετο υλικό.
Α. Θεωρητικό Μέρος

Η ολικότητα του συνθέτου υλικού Al$_{7.9}$Si$_{1.6}$Mg με μικροσφαιρίδια υπόμενης τέφρας είναι χαμηλότερη από εκείνη του Al$_{8.4}$Si$_{2.2}$Mg με μικροσφαιρίδια υπόμενης τέφρας, αντανακλώντας την επίδραση του κλάσματος του όγκου και της μορφολογίας των σωματιδίων. Το σύνθετο υλικό Al$_{8.4}$Si$_{2.2}$Mg με 20% κ.ο. μικροσφαιρίδια υπόμενης τέφρας απέτυχε να εμφανίσει υψηλή αντοχή λόγω του πρόωρου σχηματισμού ενός ολόενα και αυξανόμενου κεραμικού περιεχομένου. Το μονολιθικό υλικό παρουσιάζει τον καλύτερο συνδυασμό μεταξύ αντοχής και ολικότητας Περαιτέρω βελτίωση των ιδιοτήτων Al / υπόμενων τεφρών είναι δυνατή με τη βελτιστοποίηση της παραγωγικής διαδικασίας, των χαρακτηριστικών των ενισχυτικών σωματιδίων, των συνθηκών χύνευσης και των παραμέτρων θερμικής επεξεργασίας [99].

Συγκρίνοντας τα σύνθετα υλικά Al-υπόμενων τεφρών και κράματος Al-12Si-υπόμενων τεφρών τα οποία έχουν παραχθεί με κονιομεταλλουργία, προκύπτει ότι η αντοχή δεν διαφοροποιούνται σημαντικά με την πρόσθεση της υπόμενης τέφρας. Το γεγονός ότι το μέτρο ελαστικότητας για το αλουμινίο είναι περίπου 10*103 ksi θα έδειχνε ότι οι ατέλειες όπως το πορώδες είναι υπεύθυνες για οποιαδήποτε παραπεμφομένη αλλαγή. Είναι ενδιαφέρον ότι το μέγεθος του μέτρου ελαστικότητας είναι παρόμοιο για κάθε υλικό. Σε αυτή την περίπτωση πρέπει να υποθέτει ότι η πλήρης πύκνωση του σύνθετου υλικού δεν έχει επιπλέον για κανέναν από τα παραχθέντα υλικά [100].

A.5.4.4 Ιδιότητες ανθεκτικότητας στη φθορά

Οι δοκιμές της ανθεκτικότητας στη φθορά των συνθέτων υλικών AlSiMg-υπόμενων τεφρών, τα οποία παρασκευάστηκαν με τη μέθοδο της χύνευσης υπό ανάδειξη, έδειξαν ότι το σύνθετο αυτό είναι δυνατό να αντικαταστήσει το ατσάλι σε ορισμένες βιομηχανικές εφαρμογές, όπως π.χ. η κατασκευή εναλλακτών θερμότητας. Η καλή ανθεκτικότητα στην τριβολογική φθορά, αποδόθηκε στην προσθήκη της υπόμενης τέφρας [99], όπως και σε άλλες μελέτες [95,100].

A.5.4.5 Ηλεκτρομαγνητική θωράκιση

Ο Doi και άλλοι [102], χρησιμοποίησαν πυρηνική υπόμενη τέφρα και τις κενόσφαιρες της, για να παρασκευάσουν σύνθετο υλικό μήτρας Al με πυκνότητα 2.2 – 2.4 g/cm3 και 1.4 – 1.6 g/cm3 αντίστοιχα. Σε αυτά τα υλικά μετρήθηκε η αποτελεσματικότητα ηλεκτρομαγνητικής θωράκισης, σε εύρος συχνοτήτων από 30 KHz έως 1.5 GHz. Και οι δύο τύποι σύνθετων υλικών έδειξαν παρόμοια αποτελέσματα. Με την προσθήκη των σωματιδίων τέφρας σημειώθηκε βελτίωση στην ηλεκτρομαγνητική θωράκιση σε εύρος συχνοτήτας 30.0 kHz - 600.0 MHz και παρατηρήθηκε
Α. Θεωρητικό Μέρος

αύξηση της θερμόκερασης με την αύξηση της συχνότητας. Σε υψηλότερες συχνότητες η συμπεριφορά του συνθέτου υλικού είναι παρόμοια με αυτή του άλοιμνίου.

A.6 Χημική αντίδραση ανάμεσα σε άλοιμνίο και ιπτάμενη τέφρα

Κατά την επεξεργασία των συνθέτων υλικών με τη μέθοδο της χύτευσης υπό ανάδευση, το τηγμένο άλοιμνίο ή κράμα άλοιμνίου αναδεύεται πριν από τη χύτευση. Εναλλακτικά, προμορφώματα ιπτάμενης τέφρας μπορούν να χρησιμοποιηθούν ως κλίνη επί της οποίας θα γίνει έγχυση του τηγμένου άλοιμνίου σε χαμηλή ή υψηλή πίεση και να σχηματιστούν σύνθετα υλικά με μεγάλο ποσοστό ιπτάμενης τέφρας. Κατά τη διαδικασία της στερεοποίησης υπάρχει δυνατότητα χημικής αντίδρασης μεταξύ άλοιμνίου και ιπτάμενης τέφρας. Με βάση τα θερμοδυναμικά δεδομένα, υπάρχει η πιθανότητα χημικών αντιδράσεων μεταξύ του τηγμένου άλοιμνίου και των συστατικών της τέφρας, όπως SiO₂ και Fe₂O₃, ή Fe₃O₄. Τα συστατικά της ιπτάμενης τέφρας που ανάγονται (Si και Fe) δημιουργούν κράμα με το άλοιμνίο. Σε ικανές ποσότητες, αυτά τα συστατικά κραματοποίησης, μπορούν να σχηματίσουν διαμεταλλικούς δεσμούς με το άλοιμνίο και να εμφανιστούν ως ιζήματα στα τελικά προϊόντα. Τέτοιες αντιδράσεις μεταξύ της ιπτάμενης τέφρας και του ολικού άλοιμνίου μπορούν να επηρεάσουν σημαντικά τις ιδιότητες της διεπιφάνειας του κράματος και του ενισχυτικού υλικό και κατ’ επέκταση και τις ιδιότητες του τελικού σύνθετου υλικού. Πελλέτες καθαρού άλοιμνίου (99.998% Al) και κενόσφαιρες ιπτάμενης τέφρας χρησιμοποιήθηκαν για την παρασκευή σύνθετου υλικού με την τεχνική έγχυσης-υπό-χαμηλή πίεση [102]. Βρέθηκε ότι χημικές αντιδράσεις μεταξύ του άλοιμνίου και των σωματιδίων της τέφρας λαμβάνουν χώρα σε θερμοκρασιακό εύρος από 700 °C έως 850 °C. Τα οξείδια που βρίσκονται στην ιπτάμενη τέφρα όπως το διοξείδιο του πυριτίου και οξείδιο του σιδήρου ανάγονται σε πυρίτιο και σίδηρο από το τηγμένο άλοιμνίο κατά την παραγωγή ή την αναθέρμανση σύνθετου υλικού άλοιμνίου-ιπτάμενης τέφρας.

Ο Guo και άλλοι [103-104] μελέτησαν θερμοδυναμικά τη δυνατότητα εξόδημης αναγωγής του SiO₂ και του Fe₂O₃ από το τηγμένο Al. Παρόλα αυτά, δεν υπάρχουν διαθέσιμα δεδομένα για τη θερμοδυναμική και την κινητική των αντιδράσεων αυτών, σε πολύπλοκα υαλο-κεραμικά σωματίδια όπως αυτά της ιπτάμενης τέφρας, και αυτό έκανε τη διενέργεια της μελέτης όσον αφορά στη σταθερότητα των οξείδιων πιο δύσκολη. Λόγω αυτού, χρησιμοποιήθηκε διαφορική θερμική ανάλυση (DTA) για τον καθορισμό της επιρροής της επεξεργασίας και της αναθέρμανσης, στη σταθερότητα των σύνθετων υλικών Al-ιπτάμενης τέφρας. Κατά την ψύξη των δειγμάτων μετά την αναθέρμανσή τους, ανιχνεύτηκαν εξόδημες κορυφές, οι οποίες
Α. Θεωρητικό Μέρος

αντιστοιχούσαν σε χημικές αντιδράσεις μεταξύ Al και υπάρμενης τέφρας, μετά από έγχυση-υπό-πίεση στους 700°C. Μετά από πάροδο 10h σε σταθερή θερμοκρασία ίση με 850°C, τα αποτελέσματα μιας παρόμοιας διαφορικής θεμικής ανάλυσης δεν έδειξαν εξώθερμες κορυφές, εκτός από τη μεταβολή στην φάση του αλουμινίου. Αυτό δείχνει ότι οι αντιδράσεις μεταξύ του Al και της υπάρμενης τέφρας είχαν σχεδόν ολοκληρωθεί. Η θερμοκρασία της τέφρας του σύνθετου υλικού μειώθηκε από τους 655 στους 644°C λόγω της διάλυσης των οξειδίων SiO₂ και Fe₂O₃ στο τηγμένο μέταλλο. Τα αποτελέσματα της μελέτης τους έδειξαν ότι τα σύνθετα υλικά Al-40% k.β. υπάρμενων τεφρών τα οποία παρασκευάστηκαν με έγχυση υπό πίεση, καθίστανται χημικά σταθερά μετά από 10h σε σταθερή θερμοκρασία 850 °C.
Α. Θεωρητικό Μέρος

A.6 ΒΙΒΛΙΟΓΡΑΦΙΑ ΘΕΩΡΗΤΙΚΟΥ ΜΕΡΟΥΣ

Α. Θεωρητικό Μέρος

Β. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ - ΤΟΠΟΘΕΤΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ

Στο παρόν υποκεφάλαιο της διδακτορικής διατριβής θα επιχειρηθεί η συνοπτική παρουσίαση της πρόοδου της πειραματικής έρευνας, η οποία πραγματεύεται την παρασκευή και τον χαρακτηρισμό συνθέτων υλικών μήτρας Al και Al/Si με υλικό ενίσχυσης υπάρχει τέφρες από τους ελληνικούς λιγνιτικούς ηλεκτροπαραγωγικούς σταθμούς, και παρουσιάζεται αναλυτικά στο Β’ Μέρος της διατριβής (Πειραματικό Μέρος). Στη βάση της πειραματικής έρευνας βρίσκονται οι ελληνικές υπάρχει τέφρες, από τους ΑΗΣ της Καρδίας (1250MW) και της Μεγαλόπολης (850MW). Η επιλογή των συγκεκριμένων ειδών τεφρών αφορά στην ανάγκη εξέτασης της επίδρασης των διαφορετικών συστάσεων τους, στη μικροδομή και τις ιδιότητες των τελικών συνθέτων υλικών που να παραχθούν με τη χρήση τους. Η μεν τέφρα του ΑΗΣ Καρδίας είναι εντόνος ασβεστούχος, με κ.β. ποσοσταία συγκέντρωση του CaO που συνήθως υπερβαίνει το 45% (Class C κατά ASTM C618), η δε τέφρα του ΑΗΣ Μεγαλόπολης πυρηνική, η οποία κατατάσσεται οριακά στην ιδία κατηγορία καθώς η κ.β. ποσοσταία συγκέντρωση του CaO βρίσκεται συνήθως οριακά πάνω από το 10%. Οι τέφρες στη συνέχεια χρησιμοποιούνται για την παρασκευή των συνθέτων υλικών: α) με την τεχνική της κοινομεταλλουργίας και β) με τεχνικές τηγμένου μετάλλου (έγχυση-υπό-πίεση και χίτευση-υπό-ανάδευση).

Στην περίπτωση της κοινομεταλλουργίας, οι τέφρες χρησιμοποιήθηκαν σε δύο διαφορετικές μορφές: α) ως παρελήθηκαν από τα Ηλεκτροστατικά Φίλτρα (H/Ф) των αντιστοίχων ΑΗΣ και β) κατόπιν της λειτουργίας τους έως κοκκομετρίας κάτω των 56 mm. Κατόπιν του ελέγχου των συμπεσμένων δοκιμών με διαφορική θερμική ανάλυση (Differential Thermal Analysis, DTA) ακολουθεί η πυροσυσσωμάτωση. Τα σύνθετα υλικά που προκύπτουν, υποβάλλονται σε: α) μικροσκοπικό ελέγχο με τη χρήση οπτικού μικροσκοπίου και Ηλεκτρονικού Μικροσκοπίου Σάρωσης (Scanning Electron Microscopy, SEM), β) ελέγχο της χημικής και ορυκτολογικής τους σύστασης με τη χρήση Φασματοσκοπίας Φθορισμού Ακτινών-Χ και Περίπλακης Ακτινών-Χ (Χ- Ray Fluorescence (XRF) & Diffraction (XRD) Spectroscopy), αντίστοιχα, γ) ελέγχο των τριβολογικών τους επιδόσεων με τη χρήση τριβομέτρου υψηλών θερμικών και εφαρμογή του πρωτοκόλλου ASTM G99-90, δ) ελέγχο της επιφανειακής σκληρότητάς τους με τη χρήση σκληρομέτρου και εφαρμογή του πρωτοκόλλου ASTM B648-10 και ε) ελέγχο της ανθεκτικότητάς τους στη διάβρωση με τη χρήση μει σειράς από αναλυτικές τεχνικές.

Στην περίπτωση της παρασκευής των συνθέτων με τη χρήση τεχνικών τηγμένου μετάλλου, οι τέφρες διαχωρίζονται στα σωματιδιακά κλάσματα τους και επιλέγονται σωματίδια των οποίων η διάμετρος δεν ξεπερνά τα 90μ, καθώς τα μεγαλύτερα απορρίπτονται για μια σειρά από λόγους

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτακός 73
Εισαγωγή στο Πειραματικό Μέρος

οι οποίοι αναλύονται στο κείμενο του πειραματικού μέρους που ακολουθεί. Προτού της χρήσης
tους για την παραγωγή των συνθέτων υλικών, τα διάφορα σωματιδιακά κλάσματα των
ιπτάμενων τεφρών υποβάλλονται σε ολοκληρωμένη διαδικασία χαρακτηρισμού τους,
προκειμένου να αξιολογηθεί η χημική και ορυκτολογική τους σύσταση σε σχέση με την πιθανή
επίδρασή τους στη μορφολογία και τη μικροδομή των συνθέτων, και κατ' επέκταση στις
ιδιότητές τους. Επίσης, προκειμένου να διερευνηθεί η επίδραση της χρήσης ολεσμένων τεφρών
στα σύνθετα, επιλέγεται ένα συγκεκριμένο σωματιδιακό κλάσμα (25-45µm) να αλεσθεί και να
αξιολογηθεί συγκριτικά με το όμορφο του, ως παρελήφθη από το κόσκινο. Τελικά, με τη χρήση
της τεχνικής της έγχυσης-υπό-πίεσης, παρασκευάζονται δοκίμα με ιπτάμενη τέφρα Καρδιάς και
Μεγαλόπολης, εισάγοντας στο κράμα A356 (Al-7Si-0.35Mg) σωματίδια διαμέτρου 90µm.
Με τη χρήση της χύτευσης-υπό-ανάδευση, παρασκευάζονται δοκίμα με τα πολύ λεπτά
σωματίδια της ιπτάμενης τέφρας Καρδιάς (<25µm) και Μεγαλόπολης (<25µm).

Στην περίπτωση της χύτευσης-υπό-ανάδευση, προκειμένου να ολοκληρωθεί με επιτυχία η
σύνθεση των υλικών, χρειάζεται να διευθετηθούν μια σειρά από προβλήματα αναφορικά με τη
διεργασία, κυρίως η πολύ περιορισμένη διαβροχή των τεφρών με το τήγμα του κράματος A356.
Στην περίπτωση της ιπτάμενης τέφρας Μεγαλόπολης, το ζήτημα αντιμετωπίζεται μέσω της
παράλληλης εισαγωγής τεφρών και θραυσμάτων Mg στο τήγμα, προκειμένου να δημιουργηθεί
dιεπιφάνεια μέσω της οποίας οι τέφρες διαβρέχονται καλύτερα με το τήγμα και συνεπώς
μειώνεται σημαντικά η απόρριψη τους από αυτό. Στην περίπτωση της ιπτάμενης τέφρας
Καρδιάς, το πρόβλημα είναι περισσότερο σύνθετο καθώς το Ca δεν αντιδρά ούτε με το Al ούτε
με το Mg και συνεπώς, αφενός η διαβροχή των συγκεκριμένων σωματιδίων με το τήγμα είναι
πολύ περιορισμένη και αφετέρου η χρήση προσθέτων Mg δεν δύναται να επιφέρει κάποια βελτίωση
αναφορικά με το ζήτημα αυτό. Τελικά, έπειτα από εκτεταμένη απόρριψη των τεφρών από το
τήγμα σε μια σειρά από πειράματα χύτευσης-υπό-ανάδευση, παρασκευάζοντας σύνθετα υλικά
A356-ιπτάμενης τέφρας Καρδιάς, εφαρμόζοντας καινοτομίες που αφορούν την προ-επεξεργασία
tων τεφρών και τη θερμοκρασία στην οποία λαμβάνει χώρα η διαδικασία της χύτευσης. Τα
σύνθετα υλικά που παρασκευάζονταν με τις τεχνικές τηγμένου μετάλλου υποβλήθηκαν στις ιδιαί
διαδικασίες χαρακτηρισμού όπως και στην περίπτωση των υλικών της κοινομεταλλουργίας, με
την εξαίρεση του ελέγχου της διάβρωσης και την προσθήκη της μέτρησης των θλιπτικών τους
αντιοχών κατά ASTM E9-89a. Το Διάγραμμα Ροής της Εικόνας ΕΠ.1 παρουσιάζει συνοπτικά την
εξέλιξη του πειραματικού τμήματος της διδακτορικής έρευνας.
Εικόνα ΕΠ.1 Διάγραμμα Ρός Πειραματικού Μέρους Διδακτορικής Διατριβής.
Β. Πειραματικό Μέρος

Β. 1 ΚΟΝΙΟΜΕΤΑΛΛΟΥΡΓΙΑ

Β.1.1 Πρώτες Ύλες

Πρώτες Ύλες για την παραγωγή των συνθέτων υλικών με τη μέθοδο της κονιομεταλλουργίας αποτελούν:
κόνειας μεταλλικού αλουμινίου (καθαρότητα 99.8%) και κράματος αλουμινίου/πυριτίου (88/12% κ.β.), οι οποίες και συνιστούν τη μητρική φάση των συνθέτων και
ασβεστούχες και πυριτικές υπόμενες τέφρες από τους λιγνιτικούς θερμικούς σταθμούς της Καρδιάς (Δυτ. Μακεδονία) και της Μεγαλόπολης (Αρκαδία) αντίστοιχα, τα οποία και αποτελούν την ενισχυτική φάση των συνθέτων υλικών της κονιομεταλλουργίας.

Β.1.1.1 Μεταλλικές κόνειες

Στον Πίνακα Β1 παρατίθεται η χημική σύσταση των μεταλλικών κόνειων των συνθέτων (325 mesh).

Πίνακας Β1. Χημική σύσταση των μεταλλικών κόνειων των συνθέτων υλικών.

<table>
<thead>
<tr>
<th>Χημ. Στοιχείο</th>
<th>Αl</th>
<th>Αl/Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συγκέντρωση (%)</td>
<td>Συγκέντρωση (%)</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>99.80</td>
<td>87.99</td>
</tr>
<tr>
<td>Fe</td>
<td>0.091</td>
<td>0.10</td>
</tr>
<tr>
<td>Si</td>
<td>0.025</td>
<td>11.99</td>
</tr>
<tr>
<td>Cu</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Pb</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mg</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Zn</td>
<td>0.009</td>
<td>0.003</td>
</tr>
<tr>
<td>Ni</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Ti</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Zr</td>
<td>0.051</td>
<td>0.001</td>
</tr>
<tr>
<td>Cr</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ga</td>
<td>0.007</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Β.1.1.2 Ιπτάμενες τέφρες

Για την ενίσχυση των μεταλλικών μητρών επιλέγονται λιγνιτικές ιπτάμενες τέφρες των ΑΗΣ Καρδιάς (1250MW) και Μεγαλόπολης (850MW), οι οποίες συλλέγονται από τα ηλεκτροστατικά φίλτρα των μονάδων των προαναφερθέντων θερμικών σταθμών, υπό μέγιστο
ηλεκτρικό φορτίο. Η πρώτη είναι ασβεστούχος (Class C, ASTMC618) και η δεύτερη πυριτική (ορισμένα Class C, ASTMC618). Θα πρέπει να αναφερθεί ότι η επιλογή των συγκεκριμένων τύπων τεφρών έγινε με σκοπό να μελετηθεί η επίδραση του οξειδίου του ασβεστίου (CaO, ασβεστίτη) ή πιο συγκεκριμένα του ελεύθερου οξειδίου του ασβεστίου καθώς επίσης και του διοξειδίου του πυριτίου (SiO₂, χαλαζία), στην ανάπτυξη των επιμέρους ιδιοτήτων (μηχανικών, τριβιολογικών, ανθεκτικότητα διάδρομης) των παραγομένων συνθέτων υλικών.

Η συγκέντρωση (% κ.β.) των οξειδίων των ιπτάμενων τεφρών προσδιορίζεται με τη χρήση Φασματοσκοπίας Φθορισμού Ακτινών-X (XRF, X-Lab 2000 EDAX). Η ορυκτολογική σύσταση των τεφρών προσδιορίζεται με τη χρήση Φασματοσκοπίας Περίβλησης Ακτινών-X (XRD, SIEMENS D-5005). Η μικροδομή και μορφολογία των τεφρών εξετάζεται με τη χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης (SEM, JSM-6300 JEOL). Σημειώνεται ότι για την ενίσχυση των μεταλλικών κόνειων οι τέφρες χρησιμοποιούνται σε δύο μορφές:

α) ως αυτές παρελήφθησαν από τα Ηλεκτροστατικά Φίλτρα (Η/Φ) των ΑΗΣ Καρδιάς και Μεγάλοπολης και

β) μετά από άλλη και κοσκίνιση, έτσι ώστε η διάμετρος όλων τους των σωματιδίων, να είναι μικρότερη από 56 μμ.

Στον Πίνακα Β2 παρατίθεται η χημική σύσταση των ιπτάμενων τεφρών (ιπτάμενες τέφρες Καρδιάς, ΙΤΚ και Μεγάλοπολης, ΙΤΜ). Ποιά χρησιμοποιήθηκαν για την ενίσχυση του αλουμίνιου και του κράματος με τη μέθοδο της κονιομεταλλουργίας. Στους Πίνακες Β3 και Β4 παρατίθεται η ορυκτολογική σύσταση των ιπτάμενων τεφρών της Καρδιάς και Μεγάλοπολης αντίστοιχα, όπως προέκυψε από την εξέτασή τους με Φασματοσκοπία Περίβλησης Ακτινών-X (X-Ray Diffraction (XRD) Spectroscopy).

Πίνακας Β2. Χημική σύσταση τεφρών Καρδιάς και Μεγαλόπολης.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>ΙΤΚ</th>
<th>ΙΤΜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>30.16</td>
<td>49.54</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.93</td>
<td>19.25</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.10</td>
<td>8.44</td>
</tr>
<tr>
<td>CaO</td>
<td>34.49</td>
<td>11.82</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.01</td>
<td>0.53</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.40</td>
<td>1.81</td>
</tr>
<tr>
<td>MgO</td>
<td>2.69</td>
<td>2.27</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.34</td>
<td>0.37</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.60</td>
<td>1.35</td>
</tr>
<tr>
<td>SO₃</td>
<td>6.28</td>
<td>2.91</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Πίνακας Β3. Ορυκτολογική σύσταση υπόμνημης τέφρας Καρδίας.

<table>
<thead>
<tr>
<th>Ένοση</th>
<th>Ισχυρή Παρουσία</th>
<th>Μέτρια Παρουσία</th>
<th>Λαθευθής Παρουσία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ανυδρίτης</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ασβεστίτης</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γίφυς</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ε. CaO</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Χαλαζίας</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας Β4. Ορυκτολογική σύσταση υπόμνημης τέφρας Μεγαλόπολης.

<table>
<thead>
<tr>
<th>Ένοση</th>
<th>Ισχυρή Παρουσία</th>
<th>Μέτρια Παρουσία</th>
<th>Λαθευθής Παρουσία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ανυδρίτης</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ασβεστίτης</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λαμπροί</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γκελενίτης</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Μεγκεμίτης</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Χαλαζίας</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Οι Εικόνες Β.1.α-δ παραθέτουν τα σχηματικά διαγράμματα της κοκκομετρικής ανάλυσης (Malvern Mastersizer-S, μέθοδος υγρής διασποράς στο νερό) των υπόμνημων τεφρών Καρδίας («ως παρελήφθη» και αλεσμένη) και Μεγαλόπολης («ως παρελήφθη» και αλεσμένη) αντίστοιχα. Όπως συμπεράνεται από τη μέτρηση της κοκκομετρίας των υπαίμνημων τεφρών:

1. Στην περίπτωση της ITK: Στη μορφή υπό την οποία παραλαμβάνεται από τα Η/Φ των Μονάδων του ΑΗΣ, το 50% των σωματιδίων της έχει διάμετρο < 13.89 μ, ενώ το 90% των σωματιδίων της, διάμετρο < 109.11μ. Μετά την άλεση, το 50% των σωματιδίων έχει διάμετρο < 15.80μ και το 90% < 47.6 μ.

2. Στην περίπτωση της ITM: Στη μορφή υπό την οποία παραλαμβάνεται από τα Η/Φ των Μονάδων του ΑΗΣ, το 50% των σωματιδίων έχει διάμετρο < 23.43μ, ενώ το 90% των σωματιδίων, διάμετρο < 97.56 μ. Κατάπιν της άλεσής της, το 50% των σωματιδίων της έχει διάμετρο < 20.10 μ και το 90% < 54.12 μ.
Εικόνα B1.α. Κοκκομετρική σύσταση ΙΤΚ (ως παρελήφθη από τα Α/Φ των Μονάδων του Σταθμού).

Εικόνα B1.β. Κοκκομετρική σύσταση ΙΤΚ (κατά πρώτο άλεση έως κοσκίνης σωματιδίων διαμέτρου < 56 µm).

Εικόνα B1.γ. Κοκκομετρική σύσταση ΙΤΚ (ως παρελήφθη από τα Α/Φ των Μονάδων του Σταθμού).

Πίνακας B1.δ. Κοκκομετρική σύσταση ΙΤΚ (κατά πρώτο άλεση έως κοσκίνης σωματιδίων διαμέτρου < 56 µm).

θ

Β.1.2 Παραγωγή σύνθετων υλικών με τη μέθοδο της κονιομεταλλουργίας

Β.1.2.1 Συνθετική πορεία των υλικών κονιομεταλλουργίας

Η παραγωγική διαδικασία των συνθέτων υλικών μεταλλικής μήτρας/σωματιδίων ισταμένων τερηδίων με τη μέθοδο της κονιομεταλλουργίας περιλαμβάνει τα εξής στάδια:

1. Ανάμιξη των κόνων που αποτελούν τη μητρική και ενυσχυτική φάση των συνθέτων υλικών και ομοιογενοποίηση του υλικού,

2. Μορφοποίηση των δειγμάτων με χρήση της τεχνικής της εν ψυχρώ μονοαξονικής συμπίεσης και
3. Πυροσβεστική Μέρος

1. Ανάμιξη των κόνυων. Η ανάμιξη των κόνυων μητρικής φάσης (Al, Al/Si) και φάσης ενίσχυσης (ΙΤΚ, ΙΤΜ «άλεσμα και ως έχει») γίνεται αρχικά με τη χρήση αχάτη και κατόπιν με ηλεκτρικό αναμικτήρα. Η ανάμιξη γίνεται στις εξής τέσσερις αναλογίες υλικού μήτρας/υλικού φάσης ενίσχυσης (% κ.β.): 95/5, 90/10, 85/15, 80/20. Στις περιπτώσεις, όπου η IT εισάγεται σε μεγαλύτερα κ.β. ποσοστά (15 και 20%), η ομοιογενοποίηση των μημάτων γίνεται με τη χρήση υπερήχου. Η συγκεκριμένη διαδικασία προβλέπει την προσθήκη αιθανόλης στο μίγμα και στη συνέχεια τοποθετείται το ακροφύσιο εκπομπής των υπερήχων για 15min, με επιλεγόμενο ποσοστό πλάτους ίσο με 70% (η συγκεκριμένη ποσοστία τιμή πλάτους είναι η μέγιστη για την οποία επιτυγχάνεται η καλύτερη δυνατή ομοιογενοποίηση). Μετά το πέρας της ομοιογενοποίησης, ακολουθεί διήθηση υπό κενό των διαλυμάτων και τελικώς έξαρση σε πυριτηρίο.

2. Μορφοποίηση Δειγμάτων. Η μορφοποίηση των παραγομένων δειγμάτων γίνεται με τη χρήση πρέσας, εφαρμόζοντας την τεχνική της εν ψυχρώ μονοαξιονικής συμπίεσης (Cold Axial Pressing) στα διάφορα μήγαμα (σε ορισμένες περιπτώσεις εφαρμόζεται η χρήση εμπορικού ελαίου ως συνδετικού υλικού). Το καλωστή μορφοποίησης δίδει δείγματα σε σχήμα δισκίου και έχει εσωτερική (ωφέλιμη) διάμετρο ίση με 13mm. Η επιλογή της εφαρμοζόμενης πίεσης για την τελική σύνθεση των δοκιμίων γίνεται κατόπιν διεξαγωγής επαναλαμβανομένων δοκιμών σε ένα μεγάλο εύρος πίεσεων, ανάλογα με το είδος της μεταλλικής μήτρας (Al ή Al/Si). Αναφέρεται ότι οι αρχικές δοκιμές έγιναν σε τιμές εφαρμοζόμενων πίεσεων μεγαλύτερων των 11tn/13mm. Οι υψηλές αυτές τιμές απορρίφθηκαν καθώς λεπτή κόνις του ελαττωματικού εναποτίθεται στην επιφάνεια της μήτρας μορφοποίησης, οδηγώντας έτσι στον έντονο σχηματισμό επιπροσθέτων επιφανειακών σωματιδίων, περιμετρικά των δοκιμίων. Η υπαρξία τέτοιου είδους σωματιδίων, προκαλεί αντίσταση κατά την εξαγωγή του συνθέτου δοκιμίου από αυτήν, με αποτέλεσμα τις επιφανειακές ρηχηματώσεις, λόγω ανάπτυξης τριβών. Στην Εικόνα Β2 παρατίθενται ενδεικτικές απεικονίσεις συνθέτων δοκιμίων που έχουν υποστεί τέτοιου είδους ρηχηματώσεις.
Εικόνα B2. Διαχωρισμός επιπέδων δειγμάτων Al/Si/πυταμένων τεφρών.

Σε αρκετά χαμηλές πιέσεις, ήτοι 5tn/13mm, η εναπόθεση αλουμινίου στα τουχώματα αποδεικνύεται ασήμαντη, προκύπτοντας, όμως, του μειονεκτήματος ότι το δοκίμιο που παρασκευαζόταν δεν έχει υποστεί την απαραίτητη συμπίεση και, συνεπώς, δεν έχει αποκτήσει την απαιτούμενη σταθερότητα. Τα τελικά σύνθετα δοκίμια προς έγχυση παράγοντα με συμπίεση στους 7 tn/13mm, στην περίπτωση μήτρας Al, και στους 9 tn/13 mm στην περίπτωση μήτρας Al/Si. Οι προαναφερθέντες τιμές πιέσεων (7, 9 tn/13mm) θεωρήθηκαν οι βέλτιστες όσον αφορά την πλαστική συμπεριφορά του μίγματος των κόνων, καθώς οι εφαρμοζόμενες ανισοτροπίες τάσεις επέφεραν τις ελάχιστες-δυνατές επιφανειακές ρηγματώσεις, ενώ παράλληλα δημιουργήσαν συμπαγή και σταθερά δοκίμια. Θα πρέπει να σημειωθεί ότι η επίδραση των δύο ειδών τεφρών αποδεικνύεται αμελητέα καθόσον δεν μεταβάλλονται οι ρηγματώσεις σε συνάρτηση με την αύξηση του ποσοστού των τεφρών.

Η Εικόνα B3 παραθέτει τα σύνθετα προϊόντα Al/ITM, προτού υποστούν πυροσβεσσρμάτωση. Είναι εμφανής η προκύπτουσα διαφοροποίηση στην επιφάνεια των δοκιμίων από τη χρήση των σωματιδίων του υλικού πλήρωσης (ITM) σε αλεσμένη μορφή (< 56 μμ) και «ως παρελήφθησαν». Όπως γίνεται εμφανές στο υποκεφάλισμα στο οποίο παρατίθενται τα συμπεράσματα της εξέτασης της μικροδομής και των τριβολογικών ιδιοτήτων των συνθέτων υλικών της κοινομεταλλουργίας, η χρήση των τεφρών σε αλεσμένη μορφή οδηγεί τόσο στην ανάπτυξη της ομοιομορφίας και σταθερής μικροδομής των υλικών, όσο και στις βελτιωμένες επιφανειακές ιδιότητές τους.
Αναφέρεται ότι ο σημαντικότερος επιδοκόμενος στόχος κατά τη διαδικασία της εν ψυχρώ συμπίεσης μετάλλων/κεραμικών σε μορφή κόνεον είναι η επίτευξη συμπαγών δοκιμίων με τις καλύτερες δυνατές ιδιότητες υπό την εφαρμογή δύναμης ελαχιστού μέτρου [1]. Η διαδικασία του «πακτόματος» των σωματιδίων μεταλλικής και κεραμικής φάσης είναι ιδιαίτερα σημαντική καθώς η πυκνότητα υπό την οποία τα σωματίδια των δύο φάσεων διατάσσονται, καθορίζει στη συνέχεια:

1. το πάχος του δοκιμίου,
2. την ποσότητα του συνδετικού υλικού που θα χρησιμοποιηθεί για την περισσότερο αποτελεσματική συνένωση των δύο φάσεων, καθώς επίσης και
3. το πορώδες, καθόσον έπειτα θα ορισθεί το εύρος της συρρίκνωσης που ενδεχομένως θα υποστεί το σύνθετο μίγμα κατά τη διάρκεια της πυροσυσσωμάτωσης.

Αναφέρεται ότι, σύμφωνα με τους Hrairi, Ahmed και Nimir [2], η πυκνότητα των δοκιμίων αυξάνεται με την αύξηση της εφαρμοζόμενης πίεσης για την συμπίεση των σωματιδίων της μητρικής (Al) και της ενισχυτικής φάσης. Βέβαια, η ιδία μελέτη καταδεικνύει ότι η σχετική πυκνότητα των συνθέτων δοκιμίων ελαττώνεται με την αύξηση του περιεχομένου ποσοστού της υπόμενης τέφρας.

3. Πυροσυσσωμάτωση. Για την επιλογή της βέλτιστης θερμοκρασίας στην οποία θα λάβει χώρα η πυροσυσσωμάτωση, τα δοκίμια μελετήθηκαν για τη θερμική τους συμπεριφορά με τη χρήση Διαφορικής Θερμικής Ανάλυσης (DTA, 2960 SDTV3.0 F), σε ατμόσφαιρα αξών και σε θερμοκρασιακό εύρος 0-700οC, υπό ρυθμό αύξησης της θερμοκρασίας ισο με 10οC/min. Η επιλογή των δειγμάτων που υπέστησαν εξέταση της θερμικής συμπεριφοράς τους έγινε στα χαμηλά συγκέντρωσες σε τέφρα (5% κ.β.) και σε αλεξιμένη μορφή (< 56 mm) ώστε να καλύπτεται η περίπτωση της τήξης του μετάλλου αλλά να εκμεταλλευόμαστε και την
δυνατότητα αύξησης που παρέχει η τέφρα. Αναφέρεται ότι η κοκκομετρία της υπάρχουσας τέφρας δεν επηρεάζει τη μεταβολή του σημείου τήξης του μετάλλου της μήτρας [3].

Η Εικόνα B4.α παραθέτει το διάγραμμα Διαφορικής Θερμικής Ανάλυσης του μίγματος Al/ιπτάμενης τέφρας Μεγαλόπολης 5% κ.β.: Η καμπύλη προσινου χρώματος απεικονίζει τη ροή θερμότητας διαμέσου του δείγματος. Παρατηρείται ότι στους 652°C προκύπτει απότομη πτώση της καμπύλης, γεγονός που ερμηνεύεται ως μετατροπή φάσης εντός του υπό-εξέταση δείγματος, αποδεικνύοντας τη στατική στη σημείο της τήξης του. Συμπεραίνεται, τελικά, ότι το σημείο τήξης του υπό-εξέταση συμπιεσμένου μίγματος είναι κατά περίπου 8 βαθμούς Κελσίου χαμηλότερο από αυτό του καθαρού αλουμινίου (~660°C) [4]. Η καμπύλη κυανού χρώματος απεικονίζει τη μεταβολή της μάζας του υπό-εξέταση μίγματος. Παρατηρείται μικρή ελάττωση του βάρους του δείγματος μέχρι τους 475°C, θερμοκρασιακό σημείο στο οποίο συντελείται και η καύση του υπολείμματος ακαίεστου άνθρακα που εμπεριέχεται στην υπάρχουσα τέφρα.

Η Εικόνα B4.β παραθέτει το διάγραμμα Διαφορικής Θερμικής Ανάλυσης του μίγματος Al/ιπτάμενης τέφρας Καρδίας 5% κ.β.: Ερμηνεύοντας την καμπύλη προσινου χρώματος του διαγράμματος, συμπεραίνουμε ότι το σημείο τήξης του υπό εξέταση μίγματος αυξάνεται με το 653°C, μειωμένο δηλαδή κατά περίπου 7 βαθμούς Κελσίου σε σχέση με το καθαρό αλουμίνιο (γνωστό ότι το σημείο τήξης των τετράνγων είναι > 1200°C). Σημειώνεται ότι, όπως και στην περίπτωση του μίγματος Al/ιπτάμενης τέφρας Μεγαλόπολης, το ελάχιστο της καμπύλης είναι 678°C.

Εικόνα B4.α. Διάγραμμα διαφορικής θερμικής ανάλυσης δείγματος Al / ITM 5% κ.β.
Κατόπιν μελέτης της θερμοκρασίας τήξης των δύο διαφορετικών μεταλλικών μητρικών φάσεων, επιλέγεται η θερμοκρασιακή τιμή πυροσβεστικής των 520°C στην περίπτωση των δοκιμών μήτρας Al/Si και αυτή των 600°C στην περίπτωση των δοκιμών μήτρας Al. Αναφέρεται ότι η επιλογή των συγκεκριμένων θερμοκρασιακών τιμών συσχετίζεται με την προφανή επιδίωξη, η πυροσβεστική των συμπεσμένων μεταλλικών κόνεων να λάβει χώρα σε θερμοκρασία ασφαλώς κατάτερης των θερμοκρασιών τήξης των μηγάτων. Αναφέρεται ότι η θερμοκρασία τήξης του κράματος Al/Si είναι περίπου ίση με 577°C [5].

Η πυροσβεστική των κόνεων λαμβάνει χώρα σε επαγωγικό φούρνο για χρονικό διάστημα δύο και έξι ωρών. Τα συμπεσμένα σύνθετα υλικά εισάγονται στο φούρνο εντός πορσελάνινων σκαφιδίων έτσι ώστε να δέχονται omoiόμορφα την θέρμανση σε όλη την επιφάνεια τους. Η πυροσβεστική έγινε σε ατμόσφαιρα στους 520°C, για την περίπτωση των υλικών μήτρας Al/Si και στους 600°C, για την περίπτωση των υλικών μήτρας Al. Ακολουθεί η ψύξη στην αδρανή ατμόσφαιρα λόγω της επιδίωξης αποφυγής του ενδεχομένου τα παρασκευασθέντα δοκίμα τα υποστούν θερμικό σοκ (thermal shock) κατά την έξοδό τους από την εστία θέρμανσης, οδηγώντας έτσι σε εκτεταμένες ρηχιματώσεις και μηχανική υποβάθμιση των υλικών καθώς επίσης και την πιθανή προσφόρηση οξυγόνου και συνεπώς της διεξαγωγής μιας αλληλουχίας -ανεπιθυμητών για τη μηχανική σταθερότητα των συνθέσεων- αντιδράσεων. Αφότου τα δείγματα εξαχθούν από τον φούρνο, τοποθετούνται σε ξηραντήρα όπως και αφήνονται για 24 ώρες.

Οι Πίνακες B5 και B6 παραθέτουν συγκεντρωτικά όλα τα σύνθετα δοκίμα που παρασκευάσθηκαν με τη χρήση της τεχνικής της κοινομεταλλουργίας.

Εικόνα B4.β. Διάγραμμα διαφορικής θερμικής ανάλυσης δείγματος Al / ΓΤΚ 5% κ.β.
Πίνακας B5. Κωδικοποίηση των σύνθετων υλικών μήτρας Al.

<table>
<thead>
<tr>
<th>Σύνθετο μήτρας Al</th>
<th>Κωδικοποίηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος IT</td>
<td>κ.β. %</td>
</tr>
<tr>
<td>ITM</td>
<td>5</td>
</tr>
<tr>
<td>ITM</td>
<td>5</td>
</tr>
<tr>
<td>ITM</td>
<td>10</td>
</tr>
<tr>
<td>ITM</td>
<td>10</td>
</tr>
<tr>
<td>ITM</td>
<td>15</td>
</tr>
<tr>
<td>ITM</td>
<td>15</td>
</tr>
<tr>
<td>ITK</td>
<td>5</td>
</tr>
<tr>
<td>ITK</td>
<td>5</td>
</tr>
<tr>
<td>ITK</td>
<td>10</td>
</tr>
<tr>
<td>ITK</td>
<td>10</td>
</tr>
<tr>
<td>ITK</td>
<td>15</td>
</tr>
<tr>
<td>ITK</td>
<td>15</td>
</tr>
<tr>
<td>ITM</td>
<td>20</td>
</tr>
<tr>
<td>ITM</td>
<td>20</td>
</tr>
<tr>
<td>ITK</td>
<td>20</td>
</tr>
<tr>
<td>ITK</td>
<td>20</td>
</tr>
</tbody>
</table>

Πίνακας B6. Κωδικοποίηση των σύνθετων υλικών μήτρας Al/Si.

<table>
<thead>
<tr>
<th>Σύνθετο μήτρας Al/Si</th>
<th>Κωδικοποίηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος IT</td>
<td>κ.β. %</td>
</tr>
<tr>
<td>ITM</td>
<td>5</td>
</tr>
<tr>
<td>ITM</td>
<td>5</td>
</tr>
<tr>
<td>ITM</td>
<td>10</td>
</tr>
<tr>
<td>ITM</td>
<td>10</td>
</tr>
<tr>
<td>ITM</td>
<td>15</td>
</tr>
<tr>
<td>ITM</td>
<td>15</td>
</tr>
<tr>
<td>ITK</td>
<td>5</td>
</tr>
<tr>
<td>ITK</td>
<td>5</td>
</tr>
<tr>
<td>ITK</td>
<td>10</td>
</tr>
<tr>
<td>ITK</td>
<td>10</td>
</tr>
<tr>
<td>ITK</td>
<td>15</td>
</tr>
<tr>
<td>ITK</td>
<td>15</td>
</tr>
<tr>
<td>ITM</td>
<td>20</td>
</tr>
<tr>
<td>ITM</td>
<td>20</td>
</tr>
<tr>
<td>ITK</td>
<td>20</td>
</tr>
<tr>
<td>ITK</td>
<td>20</td>
</tr>
</tbody>
</table>
Β. Πεηξακαηηθό Μέξνο

Γηδαθηνξηθή Γηαηξηβή, Γξεγόξηνο Σ. Ίηζθνο

86

Β.1.2.2 Δπίδξαζε ηεο ππξνζπζζσκάησζεο ζηε κάδα θαη ζηηο δηαζηάζεηο ησλ ζύλζεησλ δνθηκίσλ κεηαιιηθήο κήηξαο/ηπηάκελσλ ηεθξώλ

Αθνινπζεί ε κέηξεζε ησλ δηαζηάζεσλ θαη ηνπ βάξνπο φισλ ησλ δνθηκίσλ, πξνθεηκέλνπ λα απνηηκεζεί ζπγθξηηηθά (κε γλψκνλα ηηο αληίζηνηρεο δηαζηάζεηο ησλ αξρηθψλ δνθηκίσλ) ε επίδξαζε πνπ έρνπλ νη δηαδηθαζίεο ηεο έςεζεο θαη ππξνζπζζσκάησζεο ζηε δηακφξθσζε ησλ ηειηθψλ δηαζηάζεσλ θαη ηνπ πνξψδνπο ησλ πιηθψλ, αλάινγα κε ην είδνο ηνπ πιηθνχ ηεο κεηξηθήο θαη εληζρπηηθήο θάζεο ηνπο.

B.1.2.2. a δπίδξαζε ηεο ππξνζπζζσκάησζεο ζηε κάδα θαη ζηηο δηαζηάζεηο ησλ ζύλζεησλ δνθηκίσλ κήηξαο

Γεληθά, γηα ην ζχλνιν ησλ δ δνθηκίσλ κήηξαο, θαζψο επίζεο θαη ηε κε εθηεηακέλε αληίδξαζε κε ηα ζπζηαηηθά ησλ ζπλζέησλ δνθηκίσλ (είηε ηεο κεηξηθήο, είηε ηεο εληζρπηηθήοθάζεο). Όζνλ αθνξά ζηε κεηαβνιή πνπ επηθέξεη ζηηο δηαζηάζεηο ησλ δνθήκηα ε δηαδηθαζία ηεο ππξνζπζζσκάησζεο, γεληθά παξαηεξείηαη απμεηηθή ηάζε ηεο δηακέηξνπ θαη ηνπ χςνπο ηνπο.

Ζ πξνβιεπφκελε ζπλέπεηα ζηα ζχλζεηα δνθίκηα, αλαθνξηθά κε ηελ επίδξαζε ηεο ππξνζπζζσκάησζεο ζηηο δηαζηάζεηο ηνπο, ζα ήηαλ ε αχμεζε ηεο δηακέηξνπ ηνπο, κε παξάιιειε κείσζε (θαη φρη αχμεζε, φπσο ζε αξθεηέο πεξηπηψζεηο πξνθχπηεη) ηνπ χςνπο ηνπο, θαζψο, φζν ην ζεξκνθξαζηαθφ επίπεδν πξνζεγγίδεη απηφ ηνπ ζεκείνπ ηήμεο ηνπ κεηάιινπ, ε ζπλνιηθή κάδα ηνπ ζπλζέηνπ ηείλεη λα δηαρπζεί, κε πξνθαλψο αλακελφκελν απνηέιεζκα ηελ αχμεζε ηνπ κέηξνπ ηεο κήηξαο θαη ηε κείσζε ηεο άιιεο.

Δλδερνκέλσο ζηελ πξνθεηκέλε πεξίπησζε πξνθχπηεη αχμεζε ηνπ φγθνπ ησλ ζπ λζέησλ δνθηκίσλ ιφγσ πηζαλήο αληαιιαγήο νμπγφλνπ κεηαμχ ησλ νμεηδίσλ ηεο ηπηάκελεο ηέθξαο θαη ηεο κεηξηθήο θάζεο (Al) κε ζρεκαηηζκφ Al2O3.

΢ηηο Δηθφλεο Β5.α θαη Β5.β παξαηίζεληαη ηα ξαβδνγξάκκαηα ησλ δηαθφξσλ ηηκψλ ησλ δηαζηάζεσλ ησλ ζπλζέησλ δνθηκίσλ κήηξαο (ε θσδηθνπνίεζε ε νπνία ρξεζηκνπνηείηαη πξνθχπηεη απφ ηνλ Πίλαθα Β5 -νη δηαζηάζεηο πνπ δίδνληαη απνηεινχλ ην κέζν φξν ηεο κέηξεζεο πέληε δνθηκίσλ). Ο Πίλαθαο Β7 απεηθνλίδεη ηελ επίδξαζε ησλ δηαθνξεηηθψλ σξψλ ηεο ππξνζπζζσκάησζεο (2 θαη 6) ζηε κεηαβνιή ηεο κάδαο ησλ ζπλζέησλ δνθηκίσλ.

Άληια Κλόνες B5.α και B5.β παρατίθενται τα ραβδογράμματα των διαφόρων τιμών των διαστάσεων των συνθέτων δοκιμάδων μήτρας Al (η κωδικοποίηση η οποία χρησιμοποιείται προκύπτει από τον Πίνακα B5 -οι διαστάσεις που δίδονται αποτελούν το μέσο όρο της μέτρησης πέντε δοκιμών). Ο Πίνακας B7 απεικονίζει την επίδραση των διαφορετικών ορών της πυροσσυσσώματος (2 και 6) στη μεταβολή της μάζας των συνθέτων δοκιμάδων. Άναφορά κα με τα σύνθετα δοκίμα που περιέχουν ΙΤΜ και υπέστησαν πυροσσώματος για 2 και 6 ώρες, η ποσοστιαία μεταβολή του όγκου τους ήταν κατά ~30% υψηλότερη για τα υλικά που ενυχθήκαν με αλεξμένη τέφρα, σε σχέση με εκείνα στα οποία η IT χρησιμοποιήθηκε στην κοκκομετρία με την οποία παρελήφθη από τα ηλεκτροστατικά φίλτρα του ΑΗΣ της Μεγαλόπολης. Όσον αφορά στα δοκίμα που περιέχαν ΙΤΚ, η μεταβολή δε

Διδακτορική Διατριβή, Γρηγόριος Σ. Ισκος
86
φαίνεται να επηρεάζεται από το γεγονός της χρήσης της κατόπιν άλεσης ή όχι, παρά μόνο από το κ.β. ποσοστό της συμμετοχής της στο σύνθετο δοκίμιο. Ακόμα, στην περίπτωση των, σχετικά, υψηλών συγκεντρώσεων υπάρχει δύο σιδηρό για σύνθεση υλικό, η επίδραση της ΙΤΜ επηρεάζει, σημαντικότερα από ότι η ΙΤΚ, τόσο τις μεταβολές της μάζας, όσο και του όγκου του δοκίμιον, πριν και μετά την πυροσβεστική απόδειξη. Το γεγονός αυτό αποδίδεται, εν μέρει, στην πλήρωση των πόρων των συνθέτων από μόρια Al₂O₃. Αναφέρεται ότι η ένωση Al₂O₃ (αλούμινα) σχηματίζεται εκτεταμένα λόγω των αναγωγικών αντιδράσεων που προκύπτουν χάρη στην περίπτωση Si της ΙΤΜ. Είναι γεγονός ότι το Si μπορεί να σχηματίσει διαμεταλλικές ενώσεις με το Al της μητρικής φάσης του συνθέτου, ενώ σε οποίες εμφανίζονται ως ιζήματα δευτερογενούς φάσεως στα σύνθετα υλικά και είναι δυνατόν να διηγήσουν στις προαναφέρθηκες μεταβολές όγκου-μάζας, μετά την πυροσβεστική απόδειξη. Πρέπει, τέλος, να αναφερθεί ότι οι μεταβολές αυτές είναι σημαντικότερες καθώς η διάμετρος των σωματιδιών της τέφρας μικραίνει, γεγονός που αποδίδεται στην καλύτερη ομοιογενοποίηση αυτών, πριν ακόμα υποστούν τις 2-ωρες και 6-ωρες, ευήθειες.
Πίνακας B7. Μεταβολή βάρους των διαφόρων συνθέτων μήτρας Al και Al/Si.

