Μεταπτυχιακή εργασία

Ιουλία Λεβέντη

Επιβλέπων: Μαρίνος Κάβουρας
Καθηγητής Ε.ΜΠ.

Αθήνα, Οκτώβριος 2012
ΠΕΡΙΕΧΟΜΕΝΑ

<table>
<thead>
<tr>
<th>Περιοχή</th>
<th>Παραμετροί</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πρόλογος</td>
<td>v</td>
</tr>
<tr>
<td>Περίληψη</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>Extended Summary</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 Εισαγωγή
 1.1 Σκοπός
 1.2 Υπηρεσίες βάσει θέσης και επαυξημένη πραγματικότητα
 1.3 Διάρθρωση της εργασίας

2 Ανασκόπηση της Βιβλιογραφίας - Ορισμοί
 2.1 Υπηρεσίες βάσει θέσης - LBS
 2.2 Τεχνολογία επαυξημένης πραγματικότητας - AR

3 Συστήματα υπηρεσιών βάσει θέσης
 3.1 Γενικά
 3.2 Ταξινόμηση υπηρεσιών με βάση τη θέση
 3.3 Τα συστατικά των LBS εφαρμογών
 3.3.1 Υποδομή που απαιτείται για την εφαρμογή τεχνολογίας LBS
 3.4 Φορητές συσκευές που χρησιμοποιούνται
 3.4.1 Συσκευές ενός σκοπού
 3.4.2 Συσκευές πολλαπλών σκοπών
 3.4.3 Περιορισμοί στη χρήση των συσκευών
 3.5 Ασύρματα κινητά δίκτυα
 3.6 Τρόποι ανάκτησης των δεδομένων
 3.6.1 Push mode - Τα δεδομένα διανέμονται χωρίς να το ζητήσει ο χρήστης
 3.6.2 Pull mode - Τα δεδομένα διανέμονται μόνο εφόσον ο χρήστης υποβάλει το ερώτημα στο σύστημα
 3.7 Προσαρμογή - Πώς οι υπηρεσίες ανταποκρίνονται στις ιδιαίτερες συνθήκες
 3.8 Παραδείγματα σχετικά με την προσαρμογή
 3.8.1 Προσαρμογή στις προτιμήσεις των χρηστών
 3.8.2 Προσαρμογή στις εποχές ενός έτους και στην ηλικία των χρηστών
 3.9 LBS σε εσωτερικό χώρο

4 Συστήματα επαυξημένης πραγματικότητας
4.1 Δομή συστήματος...33
4.2 Τεχνολογίες θέασης ...34
 4.2.1 Συστήματα Head-Mounted Display (HMD)35
 4.2.2 Handheld Display (HD) ...36
 4.2.3 Spatial Augmented Reality (SAR)38
4.3 Συστήματα επαυξημένης πραγματικότητας με χρήση κινητών συσκευών ...39
4.4 Πρόσφατες ανακαλύψεις στον τομέα των συσκευών απεικόνισης ...40

5 Επαυξημένη πραγματικότητα βάσει θέσης43
 5.1 Γενικά ...43
 5.2 Στάδια λειτουργίας ..45
 5.3 Κατηγορίες εφαρμογών επαυξημένης πραγματικότητας βάσει θέσης...47
 5.4 Μέθοδος υπολογισμού θέσης ...48
 5.4.1 Επίλυση με χρήση στόχων ..48
 5.4.2 Επίλυση με ανήκεις στο χαρακτηριστικό του συστήματος τρισδιάστατο αντικείμενο ..49
 5.4.3 Συνδυασμένη επίλυση ..50
 5.4.1 Μέθοδος SLAM (Simultaneous Localization And Mapping) ...50

6 Σφάλματα στην επαυξημένη πραγματικότητα βάσει θέσης53
 6.1 Πηγές σφαλμάτων ..53
 6.1.1 Ανάλυση ...53
 6.1.2 Φωτεινότητα ...53
 6.1.3 Συντονισμός ...54
 6.1.4 Γραφικός χρήση ..54
 6.2 Σφάλματα στον συντονισμό ..54
 6.2.1 Επικαλύψεις ..54
 6.2.2 Οπτική αχυριστότητα ..54
 6.2.3 Λανθάνουσα συστήματος ...56
 6.2.4 Ανάλυση και παραμόρφωση πραγματικής σκηνής ...57

7 Λογισμικό - Εφαρμογές ...59
 7.1 Πακέτα ανάπτυξης λογισμικού ...59
 7.1.1 Λογισμικά ανοιχτού κώδικα ...59
 7.1.2 Wikitude ...60
 7.1.3 Mataio ...61
 7.2 Εφαρμογές ...62
 7.2.1 Ιατρική ...62
 7.2.2 Εκπαίδευση ...63
 7.2.3 Κατασκευές ...64
 7.2.4 Σχολιασμός ...65
 7.2.5 Ενημέρωση ..65
7.2.6 Υπηρεσίες πλοήγησης ... 66
7.2.7 Ψυχαγωγία ... 67
7.2.8 Άμυνα και ασφάλεια ... 67

8 Ο ρόλος του χρήστη .. 69
8.1 Ο ρόλος του χρήστη .. 69

9 Διαπιστώσεις .. 71
9.1 Γενικές διαπιστώσεις ... 71
 9.1.1 Γενικά ... 71
 9.1.2 Ο χρήστης .. 72
 9.1.3 Η θέση .. 72
 9.1.4 Προσανατολισμός ... 72
 9.1.5 Ιστορικό πλοήγησης ... 72
 9.1.6 Σκοπός χρήσης ... 72
 9.1.7 Κοινωνική και πολιτισμική κατάσταση 73
 9.1.8 Ιδιότητες συστήματος ... 73
9.2 Τεχνικά θέματα .. 73
 9.2.1 Ανίχνευση (Tracking) .. 73
 9.2.2 Αποκρύψεις και Συντονισμός (occlusions) 74
 9.2.3 Αλληλεπίδραση (interaction) ... 74
 9.2.4 Γεωαναφορά (registration) και ευθυγράμμιση (alignment) 74

Αναφορές ... 76
 Στην ελληνική γλώσσα .. 76
 Ξενόγλωσσες .. 76
 Ιστοσελίδες ... 79
Πρόλογος

Η είσοδος της τεχνολογίας κινητής τηλεφωνίας και η ραγδαία εξάπλωση της χρήσης της από τον άνθρωπο οδηγούσα αιώνες προς μόνο μία κατεύθυνση, την κατεύθυνση της άμεσης εξάρτησης των καθημερινών δραστηριοτήτων των πολιτών από τη χρήση έξυπνων συσκευών και εφαρμογών. Η εξάρτηση του χρήστη από τις εφαρμογές αυτές γίνεται ακόμη μεγαλύτερη όταν την παρεχόμενη πληροφορία μπορεί να είναι γεωχωρική. Δηλαδή η πληροφορία να είναι τέτοια που να σχετίζεται με συγκεκριμένη θέση στον χώρο.

Σε όλο τον κόσμο μέχρι το 2011 υπήρχαν σχεδόν 6 δισεκατομμύρια συνδρομητές κινητής τηλεφωνίας, σύμφωνα με τη Διεθνή Ένωση Τηλεπικοινωνιών. Σήμερα, υπάρχουν 7 δισεκατομμύρια άνθρωποι στον κόσμο ενώ στα επόμενα πέντε χρόνια εκτιμάται ότι πάνω από 5 δισεκατομμύρια άνθρωποι θα χρησιμοποιούν έξυπνες συσκευές κινητής τηλεφωνίας (smartphones). Με τον τρόπο αυτό αποκτούν άμεση πρόσβαση στο διαδίκτυο αλλά και σε ποικίλες εφαρμογές μέσω αυτού. Τέτοιες εφαρμογές είναι και αυτές που βασίζονται στη θέση του χρήστη και συνδυάζουν "οπτικά" το αποτέλεσμα της εφαρμογής με την τεχνολογία επαυξημένης πραγματικότητας. Συγκεκριμένα, στην παρούσα εργασία γίνεται αναφορά στις εφαρμογές που η παρεχόμενη υπηρεσία στον χρήστη βασίζεται στη θέση του και ειδικότερα όταν η πληροφορία αυτή συνδυάζεται με τεχνολογία επαυξημένης πραγματικότητας. Η διεθνής ορολογία για τις δύο τεχνολογίες που προαναφέρθηκαν και αποτελούν αντικείμενο μελέτης της παρούσας μεταπτυχιακής εργασίας είναι Location Based Services (LBS) και Augmented Reality (AR).

Σήμερα, οι απόψεις ποικίλουν, πολλοί πιστεύουν πως τα κινητά τηλέφωνα ήρθαν να κυριαρχήσουν τη ζωή των ανθρώπων και άλλοι πως ήρθαν για να δώσουν λύσεις σε θέματα που άλλοτε προβληματίζαν τον άνθρωπο επί ώρες ή μήνες. Η πραγματικότητα είναι ότι χρειάστηκαν χρόνια μέχρι την τεχνολογία των δικτύων κινητής τηλεφωνίας να φτάσει στο σημερινό επίπεδο όπου μια σειρά από αισθητήρες όπως το GPS, το οποίο επιτρέπει την εκτίμηση της θέσης, και τα επιταχυνσιόμετρα με τα οποία εκτιμάται η στροφή της συσκευής σε σχέση με συγκεκριμένο σύστημα αξόνων, να συρρικνωθούν σε τέτοιο μεγέθη όπως μια φορητή συσκευή τηλεφώνου. Η πρώτη εμφάνιση μιας τέτοιας συσκευής έγινε με το iPhone της Apple το 2007. Την περίοδο εκείνη εντοπίζεται το πρώτο τεχνολογικό ξέσπασμα που σχετίζεται με τις εφαρμογές που βασίζονται στην θέση και αποτελούν αντικείμενο μελέτης σήμερα με τις εφαρμογές LBS και AR στην αιχμή της τεχνολογίας.

Η ιδέα πίσω από τις LBS εφαρμογές είναι να απαντήσουν σε τροποποιημένες ερωτήσεις που απασχολούν τον χρήστη στην καθημερινότητά του και να γίνουν ιδιαίτερα ελκυστικές όταν ο ευρηματικός σχεδιασμός τους συναντά τις απαιτήσεις του χρήστη σε πληροφορία. Όταν κάποιος βρίσκεται σε ξένο περιβάλλον η συμπεριφορά και οι ανάγκες του είναι σε μεγάλο βαθμό ενέργειες προβλέψιμες, είτε αυτός βρίσκεται στη χώρα του είτε στο εξωτερικό, είτε με
όχημα, είτε πεζός. Ανάγκες όπως το να εντοπίσει ένα φαρμακείο, ένα ATM, ένα ταξί κλπ ή ανάγκες όπως εντοπισμός σημείων του τουριστικού ενδιαφέροντος, ξενοδοχεία, συνάλλαγμα κ.α. Κατά την οδήγηση, συναντώνται ανάλογες ανάγκες όπως η πλοήγηση σε μια άγνωστη πόλη ή ακόμα και υπηρεσίες οδικής βοήθειας. Όταν η πληροφορία που διατίθεται στον χρήστη με σκοπό να ικανοποιηθούν οι ανέγκες του συνδυάζεται με την τεχνολογία επαυξημένης πραγματικότητας τότε η εφαρμογή γίνεται πιο ελκυστική αλλά και φιλική στον χρήστη αφού στην ουσία του επιτρέπει την “πλοήγηση” μέσω ενός εικονικού περιβάλλοντος σε πραγματικό χρόνο.

Σκοπός της εργασίας αυτής είναι η καταγραφή πληροφορίας σχετικά με τις δύο τεχνολογίες και κατανόηση του τρόπου με τον οποίο συνδυάζονται τα δεδομένα με τελικό σκοπό τη διάθεση γεωχωρικής πληροφορίας στον χρήστη.
Περίληψη

Η εργασία αυτή στοχεύει στη συλλογή και καταγραφή πληροφορίας σε σχέση με το επιστημονικό πεδίο των υπηρεσιών με βάση τη θέση (LBS) και των εφαρμογών επαυξημένης πραγματικότητας (AR). Οι δύο τεχνολογικοί τομείς παρόλο που σε ερευνητικό επίπεδο εντοπίζονται αρκετές δεκαετίες πίσω, τα τελευταία χρόνια και συγκεκριμένα μετά το 2000 εμφανίζουν συνεχώς ραγδαία εξέλιξη. Στο πλαίσιο της εργασίας αυτής περιγράφεται επίσης η σχέση των τεχνολογιών αυτών με την επιστήμη της Φωτογραμμετρίας αλλά και τα Συστήματα Γεωγραφικών Πληροφοριών. Για να γίνει κατανοητή η σχέση των τεχνολογιών αυτών μεταξύ τους και ο τρόπος διάθεσης της χωρικής πληροφορίας στον χρήστη, η λογική κάθε τεχνολογίας μεμονωμένα και στη συνέχεια περιγράφεται η συνδυασμένη λειτουργία τους μέσω συγκεκριμένης εφαρμογής.

Συγκεκριμένα στο πλαίσιο της εργασίας α) προσδιορίζεται η σχέση μεταξύ των εφαρμογών αυτών, της επιστήμης της Φωτογραμμετρίας και των Συστημάτων Γεωγραφικών Πληροφοριών, β) επαναδιατυπώνεται ο ορισμός του όρου υπηρεσίας με βάση τη θέση και επαυξημένη πραγματικότητα όπως έχει αποδοθεί μέχρι σήμερα και γ) περιγράφεται το τεχνικό πλαίσιο στο οποίο βασίζεται η λειτουργία τους. Ακόμη, παρουσιάζονται συνοπτικά εργασίες που έχουν δημοσιευτεί από την περίοδο της πρώτης επαυξημένης έρευνας (δεκαετία 1960) μέχρι και σήμερα. Τέλος, διατυπώνονται προβληματισμοί σχετικά με τη συγκεκριμένη τεχνολογία καθώς και διαπιστώσεις που γίνονται καθώς και διαπιστώσεις που έχουν προκύψει μέσα από αυτή την βιβλιογραφική εργασία.

Η είσοδος της τεχνολογίας στην καθημερινότητα των πολιτών αποτέλεσε αναμφίβολα σημείο αλλαγής της κοινωνικής τους συμπεριφοράς. Η ευρεία χρήση των υψηλής τεχνολογίας συσκευών (π.χ. έξυπνες συσκευές κινητής τηλεφωνίας) από το κοινό και η ραγδαία εξέλιξη των τεχνολογικών μέσων στα οποία έχει σήμερα πρόσβαση ο πολίτης οδήγησε στην ανάπτυξη και εφαρμογή νέων εξελιγμένων υπηρεσιών όπως οι υπηρεσίες με βάση τη θέση (LBS) και οι εφαρμογές επαυξημένης πραγματικότητας (AR).

Οι υπηρεσίες με βάση τη θέση παρέχουν στους χρήστες δυνατότητα άμεσης και εύκολης πρόσβασης σε πληροφορία που σχετίζεται άμεσα με τη θέση στην οποία εντοπίζεται ο χρήστης τη στιγμή που ανακτά η πληροφορία από το σύστημα της εφαρμογής. Από τα προηγούμενα είναι κατανοητό πως πρόκειται για υπηρεσίες οι οποίες διευκολύνουν τον χρήστη καθώς και δεν είχε καθώς και οι οποίες διευκολύνουν τις καθημερινές του δράσεις. Οι εφαρμογές αυτές τα τελευταία χρόνια όλο και συχνότερα συνδυάζονται με εργαλεία τεχνολογίας επαυξημένης πραγματικότητας σκοπό να γίνουν πιο ελκυστικές και με αποτέλεσμα να αυξάνεται όλο και περισσότερο η ζήτηση τους από τους καταναλωτές-χρήστες. Από την βιβλιογραφική έρευνα που
ολοκληρώθηκε στο πλαίσιο της εργασίας διαφαίνεται ότι οι εφαρμογές αυτές θα έχουν κυρίαρχο ρόλο στις υπηρεσίες του μέλλοντος.

Στο πρώτο κεφάλαιο, της μεταπτυχιακής εργασίας περιγράφεται ο σκοπός της έρευνας και επαυξημένη πραγματικότητα αφού χρησιμοποιούνται για τη γενική περιγραφή της δομής της εργασίας. Στο κεφάλαιο αυτό δεν παρατίθενται ορισμοί οι οποίοι ωστόσο δίνονται σε επόμενο κεφάλαιο.

Στο δεύτερο κεφάλαιο γίνεται ανασκόπηση της βιβλιογραφίας και δίνεται ο ορισμός των όρων που πραγματεύεται η εργασία. Στο πρώτο μέρος του κεφαλαίου παρουσιάζεται η εξέλιξη των LBS εφαρμογών ενώ στο δεύτερο μέρος γίνεται η κατανόηση και ο τρόπος αλληλεπίδρασης των δύο τεχνολογιών, που χρησιμοποιούνται για την υλοποίηση της γενικής δομής της εργασίας.

Στη συνέχεια ακολουθεί το τρίτο κεφάλαιο στο οποίο περιγράφεται αρχικά η σχέση των LBS συστημάτων με τα Συστήματα Γεωγραφικών Πληροφοριών, αναλυτικά παρουσιάζεται η δομή ενός συστήματος LBS αλλά και η υποδομή που απαιτείται για την υλοποίηση του και κατανοητού συνοπτικού συγκεκριμένου κατά περίπτωση παραδείγματος.

Στο τέταρτο κεφάλαιο περιγράφονται με την ίδια λογική τα συστήματα που υποστηρίζουν εφαρμογές τεχνολογίας επαυξημένης πραγματικότητας. Στο σημείο αυτό, οι εφαρμογές εισήγαγουν ήδη αποδεικνύοντας την ιδιαίτερη σημασία τους για την κατανόηση της δομής του συστήματος και του εξοπλισμού που χρησιμοποιείται για την υλοποίηση μιας τέτοιας εφαρμογής.

Στο σημείο αυτό έχει ολοκληρωθεί η απόδοση των δύο ορισμών, επαυξημένη πραγματικότητα και υπηρεσίες βάσει θέσης και έχει επίσης αποδειχθεί η ανάγκη για την κατανόηση της δομής των συστημάτων. Στο πέμπτο κεφάλαιο (έκτο) γίνεται η κατανόηση της δομής των συστημάτων και του εξοπλισμού που χρησιμοποιείται για την υλοποίηση της εφαρμογής.

Στο έκτο κεφάλαιο γίνεται μια γενική αναφορά στο λογισμικό που χρησιμοποιείται σήμερα για την υλοποίηση τέτοιων εφαρμογών και παρουσιάζονται παραδείγματα εφαρμογών LBS και AR τα οποία κατηγοριοποιούνται ανάλογα με τον επιστημονικό - τεχνολογικό κλάδο στον οποίο αφορά η προβαλλόμενη στον χρήστη πληροφορία.

Στο έβδομο κεφάλαιο γίνεται μια γενική αναφορά στο λογισμικό που χρησιμοποιείται σήμερα για την υλοποίηση τέτοιων εφαρμογών και παρουσιάζονται παραδείγματα εφαρμογών LBS και AR τα οποία κατηγοριοποιούνται ανάλογα με τον επιστημονικό - τεχνολογικό κλάδο στον οποίο αφορά η προβαλλόμενη στον χρήστη πληροφορία.

Στο ογδόο κεφάλαιο γίνεται μια γενική αναφορά στο λογισμικό που χρησιμοποιείται σήμερα για την υλοποίηση τέτοιων εφαρμογών και παρουσιάζονται παραδείγματα εφαρμογών LBS και AR τα οποία κατηγοριοποιούνται ανάλογα με τον επιστημονικό - τεχνολογικό κλάδο στον οποίο αφορά η προβαλλόμενη στον χρήστη πληροφορία.

Στο ένατο κεφάλαιο γίνεται μια γενική αναφορά στο λογισμικό που χρησιμοποιείται σήμερα για την υλοποίηση τέτοιων εφαρμογών και παρουσιάζονται παραδείγματα εφαρμογών LBS και AR τα οποία κατηγοριοποιούνται ανάλογα με τον επιστημονικό - τεχνολογικό κλάδο στον οποίο αφορά η προβαλλόμενη στον χρήστη πληροφορία.

Λέξεις κλειδιά: Επαυξημένη Πραγματικότητα, Υπηρεσίες Βάσει Θέσης, Επαυξημένη Πραγματικότητα Βάσει Θέσης, Φωτογραμετρία.
Abstract

The entrance of mobile phone technology and its quick expansion of their use lead towards one direction nowadays, the direction of the direct dependency of everyday needs of the citizens by the use of smart devices and applications. User’s dependency by these applications is much bigger when the provided information can be geospatial.

In all over the word until 2011, there were 6 billion mobile telephony subscribers according to International Telecommunication Union. Nowadays, there 7 billion people all over the word and in the next 5 years it is estimated that there will be more than 5 billion people who will use smart mobile phone devices (smartphones). In this way they all acquire direct access to the web and also to various web applications. This kind of application are also the one whose provided service is based on user’s position and especially when they are combined to augmented reality technology. The international orology for these technologies is Location Based Services (LBS) and Augmented Reality (AR) and they are both subjects of this dissertation.

Today, opinions vary, there many those who believe that mobile phones came to dominate our life and others who believe these devices came in order to give solutions for issues which were troubled humans for hours or even for months. The reality is that many years passed until mobile phones networks technology have reached into the present level where a series of sensors, like GPS, permit functions based on location and accelerometers with which rotation device regarding a specific axis system is estimated, be formed in such small sizes, like a mobile phone device. The first appearance of such a device took place with iPhone by Apple in 2007. This period the first technological burst related to based user’s location application is appeared and today LBS and AR are in the center of technology.

The idea behind LBS applications is the answer to questions which affect the user during his daily life and to approach to become more attractive when the ingenious design need user’s requirements concerning information. When someone is based on not a very familiar environment, his attitude and his needs are predictable, even if he is in his country or abroad, in a car of by foot. Needs such as finding the location of a pharmacy, an ATM, a taxi etc. or needs like touristic points of interests finding, hotels, currency exchange, meet relative need such as navigation into an unknown city or even road aid services. All the above are today combined with AR technology and the application is more attractive but also more user friendly since it permits the navigation into an almost virtual reality environment in real time.
The objective of this dissertation is the recording and documentation of information in relation to these two technologies and understanding of the way with which they combined having as a final goal the disposal of geospatial information to the user.

Keywords: Augmented Reality, Location Based Services, Geolocated Augmented Reality, Photogrammetry.
The aim of this dissertation is information collection and recording in relation to the scientific field of services based on location (LBS) and augmented reality applications (AR). These two technological sectors, despite the fact that in the research field the progress is not big, the last few years and especially since 2000, present tremendous evolution. In this dissertation, the relation between these technologies and the science of photogrammetry is described as long as Geographical Information Systems. In order to make clear the relation among the above mentioned and the spatial information to the user of the latest technology devices, the frame and the logic of each technology is defined and described separately and additionally the combined function via specific application is described.

More specifically, in this dissertation, a) the relation between these applications, Photogrammetry and GIS is identified, b) the term of services based on location and augmented reality are redefined according to what is has been reported until today and c) the technical frame on which their function is based. Moreover, past papers which have been published are briefly presented regarding the period of the first research (1960) until nowadays. Finally, concerns about the specific technology are presented as long as final findings/conclusions derived from this bibliographic dissertation.

The entrance of technology into everyday life is without doubts a point for social behavior changing. The wide use of high level technology (e.g. smart mobile phones devices) by the public and the huge evolution in technological means which are fully accessible to the citizen lead to the development of new “sophisticated” services like LBS services and AR applications.

Services based on location provide users with the capacity of direct and easy access into information which are connected directly to the position where the user is at the time the information is recovered by the application system. From the above mentioned, it is understood that they are services which facilitate the user as they provide him/her with capabilities which make his/her everyday life easier. The last years, these applications are more and more combined to augmented reality tools in order to become more attractive to the user so as to increase their demand. These application will dominant role in future services.

In the first chapter of the dissertation, the aim of the research is described and the structure of the whole text. There is general reference to the terms services based on location and augmented reality since they are used for the general description of dissertation’s structure. In this chapter, there are no terms reporting, this is done in next chapter.

In the second chapter there is bibliography review and there is presentation of the terms which are used in this dissertation. At the first part of the chapter the evolution of LBS
applications is presented and at the second part there is the respective review for bibliography concerning augmented reality technology.