<table>
<thead>
<tr>
<th>Μήτρα Al</th>
<th>Ενέση 2h</th>
<th>Ενέση 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Βάρος πριν</td>
<td>Βάρος μετά</td>
</tr>
<tr>
<td>καθε</td>
<td>την ένση</td>
<td>την ένση</td>
</tr>
</tbody>
</table>

Ι) Τέφρα Καρδιάς

<table>
<thead>
<tr>
<th>Μπας Al</th>
<th>5 % (<56 μm)</th>
<th>1.15</th>
<th>1.15</th>
<th>1.11</th>
<th>1.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % (σο παρ.)</td>
<td>1.135</td>
<td>1.145</td>
<td>1.135</td>
<td>1.155</td>
<td></td>
</tr>
<tr>
<td>10 % (<56 μm)</td>
<td>1.1</td>
<td>1.115</td>
<td>1.145</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>10 % (σο παρ.)</td>
<td>1.145</td>
<td>1.16</td>
<td>1.145</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>15 % (<56 μμ)</td>
<td>1.15</td>
<td>1.16</td>
<td>1.145</td>
<td>1.175</td>
<td></td>
</tr>
<tr>
<td>15 % (σο παρ.)</td>
<td>1.15</td>
<td>1.16</td>
<td>1.135</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>20 % (<56 μμ)</td>
<td>1.05</td>
<td>1.03</td>
<td>1.04</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

Ι) Τέφρα Μεγαλόπολης

<table>
<thead>
<tr>
<th>Μπας Al</th>
<th>5 % (<56 μμ)</th>
<th>1.16</th>
<th>1.13</th>
<th>1.145</th>
<th>1.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % (σο παρ.)</td>
<td>1.135</td>
<td>1.155</td>
<td>1.155</td>
<td>1.165</td>
<td></td>
</tr>
<tr>
<td>10 % (<56 μμ)</td>
<td>1.135</td>
<td>1.135</td>
<td>1.15</td>
<td>1.175</td>
<td></td>
</tr>
<tr>
<td>10 % (σο παρ.)</td>
<td>1.145</td>
<td>1.145</td>
<td>1.13</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>15 % (<56 μμ)</td>
<td>1.14</td>
<td>1.15</td>
<td>1.135</td>
<td>1.155</td>
<td></td>
</tr>
<tr>
<td>15 % (σο παρ.)</td>
<td>1.155</td>
<td>1.155</td>
<td>1.155</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>20 % (<56 μμ)</td>
<td>1.08</td>
<td>1.07</td>
<td>1.11</td>
<td>1.10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Μήτρα Al/Si</th>
<th>Ενέση 2h</th>
<th>Ενέση 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Βάρος πριν</td>
<td>Βάρος μετά</td>
</tr>
<tr>
<td>καθε</td>
<td>την ένση</td>
<td>την ένση</td>
</tr>
</tbody>
</table>

Ι) Τέφρα Καρδιάς

<table>
<thead>
<tr>
<th>Μπας Al/Si</th>
<th>5 % (<56 μμ)</th>
<th>1.16</th>
<th>1.13</th>
<th>1.15</th>
<th>1.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % (σο παρ.)</td>
<td>1.135</td>
<td>1.12</td>
<td>1.135</td>
<td>1.105</td>
<td></td>
</tr>
<tr>
<td>10 % (<56 μμ)</td>
<td>1</td>
<td>1</td>
<td>1.28</td>
<td>1.115</td>
<td></td>
</tr>
<tr>
<td>10 % (σο παρ.)</td>
<td>1.125</td>
<td>1.265</td>
<td>1.13</td>
<td>1.105</td>
<td></td>
</tr>
<tr>
<td>15 % (<56 μμ)</td>
<td>1.11</td>
<td>1.11</td>
<td>1.125</td>
<td>1.115</td>
<td></td>
</tr>
<tr>
<td>15 % (σο παρ.)</td>
<td>1.14</td>
<td>1.12</td>
<td>1.1</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>20 % (<56 μμ)</td>
<td>0.99</td>
<td>0.99</td>
<td>1.10</td>
<td>1.11</td>
<td></td>
</tr>
</tbody>
</table>

Ι) Τέφρα Μεγαλόπολης

<table>
<thead>
<tr>
<th>Μπας Al/Si</th>
<th>5 % (<56 μμ)</th>
<th>1.13</th>
<th>1.16</th>
<th>1.125</th>
<th>1.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % (σο παρ.)</td>
<td>1.155</td>
<td>1.15</td>
<td>1.18</td>
<td>1.175</td>
<td></td>
</tr>
<tr>
<td>10 % (<56 μμ)</td>
<td>1.14</td>
<td>1.16</td>
<td>1.135</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>10 % (σο παρ.)</td>
<td>1.115</td>
<td>1.16</td>
<td>1.105</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>15 % (<56 μμ)</td>
<td>1.14</td>
<td>1.155</td>
<td>1.04</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>15 % (σο παρ.)</td>
<td>1.115</td>
<td>1.06</td>
<td>1.165</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>20 % (<56 μμ)</td>
<td>1</td>
<td>0.99</td>
<td>1.04</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>
Εικόνα B5.a. Υψης των διαφόρων συνθέτων δοκιμίων μήτρας Al μετά την πυροσσυσωμάτωση (με κόκκινο: το μέσο ύψος του άψητου δοκιμίου με περιεκτικότητα 10% ITK).

Εικόνα B5.a. Διάμετρος των δοκιμίων μήτρας Al μετά την πυροσσυσωμάτωση (με κόκκινο: η μέση διάμετρος του άψητου δοκιμίου με περιεκτικότητα 10% ITK).

Β.1.2.2.β Επίδραση της πυροσσυσωμάτωσης στη μάζα και τις διαστάσεις των συνθέτων δοκιμίων μήτρας Al/Si

Συγκρίνοντας τα μετρούμενα μεγέθη των μαζών των συνθέτων δοκιμίων μήτρας Al/Si, πριν και μετά την πυροσσυσωμάτωση, παρατηρείται σημαντική αύξηση του βάρους, συγκεκριμένα αυτών τα οποία περιέχουν ITM ως ενισχυτική φάση, προφανώς λόγω πρόσφυσης N₂ ή O₂. Επιπλέον, η αύξηση της διαμέτρου, καθώς επίσης και του ύψους των δοκιμίων, είναι αισθητά μεγαλύτερη σε σχέση με τις αντίστοιχες των συνθέτων δοκιμίων.
μήτρας Al. Το γεγονός αυτό οφείλεται, βασικά, στη χρήση συνδετικού υλικού (έλαιο) το οποίο, προκειμένου να «εξέλθει» του δοκιμίου, και κατά τη διάρκεια της απομάκρυνσής του, διαγκώνει το εσωτερικό του συνθέτου δοκιμίου αυξάνοντας, συνεπώς, τις διαστάσεις του. Παράλληλα με την εξάτμιση του συνδετικού υλικού διανύονται διάδρομοι διαφυγής των ατομών, αυξάνοντας έτσι το πορώδης των δοκιμίων, με προφανείς ζημιογόνες συνέπειες αναφορικά με την ανάπτυξη των μηχανικών αντοχών των δοκιμίων. Αναφέρεται ότι, σε όλα τα δοκίμα μήτρας Al/Si τα οποία περιέχουν ITK, αναπτύσσονται σωματίδια σφαιρικού, ημισφαιρικού (και σε κάποιες περιπτώσεις απροσδιοριστό σχήματος), τόσο συμπαγή όσο και κοίλα (Εικόνα B6).

Εικόνα B6. Επιφανειακά σφαιρικά και ημισφαιρικά, συμπαγή και κοίλα σωματίδια, αναπτυχθέντα μετά την πυροσυσσωμάτωση των συνθέτων μήτρας Al/Si-υλικού ελήρωσης ITK.

Τα σφαιριδιά αυτά (τα οποία σε αρκετές περιπτώσεις αποτελούν συσσωματώματα, όπως θα φανεί αργότερα μέσω της εξάτμισης της μικροδομής των υλικών με τη χρήση ηλεκτρονικού μικροσκοπίου σάρωσης), μπορούν εύκολα να αποκαλληθούν από την επιφάνεια με την εφαρμογή, σχεδόν ανεπαίσθητης, επιφανειακής δύναμης. Συνεπώς, το γεγονός της μείωσης, σε κάποιες περιπτώσεις, της μετρούμενης μάζας των δοκιμίων που περιέχουν ITK (Πίνακας B7) οφείλεται στις ζωνίτες που έλαβαν χώρα κατόπιν της αφαίρεσης των επιφανειακών εξογκωμάτων. Το εκτεταμένο, αυτό, φαινόμενο εξαρτάται άμεσα από τη φύση των τετράγων που χρησιμοποιούνται ως ενισχυτικό υλικό, ειδικότερα δε αναπτύσσεται εντόνως, σε άμεση συνάρτηση με τη συγκέντρωση ελευθέρου οξειδίου του ασβεστίου (CaO) των συνθέτων. Το γεγονός αυτό επιβεβαιώνεται αργότερα και από τις αναλύσεις της σύζευξης ελεγχόμενης ηλεκτρονικού μικροσκοπίου σάρωσης με ακτίνες διεσπαρμένης ενέργειας (EDS-SEM), όπου αποδεικνύεται η αλούμινου-ασβεστο-πυρηνική φύση του περιβλήματος (άλλα και του εσωτερικού) των φλικταίνοντας αυτών. Αναφέρεται ότι, μεταξύ άλλων, το ασβέστιο δύναται να συνεισφέρει σημαντικά στην ταπείνωση του σημείου τήξης των μηχανών. Επιπλέον παρατηρείται, σε ορισμένες περιπτώσεις, αύξηση του βάρους των δοκιμίων τα οποία περιέχουν ITM, καθώς και ανεξάρτητη μεταβολή των διαστάσεων όλων των δοκιμίων, ανεξαρτήτως κοκκομετρίας.
B. Πειραματικό Μέρος

περιεκτικότητας και είδους τόφρας. Στις Εικόνες B7.α και B7.β παρατίθενται τα
ραβδογράμματα των διαφόρων τιμών των διαστάσεων των συνθέτων δοκιμίων μήτρας Al/Si
(η κωδικοποίηση η οποία χρησιμοποιείται προκύπτει από τον Πίνακα B5 -οι διαστάσεις που
dίδονται αποτελούν το μέσο όρο της μέτρησης πέντε δοκιμίων).

Εικόνα B7.a. Ύψος (πάχος) των συνθέτων δοκιμίων μήτρας Al/Si μετά την πυροσβεστική από
κόκκινο: το μέσο ύψος του άγιου δοκιμίου με περιεκτικότητα 10% ΠΤΚ.

Εικόνα B7.b. Διάμετρος των δοκιμίων μήτρας Al/Si μετά την πυροσβεστική (με κόκκινο: η μέση
dιάμετρος του άγιου δοκιμίου με περιεκτικότητα 10% ΠΤΚ).

B.1.2.3 Εξέταση της μικροδομής των συνθέτων υλικών της κονιομεταλλουργίας

Στο πλαίσιο της εξέτασης της μικροδομής των δοκιμίων των συνθέτων υλικών που
παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας, τα δείγματα μελετώνται σε ηλεκτρονικό
μικροσκόπιο σάρωσης (SEM, JEOL, μοντέλου JSM-6300 (Energy Dispersive, EDS). Καθώς το ηλεκτρονικό μικροσκόπιο σάρωσης λειτουργεί απεικονίζοντας την επιφάνεια του δέιγματος σε μοντέλο γραφικής απεικόνισης, σαρώνοντας το με δέσμη ηλεκτρονικόν υψηλής ενέργειας (στην προκειμένη περίπτωση «διεσπαρμένης» ενέργειας), τα υπό εξέταση δοκίμα θα πρέπει να είναι όντως ηλεκτρικά αγώγια. Για τον σκοπό αυτό τα δοκίμα επικαλύπτονται με Cu και Au, 24ώρες πριν από την εξέτασή τους στο ηλεκτρονικό μικροσκόπιο σάρωσης.

Β.1.2.3.α Εξέταση της μικροδομής των συνθέτων υλικών μήτρας Al

Οι Εικόνες Β8.α-ςτο παραθέτουν τις μικρο-φωτογραφίες του συνθέτου υλικού C03, σε διάφορες μεγεθύνσεις. Από την παρατήρηση της μικροδομής του υλικού, γίνεται αντιληπτό ότι η μητρική και η ενσυγχρονική φάση είναι επαρκώς ομοιογενισμένες. Είναι δεδομένη η βαρύνουσα σημασία της επιτυχούς ανάμιξης των πρώτων υλών προκειμένου να προχωρήσει επαρκώς η διαδικασία της πυροσυσσωμάτωσης των μεταλλικών και κεραμικών κόνων και της επαρκούς ανάπτυξης των μηχανικών αντοχών των τελικών υλικών. Η επιτυχής, στις περισσότερες των περιπτώσεων, ολοκλήρωση της διαδικασίας της πυροσυσσωμάτωσης, γίνεται αντιληπτή από το εύρος της εξέλιξης της ένωσης των κόκκων μετάλλου-μετάλλου, τέφρας-μετάλλου, αλά και τέφρας-τέφρας (Εικόνες Β8.γ, δ). Η ταυτοποίηση του ειδούς των διαφόρων κόκκων που παρατηρούνται με τη χρήση του ηλεκτρονικού μικροσκοπίου, λαμβάνει χώρα, τόσο μέσω της απόπευξης εκτίμησης των χημικών διαφοροποιήσεων λόγω των διαφορετικών χρωματισμών αυτών, όσο και (κυρίως) μέσω της χημικής ανάλυσής τους με χρήση Ακτίνων-Χ. Για την ακρίβεια, η σφαίρα που παρατηρείται εν μέσω των νέων φάσεων της πυροσυσσωμάτωσης (Εικόνα Β8.δ, επισήμανση σε ελλειπτικό σχηματισμό μαύρου χρώματος), αποδίδεται, σχεδόν κατά 100%, σε κόκκο Al που δεν είχε την χρονική επάρκεια (2h) να υποστεί ολοκληρωμένη πυροσυσσωμάτωση (μέσω συνενώσεως με γειτνιάζοντα κόκκο, είτε μεταλλικό, είτε κεραμικό). Η ερμηνεία αυτή προέρχεται από το γεγονός ότι η χημική ανάλυση του κόκκου (Πίνακας Β8) παρατηρείται στη μονοσήμαντη ύπαρξη του Al στην συγκεκριμένη («μαρκαρισμένη») περιοχή της επιφάνειας του συνθέτου υλικού. Στην Εικόνα Β8.e παρατηρούνται, ενδιαμέσως των μονόρομων κόκκων και των φάσεων της πυροσυσσωμάτωσης, σφαιρικές και ημισφαιρικές δομές (δίχρωμες, επισημασμένες εντός ελλειπτικού σχηματισμού μαύρου χρώματος για τις ανάγκες της κατανόησης του κειμένου και των εικόνων της διδακτορικής διατριβής) οι οποίες έχουν προκύψει από τη διάχυση των κόκκων της τέφρας (στην προκειμένη περίπτωση ITM) εντός των κόκκων των μεταλλικών κόνων της μητρικής φάσης, συμπερασματίζεται ότι η επισήμανση από την αποκρυπτογράφηση της χημικής σύστασης της συγκεκριμένης περιοχής του συνθέτου (Πίνακας Β8), η οποία παρατηρείται στην ύπαρξη δύο φάσεων:
α.) Της κεραμικής/ενσυγχρονικής (από την ύπαρξη Ca, Si, Mg κτλ) και
β.) Της μεταλλικής/μητρικής (από στην ύπαρξη Al).

Η ορθότητα της θεωρίας της διάχυσης των κόκκων της τέφρας εντός αυτών του μετάλλου ενισχύεται και από τη χημική χαρτογράφηση του κόκκου της Εικόνας B8.στ, η οποία επίσης παραπέμπει σε «διαφανή», μέταλλο-κεραμική περιοχή του συνθέτου. Εναλλακτικά αναφέρεται ότι οι νέες φάσεις που προκύπτουν από την πυροσβεστική των κόνων (η ύπαρξη των οποίων φάσεων πιστοποιείται επίσης με τη χρήση φασματοσκοπίας περίθλασης ακτινών-Χ, όπως θα δείχθει στη συνέχεια), μπορούν να αναπτύσσονται ως νέες λεπτές επιστρώσεις, στις περιοχές της πυροσβεστικής, ενδεχομένως λόγω της περίσσειας αντιδρώντων χημικών συστατικών της μητρικής και ενισχυτικής φάσης σε συγκεκριμένες περιοχές του συνθέτου υλικού. Στην Εικόνα B8.στ διακρίνεται επίσης ξεκάθαρα (στο κέντρο της περιοχής του CO3 το οποίο απεικονίζεται στη μικροφωτογραφία) μια σπασμένη σφαίρα, αποδεικνύει στη μητρική φάση του συνθέτου.

Εικόνα B8.α.CO3, κλίμακα: 500 μ.μ.
Εικόνα B8.β.CO3, κλίμακα: 100 μ.μ.
Εικόνα B8.γ.CO3, κλίμακα: 20 μ.μ.
Εικόνα B8.δ.CO3, κλίμακα: 5 μ.μ.
Πίνακας B8. Χημική χαρτογράφηση περιοχών του συνθέτου CO3, επισημασμένων στην Εικόνα B8.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>Επ. Περιοχή Εικόνας B8.δ</th>
<th>Επ. Περιοχή Εικόνας B8.ε</th>
<th>Επ. Περιοχή Εικόνας B8.στ</th>
<th>Επ. Περιοχή Εικόνας B8.α</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO<sub>2</sub></td>
<td>3.30</td>
<td>27.80</td>
<td>32.65</td>
<td></td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>87.4</td>
<td>58.61</td>
<td>53.11</td>
<td></td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>2.75</td>
<td>4.12</td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>6.17</td>
<td>8.18</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>0.30</td>
<td>0.89</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>0.10</td>
<td>0.60</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>SO<sub>3</sub></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
</tbody>
</table>

Στις Εικόνες B9.α-β διδόταν οι μικροφωτογραφίες του υλικού C15, το οποίο έχει ακριβώς την ίδια σύσταση με το C03 της Εικόνας B8, με τη διαφορά των δύο να έγιναν στις ώρες της πυροσυσσωμάτωσης (2h στην περίπτωση του C03, 6h στην περίπτωση του C15). Γίνεται εύκολα αντλητέ, από τη συγκριτική αποτίμηση των μικροαπεικόνισεων των Εικόνων B8 και B9, ότι η πυροσυσσωμάτωση στη δεύτερη περίπτωση έχει προχωρήσει σαφώς επαρκέστερα, όπως προκύπτει και από τις πλήρες απεικονίσεις των νέων φάσεων (επισήμανση εντός της ελλειπτικής δομής μαύρου χρώματος -Εικόνα B9.α). Στα δοκίμα τα οποία υπέστησαν εξάρη πυροσυσσωμάτωση, προκύπτει από τη χημική χαρτογράφηση (Πίνακας B9), ότι οι χημικές ενώσεις που αποδίδονται στη μητρική και ενισχυτική φάση είναι σαφώς περισσότερο διεπαρμένες επί της επιφάνειάς τους, σε σύγκριση με τις αντίστοιχες περιπτώσεις αυτών που υπέστησαν διαρκή πυροσυσσωμάτωση, δείγμα της πλήρους διάχυσης των κόκκων των τεφρών εντός των αντιστοιχών του μετάλλου.
Οσον αφορά στην περίπτωση χρήσης των υπάρχειν τεριών σε αλεσμένη μορφή, προκύπτει
sαφώς ότι η διαδικασία της πυροσβεσμότοσης εξελίσσεται ομαλότερα, όπως φαίνεται
ξεκάθαρα στην Εικόνα B10, όπου τα σημεία της επαρκούς πυροσβεσμότοσης των κόνων
eπισημαίνονται με ελλειπτικό σχηματισμό μαύρου χρώματος (Εικόνα B10.α). Στην Εικόνα
B10.β, απεικονίζεται, σε υψηλή μεγέθυνση, ένας κόκκος αλεσμένης ΙΤΜ ο οποίος δεν έχει
συνενωθεί με αντιστοίχους είτε της μητρικής είτε της φάσης ενίσχυσης, παρά εντοπίζεται στο
επίκεντρο των φάσεων που σχηματίζονται από την πυροσβεσμοτοση. Το γεγονός ότι ο
συγκεκριμένος σχηματισμός σφαιρικού σχήματος αποτελεί τμήμα της υπάρχουν τέφρας,
apοδεικνύεται από την υψηλή συγκέντρωση Ca και Si (12.5 και 27.2% κ.β. αντίστοιχα),
στοιχεία τα οποία προφανώς αποκλείεται από αποδοθούν στη μητρική φάση των συνθέτων
(β. Πίνακα B1).

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>Συγκέντρωση (%) - Περ. ματέρ. επισήμανσης</th>
<th>Συγκέντρωση (%) - Περ. κτερ. επισήμανσης</th>
<th>Συγκέντρωση (%) - Περ. πορτ. επισήμανσης</th>
<th>Συγκέντρωση (%) - Περ. προσ. επισήμανσης</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>26.90</td>
<td>31.24</td>
<td>11.00</td>
<td>26.20</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>53.15</td>
<td>49.55</td>
<td>77.10</td>
<td>57.60</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.75</td>
<td>3.29</td>
<td>2.87</td>
<td>3.18</td>
</tr>
<tr>
<td>CaO</td>
<td>15.70</td>
<td>14.20</td>
<td>8.10</td>
<td>12.83</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.76</td>
<td>0.80</td>
<td>0.40</td>
<td>0.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.80</td>
<td>0.80</td>
<td>0.30</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.3</td>
<td>0.4</td>
<td><0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Διδακτορική Διατριβή, Γρηγόριος Σ. Ισκος 95
Πέρα από το γεγονός των διαφοροποιήσεων, όσον αφορά τόσο στο επίπεδο προόδου της διαδικασίας της πυροσβεστικής, όσο και στην ανάπτυξη της συμπαγούς μικροδομής τους, μεταξύ των συνθέτων υλικών που περιέχουν τέφρα σε αλεξιμένη και σε «όσες έχει» μορφή, δεν ανυπολόγιζαν επιπλέον σημαντικές μεταβολές σε συνάρτηση με τη φύση της τέφρας (ΙΤΜ ή ΙΤΚ) και αυτό γιατί το Αl της μήτρας, θερμοδυναμικά, δεν δύναται να αντιδράσει με την περίσσεια ελευθέρου οξείδίου του ασβεστού της ΙΤΚ. Συγκεκριμένα, όπως και στην περίπτωση της ΙΤΜ, έτσι και σε αυτή των συνθέτων υλικών που περιέχουν ΙΤΚ, η διαδικασία της πυροσβεστικής των κόνεων των δύο υλικών έχει προηγούμενη επαρκώς.

Η επαρκώς ομογενής φύση του δοκιμίου C11, το οποίο περιέχει ΙΤΚ σε ποσοστό 15% κ.β., είναι εμφανής στις διάφορες απεικονίσεις της μικροδομής του (Εικόνες B11.α-γ), όπως, και σε αυτή την περίπτωση, οι διχρωμες σφαιρικές δομές που παρατηρούνται αποδηδόνται στη διαδικασία της διάχυσης των σωματιδίων της υπόμνησης τέφρας ενστάσεων αυτών της μεταλλικής μήτρας. Από τη μελέτη κατανομής των διαφόρων χημικών στοιχείων (Al, Ca, Mg, Si) στην επιφάνεια του C11 (dot-mapping), προκύπτει ότι, επίσης σε αυτή την περίπτωση, η μητρική και ενισχυτική φάση είναι, σχεδόν, ισότιμα κατανεμημένες, εντοπίζοντας ελάχιστες περιοχές (ακτίνες < 3 μm) στις οποίες παρατηρείται μονοσήμαντη συγκέντρωση της μίας (μητρικής), αποκλειστικά, φάσης του συνθέτου (ευλόγως, εξαιτίας του % κ.β. ποσοστού της μητρικής φάσης του συνθέτου). Η ισοκατανομή, αυτή, των δύο φάσεων που συνιστούν το υλικό, αποτελεί την υψηλή επιδιόρθωση της συνθετικής πορείας των δοκιμίων, προκειμένου να επιτευχθεί η μέγιστη δυνατή ανάπτυξη των επιφανειακών/μηχανικών ιδιοτήτων, όπως αυτό θα αποτυπωθεί αργότερα και στην εξέταση των τριβολογικών ιδιοτήτων των υλικών της κονιομεταλλουργίας. Η Εικόνα B11.δ παραθέτει τα σημεία επαρκούς πυροσβεστικής εντός του συνθέτου δοκιμίου C12, το οποίο επίσης περιέχει ΙΤΚ 15% κ.β., σε μη-αλεξιμένη,
αυτήν τη φορά, μορφή. Αναφέρεται ότι η χρήση των τεφρών σε αλεσμένη ή μη, μορφή δεν επηρεάζει σημαντικά τον τρόπο κατανομής των δύο φάσεων, παρότι είναι προφανώς πιο αποτελεσματική και συνεπώς προτιμητέα (τουλάχιστον από τεχνικής απόψεως) η χρήση τους σε αλεσμένη μορφή.

Στις Εικόνες B11.α-δ, δίδονται οι απεικονίσεις (αυξανόμενης μεγέθυνσης) οι οποίες αναφέρονται στη μικροδομή του συνθέτου δοκιμίου C22, το οποίο περιέχει σημαντικά χαμηλότερο (κατά βάρος) ποσοστό υπάρχοντων τέφρας, σε σχέση με τα δοκίμια τα οποία συζητήθηκαν προηγουμένως. Όπως είναι εύλογο (λόγω του χαμηλού ποσοστού συμμετοχής της τέφρας), στην περίπτωση αυτή δεν εντοπίζονται πολλές περιοχές οι οποίες είναι πιθανόν να έχουν προκύψει από την συνένωση των κόκκων τέφρας και μετάλλου, αντιθέτως το μεγαλύτερο μέρος της εισηγένοςς καλύπτεται από φάσεις που έχουν προκύψει κατόπιν της πυροσβεστικής τους κόνιου του μετάλλου, μεταξύ τους. Παρατηρούνται, επίσης, κόκκοι οι οποίοι φαίνεται να έχουν υποστεί θραύση από την εφαρμογή της πίεσης, καθώς επίσης εντοπίζονται -και σε αυτήν την περίπτωση- κόκκοι του συνθέτου που έχουν προκύψει από τη
διάχυση της τέφρας εντός αυτών της μητρικής φάσης (Εικόνα Β12.δ -επισημασμένη σφαιρική δομή εντός ελλειπτικού σχηματισμού λευκού χρώματος). Από τις λήψεις μικροποτογραφίες της εσωτερικής δομής των υλικών με χαμηλή ποσοστιαία περιεκτικότητα σε τέφρα, προκύπτει, σαφώς, ότι καθώς αυξάνεται το επίπεδο της ποσοστιαίας συμμετοχής της ενισχυτικής φάσης (τουλάχιστον έως 20% κ.β.), δεν προκύπτει ανάλογα σημαντική μείωση του εύρους της ομοιογένειας των πρώτων υλών του συνθέτου, τουλάχιστον όχι σε ανησυχητικό βαθμό. Επιπροσθέτως, είναι σημαντικό να αναφερθεί, προς την ίδια κατεύθυνση, ότι τα αποτελέσματα των αναλύσεων της κατανομής της συγκέντρωσης των Al, Ca, Mg και Si είναι ισοδύναμα στην περίπτωση των υλικών που περιέχουν ΠΘ σε ποσοστό από 5 έως 20 κ.β. %.

Εικόνα Β12.δ. C22, κλίμακα: 2 μμ.
Β. Πειραματικό Μέρος

Β.1.2.3.β Εξέταση της μικροδομής των συνθέτων υλικών μήτρας Al/Si

Στην περίπτωση των συνθέτων υλικών μήτρας Al/λιγνιτικών υπόμενων τεφρών, που παρουσιάζονταν στην προηγούμενη κεφάλαια, η μελέτη εστιάσθηκε στον έλεγχο του εύρους της ομογενούς εσωτερικής δομής τους, της ύστερης κατανομής της διασποράς των χημικών ενώσεων μητρικής και ενισχυτικής φάσης, τόσο στην επιφάνεια, όσο και στο εσωτερικό των συνθέτων υλικών, καθώς επίσης και στον έλεγχο της ύπαρξης πορώδους, ή των προοπτικών τους δημιουργίας αυτού. Αναφορικά με την εξέταση της μικροδομής των υλικών μήτρας Al/Si, που πρόκειται να συζητηθεί στον παρόν υποκεφάλαιο, πέρα από τις παραπάνω παραμέτρους, ιδιαίτερη προσοχή πρόκειται να δοθεί στην εκτεταμένη ανάπτυξη επιφανειακών σωματιδίων και συσσωματωμάτων (clusters) η οποία παρατηρήθηκε μετά το στάδιο της πυροπυρογονήσεως των κόνων και ήταν ιδιαίτερα έντονη, ειδικά στην περίπτωση της χρήσης ΙΤΚ, λόγω της αντίδρασης της περίσσειας CaO με το Si της «κραματικής» μήτρας των συνθέτων.

Στις Εικόνες B13.α και B13.β, παρατίθενται φωτογραφίες ηλεκτρονικού μικροσκοπίου σάρωσης (σε διαφορετική μεγέθυνση) των οποίων απεικονίζουν την επιφάνεια του δοκιμίου C34, το οποίο περιέχει ΙΤΚ σε ποσοστό 10% κ.β. και στο οποίο αναπτύχθηκαν εντόνως επιφανειακά σφαιρίδια σε μορφή φυσαλίδων. Παρατηρούντας με προσοχή τις κοίλες, αυτές, δομές, προκύπτουν ποις είναι ιδιαίτερα πιθανό να είχαν εγκλωβίσει περίσσεια αζώτου στο εσωτερικό τους (κατά την αρχική φάση του σχηματισμού τους), το οποίο και απόλυτα, σχεδόν ολοκληρωτικά, κατά τη διάρκεια της ανάπτυξής τους, έως και την τελική φάση αυτής.

Στην Εικόνα B13.γ φαίνεται αντιστοίχως μια κοίλη επιφανειακή φυσαλίδα, παρατηρήθηκε στο δοκιμίου C45. Σε αρκετές περιπτώσεις οι επιφανειακοί, αυτοί, σχηματισμοί, δύνανται να έχουν αποκτήσει την εσωτερική δομή τύπου συσσωματωμάτων, όπως φαίνεται στην Εικόνα B13.δ., η οποία αναφέρεται στο δοκιμίου C35. Όπως θα διερευνθεί στη συνέχεια, όλοι αυτοί οι σχηματισμοί εμφανίζουν εντόνες ασβεστο-πυριτική σύσταση. Σημειώνεται ότι εντοπίζονται, επίσης, επιφανειακά πλήρως συμπαγή σωματίδια, όπως αυτά που εμφανίζονται στην Εικόνα B13.ε, η οποία και αφορά στην ενίσχυση της μήτρας με ΙΤΜ, αλλά και στην Εικόνα B13.στ, η οποία αφορά σε υλικό μήτρας Al/Si, ενισχυμένο με ΙΤΚ.
Είναι γεγονός ότι η ανάπτυξη επιφανειακών συσσωματωμάτων στα σύνθετα υλικά μήτρας Al/Si είναι αναπόφευκτο να εμποδισθεί, παρά την αξιοποίηση επιπρόσθετων τεχνολογικών μέσων για την -κατά το δυνατόν- καλύτερη ομογενοποίηση των πρώτων υλών, ήτοι τη χρήση
των υπερήχων. Η εκτεταμένη αντίδραση του Si της κραματικής μήτρας με το CaO στις υπαρμένοι τεφρών Καρδίας και Μεγαλόπολης (ιδιαίτερα της πρώτης), υπό τον συνεπεακόλουθο σχηματισμό κούλων και συμπαγών επιφανειακών σωματιδίων, αποδίδεται στη χημική εξίσωση (B1):

\[
\text{CaNa}_2(\text{CO}_3)_2 + 2\text{SiO}_2 \rightarrow \text{CaSiO}_3 + \text{Na}_2\text{Si} + 2\text{CO}_2 \quad (1)
\]

Το φαινόμενο του σχηματισμού των δομών αυτών εξηγείται επαρκώς μέσω της ψυκτικής του διάστασης, δηλαδή από το γεγονός ότι οι νέες άσβεστο-πυριτικές φάσεις που σχηματίζονται κατά τη διάρκεια της πυροσυσσωμάτωσης των κόνινων των πρώτων υλών των συνθέτων ιλικών επιτηκτικές (βασικά λόγω της έντονης παρουσίας του ασβεστίου) και άντως τίθενται σε χαμηλότερη θερμοκρασία από ότι η κυρίως μάζα του συνθέτου δοκιμίου.

Συνεπώς, ταυτόχρονα με την άνοδο της θερμοκρασίας κατά την πυροσυσσωμάτωση των μιχάλες των πρώτων υλών των συνθέτων, οι νέο-σχηματιζόμενες άσβεστο-πυριτικές φάσεις (ένα μιμή του ιλικού δηλαδή το οποίο δύναται, ανά περίπτώσεις, να αποτελεί πασσιατική έως και το 10% του βάρους του συνθέτου) τίθενται και πρακτικά «ορατούς» από την κυρίως μάζα του δοκιμίου (ζεκινώντας από ορισμένο θερμοκρασιακό σημείο, εξαρτώμενο από το είδος των φάσεων), σχηματίζοντας τα εν λόγω συσσωματώματα (solid phase sintering). Όπως προαναφέρθηκε, το φαινόμενο αυτό αφορά κατά κύριο λόγο την υπαρμένη τέφρα Καρδίας και δευτερευόντως αυτή της Μεγαλόπολης, όπου, βεβαίως, η ανάπτυξη των επιφανειακών δομών ήταν λιγότερο έντονη, σε ευθεία αναλογία με την ποσότητα Ca που διατίθεται στην ITM προκειμένου να αντιδράσει με το Si της μήτρας. Επίσης, στην περίπτωση της ITM, μέρος της περίπτωσης του SiO2 της τέφρας δίδει αναγωγικές αντιδράσεις με το Al της «κραματικής» μήτρας (όπως βέβαια συμβαίνει και στις περιπτώσεις των συνδυασμών μήτρας Al/ITM), οδηγώντας έτσι στον σχηματισμό Al2O3 [Αντιδράσεις (B)2 και (B)3] και μεταλλικού Si, το οποίο μπορεί στη συνέχεια να σχηματίσει διαμεταλλικές ενώσεις με το Al της μήτρας.

\[
2\text{Al} + (3/2)\text{SiO}_2 \rightarrow (3/2)\text{Si(s)} + \text{Al}_2\text{O}_3(s) \quad (2)
\]
\[
2\text{Al} + \text{Fe}_2\text{O}_3(s) \rightarrow 2\text{Fe(s)} + \text{Al}_2\text{O}_3(s) \quad (3)
\]

Αναλόγως το μηχανισμό της ανάπτυξης των επιφανειακών συσσωματωμάτων, προκύπτει ως δεδομένο ότι οι δομές αυτές τείνουν να σχηματισθούν εντόνως στις περιοχές του συνθέτου όπου βρίσκονται υπέρ-συγκεντρωμένοι οι κόκκοι της ενισχυτικής φάσης (κυρίως ITK). Αναφέρεται, δε, ως δεδομένο, το οποίο προκύπτει από την εξωτερική παρατήρηση-έλεγχο των δοκιμίων των συνθέτων ιλικών, ότι ο καθαρός αριθμός των επιφανειακών
σφαιρικών δομών που σχηματίζονται, δείχνει να είναι ανάλογος του λόγου της κ.β. συμμετοχής του κράματος στο σύνθετο υλικό, προς αυτήν της τέρας.

Οι Πίνακες B9 και B10 παραθέτουν τη χημική σύσταση των συσσωματωμάτων εξι διαφορετικών δοκιμών μήτρας Al/Si (τριών με ενίσχυση ITK και τριών με ενίσχυση ITM), όπου επιβεβαιώνεται, σαφώς, η άσβεστο-πυριτική φύση τους και συνεπώς η θεωρία του σχηματισμού τους ως συνέπεια της αντίδρασης του Ca των τερρών με το Si της μήτρας. Είναι ξεκάθαρο ότι στα δοκίμα μήτρας Al/Si, το Ca των τερρών «μεταναστεύει» σχεδόν εξ’ ολοκλήρου στα επιφανειακά, αυτά, σφαιριδία, γεγονός που επιβεβαιώνεται από την ανάλυση EDS στην επιφάνεια των δοκιμών, κατόπιν της απομάκρυνσης των συσσωματωμάτων τους (Πίνακας B11, Εικόνες B14.α & B14.β -επισημάνσεις εντός λευκού ορθογώνιου και κυκλικού σχηματισμού), από την οποία, βασικά, προκύπτουν χαμηλές συγκεντρώσεις Ca.

Πίνακας B9. Χημ. σύσταση συσσωματωμάτων δοκιμών Al/Si με ενίσχυση ITK.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>Συσσωμάτωμα, δοκίμιο C31</th>
<th>Συσσωμάτωμα, δοκίμιο C45</th>
<th>Συσσωμάτωμα, δοκίμιο C47</th>
<th>Συσσωμάτωμα, δοκίμιο C47</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>10.3</td>
<td>10.7</td>
<td>11.0</td>
<td>11.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>77.1</td>
<td>78.0</td>
<td>74.1</td>
<td>72.6</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.55</td>
<td>1.70</td>
<td>1.70</td>
<td>1.55</td>
</tr>
<tr>
<td>CaO</td>
<td>9.25</td>
<td>8.78</td>
<td>12.3</td>
<td>13.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.85</td>
<td>0.70</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.75</td>
<td>0.80</td>
<td>0.68</td>
<td>0.63</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Πίνακας B10. Χημ. σύσταση συσσωματωμάτων δοκιμών Al/Si με ενίσχυση ITM.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>Συσσωμάτωμα, δοκίμιο C25</th>
<th>Συσσωμάτωμα, δοκίμιο C37</th>
<th>Συσσωμάτωμα, δοκίμιο C39</th>
<th>Συσσωμάτωμα, δοκίμιο C41</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>17.2</td>
<td>17.5</td>
<td>18.4</td>
<td>19.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>75.2</td>
<td>75.3</td>
<td>74.0</td>
<td>75.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.90</td>
<td>1.72</td>
<td>1.75</td>
<td>1.85</td>
</tr>
<tr>
<td>CaO</td>
<td>4.15</td>
<td>4.80</td>
<td>5.25</td>
<td>5.89</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.70</td>
<td>0.85</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.70</td>
<td>0.80</td>
<td>0.68</td>
<td>1.12</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.30</td>
<td>0.21</td>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Σημειώνεται ότι, όσον αφορά στην ανάπτυξη των επιφανειακών σφαιριδίων και συσσωματωμάτων, δεν προκύπτουν διαφοροποιήσεις μεταξύ των συνθέτων που υπέστησαν.
πυροσυσσωμάτωση για δύο και έξι ώρες. Παρατηρώντας, σε τακτά χρονικά διαστήματα, την εξέλιξη της διαδικασίας των ενήσεων των συνθέσεων μιγμάτων, προκύπτει ότι ο σχηματισμός των επιφανειακών σφαιρίδιων και συσσωματωμάτων έχει όντος ολοκληρωθεί κατά τα πρώτα 30 λεπτά της έγκυσης των δοκιμίων και δεν προκύπτει ουδεμία διαφοροποίηση στον τομέα αυτό, έως και την ολοκλήρωση των έξι ορών της πυροσυσσωμάτωσης. Αναφέρεται ότι, επίσης, δεν υπάρχει διαφοροποίηση στη σύσταση των συσσωματωμάτων των δοκιμίων, σε συνάρτηση με το χρόνο πυροσυσσωμάτωσης τους, συγκρίνοντας τα δεδομένα των Πινάκων Β9 και Β10 για τα ζεύγη δοκιμίων C31-C45 και C25-C37.

Πίνακας Β11. Χημ. χαρτογράφηση επισημασμένων περιοχών των δοκιμίων της Εικόνας Β14.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>9.35</td>
<td>7.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>85.2</td>
<td>87.4</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.10</td>
<td>1.58</td>
</tr>
<tr>
<td>CaO</td>
<td>4.40</td>
<td>3.71</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Στις Εικόνες Β15.α-στ, διδεται μια νέα σειρά εξί μικροφωτογραφιών των συνθέσεων υλικών Al/Si, τα οποία περιέχουν υπάρχει τέφρα Καρδίας και Μεγαλόπολης σε κ.β. ποσοστό 20%.
Β. Πειραματικό Μέρος

όπου και διακρίνονται κούλα επιφανειακά σφαιρίδια. Αποτιμάται συγκριτικά η διαφορετική ποσοτικού επιπέδου, ανάπτυξη επιφανειακών δομών/συσσωματωμάτων με ενίσχυση ITK και ITM. Γίνεται προφανές, από την συγκριτική παρατήρηση των Εικόνων B14.γ και B15.ε &B15.στ, ότι στα υλικά με ενίσχυση ITK η ανάπτυξη των δομών αυτών είναι, έως και κατά 90%, πιο εκτεταμένη σε σχέση με αυτά που έχουν ενισχθεί με ITM, εξαιτίας προφανώς της περίστερας Ca που αντιδρά στην περίπτωση της πρώτης. Γίνεται, συνεπώς, κατανοητό, ότι ανεξάντως την ποσοστιαία παρουσία της ITK στα σύνθετα δοκίμια, ο αριθμός των επιφανειακών συσσωματωμάτων αυξάνεται, ανεξάντως, παραλληλα, αναλόγως το ποσοστό του σχηματιζομένου πορώδους εντός των συνθέτων υλικών, καθιστώντας, συνεπώς, ασύμφορη (τεχνικά) την ενίσχυση των υλικών μήτρας Al/Si με ITK σε ποσοστό μεγαλύτερο του 20% κ.β. Ως οποίο γίνεται αντιληπτό, η ανάπτυξη των επιφανειακών σφαιριδίων και συσσωματωμάτων στα σύνθετα υλικά μήτρας Al/Si με ενίσχυση ITK (και δευτερευόντως ITM), δε δύναται να παρεμποδίσει από τη χρήση ή όχι των τεθρών σε αλεξμένη μορφή, ενώ και η χρήση υπερήφανη στην ομογενοποίηση των πρώτων υλών δεν επιφέρει θετικό αποτέλεσμα στη συγκεκριμένη επιδίωξη, ειδικά στις περιπτώσεις των μεγάλων ποσοστών αντίκαταστάσης μετάλλου από τέφρα.

Εικόνα B15.α. Δοκίμιο D01, κλίμακα : 50 μm.
Εικόνα B15.β. Δοκίμιο D01, κλίμακα: 10 μm.
Αξίζει να σημειωθεί ότι, εκτός από τον σχηματισμό των επιφανειακών σφαιριδίων-
συσσωματωμάτων, στα υλικά μήτρας Al/Si, ενισχυμένων με ΙΤΚ και ΙΤΜ, η διαδικασία της
πυροσυσσωμάτωσης στο εσωτερικό εξελίσσεται ομαλά, σε καλύτερο ποσοστό διασύνδεσης
από ότι στην περίπτωση των υλικών μήτρας Al. Η πολύ καλή, αυτή, συνάφεια, καθώς επίσης
και η ολοκληρωμένη πυροσυσσωμάτωση, οδηγούν στην ανάπτυξη ισχυρών επιφανειακών
ιδιοτήτων (τριβολογικά, σκληρότητα), χάρη στο σχηματισμό ανθεκτικότερων, νέων,
ορυκτολογικών φάσεων.

Στις Εικόνες Β16.α-δ παρατίθενται διάφορες απεικονίσεις της μικροδομής των συνθέτων
δοκιμίων C40 και D08, υλικών μήτρας Al/Si δηλαδή, ενισχυμένων τόσο με ΙΤΚ όσο και με
ΙΤΜ, όπου, ειδικά στην περίπτωση ενίσχυσης με ΙΤΚ, η ορθή ολοκλήρωση της
diαδικασίας της πυροσυσσωμάτωσης είναι, σε οπτικό επίπεδο, προφανής. Γενικά, από την
ενδεικτική συγκριτική εξέταση στο ηλεκτρονικό μικροσκόπιο των υλικών ΙΤΚ και ΙΤΜ,
προκύπτει, σαφώς, ότι στην περίπτωση της ενίσχυσης με ΙΤΚ, η διαδικασία της
πυροσυσσωμάτωσης προχωρά περισσότερο ολοκληρωμένα και η μικροδομή των υλικών.
αυτών είναι περισσότερο συμπαγής, παρά τον εκτεταμένο σχηματισμό επιφανειακών κοιλών, συμπαγών σφαιρίδιων και συσσωματωμάτων. Η συγκεκριμένη, αυτή, παρατήρηση εξήγεται από το γεγονός ότι η τήξη των νέο-σχηματιζόμενων ορυκτολογικών φάσεων (και συνεπώς η δημιουργία των επιφανειακών σφαιρίδιων) ολοκληρώνεται χρονικά νορίτερα από την ολοκλήρωση της διαδικασίας της πυροσσωματώσης (για την ακρίβεια τα σφαιρίδια έχουν σχηματιστεί ενώ, χρονικά, βρισκόμαστε ακόμη στο τρίτο από τα τέσσερα στάδια της πυροσσωματώσης), συνεπώς στο εσωτερικό των δοκιμίων υπάρχει ο χρόνος να καλυφθούν από την ένωση των κόκκων οι κενοί χώροι που αφήνουν πίσω τους τα σχηματιζόμενα σφαιρίδια. Με τη διαδικασία αυτή, οδηγούμαστε, εκ νέου, σε ανθεκτικό και εσωτερικά συμπαγή δοκίμα, μικρότερης μάζας σε σχέση με τα προ-έναρξης δοκίμα, λόγω των προφανών απολειών που συνεπάγεται η απομάκρυνση των επιφανειακών δομών.

Πρέπει να σημειωθεί ότι η καλή επαφή των συμπατιδιών τεφρών και μετάλλου στα υλικά μήτρας Al/Si γίνεται προφανής όσο ανεξάρτητα η μεγέθυνση των απεικονίσεων της μικροδομής των υλικών. Οπως και στην περίπτωση των υλικών μήτρας Al, αρκετές φορές
και στα υλικά μήτρας Al/Si παρατηρείται το φαινόμενο της διάχυσης σωματιδίων τεφρών εντός των αντιστοίχων της μητρικής («κραματικής») φάσης. Ενδεικτική απεικόνιση τέτοιου είδους διάχυσης δύναται να αποτελέσει η δίχρωμη σφαιρική δομή που εντοπίζεται εντός του
dοκιμίου C41 και απομονώνεται σε υψηλή μεγέθυνση στην Εικόνα B17.β (επισημαίνεται εντός σχηματισμού μαύρου χρώματος). Στην ίδια περιοχή του δοκιμίου εντοπίζεται μια

cαραμένουσα σφαίρα του κράματος Al/Si (Εικόνα B17.α), της οποίας το ανώτερο μέρος έχει

αποκολληθεί εξαιτίας της εφαρμογής τέσσερας ομοίων αρμονικών κατά τη μορφοποίηση των δοκιμίων,

φαινόμενο το οποίο παρατηρήθηκε εκτενώς επίσης κατά τη μορφοποίηση των υλικών μήτρας

Al. Στην Εικόνα B18.γ επικοινώνεται σε υψηλή μεγέθυνση ένας κόκκος του κράματος της

μήτρας του συνθέτου δοκιμίου C41, ο οποίος βρίσκεται σε επαφή με σωματίδια ITM, όπως

συμβαίνει και στην Εικόνα B17.δ όπου παρατηρούνται σε επαφή κόκκοι μετάλλου-τεφρών
tου δοκιμίου C41.

Εικόνα B.17.α. Δοκίμιο C41, κλίμακα: 2 μ.μ.
Εικόνα B.17.β. Δοκίμιο C41, κλίμακα: 1 μ.μ.
Εικόνα B.17.γ. Δοκίμιο D08, κλίμακα: 1 μ.μ.
Εικόνα B.17.δ. Δοκίμιο D08, κλίμακα: 5 μ.μ.

Η ταυτοποίηση των άβεβαιων πυρηνικών φάσεων που αναπτύσσονται εντός των

επιφανειακών συσσωματωμάτων των συνθέτων υλικών μητρικής φάσης Al/Si, γίνεται με
αντιπροσωπευτικά δείγματα αυτών τα οποία κονιοποιούνται, και ελέγχονται με τη χρήση φασματοσκοπίας περίθαλψης Ακτινον-Χ. Όπως, σαφώς, προκύπτει από την ερμηνεία των ακτινοδιαγραμμάτων, πέρα από την κυρίαρχη φάση του μεταλλικού αλουμινίου, εντός των επιφανειακών δομών των συνθέτων έχουν σχηματισθεί ενώσεις ζεολιθικής σύστασης, ανιχνεύομενες αποκλειστικά στα δοκίμια που περιέχουν ΙΤΚ ως ενισχυτική φάση. Κατά ένα μεγάλο ποσοστό, οι ζεολιθικές ενώσεις που ανιχνεύονται εντός των επιφανειακών σφαιριδίων των συνθέτων δοκιμίων δύναται να προκύψουν από διάλυση αργιλοπυριτικού ουλώματος των υπαμόνων τερρών που συμπεριέχουν στα σύνθετα υλικά, διαδικασία η οποία προκύπτει κατά την άνοδο της θερμοκρασίας κατά τη διάρκεια της πυροσβεσμότωσης, υπό την επίδραση και των αλκαλίων τα οποία εμπεριέχονται στην υπάρχουσα τέφρα.

Οι Εικόνες Β17.ε-λ παραθέτουν τα ακτινοδιαγράμματα περίθαλψης των κόνεων των επιφανειακών συσσωμάτωμάτων που εξετάσθηκαν. Ο Πίνακας Β12 παραθέτει, συνοπτικά, τις ορυκτολογικές φάσεις που ανιχνεύονται στα συσσωματώματα της επιφάνειας των δοκιμίων.

Πίνακας Β12. Ορυκτολογική σύσταση επιφανειακών συσσωματώμάτων των συνθέτων ΙΤΚ και ΙΤΜ.

<table>
<thead>
<tr>
<th>Επίφ. συσσωματώματα συνθέτων ΙΤΚ</th>
<th>Ένωση</th>
<th>Ισχυρή Παρουσία</th>
<th>Μέτρια Παρουσία</th>
<th>Λαθευδής Παρουσία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μεταλλικό Al</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Χαλαζίας</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca-Si Κρυστ. ξεολ. ενώσεις</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Επίφ. συσσωματώματα συνθέτων ΙΤΜ</th>
<th>Ένωση</th>
<th>Ισχυρή Παρουσία</th>
<th>Μέτρια Παρουσία</th>
<th>Λαθευδής Παρουσία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μεταλλικό Al</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Χαλαζίας</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ca-Si Κρυστ. ξεολ. ενώσεις</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Εικόνα B17.ε. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C31.

Εικόνα B17.στ. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C33.

Εικόνα B17.η. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C35.

Εικόνα B17.θ. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C25.

Εικόνα B17.ι. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C37..

Εικόνα B17.κ. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C27.
Εικόνα B17. Ακτινοδιάγραμμα επιφανειακού συσσωματώματος του δοκιμίου C29.
Β. Πειραματικό Μέρος

Β.1.3 Αξιολόγηση των τριβολογικών ιδιοτήτων των συνθέτων υλικών που παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας

Β.1.3.1 Συνθήκες διεξαγωγής των ελέγχων των τριβολογικών ιδιοτήτων των συνθέτων υλικών Al- και Al/Si/πιτάμενων τετράν

Στο υποκεφάλαιο Β.1.3 αναλύονται τα αποτελέσματα του ελέγχου των τριβολογικών δοκιμών των συνθέτων υλικών. Για τον συγκεκριμένο έλεγχο, χρησιμοποιήθηκε όργανο «ακίδας σε δίσκο» (pin-on-disc), ιδιοκτησίας και επιχειρησιακής κυριότητας της εταιρίας ΕΚΕΠΥ Α.Ε. (Τριβόμετρο υψηλών θερμοκρασιών, μάρκας CSEM).

Αφού τα αφαιρεθούν από την επιφάνεια των δοκιμιών τα στερεοποιημένα σφαιρίδια (το φαινομένο του σχηματισμού των οποίων αναπτύχθηκε στην προηγούμενη υποέντατα) τα δοκίμια προετοιμάζονται ως εξής:

- η επιφάνεια τους λειαίνεται με χαρτά λειανσής SiCgrid 400 και 600,
- η επιφανειακή τους τραχύτητα (R_a) υπολογίζεται με χρήση προφιλομέτρου, τύπου LV15 του οίκου HOMMEL TESTER και, στη συνέχεια,
- η επιφάνεια τους καθαρίζεται με αιθυλική αλκοόλη σε λοντρό υπερήχων

Οι δοκιμές γίνονται με χρήση ακίδας Al2O3, διαμέτρου 6 mm, ως αντιπάλου υλικό, σε περιβάλλον ατμοσφαιρικού αέρα. Ακόμα:

- το επιβαλλόμενο φορτίο στο σημείο επαφής των αντιπάλων σωμάτων ισούται με 2N.
- η σχετική γραμμική ταχύτητα μεταξύ των αντιπάλων σωμάτων ισούται με 0.05m/sec
- η ταχύτητα της περιστροφής του δίσκου: 95rpm
- η (συνολικά διανυθείσα) απόδοση ολίσθησης: 94.20m
- ο συνολικός αριθμός των περιστροφών: 3,000 περιστροφές
- η θερμοκρασία διεξαγωγής των δοκιμιών: 25°C
- η σχετική υγρασία όλων των δειγμάτων: 55-65%

Αναφέρεται επίσης ότι η επιφανειακή τραχύτητα σε όλα τα δοκίμια που ελέγχηκαν, μετά από τη λειανσή, ήταν < 0.8 μ (R_a < 0.8mm). Όσον αφορά, τέλος, στον συντελεστή τριβής των υπό εξέταση δοκιμίων, καταγράφονταν ηλεκτρονικά συγχρόνως με τη διεξαγωγή των δοκιμών. Όλες οι δοκιμές πραγματοποιούνται σύμφωνα με το πρότυπο ASTM G99-90. Η μικροδομή της φθοράς από τον τριβολογικό έλεγχο ελέγχεται με τη χρήση ηλεκτρονικού μικροσκοπίου σάρωσης μάρκας JEOL, μοντέλου JSM-6300 (Energy Dispersive, EDS). Με το ίδιο όργανο ελέγχονται οι εσωτερικοί μικροσχηματισμοί του αποτυπώματος του τριβολογικού ελέγχου στην επιφάνεια των δοκιμίων προκειμένου να εξετασθεί.
συγκεκριμένα, η συμβολή των σωματιδίων των υπάμενων τεφρών στην ανάπτυξη των
αντιχών τριβής των διαφόρων συνθέτων υλικών, καθώς επίσης και αυτή των
νέοσχηματισμένων άββεστο-πυρηνικών ορυκτολογικών φάσεων. Ακόμα, μέσω του
χαρακτηρισμού της μικροδομής των υλικών αυτών, επιχειρείται η εξαγωγή συμπερασμάτων
όσον αφορά στο είδος της επιφανειακής φθοράς που υφίστανται τα σύνθετα δοκίμα λόγω της
τριβής με την ακίδα από Al₂O₃.

Στον Πίνακα Β13 παρατίθενται οι εξισώσεις οι οποίες χρησιμοποιούνται για τον
υπολογισμό όλων των χαρακτηριστικών μεγεθών του τριβολογικού χαρακτηρισμού των υπό
εξέταση συνθέτων δοκίμων:

Πίνακας Β12. Εξισώσεις υπολογισμού των μεγεθών του τριβολογικού χαρακτηρισμού των συνθέτων υλικών

<table>
<thead>
<tr>
<th>Ένα</th>
<th>Θέμα</th>
<th>Εξισώσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Συντελεστής φθοράς</td>
<td>Συντελεστής φθοράς</td>
</tr>
<tr>
<td>2</td>
<td>Όγκος φθοράς</td>
<td>Όγκος φθοράς</td>
</tr>
<tr>
<td>3</td>
<td>Επιφάνεια φθοράς - Υπολογίζεται από εμβαδομέτρηση σε mm του ίρλυος της ψληφής</td>
<td>Επιφάνεια φθοράς, Υπολογίζεται από εμβαδομέτρηση σε mm του ίρλυος της ψληφής</td>
</tr>
<tr>
<td>4</td>
<td>Συνολικά διαστάσεις απόσταση ολισθησης</td>
<td>Συνολικά διαστάσεις απόσταση ολισθησης</td>
</tr>
<tr>
<td>5</td>
<td>Παραδείγματα απόσταση ολισθησης</td>
<td>Παραδείγματα απόσταση ολισθησης</td>
</tr>
<tr>
<td>6</td>
<td>Αριθμός κύκλων</td>
<td>Αριθμός κύκλων</td>
</tr>
<tr>
<td>7</td>
<td>Ακτίνα ίρλυος φθοράς</td>
<td>Ακτίνα ίρλυος φθοράς</td>
</tr>
<tr>
<td>8</td>
<td>Διάμετρος ίρλυος φθοράς</td>
<td>Διάμετρος ίρλυος φθοράς</td>
</tr>
<tr>
<td>9</td>
<td>Φορτίο</td>
<td>Φορτίο</td>
</tr>
</tbody>
</table>

Τονίζεται ότι, προκειμένου για τον ακριβή τριβολογικό έλεγχο των συνθέτων υλικών,
παρασκευάζεται νέα σειρά συνθέτων δοκίμων (ιδίων χαρακτηριστικών λόγων κ.β.
pοσοστιαίας συμμετοχής μητρικής/ενσχητικής φάσης), βελτιστοποιημένου τρόπου
παραγωγής τους, με βάση τα ευρήματα του ελέγχου της μικροδομής των συνθέτων υλικών.
Συνεπώς, παρασκευάζονται και ελέγχονται αποκλειστικά δοκίμια ενσχημένα με (αλεξημένης
μορφής) υπάμενες τέφρες, κοκκομετρικού περιεχομένου διαμέτρου < 56 μm και κ.β.
pοσοστιαίου περιεχομένου από 10-20%.

Η Εικόνα B18.a παραθέτει φωτογραφία του τριβομέτρου, η δε Εικόνα B18.b παραθέτει τη
φωτογραφία συνθέτων δοκίμιου μήτρας Al (κωδικός δοκίμων: TC02, βλ. Πίνακα B13), όπου
απεικονίζεται η διάμετρος του ίρλυος της φθοράς που προκύπτει από τις δοκίμες.
Σημαντικότερα, οι πινακίδες περιέχουν τις στοιχεία που περιγράφουν τη συμπεριφορά της τριβολογικής ζύμης και την ολίσθηση των συνθέτων υλικών μήτρας Al.

| Πίνακας B13. Συνοπτικά αποτελέσματα του τριβολογικού ελέγχου των συνθέτων υλικών μήτρας Al. |
|---|---|---|---|---|---|---|---|
| Κωδικός Συνθέτου | Μητρική Φάση | Ενισχυτική Φάση | Ενίσχυση | Πωροσίτες | Ινος Φθοράς | Συντ. Φθοράς | Τριβής | Ογκος Φθοράς |
| | (%) | (μm) | (Bάθος, μμ) | (10^14 | m^2/N.m) | |
| M01 Al | - | 0 | 2 | 61.87 | 539.63 | 0.645 | 10.17 |
| TC01 Al | ΙΤΚ | 10 | 2 | 18.87 | 134.18 | 0.485 | 2.53 |
| TC02 Al | ΙΤΚ | 10 | 6 | 27.00 | 167.80 | 0.489 | 3.16 |
| TC03 Al | ΙΤΜ | 10 | 2 | 23.75 | 147.34 | 0.476 | 2.78 |
| TC04 Al | ΙΤΜ | 10 | 6 | 20.37 | 154.81 | 0.497 | 2.92 |
| TC05 Al | ΙΤΚ | 15 | 2 | 18.12 | 134.50 | 0.482 | 2.53 |
| TC06 Al | ΙΤΚ | 15 | 6 | 20.50 | 149.29 | 0.506 | 2.81 |
| TC07 Al | ΙΤΜ | 15 | 2 | 16.25 | 103.77 | 0.478 | 1.96 |
| TC08 Al | ΙΤΜ | 15 | 6 | 21.12 | 147.66 | 0.504 | 2.78 |
| TC09 Al | ΙΤΚ | 20 | 2 | 23.50 | 199.97 | 0.512 | 3.77 |
| TC10 Al | ΙΤΚ | 20 | 6 | 28.25 | 205.00 | 0.513 | 3.86 |
| TC11 Al | ΙΤΜ | 20 | 2 | 16.25 | 99.15 | 0.504 | 1.87 |
| TC12 Al | ΙΤΜ | 20 | 6 | 19.25 | 143.93 | 0.544 | 2.71 |

1 Ποσοσταία συμμετοχή τεχρών
2 Ποσοσταία τεχργάματος
Гίνεται ξεκάθαρο, από τα αποτελέσματα της εξέτασης των τριβολογικών δοκιμών των συνθέτων υλικών μήτρας Al, ότι η ενίσχυση του αλουμινίου με σωματίδια υπάμενων τεφρών, δύναται να βελτιώσει ουσιαστικά την αντοχή του αλουμινίου έναντι των επιφανειακά εφαρμοσμένων δυνάμεων τριβής ολίσθησης. Πιο συγκεκριμένα, ο συντελεστής τριβής της καθαρής μεταλλικής μήτρας, προκύπτει κατά 26% υψηλότερος από ότι ο συντελεστής τριβής του συνθέτου δοκιμών με κ.β. ποσοστιαία περιεκτικότητα ITM ίση 10% (το δοκίμιο με τα ανθεκτικότερα τριβολογικά χαρακτηριστικά) και κατά 10% υψηλότερος από το δοκίμιο με αντίστοιχη κ.β. περιεκτικότητα, ίση με 20%, δοκίμιο το οποίο είναι και το λιγότερο ανθεκτικό στην τριβή από τα εξετασθέντα υλικά μήτρας Al.

Η Ευκόνα B19 παρατίθεται το ραβδόγραμμα της σύγκρισης του συντελεστή τριβής των διαφόρων εξετασθέντων συνθέτων υλικών μήτρας Al.

Εικόνα B19. Συντελεστής τριβής των συνθέτων υλικών μήτρας Al που παρήχθησαν τη μέθοδο της κονιομεταλλουργίας.

Συγκρίνοντας την επίδραση των δύο διαφορετικών ειδών υπάμενων τεφρών, ενισχυτικών της μήτρας Al που χρησιμοποιήθηκαν στη συγκεκριμένη μελέτη, προκύπτει ότι τα δοκίμια διώρης πυρουσυσσωμάτωσης που περιέχουν ITM είναι (οριακά) περισσότερο ανθεκτικά σε σχέση με τα αντίστοιχα της ITK, τάση η οποία ανατρέπεται, μερικώς, στα δοκίμια εξάωρης πυρουσυσσωμάτωσης, όπου τα αποτελέσματα είναι μικτά, με τάση απόκτησης καλυτέρων ιδιοτήτων από τα υλικά που έχουν ενισχυθεί με ITK. Δεδομένης της μ-αντίδρασης του ελευθέρου ανσέβιστος της τόφρας Καρδάς με το Al της μήτρας, η παρατηρούμενη, αυτή, διαφοροποίηση δύναται να εξηγηθεί από την αντίδραση του πλευανώστατου Si της ITM με το Al της μήτρας του συνθέτου και της συνεπικόλουθης, περισσότερο ολοκληρωμένης, πυρουσυσσωμάτωσης, η οποία και προκύπτει, για το λόγο αυτό, στον περιορισμένο χρόνο
των δύο όρων της ύψησης (Σμη. η μελέτη της επίδρασης των όρων της πυροσβεσμότατης στην ανάπτυξη των τριβολογικών αντοχών των συνθέτων υλικών μήτρας Al και Al/Si μελετάται εξερευνητικά και αναπτύσσεται εκτενώς στη συνέχεια της παρούσης διατριβής - Υπονόητα B.1.3.2)

Σημειώνεται ότι, στις περισσότερες περιπτώσεις των δοκιμίων που έχουν παρατηθεί υπό τις ίδιες συνθήκες (όσον αφορά τις όρες της πυροσβεσμότατης και την % κ.β. συμμετοχή της τέφρας) οι διαφορές είναι, άντως, οριακές. Για την ακρίβεια, όσον αφορά στα δοκίμα της διώρης πυροσβεσμότατης:

- ο συντελεστής τριβής του δοκιμίου TC01 (ΙΤΚ, 10% κ.β.) είναι κατά 1.85% μεγαλύτερος από αυτόν του TC03 (ΙΤΜ, 10% κ.β.),
- ο συντελεστής τριβής του δοκιμίου TC05 (ΙΤΚ, 15% κ.β.) είναι κατά 0.83% μεγαλύτερος από αυτόν του TC07 (ΙΤΜ, 15% κ.β.) και
- ο συντελεστής τριβής του δοκιμίου TC09 (ΙΤΚ, 20% κ.β.) είναι κατά 1.56% μεγαλύτερος από αυτόν του TC11 (ΙΤΜ, 20% κ.β.)

Στην περίπτωση των δοκιμίων της εξάωρης πυροσβεσμότατης, οι διαφορές είναι παραπλούς οριακές, με μειωτική και αυξητική όμως, τάση, όπως προαναφέρθηκε:

- ο συντελεστής τριβής του δοκιμίου TC04 (ΙΤΚ, 10% κ.β.) είναι κατά 1.61% μεγαλύτερος από αυτόν του TC02 (ΙΤΚ, 10% κ.β.),
- ο συντελεστής τριβής του δοκιμίου TC06 (ΙΤΚ, 15% κ.β.) είναι μόλες κατά 0.39% μεγαλύτερος από αυτόν του TC04 (ΙΤΜ, 15% κ.β.) και
- ο συντελεστής τριβής του δοκιμίου TC12 (ΙΤΜ, 20% κ.β.) είναι κατά 3.1% μεγαλύτερος από αυτόν του TC10 (ΙΤΚ, 20% κ.β.)

Οι οριακές διαφορές μεταξύ των συντελεστών τριβής των συνθέτων, σε συνδυασμό με την σημαντική και έκκαθαρή βελτίωση των τριβολογικών αντοχών τους, σε σχέση με το καθαρό αλουμίνιο, αποτελούν ιδιαίτερα ενθαρρυντικά δεδομένα αναφορικά με την πιθανή ενεργετική επίδραση της προσθήκης των υπάρχοντων τεφρών στο αλουμίνιο, με τη μέθοδο της κονομεταλλουργίας. Φαίνεται, δηλαδή, εφικτή η επωφελής αντικατάσταση μέρους του Al της μητρικής φάσης από ITK και ITM, τουλάχιστον έως κ.β. ποσοστού ίσου με 20%. Σημειώνεται ότι η χρήση των τεφρών σε αλεσμένη μορφή επιδρά θετικά στις τριβολογικές επιδόσεις των συνθέτων, καθώς:

1. όσο μικρότερη είναι η διάμετρος των σωματιδίων των δύο υλικών, καθώς επισής και όσο «αλληλέστερα» βρίσκεται το εύρος των διαμέτρων των υλικών μεταξύ τους, τόσο πιο αποτελεσματική είναι η χημική σύνδεση των δύο φάσεων (στην προκειμένη περίπτωση μέσω της αντίδρασης του ελευθέρου Si των τεφρών με το Al της μήτρας) και συνεπώς πιο σταθερή η μικροδομή τους και
2. μέσω της αλέσεως των τεφρών, διασπάται το επιφανειακό τους ύδωρ και συνεπώς ενισχύονται οι ποξολανικές ιδιότητες των υλικών, μέσω της απελευθέρωσης της ενεργής πυριτίας (active silica), συμπέρασμα το οποίο τεκμηριώνεται και αναλύεται εκτενώς στο κεφάλαιο της παρασκευής των συνθέτων με τις τεχνικές τηγμένου μετάλλου και συγκεκριμένα της έγχυσης-υπό-πίεσης, όπου η επίδραση της χρήσης αλεσμένων τεφρών ως ενισχυτικής φάσης των υλικών του αλουμινίου μελετάται επιστημονικά.

Επιβεβαιώνοντας τη διαπιστωθείσα τάση, όσον αφορά την σύγκριση των ιδιοτήτων του αλουμινίου και των συνθέτων του, ο συντελεστής φθοράς του αλουμινίου είναι κατά 62% υψηλότερος σε σχέση με αυτόν του δοκιμίου TC11 (20% κ.β. ITM, 2h έψηση) και κατά 82% υψηλότερος σε σχέση με αυτόν του δοκιμίου TC10 (20% κ.β. ITK, 2h έψηση), των υλικών, δηλαδή, με το χαμηλότερο και υψηλότερο συντελεστή φθοράς αντίστοιχα.

Η Εικόνα B20 παραθέτει το ραβδόγραμμα της σύγκρισης του συντελεστή τριβής των εξετασθέντων συνθέτων υλικών μήτρας Al.

Εικόνα B20. Συντελεστής φθοράς των διαφόρων συνθέτων υλικών μήτρας Al που παρήχθησαν τη μέθοδο της κονομεταλλουργίας.

Β.1.3.3 Έλεγχος μικροδομής ίρνους φθοράς τριβολογικών δοκιμίων υλικών μήτρας AI

Προκειμένου να γίνει περισσότερο κατανοητός ο μηχανισμός μέσω του οποίου προκύπτουν οι τριβολογικές επιδόσεις των συνθέτων μήτρας AI, μελετώνται οι απεικονίσεις ηλεκτρονικού μικροσκοπίου σάρωσης των μεταβολών που προκύπτουν στη μικροδομή των υλικών κατόπιν του τριβολογικού τους ελέγχου, μέσω στόχευσης της λήψης των μικροφωτογραφιών εντός του ίρνους της φθοράς στην επιφάνεια των συνθέτων υλικών, συμπεριλαμβανομένων και των
δοκιμίων του καθαρού Al, για προφανείς λόγους συγκρισιμότητας των αποτελεσμάτων. Αναφέρεται ότι, στις περισσότερες των περιπτώσεων, οι λήψεις των εικόνων του μικροσκοπίου συνοδεύονται και από τον τοπικό προσδιορισμό της χημικής σύστασης της -κατά περίπτωση- στοχευμένης περιοχής του φθαρμένου δοκιμίου.

Στις Εικόνες B21.α-δ παρατίθενται επιλεγμένες μικροφωτογραφίες του ίχνους του φθαρμένου δοκιμίου του καθαρού αλουμινίου, σε αυξανόμενη μεγέθυνση. Στην Εικόνα B22, παρατίθενται, σε αντιδιαστολή με την Εικόνα B21, οι μικροφωτογραφίες ενός φθαρμένου συνθέτου δοκιμίου, στην προκειμένη περίπτωση του TC03 (B22.α-δ).

Εικόνα B21.α. Μικροφωτογραφία φθαρμένου δοκιμίου Al - κλίμακα: 500 μμ.

Εικόνα B21.β. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al - κλίμακα: 50 μμ.

Εικόνα B21.γ. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al - κλίμακα: 50 μμ.

Εικόνα B21.δ. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς στο δοκίμιο Al - κλίμακα: 20 μμ.
Από τη μελέτη των προκυπτουσών διαφοροποιήσεων των μικροφωτογραφιών αυτών, καταδεικνύεται η καθοριστική συνεισφορά των σωματιδίων των υπάρχον τερρών στην ενίσχυση της τραχύτητας και της επιφανειακής ανθεκτικότητας του αλουμινίου, σε συνδυασμό με τα αποτελέσματα του υπολογισμού των βασικών μεγεθών των τριβολογικών
dοκιμών των συνθέτων, όπως αυτά διδόνται στον Πίνακα B13. Ωστόσο, στην περίπτωση του
dοκιμίου του Al, φαίνεται ότι το βάθος του ήχους της φθοράς είναι μεγαλύτερο σε σχέση με
tα έντονα με σωματιδία υπαρχόν τερρών- δοκίμια μητρικής φάσης Al, τα οποία
pιστώνουν εντονότερη αντίσταση στην κυκλική κινούμενη ακίδα από Al$_2$O$_3$, όπως
φαίνεται και από τις μικροαπεικονίσεις τους. Από τη μέτρηση του βάθους του ήχους φθοράς
tων εξετασθέντων δοκιμών (με τη χρήση προφλομέτρου), προκύπτει ότι αυτό του καθαρού
Al ισούται με 61.87 μμ, ήτοι κατά 61.6% βαθύτερο από το αντίστοιχο του TC03, το οποίο
και μετράται ίσο με 23.75 μμ. Το βαθύτερο ήχος φθοράς του Al, σε σχέση με τα σύνθετα
Al/υπαρχόν τερρών, καθώς επίσης και το μεγαλύτερο εύρος των ανοιχτών των

Στην Εικόνα B22.δ έχει επισημανθεί εντός ελλειπτικού σχηματισμού λευκού χρώματος, περιοχή, εσωτερικά του ίχνους φθοράς του δοκιμίου TC03, στην οποία εμφανίζεται αυξημένη αντίσταση στη ακίδα Al₂O₃, λόγω της υπερσυγκέντρωσης, στο σημείο, συστατικών προερχομένων από την τέφρα του συνθέτου. Οι αναλύσεις της χημικής σύστασης (EDS) των φθαρμένων περιοχών των συνθέτων υλικών καταδεικνύουν ότι, στις περιοχές στις οποίες υπάρχει Ca η αντίσταση είναι σαφώς ισχυρότερη.

Στις Εικόνες B23.α-δ παρατίθενται, σε μεγαλύτερη μεγέθυνση, η επισημασμένη περιοχή του συνθέτου TC03 της Εικόνας B22.δ, όπου η ακίδα Al₂O₃ έχει αντιμετωπιστεί με μια σκληρότερη περιοχή του δοκιμίου. Τρεις χαρακτηριστικές περιοχές του σημείου αυτού, όπου εντοπίζονται μεγαλύτερης σκληρότητας επιφανειακά σημεία του δοκιμίου (δηλαδή, πρακτικά, αυξημένης αντίστασης στην φθορά του τριβολογικού ελέγχου), επισημαίνονται στην Εικόνα B23.α ως περιοχές με ερυθρό χρώμα και τις ενδείξεις A, B, C. Κάθε μία από αυτές ελέγχεται για τη χημική της σύσταση προκειμένου να αποσαφηνθεί ο ρόλος των σωματιδίων των τεφρών και τα αποτελέσματα περιλαμβάνονται στον Πίνακα B14. Στη σημειακή περιοχή A, η οποία εμφανίζεται σκληρότερη από ότι οι υπόλοιποι εντός του ίχνους της τριβολογικής φθοράς του δοκιμίου, επιβεβαιώνεται η παρουσία της ITM και μάλιστα σε μεγάλο ποσοστό καθώς η % κ.β συγκέντρωση CaO είναι υψηλότερη του 20% λαμβάνοντας υπόψη και την ποσοστιαία παρουσία των οξειδίων και πυρίτιου και συνεπισφέρει στην επίτευξη της χαιμπλότητης δυνατής φθοράς του δοκιμίου. Οι σημειακές περιοχές B και Γ εμφανίζονται ως οι περισσότερο φθαρμένες εντός του ίχνους των δοκιμίων και, όπως προκύπτει από την εξέταση του Πίνακα B14, περιέχουν συστατικών των ιπταμένων τεφρών σε ιδιαίτερα χαμηλές κ.β. συγκέντρωσες (B: CaO: 3.12%, SiO₂: 9.34%, Γ: CaO: 2.11%, SiO₂: 8.21%). Αντιθέτως, προκύπτει ότι στις περιοχές αυτές κυριαρχεί η μητρική φάση του συνθέτου, δίνοντας απεικονίσεις φθοράς ανάλογες με εκείνες που παραπέμπουν, εξωτερικά, στις αντίστοιχες του δοκιμίου του καθαρού αλουμινίου. Στις Εικόνες B23.β-γ δίδεται, σε διαφορετικές μεγεθύνσεις, η μικροφωτογραφία εντός του ίχνους φθοράς δοκιμίου μήτρας Al ενισχυμένον με ΙΤΚ (κωδικός δοκιμίου: TC05), όπου προκύπτει η ανάπτυξη ανθεκτικών επιφανειακών ασβεστούχων σχηματισμών (επισημαίνονται εντός ελλειπτικών και κυκλικών σχηματισμών λευκού χρώματος και η μέση χημική ποσοστιαία κ.β σύσταση των τεσσάρων δίδεται στην 5η στήλη του Πίνακα B10), οι οποίοι, πιθανόν, οφείλουν την ύπαρξη τους στις υψηλές θερμοκρασίες που αναπτύσσονται τοπικά λόγω της τριβής Al₂O₃-συνθέτου (και της συνεπακόλουθης ανάπτυξης επιφανειακού λεπτού στρώματος Al₂O₃). Στην ίδια Εικόνα επισημαίνονται εντός κυκλικού σχηματισμού ερυθρού χρώματος επιφανειακές ρηγματώσεις οι οποίες προκύπτουν κατόπιν των τριβολογικών δοκιμίων των συνθέτων Al. Από τον
προσδιορισμό της χημικής σύστασης της επιφανειακής περιοχής του συνθέτου πέριξ των ρηγματώσεων αυτών προκύπτει η απουσία σωματιδίων υπάμενης τέφρας. Αντιθέτως, οι ρηγματώσεις αυτού του είδους αποδίδονται στις λιγότερες σκληρές περιοχές της μητρικής φάσης, καθώς επίσης εντοπίζονται και σε δοκίμια τα οποία περιέχουν αποκλειστικά Al.

Η Εικόνα B23.δ παρατίθεται τη μικροφωτογραφία στο άκρο του συνθέτου δοκιμίου TC06, όπου έχουν επισήμανθει οι περιοχές επιφανειακών ρηγματώσεων και αποκολλήσεων υλικού, στα ορια μεταξύ του ίχνους της φθοράς και της επιφάνειας του δοκιμίου.

Εικόνα B23.α. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC03. Επισήμανση των διαφόρων περιοχών με ερυθρές ενδείξεις Α,Β, Κ - κλίμακα: 10 μm.

Εικόνα B23.β. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC05. Επισήμανση των επιφανειακών σχηματισμών εντός ερυθρών και λευκών - κλίμακα: 50 μm.

Εικόνα B23.γ. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC05. Επιφανειακός ασβεστούχος σχηματισμός - κλίμακα: 10 μm.

Εικόνα B23.δ. Μικροφωτογραφία εντός του ίχνους φθοράς του δοκιμίου TC06. Επιφανειακές αποκολλήσεις και ρηγματώσεις στα άκρα του ίχνους της φθοράς - κλίμακα: 50 μm.
Πίνακας Β14. Χημ. σύσταση επιλεγμένων περιοχών εντός του ίχνους φθοράς των δοκιμίων TC03 και TC05.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>Σημείο Α, (%)</th>
<th>Σημείο Β, (%)</th>
<th>Σημείο Η, (%)</th>
<th>Σημείο Δ, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>20.0</td>
<td>9.34</td>
<td>8.21</td>
<td>11.97</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>51.40</td>
<td>86.80</td>
<td>87.00</td>
<td>53.12</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.80</td>
<td>1.33</td>
<td>2.56</td>
<td>3.00</td>
</tr>
<tr>
<td>CaO</td>
<td>22.0</td>
<td>3.12</td>
<td>2.11</td>
<td>31.66</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.50</td>
<td>0.30</td>
<td>0.21</td>
<td>0.35</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.88</td>
<td>0.12</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.20</td>
<td>0.04</td>
<td>0.04</td>
<td><0.1</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Οι φθαρμένες επιφάνειες των συνθέτων υλικών μήτρας Al επιδεικνύουν, σε σημαντικό βαθμό, ένα είδος «συρρικνούμενη» επιφανειακής μετατροπής τύπου «καταστρόματος» (curling-up), κατά μήκος των άκρων του ίχνους φθοράς των συνθέτων (Εικόνα Β24.a), καθώς επίσης και ένα πλήθος μικροκρατήρων σε συνδυασμό με αρκετές περιοχές οι οποίες έχουν υποστεί επιφανειακό «όργωμα» (ploughing). Σημειώνεται ότι, εξαιτίας των φυσικών ιδιοτήτων του αλουμινίου, φθορά τύπου «οργώματος» δεν παρουσιάζεται στα δοκιμά του καθαρού Al και συνεπώς αποδίδεται αποκλειστικά στη συμμετοχή των σωματιδίων των υπάρχουσεων τεφρών στα σύνθετα υλικά (Εικόνα Β24.b). Οι περιοχές πέριξ των επιφανειακών μικροκρατήρων χαρακτηρίζονται τόσο από επίπεδη, ως και από ανοιγμένη υφή, με κατεύθυνση παράλληλη της κατεύθυνσης της ολίσθησης, υποδεικνύοντας ότι η φθορά είναι τύπου φθοράς πρόσφυσης (adhesive wear), όπου και σε αντίστοιχη περίπτωση συνθέτων Al/πυριτικών υπάρχουσεων τεφρών οι οποίες εντοπίζονται στη διεθνή βιβλιογραφία [6]. Σημειώνεται ότι το (τύπου πλαστικής παραμόρφωσης) όργωμα που λαμβάνει χώρα στην επιφάνεια των συνθέτων μήτρας Al, εξαιτίας της επίδρασης της κυκλικής κινούμενης ακίδας Al₂O₃, είναι εξίσου εκτεταμένο στα υλικά ενίσχυσης ITM και ITK, γεγονός που δεν ισχύει στην περίπτωση των υλικών μήτρας Al/Si όπου αναφέρεται παρακάτω.

Όπως προκύπτει από την παράλληλη εξέταση των μικροφωτογραφιών ληφθέντων στο εσωτερικό του ίχνους φθοράς των υλικών, οι περιοχές στις οποίες εντοπίζονται σημαντικότερες ποσότητες Fe₂O₃ και CaO μπορούν να σταθούν αποτελεσματικότερα στην παραμοίωση της εξάπλωσης των επιφανειακού κονίματος. Πρέπει να σημειωθεί ότι οι πλαστικές αυλακώσεις των φθαρμένων επιφανειών των συνθέτων υλικών δίνονται να καταλήξουν σε ταχείς εξαπλωνόμενες ρηγματώσεις και σημαντική υποβάθμιση των μηχανικών ανταχών των συνθέτων.
Εικόνα B24.a. Μικροφωτογραφία απεικονίζουσα το όριο των περιοχών έγγος φθοράς - παραμένουσας επιφάνειας του δοκίμιου TC11 - κλίμακα: 100 μμ.

Εικόνα B24.b. «Οργωμένη» επιφάνεια εντός του έγγος φθοράς στο σύνθετο TC11 -κλίμακα: 10 μμ.

Β.1.3.4 Έλεγχος τριβολογικής συμπεριφοράς ζημίες ολίσθησης των συνθέτων υλικών μίτρας Al/Si

Ο Πίνακας B15 παραθέτει τα δοκίμια τα οποία παρασκευάσθηκαν προκειμένου να ελεγχθεί η τριβολογική συμπεριφορά των συνθέτων υλικών μίτρας Al/Si με αλεξιμένες τέφρες όπως και στην μελέτη των συνθέτων μίτρας Al. Στον Πίνακα B15 παρατίθενται συνοπτικά επίσης τα αποτελέσματα των υπολογισμών των βασικών μεγεθών αποτίμησης της τριβολογικής συμπεριφοράς των υλικών αυτών.
Φαίνεται ότι η προσθήκη των σωματιδίων υπάρχουν τεφρών στο κράμα Al/Si υποβαθμίζει γενικά την τριβολογική συμπεριφορά, σε βαθμό, όμως, εντός των επιτρέπτων ορίων, τουλάχιστον στην περίπτωση ποσοστό 10% κ.β. ενισχυτικής φάσης. Συγκεκριμένα, το δοκίμιο C13, το οποίο εμφανίζει τις υψηλότερες επιφανειακές αντοχές έναντι της τριβής, αποτείχε συντελεστή τριβής κατά 5.71% χαμηλότερο από τον αντίστοιχο του δοκιμίου του καθαρού Al/Si (M02).

Στην Εικόνα B25 διδότα οι τιμές του συντελεστή τριβής των υλικών μήτρας Al/Si. Συγκρίνοντας τα δοκίμια που περιέχουν υπάρχον τεφρά Καρδίας και Μεγαλόπολης και έχουν υποστεί πυροσβεστική συσκευή για τον ιδίου αριθμό το ύδωρ, συμπεράνουμε ότι, σε όλες τις περιπτώσεις, τα δοκίμια τα οποία περιέχουν ITK παρουσιάζουν καλύτερη τριβολογική συμπεριφορά, γεγονός το οποίο αποδεικνύεται στην εκτεταμένη αντίδραση του ειδικού ασβεστίου της ενισχυτικής φάσης με το διαθέσιμο πυρίτη της μητρικής και στο συνεπακόλουθο σχηματισμό σκληρών άσβεστο-πυριτικών φάσεων. Οι φάσεις αυτές εμφανίζονται να ενισχύουν τις τριβολογικές αντοχές των συνθέτων σε αντίθεση από αυτήν που επιδεικνύουν τα σύνθετα υλικά μήτρας Al. Επίσης, διαφορές παρατηρούνται στην περίπτωση χρήσης ITM η οποία παρουσιάζει σαφώς μικρότερες τιμές ειδικού ασβεστίου του ασβεστίου. Βεβαίως, το οριακό των διαφορών αυτών διαπιστεύεται και στην περίπτωση των συνθέτων δοκιμίων μήτρας Al/Si, αν εξακολουθούν τα δοκίμια τα οποία περιέχουν σωματίδια υπάρχον τεφρών σε κ.β. ποσοστό 20%, στα οποία και η υποβαθμίζει των τριβολογικών αντοχών του κράματος Al/Si ανέρχεται σε μη-ανεκτό επίπεδο.

1 Ποσοσταία συμμετοχή τεφρών
2 Πυροσβεστική συσκευή
Ενδεικτικά, αναφέρεται ότι:

- το δοκίμιο TC13 (ΙΤΚ, 2h) αποκτά συντελεστή τριβής κατά 8.85% χαμηλότερο σε σχέση με τον αντίστοιχο του δοκιμίου TC15 (ΙΤΜ, 2h).
- το δοκίμιο TC14 (ΙΤΚ, 6h) αποκτά συντελεστή τριβής κατά 4.11% χαμηλότερο σε σχέση με τον αντίστοιχο του δοκιμίου TC16 (ΙΤΜ, 6h).
- το δοκίμιο TC17 (ΙΤΚ, 2h) αποκτά συντελεστή τριβής κατά μόλις 0.95% χαμηλότερο σε σχέση με τον αντίστοιχο του δοκιμίου TC18 (ΙΤΜ, 6h)

Εικόνα B25. Συντελεστής τριβής των συνθέτων υλικών μήτρας Al/Si που παρήχθησαν τη μέθοδο της κονιομεταλλουργίας.

Επιβεβαιώνοντας τη διαπιστωθείσα τάση, ο συντελεστής φθοράς των συνθέτων δοκιμίων μήτρας Al/Si τείνει ανοδικά με την αύξηση της % κ.β. συμμετοχής των σωματιδίων των υπάρχοντων τεθρών, όπως φαίνεται από το ραβδόγραμμα της Εικόνας B26.
Εικόνα B26. Συντελεστής φθοράς των συνθέτων υλικών μήτρας Al/Si που παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας.

B.1.3.5 Μελέτη μικροδομής ίχνους φθοράς τριβολογικών δοκιμών υλικών μήτρας Al/Si

Όπως στην περίπτωση των συνθέτων δοκιμών μήτρας Al, προκειμένου να γίνουν περισσότερο κατανοητοί οι λόγοι για τους οποίους προκύπτουν μεταβολές της τριβολογικής συμπεριφοράς τους, μελετάνται οι απεικονίσεις ηλεκτρονικού μικροσκοπίου σάρωσης της μικροδομής των υλικών μέσω λήψης των μικροφωτογραφιών εντός του ίχνους της φθοράς στην επιφάνεια των συνθέτων υλικών, συμπεριλαμβανομένων και των δοκιμών αναφοράς του καθαρού κράματος. Όπως και στο υποκεφάλιο Β.1.3.3, στις περισσότερες των περιπτώσεων, οι λήψεις των εικόνων του μικροσκοπίου συνδυάζονται και από τον τοπικό προσδιορισμό της χημικής σύστασης της περιοχής του φθαρμένου δοκιμίου.

Στις Εικόνες Β27.α-δ παρατίθενται επιλεγμένες μικροφωτογραφίες του ίχνους του φθαρμένου δοκιμίου του καθαρού κράματος (σε αυξανόμενη μεγέθυνση, Β27.α-δ). Στην Εικόνα Β28.α-δ, παρατίθενται οι μικροφωτογραφίες ενός φθαρμένου συνθέτου δοκιμίου, στην προκειμένη περίπτωση του TC13, το οποίο είναι και το σύνθετο δοκίμιο με τις καλύτερες τριβολογικές επιδόσεις. Τονίζεται ότι, συγκρίνοντας τις μικροαισθητοποιήσεις του ίχνους φθοράς του καθαρού Al (Εικόνα Β21) με αυτές του κράματος Al/Si, γίνεται φανερή η σημαντική συνειδητοποίηση του πυρήνα στο (μεσοκόκκινο) Al, στην ανάπτυξη της επιφανειακής σκληρότητας του υλικού, καθώς το ίχνος φθοράς του δοκιμίου M02 είναι ιδιαίτερα ρηχό, εκτεινόμενο, ουσιαστικά, στο μισό βάθος σε σχέση με το αντίστοιχο του M01 (30.75 μμ έναντι 61.87 μμ).
Συγκρίνοντας τις Εικόνες B21.β-δ και B27.β-δ, γίνονται αντιληπτές οι διαφοροποιήσεις εντός του ίχνους φθοράς των δύο διαφορετικών μητρικών δοκιμίων, όπου στην περίπτωση του βαθύτερου ίχνους του δοκιμίου M01 παρατηρείται εκτεταμένη διαστροφή, ενώ αντιθέτως στο M02 η φθορά φαίνεται να εξελίσσεται ομοιόμορφα. Αναφορικά με την επίδραση της προσθήκης των σωματιδίων υπάρχουν τετράγων στην τριβολογική επίδοση του ήδη σκληρού κράματος Al/Si φαίνεται ότι μπορεί, υπό τις κατάλληλες συνθήκες να είναι είτε θετική, είτε οριακά αρνητική σε επίπεδο ανεκτό, λαμβάνοντας υπόψη το σημαντικά μειωμένο κόστος των συνθέτων υλικών που έχουν ως ενιασχημική τους φάση υπάρχειας τέτορες. Η συνεισφορά, αυτή, των σωματιδίων των τετράγων στην τριβολογική επίδοση των συνθέτων μήτρας Al/Si γίνεται εμφανείστερη παρατηρώντας τις μικροφωτογραφίες του ίχνους φθοράς ορισμένων συνθέτων δοκιμίων. Η Εικόνα B28 παραθέτει -σε αυξανόμενη μεγέθυνση- τις
μικροφωτογραφίες του ίχνους φθοράς του δοκιμίου TC13. Από τη συγκριτική αποτίμηση των Εικόνων B27 (δοκίμιο M02) και B28 (TC13) προκύπτει ότι η ομοιόμορφη κατανομή σωματιδίων ασβεστούχων τέφρας εντός του κράματος δύναται να κάνει την επιφάνεια του πιο «τραχείο», οδηγώντας στη δημιουργία ενός κατακόρυφου και χαμηλού βάθους ίχνους φθοράς, χωρίς διαστροφματίδες, συνήθως στα υλικά Al/ιπτ. τεφρών. Για την ακρίβεια, το μετρώμενο βάθος του δοκιμίου TC13 (μ.ο. 5 σημείων) είναι αρκετά μικρότερο σε σχέση με αυτό του δοκιμίου του καθαρού κράματος, καταδεικνύοντας την (σημαντικού μέτρου) επιφανειακή σκληρύνση που δύναται να επιφέρει η προσθήκη των ασβεστούχων υπάρχον τεφρών και εν πάλλοις οφείλεται στις νέες ορυκτολογικές φάσεις που σχηματίζονται χάρη στην αντίδραση μεταξύ Ca τέφρας και Si μήτρας. Αξιολογεί την απογοήθεια ότι ο εκτεταμένος σχηματισμός επιφανειακών συσσωματωμάτων στα δοκίμημα Al/Si-ασβεστούχων τεφρών δε χρειάζεται να παρεμποδίζει σημαντικά την ανάπτυξη των τριβολογικών αντιχών των συνθέτων υλικών, σε ποσοστό συμμετοχής των τεφρών έως 10% κ.β., αντίθετα, καθώς η ποσότητα των επιφανειακών σφαιριδίων (και συνεπώς του εσωτερικού πορώδους) αυξάνεται, η συμμετοχή των τεφρών σε υψηλά ποσοστά έχει ως συνέπεια τη σημαντική υποβάθμιση των τριβολογικών ιδιοτήτων των συνθέτων (όπως π.χ. στην περίπτωση των δοκιμίων που περιέχουν 20% κ.β. υπάρχει υπάρχει τέφρα). Η ομοιόμορφη υφή του ίχνους φθοράς του δοκιμίου TC13 φαίνεται στις μικροφωτογραφίες των Εικόνων B28.β και γ, όπου, σε αντίθεση με τα υλικά μήτρας αλουμινίου, οι εσωτερικές διαστροφματίδες είναι σημαντικά περιορισμένες. Στην Εικόνα B28.δ είναι επισημασμένη με σφαιρικό ελλειπτικό σχηματισμό λευκού χρώματος, περιοχή όπου η υπερσυγκέντρωση σωματιδίων ασβεστούχων τεφρών οδηγεί στη δημιουργία περιοχών υψηλής αναδεικτικότητας στην επιφάνεια των συνθέτων δοκιμίων. Η ταυτοποίηση της έντονα ασβεστούχου φύσης του συγκεκριμένου σημείου, προκύπτει από τον τοπικό προσδιορισμό της χημικής σύστασης, από όπου και φαίνεται ότι το Ca κυριαρχεί σε ποσοστό μεγαλύτερο του 55%.

Εικόνα B28.β. Μικροφωτογραφία εσωτερικής δομής του ίχνους φθοράς του δοκιμίου TC13 -
Από τη μελέτη των προκυπτούσων διαφοροποιήσεων των μικροφωτογραφιών των Εικόνων B27 και B28, καταδεικνύεται η συνεισφορά των σωματιδίων της ΙΤΚ στην ενίσχυση της τροχήτητας και της επιφανειακής ανθετικότητας του υλικού, όπως προκύπτει και από τα αποτελέσματα του υπολογισμού των βασικών μεγεθών των τριβολογικών επιδόσεων του δοκιμίου TC13. Ωστόσο, στην περίπτωση του δοκιμίου Al/Si, το βάθος του ίχνους φθοράς είναι κατά μόλις 1.5 ποσοστιαία μονάδα μεγαλύτερο από αυτό του δοκιμίου TC13, παρότι πρακτικά το 10% του βάρους του δεντρών αντικαθίσταται από ΙΤΚ. Όπως και στις περιπτώσεις των δοκιμίων μήτρας Al, έτσι και εδώ, οι φθαρμένες επιφάνειες των συνθέτων δεν παρουσιάζουν κανένα «λείο» τμήμα, λόγω των εκτεταμένων αυλακώσεων που δημιουργήθηκαν εξαιτίας της τριβής του με τη ακίδα Al2O3. Συνεπώς, συμπεράνεται, και σε αυτήν την περίπτωση, ότι η συμμετοχή των σωματιδίων της τέφρας στο συντελεστή τριβής των δοκιμίων προκύπτει μέσω των «αργομένων αυλακώσεων» (ploughing grooves) που προεξεί στη μαλακότερη επιφάνεια της μήτρας του συνθέτου, μέσω πλαστικής παραμόρφωσης η οποία έχει ως αποτέλεσμα μικροβραίνεισ, μικροσχημένες ή ακόμα και μεγαλύτερου εύρους θρυμματισμούς, όπως σημειώνεται και σε σχετικές δημοσιεύσεις εργασιών που αναφέρονται στην ενίσχυση κραμάτων Al με κεραμικά σωματίδια [7-9].

Οι τάσεις αυτές, καθώς επίσης και οι παρατηρήσεις σε σχέση με το είδος της φθοράς (adhesive), επιβεβαιώνονται και από τη μελέτη του ίχνους της τριβολογικής φθοράς των υλικών μήτρας Al/Si με ενίσχυση ΙΤΚ, όπου, ναι μεν τα βάθη του ίχνους φθοράς είναι σημαντικά μεγαλύτερα από ότι στα σωματίδια με ενίσχυση ΙΤΚ, παρόλα αυτά οι μορφολογικές απεικονίσεις είναι παρόμοιες, καταδεικνύοντας το γεγονός ότι οι ίδιοι μηχανισμοί φθοράς είναι αυτοί που κυριαρχούν σε όλες τις περιπτώσεις των συνθέτων υλικών, ανεξαρτήτως συμμετοχής ΙΤΚ ή ΙΤΜ. Στην Εικόνα B29 παρατίθενται επιλεγμένες
μικροφωτογραφίες του ίχνους του φθαρμένου δοκιμίου TC15. Μια, ομοιόμορφα, «οργανωμένη» περιοχή του συνθέτου δοκιμίου εντοπίζεται πανοραμικά στην Εικόνα B29.a και διέδεται σε μεγαλύτερη μεγέθυνση στην Εικόνα B29.β. Ο σχηματισμός αυτός της Εικόνας B29.β (επισημάνεται σε λευκό ελλιπετικό σχηματισμό) πιστεύεται ότι προέκυψε καθώς η κυκλικά κινούμενη ακίδα από Al_2O_3 διέρχονταν από περιοχή στην οποία υπήρχε υπερσυγκέντρωση σκληρών συστατικών που αποδίδονται στην ITM, κυρίως χαλαζία (SiO_2). Ο χαλαζίας τείνει σαφώς να μειώσει το συντελεστή τριβής του συνθέτου στο οποίο συμμετέχει ως φάση. Όπως φαίνεται και σε υψηλότερη ανάλυση, εντός του σχηματισμού αυτού διατηρούνται και τμήματα που αποδίδονται εξολοκλήρου σε σωματίδια υπάρχοντων τεφρών, όπως αυτό που επισημαίνεται στους λευκούς ελλειπτικούς σχηματισμούς της μικροφωτογραφίας της Εικόνας B29.γ. Σε άλλο σημείο εντός του ίχνους φθοράς εντοπίζονται τρίπτες οι οποίες προέκυψαν κατά τη διέλευση της ακίδας Al_2O_3 και αποδίδονται σαφώς στην αποκόλληση σωματιδίων τεφρών που πρωτογενώς βρίσκονταν στο σημείο. Όπως αναφέρθηκε προηγουμένως, το φαινόμενο αυτό εντοπίσθηκε και στα υλικά μήτρας A1, και με ενίσχυση ITK, γεγονός που υποδηλώνει ότι οι αποκολλήσεις αυτές δεν εξαρτώνται από το επίπεδο της σκληρότητας της μητρικής και ενισχυτικής φάσης, αλλά οι αιτίες αφορούν κυρίως τη διαδικασία της ανάμιξης των πρώτων υλών και της πυροσυσσωμάτωσής τους. Επίσης, αναφέρεται ότι τέτοιου είδους αποκολλήσεις εντοπίζονται κυρίως στα όρια του αποτελώματος της τριβολογικής ακίδας, που σημαίνει ότι σε μεγάλο βαθμό εξαρτώνται και από την εφαρμοζόμενη ένταση της τριβολογικής δοκιμής.

Εικόνα B29.a. Μικροφωτογραφία φθαρμένου δοκιμίου TC15 - κλίμακα: 200 μμ.

Εικόνα B29.β. Μικροφωτογραφία επιφανειακής δομής του ίχνους φθοράς του δοκιμίου TC15 - κλίμακα: 100 μμ.
Αναφέρεται ενδεικτικά, ότι μεταξύ των δοκιμίων των μικροφωτογραφιών των Εικόνων Β28 και Β29 (Al/Si-10% ΙΤΚ και Al/Si-10% ΙΤΜ, αντίστοιχα), η ποσοστιαία διαφοροποίηση του βάθους του ίχνους φθοράς είναι ίση με 54.4%, γεγονός που καταδεικνύει τη σημαντική συνεισφορά της συμμετοχής των ασβεστούχων υπάρχουν τες διαφορές στην ανάπτυξη των τριβολογικών ιδιοτήτων των συνθέσεων υλικών μήτρας Al/Si, συνεισφορά επίσης αποδείχτηκε στο σχηματισμό νέων ασβεστοσυριτικών φάσεων, ως αποτέλεσμα της αντίδρασης του Ca των τες χρονικότητα με το Si του κράματος. Αυξάνοντας την ποσοστιαία k.β. συμμετοχή των τες διαφορες στο σύνθετο, η ένταση της τάσης αυτής μειώνεται ελαφρώς (στις αντίστοιχες περιπτώσεις 15 και 20% k.β. συμμετοχής της τέρας, η ποσοστιαία διαφοροποίηση είναι 22.1 και 11.3% αντίστοιχα), η τάση όμως αυτή καθ’ αυτή, αποτελείνεται σαφώς. Στις Εικόνες Β30.α-β περιλαμβάνονται μικροφωτογραφίες του δοκιμίου TC22, όπου φαίνονται σαφώς οι εκτεταμένες διαταραχές εντός του ίχνους φθοράς τους, που οφείλονται στην μεγάλη κ.β. συμμετοχή των σωματιδίων των υπάρχουν τες διαφορές στα σύνθετα, οι αποκλλήσεις των οποιων οδηγούν και στο σχηματισμό περισσότερων κενών χώρων στην επιφάνεια των υπό-εξέταση δοκιμίων. Ακόμα και στην περίπτωση της 20 % k.β. συμμετοχής των τες διαφορές στα σύνθετα υλικά, και παρότι και για τα δύο είδη τες διαφορές παρατηρείται σημαντική υποβάθμιση των τριβολογικών ιδιοτήτων των συνθέσεων υλικών, επιληφθείται το συμπέρασμα των λιγότερο εκτεταμένες επιφανειακών διαταραχών στην περίπτωση χρήσης ΙΤΚ. Ο Πίνακας Β16 παραθέτει τα αποτελέσματα των ανάλυσεων των χημικής σύστασης των διαφόρων σμέων των συνθέσεων δοκιμίων TC13, TC15 και TC22, στη βάση των οποιων προκύπτει η προσέγγιση των επιφανειακών περιοχών στις οποίες βρίσκονται συγκεκριμένα τα σωματίδια της τέρας, τα σκληρά συστατικά των οποίων αρκετές φορές συνεισφέρουν ευρετικά στο συντελεστή τριβής των συνθέσεων.
Εικόνα B30.a. Πανοραμική μικροφωτογραφία ήρους φθοράς του δοκιμίου TC22 - κλίμακα: 100 μμ.

Εικόνα B30.b. Μικροφωτογραφία ήρους φθοράς του δοκιμίου TC22 - κλίμακα: 20 μμ.

Πίνακας B16. Χημ. σύσταση επιλεγμένων περιοχών εντός του ήρους φθοράς των δοκιμίων TC13, TC15 και TC22

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>TC13</th>
<th>TC15</th>
<th>TC22</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>17.0</td>
<td>49.8</td>
<td>53.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>34.6</td>
<td>38.4</td>
<td>38.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.10</td>
<td>3.45</td>
<td>3.4</td>
</tr>
<tr>
<td>CaO</td>
<td>46.5</td>
<td>7.00</td>
<td>4.35</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.40</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.22</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td><0.1</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Σημειώνεται ότι οι προσκολλήσεις των σωματιδίων λόγω τριβής, καθώς επίσης και το επιφανειακό όργωμα, το οποίο εντοπίζεται στα σύνθετα υλικά της μελέτης αυτής, εμποδίζει την κίνηση μεταξύ ακίδας-δίσκου, οδηγώντας σε ακόμα μεγαλύτερη φθορά λόγω τριβής. Οι περιοχές των προσκολλήσεων υφίστανται σκληρύνση από την επαναλαμβανόμενη παραμόρφωση, με αποτέλεσμα την εμφάνιση σημαντικού αριθμού μικρορηγματώσεων, που οδηγούν σε τρύπες και επιφανειακές ατέλειες σωματιδίων (voids and dislocations) [10]. Όπως σε άλλες δημοσιευμένες μελέτες [11], έτσι και εδώ, παρατηρείται ότι η τριβολογική φθορά των υλικών συνδεδείται και από αποκόλληση σωματιδίων του κράματος που είναι κολλημένα με σωματίδια των τεμάχων. Σημειώνεται επίσης ότι οι περιπτώσεις στις οποίες
εντοπίζονται σπασμένα σωματίδια τεφρών, είναι συνήθως τα μεγαλύτερα μεγέθους σωματίδια.