The third chapter which follows the LBS systems relation to GIS is described and after this the structure of an LBS system is presented as far as the structure required in specific cases-examples.

In the fourth chapter the systems which support augmented reality technology applications are described with the same approach. In this point, since there has been already rendition for the used terms and the term of augmented reality is now understood by the user, there is description for the system and the equipment which is used.

Up to this point, the identification of these two (LBS and AR) terms has been given and systems’ structure has been already presented. In the fifth chapter, the way of interaction among these two technologies is described. At this point, the function of the specific application is presented in order to be clearly understood by the reader the way of interaction the final result.

Next, in the sixth chapter errors sources into these systems are described as long as the level of their affection into the final result and how they can be solved. In the seventh chapter, there is a general description for the software used until today for the implementation of this kind of applications and there are LBS and AR application examples which are categorized according to the scientific-technological sector where the provided information to the user is concerned.

In the eighth chapter, the role of the user in these applications is described and finally in the ninth chapter there are some conclusions derived by this dissertation.
1 Εισαγωγή

1.1 Σκοπός

Η παρούσα μεταπτυχιακή εργασία στοχεύει στη συλλογή και καταγραφή πληροφορίας σε σχέση με το επιστημονικό πεδίο των υπηρεσιών με βάση τη θέση (Location Based Services – LBS) και των εφαρμογών επαυξημένης πραγματικότητας (Augmented Reality - AR). Αρχικά ορίζεται και προσδιορίζεται το πλαίσιο και η λογική κάθε τεχνολογίας και στη συνέχεια περιγράφεται η δομή του συστήματος που υποστηρίζει τη λειτουργία τους. Επιπλέον, περιγράφεται η περίπτωση που οι δύο τεχνολογίες συνδυάζονται με τελικό σκοπό την υλοποίηση συγκεκριμένης εφαρμογής.

Στο πλαίσιο της εργασίας α) προσδιορίζεται η σχέση των εφαρμογών αυτών με την επιστήμη της φωτογραμμετρίας και των συστημάτων γεωγραφικών πληροφοριών, β) επαναδιατυπώνεται ο ορισμός του όρου υπηρεσίες με βάση τη θέση και επαυξημένη πραγματικότητα όπως έχει αποδοθεί μέχρι σήμερα και γ) περιγράφεται το τεχνικό πλαίσιο στο οποίο βασίζεται η λειτουργία των εφαρμογών αυτών. Ακόμη, παρουσιάζονται συνοπτικά εργασίες που έχουν δημοσιευτεί από την περίοδο της πρώτης εποχής οποιασδήποτε έρευνας (δεκαετία 1960) μέχρι και σήμερα. Τέλος, διατυπώνονται προβλήματα και σχετικά με τη συγκεκριμένη τεχνολογία καθώς και διαπιστώσεις που έχουν προκύψει μέσα από αυτή την βιβλιογραφική έρευνα.

1.2 Υπηρεσίες βάσει θέσης και επαυξημένη πραγματικότητα

Η είσοδος της τεχνολογίας στην καθημερινότητα των πολιτών αποτέλεσε αναμφίβολα σημαντικό σημείο αλλαγής της κοινωνικής τους συμπεριφοράς. Η ευρεία χρήση των υψηλής τεχνολογίας συσκευών (π.χ. έξυπνες συσκευές κινητής τηλεφωνίας) από το κοινό και η ραγδαία εξέλιξη των τεχνολογικών μέσων στα οποία έχει πρόσβαση ο πολίτης οδήγησαν στην ανάπτυξη και εφαρμογή νέων εξελιγμένων υπηρεσιών όπως οι υπηρεσίες με βάση τη θέση (LBS) και εφαρμογές επαυξημένης πραγματικότητας (AR).

Οι υπηρεσίες με βάση τη θέση παρέχουν στους χρήστες δυνατότητα άμεσης και εύκολης πρόσβασης σε πληροφορία που σχετίζεται άμεσα με τη θέση στην οποία υποστηρίζεται ο χρήστης. Απαραίτητη προϋπόθεση για τη λειτουργία των εφαρμογών αυτών είναι η πρόσβαση στο διαδίκτυο. Από τα προηγούμενα είναι κατανοητό πως πρόκειται για υπηρεσίες οι οποίες διευκολύνουν τον χρήστη καθώς του παρέχουν δυνατότητες που μέχρι σήμερα δεν είχε ορισμένες και οι οποίες καταλήγουν σε άμεση λύση καθώς απαντώνται ερωτήματα που θέτει.
Παράλληλα, τόσο τα εξελιγμένα τεχνολογικά μέσα όσο και οι νέοι αλγόριθμοι που συνεβάλαν στην επίλυση σημαντικών προβλημάτων στις εφαρμογές επαυξημένης πραγματικότητας έχουν οδηγήσει τη χρήση αυτής της τεχνολογίας σε όλο και περισσότερες δράσεις στην καθημερινότητα του ανθρώπου. Όταν η τεχνολογία επαυξημένης πραγματικότητας συνδυάζεται με την τεχνολογία που υποστηρίζει τη χρήση εφαρμογής που βασίζεται στη θέση του χρήστη τότε οι δυνατότητες αλλά και το αποτέλεσμα είναι πραγματικά εντυπωσιακά και πρωτοποριακά. Για τις εφαρμογές αυτές μελέτης διεθνών οίκων προβλέπουν ότι στο εμπόριο ο τζίρος από $ 111 εκατομμύρια θα ανέρχεται σε $ 2.2 δισεκατομμύρια μέχρι το τέλος 2013), το γεγονός αυτό για εκείνους που μελετούν την οικονομική επίδραση των εφαρμογών αυτών στην παγκόσμια αγορά συνεπάγεται τη ραγδαία αυξηθείξη και χρήση τους από όλο και περισσότερους πολίτες ανά τον κόσμο. Οι εφαρμογές αυτές όπως διαφαίνεται και από τις παραπάνω διαπιστώσεις θα έχουν κυρίαρχο ρόλο στις υπηρεσίες του μέλλοντος.

1.3 Διάρθρωση της εργασίας
Όπως περιγράφηκε σε προηγούμενη ενότητα σκοπός της εργασίας είναι η παρουσίαση της έρευνας που ολοκληρώθηκε σχετικά με τις υπηρεσίες βάσει θέσης και την τεχνολογία επαυξημένης πραγματικότητας. Μέσα από την έρευνα αυτή γίνεται προσπάθεια να περιγραφεί κατά τον δυνατόν αναλυτικότερα η δομή ενός συστήματος LBS αλλά και ενός συστήματος AR, με σκοπό στη συνέχεια να παρουσιαστεί συγκεκριμένη εφαρμογή όπου οι δύο τεχνολογίες συνδυάζονται. Επιπλέον, αναλύεται το σύστημα στο οποίο βασίζεται η λειτουργία τους και περιγράφονται ζητήματα όπως οι διαφορετικές μέθοδοι α) οπτική και β) βίντεο που εφαρμόζονται για την ανάμιξη του εικονικού με το πραγματικό αντικείμενο, τα προβλήματα που συναντώνται κατά τη γεωαναφορά το εικονικού αντικειμένου στο πραγματικό πεδίο και δίνονται κατευθύνσεις για περαιτέρω έρευνα σε ζητήματα που τη δεδομένη χρονική στιγμή ¨πάσχουν¨.

Στο πρώτο κεφάλαιο της μεταπτυχιακής εργασίας περιγράφεται ο σκοπός της έρευνας και η διάρθρωσή του κειμένου. Γίνεται γενική αναφορά στους όρους υπηρεσίες βάσει θέσης και επαυξημένη πραγματικότητα αφού χρησιμοποιούνται για τη γενική περιγραφή της δομής της εργασίας. Στο κεφάλαιο αυτό δεν παρατίθενται ορισμοί οι οποίοι ωστόσο δίνονται σε επόμενο κεφάλαιο.

Στο δεύτερο κεφάλαιο γίνεται ανάσκοπη της βιβλιογραφίας και δίνεται ο ορισμός των όρων που πραγματεύεται η εργασία. Στο πρώτο μέρος του κεφαλαίου παρουσιάζεται η εξέλιξη των LBS εφαρμογών ενώ στο δεύτερο μέρος γίνεται η αντίστοιχη αναδρομή σε βιβλιογραφία που αφορά στην τεχνολογία επαυξημένης πραγματικότητας.

Στην συνέχεια ακολουθεί το τρίτο κεφάλαιο στο οποίο περιγράφεται αρχικά η σχέση των LBS συστημάτων με τα Συστήματα Γεωγραφικών Πληροφοριών, στη συνέχεια αναλυτικά παρουσιάζεται η δομή ενός συστήματος LBS αλλά και η υποδομή που απαιτείται για την
υποστήριξή του συστήματος και αναφέρονται συνοπτικά συγκεκριμένα κατά περίπτωση παραδείγματα.

Στο τέταρτο κεφάλαιο περιγράφονται με την ίδια λογική τα συστήματα που υποστηρίζουν εφαρμογές τεχνολογίας επαυξημένης πραγματικότητας. Στο σημείο αυτό παράλληλα έχουν ήδη αποδοθεί οι ορισμοί και είναι κατανοητός ο όρος επαυξημένη πραγματικότητα στον χρήστη γίνεται περιγραφή της δομής του συστήματος και του εξοπλισμού που χρησιμοποιείται.

Μέχρι το σημείο αυτό έχει ολοκληρωθεί η απόδοση των δύο ορισμών, επαυξημένη πραγματικότητα και υπηρεσίες βάσει θέσης και έχει επίσης παρουσιαστεί αναλυτικά η δομή των δύο συστημάτων. Στο παρόν κεφάλαιο (πέμπτο) περιγράφεται ο τρόπος αλληλεπίδρασης των δύο τεχνολογιών. Στο σημείο αυτό γίνεται παρουσίαση της λειτουργίας συγκεκριμένης εφαρμογής ώστε να γίνει κατανοητός από τον χρήστη για την τεχνολογία. Στο σημείο αυτό γίνεται περιγραφή της λειτουργίας της εφαρμογής ώστε να γίνει κατανοητός από τον αναγνώστη ο τρόπος διάθεσης της πληροφορίας στον χρήστη.

Στη συνέχεια, στο έκτο κεφάλαιο παρουσιάζονται οι πηγές σφαλμάτων στα συστήματα αυτά, ο βαθμός επίδρασής τους στο τελικό αποτέλεσμα αλλά και ο τρόπος επίλυσής τους κατά περίπτωση.

Στο έβδομο κεφάλαιο γίνεται μια γενική αναφορά στο λογισμικό που χρησιμοποιείται σήμερα για την υλοποίηση τέτοιων εφαρμογών και παρουσιάζονται παραδείγματα εφαρμογών LBS και AR σε σημείο κατηγοριοποιούνται ανάλογα με τον οικονομικό -τεχνολογικό κλάδο στον οποίο αφορά η προβλήματα στον χρήστη πληροφορία.

Στο όγδοο κεφάλαιο περιγράφεται ο ρόλος του χρήστη στις εφαρμογές αυτές και τέλος, στο ένατο κεφάλαιο παρατίθενται ορισμένες διαπιστώσεις ανάλογα με τα αποτελέσματα που προέκυψαν από την παρούσα μεταπτυχιακή εργασία.
2 Ανασκόπηση της Βιβλιογραφίας - Ορισμοί

2.1 Υπηρεσίες βάσει θέσης - LBS

Αρχικός στόχος είναι η παρουσίαση της εξέλιξης των δύο επιστημονικών πεδίων LBS και AR μέσα από την ανασκόπηση της βιβλιογραφικής έρευνας που ολοκληρώθηκε στο πλαίσιο της εργασίας. Αναζητώντας πληροφορίες σε σχέση με την ανάπτυξη των LBS εφαρμογών διαπιστώνεται πως το συγκεκριμένο ερευνητικό αντικείμενο εξελίσσεται συνεχώς τα τελευταία 15 έτη και η έναρξη της ερευνητικής δραστηριότητας στον τομέα εντοπίζεται χρονικά περίπου στις αρχές του 1990, όταν ακόμη οι ερευνητές αναφέρονταν στις υπηρεσίες αυτές χωρίς να τις περιγράφουν με τον όρο LBS. Από την άλλη πλευρά, η πρώτη εφαρμογή τεχνολογίας επαυξημένης πραγματικότητας εντοπίζεται στην βιβλιογραφία τη δεκαετία του 1960 από τον ερευνητή Sutherland.

Στο πλαίσιο της έρευνας καταγράφηκε η πλειοψηφία των ορισμών όπως έχουν αποδοθεί από την επιστημονική κοινότητα και στη συνέχεια παρουσιάστηκε η δομή του συστήματος βάσει του οποίου παρέχονται ή υλοποιούνται οι εφαρμογές αυτές. Επιπρόσθετα, παρουσιάζονται οι τάσεις που επικρατούν εις θέση με τις συγκεκριμένες εφαρμογές. Τέλος, περιγράφεται η σχέση LBS – AR και μέσα από την παρουσίαση συγκεκριμένης εφαρμογής όπου συνδυάζονται οι δύο τεχνολογίες περιγράφεται η δομή του συνδυασμένου συστήματος.

Οι υπηρεσίες βάσει θέσης είναι μια γενική κατηγορία των υπηρεσιών που παρέχονται στον χρήστη μέσω ηλεκτρονικών συσκευών όπως τα κινητά τηλέφωνα ή οι ηλεκτρονικοί υπολογιστές. Το λογισμικό που χρησιμοποιείται συμπεριλαμβάνει ειδικούς ελέγχους για την τοποθεσία του χρήστη σε σχέση με την τοποθεσία των δεδομένων που θα ανακτηθούν αλλά και την ώρα που πραγματοποιείται η εκτέλεση της εφαρμογής. Ως εκ τούτου οι υπηρεσίες αυτές παρέχουν γεωχωρική πληροφορία και σχετίζονται με σειρά χρήσεων όπως εφαρμογές στα μέσα κοινωνικής δικτύωσης και υπηρεσίες που αφορούν για παράδειγμα την υγεία, την αναζήτηση αντικειμένων στο διαδίκτυο, την ψυχαγωγία, την εργασία (Quercia et al, 2010) και την προσωπική ζωή (Deuker, 2008).

Αντικείμενο τέτοιων εφαρμογών μπορεί να αποτελέσει οποιαδήποτε απλή καθημερινή ανάγκη των χρηστών, όπως για παράδειγμα ο εντοπισμός του πλησιέστερου Αυτόματου Τραπεζικού Μηχανήματος (ATM) σε σχέση με τη θέση εντοπισμού του χρήστη. Ακόμη, αντικείμενο έρευνας και υλοποίησης μιας τέτοιας εφαρμογής μπορεί να αποτελέσει και ένα πλήρως εξειδικευμένο επιστημονικό εγχείρημα όπως για παράδειγμα οι εφαρμογές επαυξημένης πραγματικότητας κατά τη διάρκεια μιας χειρουργικής επέμβασης.
Από την έρευνα προκύπτει ότι οι LBS βοηθούν στην άμεση λήψη αποφάσεων σε ζητήματα που απασχολούν τους πολίτες στην καθημερινότητά τους και για το λόγο αυτό θεωρούνται απαραίτητες. Επιπλέον, εφόσον η θέση της φορητής συσκευής μέσω της οποίας διανέμεται η πληροφορία μπορεί να προσδιοριστεί τότε οι καταγραφές αυτές μπορεί να αποθηκευτούν, να αναλυθούν και να εξαχθούν συμπεράσματα σχετικά με την συμπεριφορά κοινωνικών συνόλων στο χώρο – χρόνο. Ακόμη, οι εφαρμογές αυτές είναι ιδιαίτερα χρήσιμες στην αντιμετώπιση έκτακτων καταστάσεων διότι παρέχουν άμεση λύση σε κρίσιμες συνθήκες όπως για παράδειγμα ο εντοπισμός διόδου διαφυγής στην περίπτωση πυρκαγιάς ή στην περίπτωση άμεσου εντοπισμού ατόμου που βρίσκεται σε κίνδυνο. Σήμερα τέτοιες εφαρμογές χρησιμοποιούνται σε καταστάσεις αντιμετώπισης έκτακτων αναγκών, στον τουρισμό, στον τομέα της υγείας, της εργασίας κ.α.

Επίσης, οι LBS εφαρμογές σήμερα είναι μέρος πολλών διαφορετικών συστημάτων ελέγχου και πολιτικής τα οποία κάνουν χρήση ηλεκτρονικών υπολογιστών. Οι υπηρεσίες αυτές έχουν εξελιχθεί από απλές υπηρεσίες που βασίζονταν στον συγχρονισμό μοντέλων παροχής υπηρεσιών σε αναγνωρισμένα και πολύπλοκα εργαλεία τα οποία παρέχουν υπηρεσίες σχεδόν σε οποιαδήποτε θέση με βάση το μοντέλο παροχής υπηρεσιών ή εγκατάστασης.

Υπηρεσία βάσεως θέσης θεωρείται κάθε υπηρεσία ή εφαρμογή που παρέχει χωρική πληροφορία ή δυνατότητες Συστημάτων Γεωγραφικών Πληροφοριών (ΣΓΠ) στους τελικούς χρήστες μέσω διαδικτύου ή ασύρματου δικτύου (Koeppel, 2000).

Οι πρώτες υπηρεσίες βάσεως θέσης εισάγονται ως αντικείμενο έρευνας και εφαρμογής περίπου στην αρχή της χιλιετίας και κυρίως με τη μορφή ερωτημάτων όπως: α) Που βρίσκεται το Χεστιατόριο; β) Που βρίσκομαι; γ) Που μπορώ να εντοπίσω το πλησιέστερο νοσοκομείο; κ.α. Οι εφαρμογές αυτές δεν έγιναν αρχικά αποδεκτές από το ενδιαφερόμενο κοινό διότι και σε αυτές τα ερώτημας υπό καταλληλοποίησης. Το γεγονός αυτό οδήγησε σε λανθασμένα και μη αποδεκτά αποτελέσματα από τον χρήστη. Έτσι, ο χρήστης χάνει την εμπιστοσύνη του στο σύστημα εφόσον αυτό παύει να είναι λειτουργικό και αποτελεσματικό.

Τα προβλήματα αυτά σήμερα έχουν ξεπεραστεί. Στις σημερινές εφαρμογές η ακρίβεια προσδιορισμού της θέσης του χρήση γίνεται ανάλογα με το σύστημα που χρησιμοποιείται (π.χ. GPS ή ασύρματο δίκτυο) και η ακρίβεια προσδιορισμού του αντικειμένου εξαρτάται πάντα από τον τύπο του ερωτήματος αλλά και τη φύση του αντικειμένου προς εντοπισμό.

Σύμφωνα με τον ορισμό που δόθηκε προηγούμενα, υπηρεσία βάσεως θέσης θεωρείται κάθε εφαρμογή προσδιορισμού θέσης μέσω διαδικτύου από οποιαδήποτε φορητή συσκευή όπως ο φορητός υπολογιστής (laptop), ο ψηφιακός υπολογιστής - βοηθός (PDA), τα “έξυπνα” τηλέφωνα (smart phones), κ.т.λ.. Με τον τρόπο αυτό παρέχεται άμεσα στον χρήστη χρήσιμη πληροφορία. Επιπλέον, οι υπηρεσίες αυτές αναφέρονται κυρίως σε χρήστες των οποίων η θέση μεταβάλλεται. Ενας δεύτερος ορισμός των υπηρεσιών με βάση
τη θέση ορίζει ως LBS τα γεωγραφικά δεδομένα και τις υπηρεσίες που παρέχονται στους χρήστες μέσω κινητών τηλεπικοινωνιακών δικτύων (Shiode et al. 2004).

Από τους δύο ορισμούς που δόθηκαν προκύπτει ότι σε κάθε περίπτωση αναφέρομαστε σε υπηρεσίες παροχής πληροφορίας η οποία σχετίζεται με τη θέση του συνήθως κινούμενου χρήστη σε σχέση με τη θέση του σημείου που τον ενδιαφέρει. Η πληροφορία διανέμεται μέσω τηλεπικοινωνιακού δικτύου σε φορητή ή όχι συσκευή την οποία χρησιμοποιεί ο ίδιος.

Εικόνα 1: Απεικόνιση συστήματος παροχής υπηρεσιών με βάση τη θέση (www.ibm.com).

Τα προηγούμενα μπορούν να περιγραφούν ως μια δυνατότητα του συστήματος να αντλεί πληροφορία από συγκεκριμένο χώρο αποθήκευσης δεδομένων με βάση κάθε φορά την τοποθεσία του χρήστη ή/και τον χρόνο. Οι LBS εφαρμογές σήμερα βρίσκονται έδαφος σχεδόν σε όλους τους τομείς που ο παράγοντας άνθρωπος μπορεί να επέμβει, από τα πιο απλά συστήματα ελέγχου μέχρι και τα έξυπνα όπλα. Οι υπηρεσίες αυτές χρησιμοποιούνται ενεργά τρισεκατομμύρια φορές την ημέρα και είναι από τις πιο απαιτητικές εφαρμογές σε επίπεδο υπολογιστικής ισχύος σήμερα.

Το 1996, ο Todd Glassey σχεδίασε το πρώτο ψηφιακό διακωμιστή με timestamp για μηνύματα ηλεκτρονικού ταχυδρομείου και επικύρωσε του περιεχομένου τους και δημιούργησε τις πρώτες εμφανίσεις του "Geospatial Keying". Με τον τρόπο αυτό επιτυγχάνει μια πολύπλοκη διαδικασία κρυπτογράφησης με σκοπό να λαμβάνεται κάθε φορά υπόψη η πληροφορία του χρόνου και της θέσης των δεδομένων προς ανάκτηση και να παρέχεται ανάλογη πρόσβαση στον χρήστη. Με τον τρόπο αυτό ξεκλειδώνεται κάθε φορά μέρος πληροφορίας προς τον χρήστη ανάλογα με τη θέση και τον χρόνο εντοπισμού του.

Αργότερα την ίδια χρονιά (1996) η Αμερικανική Ομοσπονδιακή Επιτροπή Τηλεπικοινωνιών (FCC) ανακοινώνει τους κανόνες που απαιτούνται από όλες τις επιχειρήσεις των ΗΠΑ κινητής τηλεφωνίας για εντοπισμό κλήσεων έκτακτης ανάγκης. Ο κανόνας αυτός ήταν ένας συμβιβασμός που προκύπτει μεταξύ ΗΠΑ και φορέων κινητής τηλεφωνίας που αναζητούν την υποστήριξη της κοινότητας έκτακτης ανάγκης, προκειμένου να επιτευχθεί η ίδια προστασία από αγωγές που σχετίζονται με τις κλήσεις έκτακτης ανάγκης και σταθερής τηλεφωνίας που ήδη είχαν. Ο κανονισμός αυτός αφορούσε διαχείριση υπηρεσιών βάσει θέσης.

Το 1997 ο Christopher Kingdon, της Ericsson, παρέδωσε στις Υπηρεσίες Εντοπισμού Θέσης (LCS) μία περιγραφή του πρώτου σταδίου στην κοινή ομάδα GSM του Ευρωπαϊκού Ινστιτούτου Τηλεπικοινωνιακών Προτύπων (ETSI) και του Αμερικανικού Εθνικού Ινστιτούτου Προτύπων (ANSI). Ως αποτέλεσμα, δημιουργήθηκε μία υποομάδα εργασίας LCS υπό την ANSI T1P1.5. Αυτή η ομάδα προχώρησε στην επιλογή μεθόδων εντοπισμού και στην τυποποίηση Υπηρεσιών Εντοπισμού Θέσης (LCS), οι οποίες έγιναν αργότερα γνωστές ως Location Based Services (LBS). Ως κομβικά σημεία θεωρούνται:

- το Gateway Mobile Location Centre (GMLC),
- το Serving Mobile Location Centre (SMLC),
- το Mobile Originating Location Request (MO-LR),
- το Network Induced Location Request (NI-LR) και
- το Mobile Terminating Location Request (MT-LR).