Β.1.3.6 Μελέτη της επίδρασης του χρόνου της πυροσυσσωμάτωσης στις τριβολογικές ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si

Ιδιαίτερη προσοχή δίδεται στην επίδραση που έχει ο χρόνος της πυροσυσσωμάτωσης στην ανάπτυξη των τριβολογικών ιδιοτήτων των συνθέτων υλικών μήτρας Al και Al/Si, ενισχυμένων με σωματίδια ITM και ITK, καθώς αποτελεί ένα κρίσιμο τεχνολογικό παράγοντα που επηρεάζει, τόσο την οικονομικότητα της διαδικασίας παρασκευής των υλικών, όσο και τις τελικές ιδιότητές τους. Αναφέρεται ότι στη συνήθη παραγωγική διαδικασία υλικών αλουμινίου με κονιομεταλλουργία (χωρίς τη χρήση φάσης ενίσχυσης), εφαρμόζονται χρόνοι πυροσυσσωμάτωσης μεταξύ 20 και 75 λεπτών. Στην προκειμένη περίπτωση, όπου οι κόκκοι Al αναμιγνύονται σε ποσοστό έως και 20% κ.β. με σωματίδια τεφρών, οι προκαταρκτική μελέτη με χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης, έδειξε ότι τα υλικά αποκτούν τη βέλτιστη μικροδομή τους (από άποψη ομοιογενείς πυροσυσσωμάτωσης) έπειτα από ένα διάστημα 90-120 λεπτών, ξεκινώντας την έψηση από θερμοκρασία περίβαλλοντος. Παρατηρήθηκε στην προκαταρκτική μικροσκοπική εξέταση των υλικών, ότι οι επιφανειακές μικροαλληλώσεις της δομής λαμβάνουν χώρα έπειτα από τα πρώτα 160 λεπτά της πυροσυσσωμάτωσης, όπως: οι 2 ώρες επιλέχθηκαν ως ένα τυπικό σενάριο ολοκληρωμένης πυροσυσσωμάτωσης και οι 6 ώρες, ως σενάριο εξέτασης οριακών συνθηκών πυροσυσσωμάτωσης. Ωστόσο διαπιστώθηκε από τον έλεγχο της μικροδομής των συνθέτων υλικών, τα σωματίδια των τεφρών περιβάλλονται από μεταλλικός «λαιμούς» εντός της μήτρας, η παρουσία των οποίων αποδίδεται στη διαδικασία της πυροσυσσωμάτωσης, η οποία και καταλήγει στη συνένωση των σωματιδίων των τεφρών με αυτά της μεταλλικής μήτρας. Οι παρατηρήθηκε διαφορά γίνονται λεπτότεροι με την αύξηση του χρόνου της πυροσυσσωμάτωσης (προς επιβεβαίωση των θεωρητικών αναμενομένων), γεγονός το οποίο, σε σημαντικό βαθμό, εξήγηκε και τα αποτελέσματα της μελέτης της σχέσης χρόνου πυροσυσσωμάτωσης-τριβολογικών επιδόσεων.

Γενικά, προκύπτει ότι όσο μικρότερος είναι ο χρόνος της πυροσυσσωμάτωσης, τόσο καλύτερες είναι οι τριβολογικές αντοχές των τελικών προϊόντων. Η τάση αυτή γίνεται περισσότερο εμφανής στην περίπτωση των συνθέτων με ενίσχυση ITM, από ότι σε αυτά με ITK, γεγονός το οποίο ξεκάθαρα αποδίδεται στην εκτεταμένη ανάπτυξη σκληρότερων άσβεστο-πυριτικών φάσεων στα δεύτερα, κατά την εξέλιξη της πυροσυσσωμάτωσης. Ωστόσο προέκυψε και από τη συγκριτική εξέταση των διώρων και εξώρων δοκιμών με χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης, η διαδικασία της πυροσυσσωμάτωσης, όταν εφαρμόζεται για μια περίοδο μεγαλύτερη από ένα οριακό διάστημα 2.5-3 ώρων, οδηγεί σε
επιφανειακές μικροαλλοιώσεις, οι ύπαρξη των οποίων, στο σύνολό τους, υποβαθμίζουν σημαντικά τις τριβολογικές επιδόσεις των συνθέτων.

Β.1.3.6.α Επίδραση του χρόνου της πυροσβεστικής στις τριβολογικές ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si, ενισχυμένων με ιπτάμενη τέφρα Καρδιάς

Η Εικόνα Β31.α παραθέτει τα ραβδογράμματα που συγκρίνουν το συντελεστή τριβής των συνθέτων υλικών μήτρας Al και Al/Si τα οποία περιέχουν ITK και έχουν υποβληθεί σε 2-ώρη και 6-ώρη πυροσβεστικής. Πέρα από την ξεκάθαρη τάση απόκτησης χαμηλότερων συντελεστών τριβής από τα για-2-ώρες-πυροσβεστικομυμένα-σύνθετα, σε σχέση με αυτά των 6 ωρών, παρατηρείται επίσης η αυξητική τάση της διαφοράς μεταξύ του συντελεστή τριβής των δίωρων και εξάωρων δειγμάτων, κατά την αύξηση του ποσοστού της κ.β. συμμετοχής της τέφρας στα σύνθετα δοκίμα. Η τάση αυτή είναι εντονότερη στα δοκίμα μήτρας Al/Si. Η ποσοστιαία διαφοροποίηση μεταξύ του συντελεστή τριβής των δοκιμίων TC02-TC01 (Al, 10% ITK) είναι ίση με 0.081%, αυτή των δοκιμίων TC06-TC05 (Al, 15% ITK) ίση με 2.40% και αυτή των δοκιμίων TC10-TC09 (Al, 20% ITK) ίση με 1.95%.

Αντιστοίχως, στα σύνθετα τα οποία περιέχουν ITM, παρατηρούνται οι εξής ποσοστίες διακυμάνσεις στη διαφορά του συντελεστή τριβής τους: 1.23% στην περίπτωση των TC14-TC13 (Al/Si, 10% ITK) και 8.0% στην περίπτωση του ζεύγους TC18-TC17 (Al/Si, 15% ITK). Προφανώς, σε όλες τις περιπτώσεις διαφοροποίησεων που περιγράφονται σε αυτό το υποκεφάλιο, δυσμενέστερη είναι η εικόνα των τριβολογικών επιδόσεων των δίωρων δοκιμίων. Σημειώνεται ότι στην περίπτωση των εξάωρων δοκιμίων μήτρας Al/Si που περιέχουν 20% κ.β. ITK και ITM, δεν εγίναν τριβολογικές δοκίμους, καθώς οι αντίστοιχες τιμές των δίωρων δειγμάτων ήταν ήδη ιδιαίτερα ανεξάρτητες (μέση τιμή: 0.612 στην περίπτωση της ITK και 0.845 στην περίπτωση της ITM).

![Εικόνα B31.α: ραβδογράμματα σύγκρισης των συντελεστών τριβής των διαφόρων συνθέτων υλικών ενισχυμένων με ITK, έχοντας υποστεί πυροσβεστική για 2 και 6 ώρες.](image-url)
Η γενική, αυτή, τάση υποβάθμισης των τριβολογικών επιδόσεων με την αύξηση των ορίων της πυροσυσσωμάτωσης, επιβεβαιώνεται και από τα αντίστοιχα ραβδογράμματα της Εικόνας B31.β, τα οποία παριστάνουν γραφικά τη διαφορά στο συντελεστή φθοράς μεταξύ των συνθέτων δοκιμών Al και Al/Si, έχοντας υποστεί πυροσυσσωμάτωση για 2 και 6 ώρες. Εξετάζοντας, όπως και προηγούμενος, στην περίπτωση του συντελεστή τριβής, τη μεταβολή του συντελεστή φθοράς μεταξύ των διώρων και εξάωρων δειγμάτων, προκύπτουν τα ανάλογα αποτελέσματα. Η ποσοστιαία διαφορά στο συντελεστή φθοράς των TC02-TC01 είναι ίση με 20%, στην περίπτωση των TC06-TC05 ίση με 9.9% και στην περίπτωση των TC10-TC09 ίση με 2.4%. Στην περίπτωση, δηλαδή του συντελεστή φθοράς των δοκιμών Al που έχουν ενισχυθεί με ITK, προκύπτει ότι η ποσοστιαία διακύμανση έχει τάση μείωσης με την αύξηση του ποσοστού της k.β. συμμετοχής των ιπτάμενων τεφρών σε αυτά. Όσον αφορά τα σύνθετα δοκίμια μήτρας Al/Si τα οποία περιέχουν ITK, οι αντίστοιχες διακυμάνσεις και η τάση είναι πιο ξεκάθαρες, λόγω της εκτεταμένης αντιδρασης του Ca της τέφρας με το Si της μήτρας. Για την ακρίβεια, η ποσοστιαία διακύμανση του συντελεστή φθοράς των δοκιμών TC14-TC13 είναι ίση με 38.7%, ενώ στην περίπτωση του ζεύγους TC18-TC17, είναι ίση με 50.2% (έντονα αυξητική τάση).

Εικόνα B31.β Ραβδογράμματα σύγκρισης των συντελεστών φθοράς των διαφόρων συνθέτων υλικών ενισχυμένων με ITK, έχοντας υποστεί πυροσυσσωμάτωση για 2 και 6 ώρες.

B.1.3.6.β Επίδραση του χρόνου της πυροσυσσωμάτωσης στις τριβολογικές ιδιότητες των συνθέτων υλικών μήτρας Al και Al/Si, ενισχυμένων με ιπτάμενη τέφρα Μεγαλόπολης

Η Εικόνα B32.α παρατηρείται τα ραβδογράμματα που συγκρίνουν το συντελεστή τριβής των συνθέτων υλικών μήτρας Al και Al/Si τα οποία περιέχουν ITM και έχουν υποβληθεί σε 2-ωρη και 6-ωρη πυροσυσσωμάτωση. Η παρατηρηθείσα τάση όσον αφορά στην επίδραση της
πυροσυσσωμάτωσης στις τριβολογικές επιδόσεις των δοκίμων ενίσχυσης ΙΤΚ, επαληθεύεται και για τα σύνθετα δοκίμια τα οποία έχουν ενισχυθεί με ΙΤΜ, καθώς σε όλες τις περιπτώσεις, τα εξάνταρα δοκίμια έχουν υποβαθμισμένες τριβολογικές επιδόσεις, σε σχέση με τα δίωρα. Ειδικά στην περίπτωση των υλικών μήτρας Al/Si, οι συνέπειες της εκτεταμένης πυροσυσσωμάτωσης είναι ιδιαίτερα έντονες, και συνδέονται απευθείας με το γεγονός της αντίδρασης της περίσσειας του ενεργού Si του πληροτικού υλικού, με το Al της μήτρας του συνθέτου. Επίσης, αναφέρεται ότι η τάση αύξησης της έντασης της επίδρασης αυτής, με την αύξηση της ποσοστιαίας κ.β. συμμετοχής των υπάρχον τερρών στα σύνθετα δοκίμια, γίνεται κατάδυλη στην περίπτωση της ενίσχυσης με σωματίδια ITM. Για την ακρίβεια, η ποσοστιαία διαφοροποίηση του συντελεστή τριβής στα δοκίμια TC04-TC03 (Al, 10% κ.β. ITM) είναι ίση με 4.2%, στα δοκίμια TC08-TC07 (Al, 15% κ.β. ITM), ίση με 5.1% και στο ζεύγος δοκιμίων TC12-TC11 (Al, 20% κ.β. ITM), ίση με 7.3%, παρουσιάζοντας μια ξεκάθαρα αυξητική τάση έντασης της επίδρασης των υφίστανται υλικών της πυροσυσσωμάτωσης, με την αύξηση της ποσοστιαίας κ.β. συμμετοχής των υπάρχον τερρών στο σύνθετο δοκίμιο. Εξίσου παρατηρείται ότι η τάση έντασης της επίδρασης του χρόνου της πυροσυσσωμάτωσης με την αύξηση του ποσοστού της κ.β. συμμετοχής της τέφρας και για τα δοκίμια μήτρας Al/Si, τα οποία έχουν ενισχυθεί με ΙΤΜ: η ποσοστιαία διαφοροποίηση του συντελεστή τριβής στο ζεύγος δοκιμίων TC16-TC15 (Al/Si, 15% κ.β. ITM) είναι ίση με 8.43% και για το ζεύγος δοκιμίων TC20-TC19 (Al/Si, 10% κ.β. ITM), ίση με 9.8%.

Εικόνα B.32.a Ραβδογράφα μπάτα σύγκρισης του συντελεστή φθοράς των διαφόρων συνθέτων υλικών ενισχυμένων με ΙΤΜ, έχοντας υποστεί πυροσυσσωμάτωση για 2 και 6 ώρες.

Εξετάζοντας την τάση της επίδρασης των υφίστανται υλικών της πυροσυσσωμάτωσης με βάση το συντελεστή φθοράς (Εικόνα B32.b), προκύπτουν ακραία για τα ανάλογα αποτελέσματα: η ποσοστιαία διαφοροποίηση του συντελεστή φθοράς του ζεύγους δοκιμίων TC04-TC03 είναι ίση με 4.8%, στην περίπτωση των TC08-TC07 ίση με 29.7% και στην περίπτωση των TC12-

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιπποκος 135
ΤC11 ίση με 31.1%. Επιβεβαιώνεται, δηλαδή, γραμμικά, η συνεργατική επίδραση του χρόνου της πυροσυσσωμάτωσης και της κ.β. ποσοστιαίας συμμετοχής της τέφρας στην υποβάθμιση των τριβολογικών επιδόσεων των συνθέτων. Ομοίως, στην περίπτωση των συνθέτων μήτρας Al/Si, στο ζεύγος δοκιμών TC16-TC15, η ποσοστιαία διαφοροποίηση στο συντελεστή φθοράς είναι ίση με 12.4% και για το ζεύγος δοκιμών TC20-TC19 ανιχνεύεται περίπου στο 20% (19.94%).

Εικόνα B.32.β Ραβδογράφματα σύγκρισης του συντελεστή τριβής των διαφόρων συνθέτων υλικών ενιαγμένων με ΙΤM, έχοντας υποστεί πυροσυσσωμάτωση για 2 και 6 ώρες.

Πρέπει να τονισθεί, ότι η επίδραση του χρόνου της πυροσυσσωμάτωσης είναι σαφής και παραμένει ίδια και για όλους τους δυνατούς συνδυασμούς μητρικών-ενιαγμικές φάσεων. Είναι γεγονός ότι η τάση αυτή είναι πιο περιορισμένη για τις περιπτώσεις ενίσχυσης ΙΤΚ, καθότι οι αναπτυσσόμενες διαφοροποιήσεις εκεί είναι περισσότερο ισορροπημένες. Τα γεγονότα αυτά αποδίδονταν κυρίως στους 2 παρακάτω λόγους:

1. Οι νέες άσβεστο-πυριτικές φάσεις ξεκινούν να διαμορφώνονται από την θερμοκρασία των 550°C, και
2. Ο σχηματισμός των επιφανειακών δομών-συσσωματωμάτων είναι ποσοτικά ισοδύναμος στις περιπτώσεις της 2-ώρης και 6-ώρης πυροσυσσωμάτωσης, και συνεπώς προκαλεί εξής σημαντική υποβάθμιση στα αντίστοιχα σύνθετα.

Όπως θα δείχθει στο επόμενο κεφάλαιο (Β.1.4), τα αποτελέσματα των τριβολογικών επιδόσεων των συνθέτων, βρίσκονται σε ευθεία σύγκλιση με αυτά των δοκιμών της σκληρότητας, όπως και λογικά αναμένονταν.
Β. Πειραματικό Μέρος

Β.1.3.7 Μελέτη της σύστασης των επιφανειακών υπολειμμάτων που προκύπτουν από τις τριβολογικές δοκιμές των συνθέτων

Σημαντική συνεισφορά στην αντίληψη της τριβολογικής συμπεριφοράς των τον συνθέτων έχει η μελέτη της χημικής και ορυκτολογικής σύστασης των επιφανειακών σωματιδιακών υπολειμμάτων που προκύπτουν από την τριβή της ακίδας Al₂O₃ με την επιφάνεια των δοκιμίων των συνθέτων υλικών (wear debris). Η μεταφορά υλικού από την ακίδα στο δίσκο προκαλεί -κατά περιπτώσεις- την εκτεταμένη εμφάνιση σωματιδιακών υπολειμμάτων στην επιφάνεια του δίσκου [12], η μελέτη των οποίων δύναται να οδηγήσει σε χρήσιμα συμπεράσματα αναφορικά με την επίδραση των σκληρότερων ορυκτολογικών φάσεων των σωματιδίων των τεφρών στην ακίδα Al₂O₃.

Οι χημικές και ορυκτολογικές αναλύσεις έγιναν με Φασματοσκοπία Περίθλασης και Φθορισμού Ακτινών-X, αντίστοιχα (XRD, XRF) και δείχνουν ότι τα συλλεχθέντα δείγματα σωματιδιακών υπολειμμάτων από την επιφάνεια επιλεγμένων δοκιμίων έχουν σύσταση αντιπροσωπευτική του μήγαμος μητρικής-ενισχυτικής φάσης (επιλέχθηκαν τα δοκίμια TC18 και TC19, για λόγους αντιπροσωπευτικότητας του συνόλου των δοκιμίων). Σημειώνεται ότι τα σκληρότερα σωματίδια των υπάρχοντων τεφρών που περιέχονταν στα σύνθετα μπορούν να προκαλέσουν φθορά και απόλυση υλικού στη ακίδα Al₂O₃, επιφανειακή υποβάθμιση η οποία με τη σειρά της μπορεί να φθείρει σημαντικά την επιφάνεια του δοκιμίου.

Ο Πίνακας Β17 περιλαμβάνει τη χημική σύσταση των σωματιδιακών υπολειμμάτων (WD), όπως αυτά παρελήφθησαν από τα δοκίμια TC18 και TC19. Η σύσταση τους δίδεται σε αντισυνταξία με αυτήν επιφανειακών σωματιδίων που ελήφθησαν επί τούτου, για λόγους σύγκρισης (TC18 και TC19). Στον Πίνακα Β18 δίδονται, εν συντομία, οι κύριες ορυκτολογικές φάσεις που αναγνώρισαν στα δείγματα επιφανειακών σωματιδιακών υπολειμμάτων των δοκιμίων αυτών.
Πίνακας B17. Χημική σύσταση επιφανειακών υπολειμμάτων συλλεχθέντα στο ίχνος φθοράς (wear debris – WD) και η αντίστοιχη του πλήρους υλικού.

<table>
<thead>
<tr>
<th>Χημ. Ένωση</th>
<th>ΤC18 (%)</th>
<th>TC18-WD (%)</th>
<th>TC19 (%)</th>
<th>TC19-WD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>12.00</td>
<td>12.20</td>
<td>7.3</td>
<td>7.17</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>81.20</td>
<td>82.00</td>
<td>89.9</td>
<td>90.95</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.25</td>
<td>2.15</td>
<td>1.12</td>
<td>0.71</td>
</tr>
<tr>
<td>CaO</td>
<td>4.15</td>
<td>3.88</td>
<td>1.66</td>
<td>0.90</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SO₃</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Πίνακας B18. Σύσταση επιλεγμένων περιοχών εντός του ίχνους φθοράς των δοκιμών TC13, TC15 και TC22 (+++: έντονη παρουσία, ++: μέτρια παρουσία, +: ασθενής παρουσία, -: απουσία)

<table>
<thead>
<tr>
<th>Ορυκτό</th>
<th>Χημ. Τύπος</th>
<th>TC18 (%)</th>
<th>TC18-WD (%)</th>
<th>TC19 (%)</th>
<th>TC19-WD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αματίτης</td>
<td>Fe₂O₃</td>
<td>+</td>
<td>+</td>
<td>Ήρη</td>
<td>Ήρη</td>
</tr>
<tr>
<td>Αμορφο</td>
<td>{glass}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ασβεστίτης</td>
<td>CaCO₃</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Μεταλ. Al</td>
<td>Al</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Χαλαζίας</td>
<td>SiO₂</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Ήρη</td>
</tr>
</tbody>
</table>

B.1.4 Μέτρηση επιφανειακής σκληρότητας των συνθέτων υλικών που παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας

Στο υποκεφάλαιο B.1.4 παρατίθενται και συζητούνται τα αποτελέσματα της αξιολόγησης της επιφανειακής σκληρότητας, κατά Vickers, των συνθέτων δοκιμών. Η μέτρηση της σκληρότητας κατά Vickers ανήκει στο δεύτερο είδος των πειραματικών μεθόδων, δηλαδή είναι σκληρότητα αυλάκωσης. Η μορφολογία που αποτελείται το εφαρμοζόμενο φορτίο / βάρος στην επιφάνεια του υλικού είναι τετραεδρικής πυραμίδας [13], σύμφωνα με την Εικόνα B.33.a
Εικόνα B.33.a Μορφολογία πυραμίδας αποτυπώματος φορτίου / βάρους με τιμεθόδο Vickers.

Η επιλογή της γωνίας γίνεται κατά τέτοιο τρόπο ώστε να υπάρχει ορθή αναλογία στην αντιστοίχηση των γεωμετρικών χαρακτηριστικών της πυραμίδας με τα γεωμετρικά χαρακτηριστικά αποτυπωμάτων άλλων τεχνικών της την σφαίρα στην Brinell. Η σκληρότητα κατά Vickers (VHN ή DPH) είναι συνάρτηση των γεωμετρικών χαρακτηριστικών της πυραμίδας, του μήκους των διαγωνίων του αποτυπώματος που σχηματίζεται, καθώς επίσης και του βάρους που εφαρμόζεται. Μαθηματικά, αποτυπώνεται με τον παρακάτω τύπο:

\[DPH = \frac{2 \cdot P \cdot \sin\left(\frac{\theta}{2}\right)}{L^2} = \frac{1,854 \cdot P}{L^2} \]

Όπου:
- \(P \): το βάρος του εφαρμοζόμενου φορτίου (kg)
- \(L \): ο μέσος όρος του μήκους των διαγωνίων του αποτυπώματος (mm)

Η σκληρότητα Vickers έχει δύο διακριτά εύρη δυνάμεων: α) τη μικρο-σκληρότητα (φορτίο: 10 - 1000g) και β) τη μέγκρισκο-σκληρότητα (φορτίο: 1 - 120kg) [13]. Στην προκειμένη περίπτωση, η δοκιμή έγινε με εφαρμογή φορτίου ίσο με 6 kg ενώ λαμβάνοντα 5 μετρήσεις για κάθε δείγμα (τελική τιμή: μέσος όρος 5μετρήσεων/δείγμα).

B.1.4.1 Επιφανειακή σκληρότητα υλικών μήτρας Al

Ο Πίνακας B.19 παραθέτει τα αποτελέσματα των μετρήσεων της επιφανειακής σκληρότητας κατά Vickers, για τα σύνθετα υλικά μήτρας Al (ακολουθεί μια κωδικοποίηση των συνθέτων με βάση το προηγούμενο κεφάλαιο, των τριβολογικών δοκιμών). Η πρώτη παρατήρηση που προκύπτει από τα αποτελέσματα αυτά, είναι ότι η τάση που επεδείκνυαν τα σύνθετα υλικά μήτρας Al κατά τον τριβολογικό τους έλεγχο, επαληθεύεται, εν πολλοίς, και από τις δοκιμές μέτρησης της σκληρότητάς τους. Πρώτα απ' όλα, αναφέρεται ότι η χρήση υπάρχον τεφρών ως υλικό ενίσχυσης του Al οδηγεί -αντίθετα- όλους τους συνδυασμούς
ποσοστού και είδους της φάσης ενίσχυσης – σε αύξηση των τιμών σκληρότητας της καθαρής μητρικής φάσης. Επίσης, προκύπτει ότι η χρήση της ΙΤΚ επιφέρει καλύτερα αποτελέσματα σε σύγκριση με την ΙΤΜ, γεγονός που επαναλαμβάνεται σε όλες τις περιπτώσεις των αντιστοιχών συνθέτων δοκιμών (10, 15 και 20% ανάμειξη –Εικόνα Β33.β). Ακόμα, προκύπτει ότι το βέλτιστο κ.β. ποσοστό αντικατάστασης της μητρικής φάσης από τα σωματίδια της ΙΤΚ είναι, και στην περίπτωση της σκληρότητας, ίσο με 15%. Είναι, προφανώς, απολύτα λογικά τα αποτελέσματα των δοκιμών σκληρότητας και τριβής να αλληλεπικυρώνονται, καθώς και τα δύο μεγέθη αναφέρονται στις ίδιες θεμελιώδεις, πρωτογενείς, επιφανειακές ιδιότητες των υλικών.

Είναι σημαντικό να αναφερθεί ότι η τάση που περιγράφηκε στα υποκεφάλαια B.3.6.α και β, περί της επίδρασης του χρόνου της πυροσβεσμότασης στις τριβολογικές ιδιότητες των συνθέτων, επαληθεύεται πλήρως και όσον αφορά τη σκληρότητα των συνθέτων υλικών μήτρας Al. Για την ακρίβεια, στην περίπτωση των συνθέτων μήτρας Al και ενίσχυσης ΙΤΚ, η μέση τιμή διαφοροποίησης των τιμών της σκληρότητας μεταξύ διώροφων και εξάωρων δειγμάτων ανέρχεται στις 5.3 μονάδες VHN (σε όλες τις περιπτώσεις τα δώρα δειγμάτων έχουν υψηλότερη τιμή από ότι τα εξώρα) ενώ στην περίπτωση ενίσχυσης ΙΤΜ η αντίστοιχη μέση τιμή είναι ίση με 4.6 μονάδες VHN.

Πίνακας B19. Επιφανειακή σκληρότητα Vickers των συνθέτων δοκιμών μήτρας Al.

<table>
<thead>
<tr>
<th>Κωδικός Συνθέτου</th>
<th>Μητρική Φάση</th>
<th>Ενισχυτική Φάση</th>
<th>Πυροσβ.</th>
<th>Σκληρότητα (VHN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td>(h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M01</td>
<td>Al</td>
<td>-</td>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>TC01</td>
<td>Al</td>
<td>KFA/10</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>TC02</td>
<td>Al</td>
<td>KFA/10</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td>TC03</td>
<td>Al</td>
<td>MFA/10</td>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>TC04</td>
<td>Al</td>
<td>MFA/10</td>
<td>6</td>
<td>98</td>
</tr>
<tr>
<td>TC05</td>
<td>Al</td>
<td>KFA/15</td>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>TC06</td>
<td>Al</td>
<td>KFA/15</td>
<td>6</td>
<td>98</td>
</tr>
<tr>
<td>TC07</td>
<td>Al</td>
<td>MFA/15</td>
<td>2</td>
<td>111</td>
</tr>
<tr>
<td>TC08</td>
<td>Al</td>
<td>MFA/15</td>
<td>6</td>
<td>104</td>
</tr>
<tr>
<td>TC09</td>
<td>Al</td>
<td>KFA/20</td>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>TC10</td>
<td>Al</td>
<td>KFA/20</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>TC11</td>
<td>Al</td>
<td>MFA/20</td>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>TC12</td>
<td>Al</td>
<td>MFA/20</td>
<td>6</td>
<td>97</td>
</tr>
</tbody>
</table>
B. Πειραματικό Μέρος

Εικόνα B.33.β Ραβδογράμματα σύγκρισης της τιμής της σκληρότητας των συνθέτων δοκιμίων μήτρας Al.

B.1.4.2 Επιφανειακή σκληρότητα υλικών μήτρας Al/Si

Ο Πίνακας B.20 παραθέτει τα αποτελέσματα των μετρήσεων της επιφανειακής σκληρότητας κατά Vickers, για τα σύνθετα υλικά μήτρας Al/Si.

Πίνακας B20. Επιφανειακή σκληρότητα Vickers των συνθέτων δοκιμίων μήτρας Al/Si.

<table>
<thead>
<tr>
<th>Κωδικός Συνθέτου</th>
<th>Μητρική Φάση</th>
<th>Ενισχυτική Φάση</th>
<th>Πυροσβ. (%)</th>
<th>Σκληρότητα (VHN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M02 Al/Si</td>
<td></td>
<td></td>
<td>2</td>
<td>114</td>
</tr>
<tr>
<td>TC13 Al/Si</td>
<td>KFA/10</td>
<td></td>
<td>2</td>
<td>119</td>
</tr>
<tr>
<td>TC14 Al/Si</td>
<td>KFA/10</td>
<td></td>
<td>6</td>
<td>112</td>
</tr>
<tr>
<td>TC15 Al/Si</td>
<td>MFA/10</td>
<td></td>
<td>2</td>
<td>113</td>
</tr>
<tr>
<td>TC16 Al/Si</td>
<td>MFA/10</td>
<td></td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>TC17 Al/Si</td>
<td>KFA/15</td>
<td></td>
<td>2</td>
<td>121</td>
</tr>
<tr>
<td>TC18 Al/Si</td>
<td>KFA/15</td>
<td></td>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>TC19 Al/Si</td>
<td>MFA/15</td>
<td></td>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>TC20 Al/Si</td>
<td>MFA/15</td>
<td></td>
<td>6</td>
<td>107</td>
</tr>
<tr>
<td>TC-H21 Al/Si</td>
<td>KFA/20</td>
<td></td>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>TC-H22 Al/Si</td>
<td>KFA/20</td>
<td></td>
<td>6</td>
<td>97</td>
</tr>
<tr>
<td>TC-H23 Al/Si</td>
<td>MFA/20</td>
<td></td>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>TC-H24 Al/Si</td>
<td>MFA/20</td>
<td></td>
<td>6</td>
<td>92</td>
</tr>
</tbody>
</table>
Όπως προκύπτει από τις μετρήσεις της επιφανειακής σκληρότητας Vickers των συνθέτων δοκιμών μήτρας Al/Si, και σε αυτήν την περίπτωση, η ενίσχυση του κράματος με χρήση ΙΤΚ οδηγεί σε καλύτερα αποτελέσματα, από ότι με χρήση ITM. Η θεμελιώδης εξήγηση της παρατήρησης αυτής αναφέρεται επίσης στη βάση του σχηματισμού των σκληρότερων ορυκτολογικών φάσεων από την αντίδραση του Ca της φάσης ενίσχυσης με το Si του κράματος. Επίσης, πρέπει να σημειωθεί, ότι προτού τα δείγματα υποβληθούν στις δοκιμές της σκληρότητας έχουν αφαιρεθεί οι επιφανειακές δομές-συσσωματώματα και έχουν λειανθεί με χαρτί λειάνσης SiC grid 400 και 600. Παρόλα αυτά, υπήρξαν περιπτώσεις κατά τις οποίες η μετρητική ακίδα προσέπιπτε σε κενό, σχηματισθέν από την απομάκρυνση των επιφανειακών δομών -οι μετρήσεις αυτές δεν λήφθηκαν υπόψη για την εξαγωγή του τελικού μέσου όρου.

Μια πρότα παρατήρηση από τα αποτελέσματα της σκληρότητας, είναι ότι, παρότι το κράμα Al/Si είναι ύστερο ή άλλως αρκετά σκληρό, εντούτοις η συμμετοχή των τεφρών σε κάποιες περιπτώσεις ενισχύει την ιδιότητα αυτή της μητρικής φάσεως. Για την ακρίβεια, αντικατάσταση του κράματος σε ποσοστό 15% κ.β. από σωματίδια ΙΤΚ, οδηγεί σε μια αυξητική ποσοστιαία διάφωτοψης της τιμής της σκληρότητας κατά +5.78%, που είναι και η σημαντικότερη ποσοστιαία αύξηση από αυτές που προέκυψαν. Επίσης, φαίνεται ότι και στις περιπτώσεις όπου προκύπτει υποβάθμιση των τιμών της σκληρότητας λόγω της προσθήκης των σωματιδίων των υπάρχον τεφρών, αυτή κινείται σε «ανεκτά» ποσοστιαία επίπεδα, για συμμετοχή των τεφρών έως και 15% κ.β. Ο όρος «ανεκτή» υποβάθμιση, δεν προκύπτει από κάποιον είδους συσχέτιση των τιμών της σκληρότητας με συγκεκριμένη βιομηχανική εφαρμογή, αλλά αποτελεί μια καθαρά στατιστική προσέγγιση, και αφορά τη συσχέτιση της με αντίστοιχα δεδομένα σχετικών προσφάτως δημοσιευμένων μελετών [14, 15]. Η υψηλότερη ποσοστιαία υποβάθμιση που προκύπτει στα υλικά μήτρας Al/Si με περιεχόμενο έως και 15%, παρατηρείται στο δείγμα TC18 (ITK 15% - 6 ώρες), και είναι της τάξης του -12.3%. Βεβαίως, το αντίστοιχο δείγμα των δύο ωρών (TC17) είναι αυτό το οποίο εμφανίζει τη διαφωτοψήφηση +5.78%, γεγονός που αποδίδει ανάγλυφα τις συνέπειες των επιφανειακών μικροαλλοιώσεων, λόγω της εκτεταμένης πυροσβεσσομάτωσης.

Σε ευθεία σύγκλιση με τα αποτελέσματα των τριβολογικών μετρήσεων, προκύπτει ότι η αντικατάσταση του κράματος σε κ.β. ποσοστό 20% οδηγεί σε εκτεταμένη υποβάθμιση της επιφανειακής σκληρότητας των συνθέτων υλικών. Ειδικά στις περιπτώσεις των εξώφορων δειγμάτων, η ποσοστιαία διαφωτοψη για μέρη της σκληρότητας σε σχέση με το κράμα, φθάνει στο -23.96% (TC-H24). Πρέπει να σημειωθεί ότι παρά το προφανές πλεονέκτημα που προκύπτει για τα σύνθετα υλικά Al/Si-ITK, εντούτοις οι αντίστοιχες τιμές των συνθέτων Al/Si-ITM δεν απέχουν ιδιαίτερως, και αυτό χάρη στην ύπαρξη του χαλαζία. Η Εικόνα B.33.γ παραθέτει τη συνολική σύγκριση των τιμών της σκληρότητας των υλικών μήτρας Al/Si.
Εικόνα B.33.7 Ραβδογράμματα σύγκρισης της τιμής της σκληρότητας των συνθέτων δοκιμών μήτρας Al/Si.

Ως γενικό συμπέρασμα των αποτελεσμάτων των δοκιμών της σκληρότητας, προκύπτει ότι επαληθεύεται, ουσιαστικά πλήρως, το γεγονός της επωφελούς για τις επιφυτειμακές ιδιότητες των συνθέτων- αντικατάστασης της μητηρικής φάσης κατά ένα ποσοστό 10 και 15% κ.β., τόσο στην περίπτωση της ITK, όσο και της ITM (στη μεταξύ τους σύγκριση είναι οριακά επωφελέστερη η χρήση της ITK). Επίσης, επιβεβαιώνονται όλες οι διαπιστώθηκες τάσεις κατά την εξέταση των τριβολογικών ιδιοτήτων των συνθέτων, δηλ. a) ότι δεν ενδείκνυται η συμμετοχή των σωματιδίων των υπάρχοντων τυφρών σε ποσοστό 20% κ.β. (και άνω), καθώς προκύπτει μεγάλος αριθμός εξαρθρωμένων σωματιδίων και περιοχές με κενούς χώρους εντός των συνθέτων υλικών και b) ότι μεγάλος χρόνος πυροσβεσμότατης οδηγεί σε εκτεταμένες επιφυτειμακές μικροαλλοιώσεις, οι οποίες και υποβαθμίζουν την ποιότητα και τις ιδιότητες των παραχθέντων υλικών.

B.1.5 Διάβρωση των συνθέτων υλικών που παρήχθησαν με τη μέθοδο της κονιομεταλλουργίας.

Μια πτυχή των ιδιοτήτων των συνθέτων υλικών μήτρας Al, η οποία συσχετίζεται ευθέως με βασικές βιομηχανικές εφαρμογές τους, είναι η αντοχή τους στη χημική διάβρωση [16-20]. Οι ιδιότητες των συνθέτων που αναφέρονται στη διάβρωση, συσχετίζονται με την (εντόνος) ετερογενή μικροδομή τους, η οποία προσφέρει επαρκή χώρο για εντοπισμένη διαβρωτική επίθεση (localized attack), κυρίως υπό τη μορφή βελονισμών ή ακόμη και σπηλαιώδης διάβρωση. Η δημιουργία των συνθηκών της έναρξης διαβρωτικής επίθεσης, συσχετίζεται με τη δημιουργία γαλβανικού ζεύγους μεταξύ της μητηρικής φάσης του αλουμινίου (ή κραμάτων του) και δευτερογενών φάσεων που προκύπτουν κατά την αντίδραση των συστατικών της
φάσης ενίσχυσης με αυτή της μητρικής φάσης, και με ατόμια πρωτογενή συστατική της ιδιαίτερης φάσης ενίσχυσης. Στην περίπτωση των κραμάτων αλουμινίου και των συνθέτων τους, είναι ευρέως αποδεκτό ότι η εντοπισμένη επίθεση διάβρωσης λαμβάνει χώρα, κυρίως, στις περιοχές εκείνες οι οποίες περιβάλλονται από καθοδικές διαμεταλλικές ενώσεις [21]. Η ηλεκτροχημική συμπεριφορά του -εμπορικά- καθαρού Al, επηρεάζεται εντόνως από την ύπαρξη-πλούσιοι σε Fe-διαμεταλλικά ενώσεων, οι οποίες μπορούν να δρούν αποτελεσματικά ως σημεία έναρξης, προκειμένου για την εξέλιξη της εντοπισμένης διάβρωσης [22]. Οι σόδοροις διαμεταλλικές ενώσεις αποτελούν την κάθεδρο στην ιαλύπτικη αυτή διεργασία, και συνεισφέρουν στη δημιουργία-τοπικά- πολύ υψηλού pH, αυστηρά στη συγκεκριμένη περιοχή του υλικού την οποία και περιβάλλουν [22], οδηγώντας έτσι στη γρήγορη εξέλιξη της διάλυσης της μήτρας Al, καταλήγοντας στη δημιουργία πολλών μικρών, επιφανειακών αυλακώσεων (διάβρωση με βελονισμούς). Επίσης, είναι πολύ πιθανό ότι προκύπτει αλληλεπίδραση μεταξύ συσσωματωμάτων που έχουν δημιουργηθεί από τις ιδιες τις διαμεταλλικές ενώσεις, δημιουργώντας έτσι τις συνθήκες οι οποίες μπορούν να αποτελέσουν τη σταθερή βάση της εξέλιξης της εντοπισμένης διαβρωτικής επίθεσης.

Πέρα από το -εμπορικά- καθαρό Al, ο μηχανισμός εξέλιξης της εντοπισμένης διάβρωσης που περιγράφηκε παραπάνω λαμβάνει χώρα -υπό την ιδία θεμελιώδη θεωρία- και στα σύνθετα μετάλλο-κεραμικά υλικά μήτρας Al. Για την ακρίβεια, το πορώδες και οι τρίπτες που δημιουργούνται στα σημεία διασύνδεσης των δύο φάσεων (μητρικής-ενισχυτικής), αναφέρεται ότι αποτελούν «σημεία προτιμήσεων» για την έναρξη της αλληλουχίας εξέλιξης της εντοπισμένης χημικής διάβρωσης, στα σύνθετα υλικά μήτρας Al (είτε ενισχυμένα με σωματίδια, είτε με ίνες) [16]. Πιο συγκεκριμένα, η υποψία βελονισμών στα σύνθετα υλικά μήτρας κράματος AA1050, ενισχυμένα με σωματίδια κεραμίδιο του πυριτίου, συσχετίζεται εντόσως με την ύπαρξη μικροημιτατότητας στις περιοχές αλληλεπίδρασης (διασύνδεσης) των δύο φάσεων [16]. Οι μικροημιτατότητες προκύπτουν, είτε από ατελή διασύνδεσης των δύο φάσεων, είτε λόγω προδίδεσης δημιουργίας ρηγματώσεων στη φάση ενίσχυσης του υλικού, κυρίως όταν αυτή αφορά σωματίδια, προδίδεση η οποία εξελίσσεται πλήρως μέσω της διαδικασίας της πυροσυσσωμάτωσης. Επίσης, η διάδοση της διάβρωσης με βελονισμούς, είναι πολύ πιθανό να επηρεάζεται και από τη γεωμετρία των σωματιδίων της φάσης ενίσχυσης. Η περιοχή της αλληλεπίδρασης μεταξύ των δύο φάσεων του συνθέτου παρουσιάζει ενεργητική συμπεριφορά, επηρεάζοντας εντόσως τις αντίδρασες που λαμβάνουν χώρα κατά τη διάρκεια της επεξεργασίας των υλικών. Η πτυχή αυτή της διαδικασίας σύνθεσης των υλικών είναι ιδιαίτερα κρίσιμη, καθώς μπορεί να περιλαμβάνει διάφορα αντιδράσεις συστατικά, τα οποία μπορούν τοπικά να διαφοροποιήσουν σημαντικά την τιμή του pH, σε σχέση με τις υπόλοιπες περιοχές της επιφάνειας του υλικού.

Η μελέτη της χημικής διάβρωσης των συνθέτων υλικών μήτρας Al και ενίσχυσης ITK και ITM, που αναλύεται στο κεφάλαιο αυτό, έχει ως κύριο στόχο την αποσαφήνιση της
Επίδραση των σωματιδίων τέφρας υψηλής περιεκτικότητας Ca στην αντοχή των συνθέτων υλικών έναντι της χημικής διάβρωσης. Στην παρούσα φάση περιορίζεται η μελέτη στο συνδυασμό αυτό, καθώς λόγω της πολυπαραμετρικότητας των εσωτερικών χημικών διεργασιών των συνθέτων που περιλαμβάνουν μήτρα Al/Si, η επιστημονική μελέτη των υπόλοιπων συνδυασμών θα εκτείνονταν περαιτέρω του σκοπού εκπόνησης της συγκεκριμένης διδακτορικής διατριβής.

B.1.5.1 Υλικά και μέθοδοι για τη διεξαγωγή της μελέτης διάβρωσης

Για τη χαρτογράφηση της επιφάνειας των εξετασθέντων συνθέτων υλικών μήτρας Al και υλικού ενίσχυσης ΙΤΚ, χρησιμοποιήθηκε ατομική μικροσκοπία, με χρήση του οργάνου Veeco Multimode Nanoscope IIIa Atomic Force Microscope (AFM). Η μορφολογική και ποτενσιομετρική χαρτογράφηση των επιφανειών των συνθέτων, έγινε με τη χρήση Μικροσκοπία Σάρωσης συλλήμα Kelvin [Scanning Kelvin Probe Microscopy (SKP-FM)]. Η συγκεκριμένη τεχνική δίνει πληροφορίες σχετικά με την ανοδική ή/και καθοδική συμπεριφορά των διαφορετικών σωματιδίων και φάσεων που εντοπίζονται στην επιφάνεια του εξεταζόμενου δείγματος. Οι ίδιες περιοχές εξετάσθηκαν με τη χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης, με το όργανο Karl Zeiss EVO-40 και διάταξη οπισθοσκέδασης ηλεκτρονίων [backscattered electrons configuration (BSE)], η οποία παρέχει μια ξεκάθαρη εικόνα όσον αφορά τις διαστάσεις των παραπτωμένων σωματιδίων, καθώς επίσης και της κατανομής τους, εντός της μεταλλικής μήτρας. Όπως και στην περίπτωση της εξέτασης της μικροδομής των συνθέτων, χρησιμοποιήθηκε η τεχνολογία Ακτίνων-X διασποράς ενέργειας, προκειμένου για την ημιποστική ανάλυση της σύστασης των διαφόρων φάσεων που παρίστανται στην επιφάνεια των υπο-εξέταση δειγμάτων.

Η αντοχή στη διάβρωση των διαφόρων δειγμάτων, αρχικά εκτιμήθηκε από τις καμπύλες ποτενσιοδυναμικής πόλωσης των υλικών, όπως προκύπτουν κατά την εμβάπτιση τους σε διάλυμα NaCl 0.05 M. Οι μετρήσεις έλαβαν χώρα σε διάταξη τριών ηλεκτροδίων, σύμφωνα με το πρωτόκολλο ASTM G3-89, με χρήση Ag/AgCl ως ηλεκτροδίου αναφοράς [Reference Electrode (RE)] και καλώδιο λευκοχρώσου, ως ηλεκτροδίου μέτρησης [Counter Electrode (CE)]. Για τις ποτενσιομετρήσεις χρησιμοποιήθηκε το όργανο Autolab PGSTAT-20, με ρυθμό σάρωσης 0.2 mV/s. Το δυναμικό ανοιχτού κυκλώματος [Open Circuit Potential (OCP)] μετρήθηκε 15 λεπτά προτού αρχίσουν οι δοκιμές, και στη συνέχεια η σάρωση του δυναμικού ξεκίνησης σε σημείο -0.2 V έναντι του δυναμικού ανοιχτού κυκλώματος. Η μέτρηση σταμάτα όταν η τιμή της πυκνότητας διάβρωσης φθάσει περίπου στο όριο της τιμής 0.01 A/cm², η οποία θεωρείται ενδεικτική ταχείας επιφανειακής υποβάθμισης του δείγματος, λόγω διάβρωσης. Για κάθε δείγμα, καταγράφονταν τρεις καμπύλες ποτενσιοδυναμικής πόλωσης.
Οι δοκιμές εμβαπτισης των δοκιμίων διεξήχθησαν σε διάλυμα NaCl 0.05 M, με χρήση κάθετης διάταξης ηλεκτροχημικού κελιού και μεταλλικού δακτυλίου (o-ring) διαμέτρου 10 mm, προκειμένου να εμφανισθεί πιθανή διαρροή διαλύματος. Εφαρμόζθηκε κάθετη θέση τοποθέτησης των δειγμάτων, προκειμένου να αποφευχθεί επαναλαμβανόμενη επικάθεση των προϊόντων της διάβρωσης στην επιφάνεια των δειγμάτων, ούτως ώστε να λειτουργήσουν έτσι ως μόνοσ για την περιοχή η οποία βρίσκεται υπό της μεταλλικής επιφάνειας. Τα δείγματα απομακρύνονται από τον ηλεκτρολύτη κάθε 50 ώρες και εξετάζονται με τη χρήση SEM-EDS. Τα μορφολογικά χαρακτηριστικά και οι διαφοροποιήσεις στη σύσταση που προκύπτουν από την -αυξημένου χρόνου- επαφή των δειγμάτων με το διάλυμα NaCl διερευνώνται επιστημονικά προκειμένου γίνουν ξεκάθαρα τα διαφορετικά είδη της διάβρωσης των συνθέτων υλικών.

B.1.5.2 Αποτελέσματα των δοκιμίων διάβρωσης των υλικών Al-ITK.

Η Εικόνα B34 παραθέτει τις μικροφωτογραφίες που προκύπτουν από την εξέταση των δοκιμίων καθαρού Al (έπειτα από 2-ωρη πυροσσωσμόπτωση, δοκίμιο M01) με τις τρεις προαναφερθείσες τεχνικές (AFM, SKP-FM και SEM-BSE).

Εικόνα B.34 Χαρτογράφηση του δοκιμίου M01 με a) AFM, b) SKP-FM και γ) SEM-BSE.

Από τον τοπογραφικό χάρτη του υλικού (AFM) διαφαίνεται η τυπική μορφολογία του δοκιμίου που έχει υποστεί λειάνση. Αναγνωρίζονται κάποια ιδιαίτερα χαρακτηριστικά υπό και υπέρ της μεταλλικής μήτρας (φοτεινά και σκοτεινά, αντίστοιχα). Τα φωτεινά χαρακτηριστικά συνδέονται με την παρουσία σωματιδίων στην επιφάνεια του δοκιμίου, ενώ τα σκοτεινά με υπολειπόμενο πορώδες το οποίο προέκυψε από τη διαδικασία της πυροσσωσμόπτωσης, όπως συζητήθηκε επιστημονικά, στα προηγούμενα κεφάλαια της Ενότητας B1. Από τη μορφολογία του χάρτη του δυναμικού Volta του υλικού, διαφαίνεται σαφώς η σωματιδιακή του φύση, καθώς οι διαφορετικές τιμές δυναμικού που μετρούνται κατά...
τόπους, αποδίδονται σε σωματίδια διαφορετικής, οριακά, μορφολογίας. Επίσης, οι
dιασυνοριακές περιοχές στις οποίες συνδέονται οι διάφοροι κόκκοι του Al, εμφανίζουν
υψηλότερο δυναμικό (φωτεινότερες σημειώσεις απεικονίσεις), από ότι το εσωτερικό των
αυτούσιων σωματιδίων του μετάλλου. Η συμπεριφορά αυτή συνδέεται με την οξείδωση της
cόνεως του Al, η οποία προκύπτει κατα παραγωγική διαδικασία του δοκιμίου. Στην
μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης (γ) παρουσιάζεται η ίδια δομή των
κόκκων με αυτή του χάρτη δυναμικού Volta. Επιπλέον, η μικροφωτογραφία της
Ηλεκτρονικής Μικροσκοπίας Σάρωσης, αποκαλύπτει έξεχαθα την ύπαρξη μικρών
диαμεταλλικών σωματιδίων (μικρές φάσεις, τόσο φωτεινές, όσο και σκούρες) μεγέθους
ορισμένων μικρομέτρων. Τα διαμεταλλικά σωματίδια αποτελούνται κυρίως από ενώσεις
πλούσιες σε σίδηρο (Al₃Fe ή Al₆Fe). Η ύπαρξη των ενώσεων αυτών στα υλικά του Al
αποδίδεται στη χημική σύσταση του πρωτογενούς υλικού (1^ο άλλη) και είναι ήδη ευρέως
γνωστή από τη βιβλιογραφία [22, 23]. Οι ίδιες διαμεταλλικές ενώσεις που είναι έξεχαθα
οριτές στις απεικονίσεις της Ηλεκτρονικής Μικροσκοπίας Σάρωσης, ανιχνεύονται και στην
απεικόνιση της χαρτογράφησης Volta (β). Όπως φαίνεται στην απεικόνιση αυτή, τα
dιαμεταλλικά σωματίδια συχνά εμφανίζουν υψηλότερο δυναμικό από ότι η μεταλλική μήτρα
την οποία και περικλείει. Αυτό καταδεικνύει σαφώς ότι τα διαμεταλλικά σωματίδια
παρουσιάζουν καθοδική συμπεριφορά, σε σχέση με τη μήτρα, γεγονός το οποίο πιθανότατα
προκαλεί τη δημιουργία συνθηκών επιθέσες εντοπισμένης διάδρομης από τα περιβάλλοντα
σωματίδια τους, εξαιτίας της δημιουργίας -τοπικά- γαλβανισμένων ζεύγων.

Η Εικόνα B.35 παρουσιάζει τις αντιστοιχείς -με την Εικόνα B.34- μικροφωτογραφίες για το
deίγμα C11, το οποίο αναφέρεται σε μήτρα Al και περιέχει ITK σε κ.β. ποσοστό 10%.

Εικόνα B.35 Χαρτογράφηση του δοκιμίου C11 με α) AFM, β) SKP-FM και γ) SEM-BSE.
Όπως προκύπτει από τον τοπογραφικό χάρτη του δοκιμίου C11, το δείγμα μήτρας Al που περιέχει σωματίδια ITK, εμφανίζει σκοτεινές περιοχές, οι οποίες, με βάση και τη μικροφωτογραφία της Ηλεκτρονικής Μικροσκοπίας Σάρωσης (γ), αποδίδονται στα σωματίδια της τέφρας. Η χαρτογράφηση του δυναμικού Volta, δείχνει ότι αυτές οι ξεχωριστές φάσεις οι οποίες αποδίδονται στην ITK, εμφανίζουν εξελκάθαρα υψηλότερες τιμές δυναμικού από ότι οι περιοχές οι οποίες αποδίδονται αποκλειστικά στο μητρικό υλικό (Al). Επιπλέον, όπως ήδη άλλοστε παρατηρήθηκε στο δοκίμιο καθαρού Al, οι οριακές περιοχές διασύνδεσης των κόκκων του μητρικού υλικού εμφανίζουν υψηλότερες τιμές δυναμικού από ότι, τόσο το κυρίως εσωτερικό των κόκκων Al, όσο και των σωματιδίων των τεφρών. Σημειώνεται ότι η τυπική μικροδομή συνθέτου υλικού είναι πολύ περισσότερο εξελκάθαρη στη μικροφωτογραφία της Ηλεκτρονικής Μικροσκοπίας Σάρωσης. Εκτός από τα μεγαλύτερα σωματίδια της τέφρας, υπάρχουν και μικρότερα, τα οποία βρίσκονται τυχαίως διασκορπισμένα εντός της μεταλλικής μήτρας, και είναι κυρίως εντοπισμένα στις διασυνοριακές περιοχές συνένωσης των κόκκων Al. Επίσης, σχετικά μικρά σε μέγεθος - πλούσια σε Fe- διαμεταλλικά σωματίδια μπορούν να εντοπιστούν στη μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης του δοκιμίου, τα οποία ήδη έχουν προηγουμένως ανιχνευτεί και στο δοκίμιο καθαρού Al.

Η Εικόνα B.36 παρουσιάζει τις αντίστοιχες -με τις Εικόνες B.34 και 35- μικροφωτογραφίες για το δείγμα D05, το οποίο αναφέρεται σε μήτρα Al και περιέχει ITK σε κ.β. ποσοστό 20%.

Εικόνα B.36. Χαρτογράφηση του δοκιμίου D05 με α) AFM, β) SKP-FM και γ) SEM-BSE.

Ο τοπογραφικός χάρτης του δοκιμίου μήτρας Al με ποσοστιαία συμμετοχή ITK ίση με 20% κ.β. (α) απεικονίζει σκουρόχρωμα σημάδια τα οποία μπορούν να συσχετιστούν με τα μεγαλύτερα σωματίδια των υπαμένων τεφρών. Τα, ελάχιστα, μεγάλα σωματίδια υπάμενων
τεφρών τα οποία εμφανίζονται χαμηλότερα στον τοπογραφικό χάρτη, παρουσιάζουν υψηλότερο δυναμικό σε σχέση με αυτά της μεταλλικής μήτρας που τα περιβάλλουν.

Τα διασυνοριακά τμήματα των κόκκων εμφανίζουν υψηλότερο δυναμικό από ότι το εσωτερικό των κόκκων (είτε της μήτρας, είτε των τεφρών), γεγονός το οποίο βρίσκεται σε συμφωνία με τα αποτελέσματα που λήφθηκαν για το δείγμα καθαρού Al. Παρόλα αυτά, η διαφορά δυναμικού μεταξύ των διασυνοριακών τμημάτων των κόκκων και των εσωτερικών σημείων των κόκκων είναι μεγαλύτερη για το δείγμα με υψηλή κ.β. ποσοστιαία συμμετοχή υπάρχοντες τέφρας, γεγονός που παρουσιάζει σημαντική επαναληπτικότητα, και δύναται να συνδέθει απευθείας με την υψηλότερη συμμετοχή των τεφρών στο μίγμα των πρώτων υλών.

Η συμπεριφορά αυτή, είναι πιθανόν να συνδέεται με φαινόμενα διαχωρισμού δευτερογενών φάσεων ή κατακρήμνισής τους στις περιοχές της διαστολής των κόκκων, εξαιτίας άκρημος της υψηλής κ.β. ποσοστιαίας συμμετοχής των υπάρχοντων τεφρών στο μίγμα των πρώτων υλών. Επίσης, προκύπτει από την παρατήρηση των λεπτομερειών του χάρτη δυναμικού Volta, ότι είναι δυνατόν να επιβεβαιώσουν τα συμπεράσματα της εξέτασης του δοκιμού D05 από τη χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης. Για την άκρημο, το δοκίμιο D05 έχει όντως μεγάλα συμμετοχία υπάρχοντων τεφρών, τα οποία βρίσκονται και διακριτισμένα τυχαία στη μήτρα του δοκιμίου. Τα μεγάλα, αυτά, συμμετοχία εντοπίζονται κατά προτίμηση στις διασυνοριακές περιοχές συνένωσης των κόκκων των μετάλλων, καθώς επίσης και πέριξ των, πλούσιων σε σίδηρο, διαμεταλλικών ενώσεων του μίγματος.

Η Εικόνα B37 παρουσιάζει τις πολιτισμοδυναμικές καμπύλες πόλωσης των δειγμάτων M01, C11 και D05 (Al–ITK, 0, 10 και 20% k.b. συμμετοχή της τέφρας αντίστοιχα). Σημειώνεται ότι ο σχηματισμός των καμπυλών παρουσιάζει πολύ υψηλή αναπαραγωγικότητα.

Εικόνα B.37. Πολιτισμοδυναμικές καμπύλες πόλωσης των δειγμάτων M01, C11 και D05.
Η καμπύλη που σχετίζεται με το δοκίμιο του καθαρού Αl παρουσιάζει δυναμικό διάβρωσης της τάξης των -0.860 V έναντι ηλεκτροδίου Ag/AgCl. Η τιμή της πυκνότητας ρεύματος της διάβρωσης (corrosion current density) είναι περίπου της τάξης 10⁻⁶ A/cm². Η καμπύλη φανερώνει παθητική συμπεριφορά, με δυναμικό τέλους της περιοχής παθητικοποίησης (breakdown potential) ίσο με 0.650 V έναντι ηλεκτροδίου Ag/AgCl. Οι καμπύλες που σχετίζονται με τα σύνθετα δοκίμια εμφανίζουν δυναμικό διάβρωσης της τάξης του -1.3 V έναντι ηλεκτροδίου Ag/AgCl και τιμή πυκνότητας διάβρωσης ίση με 2.10⁻⁵ A/cm², ως μέση τιμή των δύο συνθέσεων (10 και 20% k.b. συμμετοχή της ΙΤΚ). Επίσης, σημειώνεται ότι η γενικότερη τάση που παρουσιάζεται σε σχέση με την πυκνότητα διάβρωσης μοιάζει ιδιαίτερα και για τα δύο σύνθετα δείγματα, τα οποία δεν παρουσιάζουν γενικά παθητική συμπεριφορά και εμφανίζουν μια απότομη αύξηση της πυκνότητας διάβρωσης τους σε τμήμα δυναμικού κοντά σε αυτές του δυναμικού διάβρωσης με βελονισμό των δοκίμων καθαρού Αl.

Όπως φαίνεται από το διάγραμμα της Εικόνας B.37, το δυναμικό διάβρωσης των συνθέτων δοκίμων Αl/ΙΤΚ κινείται εντονότερα στην αρνητική περιοχή από ότι το δοκίμιο του καθαρού Αl. Επίσης, τα σύνθετα δοκίμια εμφανίζουν μεγαλύτερη πυκνότητα διάβρωσης από ότι το καθαρό Αl. Πιο συγκεκριμένα, τα σύνθετα δοκίμια δεν παρουσιάζουν παθητική συμπεριφορά στις δοκιμές ποτονιοδυναμικής πόλους. Αυτή είναι μια ένδειξη ότι η εισαγωγή των σωματιδίων υπάρχουν τεφρών στο δοκίμιο οδηγεί γενικά σε μείωση της αντίστασης στη διάβρωση του Αl. Πιο συγκεκριμένα, η εναλλαγή του δυναμικού διάβρωσης από θετικό σε αρνητικό πρόσημο, καθώς επίσης και η αύξηση της πυκνότητας διάβρωσης, συσχετίζεται άμεσα με την προσθήκη των σωματιδίων των υπάρχουν τεφρών στη μήτρα Αl. Η αύξηση της πυκνότητας που αντικατοπτρίζεται περίπου στην τιμή των -0.6 V έναντι ηλεκτροδίου Ag/AgCl, συσχετίζεται με εντοπισμένη διαμετρική επίθεση στη μεταλλική μήτρα, όπως φαίνεται και από την καμπύλη που αποδίδεται στο δοκίμιο του καθαρού Αl.

Η συμπεριφορά των συνθέτων υλικών Αl/τεφρών σε σχέση με τη διάβρωση, συσχετίζεται κυρίως με δύο φαινόμενα: α) την πτυχανότητα να λαμβάνουν χώρα παράλληλα οξειδωτικές αντιδράσεις στις φάσεις των υπάρχουν τεφρών που έχουν προκύψει από την πυροσβεσσομάτωση, όπως π.χ. η οξείδωση Fe σε FeO, Fe₂O₃ ή/και Fe₃O₄. Είναι γνωστό ότι μια μορφή παρουσίας του Fe στην ΙΤΚ είναι ο Fe₃O₄, κατά τη διάρκεια, όμως, της πυροσβεσσομάτωσης, δύναται να αντιδρά με το Al, προς δημιουργία Al₂O₃, ως εξής [24]:

$$2\text{Al} + \text{Fe}_2\text{O}_3(s) \rightarrow 2\text{Fe}(s) + \text{Al}_2\text{O}_3(s) \quad (4)$$

Κατόπιν της αντιδράσεως αυτής, και έπειτα από τη διαδικασία της πυροσβεσσομάτωσης, ο Fe μπορεί να παρευρείται εντός των πυροσβεσσοματωμένων δοκίμων, είτε ως μεταλλικός Fe είτε ως FeO, εξαιτίας της οξείδωσής του, λόγω επαφής με τον αέρα. Επιπλέον, η υψηλή
πυκνότητα διαβροσίας των συνθέτων δοκιμίων είναι πιθανό να συνδέεται με φαινόμενα ενεργοποίησης εξαιτίας της -κατά τόπους- διαφοροποίησης των τιμών του pH, στις περιοχές διασύνδεσης σωματιδίων υπαίθρου-σωματιδίων μετάλλου. Για την ακρίβεια, η ΙΤΚ παρουσιάζει τιμές pH μεταξύ 11.2 και 11.7, διάστημα τιμών στο οποίο το Al είναι γνωστό ότι δεν παρουσιάζει παθητική συμπεριφορά. Για το λόγο αυτό, οι τοπικές διαφοροποίησεις των τιμών του pH, είναι πιθανό να «αναγεννητούν» την παθητικότητα της μεταλλικής μήτρας, οδηγώντας ετσι σε σοβαρή διάλυση της μεταλλικής μήτρας.

Στις Εικόνες Β38.α-δ διδόνται επιλεγμένες μικροφωτογραφίες, ληθείες από το Ηλεκτρονικό Μικροσκόπιο Σάρωσης, οι οποίες απεικονίζουν την επιφάνεια του δοκιμίου καθαρού Al, τόσο πριν, όσο και μετά την εμβάπτιση του στο διαβρωτικό διάλυμα NaCl 0.05 M. Για την ακρίβεια, στην Εικόνα Β38.α απεικονίζεται η επιφάνεια του δοκιμίου πριν από την εμβάπτισή του στο διάλυμα, και στις Εικόνες Β37.β, γ και δ, έπειτα από την καταβολή του για 50, 100 και 200 ώρες, αντίστοιχα.

Εικόνα B38.α. Μικροφωτογραφία δοκιμίου Αληθετού εμβάπτισης τους διάλυμα NaCl 0.05M.

Εικόνα B38.β. Μικροφωτογραφία δοκιμίου Αληθετείται από 50h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B38.γ. Μικροφωτογραφία δοκιμίου Αλήθετείται από 100h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B38.δ. Μικροφωτογραφία δοκιμίου Αλήθετείται από 200h εμβάπτισης σε διάλυμα NaCl 0.05M.
Οι μικροφωτογραφίες της επιφάνειας του δοκιμίου Al προτού της εμβαπτίσης και μετά 50h από αυτήν, μοιάζουν σε πολύ μεγάλο βαθμό. Για την ακρίβεια, στη μικροφωτογραφία της Εικόνας Β.38.β, δεν εντοπίζονται προφανή σημάδια διάβρωσης. Έπειτα, όμως, από μεγαλύτερα χρονικά διαστήματα υποβολής του δοκιμίου σε περιβάλλοντα διάβρωσης, όπως οι μικροφωτογραφίες του Εικόναν B38.γ και δ απεικονίζουν, οι εντοπισμένες επιθέσεις της διάβρωσης είναι εμφανείς επιπεδές σε σημεία πέριξ των περιοχών διασύνδεσης των κόκκων Al, επί των δευτερογενών σωματιδίων Al. Από τα φάσματα EDS που λήφθηκαν στα σωματίδια αυτά, φαίνεται ότι όντως στις περιοχές όπου υπάρχουν, εντοπισμένα, φαινόμενα έντονης διάβρωσης, τα σωματίδια πιθανότατα εμπεριέχουν διαμεταλλικές ενώσεις, πλούσιες σε Fe.

Πίνακας B21. Συγκέντρωση ορισμένων στοιχείων στις διαβρωμένες περιοχές των -υπό εξέταση- δοκιμίων.

<table>
<thead>
<tr>
<th>Χρόνος καταβίβασης (h)</th>
<th>Ο (%)</th>
<th>Al (%)</th>
<th>Cl (%)</th>
<th>Ni (%)</th>
<th>Fe (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.39</td>
<td>88.74</td>
<td>-</td>
<td>0.32</td>
<td>5.04</td>
</tr>
<tr>
<td>50</td>
<td>4.90</td>
<td>87.37</td>
<td>-</td>
<td>0.26</td>
<td>4.68</td>
</tr>
<tr>
<td>100</td>
<td>18.27</td>
<td>80.21</td>
<td>0.44</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td>200</td>
<td>17.73</td>
<td>79.70</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Όπως προκύπτει από τις μικροφωτογραφίες και τις σχετικές αναλύσεις της χημικής σύστασης των διαβρωμένων (και μη) περιοχών, φαινόμενα εντοπισμένας διάβρωσης λαμβάνουν χώρα κυρίως στην περιοχή των καθοδικών διαμεταλλικών περιοχών, χάρη στη δημιουργία γαλβανικού ζεύγους με τη μήτρα Al. Αυτό προκαλεί την εντοπισμένη διάλυση των σωματιδίων της μήτρας, στις περιοχές οι οποίες περιβάλλονται από τα διαμεταλλικά σωματίδια. Έπειτα από μεγαλύτερους χρόνους καταβίβασης των δοκιμίων στο διάλυμα NaCl 0.05 M, η εντοπισμένη διάβρωση στις διαμεταλλικές περιοχές μπορεί να προκαλέσει την αποκόλληση σωματιδίων του υλικού, προκαλώντας έτσι τη δημιουργία μικρών λάκκων επί της επιφάνειας των δοκιμίων, οδηγώντας έτσι και σε μηχανική υποβάθμιση των υλικών. Ο επιφανειακός σχηματισμός των λάκκων αυτών είναι εμφανής στη μικροφωτογραφία της Εικόνας B.38.γ, ενώ οι σχετικές χημική ανάλυση έδειξε, αρχικά, μείωση και τελικά εξαφάνιση της ποσοστιαίας παρουσίας του Fe, επιβεβαιώνοντας έτσι την αποκόλληση διαμεταλλικών σωματιδίων, πλούσιων σε Fe.

Στις Εικόνες B.39.α-δ παρουσιάζονται μικροφωτογραφίες ληφθείσες από το Ηλεκτρονικό Μικροσκόπιο Σάρωσης, οι οποίες απεικονίζουν την επιφάνεια του δοκιμίου C11, τόσο προτού, όσο και κατόπιν της εμβαπτίσης του στο διαβρωτικό διάλυμα NaCl 0.05 M. Στην

Διδακτορική Διατριβή, Γρηγόριος Σ. Ίσικος

152
Εικόνα B39.α απεικονίζεται η επιφάνεια του δοκιμίου πριν από την καταβούθιση του στο διάλυμα, και στις Εικόνες B39.β, γ και δ, έπειτα από την καταβούθιση του για 50, 100 και 200 ώρες, αντίστοιχα. Προφανώς για λόγους σύγκρισης με το δοκίμιο αυτούσιας της μητρικής φάσης, οι συνθήκες διεξαγωγής του πειράματος της καταβούθισης είναι απολύτως οι ίδιες.

Εικόνα B39.α. Μικροφωτογραφία δοκιμίου Al – 10% ITK, πρωτού εμβάπτισης του σε διάλυμα NaCl 0.05M.

Εικόνα B39.β. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 50h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B39.γ. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 100h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B39.δ. Μικροφωτογραφία δοκιμίου Al – 10% ITK, έπειτα από 200h εμβάπτισης σε διάλυμα NaCl 0.05M.

Από την παρατήρηση των μικροφωτογραφιών της Εικόνας B39, είναι προφανές ότι η καταβούθιση του συνθέτου υλικού σε υγρό διαβροτικό μέσο-ηλεκτρολύτη προκαλεί εντοπισμένη διάβρωση, η οποία αναφέρεται κυρίως σε περιοχές περιβαλλόμενες από ορυκτολογικές φάσεις, αποδιδόμενες στην ITK, και είναι εντονότερη από ότι στις περιοχές του καθαρού Al. Αυτό γίνεται ξεκάθαρο συγκρίνοντας τις Εικόνες B39.α και β. Ένας αριθμός σκουρόχρωμων σημείων εμφανίζεται στην επιφάνεια του δοκιμίου, κυρίως σε κοντινή απόσταση κοντά από περιοχές όπου βρίσκονται αυτούσια σωματίδια τεφρών. Οι πλούσιες σε Fe διαμεταλλικές ενώσεις του Al, είναι πολύ πιθανό να ενυπάρχουν αυτούσιες στο σύνθετο...
δοκίμιο C11 (τα μικρά λευκά σημεία), όπου αναγνωρίζονται σημεία εντοπισμένης
dιαβρωτικής επίθεσης, στα σημεία αλληλεπίδρασης των σωματιδίων της μεταλλικής μήτρας
με τα σωματίδια των διαμεταλλικών ενώσεων. Σημειώνεται ότι η παρουσία των
dιαμεταλλικών ενώσεων είναι αφενός προφανής, αφετέρου όμως προκύπτει ασφαλώς ότι
evυπάρχουν σε μικρότερες ποσότητες στο σύνθετο, από ότι στο καθαρό δοκίμιο Al, κυρίως
gια ποσοτικούς λόγους (αντικατάσταση των σωματιδίων της μητρικής φάσης από αυτά της
φάσης ενίσχυσης). Επιπλέον, τα μεγάλα σωματίδια των τεφρών, είναι πολύ πιθανό να έχουν
υποστεί μερική διάλυση, γεγονός το οποίο γίνεται περισσότερο εμφανές, με την αύξηση του
χρόνου της καταβύθισης των δειγμάτων (Εικόνες B39.γ και δ). Προκειμένου για την
καλύτερη κατανόηση των μηχανισμών της διάλυσης, έγιναν αναλύσεις EDS σε διαφορετικά
tμήματα του δοκιμίου. Τα αποτελέσματα των αναλύσεων που έγιναν στο μαρκαρισμένα
σημεία με ένδειξη του αριθμό «I» στις Εικόνες B39.α-δ, για διαφορετικούς χρόνους
καταβύθισης, παρουσιάζονται στον Πίνακα B22.

Πίνακας B22. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειωμένες περιοχές με ένδειξη I στις
Εικόνες B39.α-δ.

<table>
<thead>
<tr>
<th>Χρόνος καταβύθισης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>52.24</td>
<td>0.35</td>
<td>3.66</td>
<td>0.53</td>
<td>1.77</td>
<td>0.25</td>
<td>40.86</td>
<td>-</td>
<td>0.33</td>
</tr>
<tr>
<td>50</td>
<td>29.26</td>
<td>1.32</td>
<td>43.90</td>
<td>5.75</td>
<td>-</td>
<td>0.27</td>
<td>13.48</td>
<td>0.34</td>
<td>4.42</td>
</tr>
<tr>
<td>100</td>
<td>31.36</td>
<td>1.57</td>
<td>36.32</td>
<td>7.67</td>
<td>-</td>
<td>0.29</td>
<td>16.12</td>
<td>0.26</td>
<td>5.55</td>
</tr>
<tr>
<td>200</td>
<td>37.74</td>
<td>1.22</td>
<td>34.24</td>
<td>9.41</td>
<td>-</td>
<td>0.34</td>
<td>12.26</td>
<td>0.32</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Οι αναλύσεις EDS οι οποίες έγιναν πριν την καταβύθιση των δοκιμίων στην ηλεκτρολύτη,
apοκαλύπτουν την ύπαρξη Ca σε υψηλές συγκέντρώσεις, το οποίο μπορεί να ενυπάρχει είτε
ως CaSiO₃, είτε ως CaO. Παρόλα αυτά, χαμηλές συγκέντρώσεις S, Si, Fe και Mg μπορούν
επίσης να αναγνωριστούν στην -υπό εξέταση- περιοχή. Αυτή η στοιχειακή ανάλυση αντιστοιχεί
σε τοπική σύσταση ιπταμένων τεφρών. Έπειτα από 50h εμβάπτισης των δοκιμίων σε διάλυμα
NaCl 0.05 M, υπάρχει πλήρης διάλυση ή απόσπαση πλουσίων-σε-S φάσεων, καθώς επίσης
και αξιοσημείωτη μείωση του σήματος του Ca. Το γεγονός αυτό, μπορεί να αποδείχει στην
dιάλυση του βαλαστονίτη (wollastonite, CaSiO₃), ένωση η οποία βρίσκεται διαλυμένη στο
dιάλυμα NaCl. Ως αποτέλεσμα, υπάρχει αύξηση της έντασης των σημάτων των AI, Si και Fe.
Οι μικροφωτογραφίες των Εικόνων B39 παρουσιάζουν εντόνους τη διαλυτική τάση της
μήτρας Al σε περιοχή γύρω από την εξέταζόμενη, γεγονός το οποίο συχχείται ευθείως με
την, τοπική, αύξηση του pH. Τα αποτελέσματα των αναλύσεων που έγιναν στα
μαρκαρισμένα σημεία με ένδειξη τον αριθμό 2 στις Εικόνες B39.α-δ, για διαφορετικούς
χρόνους καταβύθισης, παρουσιάζονται στον Πίνακα B23.
Πίνακας Β23. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 2 στις Εικόνες Β39.α-δ

<table>
<thead>
<tr>
<th>Χρόνος καταβύθισης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.41</td>
<td>-</td>
<td>62.22</td>
<td>0.87</td>
<td>1.79</td>
<td>0.21</td>
<td>13.15</td>
<td>1.46</td>
</tr>
<tr>
<td>50</td>
<td>37.11</td>
<td>1.05</td>
<td>37.14</td>
<td>9.35</td>
<td>-</td>
<td>0.24</td>
<td>11.94</td>
<td>2.26</td>
</tr>
<tr>
<td>100</td>
<td>36.35</td>
<td>0.70</td>
<td>45.64</td>
<td>6.80</td>
<td>-</td>
<td>0.26</td>
<td>7.75</td>
<td>1.80</td>
</tr>
<tr>
<td>200</td>
<td>35.65</td>
<td>-</td>
<td>59.47</td>
<td>0.50</td>
<td>-</td>
<td>0.29</td>
<td>0.21</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Προτού της καταβύθισης του δοκιμίου στον ηλεκτρολύτη, κόκκοι Al παρατηρούνται στην σημειομένη περιοχή 2 (Εικόνα Β37). Οι αναλύσεις EDS οι οποίες ελήφθησαν σε αυτούς τους κόκκους, δείχνουν υψηλή συγκέντρωση Al μαζί με μια σχετικά υψηλή ποσότητα Ca, καθώς επίσης και μικρές ποσότητες Si, S και Fe. Έτσι, οδηγούμαστε στην υπόθεση ότι τα σωματίδια των τεφρών βρίσκονται ακριβώς κάτω από τους ορατούς κόκκους Al. Μετά τις πρώτες 50 ώρες της εμβάπτισης του δοκιμίου, τα σωματίδια αυτά ξεκινούν και γίνονται ορατά λόγω της διάλυσης της μήτρας Al. Πράγματι, εμφανίζεται αύξηση όλων των στοιχείων τα οποία αποδίδονται στην τέφρα, με εξαίρεση τα S και Ca. Ακόμα σε αυτή την περίπτωση, οι φάσεις που περιέχουν S, διαλύονται πλήρως μετά από καταβύθιση του δείγματος για 50 ώρες, καθώς η μικρή μείωση του σήματος του Ca, μπορεί να αποδοθεί σε μερική διάλυση του βαλαστονίτη. Για μεγαλύτερους χρόνους καταβύθισης, η μήτρα Al υπόκειται σε διάλυση λόγω διαβρώσεως σε σχημές (crevice corrosion) που οδηγεί με τη σειρά της σε απόσπαση των σωματιδίων της υπόμνησης τέφρας.

Η μορφολογία του διαβρωμένου δοκιμίου, η οποία παρατηρείται ευθέως σε διάπαστη, καθώς επίσης και οι σχετικές αναλύσεις EDS, μετά από τους διαφορετικούς χρόνους καταβύθισης, υποδεικνύουν τους παρακάτω μηχανισμούς, όσον αφορά τη διαβρωτική υποβάθμιση του υπόεξέταση συνθέτου δοκιμίου:

1. Τα σωματίδια της ITK υπόκεινται σε μερική διάλυση των φάσεων που είναι διαλυτές στον ηλεκτρολύτη NaCl,
2. Η μήτρα Al που περιβάλλει τα σωματίδια της ITK υπόκειται σε διάβρωση σε σχημές,
3. Δημιουργείται γαλβανική γέφυρα μεταξύ των υψηλής-συγκέντρωσης-Fε διαμεταλλικών σωματιδίων και των σωματιδίων Al, οδηγώντας τοπικά σε διάλυση της μητρικής φάσης.

Σύμφωνα με τη μορφολογία που παρουσιάζεται στην Εικόνα Β39, μπορεί να επιτεθεί ότι η διάλυση των κυρίων φάσεων της ITK καθώς επίσης και η διάβρωση σε σχημές, αποτελούν τους κυρίους μηχανισμούς της διαβρωτικής υποβάθμισης της επιφάνειας του συνθέτου δοκιμίου.

Στις Εικόνες Β40.α-δ παρουσιάζονται μικροφωτογραφίες ληθείσες από το Ηλεκτρονικό Μικροσκόπιο Σάρωσης, οι οποίες απεικονίζουν την επιφάνεια του δοκιμίου D05, προτού, και

Διδακτική Διατριβή, Γρηγόριος Σ. Ισιόκος 155
έπειτα της εμβάπτισης του στο διαβρωτικό διάλυμα NaCl 0.05 M. Στην Εικόνα B39.α απεικονίζεται η επιφάνεια του δοκίμιου πριν από την βοήθηση του στο διάλυμα, και στις Εικόνες B39.β, γ και δ, έπειτα από την εμβάπτιση του για 50, 100 και 200 ώρες, αντίστοιχα. Προφανώς για λόγους σύγκρισης με το δοκίμιο αυτού στης μητρικής φάσης, οι συνθήκες διεξαγωγής του πειράματος της καταβίβθησης είναι απολύτως οι ίδιες.

Εικόνα B40.α. Μικροφωτογραφία δοκίμιου Al – 20% ITK, προτού εμβάπτισης του σε διάλυμα NaCl 0.05M.

Εικόνα B40.β. Μικροφωτογραφία δοκίμιου Al – 20% ITK, έπειτα από 50h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B40.γ. Μικροφωτογραφία δοκίμιου Al – 20% ITK, έπειτα από 100h εμβάπτισης σε διάλυμα NaCl 0.05M.

Εικόνα B40.δ. Μικροφωτογραφία δοκίμιου Al – 20% ITK, έπειτα από 200h εμβάπτισης σε διάλυμα NaCl 0.05M.

Από την παρατήρηση των μικροφωτογραφιών της Εικόνας B40 προκύπτει ότι το σύνθετο δοκίμιο D05 παρουσιάζει ισχυρή τοπική διάβρωση έπειτα από μόλις 50 ώρες εμβάπτισης του στο διάλυμα. Από τη σύγκριση των Εικόνων B39 και B40, γίνεται καταδίκη ότι η υψηλότερη συγκέντρωση σωματιδίων ITK στο σύνθετο, δύναται να προκαλέσει την εντονότερη διαβρωτική υποβάθμισή του, μετά την εμβάπτιση του στον ηλεκτρολύτη. Λαμβάνει χώρα, και σε αυτή την περίπτωση, μερική διάλυση των μεγάλων σωματιδίων της
ΙΤΚ, καθώς επίσης και διάλυση της μήτρας ΑI, στις περιοχές διασύνδεσής τους με τα σωματίδια της ΙΤΚ. Τα αποτελέσματα των ανάλυσεων EDS που έλαβαν χώρα στις περιοχές των μικροφωτογραφιών της Εικόνας B40, οι οποίες έχουν επισημανθεί με την ένδειξη «1» διδόταν στον Πίνακα B24. Όπως προκύπτει από τον Πίνακα B24, προτού της εμβάπτισης του δοκιμίου, στα στοχευόμενα σημεία των αναλύσεων EDS εμφανίζονται υψηλές συγκεντρώσεις Al και Ca. Έπειτα από μόλις 50h καταβάθθησης του δοκιμίου D05 στο διάλυμα, παρουσιάζεται σημαντική μείωση της συγκέντρωσης Al και αύξηση της συγκέντρωσης Ca, δείχνοντας διάλυση του Al. Από την εξέταση της μορφολογίας του δοκιμίου, προκύπτει σαφώς ότι εξελίσσεται ο σχηματισμός κάποιων μικροκρυστάλλων, πέρυς της περιοχής που ανυχένται μεγάλου πόρου, οι οποίοι ενδέχεται να σχηματίσθηκαν εξαιτίας της διάλυσης του περιβάλλοντος υλικού. Επιπλέον, και σε αυτή την περίπτωση, οι φάσεις που περιέχουν S, είτε διαστέλλονται τελείως είτε αποσπώνται. Σε μεγαλύτερους χρόνους εμβάπτισης, το σήμα Ca παρουσιάζει σημαντική μείωση της έντασής του, μείωση η οποία μπορεί να αποδοθεί στη διάλυση του βολαστονίτη. Η ύπαρξη των κρυστάλλων, οι οποίοι είναι εμφανεστάτατοι στην Εικόνα B40.β, δεν είναι ξεκάθαρη στις Εικόνες B40.γ και δ.

Οι μικροφωτογραφίες των Εικόνων B40.γ και δ, διδόταν επίσης σε μεγαλύτερη μεγέθυνση στην Εικόνα B.41. Όπως φαίνεται, λαμβάνει χώρα σχηματισμός των κρυστάλλων στο κέντρο της οπής μετά από την βήθιση των 50h, γεγονός το οποίο μπορεί να αποδοθεί στη διάλυση της περιβάλλουσας μεταλλικής μήτρας. Έπειτα από 100h εμβάπτισης του δοκιμίου στο διάλυμα, οι κρύσταλλοι αυτοί έχουν αποκολληθεί και είναι πολύ πιθανό να λαμβάνει χώρα εκτενής διαχωρισμού των προϊόντων της διάβρωσης, εντός της σχηματισθείσας οπής. Τα αποτελέσματα των αναλύσεων EDS της μαρκαρισμένης περιοχής της Εικόνας B.41, παρουσιάζονται στον πίνακα B25. Γίνεται προφανές ότι οι σχηματιζόμενοι κρύσταλλοι αποτελούνται από φάση πλούσια σε Ca, πιθανον CaCl₂ λόγω της διάλυσης του βολαστονίτη. Μετά όμως από 100h εμβάπτισης, η συγκέντρωση του Ca είναι πολύ μικρή. Αυτό οδηγεί στην υπόθεση ότι οι κρύσταλλοι έχουν όντως αποσπαστεί, και η οπή έχει πληροθεί από υδροξειδία Al και Si, τα οποία έχουν σχηματιστεί λόγω της διάλυσης, τόσο του CaSiO₃ (βολαστονίτης) όσο και του περιβάλλοντος μετάλλου.

Πίνακας B24. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 1 στις Εικόνες B.40.α-δ.

<table>
<thead>
<tr>
<th>Χρόνος καταβάθθησης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Cl</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.88</td>
<td>-</td>
<td>49.35</td>
<td>1.03</td>
<td>2.36</td>
<td>-</td>
<td>-</td>
<td>14.84</td>
<td>0.90</td>
</tr>
<tr>
<td>50</td>
<td>59.51</td>
<td>-</td>
<td>12.05</td>
<td>0.80</td>
<td>-</td>
<td>-</td>
<td>0.64</td>
<td>26.37</td>
<td>0.63</td>
</tr>
<tr>
<td>100</td>
<td>40.18</td>
<td>0.76</td>
<td>51.75</td>
<td>2.93</td>
<td>-</td>
<td>0.18</td>
<td>0.29</td>
<td>1.67</td>
<td>1.65</td>
</tr>
<tr>
<td>200</td>
<td>41.48</td>
<td>0.75</td>
<td>49.65</td>
<td>3.23</td>
<td>-</td>
<td>0.20</td>
<td>0.29</td>
<td>1.99</td>
<td>1.81</td>
</tr>
</tbody>
</table>
Εικόνα Β.41. Μικροφωτογραφίες Ηλεκτρονικού Μικροσκοπίου Σάρωσης της επιφάνειας του δοκιμίου D05, κατόπιν της εμβάπτισης του σε διάλυμα NaCl 0.05 M.

Πίνακας Β25. Συγκέντρωση (%) επιλεγμένων στοιχείων στις επισημασμένες περιοχές της Εικόνας B41.

<table>
<thead>
<tr>
<th>Χρόνος καταβιβάσης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.31</td>
<td>70.54</td>
<td>1.11</td>
<td>0.32</td>
<td>5.31</td>
<td>0.11</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>51.32</td>
<td>1.57</td>
<td>18.78</td>
<td>14.75</td>
<td>1.46</td>
<td>8.20</td>
<td>0.27</td>
<td>3.65</td>
</tr>
<tr>
<td>100</td>
<td>49.83</td>
<td>1.48</td>
<td>21.79</td>
<td>13.96</td>
<td>1.51</td>
<td>7.10</td>
<td>0.26</td>
<td>4.07</td>
</tr>
<tr>
<td>200</td>
<td>49.08</td>
<td>1.60</td>
<td>21.16</td>
<td>14.92</td>
<td>1.48</td>
<td>7.45</td>
<td>0.33</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα των αναλύσεων EDS που έλαβαν χώρα στις περιοχές των μικροφωτογραφιών της Εικόνας B40, οι οποίες έχουν επισημανθεί με την ένδειξη «2», δίδονται στον Πίνακα Β26. Οι περιοχές αυτές, αναφέρονται σε σφαιρικό σωματίδιο το οποίο είναι σταθερά ενσωματωμένο στην μεταλλική μήτρα, προ της εμβάπτισης.

Πράγματι, η ανάλυση EDS προτού της εμβάπτισης του δοκιμίου παραπέμπει σε υψηλή συγκέντρωση Al και μικρές συγκεντρώσεις από Si, Ca, Ti και Fe, στοιχεία τα οποία υποδεικνύουν την ύπαρξη σωματιδίου ΙΤΚ. Μετά από 50 ώρες εμβάπτισης (Εικόνα B40.β), παρατηρείται η διάλυση του αλουμινίου που περιβάλλει το σωματίδιο. Η διάλυση της μήτρας αλουμινίου γίνεται πιο εφαρμοστή μετά από μεγαλύτερους χρόνους καταβιβάσης, καθώς το σωματίδιο της ΙΤΚ παραμένει ανεπηρεάστο, όπως φαίνεται από τη χημική χαρτογράφηση του EDS. Βάσει της μορφολογίας και της χημικής σύστασης του σωματιδίου της ΙΤΚ, μπορεί ασφαλώς να εξαχθεί η συμπέρασμα ότι αποτελεί ένα αδρανές σωματίδιο ΙΤΚ, πλούσιο σε Si, το οποίο δεν αντέδρασε με τα συστατικά της μεταλλικής μήτρας κατά την πυροσβεσσώματιση, καθώς καλύπτεται από ένα στρώμα άμορφης ύλης από SiO₂. Αυτό μπορεί να οδηγήσει σε επιλεκτική διάλυση της μήτρας Al, επί της διεισδύσεως Al-ΙΤΚ, λόγω διάβρωσης σε σχισμές (crevice corrosion) (Εικόνα B.42).
Πίνακας B26. Συγκέντρωση (%) επιλεγμένων στοιχείων στις σημειομένες περιοχές με ένδειξη 2 στις
Εικόνες B40.α-δ.

<table>
<thead>
<tr>
<th>Χρόνος καταβιβάσεως (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>K</th>
<th>Cl</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>65.99</td>
<td>-</td>
<td>2.40</td>
<td>0.34</td>
<td>-</td>
<td>0.68</td>
<td>30.59</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>51.86</td>
<td>1.12</td>
<td>36.02</td>
<td>6.66</td>
<td>0.44</td>
<td>0.13</td>
<td>2.13</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Εικόνα B.42. Μικροφωτογραφίες Ηλεκτρονικού Μικροσκοπίου Σάρωσης της επιφάνειας του δοκιμίου
D05, κατόπιν της εμβάπτισής του σε διάλυμα NaCl 0.05 M. Σημάδια ανάπτυξης διάβρωσης σε σχημές.

Οι μικροφωτογραφίες του Ηλεκτρονικού Μικροσκοπίου Σάρωσης, καθώς επίσης και η
χημική χαρτογράφηση μέσω EDS των αντιφροσπευτικών περιοχών του δοκιμίου D05 (Al-
20%ITK), επιβεβαιώνουν τους μηχανισμούς διαβρωτικής υποβράθμισης που παρατηρήθηκαν
gια τα δοκιμία Al/10%ITK. Τα φαινόμενα διάσπασης εμφανίστηκαν πιο έντονα για τα
dοκιμία Al/20%ITK λόγω της μεγαλύτερης ποσοστιαίας συμμετοχής των σωματιδίων ITK,
tα οποία ενσωματώθηκαν στη μήτρα Al.

Συμπερασματικά, από την εξέταση της συμπεριφοράς έναντι της διάβρωσης των υλικών Al
με ενίσχυση ITK με τα διάφορα προαναφερθέντα μέσα, προκύπτει ότι η συμμετοχή των
σωματιδίων ITK διαφορετικού μεγέθους (εντός, φωτικά, του προεπελεγμένου εύρους μι των
εισαχθέντων σωματιδίων ITK) οδηγεί στη δημιουργία περιοχών διαφορετικού δυναμικού
εντός των συνθέτων. Οι αντίστοιχες καμπύλες δείχνουν μία αξιοσημείωτη μείωση του
δυναμικού διάβρωσης και αύξηση της πυκνότητας διάβρωσης, που σχετίζεται ευθείας με τη
χαμηλότερη αντίσταση στη διάβρωση των συνθέτων δοκιμίων, σε σύγκριση με δοκίμα
καθαρού Al. Αυτή η συμπεριφορά μπορεί έντονα να συσχετιστεί με την επίδραση των
σωματιδίων ITK, η οποία, προκύπτει ότι, εμποδίζουν την εκδήλωση παθητικής
συμπεριφοράς εκ μέρους του Al. Προκύπτει, επίσης, σαφώς ότι η ένταση της επίδρασης
αυτής των σωματιδίων ITK αυξάνεται ευθέως με την αύξηση της ποσοστιαίας κ.β. συμμετοχής της ITK.

B.1.5.3 Αποτελέσματα των δοκιμών διάβρωσης των υλικών Al-ITM.

Η ίδια, ακριβώς, αλληλουχία χαρακτηρισμού των συνθέτων υλικών όσον αφορά τις ιδιότητές τους εναντίον της χημικής διάβρωσης, ακολουθείται και στην περίπτωση των υλικών μήτρας Al και ενίσχυσης ITM, προκειμένου να είναι εφικτή η απευθείας συγκρισιμότητα της επίδρασης των δύο τύπων του υλικού ενίσχυσης.

Η Εικόνα B.43 παραθέτει τις μικροφωτογραφίες που προκύπτουν από την εξέταση του δοκιμίου μήτρας Al με κ.β. περιεχόμενο 10% ITM (έπειτα από 2-ώρη πυροσεσσομάτωση, δοκίμιο C03), με τις τρεις τεχνικές που εφαρμόστηκαν και στην περίπτωση των υλικών ITK (AFM, SKP-FM και SEM-BSE).

Εικόνα B.43. Χαρτογράφηση του δοκιμίου C03 (Al/10% ITM) με α) AFM, β) SKP-FM και γ) SEM-BSE

Στον τοπογραφικό χάρτη (α) της Εικόνας B.43, εντοπίζονται σκουρόχρωμες περιοχές, χαμηλότερα από ότι το υλικό που τις περιβάλλει, γεγονός το οποίο, σύμφωνα τη μικροφωτογραφία της Ηλεκτρονικής Μικροσκοπίας Σάρωσης (c) του δοκιμίου C03, μπορεί να αποδειχτεί στα σωματιδία των υπάρχον τεφρών, αλλά και στο σχηματιζόμενο πορώδες, το οποίο συσχετίζεται απευθείας με αυτά. Οι χάρτες δυναμικού Volta του ίδιου δοκιμίου καταδεικνύουν, όπως και στην περίπτωση της ITK, ότι τα σωματιδία των υπάρχον τεφρών εμφανίζουν υψηλότερο δυναμικό από το μητρικό υλικό, καθώς επίσης και ότι οι διασυνοριακές περιοχές παρουσιάζουν υψηλότερο δυναμικό από το εσωτερικό των συνθέτων. Από την παρατήρηση της μικροφωτογραφίας Ηλεκτρονικής Μικροσκοπίας
Σάρωσης, γίνεται εμφανές ότι η πλούσια-se-Si, σωματιδία της ITM δεν έχουν αντιδράσει με το Al της μητρικής φάσης. Επίσης, η πλούσια-se-Fe διαμεταλλικά σωματιδία που ήταν εμφανή στην περίπτωση των δοκιμών Al-ITK, εντοπίζονται ξεκάθαρα και στην περίπτωση των δοκιμών ITM, γεγονός που αποδίδεται εξολοκλήρου στη χρήση του ιδίου μητρικού υλικού, και στην ενδογενή ύπαρξη των διαμεταλλικών ενώσεων σε αυτό.

Η Εικόνα B.44 παραθέτει τις αντίστοιχες μικροφωτογραφίες για το δοκίμιο D01, το οποίο αναφέρεται επίσης σε μήτρα AI και περιέχει ITM σε κ.β. ποσοστό ίσο με 20%.

Εικόνα B.44. Χαρτογράφηση του δοκιμίου D01 (Al/20% ITM) με α) AFM, β) SKP-FM και γ) SEM-BSE

Ο τοπογραφικός χάρτης (α) του δοκιμίου D01 παρουσιάζει περισσότερα (σε σχέση με το C03) σκουρόχρωμα σημεία, δείγμα του μεγαλυτέρου αριθμού μεγάλων σωματιδίων ITM, καθώς επίσης και περισσότερο εκτεταμένου πορώδους. Τα πολυαριθμημένα και μεγάλα σωματιδία ITM, τα οποία εμφανίζονται σε χαμηλότερο επίπεδο από ότι η μεταλλική μήτρα στην απεικόνιση αυτή, παρουσιάζουν, ως αναμένονταν, μεγαλύτερα δυναμικά από ότι τα σωματιδία του μετάλλου. Επίσης ως αναμένονταν, οι διασυνδοριακές περιοχές των κόκκων παρουσιάζουν μεγαλύτερο δυναμικά από ότι οι περιοχές της κυρίως μάζας του υλικού. Συγκρίνοντας την απεικόνιση του χάρτη δυναμικού Volta του δοκιμίου D01 με τη μικροφωτογραφία του Ηλεκτρονικής Μικροσκοπίας Σάρωσης, παρατηρείται ότι η παρουσία μεγάλων σωματιδίων ITM, υψηλού δυναμικού Volta, δε γίνεται αντιληπτή στη δεύτερη. Από το γεγονός αυτό, μπορεί να εξασχεθεί το συμπέρασμα ότι τα σωματιδία ITM βρίσκονται εντοπισμένα υπό ενός λεπτού στρώματος Al (και συνεπώς δεν εντοπίζονται άμεσα από το ηλεκτρονικό μικροσκόπιο). Από την παρατήρηση του δείγματος διαφαίνονται, τυχαίως διασκορπισμένα, σωματιδία ITM μεγάλης διαμέτρου, τα οποία εντοπίζονται κατά προτίμηση στα σύνορα των κόκκων της μεταλλικής μήτρας και των μικρών σωματιδίων των πλουσιόν-
οι οποίες διευκολύνονταν λόγω της υψηλότερης ποσοστιαίας παρουσίας της φάσης ενίσχυσης, κατά τη διάρκεια της πυροσβεστικής.

Η Εικόνα B.45 παρουσιάζει τις πολύτιμες πάλινες των δειγμάτων M01, C03 και D01, οι οποίες παρουσιάζουν υψηλό επίπεδο αναπαραγωγής ηλεκτροδοτικών, όπως και στην περίπτωση των υλικών Al – ITK. Η καμπύλη πόλωσης του δοκιμίου του σχολιάσθηκε στην προηγούμενη υποεπετάξη. Η καμπύλη του δοκιμίου το οποίο περιέχει ITM σε κ.β. ποσοστό 10% εμφανίζει δυναμικό διάβρωσης περίπου ίσο με -1.17 V έναντι ηλεκτροδοτικό Ag/AgCl και πυκνότητα διάβρωσης ίση με 3.10⁻⁵ A/cm². Η καμπύλη που σχετίζεται με το δοκίμιο το οποίο περιέχει ITM σε κ.β. ποσοστό 20% εμφανίζει δυναμικό διάβρωσης περίπου ίσο με -1.05 V έναντι ηλεκτροδοτικό Ag/AgCl και πυκνότητα διάβρωσης ίση με 1.10⁻⁴ A/cm². Επίσης, αναφέρεται ότι η τάση της διακύμανσης της πυκνότητας διάβρωσης είναι παρόμοια όσον αφορά τα δύο δείγματα. Η πυκνότητα της διάβρωσης παρουσιάζει απότομη αύξηση για τιμή δυναμικού περίπου ίση με -0.5V έναντι ηλεκτροδοτικού Ag/AgCl. Όπως και στην περίπτωση των υλικών Al – ITK, η απότομη αύξηση αποδίδεται στην οξείδωση του Fe της τέφρας, όπως δόθηκε στην αντιδραση (4).

Εικόνα B.45 Πολυτιμές καμπύλες πόλωσης των δειγμάτων M01, C03 και D01.

Και στις δύο περιπτώσεις των συνθέτων δοκιμίων Al – ITM, το δυναμικό της διάβρωσης κινείται έντονα στην αρνητική περιοχή, από ότι το δοκίμιο του καθαρού Al. Επιπλέον,
αναφέρεται ότι τα δοκίμια των συνθέτων υλικών Al – ITM παρουσιάζουν υψηλότερη
πυκνότητα διάβρωσης από ότι το δοκίμιο μήτρας Al. Η μείωση του δυναμικού της διάβρωσης
και η αύξηση της πυκνότητας της διάβρωσης, μπορούν να αποδοθούν στα εξής διαφορετικά
φαινόμενα:
α) Λαμβάνουν χώρα παράλληλες οξειδωτικές αντιδράσεις, εξαιτίας της παρουσίας των
σωματιδίων των υπάρχοντων τερρών, όπως π.χ. η οξείδωση του Mg.
β) Διαλύεται, τοπικά, η μήτρα Al εξαιτίας της δημιουργίας γαλβανικής γέφυρας μεταξύ των
σωματιδίων των υπάρχοντων τερρών και των διαμεταλλικών ενώσεων της μήτρας.
γ) Λαμβάνουν χώρα φαινόμενα ενεργοποίησης εξαιτίας της τοπικής διαφοροποίησης των
τιμών του pH, όπως και στην περίπτωση των υλικών Al – ITK, με δεδομένο ότι το pH της
ITM κινείται πέρα από του 11.7-12.3, διάστημα τιμών στο οποίο το Al δεν παρουσιάζει στοιχεία
παθητικοποίησης της συμπεριφοράς του. Για το λόγο αυτό, οι τοπικές διακυμάνσεις του pH
αναχαίτιζουν την παθητικότητα του υλικού της μήτρας, οδηγώντας στην τοπική διάλυση της.

Οι Εικόνες Β.46 και Β.47.α-δ παρουσιάζουν: τη μικροφωτογραφία Ηλεκτρονικής
Μικροσκοπίας Σάρωσης του δοκιμίου C03 πριν από την τ εμβάπτιση τ ου σε διάλυμα NaCl
0.01M (B.38) και τις αντίστοιχες μικροανέκτησες έπειτα από: α) 50h καταβόθισης, β) 100h
καταβόθισης, γ) 200h καταβόθισης και δ) 300h καταβόθισης.

Εικόνα Β.46. Μικροφωτογραφία δοκιμίου C03 πριν από την εμβάπτιση του σε διάλυμα NaCl 0.01M.
Από τις μικροφωτογραφίες των Εικόνων B.46 και B.47, γίνεται προφανές ότι, όπως και στην περίπτωση των δοκιμίων Al – ITK, η εμβάπτιση των δοκιμίων στον ηλεκτρολύτη προκαλεί εντοπισμένη διάβρωση της οποίας αφορά, κυρίως, τις περιοχές του συνθέτου οι οποίες περικλείονται από τα σωματίδια των ιπτάμενων τεφρών και είναι περισσότερο έντονη από ότι στο δοκίμιο καθαρού Al. Αυτό είναι ξεκάθαρο συγκρίνοντας, κατ’ αρχάς, τις μικροφωτογραφίες των δοκιμίων προ της εμβαπτισμός τους και μετά 50h από την έναρξή αυτής. Τα μικρά λευκά στίγματα αναφέρονται στις διαμεταλλικές ενώσεις της μήτρας, οι οποίες, να μην είναι παρούσες στα σύνθετα Al – ITM, ένα μικρό, όμως, ποσοστό τους έχει απομακρυνθεί έπειτα από 50 ώρες εμβάπτισης του δοκιμίου στον ηλεκτρολύτη. Επίσης, κατά τη διαδικασία αυτής, κάποια από τα μεγάλα σωματίδια των ιπτάμενων τεφρών, είναι πολύ πιθανό ότι υπόκεινται σε περιορισμένη διάλυση των φάσεων που τα συνθέτουν. Προκειμένου να γίνει περισσότερο κατανοητός ο μηχανισμός της διαβροτικής υποβάθμισης την οποία
υφίστανται τα δοκίμια Al – ITM, έλαβαν χώρα αναλύσεις EDS σε διαφορετικές ζώνες των
dοκιμίων των συνθέτων υλικών, για όλες τις περιπτώσεις χρονικής διάρκειας εμβάπτισης των
dοκιμίων στον ηλεκτρολύτη.

Στον Πίνακα Β.27 συνοψίζονται τα αποτελέσματα των αναλύσεων EDS για την
επισημασμένη περιοχή με ένδειξη «1». Τα αποτελέσματα της ανάλυσης πριν από την
εμβάπτιση του δοκιμίου C03 στον ηλεκτρολύτη φανερώνουν την ισχυρή ύπαρξη O, η οποία
ακολουθείται από έντονα σήματα για Si, Ca, Al και Fe. Έπειτα από την πάροδο 50h
εμβάπτισης του δοκιμίου στον ηλεκτρολύτη, παρατηρείται ισχυρή μείωση του σήματος του
Si, η οποία και συνδεδείται από προφανή αύξηση, τοπικά, της συγκέντρωσης του Al. Το
φαινόμενο αυτό είχε παρατηρηθεί, σε μικρότερη ένταση, και στην περίπτωση των υλικών Al
– ITK, και αποδίδεται στην αποκόλληση πλουσιό-σε-Si βάσει της ITM, εξαιτίας τοπικής
dιάλυσης της μήτρας (Al). Ως συνέπεια της συνθήκης αυτής, αυξάνεται παράλληλα και η
ένταση του σήματος του Fe. Η τοπική, αυτή, διάλυση της μήτρας έγινε αντιληπτή και από τις
μικροφωτογραφίες Ηλεκτρονικής Μικροσκοπίας Σάρωσης του δοκιμίου και αποδίδεται στην
tοπική αύξηση του pH του διαλίματος, υπό την επίδραση του ηλεκτρολύτη.

Στον Πίνακα Β.28 συνοψίζονται τα αποτελέσματα των αναλύσεων EDS για την
επισημασμένη περιοχή με ένδειξη «2». Η σύσταση του πλουσιο-σε-Fe λευκού σωματού,
dιατηρείται ουσιαστικά σταθερή κατά τη διάρκεια της εμβάπτισης του δοκιμίου στον
ηλεκτρολύτη, ακόμα και παρότι εμφανίζεται μερικάς περιβαλλόμενο από μια σκουρόχρωμη
περιοχή, έπειτα από 50h εμβάπτισης. Τέτοιου είδους σκουρόχρωμες περιοχές αποδίδονται
κυρίως σε πορώδες το οποίο αναπτύσσεται στις διασυνοριακές περιοχές των κόκκων των
υλικών, λόγω της δημιουργίας γαλβανικής γέφυρας διάβρωσης μεταξύ του Al της μήτρας και
tου Fe που ενυπάρχει στο σωματίδιο αυτό, γαλβανική γέφυρα η οποία φαίνεται ότι αποτελεί
tον κύριο μηχανισμό εξέλιξης της διάβρωσης στα σωματίδια Al - ITM.