Αυτά τα μοντέλα δεν ήταν πραγματικά λειτουργικά σε επίπεδο εφαρμογών και έχρηζαν περαιτέρω ελέγχων όσον αφορά τη διεπαφή με το χρήστη ώστε να γίνουν παντού εφαρμόσιμα. Οι έλεγχοι αυτοί προηλήθησαν από τα εξελιγμένα μοντέλα Glassey, τα οποία επεκτάθηκαν και προσέφεραν ένα δεύτερο, πιο ισχυρό και πολύ απλό σύστημα για τον έλεγχο ψηφιακών αντικειμένων και διαδικασιών λήψης αποφάσεων με βάση τη θέση και το χρόνο.

Ως αποτέλεσμα αυτών των προσπαθειών, το 1999 κατατέθηκε στις ΗΠΑ η πρώτη ψηφιακή ευρεσιτεχνία υπηρεσίας βάσει θέσης και τελικά εκδόθηκε τον Μάρτιο του 2002 αφού ελέγχθηκε από εννέα δράσεις εξουσίας. Το δίπλωμα περιλαμβάνει ελέγχους οι οποίοι όταν
εφαρμόζονται σε σημερινά μοντέλα δικτύωσης παρέχουν βασική αξία σε όλα τα συστήματα.

Το 2000, μετά την έγκριση από τους 12 μεγαλύτερους τηλεπικοινωνιακούς φορείς παγκοσμίως όπως η Ericsson, η Motorola και η Nokia σχηματίζουν από κοινού και ξεκινούν το πρώτο φόρουμ διαλειτουργικότητας που ονομάζεται Location Interoperability Forum Ltd (LIF). Το φόρουμ αυτό ορίζει για πρώτη φορά το πρωτόκολλο Mobile Location Protocol (MLP), μια διεπαφή μεταξύ του δικτύου τηλεπικοινωνιών και την εφαρμογή LBS που εκτελείται σε ένα διακομιστή σε διαδικτυακό τομέα. Στη συνέχεια, με την καθοδήγηση της Vodafone καθορίζεται σε μεγάλο βαθμό το επόμενο βήμα της LIF οπότε είναι η ενεργοποίηση του διακομιστή Location Enabling Server (LES), ένα "ενδιάμεσο μέσο", το οποίο με χρήση κατάλληλης υποδομής απλοποιεί την ενσωμάτωση πολλαπλών LBS. Το 2004 η LIF συγχωνεύθηκε με την Open Mobile Association (OMA) όποτε και ιδρύεται μια ομάδα εργασίας LBS εντός του OMA.

Η πρώτη εφαρμογή που μπορούν οι καταναλωτές να χρησιμοποιήσουν είναι διαθέσιμη το 1999 όταν δημοσιεύεται η φορητή συσκευή Palm VII η οποία συνδέεται στο διαδίκτυο. Οι εφαρμογές πρόγνωσης καιρού και εκτίμησης κυκλοφορίας φόρτου που υποστηρίζει, βασίζονται στον εντοπισμό της θέσης του χρήστη με αλγόριθμο που κάνει χρήση της πληροφορίας του ταχυδρομικού κώδικα.

Όπως είναι κατανοητό, οι εφαρμογές αυτές αν και δεν έχουν υψηλό επίπεδο ακρίβειας αφού η θέση του χρήστη εκτιμάται βάσει ΤΚ δεν παύουν να χρησιμοποιούνται και να αποτελούν τις πρώτες LBS εφαρμογές που όμως πάσχουν όσον αφορά τις απαιτήσεις του χρήστη σε σχέση με την ακρίβεια προσδιορισμού θέσης.

Οι πρώτες μαζικές εφαρμογές LBS ξεκίνησαν κατά τη διάρκεια του 2001 από την TeliaSonera στη Σουηδία (FriendFinder, χρυσός οδηγός, houseposition, κλήση έκτακτης ανάγκης με βάση την τοποθεσία, κλπ.) και από την EMT στην Εσθονία (κλήση έκτακτης ανάγκης, FriendFinder, τηλεπαίχνιδα). Η TeliaSonera και η EMT επικέντρωσαν τις υπηρεσίες τους στο σύστημα Ericsson Mobile Positioning (MPS).

Η πρώτη εμπορική υπηρεσία LBS στην Ιαπωνία ξεκίνησε από την DoCoMo, η οποία βασίζεται στην τριγωνοποίηση για προ-GPS συσκευές τον Ιούλιο του 2001 και από την KDDI για τα πρώτα κινητά τηλέφωνα εξοπλισμένα με GPS το Δεκέμβριο του 2001. Οι κατασκευαστές κινητών τηλεφώνων έχουν παράλληλα έχει παράδειγμα την εφαρμογή τους στο εντοπισμό της θέσης του χρήστη με βάση την τεχνολογία GPS και έχουν σχεδιάσει την διαδικασία ενσωμάτωσης των LBS στο λογισμικό τους. Τον Μάιο του 2002, η GO2 και η AT & T Mobility δημιούργησαν το πρώτο (στις ΗΠΑ) κινητό με LBS εφαρμογή τοπικής αναζήτησης που χρησιμοποιούσε τεχνολογίας Αυτόματου Εντοπισμού Θέσης (ALI) από την FCC. Οι GO2 χρήστες ήταν σε θέση να χρησιμοποιήσουν τον Αυτόματο Εντοπισμό Θέσης (ALI) της AT & T για να καθορίσουν τη θέση τους και να αναζητήσουν κοντά σε αυτή μια λίστα επιθυμητών τοποθεσιών (καταστήματα, εστιατόρια,
κλπ.), ανάλογα με τη γειτνίαση που υπολογίζει το ασύρματο δίκτυο της AT & T. Ο Αυτόματος Εντοπισμός Θέσης (ALI) χρησιμοποιήθηκε επίσης ως σημείο εκκίνησης για την εφαρμογή των turn-by-turn κατευθύνσεων.

Το 2005 αναλύεται η μεθοδολογία των υπηρεσιών αυτών σε σχέση με κοινωνικά χαρακτηριστικά και εισάγεται από τους Rein Ahas and Ular Mark ο όρος Social Positioning Method (SPM) η οποία μελετά την κοινωνική συμπεριφορά των χρηστών στον χώρο και τον χρόνο. Η ανάλυση βασίζεται στην γεωγραφική θέση της φορητής συσκευής σε σχέση με τα κοινωνικά χαρακτηριστικά του ατόμου στο οποίο ανήκει. Τα αποτελέσματα της ανάλυσης αυτής χρησιμοποιούνται για την υποστήριξη εξελιγμένων LBS μοντέλων. Ωστόσο ακόμη δεν έχει γίνει ευκτική η εφαρμογή των υπηρεσιών αυτών που βασίζονται σε κοινωνικά χαρακτηριστικά των χρηστών διότι θα πρέπει να ξεπεραστούν προβλήματα που σχετίζονται με την παραβίαση των προσωπικών δεδομένων.

Υποστηρίζεται ότι μέχρι το 2015 μέσω μεθόδων όπως η SPM και οι διαδραστικοί χάρτες οι οποίοι οπτικοποιούν δεδομένα σε πραγματικό χρόνο του ποιος κινείται, που και πώς, θα είναι αναπόσπαστο μέρος της καθημερινότητας των χρηστών (Rein Ahas and Ular Mark 2005).

Οι χρήστες των συστημάτων που παρέχουν υπηρεσίες με βάση τη θέση διαφέρουν ως προς την κατάσταση στην οποία βρίσκονται, αν είναι δηλαδή εν κινήσει ή όχι. Επίσης, οι πληροφορίες που απαιτούνται από τον χρήστη εξαρτώνται κάθε φορά από τη θέση στην οποία βρίσκεται η στιγμή υποβολής του αιτήματος, τον χρόνο υποβολής και το περιεχόμενο του. Ωστόσο, ο ρόλος του χρήστη στο σύστημα δεν απασχολεί σήμερα σημαντικά, αλλά προβλήματα κατανόησης ποιοί κινείται, που και πώς, αντιμετωπίζονται με τη δημιουργία πιο αναλυτικών και επεξηγηματικών διεπιφανειών.

Συνοψίζοντας, διατυπώνεται ότι Υπηρεσία με Βάση τη Θέση μπορεί να θεωρηθεί οποιαδήποτε υπηρεσία παρέχεται σε κινούμενο συνήθως χρήστη μέσω φορητής συσκευής διασυνδεδεμένης σε σύστημα τηλεπικοινωνιών. Η πληροφορία που παρέχεται σχετίζεται άμεσα με τη θέση του χρήστη η οποία συνήθως προσδιορίζεται μέσω του συστήματος GPS όταν ο χρήστης εντοπίζεται σε εξωτερικό χώρο ή μέσω άλλου ασύρματου δικτύου όταν ο χρήστης εντοπίζεται σε κλειστό χώρο, τον χρόνο υποβολής του αιτήματος και το περιεχόμενο του. Από τα προηγούμενα δεν πρέπει να εξαχθεί το συμπέρασμα ότι οι υπηρεσίες βάσει θέσης δεν χρησιμοποιούνταν και πριν την είσοδο των φορητών συσκευών στην καθημερινότητα του ανθρώπου. Αντίθετα, όπως διατυπώνεται και προηγούμενα η εμφάνιση των εφαρμογών αυτών ξεκίνησε περίπου στις αρχές της δεκαετίας του 90 όταν οι υπηρεσίες αυτές παρέχονταν μέσω άλλων μη φορητών υπολογιστικών συστημάτων και η αλληλεπίδραση μεταξύ χρήσης και συστήματος ήταν συνήθως μονοσήμαντη.
2.2 Τεχνολογία επαυξημένης πραγματικότητας - AR

Παράλληλα, με την εξέλιξη των LBS εφαρμογών παρατηρείται η ραγδαία εξέλιξη της τεχνολογίας επαυξημένης πραγματικότητας. Σε αντίθεση με τις LBS η πρώτη αναφορά σε συστήματα επαυξημένης πραγματικότητας σημειώνεται στα τέλη της δεκαετίας του 1960. Συγκεκριμένα, η πρώτη εφαρμογή αναπτύχθηκε από τον Sutherland το 1968 και αφορούσε στην υλοποίηση ενός συστήματος τρισδιάστατης εικονικής απεικόνισης αντικειμένου σε πραγματικό περιβάλλον. Η βασική ιδέα ήταν η αναπαραγωγή τρισδιάστατης προοπτικής εικόνας στο οπτικό πεδίο του χρήστη η οποία θα αλλάζει κάθε φορά που η θέση του χρήστη θα μεταβάλλεται. Στη δημοσίευση αυτή δε δίνεται ορισμός που να προσδιορίζει το πλαίσιο της τεχνολογίας αυτής αλλά περιγράφεται η λογική λειτουργία του συστήματος που υλοποιήθηκε από τον Sutherland.

Η υλοποίηση του συστήματος βασίζεται στο γεγονός ότι η πραγματική εικόνα που βλέπουμε και η οποία είναι αντικείμενα τριών διαστάσεων στο χώρο καταλήγει στον αμφιβληστροειδή του ματιού ως εικόνα δύο διαστάσεων, έτσι αν τοποθετηθούν σε κατάλληλες θέσεις ως προς τον αμφιβληστροειδή και κατάλληλες διαστάσεις αντικείμενα (εικόνες) δύο διαστάσεων τότε θα μπορούσε να δημιουργηθεί στο οπτικό πεδίο του παρατηρητή η ψευδαίσθηση της τρίτης διάστασης. Βάση αυτής της λογικής λειτουργίας και με υπολογισμένη κάθε φορά τη νέα θέση του οπτικού συστήματος του παρατηρητή το οποίο ήταν ενσωματωμένο στο κεφάλι του, υλοποιήθηκε η πρώτη εφαρμογή επαυξημένης πραγματικότητας.

Εικόνα 2 : Απεικόνιση συστήματος AR (Sutherland, 1968).

Ο Sutherland κατασκευάζει το πρώτο κράνος απεικόνισης (headmount display) με στόχο τη δημιουργία ενός τρισδιάστατου περιβάλλοντος με σκοπό να εμβυθιστεί σε αυτό ο χρήστης. Η συσκευή ήταν κατασκευασμένη με σκοπό να φορεθεί και στα δυο μάτια και να απεικονίζει στο καθένα μια διαδιάστατη εικόνα, ώστε ο εγκέφαλος να συνδυάσει και τις δύο σε μια τρισδιάστατη προοπτική. Καθώς ο χρήστης κινείται, ανιχνεύονται η θέση και ο προσανατολισμός του κεφαλιού του και μεταβάλλεται αντίστοιχα η προβαλλόμενη εικόνα.
Τα τεχνικά μέσα της εποχής επέτρεπαν την απεικόνιση μόνο των περιγραμμάτων των αντικειμένων (wireframe objects) και ο υπολογιστής δεν μπορούσε να κρύψει αντικείμενα ή τμήματα αντικειμένων τα οποία δεν θα έπρεπε να φαίνονται (γιατί π.χ. κάποιο άλλο αντικείμενο βρισκόταν μπροστά), με αποτέλεσμα ο χρήστης να μη μπορεί να προσδιορίσει σωστά τη θέση και το σχήμα κάποιων αντικειμένων. Παρά τις τεχνικές δυσκολίες ο Sutherland καταφέρνει να υλοποιήσει την πρώτη εφαρμογή επαυξημένης πραγματικότητας η οποία για την εποχή θεωρείται και είναι πρωτοπόρα.

Μετά την υλοποίηση της εφαρμογής αυτής και τον εντοπισμό της αντίστοιχης δημοσίευσης παρατηρείται ένα αρκετά σημαντικό χρονικό διάστημα στο οποίο δεν εντοπίζονται άλλες σημαντικές βιβλιογραφικές αναφορές και οι εφαρμογές επαυξημένης πραγματικότητας βρίσκονται σε ύφεση, έως τη δεκαετία του 1980 όταν αναπτύσσονται συστήματα που υποστηρίζουν την τεχνολογία αυτή και μάλιστα ορισμένα από αυτά χρηματοδοτούνται από τον Αμερικάνικο Στρατό για εφαρμογές τις οποίες στη συνέχεια θα χρησιμοποιούσε.

Στα τέλη της δεκαετίας του 1990 αναπτύσσονται, επίσης, τέτοια συστήματα σε τομείς όπως η ιατρική, οι κατασκευές, η εκπαίδευση, η ψυχαγωγία, οι επισκευές, ο στρατός κ.α. Παραδείγματα τέτοιων εφαρμογών παρατίθενται στην έρευνα που δημοσιεύεται από τον Azuma το 1997. Σε αυτή την έρευνα περιγράφεται η τεχνολογία της επαυξημένης πραγματικότητας, δίνεται ο ορισμός της και παρατίθενται τα χαρακτηριστικά των συστημάτων που την υποστηρίζουν.

Όλες οι εφαρμογές επαυξημένης πραγματικότητας βασίζονται στη θέση του χρήστη ώστε να προσδιοριστεί η θέση στην οποία θα προβληθεί το επαυξημένο αντικείμενο σε σχέση με το οπτικό του πεδίου, ωστόσο δεν μπορεί να χαρακτηριστούν ως LBS εφαρμογές παρόλο που η λειτουργία τους βασίζεται στη θέση του χρήστη στο χώρο. LBS είναι μόνο οι εφαρμογές όπου ο χρήστης αντλεί πληροφορία από βάση δεδομένων και βάσει της θέσης της ηλεκτρονικής συσκευής που χρησιμοποιεί το διατίθεται από το σύστημα όλη η διαθέσιμη πληροφορία που μπορεί να τον ενδιαφέρει. Στην περίπτωση που οι δύο τεχνολογίες συνδυάζονται τότε οι δυνατότητες παροχής πληροφοριών προς τον χρήστη είναι υψηλές και το αποτέλεσμα εντυπωσιακό. Σε κάθε τέτοια περίπτωση αναφέρομαστε στον υπολογισμό δύο θέσεων στο χώρο ώστε να είναι δυνατή η ολοκλήρωση της εφαρμογής. Η πρώτη είναι η θέση της φορητής συσκευής που χρησιμοποιείται και η δεύτερη είναι η θέση του πραγματικού αντικειμένου στο οποίο θα γίνει η προβολή του εικονικού.

Χαρακτηριστική εφαρμογή όπου οι δύο τεχνολογίες συνδυάζονται είναι η περίπτωση των εφαρμογών που προβάλλεται επαυξημένη περιγραφική πληροφορία σε πραγματικά
αντικείμενα τα οποία συνήθως εντοπίζονται σε εξωτερικό περιβάλλον (annotation augmented reality applications). Η δομή του συστήματος αλλά και η αρχή λειτουργίας μια τέτοιας εφαρμογής περιγράφεται σε επόμενο κεφάλαιο.

Ως επαυξημένη πραγματικότητα στη δημοσίευση του Azuma το 1997 ορίζεται η τεχνολογία μέσω της οποίας εικονικά αντικείμενα τριών διαστάσεων ενσωματώνονται σε αντικείμενα του τρισδιάστατου πραγματικού χώρου σε πραγματικό χρόνο. Η επαυξημένη πραγματικότητα συμπληρώνει το πραγματικό περιβάλλον και δεν το αντικαθιστά όπως συμβαίνει στις περιπτώσεις εφαρμογών εικονικής πραγματικότητας (Azuma, 1997). Τα πραγματικά αντικείμενα συνυπάρχουν με τα εικονικά (Milgram, 1994) και ταυτόχρονα τα εικονικά αντικείμενα επιδεικνύουν πληροφορία η οποία δεν είναι άμεσα ανιχνεύσιμη από τον χρήστη μέσω των αισθήσεων του και δεν αφορά αποκλειστικά στην όραση. Η επαυξένη πληροφορία που παρέχεται στον χρήστη πέραν αυτής που αφομοιώνει από το πραγματικό περιβάλλον μπορεί να σχετίζεται και με τις υπόλοιπες αισθήσεις π.χ. ακοή και αφή.

Σύμφωνα με τον Milgram, ένας μελλοντικός στόχος είναι οι χρήστες να μην έχουν επίγνωση του συστήματος που χρησιμοποιούν. Όσο οι τεχνικές επεξεργασίας εικόνων μέσω του υπολογιστή βελτιώνονται, ενδέχεται κάποια στιγμή να μη μπορούμε να διακρίνουμε αν ο κυρίαρχος κόσμος είναι πραγματικός ή εικονικός, ούτε εάν μία εικόνα είναι απευθείας όπως την βλέπουμε ή μέσω βίντεο.

Εικόνα 3: Απεικόνιση δομής μικτής πραγματικότητας.

Η επαυξημένη πραγματικότητα έχει τη δυνατότητα να βελτιώνει τις ανθρώπινες επιδόσεις προσθέτοντας πληροφορίες στο κατάλληλο μέρος και την κατάλληλη χρονική στιγμή οι οποίες είναι απαραίτητες στον χρήστη. Οι πληροφορίες αυτές μπορούν να προβληθούν με τρεις κυρίαρχους τρόπους (Goldiez, 2004).

- Ο πρώτος τρόπος είναι η υπέρθεση πληροφοριών οι οποίες δεν αποτελούν ολοκληρωτικό κομμάτι του φυσικού περιβάλλοντος. Τέτοιες περιπτώσεις τα head-up displays (HUDs) στα στρατιωτικά αεροσκάφη. Σε αυτές τις περιπτώσεις η υπερτιθεμένη πληροφορία ξεχωρίζει από το πραγματικό σκηνικό και ο καθένας αντιλαμβάνεται την ύπαρξη της. Παρά τις ομοιότητες τους όμως, πολλοί
επιστήμονες δεν θεωρούν τα HUDs εφαρμογή της επαυξημένης πραγματικότητας και αυτό γιατί η επαυξημένη πραγματικότητα εμπλουτίζει και προσθέτει πληροφορία σε μία πραγματική σκηνή παρά αντικαθιστά ήδη υπάρχουσα. Επίσης τα δεδομένα και οι πληροφορίες στην AR εκτίθενται με τέτοιο τρόπο ώστε να θεωρούνται αναπόσπαστο κομμάτι της πραγματικότητας. Τα HUDs, αντίθετα, είναι σχεδιασμένα ώστε να ξεχωρίζουν από τον πραγματικό κόσμο και όχι να θεωρούνται ολοκληρωτικό κομμάτι του.

• Η δεύτερη μέθοδος προβάλει τις πληροφορίες με τέτοιο τρόπο ώστε να μην ξεχωρίζουν από τον υπόλοιπο φυσικό κόσμο, όπως για παράδειγμα σε μια εφαρμογή στην οποία ένα εικονικό κτίριο τοποθετείται μέσα σε ένα αστικό τοπίο. Επίσης, τα δεδομένα και οι πληροφορίες στην AR εκτίθενται με τέτοιο τρόπο ώστε να θεωρούνται αναπόσπαστο κομμάτι της πραγματικότητας. Τα HUDs, αντίθετα, είναι σχεδιασμένα ώστε να ξεχωρίζουν από τον πραγματικό κόσμο και όχι να θεωρούνται ολοκληρωτικό κομμάτι του.

• Η τρίτη μέθοδος συνιστάται στην απεικόνιση της πληροφορίας, στη σημείωση, όποια βρίσκεται ήδη στο φυσικό περιβάλλον, αλλά δεν είναι άμεσα παρατηρήσιμη χωρίς τη βοήθεια της επαυξημένης πραγματικότητας. Κάτι τέτοιο συμβαίνει για παράδειγμα σε διάφορες στρατιωτικές εφαρμογές όπου οι στρατιώτες φορώντας διευκρινιστική εξοπλισμό μπορούν να δουν τι χρησιμοποιημένο συστήματα της πραγματικάς πραγματικότητας, όπως τα ιστορικά ή τα πυροβόλα καλάθια.

Το 1998 διοργανώνεται από τη διεθνή κοινότητα της επιστήμης των υπολογιστών (IEEE Computer Society) η πρώτη διεθνής συνάντηση (International Workshop on Augmented Reality) με σκοπό την οργάνωση και τον συντονισμό ερευνητών της επαυξημένης πραγματικότητας. Κάτι τέτοιο συμβαίνει για παράδειγμα σε διάφορες στρατιωτικές εφαρμογές όπου οι στρατιώτες φορώντας ειδικές συσκευές απεικόνισης μπορούν να δουν τι βρίσκεται στο εσωτερικό ή στο πίσω μέρος ενός κτιρίου.

Το 2001 δημοσιεύεται μία νέα έρευνα συμπληρωματική εκείνης που είχε δημοσιευθεί το 1997 από τον Αzuma. Βασικός στόχος των συστημάτων AR είναι η ενίσχυση της αντίληψης του χρήστη και η αλληλεπίδραση με τον πραγματικό κόσμο μέσω συμπληρωματικών συσκευών αντικειμένων που συνυπάρχουν στον πραγματικό χώρο. Η επαυξημένη πραγματικότητα επιτρέπει στον χρήστη την αλληλεπίδραση των φυσικών με τα εικονικά αντικείμενα. Στη δημοσίευση αυτή ορίζονται οι βασικές ιδιότητες των συστημάτων AR ως εξής:

1. Ανάμιξη εικονικού αντικειμένου με πραγματικό αντικείμενο σε πραγματικό περιβάλλον.
2. Αλληλεπίδραση αντικειμένων – χρήστη σε πραγματικό χρόνο.
3. Γεωαναφορά (register) εικονικών αντικειμένων σε τρεις διαστάσεις.

Στο παρόν κεφάλαιο περιγράφηκε η εξέλιξη των δύο τεχνολογικών πεδίων στο χρόνο. Διαπιστώνει κανείς πως η τεχνολογία επαυξημένης πραγματικότητας είναι πεδίο που οι επιστήμονες ερευνούν από τη δεκαετία του 1960 ενώ το πεδίο των εφαρμογών βάσει θέσης είναι σχετικά πρόσφατο. Ωστόσο, τα δύο αυτά πεδία σήμερα συνδυάζονται σχεδόν στην πλειοψηφία των εφαρμογών επαυξημένης πραγματικότητας με αποτέλεσμα τη διάθεση χρήσιμων και ελκυστικών εφαρμογών στον χρήστη. Το γεγονός ότι ο χρήστης έχει άμεση πρόσβαση σε πραγματικό χρόνο σε περιγραφική πληροφορία η οποία σχετίζεται με τη θέση εντοπισμού του και ταυτόχρονα η πληροφορία αυτή οπτικοποιείται μέσω τεχνολογικών μέσων επαυξημένης πραγματικότητας καθιστά τις εφαρμογές αυτές φυλικές προς τον χρήστη αλλά και ανταγωνιστικές.
3 Συστήματα υπηρεσιών βάσει θέσης

3.1 Γενικά

Στο κεφάλαιο αυτό περιγράφεται το γενικό πλαίσιο της τεχνολογίας υπηρεσιών βάσει θέσης. Επιπλέον, παρατίθενται συγκριτικά στοιχεία της σχέσης μεταξύ Συστημάτων Γεωγραφικών Πληροφοριών και Υπηρεσιών Βάσει Θέσης και στη συνέχεια αναλυτικά παρουσιάζεται ο τρόπος λειτουργίας ενός τέτοιου συστήματος.

Μελετώντας κανείς τα Συστήματα Γεωγραφικών Πληροφοριών και τις Υπηρεσίες Βάσει Θέσης παρατηρεί πως οι δύο επιστημονικοί τομείς εμφανίζουν ιδιαίτερες ομοιότητες. Τα κοινά χαρακτηριστικά τους είναι:

• η διαχείριση των δεδομένων που αναφέρονται σε συγκεκριμένη θέση και
• η ανάλυση λειτουργιών βάσει χωρικών κριτήρων που δίνουν απαντήσεις σε ερωτήματα που απαντώνται στην καθημερινότητα των πολιτών.

Τέτοια ερωτήματα μπορεί να αναφέρονται τόσο στην θέση που εντοπίζεται ο χρήστης όσο και στη θέση συγκεκριμένης οντότητας σε σχέση με το χώρο της θέσης. Επιπλέον, σημαντικές ομοιότητες εμφανίζονται και ανάμεσα στους χρήστες των δύο τεχνολογιών. Παρά τις ομοιότητες αυτές οι ομάδες χρηστών είναι κατά βάση διαφορετικές, αλλά και η χρονική αφετηρία εμφάνισης τους στην επιστημονική κοινότητα είναι διαφορετική (Virrantaus et al. 2001).

Στη δημοσίευση του Virrantaus και της ομάδας του το 2001 διατυπώνεται ότι τα Γεωγραφικά Συστήματα Πληροφοριών που έχουν αναπτυχθεί κατά τη διάρκεια αρκετών δεκαετιών βασίζονται σε επιστημονικές εφαρμογές δεδομένων που σχετίζονται με το χώρο, ενώ η LBS τεχνολογία εφαρμόστηκε πολύ πρόσφατα και σχετίζεται σε μεγάλο βαθμό τόσο με την εξέλιξη των υπηρεσιών κινητής τηλεφωνίας όσο και με την εξέλιξη των έξυπνων συσκευών και τη δυνατότητα χρήσης του σε δημόσιο χώρο. Επιπρόσθετα, οι εφαρμογές με βάση τη θέση σε σχέση με τις εφαρμογές των γεωπληροφοριακών συστημάτων διακρίνονται για την πολυπλοκότητά τους και την μεγαλύτερη ετερογένεια συγκριτικά με τις τελευταίες.

Λαμβάνοντας υπόψη τα προηγούμενα καταλήγουμε στο γεγονός ότι οι υπηρεσίες αυτές διακρίνονται από τα συμβατικά Συστήματα Γεωγραφικών Πληροφοριών κυρίως ως προς πέντε κοινά αποδεκτά χαρακτηριστικά:

• Υλικός εξοπλισμός
• Λογισμικό
• Δεδομένα
• Μοντέλα και
• Χρήστες

Όσον αφορά το τμήμα του λογισμικού αλλά και του υλικού εξοπλισμού οι LBS βασίζονται σε πλατφόρμες που περιλαμβάνουν:

• τη χρήση διαδικτύου,
• φορητών συσκευών και
• την τεχνολογία τηλεπικοινωνιών.

Επιπλέον όσον αφορά τα δεδομένα που χρησιμοποιούνται για την υποστήριξη των εφαρμογών αυτών προέρχονται από πολλαπλές πηγές όπως τηλεπικοινωνικοί δέκτες, τοπογραφικά διαγράμματα, ορθοφωτοχάρτες κ.α.

Εικόνα 3: Δομή συστήματος ΥΒΘ (Θεοδωρίδης, Ι. 2004)

Όσον αφορά τις ομάδες χρηστών GIS μεγάλο ποσοστό αντιπροσωπεύεται από επαγγελματίες χρήστες οι οποίοι χρησιμοποιούν τα συστήματα αυτά σχεδόν σε καθημερινή βάση και αξιοποιούν τη λειτουργικότητα των συστημάτων αυτών στο μέγιστο δυνατό βαθμό. Επιπροσθέτως, τα Συστήματα Γεωγραφικών Πληροφοριών απαιτούν ιδιαίτερα υψηλών δυνατοτήτων υπολογιστικούς πόρους αφού οι λειτουργίες που ακτελούνται κατά τη διάρκεια επεξεργασίας των δεδομένων καταλαμβάνουν ιδιαίτερα μεγάλο χώρο στη μνήμη του ηλεκτρονικού υπολογιστή που χρησιμοποιείται. Σε αντίθεση με τα Συστήματα Γεωγραφικών Πληροφοριών οι LBS εφαρμογές αναπτύσσονται ως περιορισμένες υπηρεσίες για τις μεγάλες μη-επαγγελματικές ομάδες χρηστών. Τέτοιες εφαρμογές LBS λειτουργούν με τους περιορισμούς που διαθέτει το υπολογιστικό περιβάλλον των κινητών όπως η χαμηλή υπολογιστική ισχύς, μικρές οθόνες ή χρόνος λειτουργίας της μπαταρίας της φορητής συσκευής.

3.2 Ταξινόμηση υπηρεσιών με βάση τη θέση

Για να περιγράψει κανείς μια εφαρμογή LBS θα πρέπει να δώσει ιδιαίτερη προσοχή στο πλαίσιο που αναφέρεται η εφαρμογή σε σχέση με τα παρακάτω:
• Περιοχή εφαρμογής (π.χ. πλοήγηση, έκτακτης ανάγκης, ενημέρωση κ.λπ.).
• Θέση και ακρίβεια.
• Περιβάλλον της εφαρμογής (εσωτερική / εξωτερική).
• Τρόπος διάθεσης δεδομένων (push pull και υπηρεσίες).

Βάσει των παραπάνω οι ΥΒΘ μπορούν να διακριθούν στις παρακάτω κατηγορίες ανάλογα α) με τον τύπο της παρεχόμενης υπηρεσίας, β) τον τρόπο ανάκτησης των δεδομένων που αναζητά ο χρήστης, γ) τη θέση του χρήστη σε σχέση με τον περιβάλλοντα χώρο και δ) τη θέση του χρήστη σε σχέση με το σημείο ενδιαφέροντος. Παρακάτω παρουσιάζονται οι υποκατηγορίες ανάλογα με το κριτήριο ταξινόμησής τους.

1. Τύπος παρεχόμενης υπηρεσίας

1.1.1. Υπηρεσίες δημόσιας ασφάλειας
1.1.2. Υπηρεσίες παρακολούθησης
1.1.3. Υπηρεσίες κυκλοφορίας στον δρόμο
1.1.4. Υπηρεσίες παροχής πληροφορίας σε σχέση με συγκεκριμένη θέση και ώρα (π.χ. πρόβλεψη καιρού)
1.1.5. Υπηρεσίες ψυχαγωγίας και επικοινωνίας

2. Τρόπος ανάκτησης των δεδομένων

2.1.1. Push mode - Τα δεδομένα διανέμονται χωρίς ο χρήστης το ζητήσει.
2.1.2. Pull mode - Τα δεδομένα διανέμονται μόνο εφόσον ο χρήστης υποβάλει το ερώτημα στο σύστημα.

3. Θέσης χρήστη σε σχέση με τον χώρο

3.1.1. Indoor - Όταν ο χρήστης εντοπίζεται σε κλειστό χώρο - εντός κτηρίου.
3.1.2. Outdoor - Όταν ο χρήστης κινείται σε ανοιχτό χώρο.

4. Κατάστασης χρήστη σε σχέση με το σημείο αναφοράς

4.1.1. Σταθερός χρήστης – σταθερό σημείο αναφοράς.
4.1.2. Σταθερός χρήστης – κινούμενο σημείο αναφοράς.
4.1.3. Κινούμενος χρήστης – σταθερό σημείο αναφοράς.
4.1.4. Κινούμενος χρήστης – κινούμενο σημείο αναφοράς.

3.3 Τα συστατικά των LBS εφαρμογών

Στην ενότητα αυτή περιγράφονται τα συστατικά στα οποία βασίζεται η λειτουργία του συστήματος LBS ώστε να γίνει κατανοητή η δομή και η λογική της λειτουργίας τους. Πριν όμως, θα πρέπει να γίνει κατανόηση από τον αναγνώστη ότι μέσω των υπηρεσιών αυτών εκτελούνται ακολουθίες ενεργειών από χρήστες που έχουν ως σκοπό την επίτευξη συγκεκριμένου στόχου (Nardi 1996). Για παράδειγμα, στην περίπτωση της πλοήγησης εκτελείται συγκεκριμένος αλγόριθμος όπου η επανάληψη του στο χρόνο και σε σχέση με τη θέση του χρήστη επιστρέφει ως ενέργεια τον προσδιορισμό της επόμενης θέσης και την πλοήγηση του χρήστη που έχει ως τελικό σκοπό τον εντοπισμό συγκεκριμένου σημείου στο χώρο, τον προορισμό του. Ένας τέτοιος στόχος θα μπορούσε επίσης, να είναι η επίλυση
ενός προβλήματος ή η εκτέλεση μιας αποστολής. Συχνά συναντά κανείς περιπτώσεις στόχων που αφορούν κίνηση όπως στην πλοήγηση, τον προσανατολισμό ή την έρευνα ατόμων. Δραστηριότητες που αφορούν την κίνηση όμως σχετίζονται άμεσα με επιπρόσθετες ενέργειες. Αυτές οι ενέργειες είναι φυσικά αποτέλεσμα των επιθυμιών και αναγκών του χρήστη.

Ο Reichenbacher το 2004 σε δημοσίευσή του προσδιόρισε πέντε στοιχειώδεις ενέργειες (αναφορικά με την κίνηση) σε σχέση με τις ανάγκες των χρηστών ως προς τη ζητούμενη γεωγραφική πληροφορία. Το πιο συνηθισμένο ερώτημα είναι το πού βρίσκεται ο χρήστης σε σχέση πάντα με κάποιον ή κάτι άλλο (θέση). Οι χρήστες ψάχνουν άτομα, αντικείμενα ή εκδηλώσεις (αναζήτηση) ή ζητούν οδηγίες για έναν προορισμό (πλοήγηση). Αλλές ερωτήσεις των χρηστών συχνά σχετίζονται με εκτενέστερη περιγραφή μιας θέσης (ταυτοποίηση) ή με αναζήτηση μιας εκδήλωσης ή γεγονότος σε σχέση με κάποια συγκεκριμένη θέση (έλεγχος). Αξίζει να σημειωθεί ότι ο εν λόγω έλεγχος δεν χρησιμοποιεί μόνο γεωγραφικές πληροφορίες αλλά και χρονικές, και αναφέρονται σε γεγονότα για τα οποία ο παράγοντας χρόνος παίζει ουσιαστικό ρόλο.

3.3.1 Υποδομή που απαιτείται για την εφαρμογή τεχνολογίας LBS

Για την εφαρμογή της τεχνολογίας αυτής, που όπως περιγράφηκε και σε προηγούμενη ενότητα πρόκειται για ενέργειες που σχετίζονται με συγκεκριμένο στόχο που έχει θέσει ο κάθε χρήστης, απαιτείται η ύπαρξη συγκεκριμένης υποδομής. Η υποδομή αυτή αποτελείται από τα παρακάτω:

- **Φορητές συσκευές:** Το εργαλείο μέσω του οποίου ο χρήστης θα ζητήσει τις απαραίτητες πληροφορίες είναι συνήθως μία φορητή συσκευή. Η συσκευή αυτή μπορεί να είναι ένα κινητό τηλέφωνο ή ακόμη και ένας φορητός ηλεκτρονικός υπολογιστής. Τα αποτελέσματα μπορούν να δοθούν με την ομιλία, χρησιμοποιώντας εικόνες, κείμενα ή άλλη μορφή όπως είναι η περίπτωση των LBS και AR εφαρμογών. Στις περιπτώσεις αυτές το αποτέλεσμα συνδυάζει τρισδιάστατη απεικόνιση εικόνων αντικειμένων πάνω σε πραγματικά. Η περίπτωση αυτή περιγράφεται αναλυτικά σε επόμενο κεφάλαιο αφότου αποτελεί και το υπό έρευνα αντικείμενο της παρούσας μεταπτυχιακής εργασίας. Επιπλέον, χρησιμοποιούνται συσκευές PDA όταν για παράδειγμα, η συσκευή μπορεί να είναι μια μονάδα πλοήγησης στο αυτοκίνητο ή ένα κουτί διοδίων για την οδική τιμολόγηση σε ένα φορτηγό.

- **Δίκτυο Επικοινωνίας:** Το δεύτερο συστατικό είναι το δίκτυο κινητής τηλεφωνίας, το οποίο μεταφέρει τα δεδομένα του χρήστη και την υπηρεσία αναζήτησης από τη φορητή συσκευή στο φορέα παροχής υπηρεσιών και στη συνέχεια μεταφέρει την αιτούμενη πληροφορία πάλι πίσω στον χρήστη.

- **Τοποθεσία:** Για την επεξεργασία μιας υπηρεσίας συνήθως πρέπει να προσδιοριστεί η θέση του χρήστη. Η θέση του χρήστη μπορεί να ληφθεί είτε χρησιμοποιώντας το δίκτυο κινητής επικοινωνίας ή με τη χρήση του Global Positioning System (GPS). Περαιτέρω δυνάμεις για τον προορισμό της θέσης είναι WLAN σταθμοί, με ενεργά σήματα ή
ραδιοσημαντήρων. Οι τελευταίες μέθοδοι εντοπισμού χρησιμοποιούνται ειδικότερα για την εσωτερική πλοήγηση, όπως σε ένα μουσείο. Αν η θέση δεν καθορίζεται αυτόματα μπορεί επίσης να οριστεί χειροκίνητα από τον χρήστη.

• Πάροχος Υπηρεσιών και Εφαρμογών: Ο φορέας παροχής υπηρεσιών προσφέρει μια σειρά από διαφορετικές υπηρεσίες για τον χρήστη και είναι υπεύθυνος για την επεξεργασία αιτήματος υπηρεσίας. Οι υπηρεσίες αυτές προσφέρουν τον υπολογισμό της θέσης, την εύρεση μιας διαδρομής, την αναζήτηση κίτρινες σελίδες (εννοεί τον χρυσό οδηγό) σε σχέση με τη θέση ή την αναζήτηση συγκεκριμένων πληροφοριών σχετικά με τα αντικείμενα που ενδιαφέρουν τον χρήστη (π.χ. ένα πουλί σε πάρκο άγριων ζώων) και ούτω καθεξής.

• Δεδομένα και Πάροχος Περιεχομένου: Οι πάροχοι υπηρεσιών συνήθως δεν αποθηκεύουν και δε διατηρούν όλες τις πληροφορίες οι οποίες μπορεί να ζητηθούν από τους χρήστες. Ως εκ τούτου η γεωγραφική βάση δεδομένων και πληροφοριών για τον εντοπισμό των δεδομένων συνήθως ζητείται από την αρχή διατήρησης (π.χ. υπηρεσίες χαρτογράφησης) ή από επιχειρήσεις και βιομηχανικούς εταίρους (π.χ. κίτρινες σελίδες, οι εταιρείες κυκλοφορίας).

Τα πέντε συστατικά μέρη που περιγράφηκαν παραπάνω συνιστούν την απαραίτητη υποδομή για τη λειτουργία υποδομή για τη λειτουργία μιας αμιγούς εφαρμογής που παρέχει υπηρεσίες βάσει θέσης. Στη συνέχεια μέσω συγκεκριμένης εφαρμογής (Stefan Steiniger,2007), που ο χρήστης αναζητά πληροφορία σχετικά με εστιατόριο της προτίμησης του παρέχεται ο τρόπος με τον οποίο συνδυάζονται οι υποδομές που περιγράφηκαν προηγούμενα και επιχειρείται να γίνει κατανοητή η αλληλεπίδραση τους με σκοπό το τελικό αποτέλεσμα που είναι η παροχή της πληροφορίας στον χρήστη.

Το πρώτο στάδιο για την υλοποίηση της εφαρμογής είναι η υποβολή του αιτήματος από τον χρήστη. Η αλυσίδα της πληροφορίας από το αίτημα για την παροχή της υπηρεσίας μέχρι την απάντηση του, απεικονίζεται παρακάτω στην εικόνα 5. Η πληροφορία την οποία ο χρήστης αναζητά είναι μια διαδρομή προς ένα X εστιατόριο το οποίο βρίσκεται στην εγγύτερη περιοχή. Έτσι, ο χρήστης εκφράζει την ανάγκη του επιλέγοντας τη σχετική λειτουργία στην φορητή συσκευή του: π.χ. menu: πληροφορία θέσης > αναζήτηση > εστιατόρια > κινέζικο εστιατόριο.

Εικόνα 5: Συστατικά μέρη συστήματος LBS και ροή πληροφοριών (Stefan Steiniger,2007).
Στη συνέχεια αν η λειτουργία έχει ενεργοποιηθεί, η πραγματική θέση της φορητής συσκευής λαμβάνεται από την Υπηρεσία Θέσης. Αυτό μπορεί να γίνει είτε από την ίδια τη συσκευή με τη χρήση GPS ή δικτύου υπηρεσιών θέσης. Έπειτα ο «κινούμενος» πελάτης στέλνει το αίτημα πληροφορίας, το οποίο περιέχει το αντικείμενο αναζήτησης και τη θέση του μέσω του δικτύου επικοινωνίας στην αποκαλούμενη «πύλη».

Η πύλη έχει την ιδιότητα να ανταλλάσσει μηνύματα ανάμεσα στο δίκτυο επικοινωνίας της κινητής συσκευής και στο διαδίκτυο. Ωστόσο, γνωρίζει τις διαδικτυακές διευθύνσεις μέσω αρκετών εξυπηρετητών εφαρμογών και δρομολογεί το αίτημα σε ένα συγκεκριμένο εξυπηρετητή. Η πύλη θα αποθηκεύσει επίσης την πληροφορία για τη φορητή συσκευή η οποία έστειλε το αίτημα για την πληροφορία.

Ο εξυπηρετητής εφαρμογών στη συνέχεια, διαβάζει το αίτημα και ενεργοποιεί την κατάλληλη υπηρεσία – στη συγκεκριμένη περίπτωση υπηρεσία χωρικής αναζήτησης. Η υπηρεσία αναλύει ξανά το μήνυμα και αποφασίζει ποια πρόσθετη πληροφορία εκτός από το αντικείμενο αναζήτησης (εστιατόριο + X) και τη θέση του χρήστη χρειάζεται για να απαντήσει στο αίτημα. Στην περίπτωση μας, η υπηρεσία θα βρει ότι χρειάζεται πληροφορία για τα εστιατόρια από τις «κίτρινες» σελίδες για μια συγκεκριμένη περιοχή και για αυτό θα αναζητήσει πάροχο δεδομένων για τα εστιατόρια.

Επιπλέον, η υπηρεσία θα βρει ότι η πληροφορία σχετικά με τους δρόμους και τις διαδρομές είναι αναγκαία για ελεγχόμεντα στο εστιατόριο υποκείμενα να προσεγγιστεί (π.χ., κάποιες φορές ένα εστιατόριο είναι από την απέναντι μέρη του ποταμού και μπορεί να μην είναι προσβάσιμο αν δεν υπάρχει κάποια γέφυρα κοντά).

Έχοντας τώρα όλες τις πληροφορίες, η υπηρεσία θα πραγματοποιήσει μια χωρική βάση επιρροής και ένα ερώτημα δρομολόγησης (όπως είναι γνωστό από το GIS) για να βρει μαζί τα X εστιατόρια. Αφού υπολογίσει μια λίστα μέσω χωρικής εγγύτητας των εστιατορίων, το αποτέλεσμα στέλνεται πίσω στον χρήστη μέσω διαδικτύου, πύλης και δικτύου κινητού.

Πάντα τα εστιατόρια χρησιμοποιούνται μια διαδρομή (με σειρά απόστασης) ή σχεδιασμένες σε ένα χάρτη, ή μέσω εφαρμογής επαναληπτικής πραγματικότητας. Στη συνέχεια, ο χρήστης μπορεί να ζητήσει επιπλέον πληροφορίες για τα εστιατόρια (π.χ. μενού και τιμών) εντός εύκολου χρήστη μεσω διαδικτύου, πύλης και δικτύου κινητού.

3.4 Φορητές συσκευές που χρησιμοποιούνται

Οι συσκευές που παρουσιάστηκαν δίνουν έμφαση ότι υπάρχουν πολλοί διαφορετικοί τύποι LBS εφαρμογών και δείχνει επιπλέον ότι οι χρήστες LBS μπορεί να είναι άνθρωποι ή μηχανές. Σε εξάρτηση με τις κανόνες του συσκευής ενός χρήστη να διαχειριστεί συσκευές, τις δυνατότητες μιας συσκευής, την ανάγκη του χρήστη για την εφαρμογή διάφορων
εφαρμογών ή την εκπλήρωση μόνο μιας συγκεκριμένης εργασίας, υπάρχει ένας μεγάλος αριθμός συσκευών. Βασισμένες στο τελευταίο κριτήριο, οι LBS συσκευές διαχωρίζονται σε αυτές του «ενός σκοπού» και σε αυτές των «πολλαπλών σκοπών».

3.4.1 Συσκευές ενός σκοπού

Η συσκευή ενός σκοπού είναι για παράδειγμα το κουτί πλοήγησης του αυτοκινήτου, ένα κουτί διοδίων ή μια συσκευή απομακρυσμένης βοήθειας για ηλικιωμένους ή ανάπηρους ανθρώπους. Μέρος αυτών των συσκευών είναι και οι συσκευές που καλούν υπηρεσίες μηχανικών ή ομάδες διάσωσης, αλλά επιπλέον και πιο εξελιγμένα συστήματα, όπως συστήματα επαυξημένης πραγματικότητας – τα οποία μπορούν να χρησιμοποιηθούν για τον έλεγχο γεφυρών ή άλλων κτιρίων. Στην περίπτωση των συσκευών ενός σκοπού ο χρήστης δεν έχει τη δυνατότητα χρήσης πολλαπλών εντολών στο μενού διαχείρισης της εφαρμογής μόνο με τη χρήση ενός κουμπιού.

3.4.2 Συσκευές πολλαπλών σκοπών

Οι συσκευές πολλαπλών σκοπών χρησιμοποιούνται από μεγάλο αριθμό ανθρώπων και αποτελούν μέρος της καθημερινής τους ζωής. Τέτοιες συσκευές είναι τα κινητά τηλέφωνα, τα έξυπνα τηλέφωνα (smart phones), τα PDA’s καθώς και φορητοί υπολογιστές (Laptops) και τα Tablets PC’s. Στην περίπτωση αυτή ο χρήστης μέσω της διεπαφής της εφαρμογής έχει τη δυνατότητα να εκτελεί πολλαπλές εντολές σε αντίθεση με τις συσκευές ενός σκοπού.

Εικόνα 6: Τύποι συσκευών ενός σκοπού ή πολλαπλών χρήσεων (Stefan Steiniger,2007).
3.4.3 Περιορισμοί στη χρήση των συσκευών

Αναφερόμενοι στις συσκευές πολλαπλών σκοπών όπως τα κινητά τηλέφωνα και τα PDA’s, εντοπίζονται και ορισμένοι περιορισμοί. Οι πιο πολλές από αυτές έχουν περιορισμούς χρήσης ηλεκτρονικού υπολογιστή και πηγές μνήμης που δυσκολεύουν υπολογισμούς χωρικής αναζήτησης, λειτουργίες δρομολόγησης και τη δημιουργία ενός συγκεκριμένου «κινητού» χάρτη για τον χρήστη. Επιπλέον, περιορισμοί προκύπτουν από τη μπαταρία και από το πώς επηρεάζεται η χρήση τους από τις καιρικές συνθήκες (ο ήλιος δυσκολεύει την καλή θέαση). Επίσης, όσον αφορά στην αποστολή και στη λήψη δεδομένων, η έλλειψη πρόσβασης σε διαδίκτυο είναι ένας σημαντικός περιορισμός. Μερικά από τα τεχνικά αυτά προβλήματα, όπως οι πηγές ενέργειας για τη λειτουργία των υπολογιστών είναι προσωρινά και πολύ πιθανό θα λυθούν στα επόμενα χρόνια.