Πίνακας Β.27. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «1» στην
Εικόνα Β.38.α.

<table>
<thead>
<tr>
<th>Χρόνος καταβίβασης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.53</td>
<td>1.69</td>
<td>8.54</td>
<td>15.97</td>
<td>17.67</td>
<td>9.59</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>43.83</td>
<td>0.73</td>
<td>20.92</td>
<td>6.10</td>
<td>0.95</td>
<td>13.76</td>
<td>13.70</td>
</tr>
<tr>
<td>100</td>
<td>46.68</td>
<td>0.67</td>
<td>20.18</td>
<td>6.13</td>
<td>1.93</td>
<td>13.34</td>
<td>11.02</td>
</tr>
<tr>
<td>200</td>
<td>49.51</td>
<td>0.72</td>
<td>20.46</td>
<td>7.75</td>
<td>2.12</td>
<td>11.75</td>
<td>7.62</td>
</tr>
<tr>
<td>300</td>
<td>52.31</td>
<td>0.41</td>
<td>18.52</td>
<td>4.94</td>
<td>2.08</td>
<td>11.25</td>
<td>10.43</td>
</tr>
</tbody>
</table>
Πίνακας Β28. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «2» στην Εικόνα B38.a.

<table>
<thead>
<tr>
<th>Χρόνος καταβολής (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35.72</td>
<td>1.00</td>
<td>3.13</td>
<td>3.07</td>
<td>2.62</td>
<td>54.46</td>
</tr>
<tr>
<td>50</td>
<td>38.09</td>
<td>0.75</td>
<td>7.35</td>
<td>3.75</td>
<td>2.71</td>
<td>47.35</td>
</tr>
<tr>
<td>100</td>
<td>38.73</td>
<td>0.93</td>
<td>11.92</td>
<td>5.85</td>
<td>3.36</td>
<td>39.21</td>
</tr>
<tr>
<td>200</td>
<td>34.95</td>
<td>0.00</td>
<td>4.92</td>
<td>2.74</td>
<td>2.56</td>
<td>54.83</td>
</tr>
<tr>
<td>300</td>
<td>34.87</td>
<td>0.80</td>
<td>3.57</td>
<td>3.78</td>
<td>2.86</td>
<td>54.13</td>
</tr>
</tbody>
</table>

Οι Πίνακες Β29 και Β30 δίνουν, εν συντομία, τη χημική σύσταση των δύο μεγάλων σωματιδίων τα οποία επισημαίνονται με τις ενδείξεις «3» και «4» στην Εικόνα Β46. Από τις χημικές αναλύσεις, προκύπτει ότι και στα δύο αυτά σωματίδια, η συγκέντρωση των O, Ca, Si και Al είναι ιδιαίτερα αυξημένη. Πιστεύεται ότι τα σωματίδια αυτά δεν υφίστανται κάποιο χημικό μετασχηματισμό κατά την εμβάπτιση τους στον ηλεκτρολύτη και ότι η σύστασή τους διατηρείται σταθερή, κατά το χρονικό διάστημα στο οποίο αναλύονται με τη χρήση του EDS (300h). Επίσης, δε φαίνεται ότι πυροδοτείται κάποιος μηχανισμός ενδιαμεταλλικής ή γαλλικικής διάβρωσης από την παρουσία των σωματιδίων αυτών και συνεπώς μπορούν να θεωρηθούν αδρανή στο συγκεκριμένα μέσα.

Πίνακας Β29. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «3» στην Εικόνα B46.

<table>
<thead>
<tr>
<th>Χρόνος (h) καταβολής</th>
<th>O</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49.72</td>
<td>0.57</td>
<td>1.62</td>
<td>7.95</td>
<td>18.21</td>
<td>0.31</td>
<td>1.06</td>
<td>12.11</td>
<td>8.07</td>
</tr>
<tr>
<td>300</td>
<td>50.47</td>
<td>0.62</td>
<td>1.46</td>
<td>8.03</td>
<td>17.59</td>
<td>0.35</td>
<td>1.06</td>
<td>11.95</td>
<td>8.16</td>
</tr>
</tbody>
</table>

Πίνακας Β30. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «4» στην Εικόνα B46.

<table>
<thead>
<tr>
<th>Χρόνος (h) καταβολής</th>
<th>O</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>K</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.78</td>
<td>0.41</td>
<td>3.02</td>
<td>8.73</td>
<td>14.94</td>
<td>0.45</td>
<td>18.16</td>
<td>5.98</td>
</tr>
<tr>
<td>300</td>
<td>48.21</td>
<td>-</td>
<td>2.77</td>
<td>9.44</td>
<td>14.83</td>
<td>0.41</td>
<td>17.78</td>
<td>5.97</td>
</tr>
</tbody>
</table>

Οι Εικόνες Β48 και Β49.a-δ παραθέτουν αντιπροσωπευτικές μικροφωτογραφίες του δοκιμίου D01 προς την εμβάπτιση του στον ηλεκτρόλυτη, καθώς επίσης και έπειτα από 50-300h από την έναρξη αυτής. Στη μικροφωτογραφία της Εικόνας Β49.a έχουμε ενδείξεις ισχυρής εντοπισμένης διαβρωτικής επίθεσης, οι οποίες εμφανίζονται έπειτα από μόλις 50h
εμβάπτισης του δοκίμιο στον ηλεκτρολύτη. Είναι προφανές ότι η υπάρξη μεγαλύτερης
ποσότητας σωματιδίων ITM (20% κ.β.) στο δοκίμιο D01 προκαλεί εντονότερη διαβροτική
υποβάθμιση της επιφάνειας του συνθέτου, από ότι στο δοκίμιο C03 (ITM 10% κ.β.). Και σε
αυτήν την περίπτωση, ο κύριος μηχανισμός της διαβροτικής φαινεται ότι είναι η δημιουργία
γαλβανικής γέφυρας μεταξύ των πλούσιων-σε-Fe επιμηκών διαμεταλλικών σωματιδίων και
αυτών της περιβάλλουσας μήτρας Αl, η οποία προκαλεί τη δημιουργία πόρων μεγάλου
βάθους και πλάτους, περιμετρικά των σωματιδίων. Υπάρχει, επίσης, η περίπτωση της μερικής
dιάλυσης των μεγάλων σωματιδίων της ITM και η ισχυρή πιθανότητα διάλυσης της μητρικών
σωματιδίων που περιβάλλουν αυτά των ιστόμενων τεφρών. Σε διαφορετικές ζώνες της
επιφάνειας του δοκίμιου (επισημασμένες περιοχές με τις ενδείξεις «1» και «2», διεξήχθησαν
αναλύσεις EDS, αποτελέσματα των οποίων συνοψίζονται στους Πίνακες B.31 και B.32.

Εικόνα B.48. Μικροφωτογραφία δοκίμιο D01 πριν από την εμβάπτιση του σε διάλυμα NaCl 0.01M.

Εικόνες B.49.a. Μικροφωτογραφία δοκίμιο D01 50h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.
Εικόνα B.49.b. Μικροφωτογραφία δοκίμιο D01 100h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.
Εικόνα B.49.γ. Μικροφωτογραφία δοκιμίου D01 200h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.

Εικόνα B.49.δ. Μικροφωτογραφία δοκιμίου D01 300h μετά από την εμβάπτιση του σε διάλυμα NaCl 0.01M.

Πίνακας B31. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «1» στην Εικόνα B48.

<table>
<thead>
<tr>
<th>Χρόνος καταβίβασης (h)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>K</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40.49</td>
<td>-</td>
<td>30.89</td>
<td>14.82</td>
<td>2.35</td>
<td>5.72</td>
<td>4.53</td>
</tr>
<tr>
<td>50</td>
<td>39.18</td>
<td>1.29</td>
<td>27.70</td>
<td>17.49</td>
<td>2.78</td>
<td>5.63</td>
<td>5.94</td>
</tr>
<tr>
<td>100</td>
<td>38.60</td>
<td>1.13</td>
<td>31.61</td>
<td>14.81</td>
<td>2.42</td>
<td>5.04</td>
<td>4.40</td>
</tr>
<tr>
<td>200</td>
<td>41.77</td>
<td>0.96</td>
<td>29.61</td>
<td>15.85</td>
<td>2.31</td>
<td>4.65</td>
<td>3.34</td>
</tr>
<tr>
<td>300</td>
<td>39.46</td>
<td>1.04</td>
<td>34.28</td>
<td>14.65</td>
<td>2.15</td>
<td>4.03</td>
<td>3.79</td>
</tr>
</tbody>
</table>

Πίνακας B32. Συγκέντρωση (%) επιλεγμένων στοιχείων στη σημειωμένη περιοχή με ένδειξη «2» στην Εικόνα B48.

<table>
<thead>
<tr>
<th>Χρόνος καταβίβασης (h)</th>
<th>O</th>
<th>Al</th>
<th>Cl</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.95</td>
<td>81.46</td>
<td>-</td>
<td>11.59</td>
</tr>
<tr>
<td>50</td>
<td>39.91</td>
<td>51.98</td>
<td>1.49</td>
<td>6.58</td>
</tr>
<tr>
<td>100</td>
<td>44.28</td>
<td>43.24</td>
<td>1.84</td>
<td>10.41</td>
</tr>
<tr>
<td>200</td>
<td>48.78</td>
<td>31.15</td>
<td>2.57</td>
<td>17.01</td>
</tr>
<tr>
<td>300</td>
<td>44.95</td>
<td>33.38</td>
<td>3.62</td>
<td>18.31</td>
</tr>
</tbody>
</table>

Από τα αποτελέσματα των, προ-της-εμβάπτισης, χημικών αναλύσεων των δοκιμίων, προκύπτει ότι το σημειωμένο σωματίδιο με ένδειξη «1» αποτελείται κυρίως από O, Al, Si, Ca και Fe. Κατά τη διάρκεια της εμβάπτισης του δοκιμίου στον ηλεκτρολύτη, η συγκέντρωση του Ca μείωνεται σταδιακά, εξαιτίας της διάλυσης συγκεκριμένων ασβεστούχων φάσεων, όπως π.χ. του βολαστονίτη. Παρόμοια τάση αποτυπώνεται και στο σήμα που αναφέρεται
στον Fe, με αποτέλεσμα η ένταση του αντιστοίχου σήματος του Al να αυξάνεται σημαντικά, χάρη στην απομάκρυνση των διαλυτών σωματιδίων και στην έκθεση των μητρικών σωματιδίων στην επίδραση της ηλεκτρολύτη.

Προ της εμβάπτισης του δοκιμίου D01 στον ηλεκτρολύτη, η ανάλυση EDS φανερώνει την ύπαρξη σημαντικών ποσοτήτων Fe, συσχετιζόμενου, επίσης, με την παρουσία πλουσίων-σε-Fe διαμεταλλικών ενώσεων στη μήτρα του συνθέτου υλικού. Οποιες προαναφέρθηκε, ο σιματίτης (Fe₂O₃) της ITM αντιδρά με το Al της μήτρας του συνθέτου, σχηματίζοντας μεταλλικό Fe, που με τη σειρά του αντιδρά επίσης με το Al της μήτρας, σχηματίζοντας διαμεταλλικές ενώσεις Al-Fe. Τα υψηλά ποσοστά της κ.β. συμμετοχής της ITM στο Al παραπέμπουν στη δημιουργία αντιστοίχου μεγάλης ποσότητας διαμεταλλικών ενώσεων Al-Fe εντός του συνθέτου, και συνεπώς στην ύπαρξη περισσότερων σημείων έναρξης του σχηματισμού γαλβανικής γέφυρας μεταξύ αυτών και των σωματιδίων Al της μητρικής φάσης του συνθέτου. Έπειτα από μόλις 50h εμβάπτιση του δοκιμίου D01 στον ηλεκτρολύτη, η ένταση του σήματος του Al έχει μειωθεί σημαντικά, ενώ η συγκέντρωση του O έχει αυξηθεί, υπό την συνεπακόλουθη αύξηση του αρθμού των πόρων, όπως προαναφέρθηκε.

Συμπερασματικά, από την εξέταση της συμπεριφοράς έναντι της διάβρωσης των υλικών Al με ενίσχυση ITM με τα διάφορα προαναφέρθηκα μέσα, προκύπτει ότι η συμμετοχή των σωματιδίων ITM διαφορετικού μεγέθους (εντός, φωσικά, του προεπιλεγμένου εύρους μι των εισαχθέντων σωματιδίων ITM) οδηγεί στη δημιουργία περιοχών διαφορετικού δυναμικού εντός των συνθέτων, όπως διεγνώσθη και στην περίπτωση των συνθέτων υλικών Al-ITK. Επίσης, οι αντίστοιχες καμπύλες διέχουν έντονη μείωση του δυναμικού διάβρωσης και αύξηση της πυκνότητας διάβρωσης, παρατηρήσεις που σχετίζονται ευθέως με τη χαμηλότερη αντίσταση στη διάβρωση των συνθέτων δοκιμίων, σε σύγκριση με δοκίμια καθαρού Al. Αυτή η συμπεριφορά έντος συσχετίζεται με την επίδραση των σωματιδίων ITM, τα οποία εμποδίζουν την εκδήλωση παθητικής συμπεριφοράς εκ μέρους του Al. Προκύπτει επίσης, σαφώς ότι η ένταση της επίδρασης αυτής των σωματιδίων ITM αυξάνεται ευθέως με την αύξηση της ποσοστιαίας κ.β. συμμετοχής της ITM, σε συμφωνία με την αντίστοιχη συμπεριφορά των συνθέτων Al - ITK.
Τα συνολικά συμπεράσματα της 1ης ενότητας του πειραματικού μέρους της διδακτορικής διατριβής (παρασκευή των συνθέτων υλικών με τη μέθοδο της κονιομεταλλουργίας και αξιολόγηση της μικροδομής τους και επιλεγμένων ιδιοτήτών τους) έχουν ως εξής:

- Τα μίγματα μητρικής / ενισχυτικής φάσης που παρασκευάσθηκαν με αλεσμένες τέφρες παρουσίασαν καλύτερη συμπεριφορά, τόσο κατά την εν ψυχρώ μονοαξονική συμπίεση τους, όσο και κατά την πυροσυσσωμάτωσή τους (αναφορικά με τις τελικές τους διαστάσεις), σε σχέση με αυτά που είχαν ως υλικό ενίσχυσης ακατέργαστες τέφρες.
- Η 2-ωρη πυροσυσσωμάτωση δεν επιδρά σημαντικά στη μεταβολή των διαστάσεων των τελικών συνθέτων προϊόντων, σε αντίθεση με την 6-ώρη διεργασία, η οποία δημιουργεί, τόσο επιφανειακές μικροαλλιώσεις, όσο και έντονη ποσοστιαία μεταβολή των αρχικών τους διαστάσεων, σε ορισμένες περιπτώσεις ύψους και κατά ~25%.
- Τόσο για την περίπτωση της μήτρας Al, όσο και Al/Si, τα δείγματα που περιέχουν 15% κ.β. IT έχουν αποκτήσει υψηλότερες τιμές επιφανειακής σκληρότητας. Η ελαφρά μείωση των τιμών της σκληρότητας για δείγματα περιεκτικότητας 20% κ.β. IT, αποδίδεται στην αύξηση του πορώδους των υλικών, με την αύξηση της συμμετοχής των τεφρών σε ποσοστά μεγαλύτερα του 20% κ.β.
- Η ενίσχυση της μήτρας Al/Si με έντονα ασβεστούχο IT, αναπόφευκτα οδηγεί στην ανάπτυξη στερεού, εύκολα αφαιρούμενου ασβεστούχου, επιφανειακών σφαιρίδιων και συσσωματομάτων. Η μηχανική ανάμιξη (για καλύτερη ομογενοποίηση) δύναται να περιορίσει το φαινόμενο, όχι όμως και να το απαλείψει, καθώς αποδίδεται κυρίως σε χημικά αίτια.
- Η ενισχύσεις των συσματιδίων των υπάρχον τεφρών στη μεταλλική μήτρα αυξάνει την ποσότητα των παραγόμενων σκληρών ορυκτολογικών φάσεων Ca-Si, ο σχηματισμός των οποίων οδηγεί στην ενισχυόμενη σκληρότητα των συνθέτων υλικών έναντι των μεταλλικών υλικών της μήτρας.
- Η χρήση των τεφρών (φάση ενίσχυσης) σε αλεσμένη μορφή, όχι μόνο διευκολύνει σημαντικά την πορεία της παρασκευής των συνθέτων υλικών, αλλά ενισχύει εξίσου σημαντικά τις τριβολογικές τους ιδιότητες.
- Η πρόσθεση, τόσο έντονα ασβεστούχο, όσο και πυριτικής τέφρας ενισχύει σημαντικά τις τριβολογικές ιδιότητες του αλουμινίου. Η βελτίωση αντικατάστασης αλουμινίου από τέφρες είναι ίση με 15% κ.β. για την περίπτωση της ITM και 10% κ.β. για αυτήν της ITK. Παρόλα αυτά, η συμμετοχή της IT στα σύνθετα υλικά μήτρας
αλουμινίου σε ποσοστό 20% κ.β. είναι γενικά πραγματοποιήσιμη και οδηγεί σε ενισχυμένες ιδιότητες, παράλληλα με την προκύπτουσα μείωση του κόστους κατασκευής των συνθέτων.

- Το δοκίμιο αναφοράς του κράματος εμφανίζει καλύτερες τριβολογικές ιδιότητες από ότι τα σύνθετα υλικά Al/Si - IT. Παρόλα αυτά, η αντικατάσταση Al/Si σε ποσοστό 15% κ.β. οδηγεί σε «ανεκτή» υποβάθμιση τριβολογικών ιδιοτήτων, η οποία, σε κάθε περίπτωση, αντισταθμίζεται από τη σημαντική μείωση των κόστων της παραγωγής των υλικών.

- Τα σύνθετα υλικά μήτρας Al/Si με εμπεριέχομενη εντόνως ασβεστούχο τέφρα παρουσίασαν καλύτερες τριβολογικές ιδιότητες σε σχέση με αυτά που περιέχαν πυριτική τέφρα, γεγονός που αποδίδεται στην περίσσεια Ca το οποίο αντιδρά με το Si της μήτρας και συνεπακολούθως σχηματίζονται σκληρές, περίπλοκες πυριτικές και ασβεστο-πυριτικές ορυκτολογικές φάσεις.

- Η ενίσχυση των υλικών μήτρας Al, τόσο με ITK, όσο και ITM υποβαθμίζει την ανθεκτικότητα τους στη διάβρωση. Το φαινόμενο οφείλεται κυρίως στην αντίδραση Fe-Al και στη συνεπακόλουθη δημιουργία διαμεταλλικών ενώσεων, ο εμπεριέχομενος Fe στα σωματίδια των οποίων σχηματίζει γαλβανική γέφυρα με το Al των σωματιδίων της μήτρας και δημιουργεί τις προϋποθέσεις έναρξης διαβρωτικής υποβάθμισης των συνθέτων υλικών. Επίσης, λόγω της τοπικής διαφοροποίησης των τιμών του pH που προκύπτει από την προσθήκη σωματιδίων ITK και ITM στο Al, λαμβάνουν χώρα φαινόμενα ενεργοποίησης, αναχαιτίζοντας την παθητικοποίηση του υλικού της μήτρας, οδηγώντας έτσι στην τοπική διάλυσή της (διάβρωση).
B.2 ΠΑΡΑΣΚΕΥΗ ΤΩΝ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΕ ΤΕΧΝΙΚΕΣ ΤΗΓΜΕΝΟΥ ΜΕΤΑΛΛΟΥ

Οι τεχνικές αυτές έχουν ως βάση την προσθήκη των σωματιδίων των τεφρών σε τηγμένη μεταλλική μήτρα και αναφέρονται ως έγχυση-υπό-πίεση και χύτευση-υπό-ανάδευση (pressure infiltration & stir casting). Αρκετές ερευνητικές ομάδες έχουν στο παρελθόν χρησιμοποιήσει αυτές τις τεχνικές προκειμένου να εισάγουν διάφορου ειδών σωματίδια και ίνες σε μεταλλικές μήτρες [25-35]. Για την ακρίβεια, συστήματα όπως p.x. Al-Ni, Al-SiC (σωματίδια), Al-SiC (foam), Al-ινες υάλου, Al-Al₂O₃ κ.α. έχουν παρασκευασθεί αποτελεσματικά με τη χρήση των τεχνικών αυτών. Επίσης έχουν παρασκευασθεί σύνθετα υλικά μήτρας κραμάτων Al και ενίσχυση σωματιδίων υπάρχουν τεφρών, που αφορούν όμως μόνο πυρηνικές τέφρες (Class F ASTM C618) [36-48]. Η συγκεκριμένη διαδικασία διατριβή αποτελεί την πρότιση, διεθνώς, από περαιτέρω προσθήκης σωματιδίων υψηλού ασβεστού τεφρών σε τήγμα κράματος Al. Σημειώνεται ότι αυτό του τύπου τα τέφρε διαμεισμόιστε ισχυρή διαβροχή με το τηγμένο Al, γεγονός που καθιστά ιδιαίτερα δύσκολη την αποτελεσματική προσθήκη Class C τεφρών σε αυτό. Το φαινόμενο αυτό αφορά κυρίως την προσθήκη τεφρών με την τεχνική της χύτευσης-υπό-ανάδευση, καθώς εκεί δεν υπάρχει η εξωτερική επιβολή πίεσης, με αποτέλεσμα να εμφανίζεται εκτεταμένα το φαινόμενο της απόρρυψης των σωματιδίων των ασβεστούχων υπάρχουν τεφρών από το τηγμένο μετάλλο. Στη συγκεκριμένη μελέτη, το φαινόμενο αυτό τελικά αναπαρατίθεται, κυρίως μέσω αύξησης της θερμοκρασίας του τήγματος, στην οποία γίνεται και η προσθήκη των τεφρών, υπό ανάδευση. Επίσης, όσον αφορά στη μέθοδο της παρασκευής των συνθέτων με την τεχνική της εγχύσης-υπό-πίεση, αυτή υπήρξε επιτυχής καθώς παρήχθησαν σύνθετα υλικά με τη k.o. συμμετοχή ΙΤΚ και ΙΤΜ σε ποσοστό 60%. Επίσης, προκειμένου για τη σύνθεση υλικών με τις -κατά το δυνατόν- καλώδεις επιφανειακές και μηχανικές ιδιότητες, προς την εφαρμογή των τεχνικών παρασκευής των συνθέτων υλικών, λαμβάνει χώρα εκτεταμένη μελέτη χαρακτηρισμού των υπάρχουν τεφρών σε συνάρτηση με τη διάμετρο των σωματιδίων τους, όπως όστο να αποφασίσει ποιό κλάσμα σωματιδίων είναι το βέλτιστο για την προσθήκη της στην τηγμένη μεταλλική μήτρα. Η μελέτη, αυτή, του χαρακτηρισμού των κλασμάτων των υπάρχουν τεφρών, αφορά κυρίως στη χημική, ορυκτολογική σύσταση των σωματιδίων της τέφρας, καθώς επίσης και στις θερμικές ιδιότητές τους, ήτοι τις θερμοκρασίες κατά τις οποίες μεταβάλλεται η φυσική (και χημική) κατάστασή τους (θερμοκρασία αρχικής παραμόρφωσης (IDT), σφαιρικής παραμόρφωσης (ST), ημισφαιρικής παραμόρφωσης (HT) και θερμοκρασία τήξης (FT)).

Η Εικόνα Β.43 παραθέτει το διάγραμμα ροής του πειραματικού τμήματος της παρασκευής των υλικών με τις τεχνικές της εγχύσης-υπό-πίεση και της χύτευσης-υπό-ανάδευσης και επίσης των μεθόδων του χαρακτηρισμού, τόσο αυτών, όσο και των πρώτων υλών που χρησιμοποιήθηκαν για τη σύνθεσή τους.
Εικόνα B.50. Διάγραμμα ροής του πειραματικού μέρους της Ενότητας Β.2 της διδακτικής διατριβής.

Β.2.1 Υλικά και χαρακτηρισμός των τεφρών σε συνάρτηση με το μέγεθος των σωματιδίων τους

Οι συλλεχθέντες υπάρχουν τεφρές από τους λεγεντικούς ΑΗΣ της Καρδαϊάς και της Μεγαλόπολης χωρίς Τιηναν σε κλάσματα με βάση το μέγεθος των σωματιδίων τους (< 25 μμ, 25-45 μμ, 45-90 μμ, 90-150 μμ, 150-400 μμ, > 400μμ) με τη χρήση των αντιστοίχων κοσκίνων. Η χημική σύσταση του κάθε σωματιδιακού κλάσματος ITK και ITM έχει χρονικά, μετρήθηκε με τη χρήση Φασματοσκοπίας Φθορίσμου Ακτινών-X (XRF, X-Lab 2000 Energy Dispersive), η ορυκτολογική τους σύσταση με τη χρήση Φασματοσκοπίας Περίθλασης Ακτινών-X (XRD, Bruker D8 Advance), η απόλυτη πύρωσης τους, με τη χρήση θερμοξύτητα (LECO TGA-701) και οι θερμοκρασίες τήχνης τους, με εφαρμογή του πρωτόκολλου ASTM D1857 και χρήση του οργάνου LECO AF-700.
Β. Πειραματικό Μέρος

Β.2.2 Χαρακτηρισμός των ιπτάμενων τεφρών Καρδιάς και Μεγαλόπολης σε συνάρτηση με τη διάμετρο των σωματιδίων τους

Στις Εικόνες Β.51-52 παρατίθενται τα φάσματα περίθλασης Ακτινών-Χ των διαφόρων σωματιδιακών κλασμάτων της ΙΤΚ. Ο Πίνακας Β.33 συνοψίζει τα ευρήματα των φασμάτων αυτών.

Πίνακας Β.33. Σύνοψη παρουσίας των διαφόρων οροικτών στα διάφορα σωματιδιακά κλάσματα των ΙΤΚ και ΠΤΜ (xxx: άλλον, xx: κανονική, x: ισχυρή, -: απουσία).

<table>
<thead>
<tr>
<th>Ιπτάμενη Τέφρα Καρδιάς</th>
<th>Σωματίδια (μι)</th>
<th>Ελευθ. ΣιΟ</th>
<th>Ασβεστίτης</th>
<th>Ανοδρίτης</th>
<th>Αματίτης</th>
<th>Χαλαζίας</th>
<th>Αλμέτης</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>xxx</td>
<td>xxx</td>
<td>xx</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25-40</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40-90</td>
<td>xx</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>90-150</td>
<td>xx</td>
<td>xxx</td>
<td>xxx</td>
<td>xx</td>
<td>xxx</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>150-400</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ιπτάμενη Τέφρα Μεγαλόπολης</th>
<th>Σωματίδια (μι)</th>
<th>Ελευθ. ΣιΟ</th>
<th>Ασβεστίτης</th>
<th>Ανοδρίτης</th>
<th>Αματίτης</th>
<th>Χαλαζίας</th>
<th>Αλμέτης</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>x</td>
<td>-</td>
<td>xxx</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>25-40</td>
<td>x</td>
<td>-</td>
<td>xxx</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>40-90</td>
<td>x</td>
<td>-</td>
<td>xx</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>90-150</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>150-400</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>xxx</td>
<td>xx</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Εικόνα B.51. Φάσματα Περίβλασης Ακτινόν-Χ των σωματιδιακών κλασμάτων της ΙΤΚ. Qz: Quartz (JCPDS File No. 46-1045); Cal: Calcite (JCPDS File No. 05-0586); Lime (JCPDS File No. 37-1497); Gis: Gismondine (JCPDS File No. 38-0382); Ahn: Anhydrite (JCPDS File No. 37-1496); Ilt: Illite (JCPDS File No. 02-0050).
Εικόνα B.52. Φάσματα Περίθλασης Ακτινών-Χ των σωματιδιακών κλασμάτων της ITM Qz: Quartz (JCPDS File No. 46-1045); Hem: Hematite (JCPDS File No. 33-0664); Ab: Albite (JCPDS File No. 09-0466); Lime (JCPDS File No. 37-1497); Ahn: Anhydrite (JCPDS File No. 37-1496).
Από την παρατήρηση των φασμάτων περίβλασης Ακτινών-Χ των σωματιδιακών κλασμάτων των ΙΤΚ και ΙΤΜ, προκύπτουν, αρχικά, τα εξής συμπεράσματα:

- Η ποσότητα της κρυσταλλικής φάσης είναι μεγαλύτερη με την αύξηση της διαμέτρου των σωματιδίων της ΙΤΚ, ως συνέπεια της εντονότερης παρουσίας χαλαζία και αλβίτη, δυσθρύπτων συστατικών, τα οποία έχουν εκ των προτέρων την τάση να συγκεντρώνονται στα μεγαλύτερα μεγέθους σωματιδία των τεφρών, ως συνέπεια των διαδικασιών εξόρυξης και καύσης του λιγνίτη. Αντιθέτως, στην, έντονα πυρηνική, ΙΤΜ η παρουσία των χαλαζία και αλβίτη δεν επηρεάζεται από τη διακόμανση της διαμέτρου των σωματιδίων των τεφρών.

- Η παρουσία του αματήτη παρουσιάζεται σε μεγαλύτερα ποσοστά στα σωματίδια της ΙΤΜ.

- Η ποσότητα του οξειδίου του ασβεστίου (CaO, τόσο δεσμευμένο, όσο και ελεύθερο) δείχνει να ακολουθεί τη μείωση της διαμέτρου των σωματιδίων της ΙΤΚ. Το γεγονός αυτό, εν μέρει, αποδίδεται στη γενικότερη τάση εμπλουτισμού των εύθρυπτων συστατικών του τροφοδοτούμενου καυσίμου στα λεπτά σωματίδια των υπάμενων τεφρών. Αναφέρεται ότι η ορυκτολογική φάση του CaO ανιχνεύεται ασθενώς στην ΙΤΜ, όντας σε αρμονία με τα χαμηλά κ.β. ποσοστά CaO που προέκυψαν από την ανάλυση οξειδίων.

- Οι ασβεστίτες και πορτλαντίτες εμφανίζονται εντονότερα στα μεγαλύτερα σωματίδια ΙΤΚ και ΙΤΜ αντιστοίχως, παρά τα, αρχικά, αντιθέτως αναμενόμενα. Το γεγονός αυτό αποδίδεται σε πιθανή αλληλεπίδραση του ελευθέρου οξειδίου του ασβεστίου με την υγρασία του αέρα και τον συνεπακόλουθο σχηματισμό Ca(OH)_2 και CaCO₃. Η υπόθεση αυτή βασίζεται στο γεγονός ότι το CaO μειώνεται με την αύξηση του μέσου μεγέθους των σωματιδίων ΙΤΚ.

Οι Πίνακες Β.34 και Β.35 παραθέτουν τη συγκέντρωση των κυρίων οξειδίων των ΙΤΚ και ΙΤΜ, ως συνάρτηση του μεγέθους των σωματιδίων της.

Πίνακας Β.34. Συγκέντρωση (%) των κυρίων οξειδίων των σωματιδιακών κλασμάτων της ΙΤΚ.

<table>
<thead>
<tr>
<th>Τύπος (μμ)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>Fe₂O₃ (%)</th>
<th>TiO₂ (%)</th>
<th>P₂O₅ (%)</th>
<th>CaO (%)</th>
<th>MgO (%)</th>
<th>Na₂O (%)</th>
<th>K₂O (%)</th>
<th>SO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>22.89</td>
<td>10.74</td>
<td>5.22</td>
<td>0.70</td>
<td>0.23</td>
<td>49.59</td>
<td>5.11</td>
<td>0.03</td>
<td>0.60</td>
<td>4.15</td>
</tr>
<tr>
<td>25-40</td>
<td>24.61</td>
<td>11.30</td>
<td>5.26</td>
<td>0.71</td>
<td>0.22</td>
<td>48.79</td>
<td>4.95</td>
<td>0.03</td>
<td>0.58</td>
<td>3.48</td>
</tr>
<tr>
<td>40-90</td>
<td>25.22</td>
<td>11.64</td>
<td>5.50</td>
<td>0.62</td>
<td>0.28</td>
<td>48.39</td>
<td>4.76</td>
<td>0.07</td>
<td>0.60</td>
<td>2.90</td>
</tr>
<tr>
<td>90-150</td>
<td>27.97</td>
<td>12.32</td>
<td>6.11</td>
<td>0.66</td>
<td>0.21</td>
<td>45.77</td>
<td>4.84</td>
<td>0.16</td>
<td>0.67</td>
<td>1.24</td>
</tr>
<tr>
<td>150-400</td>
<td>30.46</td>
<td>12.92</td>
<td>6.70</td>
<td>0.69</td>
<td>0.17</td>
<td>42.99</td>
<td>4.67</td>
<td>0.24</td>
<td>0.73</td>
<td>0.39</td>
</tr>
<tr>
<td>>400</td>
<td>34.12</td>
<td>14.20</td>
<td>6.94</td>
<td>0.51</td>
<td>0.12</td>
<td>39.83</td>
<td>4.64</td>
<td>0.30</td>
<td>0.81</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Διδακτορική Διατριβή, Γρηγόριος Σ. Τσκος 177
Πίνακας Β.35. Συγκέντρωση (%) των κυρίων οξείδιδ των σωματιδιακών κλασσιμάτων της ΗΤΜ.

<table>
<thead>
<tr>
<th>ITM (μμ)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>Fe₂O₃ (%)</th>
<th>TiO₂ (%)</th>
<th>P₂O₅ (%)</th>
<th>CaO (%)</th>
<th>MgO (%)</th>
<th>Na₂O (%)</th>
<th>K₂O (%)</th>
<th>SO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>49.45</td>
<td>12.21</td>
<td>12.51</td>
<td>0.66</td>
<td>0.17</td>
<td>16.31</td>
<td>4.11</td>
<td>0.41</td>
<td>0.82</td>
<td>2.61</td>
</tr>
<tr>
<td>25-40</td>
<td>49.36</td>
<td>13.44</td>
<td>12.88</td>
<td>0.61</td>
<td>0.21</td>
<td>14.2</td>
<td>4.74</td>
<td>0.4</td>
<td>0.7</td>
<td>2.67</td>
</tr>
<tr>
<td>40-90</td>
<td>50.94</td>
<td>14.1</td>
<td>13.01</td>
<td>0.65</td>
<td>0.14</td>
<td>13.64</td>
<td>4.1</td>
<td>0.5</td>
<td>0.9</td>
<td>1.61</td>
</tr>
<tr>
<td>90-150</td>
<td>52.15</td>
<td>14.7</td>
<td>14.6</td>
<td>0.6</td>
<td>0.1</td>
<td>11.1</td>
<td>3.8</td>
<td>0.5</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>150-400</td>
<td>53.6</td>
<td>14.6</td>
<td>14.2</td>
<td>0.45</td>
<td>0.08</td>
<td>10.88</td>
<td>3.8</td>
<td>0.5</td>
<td>0.8</td>
<td>1.35</td>
</tr>
<tr>
<td>>400</td>
<td>54.2</td>
<td>15.0</td>
<td>14.4</td>
<td>0.3</td>
<td>0.1</td>
<td>10.1</td>
<td>3.6</td>
<td>0.4</td>
<td>0.7</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Η έντονη παρουσία του CaO στα λεπτά σωματίδια των υπομένων τεφρών αποδίδεται στα ασβεστούχα ορυκτά του τροφοδοτούμενου καυσίμου (κυρίως στον ασβεστίτη). Το μικρό ειδικό βάρος των λεπτών αυτών σωματιδίων περιορίζει το χρόνο κατά τον οποίο τα σωματίδια των τεφρών παραμένουν στην εστία της κάυσης και εμποδίζει την εξέλιξη μιας σειράς ενδοθέρμων διεργασιών. Παρόλα αυτά, η συμπόρευση σωματιδίων υπάρχουν τεφρών και καυσαερίων, καθώς επίσης και η μεγάλη ειδική επιφάνεια των λεπτών σωματιδίων, εντούτως τις χημικές αντιδράσεις μεταξύ των συστατικών τους [49-51]. Τα σημαντικά υψηλά ποσοστά SO₃ των λεπτών σωματιδίων, εξηγούνται από: α) την αρχική παρουσία του σιδηροσιρίτη (Fe₂S) στο ανόργανο μέρος του τροφοδοτούμενου καυσίμου, β) την αρχική παρουσία γύψου (CaSO₄.2H₂O) στο ανόργανο μέρος του τροφοδοτούμενου καυσίμου και γ) τον σχηματισμό ανθράκη (CaSO₄) χάρη στις αντιδράσεις αποδέεσης του ασβεστίτη και του ελειθέρου οξείδιου του ασβεστίτη, κατά τη διάρκεια της συμπόρευσης των λεπτών σωματιδίων των υπαρχούν τεφρών και των καυσαερίων [52]. Ωστόσο αφού στην κατανομή του μεγέθους των σωματιδίων των επιλεγμένων υπάρχουν τεφρών, και στις δύο περιπτώσεις των τεφρών, η πλευρισμός των σωματιδίων έχει διάμετρο μεταξύ 40 και 90 μμ.

Ο Πίνακας Β.36 παρουσιάζει τα ποσοστά του ελειθέρου οξείδιου του ασβεστίτου (CaO), της απόλειας πύρρωσης (API) (Loss on Ignition, LOI) και το pH των διαφόρων σωματιδίων των ΙΤΚ και ΗΤΜ. Στην ΙΤΚ, τα ποσοστά της απόλειας πύρρωσης μειώνονται, ξεκινώντας από το κλάσμα των πολύ λεπτών σωματιδίων έως το κλάσμα των σωματιδίων των 90 μμ. Εξαιτίας του μικρού ειδικού βάρους του κλάσματος αυτού, τα σωματίδια με διάμετρο μικρότερο των 90μμ δεν παρουσιάζουν άκατο άνθρακα. Σε αυτά τα σωματίδια των υπαρχούν τεφρών, η υπολογισθείσα απόλεια πύρρωσης αποδίδεται στη θερμική διάσπαση των συστατικών τους, κυρίως των ανθρακικών αλάτων του Ca (5). Πρέπει να αναφερθεί ότι ο μέρος του ασβεστίτη είναι αυτογενές και αποδίδει μικροκυστάλλους καθώς αρχικά και γίνεται στο καυστήρα (5) και στη συνέχεια ανασχηματίζεται ως μικροκυσταλλικός δευτερογενής ασβεστίτης κατά τη διάρκεια της συμπόρευσης των λεπτών σωματιδίων των τεφρών και των καυσαερίων προς την έξοδο (καμινάδα). Ξεκινώντας από το σωματιδιακό κλάσμα με εύφρος διαμέτρου (90-150) μμ, η μετρούμενη απόλεια πύρρωσης σταδιακά αυξάνεται και κορυφώνεται στα μεγάλοι μεγέθους σωματίδια. Η σταδιακά αυξανόμενη απόλεια πύρρωσης
αποδίδεται στην ύπαρξη ακαύστου λιγνίτη στα μεγάλα σωματίδια. Για την ακρίβεια, εξαίτια του μεγάλου ειδικού βάρους των σωματιδίων του κλάσματος αυτού, αυτά εμφανίζουν περιορισμένη έκθεση στα υψηλά επίπεδα του καυστήρα (στις περιοχές των υψηλών θερμοκρασιών). Η τάση αυτή, όπως λογικά αναμένονταν, αναφέρεται τόσο στην ITK όσο και στην ITM. Η διακύμανση του pH, το οποίο, όπως αναλύθηκε στα υποκεφάλια της διάβρωσης, διαδραματίζει καιρικό ρόλο, αποδίδεται στις χημικές διεργασίες οι οποίες καταλήγουν στον εμπλουτισμό διαφορετικών συστατικών στα διάφορα σωματιδιακά κλάσματα των τεφρών. Η τάση των ασβεστών συστατικών να εμπλουτίζουν τα λεπτά σωματίδια των τεφρών αποτυπώνει επίσης στο pH των διαφόρων σωματιδιακών κλάσματων, καθώς τα λεπτά σωματίδια κινούνται εντονότερα στις αλκαλικές περιοχές, από ότι τα μεγαλυτέροι μεγέθους σωματίδια.

\[
\text{CaCO}_3 \text{(θερμ. διάσπαση)} \rightarrow \text{CaO} + \text{CO}_2 \quad (5)
\]

\[
\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \quad (6)
\]

Πίνακας Β.36. \(\text{CaO}, \text{pH}, \text{AP} (%)\) των σωματιδίων ITK και ITM.

<table>
<thead>
<tr>
<th>Σωματίδια</th>
<th>ITK</th>
<th>ITM</th>
</tr>
</thead>
<tbody>
<tr>
<td>μm</td>
<td>pH</td>
<td>CaO (%)</td>
</tr>
<tr>
<td>0-25</td>
<td>12.4</td>
<td>13.3</td>
</tr>
<tr>
<td>25-40</td>
<td>12.0</td>
<td>10.0</td>
</tr>
<tr>
<td>40-90</td>
<td>12.1</td>
<td>5.89</td>
</tr>
<tr>
<td>90-150</td>
<td>12.0</td>
<td>12.6</td>
</tr>
<tr>
<td>150-400</td>
<td>11.6</td>
<td>4.27</td>
</tr>
</tbody>
</table>

Οι Πίνακες Β.37 και Β.38 παρουσιάζουν τα αποτελέσματα του ελέγχου των θερμοκρασιών μαλάκυνσης των διαφόρων σωματιδιακών κλάσματων των υπάρχον τεφρών Καρδαίας και Μεγαλόπολης. Ως θερμοκρασίες μαλάκυνσης αναφέρονται: η θερμοκρασία αρχικής παραμόρφωσης (Initial Deformation Temperature, IDT), η θερμοκρασία σφαιρικής παραμόρφωσης (Spherical Temperature, ST), η θερμοκρασία ημισφαιρικής παραμόρφωσης (Hemispherical Temperature, HT) και η θερμοκρασία τήξης (Fusion Temperature, FT). Για τα πλήρη αποτεροβομένα λεπτά-σωματιδιακά κλάσματα (ολοκληρωτική απουσία ακαύστου λιγνίτη) των υπάρχον τεφρών, οι κρίσιμες, αυτές, θερμοκρασιακές τιμές μειώνονται με την αύξηση της διαμέτρου των σωματιδίων των υπάρχον τεφρών καθώς επίσης και της κρυσταλλικότητάς τους. Στο ίδιο, αυτό, σωματιδιακό κλάσμα, κατά την αύξηση της διαμέτρου των σωματιδίων των υπάρχον τεφρών, ελαχιστοποιούνται οι μεταβολές των τιμών αυτών, οι οποίες και αποδίδονται στη μειούμενη κρυσταλλική φάση του κλάσματος αυτού. Η διαφοροποίηση των τιμών των θερμοκρασιών αυτών, σε συνάρτηση με
τη διάμετρο των σωματιδίων των υπαίμενων τεφρών, είναι εύλογη, και προκύπτει από τους
dιαφορετικούς χρόνους παραμονής των διαφόρων σωματιδιακών κλασμάτων στις
dιαφορετικές περιοχές της εστίας καύσης, κατά τη διαδικασία της ηλεκτροπαραγωγής. Οι
dιαφορετικοί χρόνοι παραμονής προκύπτουν από το διαφορετικό τους βάρος και ειδική
eπιφάνεια. Πρέπει να αναφερθεί ότι, σε όλες τις περιπτώσεις, οι θερμοκρασίες
παραμόρφωσης των σωματιδίων των υπαίμενων τεφρών βρίσκονται σε ασφαλές επίπεδο
πάνω από τα θερμοκρασιακά επίπεδα στα οποία διεξάγονται οι διεργασίες της χότενσης-υπό-
anάδειξη και της έγχυσης-υπό-πιέση, γεγονός που καταδεικνύει ότι τα σωματίδια των
tεφρών δεν πρόκειται να υποστούν κανένας είδους φυσική παραμόρφωση κατά την
προσθήκη και ανάμεξή τους στο τήγμα του κράματος.

Πίνακας Β.37. Θερμοκρασίες μαλάκυσης των σωματιδιακών κλασμάτων της ΙΤΚ.

<table>
<thead>
<tr>
<th>°C</th>
<th>μm</th>
<th>< 25</th>
<th>25-45</th>
<th>45-75</th>
<th>75-90</th>
<th>90-150</th>
<th>150-300</th>
<th>> 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.D.</td>
<td>1305</td>
<td>1340</td>
<td>1295</td>
<td>1220</td>
<td>1185</td>
<td>1190</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>S.T.</td>
<td>1350</td>
<td>1350</td>
<td>1310</td>
<td>1265</td>
<td>1190</td>
<td>1200</td>
<td>1240</td>
<td></td>
</tr>
<tr>
<td>H.T.</td>
<td>1350</td>
<td>1360</td>
<td>1315</td>
<td>1270</td>
<td>1200</td>
<td>1220</td>
<td>1270</td>
<td></td>
</tr>
<tr>
<td>F.T.</td>
<td>1465</td>
<td>1415</td>
<td>1440</td>
<td>1290</td>
<td>1410</td>
<td>1295</td>
<td>1395</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας Β.38. Θερμοκρασίες μαλάκυσης των σωματιδιακών κλασμάτων της ΙΤΜ.

<table>
<thead>
<tr>
<th>°C</th>
<th>μm</th>
<th>< 25</th>
<th>25-45</th>
<th>45-75</th>
<th>75-90</th>
<th>90-150</th>
<th>150-300</th>
<th>> 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.D.</td>
<td>1175</td>
<td>1195</td>
<td>1200</td>
<td>1210</td>
<td>1220</td>
<td>1220</td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>S.T.</td>
<td>1200</td>
<td>1205</td>
<td>1215</td>
<td>1230</td>
<td>1235</td>
<td>1245</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>H.T.</td>
<td>1220</td>
<td>1215</td>
<td>1240</td>
<td>1260</td>
<td>1265</td>
<td>1270</td>
<td>1290</td>
<td></td>
</tr>
<tr>
<td>F.T.</td>
<td>1255</td>
<td>1280</td>
<td>1295</td>
<td>1320</td>
<td>1335</td>
<td>1345</td>
<td>1390</td>
<td></td>
</tr>
</tbody>
</table>

Οι Εικόνες Β.53 και Β.54 αποδίδουν τη διακόμιση των τιμών των θερμοκρασιών
μαλάκυσης της ΙΤΚ και ΙΤΜ, σε συνάρτηση με τη διάμετρο των διαφόρων σωματιδίων των
υπαίμενων τεφρών.
Εικόνα B.53. Ραβδογράμματα σύγκρισης των τιμών της θερμοκρασίας μαλάκυνσης των σωματιδιακών κλασμάτων της ΙΤΚ.

Εικόνα B.54. Ραβδογράμματα σύγκρισης των τιμών της θερμοκρασίας μαλάκυνσης των σωματιδιακών κλασμάτων της ΙΤΜ.
B.2.3 Παρασκευή συνθέτων υλικών A356 Al – ιπτάμενων τεφρών Καρδίας και Μεγαλόπολης με την τεχνική της έγχυσης-υπό-πίεση

B.2.3.1 Πρώτες ύλες για την παρασκευή των συνθέτων υλικών A356 Al/ιπτάμενων τεφρών Καρδίας και Μεγαλόπολης με την τεχνική της έγχυσης-υπό-πίεση

Ο Πίνακας B.39 παρατίθεται τα δοκίμια των συνθέτων υλικών που παρασκευάσθηκαν στη συγκεκριμένη διδακτορική διατριβή, με τη χρήση της τεχνικής της έγχυσης-υπό-πίεση. Ως μητρικό υλικό για την παρασκευή των συνθέτων υλικών με τις τεχνικές τημένου μετάλλου επιλέγεται το κράμα Al A356 (Al-7Si-0.35Mg). Προκειμένου να επιτευχθεί η καλότερη δυνατή διαβροχή του μητρικού μεταλλικού τήγματος με τα πλούσια-se-Ca σωματίδια των ιπτάμενων τεφρών, επιλέγεται κράμα το οποίο το οποίο περιέχει Si και μικρή ποσότητα Mg. Αναφέρεται ότι το κράμα Al A356 γνωρίζει ευρείες βιομηχανικές εφαρμογές, λόγω ταχυλοσιτικών -σχετικά- κόστους και ελαφρίτικων μηχανικών ιδιοτήτων. Η επιλογή που γίνεται στη συγκεκριμένη διδακτορική διατριβή για την ενίσχυση του κράματος με σωματίδια ιπτάμενων τεφρών αφορά τόσο στην ενίσχυση των επιφανειακών ιδιοτήτων του, όσο και στην παραγωγή συνθέτων υλικών μειωμένου κόστους. Ως υλικό πλήρωσης του κράματος επιλέγονται τα εξής σωματιδιακά κλάσματα των ιπτάμενων τεφρών Καρδίας και Μεγαλόπολης: (> 25 μm), (25-40) μm, (40-90) μm. Επίσης, προκειμένου να ελεγχθεί η επίδραση της προσθήκης αλεσιμένων τεφρών στη μεταλλική μήτρα, το κλάσμα (25-40) μm αλέθεται σε εργαστηριακό σφαιρόμυλο και χρησιμοποιείται επίσης ως υλικό πλήρωσης της μεταλλικής μήτρας, και κατόπιν τα αποτελέσματα των δοκιμών αξιολόγησης των επιφανειακών και μηχανικών ιδιοτήτων των τελικών συνθέτων υλικών αποτιμώνται συγκριτικά. Επιλέγεται προς άλεση το συγκεκριμένο σωματιδιακό κλάσμα, καθώς, όπως έδειξε η Περιβλασμετρία Ακτινόν-Χ, είναι αυτό το οποίο εμφανίζει την εντονότερη παρουσία υαλόδους φάσης, συνεπώς η συγκριτική αποτίμηση των υλικών που κατασκευασθεί με τη χρήση του «ως εχει» κλάσματος (25-40) μm, αρκετά σημαντική. Αποδεικνύουν ότι οι επιδράσεις της προσθήκης επηρεάζουν την κινητική κατάσταση του ενεργού Si των τεφρών (κυρίως της ITM) στις ιδιότητες των συνθέτων υλικών.

Η επιλογή των προαναφερθέντων σωματιδιακών κλασμάτων έλαβε χώρα με άξονα τις παραιτήτες:

1. Επιλογή κλασμάτων μικρού σωματιδιακού μεγέθους λόγω φυσιολογίας (μεταξύ άλλων, η χρήση μεγάλων σωματιδίων επηρεάζει αρνητικά στην ολκιμότητα των συνθέτων).
2. Απόρριψη κλασμάτων με άκαυστο άνθρακα, λόγω: 1) πρόκλησης ρωγμών που επηρεάζουν το πορώδες κατά την αύξηση της θερμοκρασίας και 2) αυξημένων ενεργειακών απαιτήσεων προκειμένου να επεξεργασθεί τη τέφρα για μείωση του ποσοστού του άνθρακα.

3. Επιλογή κλασμάτων μικρού εύρους διακύμανσης διαμέτρου.

4. Διεξαγωγή της πρότεις ερευνητικής διερεύνησης της χρήσης αλεσμένων κλασμάτων τεφρών - Επιλογή κλάσματος με έντονη υαλωδή φάση προκειμένου να μελετηθεί η επιδραση της απελευθέρωσης δραστικού πυριτίου στην ανάπτυξη των ιδιότητων των συνθέτων υλικών.

<table>
<thead>
<tr>
<th>Κωδικός Συνθέτου (PI)</th>
<th>Μεταλλικό Κράμα</th>
<th>Πληρωτικό Υλικό</th>
<th>Σωματίδια τέφρας (μμ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-C01</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΚ</td>
<td>(<25)</td>
</tr>
<tr>
<td>PI-C02</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΚ</td>
<td>(25-40)</td>
</tr>
<tr>
<td>PI-C03</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΚ</td>
<td>(40-90)</td>
</tr>
<tr>
<td>PI-C04</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΚ</td>
<td>(25-40) αλεσμένο</td>
</tr>
<tr>
<td>PI-C05</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΜ</td>
<td>(<25)</td>
</tr>
<tr>
<td>PI-C06</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΜ</td>
<td>(25-40)</td>
</tr>
<tr>
<td>PI-C07</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΜ</td>
<td>(40-90)</td>
</tr>
<tr>
<td>PI-C08</td>
<td>A356 Al</td>
<td>60% κ.ο. ΙΤΜ</td>
<td>(25-40) αλεσμένο</td>
</tr>
</tbody>
</table>

B.2.3.2 Υλικά και μέθοδοι για την παρασκευή των συνθέτων υλικών A356 Al/ιπτάμενων τεφρών Καρδιάς και Μεγαλόπολης με την τεχνική της χάσεως με έγχυση-υπό-πίεση

Τα σύνθετα υλικά A356 Al-ιπτάμενων τεφρών κατασκευάσθηκαν με την τεχνική της -υπό πίεση- έγχυσης στο τηγμένο κράμα σωματιδίων τέφρας συγκρεμισμένων ευρών διαμέτρου, τόσο αλεσμένων, όσο και «ως παρελήφθησαν» από τα εργαστηριακά κόσκινα, όπως προαναφερθηκε. Η διαδικασία της παρασκευής των συνθέτων λαμβάνει χώρα σε ειδικά τροποποιημένο φούρνο, αποτελούμενο από υδρόγνυκτη εστία και, εσωτερικά, από αντιστάσεις θερμότητας (University of Wisconsin-Milwaukee / Center for Composites) (Εικόνα B.55.a).