3.5 Ασύρματα κινητά δίκτυα

Όπως έχει ήδη αναφερθεί, τα ασύρματα δίκτυα επικοινωνίας μεταφέρουν δεδομένα του χρήστη και μηνύματα υπηρεσιών αιτημάτων από το τερματικό του κινητού στον πάροχο υπηρεσιών και επιπλέον την αιτούμενη πληροφορία πίσω στον χρήστη. Μια πιθανή δεύτερη εργασία είναι η χρήση του δικτύου στην ανάκτηση της θέσης του χρήστη. Τα κοινά ασύρματα δίκτυα σήμερα μπορούν να κατηγοριοποιηθούν με δύο τρόπου.

- Μια κατηγοριοποίηση είναι το εύρος του δικτύου το οποίο επηρεάζεται από το σκοπό χρήσης του δικτύου και τους φυσικούς περιορισμούς των ραδιοκυμάτων.

- Η άλλη κατηγοριοποίηση είναι η τοπολογία δικτύου, αν το δίκτυο αποτελείται από μεγάλη υποδομή κυρίως από μη κινητούς κόμβους δικτύου και οι κινητές συσκευές έχουν πρόσβαση μόνο σε κόμβους ή οι πελάτες διαμορφώνουν ένα “ad-hoc” δίκτυο όντας αυτοί οι κόμβοι.

Εικόνα 7: Κατηγοριοποίηση δικτύων κινητής τηλεφωνίας.

Κοινή αρχή ανάμεσα σε WWAN και WLAN είναι η ύπαρξη ενός τερματικού και ενός βασικού σταθμού αναμετάδοσης. Για το WWAN ένα δομημένο δίκτυο από σταθμούς βάσης είναι αναγκαίο. Εφόσον, ένας σταθμός-βάση καλύπτει μια συγκεκριμένη περιοχή αποκαλεί
τέτοιους τύπους δικτύων «κυψελοειδή» δίκτυα. Συνήθως, τα κελιά του δικτύου για WWAN επικαλύπτονται μόνο σε μικρά τμήματα.

Εικόνα 8: Απεικόνιση δικτύου WAN.

3.6 Τρόπος ανάκτησης των δεδομένων
Σε γενικές γραμμές μπορεί κανείς να διακρίνει δύο διαφορετικά είδη των υπηρεσιών εντοπισμού ανάλογα με τον τρόπο ανάκτησης των δεδομένων και να εξετάσει εάν οι πληροφορίες παρέχονται στην αλληλεπίδραση του χρήστη ή όχι:

3.6.1 Push mode - Τα δεδομένα διανέμονται χωρίς ο χρήστης να το ζητήσει
Σε αυτή την περίπτωση οι υπηρεσίες παρέχουν πληροφορίες που ζητούνται άμεσα από τον χρήστη. Αυτό είναι παρόμοιο με την αναζήτηση μιας ιστοσελίδας στο διαδίκτυο, με τη συμπλήρωση της διεύθυνσης στον τομέα περιήγησης διευθύνσεων το σύστημα επιστρέφει στον χρήστη την ζητούμενη από αυτόν πληροφορία. Για τις υπηρεσίες έλξης ένας περαιτέρω διαχωρισμός που μπορεί να πραγματοποιηθεί είναι σε υπηρεσίες λειτουργιών , όπως για παράδειγμα όταν ο χρήστης καλεί ένα ταξί ή ένα ασθενοφόρο, πατώντας απλώς ένα κουμπί της συσκευής, ή σε υπηρεσίες πληροφοριών, όπως την αναζήτηση για το πλησιέστερο φαρμακείο (Virrantaus et al. 2001).

3.6.2 Pull mode - Τα δεδομένα διανέμονται μόνο εφόσον ο χρήστης υποβάλει το ερώτημα στο σύστημα
Σε αντίθεση με την προηγούμενη περίπτωση οι υπηρεσίες "ώθησης" παρέχουν πληροφορίες οι οποίες είτε δεν ζητήθηκαν ή ζητήθηκαν έμμεσα από τον χρήστη. Οι Push υπηρεσίες ενεργοποιούνται από ένα χρονόμετρο ή από ένα γεγονός (συγκεκριμένη λειτουργία), το οποίο θα μπορούσε να ενεργοποιείται όταν η συγκεκριμένη θέση στο σύστημα εγγράφεται. Ένα παράδειγμα για μια έμμεση υπηρεσία που ζητήθηκε είναι μια συνδρομητική υπηρεσία ειδήσεων που περιέχει πληροφορίες σχετικά με εκδηλώσεις που πραγματοποιούνται σε μια πόλη. Μια υπηρεσία που δε ζητήθηκε μπορεί να είναι διαφημιστικά μηνύματα, εάν μια συγκεκριμένη περιοχή σε ένα εμπορικό κέντρο είναι
εγγεγραμμένη ή προειδοποιητικά μηνύματα για αλλαγές στις καιρικές συνθήκες (π.χ. προειδοποιήσεις για τυφώνες). Δεδομένου ότι οι υπηρεσίες ύβρης δεν δεσμεύονται σε προηγούμενη αλληλεπίδραση του χρήστη με την υπηρεσία, είναι πιο περίπλοκη η καθιέρωσή τους. Στη συγκεκριμένη υπηρεσία, οι βασικές πληροφορίες, όπως οι ανάγκες των χρηστών και οι προτιμήσεις πρέπει να ανιχνεύονται από το σύστημα ύβρης αφού τα ερωτήματα δεν υποβάλλονται απευθείας από τον χρήστη και κατά συνέπεια το σύστημα θα πρέπει να ανιχνεύσει τις προτιμήσεις των χρηστών.

Εικόνα 3: Αρχιτεκτονική συστήματος SAGESS (Aaron Hand et al. 2006)
3.7 Προσαρμογή - Πώς οι υπηρεσίες ανταποκρίνονται στις ιδιαίτερες συνθήκες;

Ένα ακόμη ζήτημα που απασχολεί τόσο τους ερευνητές όσο και τους χρήστες της τεχνολογίας αυτής είναι ο τρόπος με τον οποίο κάθε φορά προσαρμόζονται οι διαθέσιμες από το κάθε σύστημα πληροφορίες σε σχέση με τις απαιτήσεις του χρήστη. Τα συστήματα αυτά είναι δομημένα με τέτοιο τρόπο ώστε να μεταβάλλεται κάθε φορά δυναμικά η συμπεριφορά τους σε σχέση με τις απαιτήσεις του χρήστη. Διαπιστώνεται γενικότερα μια μορφή προσαρμοστικότητας των δεδομένων βάσει της θέσης του χρήστη και του χρόνου κατά τον οποίο υποβάλλεται το ερώτημα στο σύστημα. Η προσαρμοστικότητα αυτή έχει αναπτυχθεί και συναντάται κυρίως σε εφαρμογές που σχετίζονται με χαρτογραφικά υπόβαθρα και πλοήγηση (Reichenbacher 2004).

Η προσαρμογή της πληροφορίας λαμβάνει χώρα σε τέσσερα διαφορετικά επίπεδα (Reichenbacher 2003), α) στο επίπεδο της πληροφορίας, β) στο επίπεδο της τεχνολογίας που χρησιμοποιείται, γ) στη διεπαφή μέσω της οποίας ο χρήστης έχει πρόσβαση στην υπηρεσία και τέλος δ) στον τρόπο που παρουσιάζεται η ανακτώμενη πληροφορία στον χρήστη. Στη συνέχεια περιγράφονται συνοπτικά τα τέσσερα αυτά επίπεδα με τα οποία σχετίζεται η προσαρμογή.

1. Πληροφορία: Το περιεχόμενο των διαθέσιμων πληροφοριών που προσαρμόζεται ανάλογα με το ερώτημα που έχει υποβληθεί από τον χρήστη. Στην περίπτωση που το ερώτημα δεν υποβάλλεται απευθείας τότε θα πρέπει το ίδιο το σύστημα με συγκεκριμένους αλγόριθμους να φιλτράρει την πληροφορία και τελικώς να διαθέσει στον χρήστη συγκεκριμένη μορφή βάσει των προτιμήσεών του. Το φιλτράρισμα πληροφοριών σχετίζεται με την εγγύτητα των προτιμήσεων του χρήστη ακόμη και το επίπεδο λεπτομέρειας των πληροφοριών που αναζητά (Timpf et al. 2003).

2. Τεχνολογία: Οι πληροφορίες κωδικοποιούνται ανάλογα με τα διαφορετικά χαρακτηριστικά της συσκευής (π.χ. το μέγεθος της οθόνης, το δίκτυο και τη διαθεσιμότητα θέσης). Για παράδειγμα, η χρήση ακουστικών για τους χρήστες με κινητά τηλέφωνα για τη λήψη οδηγιών κατά τη διάρκεια της οδήγησης ή οι χάρτες για τους χρήστες PDAs.

3. Διεπαφή: Η διεπαφή που χρησιμοποιεί ο χρήστης προσαρμόζεται ανάλογα με δεδομένα όπως η κατηγορία χρηστών (π.χ. επαγγελματίες ή απλοί χρήστες). Ένα παράδειγμα προσαρμογής είναι ο τρόπος πλοήγησης του χρήστη στο περιβάλλον (π.χ. αυτόματο pan) και ο αυτόματος επαναπροσανατολισμός του σε σχέση με τον βορρά όταν χρησιμοποιεί χαρτογραφικό υπόβαθρο για την υλοποίηση της εφαρμογής.

4. Παρουσίαση: Με τον όρο παρουσίαση αναφερόμαστε στην προσαρμογή κατά τη θέση της πληροφορίας ή αλλιώς την οπτικοποίηση του αποτελέσματος. Για παράδειγμα, τα εστιατόρια που είναι πιο σχετικά με τις προτιμήσεις του χρήστη σε σχέση με την τιμή και τη γεύση εμφανίζονται με πιο ευκρινείς εικόνες από τα λιγότερο σχετικά ή πιο έντονη γραμματοσειρά.
3.8 Παραδείγματα σχετικά με την προσαρμογή

3.8.1 Προσαρμογή στις προτιμήσεις των χρηστών

Η προσαρμογή έχει εφαρμοστεί στην πράξη με ποικίλους τρόπους. Στο πλαίσιο του έργου CRUMPET (Schmidt-Belz et al. 2003) οι ερευνητές εξέτασαν πώς οι τουρίστες θα μπορούσαν να επωφεληθούν από την παροχή πληροφοριών στα αξιοθέατα. Την προσαρμογή του περιεχομένου των πληροφοριών σύμφωνα με το πλαίσιο των προσωπικών προτιμήσεων των χρηστών για τα διάφορα είδη των πληροφοριών και την τρέχουσα θέση τους.

Εικόνα 10: Απεικόνιση αποτελέσματος εφαρμογής Crumbet (Schmidt-Belz et al. 2003).

3.8.2 Προσαρμογή στις εποχές ενός έτους και στην ηλικία των χρηστών

Στο πλαίσιο του έργου GiMoDig (Nivala et al. 2003) οι ερευνητές χρησιμοποίησαν πληροφορία αναφερόμενη στην υλικία του χρήστη, την εποχή του χρόνου και το σκοπό της χρήσης για την προσαρμογή του περιεχομένου και της παρουσίασης των χαρτών. Για παράδειγμα, η δομή των εικονιδίων ποίκιλε ανάλογα με την ηλικία του χρήστη, καθώς και
διάφορες ψυχαγωγικές δραστηριότητες προβάλλονταν σε διαφορετικές περιόδους του έτους.

Εικόνα 11: Απεικόνιση αποτελέσματος εφαρμογής GiMoDig (Nivala et al. 2003).

3.9 LBS σε εσωτερικό χώρο
Στα προηγούμενα κεφάλαια παρουσιάστηκε η γενική δομή του συστήματος υπηρεσιών με βάση τη θέση καθώς και η περιγραφή του γενικότερου πλαισίου λειτουργίας τους. Αναφέρθηκε πως βασικό μέρος κατά την επεξεργασία ενός ερωτήματος είναι ο προσδιορισμός των συντεταγμένων της θέσης στην οποία εντοπίζεται ο χρήστης. Επιπλέον, περιγράφηκαν τα συστατικά μέρη της υποδομής του συστήματος και έγινε η κατηγοριοποίησή τους βάσει κριτηρίων όπως για παράδειγμα ο χώρος εξέλιξης της εφαρμογής που αναλύεται στην παρούσα ενότητα.

Στην περίπτωση που ο χρήστης εντοπίζεται σε εξωτερικό χώρο τότε η θέση του προσδιορίζεται συνήθως από συστήματα όπως το Παγκόσμιο Σύστημα Εντοπισμού Θέσης (GPS). Όταν όμως ο χρήστης εισέρχεται σε εσωτερικό χώρο λόγω του ορίου διάδοσης του σήματος αυτές οι υπηρεσίες παύουν να είναι διαθέσιμες. Το ασύρματο δίκτυο με αισθητήρες μπορεί να αποτελέσει λύση στην περίπτωση αυτή. Οι αισθητήρες λόγω του χαμηλού κόστους τους μπορούν να τοποθετηθούν σε διάφορες θέσεις στο εσωτερικό κτιρίων και θα λειτουργούν ο καθένας από αυτούς ως φάρος ραδιοσυχνοτήτων για την παροχή υπηρεσιών με βάση τη θέση. Χρησιμοποιώντας το λαμβανόμενο σήμα σε συνδυασμό με μεθόδους όπως ο τριγωνισμός ή τα τετραγωνικά επαναλαμβανόμενα ελάχιστα τετράγωνα προσδιορίζεται η τελική θέση του χρήστη στον χώρο.

Η μέθοδος τριγωνισμού απαιτεί ένα πρότυπο μετάδοσης σήματος για να μετατρέψει τις τιμές RSS σε αποστάσεις μετάδοσης σήματος. Οι παράμετροι του μοντέλου διάδοσης εξαρτώνται έντονα από την θέση η οποία είναι διαφορετική για κάθε διαφορετικό συνδυασμό περιβάλλοντα χώρου. Αυτό σημαίνει πως για την ίδια θέση η τιμή που θα υπολογιστεί μπορεί να είναι διαφορετική για κάθε αισθητήρα, δεδομένου ότι ενδιάμεσα παρεμβάλλονται διαφορετικά αντικείμενα. Δεδομένου ότι τα εσωτερικά περιβάλλοντα εμφανίζουν εξαιρετικά πολυπλοκότητα είναι ιδιαίτερα δύσκολο να βρεθεί ένα ακριβές μοντέλο για να περιγράψει τη σχέση μεταξύ της εξασθένησης ισχύος του σήματος και της απόστασης μετάδοσης. Για να ξεπεραστεί το πρόβλημα αυτό έχουν προταθεί άλλες μέθοδοι όπως η μέθοδος των δακτυλικών αποτυπωμάτων. Με την μέθοδο αυτή η θέση προσδιορίζεται σε δύο στάδια. Αρχικά πραγματοποιείται βαθμονόμηση της περιοχής (εκπαίδευση) και στην συνέχεια ακολουθεί το στάδιο της επαλήθευσης. Με την μέθοδο αυτή επιτυγχάνεται ο προσδιορισμός της θέσης του χρήστη με μεγαλύτερη ακρίβεια σε σχέση με τη μέθοδο του τριγωνισμού.
4 Συστήματα επαυξημένης πραγματικότητας

Στο κεφάλαιο συστήματα επαυξημένης πραγματικότητας περιγράφεται η δομή ενός τέτοιου συστήματος καθώς και τα συστατικά μέρη της υποδομής που απαιτείται για την υλοποίησή του. Σκοπός είναι με την ολοκλήρωση του κεφαλαίου ο αναγνώστης να κατανοήσει πλήρως τη δομή των συστημάτων των δύο υπό εξέταση τεχνολογιών έτσι ώστε στη συνέχεια να γίνει παρουσίαση συγκεκριμένης εφαρμογής όπου οι δύο τεχνολογίες συνδυάζονται.

4.1 Δομή συστήματος

Τα συστήματα επαυξημένης πραγματικότητας συνίστανται από τα εξής βασικά μέρη τα οποία αποτελούν βασική προϋπόθεση για τη λειτουργία τους. Τα συστατικά αυτά σε μια γενικευμένη μορφή διακρίνονται ως εξής:

1. Αντικείμενο του πραγματικού χώρου – πραγματικότητα.
2. Κάμερα ή άλλο οπτικό μέσο.
3. Σύστημα ηλεκτρονικού υπολογιστή – λογισμικό.
4. Τεχνολογία θέσης.

Αρχικά τα στιγμίωτα της κάμερας καταγράφουν σε πραγματικό χρόνο τις εικόνες του πραγματικού χώρου. Η κάμερα που χρησιμοποιείται για την καταγραφή μπορεί να είναι ενσωματωμένη στο σύστημα ηλεκτρονικού υπολογιστή (π.χ. φορητός υπολογιστής ή έξυπνο κινητό τηλέφωνο) ή συνδεδεμένη με αυτό εξωτερικά. Στις πρώτες εφαρμογές επαυξημένης πραγματικότητας όπου τα συστήματα δεν είχαν εξελιχθεί σε σχέση με σήμερα ήταν η κάμερα να είναι συνδεδεμένη εξωτερικά με τον φορητό ηλεκτρονικό υπολογιστή που ο χρήστης έφερε πάνω του.

Αφού η κάμερα καταγράψει σε στιγμίωτα την εικόνα του πραγματικού πεδίου στη θέση που ο χρήστης τη στρέφει στη συνέχεια το σύστημα ηλεκτρονικού υπολογιστή λαμβάνει αυτές τις εικόνες – στιγμίωτα που καταγράφονται και με την εφαρμογή μαθηματικών σχέσεων και αλγορίθμων της φωτογραμμετρίας και της όρασης των υπολογιστών υπολογίζεται ο εξωτερικός προσανατολισμός για κάθε στιγμίωτο. Το αποτέλεσμα της διαδικασίας έως το στάδιο αυτό είναι ο γνωστός εξωτερικός προσανατολισμός (x, y, z, ω, φ, κ,) για κάθε στιγμίωτο. Το αποτέλεσμα της διαδικασίας έως το στάδιο αυτό είναι ο γνωστός εξωτερικός προσανατολισμός (x, y, z, ω, φ, κ,) για κάθε στιγμίωτο. Παράλληλα, στο ίδιο σύστημα ηλεκτρονικού υπολογιστή δημιουργούνται γραφικά τα εικονικά αντικείμενα που θα προβληθούν στο πραγματικό αντικείμενο. Με γνωστό τον εξωτερικό προσανατολισμό το σύστημα μπορεί να υπολογίσει το σημείο στο οποίο θα προβληθεί το εικονικό αντικείμενο αλλά και τη στροφή του ώστε να έχει συγκεκριμένη κατεύθυνση σε σχέση με τον χρήστη και το είδος της εφαρμογής.
Ανάλογα την εφαρμογή η θέση του αντικειμένου υπολογίζεται είτε αποκλειστικά με την εφαρμογή φωτογραμμετρικών σχέσεων ή και με τη γνώση του εξωτερικού προσανατολισμού με χρήση αισθητήρων όπως για παράδειγμα μέθοδος GPS για τον προσδιορισμό της θέσης (x,y,z) και γυροσκοπίου - επιταχυνσιομέτρου για τον υπολογισμό των γωνιών (ω,φ,κ). Σε επόμενο κεφάλαιο αναλύεται η διαδικασία υπολογισμού των 6 παραμέτρων (x,y,z,ω,φ,κ).

Τελικά, με γνωστό τον εξωτερικό προσανατολισμό κάθε στιγμή και μέσω κατάλληλου συστήματος θέασης (π.χ. έξυπνο κινητό τηλέφωνο, γυαλιά AR) γίνεται η προβολή του εικονικού αντικειμένου στο πραγματικό χρόνο και σε πραγματικό χρόνο και μέσω αισθητήρων όπως για παράδειγμα μέθοδος GPS για τον προσδιορισμό της θέσης (x,y,z) και γυροσκοπίου - επιταχυνσιομέτρου για τον υπολογισμό των γωνιών (ω,φ,κ). Σε επόμενο κεφάλαιο αναλύεται η διαδικασία υπολογισμού των 6 παραμέτρων (x,y,z,ω,φ,κ).

4.2 Τεχνολογίες θέασης

Ο τρόπος με τον οποίο τελικά ο χρήστης αντιλαμβάνεται στο οπτικό του πεδίο το αποτέλεσμα μιας τέτοιας εφαρμογής εξαρτάται από το σύστημα μέσω του οποίου υλοποιείται η θέαση. Οι βασικές κατηγορίες συστημάτων θέασης είναι τρεις:

1. Head-Mounted Display (HMD) τα οποία είναι συστήματα που τοποθετούνται στο κεφάλι του χρήστη.

2. Handheld Devices (HD). Οι συσκευές αυτές είναι φορητές με μικρή οθόνη μέσω της οποία προβάλλεται στο οπτικό πεδίο του χρήστη το αποτέλεσμα της εφαρμογής.

4.2.1 Συστήματα Head-Mounted Display (HMD)
Τα συστήματα αυτά είναι σύνθετες συσκευές ενσωματωμένες στο κεφάλι του χρήστη οι οποίες συνδυάζουν την πραγματικότητα με τα εικονικά γραφικά αντικείμενα. Οι συσκευές αυτές επιτρέπουν στον χρήστη να παρατηρεί απευθείας τη μίξη εικονικού και πραγματικού περιβάλλοντος με εφαρμογή οπτικής ή βίντεο τεχνολογίας.

Οπτική τεχνολογία (Optical see-through HMD systems)
Τα οπτικά συστήματα HMD χρησιμοποιούν ημιδιάφανους καθρέφτες στους οποίους απεικονίζεται το πραγματικό αντικείμενο και είναι τοποθετημένοι σε τέτοια γωνία ώστε μέσω διάθλασης η εικόνα να φτάνει στο μάτι του χρήστη. Στο σύστημα αυτό πρέπει να είναι ενσωματωμένος αισθητήρας μέσω του οποίου γίνεται ο υπολογισμός των εξι βαθμών ελευθερίας (π.χ. GPS και επιταχυνσιόμετρο). Με τον τρόπο αυτό είναι γνωστά ο εξωτερικός προσανατολισμός της εικόνας που έρχεται κάθε στιγμή στον χρήστη μέσω του καθρέφτη και υλοποιείται σε πραγματικό χρόνο η επίθεση των τρισδιάστατων γραφικών στο πραγματικό πεδίο. Ο χρήστης μέσω των γυαλιών παρακολουθεί καθώς κινείται το αποτέλεσμα της εφαρμογής.

Εικόνα 15: Εννοιολογικό διάγραμμα συστήματος οπτικής τεχνολογίας (Azuma, 2001).

Βίντεο τεχνολογία (Video see-through HMD systems)

Τα συστήματα βίντεο λειτουργούν συνδυάζοντας ένα κλειστό σύστημα HMD με μία ή δύο βιντεοκάμερες τοποθετημένες στο σύστημα αυτό. Το γεγονός ότι το σύστημα είναι κλειστό συνεπάγεται ότι ο χρήστης δεν μπορεί να δει τον πραγματικό κόσμο απ’ ευθείας αλλά μόνο μέσω των απεικονίσεων που καταγράφονται από τις βιντεοκάμερες και μέσω των οποίων γίνεται η θέαση του πραγματικού κόσμου στο οπτικό πεδίο του χρήστη. Οι βίντεο απεικονίσεις από τις κάμερες αυτές σε συνδυασμό με τις γραφικές εικόνες που δημιουργούνται στο σύστημα ηλεκτρονικού υπολογιστή συνδυάζονται με αποτέλεσμα η μίξη εικονικής και πραγματικής εικόνας να αποστέλλεται στις οθόνες μπροστά στα μάτια των χρηστών του κλειστού συστήματος HMD.

Εικόνα 17: Εννοιολογικό διάγραμμα συστήματος βίντεο τεχνολογίας (Azuma, 2001)

4.2.2 Handheld Display (HD)

Στην περίπτωση των HD χρησιμοποιούνται μικρές φορητές συσκευές με οθόνη η οποία είναι συνήθως στο μέγεθος της παλάμης του χρήστη (π.χ. έξυπνο κινητό τηλέφωνο) ή και
μεγαλύτερες όταν αναφερόμαστε για παράδειγμα στην περίπτωση tablet υπολογιστών. Όλες οι φορητές λύσεις AR μέχρι σήμερα χρησιμοποιούν βίντεο τεχνολογία η δομή της οποίας παρουσιάζηκε σε προηγούμενη ενότητα. Αρχικά, τα συστήματα αυτά ήταν δομημένα με τέτοιο τρόπο ώστε να ανιχνεύουν εικονοσήματα συγκεκριμένου κάθε φορά μοτίβου και μέσω αυτών να υπολογίζεται ο εξωτερικός προσανατολισμός του πεδίου στο οποίο θα προβληθεί το εικονικό αντικείμενο. Στη συνέχεια στις περισσότερες από τις περιπτώσεις των συστημάτων αυτών ενσωματώθηκαν δέκτες GPS καθώς και γυροσκόπια – επιταχυνσιόμετρα μέσω των οποίων υπολογίζονται οι παράμετροι του εξωτερικού προσανατολισμού των εικόνων που λαμβάνει ο χρήστης.

Σήμερα χρησιμοποιείται επίσης η μέθοδος SLAM (Simultaneous Localization And Mapping) η οποία δεν προϋποθέτει την ύπαρξη στόχων στο αντικείμενο με σκοπό τον υπολογισμό του εξωτερικού προσανατολισμού. Στη συνέχεια στις περισσότερες από τις περιπτώσεις των συστημάτων αυτών ενσωματώθηκαν δέκτες GPS καθώς και γυροσκόπια – επιταχυνσιόμετρα μέσω των οποίων υπολογίζονται οι παράμετροι του εξωτερικού προσανατολισμού των εικόνων που λαμβάνει ο χρήστης.

Εφόσον, είναι γνωστός ο εξωτερικός προσανατολισμός των εικόνων που λαμβάνει ο χρήστης στη συνέχεια στο σύστημα ηλεκτρονικού υπολογιστή που είναι ενσωματωμένο στη φορητή συσκευή γίνεται επίθεση της εικόνας (εικονικού αντικειμένου – πραγματικού) ενώ αυτή τη στιγμή παρατηρεί άμεσα τον πραγματικό κόσμο μέσω της οθόνης. Οι εικόνες αυτές μετατρέπονται σε πραγματικό χρόνο έτσι ώστε να εμφανίζονται στον χρήστη ως αναπόσπαστο τμήμα του περιβάλλοντος χώρου.

Τα δύο βασικά πλεονεκτήματα των συσκευών αυτών είναι η φορητή φύση τους και η ευρεία διάδοση της καθιστούν όχι και τόσο κατάλληλες για τρισδιάστατες και περίπλοκες εφαρμογές.

Οι φορητές συσκευές μπορούν να διακριθούν σε 3 βασικές κατηγορίες: τα κινητά τηλέφωνα, τα PDAs και τα Tablet PCs. Η κάθε μία από αυτές τις συσκευές έχει τα πλεονεκτήματα και τα μειονεκτήματα της.

- Τα κινητά τηλέφωνα είναι πολύ φιλικές σε χρήση καθώς και ευρέως διαδεδομένες. Έχουν ελλείψεις όμως σχετικά με την επαρκή ενέργεια στοιχειοθετήσεως και την ευγενικότητα του επικοινωνιακού δικτύου, ενώ το μικρό μέγεθος της οθόνης και οι περιορισμοί της εφαρμογής τους καθώς και οι περιορισμοί της εφαρμογής. Σφιγγόνει την ευγενικότητα της εφαρμογής και την ευγενικότητα της εφαρμογής.

- Τα Tablet PCs δε διαθέτουν τα μειονεκτήματα των συσκευών κατηγορίας άλλες που είναι ικανά να ακριβέστε και πολύ βαριά για να μπορούν να μεταφερθούν από τον χρήστη και μεγάλο χρόνο διάστημα.
• Τα PDAs τέλος, παρέχουν ένα καλό συμβιβασμό μεταξύ ενέργειας επεξεργασίας, μεγέθους και βάρους. Είναι και αυτά αρκετά διαδεδομένα και ο touch-screen μηχανισμός εισόδου που διαθέτουν είναι γνώριμος κάτι το οποίο παίζει μεγάλο ρόλο σε εφαρμογές όπου παίρνουν μέρος ανεκπαιδευτοί χρήστες.

Εικόνα 18: Handheld συσκευές. PDA (αριστερά), Smartphone (δεξιά).

4.2.3 Spatial Augmented Reality (SAR)
Στην περίπτωση των SAR επεικονίσεων ο χρήστης δεν απαιτείται να φοράει τις οθόνες του συστήματος HMD αλλά ούτε να φέρει μαζί του την φορή του οθόνη όπως στις περιπτώσεις των HD συστημάτων. Ο χρήστης σε αυτή την περίπτωση δε δεσμεύεται με εξοπλισμό καθώς η προβολή των γραφικών γίνεται μέσω ψηφιακού προβολέα (projector) πάνω σε φυσικά αντικείμενα.

Η βασική διαφορά σε SAR είναι ότι η απεικόνιση διαχωρίζεται από τους χρήστες του συστήματος. Σε αυτή την περίπτωση ο κάθε χρήστης δε δεσμεύει το σύστημα αλλά είναι ανεξάρτητος από αυτό με αποτέλεσμα να μπορούν αυτόχρονα να παρακολουθούν το αποτέλεσμα της εφαρμογής, όμως μόνο συγκεκριμένοι αντικείμενα. Επιπλέον, στην περίπτωση των SAR εφαρμογών δεν αντιμετωπίζονται σφάλματα λόγω περιορισμού της οθόνης HMD συσκευής ή της φως της οθόνης. Ένας προβολέας με βάση το σύστημα απεικόνισης μπορεί να εισαχθεί το φυσικό αντικείμενο στον ήλιο και επιπλέον μπορεί να εκφωνήσει παλαμά με μια εσωτερική ρύθμιση.

Τα μειονεκτήματα είναι ότι τα συστήματα SAR των προβολέων δεν λειτουργούν τόσο καλά στον ήλιο και επίσης απαιτούν μια επιφάνεια επί της οποίας να προβάλλονται οι γραφικοί όροι δημιουργούνται στον υπολογιστή. Επιπλέον, μπορεί απλά να κρέμονται στον αέρα, όπως κάνουν με την περίπτωση των φορητών συσκευών και των HMD.
4.3 Συστήματα επαυξημένης πραγματικότητας με χρήση κινητών συσκευών

Η χρήση της επαυξημένης πραγματικότητας με τη βοήθεια κινητών συσκευών δίνει πολλά πλεονεκτήματα στον άνθρωπο, καθώς προσφέρει πληροφορίες κατά τη διάρκεια εκτέλεσης μιας αποστολής, ενώ εκείνος παραμένει συγκεκριμένος σε αυτή. Δίνει στο άτομο τη δυνατότητα αλληλεπίδρασης με τον υπολογιστή-πληροφορία, χωρίς να αποστά την προσοχή του από τον πραγματικό κόσμο που τον περιβάλλει. Αυτό είναι ένα πολύ σημαντικό χαρακτηριστικό για κάποιον ο οποίος πρέπει να χρησιμοποιήσει τα χέρια και την προσοχή του σε κάτι άλλο εκτός από το χειρισμό ενός υπολογιστή.

Η πλοήγηση και η εύρεση της διαδρομής είναι από τους τομείς στους οποίους η επαυξημένη πραγματικότητα με τη χρήση κινητών συσκευών έχει συνεισφέρει σημαντικά. Οι φορετοί υπολογιστές αποτελούν τη βάση για αυτή την εφαρμογή. Στο πανεπιστήμιο Columbia έχει γίνει μεγάλη έρευνα σχετικά με τα κινητά συστήματα επαυξημένης πραγματικότητας (Mobile Augmented Reality Systems, MARS). Η έρευνα και η προσπάθεια σύμπραξης δύο πολλά υποσχόμενων πεδίων, της επαυξημένης πραγματικότητας (AR) και του κινητού υπολογιστή (Mobile Computing) προσφέρει πολλές νέες προοπτικές. Μικρές και φθηνές υπολογιστικές συσκευές, συνδεδεμένες με ασύρματο δίκτυο μπορούν να μας προσφέρουν πολλές υπολογιστικές δυνατότητες καθώς περιφερόμαστε στον πραγματικό κόσμο (Αναστασάκη, Πρεβεζάνου, 2011).

Παρακάτω παρουσιάζονται ορισμένα από τα ερευνητικά προγράμματα του πανεπιστημίου, με τα οποία έχει ασχοληθεί ο καθηγητής Feiner και η ομάδα του.
Η «μηχανή περιήγησης» (Touring Machine) είναι ένα σύστημα που βοηθάει το χρήστη να εντοπίζει μέρη και να θέτει ερωτήματα για συγκεκριμένα αντικείμενα του χώρου, όπως για παράδειγμα κτίρια και μνημεία. Μπορεί, για παράδειγμα, να μάθει πότε κατασκευάστηκε το συγκεκριμένο κτίριο ή άγαλμα έπειτα από δική του επιθυμία. Στην εικόνα 10 (αριστερά) εμφανίζεται η συσκευή που χρησιμοποιείται, ενώ στην εικόνα 10 (δεξιά) εμφανίζεται το αποτέλεσμα της επαυξημένης πραγματικότητας.

Εικόνα 20: Σύστημα AR (αριστερά) – Απεικόνιση αποτελέσματος εφαρμογής AR (δεξιά) (Feiner et al, 1997).

Από το συγκεκριμένο πείραμα οι ερευνητές (Feiner et al, 1997) κατέληξαν σε διάφορα συμπεράσματα σχετικά με τον χρήστη του συστήματος τους. Το πιο κρίσιμο συμπέρασμα είναι ότι ακόμα και ένας πολύ μικρός αριθμός επαυξημένων γραφημάτων μπορεί να προκαλέσει αρκετή σύγχυση, ανάλογα με την εκάστοτε εφαρμογή. Ακόμα και αυτό που αρχικά θεωρούσαν ένα σχετικά αραιό πεδίο γραφημάτων, επηρέαζε την εικόνα του πραγματικού κόσμου που είχαν οι χρήστες και την προσπάθεια τους να βρουν την πορεία τους. Στις προτάσεις που έκαναν οι μελετητές για λλοτική έρευνα δήλωσαν ότι είναι πρόθυμοι να ψάξουν για αλγορίθμους οι οποίοι μετακινούν τα γραφήματα τριγύρω ώστε να μην εμποδίζουν τα πραγματικά αντικείμενα. Πριν όμως από αυτό, πιο σημαντικό είναι να καθοριστεί ο κατάλληλος αριθμός γραφημάτων που μπορούν να υπάρξουν σε ένα οπτικό σκηνικό ώστε να μην δημιουργούν σύγχυση στους χρήστες.

4.4 Πρόσφατες ανακαλύψεις στον τομέα των συσκευών απεικόνισης

Σήμερα καταξιωμένες εταιρείες ηλεκτρονικών και οπτικών, όπως η Sony και η Olympus έχουν κατασκευάσει εμπορικές συσκευές οι οποίες φοριούνται στο κεφάλι, είναι ελάφριες, βασίζονται σε μία οθόνη LCD (liquid crystal display) και περιλαμβάνουν χρώμα. Αρχικός στόχος των συσκευών αυτών ήταν ο χρήστης να μπορεί μόνο να παρακολουθεί μαγνητοσκοπημένο βίντεο και να παίζει βίντεο-παιχνίδια. Παρόλο που αυτές οι συσκευές έχουν σχετικά μικρή ανάλυση (από 180.000 μέχρι 240.000 pixels), μικρά οπτικά πεδία (σχεδόν 30 μοίρες οριζόντια) και δεν υποστηρίζουν στέρεο, είναι αρκετά ελαφριές (κάτω από 120 γραμμάρια) και αποτελούν μια φθηνή λύση για την πραγματοποίηση της έρευνας γύρω από το αντικείμενο των video see-through μεθόδων.
Εικόνα 21: Γυαλιά οράσεως με ενσωματωμένη την συσκευή (Minolta).

Μία διαφορετική προσέγγιση, την οποία έχει αναπτύξει η MicroVision για εμπορικούς σκοπούς, είναι η εικονική αμφιβλητροειδική απεικόνιση, η οποία σχηματίζει εικόνες κατευθείαν στον αμφιβλητροειδή. Αυτές οι συσκευές κυριολεκτικά ζωγραφίζουν πάνω στον αμφιβλητροειδή με λέιζερ χαμηλής ενέργειας, οι δέσμες φωτός των οποίων σαρώνονται οριζόντια και κάθετα από μικροηλεκτρομηχανικούς καθρέφτες. Τα πλεονεκτήματα των συσκευών αυτών είναι η υψηλή φωτεινότητα και αντίθεση, η χαμηλή κατανάλωση ενέργειας και το πολύ μεγάλο βάθος του πεδίου.

Ιδανικά, οι φορετές συσκευές που κατασκευάζονται, δεν πρέπει είναι μεγαλύτερες από ένα ζευγάρι γυαλιών. Αρκετές εταιρίες αναπτύσσουν ήδη συσκευές οι οποίες ενσωματώνουν οπτικά απεικόνισης μέσα σε συμβατικά γυαλιά οράσεως. Η εταιρεία MicroOptical έχει κατασκευάσει μία οικογένεια γυαλιών στην οποία δύο πρίσματα είναι ενσωματωμένα σε ένα συνηθισμένο φακό οράσεως με αποτέλεσμα η χρήστη να βλέπει μπροστά του μια μικρή χρωματιστή οθόνη. Μία πρωτότυπη συσκευή έχει κατασκευαστεί επίσης από την Minolta ώστε να είναι ελαφριά και απαρατήρητη με αποτέλεσμα οι χρήστες να ξεχνούν ότι την φοράνε. Η συγκεκριμένη συσκευή, η οποία φαίνεται και στην εικόνα 21 προσθέτει λιγότερα από 6 γραμμάρια στο βάρος των γυαλιών οράσεως.

Τελευταίας τεχνολογίας είναι τα γυαλιά επαυξημένης πραγματικότητας που αναμένεται να κυκλοφορήσουν στην αγορά από την Google έως το τέλος του έτους. Η πρωτότυπη έκδοση της Google αφορά ένα καλοσχεδιασμένο ξευγάρι γυαλιών με ενσωματωμένη κάμερα η οποία μπορεί να καταγράψει βίντεο και να πραγματοποιήσει φωτογραφική λήψη. Επιπλέον, το μικρόν διαστάσεων γυαλί που φέρουν μπορεί να μεταφέρει πληροφορίες και να επιτρέπει στο χρήστη να στέλνει και να λαμβάνει μηνύματα μέσω φωνητικών εντολών.

Χρήστες που δοκιμαστικά έχουν χρησιμοποιήσει τη συγκεκριμένη συσκευή θέασαν θέσης διατυπώνουν την αντίληψη ότι η αντίληψη πως η χρήση των γυαλιών αυτών θα επηρεάσει την καθημερινή ζωή των ανθρώπων πάρα πολύ, λόγω της συνεχόμενης ροής πληροφοριών και θα τους αποστά την προσοχή από τον πραγματικό κόσμο είναι λανθασμένη. Οι ίδιοι υποστηρίζουν ότι οι άνθρωποι που θα χρησιμοποιήσουν τις συσκευές αυτές είναι
πνευματικά ελεύθεροι και γνωρίζουν τον τρόπο με τον οποίο γίνεται η ορθή χρήση της τεχνολογίας.

Εικόνα 22: Γυαλιά AR της Google (plus.google.com).
5 Επαυξημένη πραγματικότητα βάσει θέσης

Στο παρόν κεφάλαιο παρουσιάζεται ο τρόπος με τον οποίο οι δύο τεχνολογίες α) επαυξημένη πραγματικότητα και β) υπηρεσίες βάσει θέσης, συνδυάζονται και καταλήγουμε σε ένα τρίτης γενιάς τεχνολογικό μοντέλο την επαυξημένη πραγματικότητα βάσει θέσης.

5.1 Γενικά

Σήμερα ο όρος που χρησιμοποιείται για να περιγράψει και να ορίσει το πλαίσιο της κατηγορίας των εφαρμογών που συνδυάζουν την τεχνολογία επαυξημένης πραγματικότητας και γεωεντοπισμού είναι η επαυξημένη πραγματικότητα μέσω συσκευών κινητής τηλεφωνίας, οι εφαρμογές αυτές ανήκουν στην κατηγορία Mobile Augmented Reallity (MAR). Μέσα από τις εφαρμογές αυτές συνδυάζονται επί το πλείστον οι δύο τεχνολογίες και οι σχεδιαστές των εφαρμογών αξιοποιούν τις οπτικές δυνατότητες που παρέχει η τεχνολογία επαυξημένης πραγματικότητας με τον εντοπισμό θέσης και παρέχουν ανάλογες υπηρεσίες στους χρήστες. Πρόκειται για μια πρωτοποριακή προσέγγιση όπου συνδυάζονται οι δύο καινοτόμες τεχνολογίες γεωεντοπισμού και εικονικής πραγματικότητας σε πραγματικό περιβάλλον. Οι εφαρμογές αυτές βασίζονται σε δείκτη AR όπου μια κάμερα συνδέεται σε έναν υπολογιστή χρησιμοποιείται για να συνδέσει ένα 3D μοντέλο με το προβαλόμενο στην οθόνη της συσκευής αντικείμενο.

Στις πρώτες γενιάς εφαρμογές AR η τελική απεικόνιση σχετίζεται με τη θέση του πραγματικού αντικειμένου σε τοπικό σύστημα μεταξύ χρήστη και αντικειμένου. Στη συνέχεια όμως οι εφαρμογές εξελίσσονται σε δεύτερη και τρίτη γενιά με αποτέλεσμα την επαυξημένη πραγματικότητα βάσει θέσης όπου ο γεωεντοπισμός του πραγματικού αντικειμένου έχει κυρίαρχο ρόλο στο αποτέλεσμα της εφαρμογής.

Στη συνέχεια του κεφαλαίου περιγράφεται ο τρόπος λειτουργίας των εφαρμογών επαυξημένης πραγματικότητας βάσει θέσης.

5.1 Δομή συστήματος

Όπως και σε κάθε τεχνολογία μεμονωμένα έτσι και στην περίπτωση που αυτές συνδυάζονται απαιτείται συγκεκριμένη υποδομή για την υποστήριξη του συστήματος της εφαρμογής. Συγκεκριμένα απαιτούνται:

- Φορητή συσκευή μέσω της οποίας πραγματοποιείται η σύνδεση του χρήστη με την εφαρμογής αλλά και η οποία φέρει τον κατάλληλο εξοπλισμό για την εκτέλεση των απαραίτητων λειτουργιών (π.χ. gps για τον γεωεντοπισμό).
• Δίκτυο επικοινωνίας το οποίο μεταφέρει τα δεδομένα του χρήστη και την υπηρεσία αναζήτησης από τη φορητή συσκευή στο φορέα παροχής υπηρεσιών. Μέσω του δικτύου αυτού γίνεται η μεταφορά του ερωτήματος από τον χρήστη στην υπηρεσία αναζήτησης και από την υπηρεσία αναζήτησης πίσω στον χρήστη. Στην ουσία πρόκειται για την πύλη μεταφοράς των υπο επεξεργασίας και διάθεσης δεδομένων.

• Ο προσδιορισμός της θέσης είναι η βασική παράμετρος για την ορθή λειτουργία μιας εφαρμογής επαυξημένης πραγματικότητας βάσει θέσης είναι η εκτίμηση της θέσης του χρήστη με την απαιτούμενη ακρίβεια. Η θέση του χρήστη μπορεί να ληφθεί είτε χρησιμοποιώντας το δίκτυο κινητής επικοινωνίας ή με τη χρήση του Global Positioning System (GPS). Περαιτέρω δυνατότητες για τον προσδιορισμό της θέσης είναι WLAN σταθμοί, με ενεργά σήματα ή ραδιοσήμαντηρων.

• Ο πάροχος υπηρεσιών και εφαρμογών που προσφέρει μια σειρά από διαφορετικές υπηρεσίες για τον χρήστη και είναι υπεύθυνος για την επεξεργασία αιτήματός της υπηρεσίας.

• Τα δεδομένα και ο πάροχος περιεχομένου. Οι πάροχοι υπηρεσιών συνήθως δεν αποθηκεύουν και δε διατηρούν όλες τις πληροφορίες όπως αναφέραμε σε προηγούμενο κεφάλαιο. Για το λόγο αυτό είναι απαραίτητη η διάθεση των δεδομένων από βάση γεωγραφικών δεδομένων που συνήθως ζητείται από την αρχή διατήρησης (π.χ. υπηρεσίες χαρτογράφησης) ή από άλλους παρόχους όπως επιχειρήσεις ή βιομηχανικούς εταίρους (π.χ. κίτρινες σελίδες, οι εταιρείες κυκλοφορίας).

• Επιπλέον, απαιτείται η διάθεση του αντικειμένου ή των αντικειμένων του πραγματικού χώρου στα οποία θα γίνει η προβολή του τρισδιάστατου εικονοδοτικού πραγματικού χώρου στους παράγοντες. Το σύστημα υλοποιείται σε συσκευές τηλεφωνίας και σε λογισμικό εγκατεστημένο στην ίδια συσκευή.
(έξυπνα κινητά τηλέφωνα) μέσω της οποία προβάλλεται στο οπτικό πεδίο του χρήστη το αποτέλεσμα της εφαρμογής.

5.2 Στάδια λειτουργίας

Στην ενότητα αυτή περιγράφονται τα στάδια που πραγματοποιούνται για την εκτέλεση των αναγκαίων λειτουργιών ώστε να ολοκληρωθεί κάθε εφαρμογή επαυξημένης πραγματικότητας βάσει θέσης. Για την πραγματοποίηση των σταδίων αυτών απαραίτητη προϋπόθεση είναι η ύπαρξη της υποδομής που περιγράφηκε σε προηγούμενη ενότητα.

Η περιγραφή των λειτουργιών που εκτελούνται βασίζεται σε συγκεκριμένο παράδειγμα με στόχο την άμεση κατανόηση της λειτουργίας του συστήματος από τον αναγνώστη. Το παράδειγμα αναφέρεται στην εφαρμογή Handmessage που εκτελείται σε περιβάλλον λογισμικού wikitude. Πρόκειται για εφαρμογή επαυξημένης πραγματικότητας βάσει θέσης η οποία αφορά στην ενημέρωση των χρηστών σχετικά με πληροφορία που αφορά στο χώρο που τους περιβάλλει και η οποία διανέμεται σε αυτούς μέσω γραπτών μηνυμάτων τα οποία παραδίδονται στον χρήστη ως εικονικοί φάκελοι που προβάλλονται στο πραγματικό περιβάλλον γύρω από τη θέση που εντοπίζεται ο χρήστης. Το λογισμικό wikitude αποτελεί την πρώτη πλατφόρμα ελεύθερη στο κοινό η οποία υποστηρίζει λειτουργίες τεχνολογίας επαυξημένης πραγματικότητας βάσει θέσης.

Εικόνα 23: Απεικόνιση εφαρμογής handmessage(www.handmessage.com).

Το πρώτο στάδιο λειτουργίας είναι η υποβολή του αιτήματος από τον χρήστη στο σύστημα. Συγκεκριμένα για την περίπτωση της εφαρμογής handmessage ο χρήστης υποβάλλει ερώτημα για διάθεση μηνυμάτων κειμένου τη δεδομένη χρονική στιγμή. Ο συνήθως «κινούμενος» χρήστης στέλνει το αίτημα πληροφορίας, το οποίο περιέχει το αντικείμενο αναζήτησης.
Ταυτόχρονα, με την υποβολή του ερωτήματος η εφαρμογή προσδιορίζει τη θέση εντοπισμού του χρήστη από το σύστημα GPS που είναι ενσωματωμένο στην συσκευή του κινητού τηλεφώνου. Στην περίπτωση που αναφερόμαστε σε εφαρμογή για την οποία δεν διατίθεται σύστημα εντοπισμού θέσης (GPS) τότε αυτό μπορεί να γίνει με τη χρήση ασύρματου δικτύου. Με τον τρόπο αυτό το αίτημα πληροφορίας που έχει υποβληθεί από τον χρήστη συνδεέται με τη θέση στην οποία ο ίδιος εντοπίζεται. Το αίτημα αποστέλλεται στον πάροχο υπηρεσιών με χρήση του δικτύου επικοινωνίας που χρησιμοποιεί κάθε φορά ο χρήστης.