Οι κάψεις που χρησιμοποιούνται για την παρασκευή των υλικών είναι κατασκευασμένες από καθαρό Al₂O₃ (εσωτερικά έχουν επικαλυφθεί με ZrO₂). Μια ποσότητα ~70 g ιπτάμενων τεφρών (είτε ΙΤΚ είτε ΙΤΜ) τοποθετείται, συμπεριλαμβάνοντας, σε κάθε κάψα και από επάνω τοποθετείται διαχωριστικός δίσκος από γραφίτη (ελαφρώς μικρότερης διαμέτρου από την κάψα). Μια κατάλληλα μορφοποιημένη κυλινδρική ράβδος χωτευμένο κράματος A356, βάρους 65 g, τοποθετείται επάνω από τον διαχωριστικό δίσκο του γραφίτη και, κατόπιν, η κάψα εισέρχεται στον τροποποιημένο φούρνο, μέσω γραφίτικης κάψουλας σωληνοειδούς
σχήματος (Εικόνα Β.55.β). O φούρνος κατόπιν εκκενώνεται, σφραγίζεται και θερμαίνεται στους 800°C, θερμοκρασία η οποία διατηρείται για ~30min, προκειμένου να διασφαλισθεί η ολική τήξη του κράματος. Στη συνέχεια η πίεση αυξάνεται σταδιακά στα 2.1 MPa, με χρήση αερίου (Ar), ανά κάθε τέσσερα χρόνια των κενών χώρων των «πακτωμένων» σωματιδίων της τέφρας. Η εστία καύσης υψώνεται και τα δείγματα λαμβάνονται αφότου η διαδικασία της στερεοπώροφης έχει ολοκληρωθεί και η εφαρμογή πίεσης έχει σταματήσει.

Όπως φαίνεται και από τον Πίνακα 42, 8 τύποι συνθέτων παρασκευάστηκαν (PI-C01 - PI-C08), χρησιμοποιώντας διαφορετικά είδη και επεξεργασία (άλεση, διάμετρος σωματιδίων) πιτάμενων τεφρών (Εικόνες Β.55.γ και δ).

Εικόνα Β.55.α. Τροποποιημένος φούρνος για την παρασκευή των δοκιμίων PI-C01-PI-C08.

Εικόνα Β.55.β. Απεικόνιση των τιμών πίεσης και θερμοκρασίας σε πραγματικό χρόνο.

Εικόνα Β.55.γ. Κάψουλα δοκιμίων πρώτων υλών για την παρασκευή των δοκιμίων PI-C01-PI-C08.

Εικόνα Β.55.δ. Δοκίμιο A356 Al-ITM (Έγχυση-υπό-Πίεση).
B.2.3.3 Εξέταση της μικροδομής των συνθέτων υλικών που παρασκευάσθηκαν με την τεχνική της έγρυψης-υπό-πίεση

Όπως γίνεται αντίληπτό και από τις προηγούμενες ενότητες του κεφαλαίου B.2, ειδική προσοχή αποδίδεται στην προσθήκη λεπτών και αλεσμένων σωματίδιων υπαμένον τεχνών στη τηγμένη μάζα του κράματος, ούτως ώστε, τελικά, να ληφθούν σύνθετα υλικά με βέλτιστη εσωτερική ομοιογένεια και, συνεπώς, αναβαθμισμένες μηχανικές ιδιότητες. Σημειώνεται ότι, καθώς δεν υπήρχε προηγούμενο στη διεθνή βιβλιογραφία όσον αφορά τη δυνατότητα επιτυχούς σύνθεσης υλικών μήτρας A356 Al με την προσθήκη πολύ λεπτών σωματιδίων (ψηλού ασβεστίου) υπαμένον τεχνών. Ειδικά όσον αφορά την άλεση των τεχνών, επιλέγεται επί τούτου το κλάσμα διαμέτρου (25-40) mm, καθώς είναι πλούσιο σε συστατικά του Si (τα οποία είναι εξής απαραίτητα από τη σκοπιά των μηχανικών ιδιοτήτων), ενώ, επίσης, τα σωματίδια του βρίσκονται εντός ενός αποδεκτού εύρους διαμέτρων (< 40 mm). Συνεπώς, ο στόχος της άλεσης του συγκεκριμένου αυτού κλάσματος είναι το «πάσιμο» της επιφανειακής υαλόδους φάσης, και η συνεπακόλουθη απελευθέρωση ενεργού Si, ούτως ώστε να επιτυχεί το μέγιστο δυνατό βαθμός κραματοποίησης του Si των τεχνών με το Al της μήτρας.

Η Εικόνες B.56.α-ξ δείχνουν επιλεγμένες μικροφωτογραφίες Ηλεκτρονικής Μικροσκοπίας Σάρωσης των παρασκευασθέντων υλικών με την τεχνική της έγρυψης-υπό-πίεση. Ο Πίνακας B.43 περιλαμβάνει τα αποτελέσματα της χημικής χαρτογράφησης συγκεκριμένων τμημάτων του εσωτερικού των συνθέτων αυτών, όπως εξήγησαν με τη χρήση της EDS ανάλυσης. Η χημική, αυτή, χαρτογράφηση βοηθά σημαντικά στην προσπάθεια ερμηνείας των αντιδράσεων που λαμβάνουν χώρα κατά την έγρυψη του τήγματος εντός της κλίνης των σωματιδίων της υπάρχουσας τέφρας. Είναι δεδομένο, από τη μη-υπαρξία των στοιχείων αυτών στο κράμα (μήτρα), ότι όπου εντοπίζονται Ca και Fe, κυριαρχεί η σκέψη της υπαρξίας μίγματος με τέφρα. Επίσης, σωματίδια τα οποία αποδίδονται αποκλειστικά στην τέφρα, εντοπίζονται αυτοδία στο μίγμα, είτε σε ξεχωριστή φάση είτε σε συσσωματώματα. Ο σχηματισμός των συσσωματωμάτων αυτών είναι έντονος εξαιτίας των ηλεκτροστατικών δυνάμεων που κάνουν τα σωματίδια να συνενώνονται. Τέτοιου είδους συσσωματώματα είναι σχεδόν βέβαιο ότι υποβαθμίζουν σημαντικά τις μηχανικές ιδιότητες των συνθέτων υλικών. Από τις Εικόνες B56.α και β, οι οποίες παραθέτουν πανοραμικής φύσεως μικροφωτογραφίες των συνθέτων, γίνεται εμφανής η ομοιογένεια της επιφάνειας των δοκιμών PI-CO2 και PI-CO4, αντίστοιχα, φανερώνοντας την επιτυχή έγρυψη του τηγμένου κράματος εντός των σωματιδίων της ασβεστούχια τέφρας. Από την παρατήρηση της μικροδομής όλων των εξετασθέντων συνθέτων υλικών, καταδεικνύεται η αποτελεσματική συνένωση των σωματιδίων του κράματος και των υπάρχοντων τεχνών. Παρόλα αυτά, σε κάποιες περιοχές περιέχουν τις διεπιφανείων των σωματιδίων των δύο φάσεων, εντοπίζονται δείγματα μη-ολοκληρωμένης
έγχυσης του τήγματος εντός της τέφρας. Οι εμφανείς στο σχήματισμό πορώδος. Επιπλέον, είναι εμφανείς ότι η έγχυση του κράματος εντός των αλεσμένων σωματιδίων των τεφρών, οδηγεί στο σχήματισμό τελικών προϊόντων με εσωτερική δομή περισσότερο ομοιογενή, από ότι υλικά τα οποία έχουν παραχθεί με την προσθήκη μη-αλεσμένων σωματιδίων τεφρών. Ωστόσο, η προσθήκη αλεσμένων τεφρών φαινεται ότι επιδρά θετικά, όχι μόνο όσον αφορά τη χημική συνένοχη των σωματιδίων των δύο φάσεων, αλλά επίσης και όσον αφορά στη ομοιογενή μορφολογία των τελικών προϊόντων.

Η Εικόνα B.56.γ αποδίδει την μικροδομή του δοκιμίου ΠΙ-C04 σε μεγαλύτερη ανάλυση. Οι σφαιρικές και ελαστικές δομές που ανιχνεύονται μικροσκοπικά (επισημασμένες περιοχές με τις ενδεικτές “Α”, “Β” και “C”) εμφανίσθηκαν αφότου είχε ολοκληρωθεί η διαδικασία της έγχυσης του κράματος εντός της υπάρχουσας τέφρας. Η χημική σύσταση των εσωτερικών αυτών τμημάτων (Πίνακας B.40) επιβεβαιώνει την ομοιογένεια της κατανομής των δύο φάσεων του συνθέτου. Παρόλα αυτά, εντοπίζονται περιοχές με συστατικά τα οποία αποδίδονται αποκλειστικά στην ιστόμηνε τέφρα (έλλειψη σήματος, τόσο του Al όσο και του Si), καταδεικνύοντας την ύπαρξη συσσωματομάθητων υπάρχοντων τεφρών σε διαφορετικές περιοχές εντός του συνθέτου.

Όπως φαίνεται και από τη μικροφωτογραφία της Εικόνας B.56.δ, η οποία αναφέρεται στο δοκίμιο ΠΙ-C08, ένα αποδεκτό επίπεδο ομοιογενούς διάταξης της εσωτερικής μικροδομής του συνθέτου επιτυγχάνεται επίσης και για τα δοκίμια τα οποία περιέχουν πυριτική ιστόμηνε τέφρα (αλεσμένα σωματίδια). Ο Πίνακας B.40 περιέχει επίσης τα αποτελέσματα της χημικής χαρτογράφησης της μικροφωτογραφίας της Εικόνας B.56.δ (επισημασμένες περιοχές με τις ενδεικτές “A2”, “B2” και “C2”). Μικρότερος αριθμός σφαιρικών δομών ανιχνεύεται στη δεύτερη περίπτωση (ΙΤΜ), μια ενδείξη χαμηλότερου πορώδους στην ιστόμηνε τέφρα. Η Εικόνα B.56.ε δείχνει μια τυπική σφαιρική δομή από αυτές που εντοπίσθηκαν κυρίως στα σύνθετα υλικά που περιέχουν ΙΤΜ. Το συγκεκριμένο σφαιρίδιο μάλιστα, το οποίο αποτυπώνεται είναι μικροφωτογραφία της Εικόνας B.56.ε και έχει διάμετρο περίπου 20 μμ, έχει μεγάλη συγκέντρωση σιδήρου και μπορεί να αποδοθεί σε σωματίδια ΙΤΜ στο συγκεκριμένο σημείο. Ένα μέρος από τους αυτούς αματέται, χαλαζία και ελεύθερο αζβεζίτιο (Fe₂O₃, SiO₂, CaO), τόσο της ΙΤΚ, όσο και της ΙΤΜ, αντιδρά με το Al και το Si της μήτρας, στη θερμοκρασία των 850°C, όπως φαίνεται και από τις χημικές εξισώσεις (B)5-7 [53-55].

\[
\begin{align*}
2\text{Al}(l) + 3/2\text{SiO}_2 & \rightarrow 3/2\text{Si}(s) + \text{Al}_2\text{O}_3(s) \\
2\text{Al}(l) + \text{Fe}_2\text{O}_3(s) & \rightarrow 2\text{Fe}(s) + \text{Al}_2\text{O}_3(s) \\
\text{CaNa}_2\text{(CO}_3)_2 + 2\text{SiO}_2 & \rightarrow \text{CaSiO}_3 + \text{Na}_2\text{Si} + 2\text{CO}_2
\end{align*}
\]
Σημειώνεται ότι σε κάποιες περιπτώσεις παρατηρούνται πόροι στην εσωτερική δομή των συνθέτων δοκιμών. Στην Εικόνα B.56.ζ παρουσιάζεται ο μεγαλύτερος πόρος ο οποίος εντοπίσθηκε στα παραχθέντα δοκίμα. Οι πόροι, οι οποίοι έχουν διάμετρο από 5 έως 30 μμ, είναι δε a priori ανεπιθύμητοι. Σχηματίζονται, κυρίως, λόγω της, σχετικά, χαμηλής εφαρμοστάσιας πίεσης κατά την παρασκευή των υλικών. Αναφέρεται ότι η τιμή της εφαρμοστάσιας πίεσης (2.1 MPa) είναι η μεγαλύτερη που θα μπορούσε να επιτευχθεί με τη διαθέσιμη πειραματική διάταξη έγχυσης-υπό-πίεση η οποία περιγράφηκε στο υποκεφάλαιο Β.2.3 επίσης βρίσκεται εντός του εύρους πίεσεων αναλόγων περιπτώσεων που αναφέρονται σε σχετικές δημοσιευμένες μελέτες. Στις μικροφωτογραφίες των Εικόνων B.56 φαίνεται ότι οι πόροι εμφανίζονται γενικά σε περιοχές διασωματιδιακής επαφής, όπου και απαιτούνται υψηλότερες πίεσεις, προκειμένου να εγγραφεί αποτελεσματικά το τήγμα στα κεραμικά σωματίδια. Τέτοιοι είδος πόροι παρατηρούνται και σε άλλα συστήματα συνθέτων υλικών μεταλλικής μήτρας [56, 57]. Πέρα από τον «κλασσικό» τύπο πόρων, όπου π.χ. αυτός που αποτυπώνεται στην Εικόνα B.56.e., πορώδες διαφορετικού τύπου καταγράφεται επίσης στην εσωτερική δομή των συνθέτων υλικών της έγχυσης-υπό-ανάδευση, το οποίο και οφείλει την παρουσία του στην παρουσία κενοσφαιρών στην υπάρμοση τέφρας, πορώδες το οποίο κατά κάποιο τρόπο μπορεί να θεωρηθεί «ενδογενες» χαρακτηριστικό των συνθέτων υλικών. Αυτό του είδους το πορώδες είναι επιθυμητό, καθώς μείωνε το βάρος των τελικών προϊόντων.

Από την Εικόνα B.57.a γίνεται εμφάνεις ότι, σε αρκετές περιπτώσεις, η επιφάνεια των συνθέτων έχει λάβει μια αρκετά ανώμαλη υφή, χαρακτηρίζοντας μια κάποια είδους «δυσαρμοσία» μεταξύ κεραμικής και μεταλλικής φάσης, η οποία παρατηρείται κυρίως στις περιπτώσεις όπου το εύρος της διαμέτρου του σωματιδιακού κλάσματος της υπάρμοσης τέφρας είναι μεγαλύτερο, ήτοι στα δοκίμα PI-C03 και PI-C06 . Το γεγονός αυτό μπορεί να εξηγηθεί από τη μη-ομοιόμορφη έγχυση του τήγματος σε περιοχές όπου κυριαρχούν σωματίδια τεφρών διαφορετικού μεγέθους. Αυτό αφορά, τόσο περιοχές επί της επιφάνειας της «κλίνης» της υπάρμοσης τέφρας, όσο και στο εσωτερικό της, καταλήγοντας σε δυσαρμοσία των δύο φάσεων, η οποία ευθύνεται για το εκτεταμένο, σε κάποιες περιπτώσεις, πορώδες. Η άλλη της κλάσματος αυτού, το οποίο, όπως προαναφέρθηκε, είναι πλούσιο σε αργιλοπυριτικό ύδατο, δημιουργεί μια ομοιογενή «κλίνη» σωματιδίων υπάρμοσης τεφρών εντός της οποίας το τήγμα εγχρίνεται ομοιόμορφα, αναρρότας σε μεγάλο βαθμό το μετονέκτημα από τα ανομοιόμορφα μεγέθη των σωματιδίων του κλάσματος (40-90) mm. Η Εικόνα B.57.β παρουσιάζεται, σε υψηλότερη μεγέθυνση, τις επιφανειακές ανομαλίες των συνθέτων του σωματιδιακού κλάσματος (40-90) μm, καταδεικνύοντας επίσης την ύπαρξη, σε ορισμένες περιπτώσεις, ρογχών όπου η έγχυση του κράματος είναι ατελής. Οπως διαφαίνεται από τη μελέτη της χημικής σώσας της περιοχής που επισημαίνεται στη μικροφωτογραφία της Εικόνας B.57.γ, οι ρογχές είναι πολύ πιθανό να οφείλονται σε αποκολλήσεις τημάτων των ιδίων των σωματιδίων των τεφρών, λόγω της εφαρμογόμενης πίεσης σε γειτνιάζουσες.
σε αυτά, περιοχές του συνθέτου, όπου λαμβάνει χώρα πλήρης έγχυση του τήγματος εντός της κλίνης της υπάρμενης τέφρας. Το συμπέρασμα αυτό προκύπτει από το έντονο σήμα (EDS) του Ca στην περιοχή αυτή, σε συνδυασμό με την παρατήρηση της μορφολογίας της περιοχής αυτής, η οποία παρατίθεται στην αποκόλληση: α) διαφορετικόν τμήματον του ιδίου σωματιδίου λόγω θραύσης και β) των διαφορετικών δομικών μονάδων συσσωματώματος σωματιδίων υπαρκόντων τεφρών. Η διάσπαση των συσσωματομάτων δεν αναφέρεται αποκλειστικά στην αποκόλληση δομικών μονάδων αυτών, αλλά μπορεί να αφορά και δευτερογενή τμήματα τους. Στην Εικόνα β.57.δ απεικονίζεται περιοχή σιθή του στο εσωτερικό του συνθέτου ΠΙ-C06, το οποίο αποδίδεται αποκλειστικά στην ITM. Πέριξ του σωματιδίου αυτού εντοπίζονται μικροηγγαμάτωσης, οι οποίες επίσης αποδίδονται σε ελλιπή έγχυση του κράματος. Η Εικόνα β.57.ε παραθέτει πανοραμική μικροφωτογραφία του δοκιμίου ΠΙ-C05, όπου γίνεται εμφάνιση της αρκετά ομοιογένης εσωτερική δομή του, οφειλόμενη στη συμμετοχή των πολύ λεπτών σωματιδίων της ITM, ενώ επίσης διαχωρίζονται τρεις περιοχές του συνθέτου: α) περιοχές που οφείλονται σε ενδογενείς σχηματισμούς του κράματος, όπου επίσης υπάρχουν και ξεκάθαροι σχηματισμοί με Mg (το A356 Al περιέχει 0.35 % κ.β. Mg), β) περιοχές όπου εντοπίζονται υψηλές συγκεντρώσεις Fe (σωματία ITM) και γ) περιοχές όπου κυριαρχούν τα Al, Si και Ca και αποδίδονται σε μίγματα A356 Al – υπαρκόντων τεφρών.

Κλείνοντας το υποκεφάλαιο Β.2.4, αναφέρεται ότι για πρώτη φορά χρησιμοποιούνται ασβεστούχοι τέφρες, σε τόσο υψηλά ποσοστά κ.β. συμμετοχής, για την παρασκευή υλικών με κράμα Al. Τα αποτελέσματα, όσον αφορά στην εσωτερική ομοιογένεια των υλικών αυτών, είναι ιδιαίτερως ενθαρρυντικά, κυρίως για τις περιπτώσεις όπου χρησιμοποιούνται λεπτά κλάσματα, μικρό διαμετρικού εύρους, καθώς επίσης και για τις περιπτώσεις όπου χρησιμοποιούνται τα σωματίδια των τεφρών σε αλεξμένη μορφή. Όπως θα δειχθεί και στα επόμενα υποκεφάλαια της διδακτορικής διατριβής, η ομοιογένεια της μικροδομής των υλικών αυτών αποτελεί την ικανή και αναγκαία συνθήκη για την ανάπτυξη αποδεκτών επιφανειακών και μηχανικών ιδιοτήτων εκ μέρους των συνθέτων υλικών, με αποτέλεσμα να συνιστάται η μελλοντική έρευνα στο πεδίο αυτό προς την κατεύθυνση των καινοτόμων φυσικών και χημικών μεθόδων επεξεργασίας των λεπτοκοκκών κλασμάτων, προκειμένου να βελτιστοποιηθεί η εσωτερική ομοιογένεια των συνθέτων.
Εικόνα B.56.a. Μικροφωτογραφία του δοκιμίου PI-C02, κλίμακα: 100 μμ.

Εικόνα B.56.b. Μικροφωτογραφία του δοκιμίου PI-C04, κλίμακα: 100 μμ.

Εικόνα B.56.c. Τριγωνίδιο (διάμετρος ~10μμ), πλούσιο σε Fe. Δοκίμιο PI-C06, κλίμακα: 5 μμ.

Εικόνα B.56.d. Πόρος στο εσωτερικό του δοκιμίου PI-C08, κλίμακα: 20 μμ.
Πίνακας Β.40. Χημική σύσταση των περιοχών που επισημαίνονται στις Εικόνες Β.61.γ και δ.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A1 (%)</th>
<th>B1 (%)</th>
<th>C1 (%)</th>
<th>A2 (%)</th>
<th>B2 (%)</th>
<th>C2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>21.47</td>
<td>3.51</td>
<td>72.87</td>
<td>98.20</td>
<td>69.30</td>
<td>66.69</td>
</tr>
<tr>
<td>SiO₂</td>
<td>38.50</td>
<td>3.55</td>
<td>16.00</td>
<td>1.43</td>
<td>20.51</td>
<td>16.49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.93</td>
<td>92.09</td>
<td>6.45</td>
<td>0.13</td>
<td>2.49</td>
<td>16.36</td>
</tr>
<tr>
<td>CaO</td>
<td>28.70</td>
<td>0.64</td>
<td>3.53</td>
<td>0.04</td>
<td>6.27</td>
<td>0.05</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.34</td>
<td>0.25</td>
<td>0.86</td>
<td>0.06</td>
<td>1.50</td>
<td>0.08</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.99</td>
<td>0.60</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.36</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.99</td>
<td>0.12</td>
<td>0.16</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Εικόνα Β.57.α. Μικροφωτογραφία του δοκιμίου PI-C06, κλίμακα: 50 μμ.

Εικόνα Β.57.β. Μικροφωτογραφία του δοκιμίου PI-C06, κλίμακα: 20 μμ.

Εικόνα Β.57.γ. Αποκολλήσεις σωματιδίων τεθρών στο δοκίμιο PI-C06, κλίμακα: 10 μμ.

Εικόνα Β.57.δ. Πλούσιο-σε-Fe σωματίδιο στο δοκίμιο PI-C06, κλίμακα: 10 μμ.
Εικόνα B.57.α. Μικροφωτογραφία του δοκιμίου PI-C01, κλίμακα: 20 μ.

B.2.3.4 Έλεγχος τριβολογικής συμπεριφοράς ζηρής ολίσθησης των συνθέτων υλικών A356 Al / ITK και ITM, παραχθέντων με την τεχνική της έγχυσης-υπό-πίεση

Ο Πίνακας Β.41 εκθέτει συνοπτικά τα αποτελέσματα της τριβολογικής εξέτασης των δοκιμίων των συνθέτων υλικών που παρασκευάστηκαν με τη μέθοδο της έγχυσης-υπό-πίεση, προκειμένου να μελετηθεί η επίδραση: α) του είδους της υπόμενης τόφρας, β) της κατανομής του μεγέθους των σωματιδίων της και γ) της χρήσης αλεσμένων ή μη σωματιδίων υπαμένων τεφρών, στην τριβολογική επίδοση των συνθέτων. Σημειώνεται ότι τα υλικά και οι μέθοδοι που χρησιμοποιούνται για τον τριβολογικό χαρακτηρισμό των συνθέτων της έγχυσης-υπό-πίεση είναι τα ίδια με αυτά των υλικών της κονιομεταλλουργίας.

Πίνακας Β.41. Αποτελέσματα τριβολογικών δοκιμίων των συνθέτων της -υπό πίεση- έγχυσης.

<table>
<thead>
<tr>
<th>Σείρηνο Δοκίμιο</th>
<th>Βάθος Ίγκους Φθοράς</th>
<th>Επιφάνεια Φθοράς</th>
<th>Ογκός Φθοράς</th>
<th>Συντ. Φθοράς</th>
<th>Συντ. Τριβής</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Κωδικός)</td>
<td>(µm)</td>
<td>(µm²)</td>
<td>(10⁶µm³)</td>
<td>(10⁻¹⁴ m²/N.m)</td>
<td></td>
</tr>
<tr>
<td>PI-C01</td>
<td>13.75</td>
<td>4569</td>
<td>1.43</td>
<td>76.15</td>
<td>0.510</td>
</tr>
<tr>
<td>PI-C02</td>
<td>45.50</td>
<td>30858</td>
<td>9.69</td>
<td>514.30</td>
<td>0.700</td>
</tr>
<tr>
<td>PI-C03</td>
<td>42.87</td>
<td>27037</td>
<td>8.49</td>
<td>450.62</td>
<td>0.781</td>
</tr>
<tr>
<td>PI-C04</td>
<td>31.50</td>
<td>15507</td>
<td>4.87</td>
<td>258.45</td>
<td>0.593</td>
</tr>
<tr>
<td>PI-C05</td>
<td>59.75</td>
<td>39902</td>
<td>12.53</td>
<td>665.04</td>
<td>0.761</td>
</tr>
<tr>
<td>PI-C06</td>
<td>58.50</td>
<td>45029</td>
<td>14.14</td>
<td>750.49</td>
<td>0.809</td>
</tr>
<tr>
<td>PI-C07</td>
<td>59.75</td>
<td>47953</td>
<td>15.06</td>
<td>799.22</td>
<td>0.846</td>
</tr>
<tr>
<td>PI-C08</td>
<td>23.87</td>
<td>10936</td>
<td>3.43</td>
<td>182.26</td>
<td>0.533</td>
</tr>
</tbody>
</table>
Γενικά, τα σύνθετα υλικά τα οποία παρήχθησαν με τη χρήση ITK (PI-C01 - PI-C04) παρουσιάζουν καλύτερες τριβολογικές επιδόσεις από ότι τα αντίστοιχα της ITM (PI-C05 - PI-C08). Πιστεύεται ότι κατά την έγχυση του τήγματος στην «κλίνη» των σωματιδίων των υπάμενων τεφρών, το Ca της ITK αντιδρά με το Si του κράματος, δημιουργώντας, κατά τόπους, νέες ορυκτολογικές φάσεις, σκληρότερες από ότι οι προηγούμενες, των υπάμενων τεφρών. Όπως θα δείχθει και στο υποκεφάλαιο στο οποίο μελετάται η μικροδομή του τριβολογικού έχουν των ελέγχοντων δοκιμών, οι περιοχές του συνθέτου όπου κυριαρχεί ένα μήγια Si και Ca είναι αυτές που φαίνονται ως οι λιγότερο φθαρμένες από την κυκλική διέλευση της ακίδας Al₂O₃. Μια δεύτερη παρατήρηση από τα αποτελέσματα του τριβολογικού ελέγχου των συνθέτων, είναι ότι η χρήση μικρότερων κλασμάτων υπάμενων τεφρών για την παρασκευή των υλικών οδηγεί σε χαμηλότερους συντελεστές φθοράς των υλικών, γεγονός το οποίο μπορεί να αποδοθεί: α) στα συγκεκριμένα ορυκτά των λεπτών σωματιδίων των τεφρών (<25μm), ήτοι ο ασβεστίτης (CaCO₃), στην περίπτωση της ITK, και ο χαλάζιας (SiO₂), στην περίπτωση της ITM, β) στην ασβεστούχο φύση των λεπτών σωματιδίων και επομένως στην περισσότερο εκτεταμένη αντίδραση Ca – Si στα δοκίμα των πολύ λεπτών σωματιδίων και γ) στη μηχανική αναβάθμιση των υλικών, η οποία επιτυγχάνεται, γενικά, με τη μείωση του μεγέθους. Στην πραγματικότητα, φαίνεται ότι ένας συνδυασμός των ανωτέρω παραμέτρων παίζει το σημαντικότερο ρόλο στην ανάπτυξη των τριβολογικών ιδιότητων των συνθέτων υλικών.

Όσον αφορά στη χρήση αλεσμένων σωματιδίων υπάμενων τεφρών για την παρασκευή των συνθέτων υλικών, είναι προφανές ότι η άλεση (και στις δύο περιπτώσεις) οδηγεί σε υλικά καλύτερων τριβολογικών ιδιοτήτων, από ότι η χρήση των «ως έχει» κλασμάτων των τεφρών, γεγονός που αποτυπώνεται: α) στον μικρότερο, κατά 15.5%, συντελεστή τριβής του δοκιμίου PI-C04 από το δοκίμιο PI-C02 (ITK, 25-40μm, αλεσμένο και «ως έχει», αντίστοιχα) και β) στον επίσης μικρότερο, κατά 26.6%, συντελεστή τριβής του δοκιμίου PI-C08 από το δοκίμιο PI-C06 (ITM, 25-40 μm, αλεσμένο και «ως έχει», αντίστοιχα). Επίσης, ο συντελεστής φθοράς του δοκιμίου PI-C04 είναι κατά 49.74% μικρότερος από ότι του δοκιμίου PI-C02, ενώ ο συντελεστής φθοράς του δοκιμίου PI-C08 είναι κατά ~75% μικρότερος από ότι του δοκιμίου PI-C04. Η ενεργετική επίδραση της χρήσης των αλεσμένων τεφρών στην παρασκευή των συνθέτων δοκιμίων, αποτελείται από δύο, κυρίως, παράγοντες λόγω διάσπασης της επιφανειακής υαλόδους φάσης της τέφρας και ακολούθως της απελευθέρωσης ενεργών συστατικών του Si. Πάντως, πρέπει να αναφερθεί ότι, σε άλλες περιπτώσεις, οι τριβολογικές επιδόσεις των τελικών συνθέτων υλικών είναι υποδεχόμενες από ότι του κράματος A356 Al (Σ. Τριβής: 0.455 – Σ. Φθοράς: 199.16*10⁻¹⁴ m²/N.m – Ο. Φθοράς: 30.75 mm), λαμβάνοντας, όμως, υπόψη την πολύ υψηλή χ.ο. συμμετοχή των υπάμενων τεφρών στα σύνθετα υλικά (60%), οι επιδόσεις τους δεν θα πρέπει να τίθενται σε απευθείας σύγκριση με το κράμα A356 Al, καθώς το τελικό σύνθετο αποτελεί, πρακτικά, καινούργιο υλικό στο οποίο

Διδακτορική Διατριβή, Γρηγόριος Σ. Ίαπκος 192
η τέφρα δεν συμμετέχει ως φάση «ενίσχυσης» αλλά αποτελεί μία εκ των δύο κύριων φάσεων του υλικού.

Η Εικόνα Β.58 παραθέτει τα ραβδογράμματα σύγκρισης του συντελεστή τριβής και του συντελεστή φθοράς των συνθέτων δοκιμών της έγχυσης-υπό-πίεσης. Γίνεται ξεκαθάρως ότι η σύνθεση με τη μικρότερη κοκκομετρία ΠΤΚ (<25μm) καταγράφει τις καλύτερες τριβολογικές επιδόσεις μεταξύ των εξετασθέντων συνδυασμών κράματος-τέφρας. Είναι, λοιπόν, δεδομένο, ότι στη μελλοντική αξιοποίηση των αποτελεσμάτων της διδακτορικής διατριβής, η προσπάθεια βελτιστοποίησης των ιδιοτήτων των συνθέτων A356 Al – υπαμένων τεφρών θα πρέπει να έχει ως βάση της τη σύνθεση η οποία περιλαμβάνει λεπτόκοκκο κλάσμα της ΠΤΚ, και παράλληλα να πειραματισθεί ως προς τις δυνατότητες εφαρμογής μεθόδων φυσικής / χημικής επεξεργασίας των σωματιδίων αυτών, προκειμένου να περιορισθεί, κατά το δυνατόν περισσότερο, η τάση τους να συσσωματώνονται, λόγω ηλεκτροστατικών αλληλεπιδράσεων, και συνεπώς να δημιουργούν πόρους και περιοχές χαμηλής συνεκτίκοτητας εντός των συνθέτων, υποβαθμίζοντας τη δυναμική παρασκευής αναβαθμισμένων υλικών. Γίνεται, επίσης, ξεκαθάρως από την παρατήρηση του ραβδογράμματος της Εικόνας Β.63, ότι η χρήση κλάσματος υπάμενων τεφρών με μεγάλο άρος διαμέτρων είναι απαγορευτική (όπως π.χ. στα δοκίμα PI-C03 και PI-C06), καθώς η ελλιπής ομοιογένεια των δύο φάσεων δεν δύναται να παράξει υλικά αποδεκτών ιδιοτήτων (η ποσοστιαία διαφοροποίηση του συντελεστή τριβής μεταξύ των δειγμάτων PI-C01 και PI-C03 είναι 34.7% δείχνοντας την αναγκαιότητα χρήσης των λεπτότερων σωματιδίων υπάμενων τεφρών, τα οποία, παράλληλα, θα κατέχουν διαμέτρους οι οποίες υπάρχουν σε ένα πολύ στενό άρος διακύμανσης). Στην Εικόνα Β.63, επίσης, έχουν επισημανθεί, με βέλη πράσινου και κόκκινου χρώματος, οι ράβδοι eκείνες, με την απευθείας σύγκριση των οποίων, είναι δυνατόν να εξαχθούν συμπεράσματα όσον αφορά στην επίδραση της χρήσης αλεσμένων υπάμενων τεφρών στις τριβολογικές επιδόσεις των συνθέτων υλικών της έγχυσης-υπό-πίεσης. Τα πράσινα βέλη αφορούν τα σωματίδια ΠΤΚ και τα κόκκινα βέλη, σωματίδια ΠΤΜ. Σημειώνεται ότι τα υπό συζήτηση δοκίμα περιέχουν ακριβώς το ίδιο κοκκομετρικό κλάσμα υπάμενων τεφρών, προ και κατόπιν της αλέστως τους.
Εικόνα Β.58. Συντελεστής τριβής (επάνω) και συντελεστής φθοράς (κάτω) των δοκιμίων που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση.

Β.2.3.5 Έλεγχος μικροδομής ίχνους τριβιλογικής φθοράς των υλικών A356 – ITK και ITM έγχυσης-υπό-πίεση

Κατά την εξέταση των συνθέτων δοκιμίων με τη χρήση Ηλεκτρονικής Μικροσκοπίας Σάρωσης υπάρχει μεγάλος αριθμός διακριτών αυλακώσεων εντός του ίχνους της φθοράς τους. Οι αυλακώσεις αυτές δημιουργούνται από το επιφανειακό «όργωμα» (ploughing) το οποίο προκαλεί η κυκλική κινούμενη ακίδα Al2O3 μέσω της τριβής της με τα (κεραμικής φύσης) σωματίδια των ιπτάμενων τεσσάρων. Συμπεραίνεται, λοιπόν, ότι η επίδραση των σωματιδίων των ιπτάμενων τεσσάρων στη διακύμανση των τιμών του συντελεστή τριβής του κάθε υλικού (ο μέσος όρος των τιμών που δίδονται σε πραγματικό χρόνο λαμβάνεται ως ο τελικός συντελεστής τριβής του κάθε δοκιμίου) προκύπτει, κυρίως, μέσω του σχηματισμού των αυλακώσεων αυτών, και συνεπώς της πλαστικής παραμόρφωσης της μήτρας του υλικού, καταλήγοντας σε θραύσεις και στη δημιουργία μικρών ρωγών, όπως παρατηρήθηκε και στην περίπτωση των υλικών της κονιομεταλλουργίας, σε μικρότερη, φυσικά, κλίμακα, λόγω
και της χαμηλότερης ποσοστιαίας κ.β. συμμετοχής των υπάμενων τεφρών. Όπως και στις περιπτώσεις των υλικών της κονιομεταλλουργίας, οι περιοχές πέρα των επιφανειακών μικροκρατήρων χαρακτηρίζονται, τόσο από επίπεδη, όσο και από ανομαλή υφή, με κατεύθυνση παράλληλη της κατεύθυνσης της ολίσθησης, υποδεικνύοντας ότι η φθορά είναι φθορά πρόσφυσης (adhesive wear). Σημειώνεται ότι η δημιουργία μικροκρατηρίων, μικροσχημών και μικρορηγματώσεων λόγω της τριβής του συστήματος ακίδας Al2O3–σωματιδίων ΙΤ είναι πιο περιορισμένη στην περίπτωση των συνθέτων Al A356 – ΙΤΚ, από ότι στα σύνθετα της ΙΤΜ, λόγω της μεγαλύτερης ανθεκτικότητας που προσδίδει στα πρώτα, η δημιουργία νέων φάσεων από την αντίδραση Ca (ΙΤΚ) – Si (A356 Al). Προφανώς, το γεγονός αυτό αποτυπώνεται και στους χαμηλότερους συντελεστές τριβής των δοκιμών της ΙΤΚ, οι οποίοι έχουν προκύψει ως άμεση συνέπεια του μικρότερου αριθμού επιφανειακών αυλακώσεων στις φθαρμένες επιφάνειες των δοκιμών αυτών. Οι περιοχές της φθοράς πρόσφυσης του συστήματος ακίδας Al2O3 – σωματιδίων ΙΤ είναι τελικά σκληρότερες, λόγω των επαναλαμβανομένων πλαστικών παραμορφώσεων που συμβαίνουν εκεί, καθώς επίσης και λόγω της υπερυγκέντρωσης υλικού που προκύπτει από το σχηματισμό πόρων (καθώς επίσης και της εξάρθρωσης σωματιδίων), πέρα των περιοχών αυτών. Σημειώνεται ότι, όπως και σε προηγούμενες μελέτες [58-60], έτσι και σε αυτήν την περίπτωση, παρατηρείται ότι η φθορά των συνθέτων δοκίμων συνδέεται, πολλές φορές, από αποκολλήσεις των τμημάτων εκείνων του κράματος που είναι προσκολλημένα στα σωματίδια των τεφρών.

Οι Ευκόνες B.59.α-στ δείχνουν επιλεγμένες μικροφωτογραφίες Ηλεκτρονικής Μικροσκοπίας Σάρωσης από το ίχνος της τριβολογικής φθοράς των δοκιμών A356 Al – ΙΤΚ και ΙΤΜ της εγχώριας-υπό-πίεσης. Στις Ευκόνες B.59.α και β γίνεται εμφάνιση της επίδρασης της τριβής του συστήματος ακίδας Al2O3 – σωματιδίων ΙΤ στην επιφανειακή αναδιάταξη της δομής των συνθέτων. Οι μικροφωτογραφίες αυτές αναφέρονται στα σύνθετα υλικά τα οποία έχουν παραχθεί με τα κλάσματα ΙΤΚ και ΙΤΜ (αντίστοιχα), τα οποία κατέχουν το μεγαλύτερο εύρος διαμέτρων από όσα χρησιμοποιήθηκαν, και, όπως προέκυψε από τον τριβολογικό τους έλεγχο, η φθορά έχει εξελιχθεί σε μεγαλύτερα βάθη από όλα τα δοκίμα (42.87 μμ και 58.50 μμ, αντίστοιχα). Είναι εμφανείς οι εκτεταμένες αυλακώσεις και ρηγματώσεις στις φθαρμένες επιφάνειες των δεχμάτων αυτών, καθώς επίσης και οι επιπλέον πόροι οι οποίοι δημιουργούνται στις φθαρμένες περιοχές της επιφάνειας, και οδηγούν σε υπερυγκέντρωση υλικού πέρα αυτών. Στην Ευκόνα B.59.γ επισημαίνονται τρία σημεία στα οποία η τριβή της ακίδας με το κράμα A356 Al οδηγεί στο σχηματισμό πολύ λεπτών υμειών Al2O3. Τέτοιου είδους τρίτα σώματα (οι, προς τη συγγένεια τους με τις δύο κύριες φάσεις των συνθέτων) δημιουργούνται αναπόφευκτα ως αποτέλεσμα της ομοιομορφίας ολίσθησης μεταξύ των επιφανειών του ζεύγους σύνθετο-ακίδα και της συνεπακόλουθης μεταφοράς υλικού από τη μία επιφάνεια στην άλλη [58]. Όπως θα δειχθεί αργότερα, κατά τη μελέτη της χημικής
σύστασης των επιφανειακών υπολειμμάτων των δοκιμίων κατάπιν της τριβολογικής εξέτασής
tους, η μεταφορά υλικού από τη μια επιφάνεια στην άλλη λαμβάνει χώρα, τόσο για τα
σύνθετα της ITK, όσο και της ITM. Στην Εικόνα B.59.δ, δίδεται μια μικροφωτογραφία που
απεικονίζει ρηγματώσεις των σωματιδίων των υπάμενων τεφρών, δίπλα σε περιοχή
ekεταμένον αυλακώσεων. Η Εικόνα B.59.ε δείχνει τη μικροφωτογραφία των σχημών στο
φθαρμένο δοκίμιο PI-C06. Από τη χημική χαρτογράφηση των σημείων που επισημαίνονται
με τις ενδείξεις Α και Β, προκύπτει ότι, συγκεκριμένες περιοχές των συνθέτων όπου οι
συγκεντρώσεις Fe και Ca είναι αυξημένες, ή με άλλα λόγια η παρουσία αματίτη και
ασβεστίτη είναι έντονη, μπορούν να δρουν αποτελεσματικότερα όσον αφορά στην ανακοπή
tης εξέλιξης των μικροσχημών στο φθαρμένο δοκίμιο. Η Εικόνα B.59.στ καταδεικνύει
eketaménes rghmatósseis sthn epiφáníne sthn epiφánneia twn φθarémon o dokimiów PI-C08.

Εικόνα B.59.a. Μικροφωτογραφία της
φθαρμένης επιφάνειας του δοκιμίου PI-C03,
κλίμακα: 200 μμ.

Εικόνα B.59.b. Μικροφωτογραφία της
φθαρμένης επιφάνειας του δοκιμίου PI-C06,
κλίμακα: 200 μμ.

Εικόνα B.59.y. Υμένια Al₂O₃ εντός του ίχνους
φθοράς του δοκιμίου PI-C06, από την τριβή της
επιφάνειας του δοκιμίου με την ακίδα Al₂O₃,
κλίμακα: 100 μμ.

Εικόνα B.59.d. Διαπερασμένα σωματίδια ITM,
εντός του ίχνους φθοράς του δοκιμίου PI-C07,
κλίμακα: 10 μμ.
Οι Εικόνες B.60.α-γ περιλαμβάνουν διαφορετικές απεικονίσεις της επιφάνειας του φθαρµένου δοκιµού PI-C01, το οποίο είναι και το ανθεκτικότερο στη φθορά λόγω τριής και το οποίο, παρά το γεγονός ότι αποτελείται κατά 60% από σωματίδια υπάρχουν τρεξφών, αποκτά συντελεστή τριής μόλις κατά ~10% υψηλότερο από ότι το A356 Al. Ο δε συντελεστής φθοράς του είναι χαμηλότερος από ότι αυτός του κράµατος (76.15*10^{-14} \text{ m}^3/\text{N.m} - 199.16*10^{-14} \text{ m}^3/\text{N.m}, κανονικοποιηµένος συντελεστής φθοράς = 76.15 / 199.16 = 0.38).

Όπως γίνεται εµφανές από τη σύγκριση της φθαρµένης επιφάνειας του δοκιµού PI-C01 µε τα υπόλοιπα της ΙΤΚ, αλλά και της ΙΤΜ, το αποτύπωµα του ίχνους της τριβολογικής φθοράς είναι αρκετά «φηχώ» (βάθος ίχνους φθοράς: 13.75 µm), φανερότερος τη θετική επίδραση των συστατικών του λεπτόκοκκου κλάµατος της ΙΤΚ, όσον αφορά στην προβαλλόµενη αντίσταση της επιφάνειας του συνθέτου. Στην Εικόνα B.60.γ, φαίνεται η επέκταση της δηµιουργίας ρογμών και πέραν των ορίων του ίχνους της τριβολογικής φθοράς. Απαρχή της δηµιουργίας του ρήµατος πιστεύεται ότι είναι οι πόροι στις περιοχές περίχ του ίχνους της επιφανειακής φθοράς του υλικού.
Εικόνα B.60.a. Μικροφωτογραφία του φθαρμένου δοκιμίου PI-C01, κλίμακα: 500 μμ.

Εικόνα B.60.β. Πανοραμική μικροφωτογραφία του φθαρμένου δοκιμίου PI-C01, κλίμακα: 200 μμ.

Εικόνα B.60.γ. Ρηγμάτωση στην επιφάνεια του φθαρμένου δοκιμίου PI-C01, κλίμακα: 50 μμ.

Σε αντιδιαστολή με το ανθεκτικό δοκίμιο PI-C01, οι Εικόνες B.61.α και β παραθέτουν μικροφωτογραφίες του φθαρμένου δοκιμίου PI-C07 το οποίο παρουσιάζει τη μικρότερη ανθεκτικότητα έναντι της τριβής από τα εξετασθέντα δοκίμια, γεγονός που αποδείχθηκε στις φυσικο-χημικές ιδιότητες του κλάσματος (40-90)μ, καθώς επίσης και στο μεγάλο εύρος της διαμέτρου των σωματιδίων. Το μεγάλο βάθος του ίχνους φθοράς του δοκιμίου PI-C07 (59.75μμ) αποτελούνται στις μικροφωτογραφίες αυτές, καθώς επίσης και η εκτεταμένη δημιουργία αυλακώσεων και ρωγμών. Στο δοκίμιο PI-C07 εντοπίζονται θραυσμένα σωματίδια υπάρχουν τεφρών, τα οποία συνήθως ανήκουν και στα μεγαλύτερα εξ αυτών του κλάσματος (40-90) μμ που χρησιμοποιήθηκαν για τη σύνθεση του δοκιμίου (και πιθανώς επίσης και η εκτεταμένη δημιουργία αυλακώσεων και ρωγμών). Οι Εικόνες B.61.γ και β παραθέτουν απεικονίσεις του εσωτερικού του ίχνους φθοράς του PI-C08, σε υψηλότερη μεγέθυνση από ότι η Εικόνα B.59.στ, προκειμένου να γίνει εμφανής η εσωτερική σύσταση των αποσπασμένων τμημάτων. Στον Πίνακα B.42 διδάσκεται ο μέσος όρος
της συγκέντρωσης των κύριων οξειδίων των τεσσάρων περιοχών που επισημαίνονται με λευκό ελλειπτικό σχηματισμό.

Εικόνα Β.61.α. Μικροφωτογραφία του φθαρμένου δοκιμίου PI-C07, κλίμακα: 500 µm.

Εικόνα Β.61.β. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C07, κλίμακα: 200 µm.

Εικόνα Β.61.γ. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C08, κλίμακα: 100 µm.

Εικόνα Β.61.δ. Μικροφωτογραφία εντός του ήχους φθοράς του δοκιμίου PI-C08, κλίμακα: 20 µm.

Πίνακας Β.42. Ανάλυση EDS στα σημεία A-D της Εικόνας Β.66.δ.

<table>
<thead>
<tr>
<th>Ένωση</th>
<th>A (%)</th>
<th>B (%)</th>
<th>C (%)</th>
<th>D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>41.36</td>
<td>41</td>
<td>39.2</td>
<td>41.13</td>
</tr>
<tr>
<td>SiO₂</td>
<td>36.44</td>
<td>32.55</td>
<td>37.15</td>
<td>32.1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.78</td>
<td>4.65</td>
<td>4.12</td>
<td>4.65</td>
</tr>
<tr>
<td>CaO</td>
<td>14.5</td>
<td>21.17</td>
<td>18.98</td>
<td>21.15</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Σημειώνεται ότι η αμοιβαία μεταφορά υλικού από την ακίδα στο δοκίμιο είναι σχεδόν άμεσης ποσότητας στα (σκληρότερης επιφάνειας) σύνθετα της ΙΤΚ, ενώ η απόλεια υλικού
από την πλευρά των συνθέτων ITM είναι υψηλότερη, όπως προκύπτει από τα αποτελέσματα του Πίνακα B.42, τα οποία αναφέρονται στη χημική σύσταση των επιφανειακών υπολειμάτων (wear debris) των φθαρμένων δοκιμίων PI-C03 και PI-C07.

Πίνακας B.42. Χημική σύσταση των επιφανειακών υπολειμάτων (wear debris) των φθαρμένων δοκιμίων PI-C03 και PI-C07.

<table>
<thead>
<tr>
<th>Ενόση</th>
<th>PI - C03 (%)</th>
<th>PI - C07 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>84.33</td>
<td>75.95</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>9.40</td>
<td>16.85</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>1.13</td>
<td>3.42</td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>4.22</td>
<td>2.87</td>
</tr>
<tr>
<td>(\text{SO}_3)</td>
<td>0.35</td>
<td>0.42</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td>0.10</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Κλείνοντας το υποκεφάλαιο της εξέτασης των τριβολογικών επιδόσεων των συνθέτων υλικών της έγχυσης-υπό-πίεση, σημειώνεται ως κεντρικό συμπέρασμα ότι η χρήση του λεπτόκοκκου κλάσματος της ITK αποτελεί τη βέλτιστη επιλογή πρώτης ύλης (ανάμεσα στις ελεγχθείσες), αναφορικά με την αντοχή των συνθέτων υλικών στην τριβολογική φθόρα. Επίσης, προκύπτει σαφώς, ότι η άλεση των σωματιδίων των ITK και ITM ενοεί αποφαινομένως τις τριβολογικές ιδιότητες των υλικών. Προκύπτει επίσης ότι οι τριβολογικές ιδιότητες των συνθέτων υπολειμάτων σαφώς περιλαμβάνουν τον ενός εκ των δύο συστατικών τους (A356 Al) (όπως αναμένεται), παρόλα αυτά η στοχευμένη επεξεργασία συγκεκριμένων σωματιδιακών κλασμάτων των πιθανών τεχνών (όπως π.χ., η απομόνωση και χρήση των πολύ λεπτών σωματιδίων της ITK) δύναται να οδηγήσει στην παρασκευή συνθέτων με χαμηλότερα συντελεστή φθόρας από το κράμα A356 Al, και συντελεστή τριβής που υπολειπόταν μόνο οριακά από αυτού.

Όπως θα διεξηγηθεί στο επόμενο υποκεφάλαιο, τα αποτελέσματα των τριβολογικών δοκιμων συνάδουν με τα αντίστοιχα ευρήματα της επιφανειακής σκληρότητας των παραγόντων υλικών, ενσωμάτωσαν τα παραπάνω συμπεράσματα.

B.2.3.6 Επιφανειακή σκληρότητα υλικών A356 – ITK και ITM έγχυσης-υπό-πίεση

Ο Πίνακας B.43 παραθέτει τα αποτελέσματα των μετρήσεων της επιφανειακής σκληρότητας κατά Vickers, για τα σύνθετα υλικά κράματος A356 Al – ITK και ITM, εξαχθείσας κατά τον ίδιο τρόπο με τα υλικά της κονιομεταλλουργίας (ακολουθείται η κωδικοποίηση των συνθέτων με βάση το προηγούμενο κεφάλαιο, των τριβολογικών δοκιμων). Η πρώτη παρατήρηση που προκύπτει από τα αποτελέσματα αυτά, είναι ότι η τάση που επιδείκνυαν τα σύνθετα υλικά κατά τον τριβολογικό τους έλεγχο, επαληθεύεται, εν πολλοίς, και από τις δοκιμές μέτρησής της σκληρότητας τους. Επιβεβαιώνεται, δηλαδή, η
παρατήρηση ότι η χρήση των πολύ λεπτών σωματιδίων ITK αποτελεί τη βέλτιστη επιλογή, ενώ παράλληλα επιβεβαιώνεται και το αντίστοιχο συμπέρασμα αναφορικά με τη χρήση των αλεσμένων σωματιδίων υπάρχοντων τερρών, έναντι των «ως παρελήφθησαν». Η Εικόνα Β.62 παραθέτει τα ραβδογράμματα της σύγκρισης των τιμών της επιφανειακής σκληρότητας των διαφόρων δοκιμών που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση. Στην εικόνα αυτή επισημαίνονται οι ράβδοι που απεικονίζουν τα υλικά που παρήχθησαν με τη χρήση αλεσμένων και μη, τερρών (με πράσινο βέλος: υλικά ITK, με κόκκινο βέλος: υλικά ITM) προκειμένου για την απευθείας, ανά ζεύγος, σύγκριση των δύο.

Πίνακας Β.43. Επιφανειακή σκληρότητα (Vickers) των συνθέτων υλικών που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση.

<table>
<thead>
<tr>
<th>Κωδικός Συνθέτου</th>
<th>PI-C01</th>
<th>PI-C02</th>
<th>PI-C03</th>
<th>PI-C04</th>
<th>PI-C05</th>
<th>PI-C06</th>
<th>PI-C07</th>
<th>PI-C08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σκληρότητα (VHN)</td>
<td>97</td>
<td>91</td>
<td>86</td>
<td>94</td>
<td>92</td>
<td>88</td>
<td>81</td>
<td>95</td>
</tr>
</tbody>
</table>

Εικόνα Β.62. Επιφανειακή σκληρότητα των συνθέτων που παρήχθησαν με την τεχνική της έγχυσης-υπό-πίεση.
Παρακάτω, δίδονται συνοπτικά τα γενικά συμπεράσματα της υποενότητας Β.2.1.7, που αφορά στη σύνθεση των υλικών A356 Al – ITK και ITM με την τεχνική της -υπό πίεση-έγχυσης του τημένου μετάλλου στην «κλίνη» των σωματιδίων των ιπταμένων τεφρών.

- Αποδεικνύεται ότι η ασβεστούχος σύσταση των ελληνικών ΙΓ δεν συνιστά εμπόδιο στην επιτυχή παρασκευή συνθέτων μήτρας A356 ΑΙ με την τεχνική της -υπό πίεση-έγχυσης του τημένου κράματος στους κενούς χώρους μεταξύ των σωματιδίων των τεφρών. Αντιθέτως, ο σχηματισμός νέων φάσεων λόγω αντίδρασης του Ca των τεφρών με το Si του κράματος, φάσεων σκληρότερων από ότι οι προηγούμενες του τεφρών, φαίνεται ότι λειτουργεί ευγενικά, όσον αφορά στην ανάπτυξη των επιφανειακών ιδιότητών των νέων συνθέτων υλικών.

- Η άλεση των τεφρών διευκολύνει την επιτυχή παρασκευή των συνθέτων υλικών και επίσης βελτιώνει τις, συσχετιζόμενες με την επιφανειακή σκληρότητα και την αναχαίτιση της τριβολογικής φθοράς, ιδιότητές τους. Μέσο της αλέσεως, διασπάται η υαλόδηξη φάση των σωματιδίων των ιπτάμενων τεφρών και, κατά συνέπεια, περιέχουν περισσότερο ενέργεια συστατικά, λόγω της απελευθέρωσης δραστικού Si. Ενώ, ταυτοχρόνως, η διάμετρος των σωματιδίων τους βρίσκεται εντός ενός επιθυμητού εύρους διαμέτρου.

- Η ανά περιπτώσεις εμφάνιση πορώδους παρατηρήθηκε σε περιοχές των συνθέτων όπου τα σωματίδια των τεφρών είναι πολύ κοντά το ένα στο άλλο. Η ύπαρξη πόρων αποδίδεται στη χαμηλή πίεση που εφαρμόζεται στις «διασυνοριακές» περιοχές ένωσης των κόκκων των συνθέτων υλικών.

- Στην περίπτωση της ITK, το βέλτιστο κοκκομετρικό κλάσμα, όσον αφορά στη σύνθεση και στην ανάπτυξη της σκληρότητας και των τριβολογικών ιδιοτήτων των υλικών, είναι το λεπτόκοκκο της κλάσματα, με διάμετρο <25 μ. Στην περίπτωση της ITM, το βέλτιστο κλάσμα είναι με διάμετρο 25-40 μ, αφού οποιεσδήποτε άλεση.

- Η χρήση των λεπτόκοκκων σωματιδίων ΙΓ μπορεί να οδηγήσει σε σύνθετα υλικά με βελτιωμένες ιδιότητες. Εντούτοις, εξαιτίας των αναπτυσσόμενων ηλεκτροστατικών δυνάμεων, τα λεπτόκοκκα σωματίδια, τείνουν εντόσα να σχηματίζουν συσσωματώματα, εμποδίζοντας έτσι την επίτευξη της, κατά το δυνατόν, καλύτερης ομοιογένειας κράματος – τεφρών.

- Οι τριβολογικές ιδιότητες των συνθέτων υπολείπονται σαφώς του ενός εκ των δύο συστατικών τους (A356 Al) (όπως αναφέρθηκε), παρόλα αυτά η στοιχειομένη επεξεργασία συγκεκριμένων σωματιδιακών κλασμάτων των ιπτάμενων τεφρών.
Β. Πειραματικό Μέρος

(όπως π.χ. η απομόνωση και χρήση των πολύ λεπτών σωματιδίων της ΙΤΚ) δύναται να οδηγήσει στην παρασκευή συνθέτων με χαμηλότερο συντελεστή φθοράς από το κράμα A356 Al, και συντελεστή τριβής που υπολείπεται μόνο οριακά από αυτού.

- Συμπεραίνεται ότι η επόμενη μεγάλη πρόκληση αναφορικά με την ανάπτυξη συνθέτων μέταλλο-κεραμικών υλικών μήτρας κραμάτων Al και φάσης ενίσχυσης IT είναι η επίτευξη «από-συσσωμάτωσης» των σωματιδίων IT.

Β.2.4 Παρασκευή συνθέτων υλικών A356 Al – ITK και ITM με την τεχνική της χύτευσης-υπό-ανάδευση

Η υποενότητα Β.3 αναφέρεται στην εφαρμογή της τεχνικής της χύτευσης-υπό-ανάδευση για την προσθήκη σωματιδίων τεφρών με πολύ υψηλή συγκέντρωση Ca σε τήγμα κράματος A356 Al. Σημειώνεται ότι το κύριο μέρος των πειραμάτων σύνθεσης των υλικών με τη μέθοδο της χύτευσης-υπό-ανάδευση, όπως και της εγχυσίας-υπό-πιεση έλαβε χώρα στο Πανεπιστήμιο του Ουικόκσνσιν στο Μιλάνουκέι (University of Wisconsin-Milwaukee / Center for Composites), υπό τον Prof. Pradeep K. Rohatgi, παγκόσμιο «κατάρα» της ιδέας των συνθέτων κραμάτων Al - τεφρών. Συμπληρωματικά πειράματα χύτευσης-υπό-ανάδευση έγιναν επίσης στο Νορβηγικό Πανεπιστήμιο Επιστήμης και Τεχνολογίας (Norwegian University of Science and Technology, NTNU, Trondheim, Norway), υπό τον Prof. Hans J. Roven.

Η τεχνική της χύτευσης-υπό-ανάδευση για την ενίσχυση του κράματος A356 Al με σωματίδια υπάρχουν τεφρών, περιλαμβάνει την ανάδευση του τηγμένου κράματος με τη χρήση καταλλήλου, ανθεκτικού σε υψηλές θερμοκρασίες, μηχανικού αναδεικτή, με την παράλληλη προσθήκη των σωματιδίων των υπάρχουν τεφρών. Μετά την ανάμειξη των δύο φάσεων, ακολουθεί το στάδιο της στερεοποίησης του υγρού μίγματος. Τα σύνθετα δοκίμα είναι δυνατά να μορφοποιηθούν περαιτέρω με τη χρήση διαφόρων τεχνικών, όπως π.χ. η εξόβθηση.

Η χύτευση-υπό-ανάδευση αποτελεί ιδιαιτέρα υποσχόμενη μέθοδο για την παρασκευή συνθέτων υλικών κράματος Al - υπάρχουν τεφρών, λόγω της σχετικής απλότητάς της, καθώς επίσης και της εύκολης εφαρμογής της για λήψη τελικών υλικών σε διαφόρους σχηματισμούς. Το βασικότερο μειονέκτημα της μεθόδου της χύτευσης-υπό-ανάδευσης, είναι η διασκολία της ενσωμάτωσης των σωματιδίων σε τκέθρα στο τήγμα της μεταλλικής μήτρας. Στη συγκεκριμένη μελέτη, το γεγονός αυτό αποτέλεσε βασικό θέμα προς επίλυση καθώς το Ca δεν αντιδρά με το Al όπως συνάγεται από το διάγραμμα Ellingham και η γονία διαβροχής των σωματιδίων ITK φαινεται ότι δεν επιτρέπει την ενσωμάτωση τους στο κράμα. Πέρα, όμως, από την ειδική περίπτωση της ITK, γενικά τα σωματίδια των τεφρών δε διαβρέχονται
β. Περιγραφή Μέρος

εύκολα από τα τηγμένα κράματα Al λόγω και της διαφοράς της πυκνότητας των δύο φάσεων, συνήθως επιπλέοντας επί του τήγματος, καταλήγοντας σε δυσκολία παρασκευής συνθέτων υλικών Al – υπάρχουν τεφρών. Με την εφαρμογή μηχανικής ανάδευσης μεγάλης έντασης είναι δυνατόν, εν μέρει, να υπερνικηθούν οι επίφανειακές τάσεις, παρόλα αυτά η λύση αυτή δε φάνηκε να έχει αντίστοιχα θετικά αποτελέσματα στην περίπτωση της διαβροχής υπαμένου τεφρών – τήγματος.

Ακόμα, όμως, και σε περιπτώσεις κατά τις οποίες τα σωματίδια των υπαμένων τεφρών δεν απορρίπτονται από το τήγμα του κράματος, αυτά τείνουν να συγκεντρώνονται στις υπηλές ζώνες της εκάστοτε κάψας στην οποία παρασκευάζεται το υλίκο, με αποτέλεσμα να παραμένει στον πυθμένα της κάψας μια περιοχή από την οποία εκλείπουν σωματίδια υπαμένον τεφρών, υποβαθμίζοντας την ομοιογένεια, και συνεπώς τις ιδιότητες, των τελικών συνθέτων. Θα πρέπει να σημειωθεί ότι η διάταξη των σωματιδίων των υπαμένων τεφρών εντός του συνθέτου είναι αυτή που κατά κύριο λόγο καθορίζει τις ιδιότητες των συνθέτων. Η κατανομή των σωματιδίων των τεφρών εντός του τήγματος, εξαρτάται επίσης από τους παρακάτω παράγοντες:

- Το εξόδος του τηγμένου κράματος,
- Το σχήμα και το μέγεθος των σωματιδίων των τεφρών, καθώς επίσης και ο ύψος που αυτά καταλαμβάνουν στο τήγμα,
- Το ειδικό βάρος σωματιδίων και κράματος,
- Τις θερμικές ιδιότητες των σωματιδίων των τεφρών και του κράματος,
- Τη χημική, ορυκτολογική σύσταση και τη μορφολογία των διαφορετικών φάσεων οι οποίες κρυσταλλώνονται,
- Τις χημικές αλληλεπιδράσεις μεταξύ μεταλλικής-κεραμικής φάσης,
- Την ενσωμάτωση ή μη των σωματιδίων των υπαμένων τεφρών από το τήγμα κατά τη στερεοποίηση του συνθέτου υλικού,
- Την συσσωμάτωση των προστιθέμενων σωματιδίων και
- Την παρουσία ή μη άλλων εξωτερικών δυνάμεων κατά τη στερεοποίηση του μίγματος.

B.2.4.1 Υλικά και Μέθοδοι για την παρασκευή των συνθέτων υλικών A356 Al – ΙΤΚ και ΙΤΜ με την τεχνική της χύνεσης-υπό-ανάδευση

Για την παρασκευή των συνθέτων υλικών μήτρας A356 Al και υλικού ενίσχυσης ΙΤΚ και ΙΤΜ με τη μέθοδο της χύνεσης-υπό-ανάδευση, ράβδοι A356 Al τήκονται με τη χρήση ηλεκτρικού φούρνου (Εικόνα B.65.α), στους 700°C σε ειδική κάψα από γραφίτη, η οποία επικαλύπτεται εσωτερικά με νιτρίδιο του βορίου (BN). Τα κοκκομετρικά κλάσματα των
ιπτάμενων τειρπών που τειλικά επιλέγονται προς χρήση είναι τα λεπτόκοκκα (<25 μm) των ΙΤΚ και ΙΤΜ. Η επιλογή των -κατά το δυνατόν- μικρότερης διαμέτρου, σωματίδιων τειρών, γίνεται λόγω επιδιώξεως αποφυγής σχηματισμού συσσωματωμάτων, τα οποία προκύπτουν έχοντας ως «βάση» τα μεγαλύτεροι μεγέθους σωματίδια [36]. Επίσης, αναφέρεται ότι έγιναν απόπειρες σύνθεσης των υλικών και με χρήση μεγαλύτερων σωματίδιων τειρών (για λόγους συγκρισιμότητας των συνθηκών παρασκευής των υλικών), από τις οποίες προέκυψε ότι σχεδόν ολόκληρη η ποσότητα των τειρών απορρίπτεται από το τήγμα του κράματος.

Πριν από την προσθήκη τους στο τήγμα, τα σωματίδια των τειρών προθερμαίνονται για να διευκολυνθεί η διαβροχή τους με το τηγμένο κράμα. Τα σωματίδια προθερμαίνονται στους 800°C για 8 ώρες, με ρυθμό ανάδονο της θερμοκρασίας ίσο με 100°C/h για την απομάκρυνση της υγρασίας και των εγκεκλεισμένων ποσοτήτων αέρα από την επιφάνεια των σωματίδιων των τειρών ώστε να είναι πιο άμεση η επαφή σωματίδιου τέφρας - τηγμένου κράματος. Επίσης, ώστε παράγοντας αύξησης της διαβροχής και της ενσωμάτωσης των σωματίδιων των τειρών στο τήγμα, ιδιαίτερα στην περίπτωση της ΙΤΜ (λόγω Si), χρησιμοποιούνται τεμάχια Mg και αυτό οφείλεται στην διεπάνων που σχηματίζεται μεταξύ SiO2 και Mg (Αντιδράσεις 8 & 9). Το σύνολο του μίγματος τέφρας - Mg τοποθετείται σε αλουμινόχαρτο προκειμένου να προστεθεί στο τήγμα, Εικόνα B.65.β. Αναφέρεται ότι το Mg δεν παρεμποδίζει το σχηματισμό συσσωματωμάτων εντός της μήτρας.

\[
2 \text{Al}_3(l) + \text{Mg}_2(l) + 2\text{SiO}_2(s) \rightarrow \text{MgAl}_2\text{O}_4(s) + 2\text{Si}(s) \quad (8)
\]
\[\Delta G = -440.7 \text{ KJ/mol} \quad (730°C)\]

\[
3 \text{Mg}(l) + 4\text{Al}_2\text{O}_3(s) \rightarrow 3\text{Mg Al}_2\text{O}_4(s) + 2\text{Al}(l) \quad (9)
\]
\[\Delta G = -257.6 \text{ KJ/mol} \quad (730°C)\]

Η ανάδευση του τήγματος γίνεται με αναδευτήρα από γραφίτη, ο οποίος έχει επικαλυπτεί επίσης με BN (Εικόνα B.65.γ). Στο -υπάναδευση- τήγμα του κράματος (μηχανική ανάδευση / 600 rpm / ατμόσφαιρα Ar) εισάγονται τα «πακέτα» των τειρών - θρασμάτων Mg (2% κ.β. επί της τέφρας). Η θερμοκρασία εισαγωγής των τειρών στο τήγμα, υπό την παράλληλη ανάδευση τους έγινε στους 750°C, όμως λόγω της εκτεταμένης απόρριψης των τειρών από το κράμα η θερμοκρασία του τήγματος αυξήθηκε και τειλικά τα δοκίμα παράλληλης η ανάδευσης είναι 910°C. Στον Πίνακα Β.44 δίδονται οι θεωρητικές γωνίες διαβροχής των ιπτάμενων τειρών με το Al, σε διάφορες θερμοκρασίες τήγματος [61]. Προκειμένου να επιτευχθεί η κατά το δυνατόν, καλύτερη διασπορά των σωματιδίων της τέφρας στο κράμα, επιλέγεται ιδιαίτερα χαμηλός ρυθμός πρόσθεσης της στο τήγμα, ήτοι 0.5-

Πειραματικό Μέρος

Διδακτορική Διατριβή, Γρηγόριος Σ. Παπακωστίου 205
1 gr / min. Ως μήτρες μορφοποίησης των δοκιμών χρησιμοποιήθηκαν κυλινδρικά & ορθογώνια καλούπια χάρτευσης.

Εικόνα B.65.a. Διάταξη παρασκευής των συνθέτων υλικών A365 Al.

Εικόνα B.65.b. Μίγμα ITM - τεμαχίον Mg

Εικόνα B.65.γ. Αναδευτήρας από γραφέτη που κατασκευάστηκε για τις ανάγκες της διδακτορικής διατριβής. Επικάλυψη με BN.

Πίνακας B.44. Γεωνία διαβροχής υπόμενων τεσσάρων (Class F) / Al σε συνάρτηση με τη θερμοκρασία (χρόνος 120min) [61].

<table>
<thead>
<tr>
<th>Θερμοκρασία (°C)</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γεωνία διαβροχής (°)</td>
<td>124</td>
<td>90</td>
<td>42</td>
<td>29</td>
</tr>
</tbody>
</table>

Στις Εικόνες B.66.a-στ δίδονται στιγμούτα περί παρασκευής των συνθέτων υλικών A356 Al με την τεχνική της χάρτευσης-υπό-ανάδευση. Κατά την παραγωγική διαδικασία των υλικών, είναι απαραίτητη η παρουσία δύο ατόμων, ένα για την ανάμιξη και ένα για την προσθήκη των σωματιδίων των υπάρχον τεσσάρων. Επίσης ένα τρίτο άτομο παρευρίσκεται στο χώρο των χαλάσεων για λόγους ασφαλείας. Τα υλικά μήτρας A356 Al που παρήχθησαν περιέχουν ~10% κ.β. ΙΤΚ και ΙΤΜ.
Εικόνα B.66.α. Προσθήκη σωματιδίων ITK στο υπό-ανάδευση τηγμα του κράματος A356 Al.

Εικόνα B.66.γ. Χύνεση συνθέτου A356 Al – ITK 10% σε κυλινδρικό καλύπτη.

Εικόνα B.66.δ. Απόθεση υπολειμματικού υλικού της χύνεσης.

Εικόνα B.66.ε.τ. Δοκίμια του συνθέτου A356 Al – ITK 10%.
Β. Πειραματικό Μέρος

Β.2.4.2 Εξέταση της μικροδομής των συνθέτων υλικών που παρασκευάσθηκαν με την τεχνική της χώτευσης-υψό-ανάδειξη

Ο Πίνακας Β.45 παραθέτει τις συνθέσεις των δύο δοκιμών που παρήχθησαν με τη μέθοδο της χώτευσης-υψό-ανάδειξη. Η προσθήκη ΙΤ στο κράμα ανέρχεται στο ποσοστό του 10% κ.β.

Πίνακας Β.45. Κωδικοποίηση δοκιμών συνθέτων υλικών χώτευσης-υψό-ανάδειξη.

<table>
<thead>
<tr>
<th>Δοκίμα</th>
<th>SC1</th>
<th>SC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μήτρα</td>
<td>A356 Al</td>
<td>A356 Al</td>
</tr>
<tr>
<td>Ενίσχυση / % κ.β.</td>
<td>ITK / 10%</td>
<td>ITM / 10%</td>
</tr>
</tbody>
</table>

Οι Εικόνες Β.67.α-δ περιλαμβάνουν φωτογραφίες επιλεγμένων απεικονίσεων οπτικού μικροσκοπίου των δοκιμών SC-C01 και SC-C02. Οι σκουφοχρωμές περιοχές που φαίνονται στις εικόνες αυτές αποδίδονται στα σωματίδια των υπάκουν τεφρών τα οποία επιτυχώς προστέθηκαν στο κράμα, με θερμοκρασία εισαγωγής τους, 910°C. Στη θερμοκρασία αυτή, παρατηρήθηκε ελάχιστη απόρρητη των σωματιδίων των υπάκουν τεφρών από το κράμα, κατά τη χώτευση των συνθέτων. Στις προηγούμενες απόψεις, σε χαμηλότερες θερμοκρασίες κατά την εισαγωγή των υπάκουν τεφρών, η απόρρητη των σωματιδίων από το τήγμα ήταν σχεδόν καθολική, και οι αντίστοιχες απεικονίσεις της επιφάνειας των συνθέτων στο οπτικό μικροσκόπιο τεφρών, περιέχουν αποκλειστικά φωτεινές περιοχές, αποδιδόμενες στο κράμα A356 Al.

Εικόνα Β.67.α. Επιφάνεια του συνθέτου SC-C01 (οπτικό μικροσκόπιο).

Εικόνα Β.67.β. Επιφάνεια του συνθέτου SC-C01 (οπτικό μικροσκόπιο).
Παρότι τα σωματίδια των τεφρών εισήχθησαν επιτυχώς στο κράμα, εντούτοις η δημιουργία συσσωματωμάτων, η οποία είναι ιδιαίτερα επιβαρυντική για την επίτευξη αναβαθμισμένων ιδιοτήτων στα σύνθετα, δεν κατέστη δυνατόν να περιορισθεί. Οι Εικόνες B.67.β και γ είναι ενδεικτικές της μορφολογίας των συσσωματωμάτων των σωματίδιων των υπάρχον τεφρών, τα οποία λόγω και της μικρής διαμέτρου τους, σχηματίζονται κατά την εισαγωγή τους στο τήγμα, και λόγω της διαφοράς πυκνότητας κράματος – τεφρών, καταλαμβάνουν το ανώτερο μέρος της γραφικής κάψας. Οι Εικόνες B.68.α και β παραθέτουν τη μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρδοςς δοκιμιού χυτευμένου κράματος χωρίς να έχει επιχειρηθεί η εισαγωγή υπαρχών τεφρών, σε αντιπαράθεση με τη μικροφωτογραφία του δοκιμίου SC-C01, όπου τα σωματίδια της ΙΤΚ έχουν προστεθεί επιτυχώς στη μήτρα. Φαίνεται από την Εικόνα B.68.β ότι έχει, σε ικανοποιητικό βαθμό, επιτυχθεί καλή κατανομή των σωματιδίων ΙΤΚ εντός της μήτρας. Επίσης, φαίνεται ότι παρότι το φαινόμενο είναι σχετικά περιορισμένο, δεν κατέστη δυνατόν να περιοριστεί αποφασιστικά η συσσωμάτωση (clustering) των σωματιδίων των υπάρχον τεφρών. Στην Εικόνα B.68.γ επισημαίνεται (σε λευκό σχηματισμό) συσσωμάτωμα σωματιδίων ΙΤΚ, όπου φαίνεται προφανώς ότι τα μεγαλύτερα σωματίδια των τεφρών λειτουργούν ως «βάση» επί της οποίας προσθετικά συγκεντρώνονται τα μικρότερα σωματίδια, δημιουργώντας τα, μη-επιθυμητά, συσσωματώματα των συνθέτων. Το φαινόμενο παρατηρήθηκε, τόσο στα σύνθετα A356 Al – ΙΤΚ, όσο και στα σύνθετα A356 Al – ΙΤΜ, όπως αναφέρεται και στη βιβλιογραφία, σε αντίστοιχα συστήματα [62-65]. Στη μικροφωτογραφία της Εικόνας B.68.δ, απεικονίζεται το «αποτύπωμα» της αποκάλλησης ενός συσσωματώματος υπάρχον τεφρών, λόγω της εφαρμογής μεγάλης δύναμης από τη μηχανική ανάδειξη του μίγματος.
Εικόνα B.68.α. Μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης της επιφάνειας του κράματος A356 Al.

Εικόνα B.68.β. Μικροφωτογραφία Ηλεκτρονικής Μικροσκοπίας Σάρωσης της επιφάνειας του συνθέτου SC-C01.

Εικόνα B.68.γ. Συσσωμάτωμα τεφρών στο δοκίμιο SC-C01.

Εικόνα B.68.δ. Μικρο-κρατίρας που έχει προκύψει λόγω αποκόλλησης συσσωματώματος ιπτάμενων τεφρών λόγω της δυνατής ανάδευσης. Δοκίμιο SC-C01.

Οι Εικόνες B.69.α και β δείχνουν επιλεγμένες μικροφωτογραφίες Ηλεκτρονικής Μικροσκοπίας Σάρωσης από το δοκίμιο SC-C02. Στην Εικόνα B.69.α, φαίνονται απομακρυσμένα σωματίδια ITM, δείγμα ότι το συγκεκριμένο σημείο προκύπτει από τη χύτευση υλικού στα χαμηλότερα επίπεδα της κάψης όπου, λόγω διαφοράς πυκνότητας των δύο φάσεων του υλικού (μήτρα / ενίσχυση), συγκέντρωνται μικρότερος αριθμός σωματιδίων των τεφρών. Η μικροφωτογραφία της Εικόνας B.69.β απεικονίζει ένα λεπτό, απομονωμένο σωματίδιο ITM, χωρίς να έχει προκύψει συσσωμάτωσή του με άλλα, του κλάσματος αυτού.
Σωματοσθαμά να αναφέρεται, ότι η επιτυχία της προσθήκης των σωματιδίων των ασβεστούχων από την τήχνη του κράματος A356 Al, αποτελεί από μόνη της ένα σημαντικό βήμα για την πρόοδο της έρευνας των συνθέτων υλικών κραμάτων Al – από την τήχη των τεφρών. Η διαβολή των σωματιδίων και το κράμα στην υψηλή, θερμοκρασία των 910°C, αποτελεί από μόνη μια σημαντική παρατήρηση, στη βάση της οποίας μπορεί να προχωρήσει ο πειραματισμός για τις δυνατότητες από-συσσωμάτωσης των σωματιδίων των τεφρών (de-agglomeration).

B.2.4.3 Έλεγχος τριβολογικής συμπεριφοράς ζημίας ολίσθησης των συνθέτων υλικών A356 Al / ΙΤΚ και ΙΤΜ, παραθέτοντας με την τεχνική της χώσευσης-υπό-ανάδειξη. Έλεγχος μικροδομής του ιχνού της τριβολογικής φθοράς τους.

Ο Πίνακας B.45 παραβάλει τα αποτελέσματα του τριβολογικού ελέγχου του κράματος A356 Al και των δοκιμών SC-C01 και SC-C02. Οι τριβολογικές δοκιμές του κράματος και των συνθέτων της χώσευσης-υπό-ανάδειξη πραγματοποιήθηκαν στα πρότυπα των προηγούμενων τριβολογικών δοκιμών που έλαβαν χώρα στο πλαίσιο της διδακτορικής διατριβής.

Πίνακας B.46. Αποτελέσματα τριβολογικών δοκιμών των συνθέτων υλικών χώσευσης-υπό-ανάδειξη.

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>Βάθος Ίχνους Φθοράς (μμ)</th>
<th>Επιφάνεια Φθοράς (μ²)</th>
<th>Ογκος Φθοράς (10⁶μ²)</th>
<th>Σ. Τριβής</th>
<th>Σ. Φθοράς (10⁻¹⁴ m²/Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A356 Al</td>
<td>30.75</td>
<td>11949</td>
<td>3.75</td>
<td>0.455</td>
<td>199.16</td>
</tr>
<tr>
<td>SC-C01</td>
<td>22.62</td>
<td>10283</td>
<td>3.23</td>
<td>0.451</td>
<td>171.38</td>
</tr>
<tr>
<td>SC-C02</td>
<td>36.12</td>
<td>13177</td>
<td>4.14</td>
<td>0.450</td>
<td>219.62</td>
</tr>
</tbody>
</table>

Διδακτορική Διατριβή, Γρηγόριος Σ. Ιτσκός 211
Φαίνεται ότι η προσθήκη των σωματιδίων των ασβεστουρίων τεφρών στο κράμα μπορεί να βελτιώσει τις τριβολογικές του επιδόσεις, έστω και οριακά. Σε επίπεδο δευτέρου δεκαδικού ψηφίου, τα δοκίμα SC-C01 και SC-C02 παρουσίαζουν μικρότερο συντελεστή τριβής από ότι το κράμα, ενώ στην περίπτωση του συνθέτου με περιεχόμενο ΙΤΚ, ο συντελεστής φθοράς παρουσίαζε επίσης διαφοροποίηση, ίση ποσοστιαία με -16.2%. Αντίθετα, η ποσοστιαία διαφοροποίηση σε σχέση με το κράμα, στην περίπτωση του SC-C02, είναι ίση με +10.2% (Εικόνες B.70.α και β). Όπως αναφέρθηκε εκτενώς στις προηγούμενες υποενότητες, το ελεύθερο οξείδιο του Ca και το δραστικό διοξείδιο του Si των τεφρών αντιδρά με το Si και Al της μήτρας αντίστοιχα, δημιουργώντας σκληρές φάσεις στην επιφάνεια του υλικού, βελτιώνοντας τις τριβολογικές αντιχώρες του.

Η τριβολογική φθορά εξελίσσεται, και στην περίπτωση των συνθέτων της χύτευσης-υπό-ανάδειξη, υπό μηχανισμού ανάλογου με εκείνου των συνθέτων της κονιομεταλλουργίας και, όμως, ενα νανικό, των συνθέτων της έγχυσης-υπό-πίεση. Η Εικόνα B.71.α, αποδίδει πανοραμικά την επιφανειακή μορφολογική διαφοροποίηση της φθαρμένης περιοχής, έναντι της κυρίως επιφάνειας του δοκιμίου SC-C02 (ITM). Στην Εικόνα B.71.β δίδεται η απεικόνιση παρόμοιας περιοχής του δοκιμίου SC-C02, σε διάταξη οπτισθοσκέδασης ηλεκτρονιών, στο ηλεκτρονικό μικροσκόπιο σάρωσης. Οι φωτεινές περιοχές της απεικόνισης αυτής αντιστοιχούν στα βαρύτερα στοιχεία που εμπεριέχονται στο υλικό, ήτοι τα Ca και Si, σε σχέση με το Al. Στην Εικόνα B.71.β γίνονται ξεκάθαρες οι περιοχές στις οποίες παρευρίσκονται τα σωματίδια των υπάρχοντων τεφρών. Αναφέρεται ότι στα σύνθετα υλικά της χύτευσης-υπό-ανάδειξη, εντοπίζεται μικρότερος αριθμός κρατήρων, από ότι στα υλικά της κονιομεταλλουργίας, και πολύ περισσότερο από ότι στα υλικά της έγχυσης-υπό-πίεση, ενώ επίσης η κατεύθυνση της φθοράς είναι παράλληλη στη φθορά της τριβολογικής ακίδας, φανερώνοντας την ύπαρξη φθοράς εκτρήψης (abrasive wear). Το μικρό βάθος του ίχνους φθοράς του δοκιμίου SC-C01 (ΙΤΚ) (22.62 μμ) γίνεται προφανές στην Εικόνα B.71.γ, όπου απεικονίζεται πανοραμικά η μορφολογική διαφοροποίηση της φθαρμένης και μη, επιφανειακής περιοχής του δοκιμίου. Η ίδια μικροφωτογραφία, δίδεται έχοντας λήφθει υπό διάταξη οπτισθοσκέδασης ηλεκτρονιών στο ηλεκτρονικό μικροσκόπιο σάρωσης, στην Εικόνα B.71.δ.
Εικόνα B.70.a. Συντελεστής τριβής του κράματος A356 Al και των δοκιμίων SC-C01 και SC-C02.

Εικόνα B.70.b. Συντελεστής φθοράς (10⁻¹⁴ m³/Nm) του κράματος A356 Al και των δοκιμίων SC-C01 και SC-C02.

Εικόνα B.71.a. Απεικόνιση του ίχνους της τριβολογικής φθοράς του δοκιμίου SC-C02 (500 μμ).

Εικόνα B.71.b. Απεικόνιση του ίχνους της τριβολογικής φθοράς του δοκιμίου SC-C02 – Οπτικοσκόπευση ηλεκτρονίων (500 μμ).

Εικόνα B.71.c. Ίχνος τριβολογικής φθοράς στο δοκίμιο SC-C01(100 μμ).

Εικόνα B.71.d. Ίχνος τριβολογικής φθοράς στο δοκίμιο SC-C01 – Οπτικοσκόπευση ηλεκτρονίων (100 μμ).
Στις Εικόνες B.72.α και β διδόνται μικροφωτογραφίες ηλεκτρονικής μικροσκοπίας σάρωσης, ληφθείσες εντός του έργου της τριβολογικής φθοράς των δοκιμίων SC-C01 και SC-C02, αντίστοιχα. Στην πρώτη μικροφωτογραφία, η οποία έχει ληφθεί σε διάταξη οπτικοσκέδασης ηλεκτρονίων, φαίνεται το επιφανειακό «όργωμα» το οποίο έχει προκύψει σε ορισμένες περιοχές από την ακίδα Αl₂O₃, καθώς επίσης και η ανάπτυξη επιφανειακών υμείων Al₂O₃ από την τριβή ακίδας–δίσκου. Στη δεύτερη μικροφωτογραφία, απεικονίζεται ρωμη, εντός του έργου της φθοράς του δοκιμίου SC-C02. Σε διαφορετικά σημεία εντός της φθοράς των δύο δοκιμίων, λαμβάνεται χημική ανάλυση EDS, προκειμένου να αποσαφηνησθεί ο ρόλος των σωματιδίων των τεφρών στα σύνθετα υλικά όσον αφορά στην παρεμπόδιση της εξβλέψης της φθοράς της τριβής ολίσθησης. Οι Πίνακες Β.47 και Β.48, αντίστοιχα, περιλαμβάνουν τα αποτελέσματα των χημικών αναλύσεων αυτών. Φαίνεται ότι στα σημεία στα οποία παρουσιάζεται υψηλότερη ανθεκτικότητα στη διέλυση της τριβολογικής ακίδας κυριαρχεί η συγκέντρωση του Ca, δείγμα της ενεργειτικής επίδρασης των σωματιδίων των τεφρών στην επιφανειακή σκληρύνση των συνθέτων δοκιμίων. Τα οξείδια των στοιχείων, από την (%) συγκέντρωση των οποίων εξάγονται συμπεράσματα αναφορικά με την επικράτηση, στις συγκεκριμένες περιοχές, του κράματος ή των τεφρών, επισημαίνονται με γκρι υπογράμμιση στους πίνακες αυτούς. Η υψηλή συγκέντρωση Fe σε κάποιες περιπτώσεις στην περίπτωση του δοκιμίου SC-C02, οφείλεται στην υψηλή συγκέντρωση, τοπικά, σωματιδίων της ITM.

Εικόνα B.72.α. Μικροφωτογραφία εντός του έργου της τριβολογικής φθοράς στο δοκίμιο SC-C01 – Οπτικοσκέδαση ηλεκτρονίων, κλίμακα: 50 μμ.

Εικόνα B.72.β. Μικροφωτογραφία εντός του έργου της τριβολογικής φθοράς στο δοκίμιο SC-C02, κλίμακα: 5 μμ.
Πίνακας Β.47. Ανάλυση EDS στα σημεία A, B της Εικόνας Β.77.α.

<table>
<thead>
<tr>
<th>Ένωση</th>
<th>Σημείο A (%)</th>
<th>Σημείο B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>76.00</td>
<td>36.00</td>
</tr>
<tr>
<td>SiO₂</td>
<td>19.30</td>
<td>17.18</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.14</td>
<td>14.20</td>
</tr>
<tr>
<td>CaO</td>
<td>1.22</td>
<td>30.22</td>
</tr>
<tr>
<td>SO₃</td>
<td>2.12</td>
<td>2.64</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.80</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Πίνακας Β.48. Ανάλυση EDS στα σημεία A, B και C της Εικόνας Β.77.β.

<table>
<thead>
<tr>
<th>Ένωση</th>
<th>Σημείο A (%)</th>
<th>Σημείο B (%)</th>
<th>Σημείο C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>36.00</td>
<td>32.12</td>
<td>30.88</td>
</tr>
<tr>
<td>SiO₂</td>
<td>29.30</td>
<td>31.34</td>
<td>32.20</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>18.16</td>
<td>14.21</td>
<td>13.56</td>
</tr>
<tr>
<td>CaO</td>
<td>13.22</td>
<td>18.44</td>
<td>18.12</td>
</tr>
<tr>
<td>SO₃</td>
<td>2.50</td>
<td>1.88</td>
<td>3.13</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.50</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.50</td>
<td>0.60</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Συμπερασματικά αναφέρεται ότι, από την αποτίμηση των αποτελεσμάτων των τριβολογικών δοκιμών των συνθέτων υλικών, προκύπτει σαφώς η τάση βελτίωσης των τριβολογικών επιδόσεων του κράματος A356 Al, ακόμα και παρά την εκτεταμένη συσσωμάτωση των λεπτόκοκκων σωματιδίων των τεφρών.

Β.2.4.4 Συνοπτικά συμπεράσματα αναφορικά με την εφαρμογή της τεχνικής της χώτευσης-υπό-ανάδειξη για την παρασκευή των συνθέτων υλικών A356 Al – ITK και ITM

- Τέφρα υψηλής περιεκτικότητας σε Ca ενσωματώθηκε με επιτυχία στο τηγμένο κράμα με την τεχνική της χώτευσης-υπό-ανάδειξη και παρασκευάσθηκαν σύνθετα υλικά με περιεκτικότητα ιπτάμενης τέφρας ίση με 10% κ.β.
- Το πρόβλημα της περιορισμένης διαβροχής των ασβεστούχων τεφρών με το τίγμα αντιμετωπίσθηκε αποτελεσματικά με την άνοδο της θερμοκρασίας χώτευσης στους 910°C, από τους 700°C που είχε αρχικά σχεδιασθεί το πείραμα. Επιπροσθέτως, καταλυτικό ρόλο στην αντιμετώπιση της ελλιπούς διαβροχής διαδραμάτισε η σταδιακή θέρμανση-αφύγρανση στην οποία υποβλήθηκαν οι τέφρες για διάστημα οχτώ ορών προ της εισαγωγής τους στο τίγμα.
- Η θερμοκρασία των 910°C αφορά μόνο στην ιπτάμενη τέφρα Καρδιάς. Τα αντίστοιχα πειράματα χώτευσης-υπό-ανάδειξη με τη χρήση της ιπτάμενης τέφρας Μεγαλόπολης έλαβαν χώρα με επιτυχία στους 700°C.
• Παρότι τα σωματίδια των τεφρών εισήχθησαν επιτυχώς στο κράμα, εντούτοις η δημιουργία συσσωματωμάτων, η οποία είναι ιδιαίτερα επιβαρυντική για την επίτευξη αναβαθμισμένων ιδιοτήτων στα σώματα, δεν κατέστη δυνατόν να περιορισθεί.
• Η αντικατάσταση του κράματος A356 με υπάρμενη τέφρα Καρδίας και Μεγαλόπολης μπορεί να οδηγήσει στην παρασκευή συνθέτων με καλύτερες τριβολογικές επιδόσεις σε σχέση με το κράμα.
Β.3 ΣΥΝΟΠΤΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΠΕΙΡΑΜΑΤΙΚΟΥ ΜΕΡΟΥΣ ΚΑΙ ΜΕΛΛΟΝΤΙΚΗ ΈΡΕΥΝΑ

Στον Πίνακα Β.49 συνοψίζονται τα βασικότερα συμπεράσματα της πειραματικής έρευνας της διδακτορικής διατριβής, ανά μέθοδο παρασκευής των υλικών:

Πίνακας Β.49. Συνοπτικά συμπεράσματα του πειραματικού μέρους της διδακτορικής διατριβής

<table>
<thead>
<tr>
<th>Κονιομεταλλουργία</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Τα μήγια AL- και Al/Si - αλεξιμένων τερφρών παρουσίαζαν καλύτερη συμπεριφορά, τόσο κατά την εν ψυχρώ μονοαξιόνη συμπίεσης τους, όσο και κατά την πυροσισσωμότατη τους, καθώς επίσης και κλιίτερες τριβολογικές επιδόσεις σε σχέση με αυτά που είχαν ως υλικά ενίσχυσης ακατέργαστες τέφρες.</td>
<td></td>
</tr>
<tr>
<td>• Η 2-ώρη πυροσισσωμότατη δεν επιδρά σημαντικά στη μεταβολή των διαστάσεων των τελικών συνθέτων προϊόντων, σε αντίθεση με την 6-ώρη, η οποία προκαλεί επιφανειακές μικροαλλοιώσεις και έντονη ποσοστιαία μεταβολή των αρχικών τους διαστάσεων.</td>
<td></td>
</tr>
<tr>
<td>• Τόσο για την περίπτωση της μήτρας Al, όσο και Al/Si, τα δείγματα που περίεχουν 15 % κ.β. ΙΤ έχουν αποκτήσει υψηλότερες τιμές επιφανειακής σκληρότητας σε σχέση με τα αντίστοιχα περιεχομένου 10 και 20% κ.β. ΙΤ. Η ενσωμάτωση των υπόμενων τερφρών στη μεταλλική μήτρα αυξάνει την ποσότητα των παραγόμενων σκληρών φάσεων Ca-Si, ο σχηματισμός των οποίων οδηγεί στην ενισχυμένη σκληρότητα των συνθέτων υλικών έναντι των μεταλλικών υλικών της μήτρας.</td>
<td></td>
</tr>
<tr>
<td>• Η ενίσχυση της μήτρας Al/Si με ΙΤΚ, αναπόφευκτα οδηγεί στην ανάπτυξη επιφανειακών σφαιριδίων και συσσωμομοντών. Η μηχανική ανάμιξη δίνει να περιορίσει το φαινόμενο, όχι όμως και να το αποστείξει πλήρως, καθώς αποδίδεται κυρίως σε χρηματικά αίτια.</td>
<td></td>
</tr>
<tr>
<td>• Η πρόσθεση ΙΤΚ και ΙΤΜ ενισχύει σημαντικά τις τριβολογικές ιδιότητες του Al. Η βέλτιστη αντικατάσταση Al από τέφρες είναι ιστιωθεί με 15% κ.β. για την περίπτωση της ΙΤΜ και 10% κ.β. για αυτή την ΙΤΚ. Παρόλα αυτά, η συμμετοχή της ΙΤ στα σύνθετα υλικά μήτρας αλουμινίου σε ποσοστό 20% κ.β. είναι γενικά πραγματοποιήσιμη και οδηγεί σε ενισχυμένες ιδιότητες.</td>
<td></td>
</tr>
<tr>
<td>• Το δοκίμιο αναφοράς του Al/Si εμφανίζει καλύτερες τριβολογικές ιδιότητες από ότι τα σύνθετα υλικά Al/Si - ΙΤ. Παρόλα αυτά, η αντικατάσταση Al/Si σε ποσοστό 15% κ.β. οδηγεί σε «ανέκτη» υποβάθμιση τριβολογικών ιδιοτήτων, η οποία, σε κάθε περίπτωση, αντισταθμίζεται από την αναμευνημένη μείωση του κόστους της παραγωγής των υλικών.</td>
<td></td>
</tr>
<tr>
<td>• Τα σύνθετα υλικά μήτρας Al/Si με ΙΤΚ παρουσίαζαν καλύτερες τριβολογικές ιδιότητες σε σχέση με αυτά που περιείχαν ΙΤΜ, γεγονός που αποδίδεται στην περίσσεια Ca το οποίο αντιδρά με το Si της μήτρας και συνεπακολούθως σχηματίζονται σκληρές, πυριτικές και ασβεστο-πυριτικές ορυκτολογικές φάσεις.</td>
<td></td>
</tr>
</tbody>
</table>
| • Η ενίσχυση των υλικών μήτρας Al, τόσο με ΙΤΚ, όσο και ΙΤΜ υποβαθμίζει την ανθεκτικότητά τους στη διάβρωση. Το φαινόμενο οφείλεται κυρίως στην αντιδράση Fe-Al και στην συνεπακολούθη
δημιουργία διαμεταλλικών ενώσεων, ο εμπειροχένων Φε στα συμμετέχοντα του προγράμματος σηματίζει γενικόν έγκολο με το AI των συμμετεχόντων της μέτρας και δημιουργεί τις προϋποθέσεις έναρξης διαβοηθητικής υποβάθμισης των συνθέτων υλικών. Επίσης, λόγω της τοπικής διαφοροποίησης των τιμών του pH που προκύπτει από την προσθήκη συμμετεχόντων ITK και ITM στο Al, λαμβάνουν χώρα φαινόμενα ενεργοποίησης, εμποδίζοντας την παθητικοποίησή του υλικού της μέτρας, οδηγώντας έτσι στην τοπική διάλυση της.

Τεχνικές Τηγμένου Μετάλλου

- Η ασβεστούχιος σύσταση των ελληνικών υπαμένων τετράφων δεν συνιστά εμπόδιο στην επιτυχή παρασκευή συνθέτων μέτας A356 Al με την τεχνική της έγχυσης-υπό-πίεσης. Αντιθέτως, ο σηματισμός νέων φάσεων λόγω αντιδράσεις του Ca των τετράφων με το Si του κράματος, φάσεων σκληρότερων από ότι οι προϋποθέσεις του τετράφων, φαίνεται ότι λειτουργεί ευρετικά στην ανάπτυξη των επιφανειακών ιδιοτήτων των νέων συνθέτων υλικών.
- Η άλεση των τετράφων διευκολύνει την επιτυχή παρασκευή των συνθέτων υλικών με έγχυση-υπό-πίεση και επίσης βελτιώνει τη σκληρότητά τους και τις τριβολογικές τους επιδόσεις. Μέσω της αλέσεως, διαπέπαυται η υαλόδηθη φάση των συμμετεχόντων των υπάμενων τετράφων και, κατά συνέπεια, περιάγγον περισσότερο ενέργη συστατικά, λόγω της απελευθέρωσης δραστικού Si ενός ταυτοχρόνως, η διάμετρος των συμμετεχόντων τους βρίσκεται εντός ενός επιθυμητού εύρους διαστάσεων. Στην έγχυση-υπό-πίεση, στην περίπτωση της ITK, το βέλτιστο κοκκωμετρικό κλάσμα, αναφορικά με τη σύνθεση, τη σκληρότητα και τις τριβολογικές ιδιότητες των υλικών, είναι αυτό με διάμετρο <25μm. Στην περίπτωση της ITM, το βέλτιστο κλάσμα είναι αυτό με διάμετρο 25-40 μm, αφού υποστεί άλεση.
- Η επαφάνεια περιόδου στα υλικά της έγχυσης-υπό-πίεσης παρατηρήθηκε σε περιοχές των συνθέτων όπου τα συμμετέχοντα των τετράφων είναι πολύ κοντά το ένα στο άλλο. Η υπαίσχυση πόρων αποδείχτηκε στις χημικές πιεσές που εφαρμόζονται στις «διασυνοριακές» περιοχές ένωσης των κόκκων.
- Στην έγχυση-υπό-πίεση, η χρήση των λεπτόκοκκων τετράφων μπορεί να οδηγήσει σε συνθέτα υλικά με βελτιωμένες ιδιότητες. Εντούτοις, εξαιτίας των αναπτυσσόμενων ηλεκτροστατικών δυνάμεων, τα λεπτόκοκκα συμμετέχουν σιδερώντας εντός να σηματίζουν υποσυστομάτωμα, εμποδίζοντας έτσι την επέκταση της, κατά το δυνάτον, καλύτερης ομοιογένειας κράματος-τετράφων.
- Στην έγχυση-υπό-πίεση, οι τριβολογικές ιδιότητες των συνθέτων υπολείπονται σαφώς του ενός στον δύο συστατικό τους (A356 Al) (όπως αναμένονταν), παρόλα αυτά η στοχευμένη επεξεργασία συγκεκριμένων συμμετεχόντων κλασμάτων των υπάμενων τετράφων (όπως η απομόνωση και χρήση των πολύ λεπτών συμμετεχόντων της ITK) δύναται να οδηγήσει στην παρασκευή συνθέτων με χαμηλότερο συντελεστή φθοράς από το κράμα A356 Al, και συντελεστή τριβής που υπολείπεται μόνο οριακά από αυτόν.
- Υψηλά ασβεστούχιος τείρα ενσωματώθηκε με επιτυχία στο τηγμένο κράμα με την τεχνική της χύνευσης-υπό-ανάδειξη και παρασκευάστηκαν συνθέτες υλικά με περιεκτικότητα υπάμενης τέρσας ίση με 10% κ.β.
- Στη χύνευση-υπό-ανάδειξη, με την άνοδο της θερμοκρασίας χύνευσης στους 910°C, αντιμετωπίζεται αποτελεσματικά το πρόβλημα.
Β. Πειραματικό Μέρος

tης περιορισμένης διαφροχής των ασβεστούχων τεφρών με το τίγμα A356 Al.

- Στη χρήση-υπό-ανάδειξη, καταλυτικό ρόλο στην αντιμετώπιση της ελλιπούς διαφροχής διαδραματίζει επίσης η σταθερή θέρμανση-αφύγρανση στην οποία υποβάλλονται οι τέφρες πριν την εισαγωγή τους στο τίγμα.

- Τα πειράματα χρήσης-υπό-ανάδειξη με τη χρήση της υπάρχουσας τέφρας Μεγαλόπολης έλαβαν χώρα με επιτυχία στους 700°C.

- Στη χρήση-υπό-ανάδειξη, και στις δύο περιπτώσεις υπάρχουσας τεφρών, η δημιουργία συσσωματωμάτων, η οποία είναι ιδιαίτερα επιβραυντική για την επίπεδη αναβαθμισμένων ιδιοτήτων στα συνθετικά, δεν κατέστη δυνατόν να περιορισθεί.

- Η αντικατάσταση του κράματος A356 με ΠΤΚ και ΠΤΜ μπορεί να οδηγήσει στην παρασκευή συνθέτων με καλύτερες τριβολογικές επιδόσεις σε σχέση με το κράμα.

Μελλοντική Έρευνα

- Η μεγαλύτερη ερευνητική πρόκληση αναφορικά με την παρασκευή συνθέτων υλικών κραμάτων Al/υπάρχουσας τεφρών, είναι η απομόνωση των νάνο-σωματιδίων τους υπάρχουσας τεφρών και η ενσωμάτωσή τους στη μεταλλική μήτρα, επιδιόκοντας τη μέγιστη δυνατή από-συσσωμάτωση των τεφρών κατά τη διαπολή τους με τη μήτρα και συνεπώς την καλύτερη δυνατή κατανομή της φάσης ενίσχυσης εντός της μητρικής, με τελικό στόχο τη σύνθεση υλικών ενσωματωμένων μηχανικών ιδιοτήτων και, συνεπώς, υψηλής προστιθέμενης αξίας.

- Μοντέλοποιήση των ρευστομηχανικών χαρακτηριστικών της επαγόμενης ροής κατά την ενσωμάτωση στις δομές τού γεώσωμου και στο αναδεικνυόμενο τίγμα, με στόχο την τελική ανάλυση του ρυθμού εισαγωγής αυτών, σε συνάρτηση με την πλέον κατάλληλη κατανομή διαμέτρου.

- Επέλεξε τον μεθοδολογικό και της αποκτηθείσας εμπειρίας στον τομέα της παραγωγής ελαφροβαρών συνθέτων μέταλλοτροφών Μg/σωματιδίων IT.
Β. Πειραματικό Μέρος

B.4 ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΕΙΡΑΜΑΤΙΚΟΥ ΜΕΡΟΥΣ

1996. The influence of silicon carbide reinforcement on the pitting behaviour of
Influence of reinforcement proportion and matrix composition on pitting corrosion
behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corrosion Science
47: 1750-1764.
aluminum-silicon carbide composites in a chloride containing environment. Journal
of Materials Science 35: 2573-2579.
intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl. Journal
of the Electrochemical Society 146: 517-523.
Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with
based composite foams containing hybrid pores. Materials Science and Engineering
particulate composite under flexural loading conditions, Materials Science and
properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy,
Materials and Design 29 (9): 1685–1689.
28. Hassan, S.F., Gupta, M., 2006. Effect of length scale of Al2O3 particulates on
microstructural and tensile properties of elemental Mg. Materials Science and

51. Itskos, G.S., Itskos, S., Koukouzas, N., 2009. The effect of the particle size differentiation of lignite fly ash on cement industry applications” World of Coal Ash Conference (WOCA), 4-7 May 2009, Lexington, KY, USA /available online @ flyash.info