Στη συνέχεια ο πάροχος υπηρεσιών της συγκεκριμένης εφαρμογής επεξεργάζεται το ερώτημα που έχει υποβληθεί από τον χρήστη. Έπειτα, εκτελούνται μία σειρά από ερωτήματα χωρικά ή μη ώστε να αποδημιουργεί την πληροφορία που πρέπει να επιτραπεί προς διάθεση. Κατά τη διάρκεια εκτέλεσης και επεξεργασίας του αιτήματος χρησιμοποιούνται δεδομένα τα οποία είναι αποδημιουργημένα συνήθως σε χωρικές βάσεις δεδομένων. Αφού ολοκληρωθεί η επεξεργασία των δεδομένων στο σύστημα διαχείρισης τότε ο εξυπηρετητής της εφαρμογής οργανώνει την κατάλληλη υπηρεσία και απομονώνει τα κείμενα που σχετίζονται με τις οντότητες που εντοπίζονται περιμετρικά του χρήστη τη δεδομένη στιγμή.

Στη συνέχεια ακολουθεί το στάδιο της θέασης των μηνυμάτων κειμένου μέσω της οθόνης της φορητής συσκευής ως μήνυμα επαυξημένης πραγματικότητας. Για την ολοκλήρωση της εφαρμογής απαιτείται η επιτυχής συνδυασμός των δύο αντικειμένων (εικονικού με πραγματικού) στη συγκεκριμένη εφαρμογή είναι η σωστή θέση του πραγματικού αντικειμένου ως διαφορετικό από τον ακριβή προσδιορισμό της θέσης του εικονικού αντικειμένου. Από τα προηγούμενα προκύπτει ότι κάθε φορά που τα γραφικά (εικονικό αντικείμενο) προβάλλονται – γεωαναφέρονται στον πραγματικό χώρο πρέπει να είναι γνωστή η θέση του τρισδιάστατου πραγματικού αντικειμένου σε συγκεκριμένο σύστημα αναφοράς αποτελούμενο από τον υπολογισμό του εξωτερικού προσανατολισμού (POSE), (x, y, z, ω, φ, θ) της εικόνας του αντικειμένου που καταλήγει στο οπτικό πεδίο του χρήστη κάθε χρονική στιγμή.
Οι μαθηματικές σχέσεις και οι αλγόριθμοι που εφαρμόζονται για τον υπολογισμό του εξωτερικού προσανατολισμού (χ, γ, ζ, ω, φ, κ) κάθε στιγμιότυπου που καταλήγει στο οπτικό πεδίο του χρήστη (συγκεκριμένη χρονική στιγμή) και κατά συνέπεια για τον υπολογισμό της θέσης του πραγματικού αντικειμένου στο οποίο προβάλλονται τα γραφικά, προσδιορίζουν το θέση της σχέσης της φωτογραμμετρίας με την τεχνολογία επαυξημένης πραγματικότητας.

Η ακρίβεια προσδιορισμού της θέσης του πραγματικού αντικειμένου, η υφή των γραφικών, ο φωτισμός και η σκίαση είναι μερικά από τα χαρακτηριστικά στα οποία βασίζεται ο βαθμός επιτυχίας των εφαρμογών αυτών.

Τέλος, με χρήση της υπηρεσίας θέασης θέσης διαθέτει για παράδειγμα GPS εξοπλισμό για την υπολογισμό της θέσης (x, y, z) του σημείου λήψης και επιταχυνσιόμετρο για την υπολογισμό των γωνιών (ω, φ, κ). Η δεύτερη περίπτωση εφαρμογών επαυξημένης πραγματικότητας είναι η περίπτωση όπου ο εξωτερικός προσανατολισμός του αντικειμένου προκύπτει αποκλειστικά από την εφαρμογή μαθηματικών σχέσεων και αλγορίθμων της επιστήμης της φωτογραμμετρίας αλλά και της όρασης υπολογιστών. Στην κατηγορία αυτή εντάσσονται και οι περιπτώσεις όπου υλοποιείται στο πραγματικό αντικείμενο.

5.3 Κατηγορίες εφαρμογών επαυξημένης πραγματικότητας βάσει θέσης

Οι εφαρμογές επαυξημένης πραγματικότητας βάσει της θέσης μπορούν να διακριθούν σε δύο βασικές κατηγορίες ανάλογα με τη μέθοδο προσδιορισμού των έξι παραμέτρων εξωτερικού προσανατολισμού, 6 βαθμοί ελευθερίας (χ, γ, ζ, ω, φ, κ) των αντικειμένων που απεικονίζονται στο πεδίο του χρήστη. Οι περιπτώσεις αυτές είναι:

A. Τέτοιες είναι οι περιπτώσεις όπου το σύστημα επαυξημένης πραγματικότητας διαθέτει για παράδειγμα GPS εξοπλισμό για τον υπολογισμό της θέσης (x, y, z) του σημείου λήψης και επιταχυνσιόμετρο – γυροσκόπιο για τον υπολογισμό των γωνιών (ω, φ, κ).

B. Η δεύτερη περίπτωση εφαρμογών επαυξημένης πραγματικότητας είναι η περίπτωση όπου o εξωτερικός προσανατολισμός του αντικειμένου προκύπτει αποκλειστικά από την εφαρμογή μαθηματικών σχέσεων και αλγορίθμων της φωτογραμμετρίας αλλά και της όρασης υπολογιστών. Στην κατηγορία αυτή εντάσσονται και οι περιπτώσεις όπου υλοποιείται στο πραγματικό αντικείμενο.

Οι εφαρμογές της πρώτης κατηγορίας θα μπορούσαν να κατηγοριοποιηθούν ανάλογα με τους ασύρματους που χρησιμοποιούνται (π.χ. ασύρματο δίκτυο, GPS) και τον χώρο στον οποίο υλοποιούνται (Indoor/Outdoor). Στη δεύτερη περίπτωση θα μπορούσε να χρησιμοποιηθούν οι εφαρμογές της πρώτης κατηγορίας ανάλογα με τον χώρο στον οποίο υλοποιούνται και τη σχέση της θέσης (x, y, z, ω, φ, κ).

• Γνωστός και σταθερός εξωτερικός προσανατολισμός σε σχέση με κινούμενο στόχο.
• Σταθερός στόχος σε σχέση με κινούμενη κάμερα και κατά συνέπεια κινούμενο και μεταβαλλόμενο εξωτερικό προσανατολισμό. Στην κατηγορία αυτή εντάσσονται και οι περιπτώσεις κινούμενης κάμερας όπου γίνεται αρχικοποίηση τιμών εξωτερικού προσανατολισμού μέσω ανίχνευσης χαρακτηριστικών στο πραγματικό αντικείμενο.

5.4 Μέθοδος υπολογισμού θέσης

Όπως έχει αναφερθεί σε προηγούμενες ενότητες η ακρίβεια προσδιορισμού της θέσης στην οποία θα γίνει η τελική προβολή της πληροφορίας που έχει ανακτηθεί αποτελεί καθοριστική παράμετρο για τη διάθεση του αποτελέσματος, με επιτυχή τρόπο, στον χρήστη. Στη συνέχεια, περιγράφονται οι περιπτώσεις του τρόπου εκτίμησης της θέσης του πραγματικού αντικειμένου.

5.4.1 Επίλυση με χρήση στόχων

Στην περίπτωση αυτή απαιτείται η τοποθέτηση στόχων γνωστής γεωμετρίας στο τρισδιάστατο αντικείμενο. Βάση των στόχων αυτών γίνεται η αποκατάσταση της κλίμακας του μοντέλου και η αποκατάσταση των στροφών. Στις περιπτώσεις αυτές θα πρέπει να δίνεται ιδιαίτερη έμφαση στη θέση που θα τοποθετηθούν οι στόχοι σε σχέση με την πολυπλοκότητα της γεωμετρίας του αντικειμένου καθώς όταν οι στόχοι α) είναι μερικώς, ή εντελώς, κρυμμένοι, β)είναι μερικώς, ή εντελώς, έξω από το οπτικό πεδίο τους συστήματος θέασης και γ) δεν μπορούν να ανχυρευθούν όλες οι γραμμές τους τότε (π.χ., λόγω της χαμηλής αντίθεσης) δεν είναι δυνατότο ο υπολογισμός των παραμέτρων του εξωτερικού προσανατολισμού.

Σε πολλές εφαρμογές επαυξημένης πραγματικότητας οι στόχοι χρησιμοποιούνται είτε ώστε να ληφθούν οι αρχικές μετρήσεις στο αντικείμενο που χρησιμοποιούνται ως προσεγγιστικές τιμές για την επίλυση συνόρθωσης με δέσμες. Στη μέθοδο της δέσμης βασικό στοιχείο, όπως φαίνεται και από το όνομά της, αποτελεί η δέσμη ακτίνων της εικόνας, εξίσωση δε παρατήρησης είναι η εξίσωση συγγραμμικότητας. Η επίλυση γενικά πραγματοποιείται με υπολογισμούς και άγνωστες παραμέτρους αποτελούν οι συντεταγμένες χώρου (ή μοντέλου) των σημείων σύνδεσης και οι 6 παράμετροι του εξωτερικού προσανατολισμού για κάθε εικόνα, ενώ παρατηρούμενα μέγεθη είναι οι εικονοσυντεταγμένες φωτοσταθερών και σημείων σύνδεσης. Στην περίπτωση της επίλυσης δέσμης με αυτοβαθμισμό, άγνωστες είναι και οι παράμετροι της μηχανής. Τα ελάχιστα φωτοσταθερά που απαιτούνται για την επίλυση του φωτοτριγωνισμού σε δεδομένο σύστημα του χώρου είναι γενικά 2 πλήρες φωτοσταθερά και ένα υψομετρικό, προκειμένου να καλύψουν τους 7 βαθμούς ελευθερίας του μπλοκ εικόνων, που στην ουσία είναι 3 μετατοπίσεις, 3 στροφές και ένας συντελεστής κλίμακας (3D μετασχηματισμός ομοιότητας). Σε περίπτωση βέβαια απουσίας φωτοσταθερών επιβάλλεται η δέσμευση των 7 βαθμών ελευθερίας με άλλο τρόπο (ορισμός αυθαίρετου συστήματος αναφοράς) (Αδάμ, 2012).

Στην περίπτωση που αναφέρομαστε σε περιπτώσεις προσανατολισμού απουσίας όπως για παράδειγμα στις περιπτώσεις των βιβλίων επαυξημένης πραγματικότητας τότε για την
αποκατάσταση της σχέσης μεταξύ 3D και 2D απεικόνιση χρησιμοποιείται ο Άμεσος Γραμμικός Μετασχηματισμός (DLT). Η γεωμετρία του πραγματικού αντικειμένου στην περίπτωση αυτή είναι απλή και αναφερόμαστε σε μία εικόνα στην οποία θα προβληθεί στη συνέχεια το εικονικό αντικείμενο.

Ο Άμεσος Γραμμικός Μετασχηματισμός, γνωστός και ως DLT (Direct Linear Transformation), περιγράφει τη γενικότερη προβολική σχέση μεταξύ του 2D συστήματος της εικόνας και του 3D συστήματος του χώρου (Δερμάνης, 1991, Καρράς, 1998). Ο μετασχηματισμός αυτός (που, σε αντίθεση με τον γνωστότερο 2D–2D προβολικό μετασχηματισμό που χρησιμοποιείται στη φωτογραμμετρική αναγωγή, δεν είναι βέβαια αντιστρέψιμος) περιγράφεται από τις σχέσεις:

\[
\begin{align*}
\chi &= \frac{b_{11}X+b_{12}Y+b_{13}Z+b_{14}}{b_{31}X+b_{32}Y+b_{33}Z+1} \\
y &= \frac{b_{21}X+b_{22}Y+b_{23}Z+b_{24}}{b_{31}X+b_{32}Y+b_{33}Z+1}
\end{align*}
\]

Ετσι, οι παραμέτροι που υπεισέρχονται είναι 11, μπορούν ημερήσια να υπολογιστούν από αυτές οι 9 παράμετροι του προσανατολισμού μιας εικόνας (6 παράμετροι του εξωτερικού + 3 του εσωτερικού). Οι λοιπές 2 αφορούν την ορθογωνικότητα των αξόνων και μια διαφορά κλίμακας, με συνέπεια να υπολογίζονται από τον DLT μια τιμή για τη σταθερά μηχανής σε κατά τη διεύθυνση x και μια τιμή σε κατά την y. Σε περίπτωση που ισχύει αυστηρά το μοντέλο της κεντρικής προβολής, όπου δηλαδή δεν υπάρχει παραμικρόφωση κλίμακας (cx = cy = c), αλλά ούτε και απόκλιση από την ορθογωνικότητα των αξόνων, οι δύο επιπλέον παράμετροι δεσμεύονται με τις ακόλουθες σχέσεις, ώστε τελικά να υπάρχουν μόνο 9 βαθμοί ελευθερίας στον μετασχηματισμό:

\[
c_1 = (b_{11}b_{21} + b_{12}b_{22} + b_{13}b_{23})(b_{31}^2 + b_{32}^2 + b_{33}^2) - (b_{11}b_{31} + b_{12}b_{32} + b_{13}b_{33})(b_{21}b_{31} + b_{22}b_{32} + b_{23}b_{33}) = 0
\]

\[
c_2 = (b_{11}^2 + b_{12}^2 + b_{13}^2 - b_{21}^2 - b_{22}^2 - b_{23}^2)(b_{31}^2 + b_{32}^2 + b_{33}^2) - (b_{11}b_{31} + b_{12}b_{32} + b_{13}b_{33})(b_{21}b_{31} + b_{22}b_{32} + b_{23}b_{33}) = 0
\]

5.4.2 Επίλυση με ανίχνευση χαρακτηριστικών στο τρισδιάστατο αντικείμενο

Στην περίπτωση αυτή για τον προσδιορισμό των παραμέτρων του εξωτερικού προσανατολισμού χρησιμοποιούνται φυσικά χαρακτηριστικά τα οποία εντοπίζονται στο τρισδιάστατο αντικείμενο. Τα χαρακτηριστικά αυτά θα πρέπει να απεικονίζονται σε συνεχόμενα στιγμιότυπα και η συλλογή των ομόλογων αυτών σημείων γίνεται με μεθόδους συνταύνεσης εικόνας. Με τη χρήση των σημείων αυτών υπολογίζεται η σχετική θέση του κάθε στιγμιότυπου σε σχέση με το προηγούμενο και η σχετική τους θέση με το εικονικό αντικείμενο.
5.4.3 Συνδυασμένη επίλυση

Στην περίπτωση της συνδυασμένης επίλυσης η διαδικασία με την οποία πραγματοποιείται η ανίχνευση του πραγματικού αντικειμένου ακολουθεί δύο στάδια. Στο πρώτο στάδιο απομονώνονται δύο εικόνες με επικάλυψη στις οποίες υπάρχει τοποθετημένος τουλάχιστον ένα στόχος και επίσης η γωνία λήψης αλλά και η μορφή του αντικειμένου που απεικονίζεται επιτρέπουν τη μέτρηση σημείων κοινών φυσικών χαρακτηριστικών πάνω σε αυτό. Η χρήση των σημείων αυτών γίνεται με κατάλληλο αλγόριθμο συνταύτησης εικόνας. Με γνωστή τη γεωμετρία του στόχου ολοκληρώνεται η βαθμονόμηση των αρχικών εικόνων και υπολογίζεται η σχετική θέση των εικόνων σε σχέση με το εικονικό αντικείμενο.

Μέχρι το στάδιο αυτό είναι διαθέσιμες με άκρη, α) οι αρχικές προσεγγιστικές τιμές εξωτερικού προσανατολισμού για τις δύο εικόνες, β) πλήθος ομόλογων σημείων και γ) γνωστή σχετική θέση εικονικού αντικειμένου σε σχέση με τις αρχικές εικόνες. Στη συνέχεια καθώς η κάμερα κινείται κάθε φορά που καταγράφεται ένα νέο στιγμιότυπο εισάγεται ως επιπλέον παρατήρηση στο μπλοκ των αρχικά επιλυμένων εικόνων και τότε πραγματοποιείται η επίλυση συνόρθωσης με τη μέθοδο της δέσμης. Υπολογίζεται σε πραγματικό χρόνο ο εξωτερικός προσανατολισμός της κάθε επόμενης εικόνας που εισάγεται στο μπλοκ. Εκτός από τη συνόρθωση με μέθοδο της δέσμης έχουν αναπτυχθεί άλλες μεθοδολογίες για τον υπολογισμό της θέσης σε εφαρμογές που υλοποιούνται σε πραγματικό χρόνο οι οποίες θεωρούνται καταλληλότερες όπως η μέθοδος που βασίζεται στη σχέση μεταξύ σημείων διπλής και τριπλής εμφάνισης (Chia et al, 2002).

5.4.1 Μέθοδος SLAM (Simultaneous Localization And Mapping)

Σήμερα χρησιμοποιείται επίσης η μέθοδος SLAM (Simultaneous Localization And Mapping) η οποία δεν προϋποθέτει την ύπαρξη στόχων στο αντικείμενο με σκοπό τον υπολογισμό του εξωτερικού προσανατολισμού αλλά είναι μέθοδος δημιουργίας γεωμετρικά ορθών χαρτών χωρίς εκ των προτέρων γνώση σχετική του περιβάλλοντα χώρο.

Εικόνα 24: Απλή γεωμετρική απεικόνηση μεθόδου SLAM.
Ένα από τα βασικά πλεονεκτήματα της μεθόδου αυτής είναι ότι ο χρήστης δεν απαιτείται να διαθέτει συγκεκριμένους στόχους εντός του πεδίου δράσης αλλά η θέση επαναπροσδιορίζεται βάσει αλγορίθμων που βασίζονται στην συνεχή εκτίμηση της θέσης του χρήστη σε σχέση με σταθερά στον περιβάλλοντα χώρο αντικείμενα. Στην διευθύνη κοινότητα εκτιμάται ότι περίπου τα επόμενα δύο χρόνια η μέθοδος SLAM θα έχει λύσει τα σοβαρά ζητήματα σε επίπεδο αλγορίθμων και θα χρησιμοποιείται σχεδόν σε όλες τις εφαρμογές επαυξημένης πραγματικότητας ως η πλεονεκτικότερη μέθοδος προσδιορισμού θέσης.
6 Σφάλματα στην επαυξημένη πραγματικότητα βάσει θέσης

Στο έκτο κεφάλαιο της εργασίας παρουσιάζονται οι σημαντικότερες παράμετροι εισαγωγής σφάλματος στο αποτέλεσμα των εφαρμογών τεχνολογίας επαυξημένης πραγματικότητας βάσει θέσης. Οι σημαντικότερη πηγή σφάλματος είναι ο μη ορθός προσδιορισμός τόσο της θέσης του χρήστη στο χώρο όσο και της θέσης του χώρου σε σχέση με τη φορητή συσκευή που φέρει και χρησιμοποιεί ο χρήστης. Στην πρώτη περίπτωση περίπτωση ο μη ακριβής προσδιορισμός της θέσης του χρήστη μπορεί να έχει ως αποτέλεσμα την ανάκτηση λανθασμένης πληροφορίας από τη βάση δεδομένων και κατά συνέπεια λανθασμένη τελική απεικόνιση. Στη δεύτερη περίπτωση το αποτέλεσμα είναι και πάλι η λανθασμένη απεικόνιση αλλά όχι λόγω ακατάλληλης πληροφορίας που έχει ανακτηθεί από το σύστημα αλλά λόγω μη ορθού προσδιορισμού της θέσης στην οποία πρέπει να προβληθεί το εικονικό αντικείμενο που φέρει την πληροφορία που ανακτήθηκε από τη βάση δεδομένων του παρόχου.

6.1 Πηγές σφαλμάτων

Οι παραμέτροι που επιδρούν στην ολοκληρωτική αντίληψη του χρήστη και για το λόγο αυτό πρέπει να δίνονται ιδιαίτερη έμφαση στο σχεδιασμό ώστε να μην προκύπτουν αστοχίες στο αποτέλεσμα, οι συντονισμός, ο γραφικός ρεαλισμός, η ανάλυση βάθους, το χρώμα, η ανάλυση, οι γενικές επιπτώσεις στις δυνατότητες απεικόνισης που έχει η οθόνη. Η επίδραση στην συσκευή είναι ότι η εικόνα του πραγματικού κόσμου περιορίζεται στην ανάλυση της οθόνης απεικόνισης. Τα see-through συστήματα διατηρούν την ανάλυση του πραγματικού κόσμου, η οποία περιορίζεται μόνο από την ανθρώπινη όραση. Και στις δύο μεθόδους, τα γραφικά περιορίζονται στην ανάλυση της οθόνης απεικόνισης που έχει η υφή και η κίνηση. Στη συνέχεια περιγράφονται οι γενικές επιπτώσεις στις δυνατότητες απεικόνισης από τις παραμέτρους αυτές.

6.1.1 Ανάλυση

Οι γενικές επιπτώσεις της ανάλυσης στα video-merged συστήματα είναι ότι η εικόνα του πραγματικού κόσμου περιορίζεται στην ανάλυση της οθόνης απεικόνισης. Τα see-through συστήματα διατηρούν την ανάλυση του πραγματικού κόσμου, η οποία περιορίζεται μόνο από την ανθρώπινη όραση. Και στις δύο μεθόδους, τα γραφικά περιορίζονται στην ανάλυση της οθόνης απεικόνισης που έχει η υφή και η κίνηση. Η επίδραση στην συσκευή αντίληψη είναι ότι μία «ίση» ανάλυση μεταξύ πραγματικών εικονικών αντικειμένων, μπορεί πράγματι να αυξήσει την ανθρωπιστική αντίληψη. Παρόλα αυτά μικρότερη από την ανθρώπινη ύφος και κίνηση μπορεί να μπορεί να δοθεί και άλλες ανεπάρκειες σε σχέση με την επαυξημένο σύστημα.

6.1.2 Φωτεινότητα

Όπως και με την ανάλυση, η μέθοδος με χρήση βιντεοκάμερας περιορίζει τη φωτεινότητα της πραγματικής ακίνητης στις δυνατότητες της οθόνης. Αντίθετα η ημιδιαφάνεια η οθόνη που
χρησιμοποιείται στα see-through συστήματα προκαλεί δύο προβλήματα. Πρώτον, επειδή η οθόνη δεν είναι συμπαγής τα γραφικά αφήνουν το φως να περνάει κι έτσι δεν φαίνονται ξεκάθαρα. Δεύτερον η πραγματική εικόνα υποβαθμίζεται ή αλλοιώνεται. Η επίδραση στην ολοκληρωτική αντίληψη είναι ότι όπως και με την ανάλυση, ίσα επιπέδα φωτεινότητας μπορεί να βοηθούν στην ολοκληρωτική αντίληψη, όμως μπορεί να επηρεάζουν αρνητικά άλλες αντιλήψεις όσων αφορά το σύστημα.

6.1.3 Συντονισμός
Μία από τις μεγαλύτερες προκλήσεις που πρέπει να αντιμετωπίσουν οι τρέχουσες και οι μελλοντικές εφαρμογές επαυξημένης πραγματικότητας είναι ο σωστός συντονισμός του εικονικού με το πραγματικό περιβάλλον. Μη συντονισμένα γραφικά μειώνουν σε τεράστιο βαθμό την ολοκληρωτική αντίληψη.

6.1.4 Γραφικός ρεαλισμός
Παρόλο που με τη βοήθεια του υπολογιστή μπορούν να κατασκευαστούν πολύ πιστά εικονικά αντικείμενα, παραμένει ακόμα τεράστια πρόκληση η κατασκευή γραφικών τα οποία είναι οπτικά και μετρήσιμα μη διακρινόμενα από τα αντικείμενα του πραγματικού κόσμου. Περισσότερο ρεαλιστικά γραφικά αναμένεται να αυξήσουν την ολοκληρωτική αντίληψη.

6.2 Σφάλματα στον συντονισμό
6.2.1 Επικαλύψεις
Ένα από τα πιο σοβαρά προβλήματα που αντιμετωπίζονται στις εφαρμογές της επαυξημένης πραγματικότητας είναι η σωστή ταύτιση των επικαλυπτόμενων γραφικών με τον πραγματικό κόσμο, όπως τον βλέπει ο χρήστης, το λεγόμενο “registration problem”. Τα αντικείμενα του πραγματικού και του εικονικού κόσμου θα πρέπει να είναι σε σαφώς καθορισμένες και στοιχειωμένες θέσεις και να υπάρχει πλήρης συντονισμός ανάμεσά τους, αλλιώς η αίσθηση ότι οι δύο κόσμοι συνυπάρχουν χάνεται. Ορισμένες, μάλιστα, εφαρμογές της επαυξημένης πραγματικότητας, απαιτούν αυτήν την ακρίβεια προκειμένου να μην οδηγηθούμε σε δυσάρεστα αποτελέσματα. Στον τομέα της ιατρικής για παράδειγμα, στις περιπτώσεις που χρειάζεται να γίνει μια βιοψία, ο χειρουργός πρέπει να γνωρίζει την ακριβή θέση του όγκου. Το εικονικό αντικείμενο επομένως, το οποίο θα αναπαριστά τον όγκο, θα πρέπει να βρίσκεται στο σωστό σημείο, αλλιώς θα αποτύχει η βιοψία.

6.2.2 Οπτική αιχμαλώτιση
Επιπλέον, ένα φαινόμενο γνωστό ως «οπτική αιχμαλώτιση» (visual capture) κάνει τον προσδιορισμό λαθών συντονισμού ακόμα πιο δύσκολο. Η οπτική αιχμαλώτιση είναι η τάση του εγκεφαλού τον να πιστεύει περισσότερο τι βλέπει από το τι αισθάνεται και τι ακούει. Αυτό σημαίνει ότι η οπτική πληροφορία ξεπερνάει όλες τις άλλες αισθήσεις. Οι πηγές λαθών είναι πολλές και οι ευαισθησίες του συστήματος δεν έχουν προσδιοριστεί με κάθε
λεπτομέρεια. Ενώ έχει γίνει προσπάθεια να διορθωθούν κάποια σοβαρά λάθη, όπως η καθυστέρηση του συστήματος, δεν έχουν πλήρως καταγραφεί όλες οι αιτίες για την έλλειψη συγχρονισμού.

Στο Πανεπιστήμιο της Βόρειας Καρολίνας έχει γίνει μία ανάλυση (Holloway, 1995) σχετικά με τον συγχρονισμό με τη βοήθεια ενός μαθηματικού προτύπου συστήματος για οπτικές συσκευές απεικόνισης. Ένα μαθηματικό μοντέλο λαθών για συστήματα επαυξημένης πραγματικότητας επιτρέπει στον κατασκευαστή του συστήματος να καθορίζει ποιοι είναι οι πιο σημαντικοί παράγοντες που οδηγούν στα λάθη. Κάνοντας δοκιμές με την εισαγωγή κάποιων λαθών ελέγχει την ευαισθησία του συστήματος καθώς και το επίπεδο ακριβείας του συντονισμού που κανείς περιμένει σαν αποτέλεσμα αυτών των λαθών. Με άλλα λόγια το μοντέλο αυτό δείχνει στον κατασκευαστή πώς πρέπει να χρήσιμονται και ποιος είναι το επίπεδο συντονισμού που μπορεί να περιμένει ο χρήστης καθώς και το επίπεδο ακριβείας του συντονισμού που κανείς περιμένει. Με άλλα λόγια το μοντέλο αυτό δείχνει στον κατασκευαστή πώς πρέπει να χρήσιμονται και ποιος είναι το επίπεδο συντονισμού που μπορεί να περιμένει ο χρήστης καθώς και το επίπεδο ακριβείας του συντονισμού που κανείς περιμένει. Με άλλα λόγια το μοντέλο αυτό δείχνει στον κατασκευαστή πώς πρέπει να χρήσιμονται και ποιος είναι το επίπεδο συντονισμού που μπορεί να περιμένει ο χρήστης καθώς και το επίπεδο ακριβείας του συντονισμού που κανείς περιμένει.

1. ακόμα και για μικρές ταχύτητες κίνησης του κεφαλιού, η καθυστέρηση του συστήματος προκαλεί τα περισσότερα λάθη συγχρονισμού απ’ ότι όλες οι άλλες αιτίες μαζί.
2. η μέτρηση των κινήσεων του ματιού και του σημείου όπου αυτό κοιτάει δεν είναι απαραίτητη, αφού το λάθος που οφείλεται στην περιστροφή του ματιού μπορεί να μειωθεί χρησιμοποιώντας ως κέντρο προβολής το κέντρο της περιστροφής του ματιού.
3. τα λάθη στον εντοπισμό της θέσης είναι το σημαντικότερο πρόβλημα και στη διαδικασία μέτρησης της κίνησης του κεφαλιού και στη βαθμονόμηση του συστήματος.
4. το παγκόσμιο σύστημα συντεταγμένων ή το σύστημα συντεταγμένων αναφοράς εισάγει λάθος, το οποίο πρέπει να παραλείπεται όποτε είναι δυνατό.
5. η διόρθωση της οπτικής παραμόρφωσης μπορεί να εισάγει περισσότερα λάθη συγχρονισμού από αυτά που διορθώνει.
6. υπάρχουν λιγότερες σημαντικές αιτίες λαθών, οι οποίες όμως κάνουν τον συγχρονισμό αδύνατο σε μια οπτική συσκευή απεικόνισης.

Στον παρακάτω πίνακα 6.1 δίνεται μια κατάταξη κατά προσέγγιση των παραγόντων που προκαλούν λάθη στο συντονισμό, με βάση τη σπουδαιότητά τους (Holloway, 1995). Όπως φαίνεται και από τον πίνακα, η καθυστέρηση τους συστήματος αποτελεί τη σημαντικότερη αιτία, καθώς προκαλεί λάθη συγχρονισμού της τάξης των 20-60 χιλιοστών.

<table>
<thead>
<tr>
<th>Κατάταξη</th>
<th>Αιτία λάθους</th>
<th>Λάθος συντονισμού (χιλ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Καθυστέρηση</td>
<td>20-60+</td>
</tr>
<tr>
<td>2</td>
<td>Οπτική παραμόρφωση</td>
<td>0-20</td>
</tr>
<tr>
<td>3</td>
<td>Λάθη βαθμονόμησης στο</td>
<td>4-10+</td>
</tr>
<tr>
<td>Πίνακας 6.1: Αιτίες που προκαλούν λάθη στο συντονισμό</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4 Υπολογιστικά λάθη στο σύστημα εντοπισμού</td>
<td>1-7+</td>
<td></td>
</tr>
<tr>
<td>5 Λάθη ευθυγράμμισης</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>6 Λάθη παρατήρησης</td>
<td>0-2+</td>
<td></td>
</tr>
<tr>
<td>7 Μη γραμμικότητα της συσκευής</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>8 Έλλειψη ευθυγράμμισης της εικόνας</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

Πιο συγκεκριμένα, όσον αφορά στα λάθη που οδηγούν στην έλλειψη συντονισμού ανάμεσα στα πραγματικά και στα εικονικά αντικείμενα εντοπίζουμε δύο κατηγορίες, τα στατικά και τα δυναμικά λάθη (Azuma, 1997).

Στατικά λάθη
Στατικά είναι τα λάθη που προκαλούνται ακόμα και όταν η οπτική γωνία του χρήστη και τα αντικείμενα παραμένουν εντελώς ακίνητα. Οι τέσσερις βασικότερες πηγές (Azuma, 1997) που οδηγούν στη δημιουργία των στατικών λαθών είναι οι εξής:

1. Οπτική παραμόρφωση
2. Λάθη στο σύστημα εντοπισμού θέσης
3. Έλλειψη μηχανικής ευθυγράμμισης
4. Λανθασμένες οπτικές παράμετροι

Δυναμικά λάθη
Δυναμικά είναι τα λάθη που δεν έχουν καμία επίδραση εκτός και αν αρχίσει να κινείται ο χρήστης ή τα αντικείμενα. Τα δυναμικά λάθη είναι αυτά που προκαλούν κατά ένα πολύ μεγάλο βαθμό το πρόβλημα συντονισμού. Καθώς ο χρήστης κινείται, τα εικονικά αντικείμενα μπορεί να φαίνεται ότι καταστρέφονται ή ότι «κολυμπάνε» πίσω από τα αντίστοιχα πραγματικά, αντί να είναι συγχρονισμένα. Παρόλα αυτά, δε θα πρέπει να αγνοήσουμε την επίδραση των στατικών λαθών.

6.2.3 Λανθάνουσα συστήματος
Ένα σημαντικό συστατικό για να δει κάποιος μέσω του HMD είναι η δυνατότητα να εγγραφεί σωστά το περιβάλλον των χρηστών και ο τελικός εικονικός χώρος. Μια γεωμετρική βαθμονόμηση ανάμεσα στις συσκευές παρακολούθησης και του HMD πρέπει να εκτελείται και με τον τρόπο αυτό να διορθώνεται κατά το δυνατό η εισαγωγή σφάλματος καθυστέρησης αναφερόμενη ως καθυστέρηση (lag), ανάμεσα στη στιγμή που μετρείται η θέση του HMD και στη στιγμή που η τελική απεικόνιση (εικονική) σε συνδυασμό με πραγματική.
6.2.4 Ανάλυση και παραμόρφωση πραγματικής σκηνής

Η καλύτερη ανάλυση πραγματικής σκηνής που μια συσκευή μέσω της οποίας βλέπει κάποιος που μπορεί να παρέχει είναι αυτή που είναι αντιληπτή με «γυμνό» μάτι υπό μονάδα μεγέθυνσης της πραγματικότητας. Οπτικές HMD συσκευές μέσω τον οποίων βλέπει κάποιος, παίρνουν μια ελάχιστη φορτική προσέγγιση η οποία έγκειται στο ότι αφήνουν την όψη του πραγματικού κόσμου ανέπαφη/ανεπηρέαστη και προσπαθούν να την επαυξήσουν συγχωνεύοντας μια αντανακλώμενη εικόνα από τη σκηνή που δημιουργείται στον υπολογιστή μέσα στην εικόνα του πραγματικού κόσμου. Τα βίντεο που μπορεί να δει κάποιος μέσω HMD είναι θεωρητικά πιο «φορτικά» υπό την έννοια ότι μπλοκάρουν την όψη του πραγματικού κόσμου ως αντάλλαγμα για την ικανότητα να συγχωνεύουν τις δύο όψεις πιο πειστικά.
7 Λογισμικό - Εφαρμογές

Ένα βασικό σημείο των συστημάτων επαυξημένης πραγματικότητας είναι το πόσο
ρεαλιστικά θα γίνει η σύνθεση των γραφικών με το πραγματικό αντικείμενο. Το λογισμικό
που χρησιμοποιείται θα πρέπει να υπολογίζει τον εξωτερικό προσανατολισμό της εικόνας
ανεξάρτητα από τη θέση της κάμερας και έτσι να ολοκληρώνεται η διαδικασία
γεωαναφοράς της εικόνας για κάθε χρονική στιγμή. Στο κεφάλαιο αυτό αναφέρονται
ορισμένα πακέτα ανάπτυξης λογισμικού που χρησιμοποιούνται στις σημερινές εφαρμογές.

7.1 Πακέτα ανάπτυξης λογισμικού

7.1.1 Λογισμικά ανοιχτού κώδικα

Υπάρχουν λογισμικά τα οποία έχουν σχεδιαστεί για την δημιουργία απεικονίσεων
επαυξημένης πραγματικότητας όπως για παράδειγμα το ARToolKit (Human Interface
Technology Laboratory, 2007), MXRToolKit (Mixed Reality Lab, 2004) ή AMIRE (AMIRE,
2004). Τα λογισμικά αυτά προσαρμόζονται σε ειδικά αρχιτεκτονικά σχήματα υπηρεσιών
βάσει θέσης και έτσι υλοποιούνται αντίστοιχες εφαρμογές. Τα λογισμικά αυτά
χρησιμοποιούνται εκτενώς για διάφορους λόγους αλλά κυρίως επειδή:

- Είναι λογισμικά ανοιχτού κώδικα και διανέμονται στους χρήστες βάσει της άδειας
 GPL.
- Είναι σε θέση να προσδιορίζουν τον εξωτερικό προσανατολισμό της κάμερας σε
 πραγματικό χρόνο.
- Παρέχουν βασικές και απαραίτητες ρουτίνες για την παραγωγή της σκηνής
 επαυξημένης πραγματικότητας (συμπεριλαμβανομένων των 3D μοντέλων, ήχους,
 κείμενα και επαυξήσεις εικόνας).

Τα εν λόγω πακέτα λογισμικού βασίζονται στην όραση και την ανίχνευση στο εκοινο
στοιχείο το εικονικό αντικείμενο. Βασίζονται συνήθως σε τουλάχιστον ένα τεχνητό
πόσο συγκεκριμένο σχήμα το οποίο αναγνωρίζεται από το σύστημα και με
αυτό τον τρόπο υπολογίζεται ο εξωτερικός προσανατολισμός της κάμερας. Ωστόσο η
επιτυχία της εφαρμογής εξαρτάται και από άλλους παράγοντες όπως οι συνθήκες
φωτισμού, η σκίαση κ.α. Για το λόγο αυτό τα λογισμικά αυτά δεν συνίσταται για εφαρμογές
που εκτελούνται σε εξωτερικό χώρο αλλά σε κλειστό περιβάλλον όπου οι συνθήκες αυτές
ελέγχονται.

Στις περισσότερες εφαρμογές επαυξημένης πραγματικότητας που εφαρμόζονται σε
εξωτερικό χώρο όπου οι συνθήκες φωτισμού δεν ελέγχονται οι περισσότεροι ερευνητές
προτείνουν συνδυασμό διαφορετικών αισθητήρων για τον προσδιορισμό του εξωτερικού
προσανατολισμού της κάμερας όπως για παράδειγμα με μεθόδους GPS και χρήση γυροσκοπίου - επαναληπτικού. Τα συστήματα αυτά είναι γνωστά ως υβριδικά συστήματα και είναι συνήθως συνδυασμοί μεθόδων που βασίζονται στην όραση και μετρήσεων από χαμηλό κόστους αδρανειακούς αισθητήρες. Ο συνδυασμός αλγορίθμων που βασίζονται στην όραση και στις μετρήσεις από αδρανειακούς αισθητήρες μπορεί να οδηγήσουν στην εξάλειψη των μειονεκτημάτων και κατά συνέπεια των αφαλμάτων που εισάγει η εφαρμογή της κάθε μεθόδου μεμονωμένα.

![Diagram](https://example.com/diagram.png)

Εικόνα 25: Αρχιτεκτονική ARToolKit

7.1.2 Wikitude

Εκτός από τα λογισμικά ανοιχτού κώδικα που περιγράφηκαν στην προηγούμενη ενότητα, σήμερα διατίθενται άλλα νέα πακέτα λογισμικού τα οποία υποστηρίζουν απευθείας την τεχνολογία επαυξημένης πραγματικότητας βάσει θέσης και είναι κατάλληλα και για εφαρμογές που λαμβάνουν χώρα σε εξωτερικό περιβάλλον. Τέτοιο λογισμικό είναι το Wikitude. Το Wikitude είναι ένα λογισμικό που αναπτύχθηκε από ιδιωτική εταιρεία στην Αυστρία, την Wikitude GmbH (πρώην Mobilizy GmbH) και δημοσιεύθηκε ελεύθερα τον Οκτώβριο του 2008. Το Wikitude υποστηρίζει πλήρως την τεχνολογία επαυξημένης πραγματικότητας βάσει θέσης και είναι η πρώτη δημόσια διαθέσιμη εφαρμογή που χρησιμοποιείται με σκοπό το συνδυασμό των δύο τεχνολογιών.

Στην περίπτωση του Wikitude η θέση των αντικειμένων που απεικονίζονται στην οθόνη του κινητού υπολογίζεται μέσω αισθητήρων GPS ή ασύρματου δικτύου και γυροσκοπίου και στη συνέχεια με εφαρμογή φωτογραμμετρικών σχέσεων. Μετά τον υπολογισμό της θέσης
των πραγματικών αντικειμένων στο χώρο το λογισμικό παρέχει τη παρέχει απεικόνιση της πραγματικότητας "ενισχυμένη" με πρόσθετη πληροφορία (γραφικά).

Εικόνα 26: Παράδειγμα εφαρμογής Wikitude (www.wikitude.com).

7.1.3 Mataio

Το πακέτο λογισμικού Mataio είναι ακόμη μία πλατφόρμα τελευταίας τεχνολογίας που υποστηρίζει την τεχνολογία επαυξημένης πραγματικότητας βάσει θέσης. Το λογισμικό αυτό έχει σχεδιαστεί από την Γερμανική εταιρεία Mataio και είναι εμπορικό λογισμικό σχεδιασμένο ώστε να είναι συμβατό με τεχνολογία iOS, Android και Windows. Η δυνατότητα του λογισμικού για εκ των προτέρων υπολογισμό θέσης μέσω χαρακτηριστικών στο χώρο και η χρήση αλγορίθμων μεθόδου SLAM καθιστούν το πακέτο λογισμικού ένα από τα ανταγωνιστικότερα στην αγορά σήμερα. Με τη χρήση του λογισμικού αυτού δεν είναι αναγκαία η χρήση στόχων για τον προσδιορισμό του εξωτερικού προσανατολισμού των αντικειμένων.

Εικόνα 27: Παράδειγμα εφαρμογής mataio (www.metaio.com).
7.2 Εφαρμογές

Στην ενότητα αυτή παρουσιάζονται ορισμένοι από τους τομείς στους οποίους έχουν έως σήμερα σχεδιαστεί ανάλογες εφαρμογές επαυξημένης πραγματικότητας βάσει θέσης. Στην παρακάτω εικόνα απεικονίζεται η πλειοψηφία των περιπτώσεων που παρέχονται σήμερα υπηρεσίες με βάση τη θέση. Αυτή η λίστα δεν είναι πλήρης και σίγουρα αυξάνεται όλο και περισσότερο. Ωστόσο, είναι αντιπροσωπευτική για να κατανοήσει κανείς πως οι υπηρεσίες αυτές έχουν διεισδύση στην καθημερινότητα των πολιτών και σύμφωνα με όσα έχουν αναφερθεί σε προηγούμενα κεφάλαια αναμφίβολα διαφαίνεται πως θα αποτελέσουν αναπόσπαστο τμήμα των καθημερινών δράσεων των πολιτών τα επόμενα χρόνια.

Εικόνα 28: Παράδειγμα LBS.

7.2.1 Ιατρική

Στον τομέα της ιατρικής η επαυξημένη πραγματικότητα εφαρμόζεται τόσο σε περιπτώσεις χειρουργικών επεμβάσεων με σκοπό την καθοδήγηση του ιατρού αλλά και για εκπαιδευτικούς σκοπούς. Στην πρώτη περίπτωση εικονικά αντικείμενα που αναπαριστούν συνήθως μέλη του σώματος του ασθενή προβάλλονται με ακρίβεια στο σώμα του ασθενή υποδεικνύοντας στον χειρουργό τη θέση στην οποία πρέπει να επέμβει. Τα εικονικά αντικείμενα προβάλλονται με τη χρήση ψηφιακού προβολέα και ο χρήστης που στην περίπτωση αυτή είναι ο γιατρός είναι απαλλαγμένος από τη μεταφορά οποιοδήποτε μορφής εξοπλισμού πάνω του. Παράλληλα, το θέαμα είναι ορατό από όλες τις ειδικότητες που συμμετέχουν στη συγκεκριμένη επέμβαση. Ακόμη οι εφαρμογές αυτές στον τομέα της ιατρικής είναι ιδιαίτερα χρήσιμες για εκπαιδευτικούς σκοπούς καθώς επιτρέπουν την
αναπαράσταση ιατρικών περιστατικών χωρίς την προπόθεση ύπαρξης ασθενή. Επιπλέον
οι εκπαιδευόμενοι ιατροί μπορούν να μαθαίνουν για την ανατομία του ανθρώπινου
σώματος παρατηρώντας τρισδιάστατα μοντέλα που προβάλλονται πάνω σε αληθινούς
υγίης ανθρώπους.

Εικόνα29: :Εφαρμογή AR στην Ιατρική

7.2.2 Εκπαίδευση

Όπως σε όλους τους τομείς έτσι και στην εκπαίδευση τα τελευταία χρόνια γίνεται
προσπάθεια μείωσης που κόστους των παραγώμενων από το εκπαιδευτικό προσωπικό
υπηρεσιών. Ήδη στα περισσότερα εκπαιδευτικά ιδρύματα έχει καθοριστεί ως υποχρεωτική
η χρήση ηλεκτρονικού υπολογιστή αλλά και η ολοκλήρωση της διδασκαλίας με χρήση
dιαδικτυακών εφαρμογών. Το γεγονός αυτό συνεπάγεται εξοικείωση με των μαθητών –
eκπαιδευομένων με τα τεχνολογικά αυτά μέσα. Ωστόσο οι εφαρμογές επαυξημένης
πραγματικότητας δεν έχουν ενταχθεί ακόμη στο εκπαιδευτικό σύστημα.

Αν και η τεχνολογία της επαυξημένης πραγματικότητας δεν είναι νέα, η δυναμική της στην
εκπαίδευση πρόσφατα άρχισε να εξερευνάται. Σε αντίθεση με άλλες τεχνολογίες
πληροφορικής, οι διεπαφές της επαυξημένης πραγματικότητας προσφέρουν απρόσκοπτη
αλληλεπίδραση ανάμεσα σε πραγματικό και εικονικό κόσμο, μια απτή διεπαφή μεταφοράς
και μέσα για την μετάβαση από τον πραγματικό στον εικονικό κόσμο. Οι εκπαιδευτικοί
πρέπει να συνεργαστούν με τους ερευνητές του τομέα αυτού για να εξερευνήσουν πως
αυτά τα χαρακτηριστικά μπορούν να εφαρμοστούν με τον καλύτερο τρόπο σε ένα
εκπαιδευτικό περιβάλλον (π.χ. σχολείο).

Για τις εφαρμογές αυτές θα μπορούσαν να χρησιμοποιηθούν τόσο μικρές συσκευές
παλάμης και η θέση να γίνεται μέσω αυτών αλλά ακόμη πιο πρακτικό και αποτελεσματικό
θα ήταν να πραγματοποιούνται με την προβολή από ψηφιακούς σαρωτές ώστε να γίνεται
συλλογική εργασία και να υπάρχει άμεση επικοινωνία μεταξύ εκπαιδευτή –
eκπαιδευόμενου. Παρ’ όλα αυτά, η δυναμική των χαρακτηριστικών της
εικονικής/επαυξημένης πραγματικότητας χρειάζεται προσεκτική ανάλυση έτσι ώστε να
μπορεί να «μεταφταστεί» σε εκπαιδευτική αποδοτικότητα. Το σημαντικό θέμα δεν είναι να
τεθεί ερώτημα για το αν η εικονική/επαυξημένη πραγματικότητα είναι χρήσιμη στη βελτίωση της εκμάθησης αλλά να γίνει κατανοητό πώς μπορεί να γίνει αποτελεσματική η εκμετάλλευση της δυναμικής της.

7.2.3 Κατασκευές

Τόσο στον κατασκευαστικό τομέα όσο και στον τομέα των επισκευών μηχανολογικών εγκαταστάσεων και σύνθετων μηχανημάτων η τεχνολογία AR βοηθά με την παροχή πληροφοριών όχι με την μορφή έντυπου (π.χ. εγχειρίδιο χρήσης) ή ψηφιακού εγχειριδίου αλλά με τη μορφή γεωαναφερόμενων σχεδίων ή τρισδιάστατων αντικειμένων τα οποία προβάλλονται στο ίδιο το προς επισκευή ή κατασκευή αντικείμενο υποδεικνύοντας βήμα προς βήμα τις εργασίες που πρέπει να ολοκληρωθούν.

Επιπλέον, στον τομέα των κατασκευών αποτελεί ένα αποτελεσματικό εργαλείο για την παρακολούθηση της εξέλιξης του έργου. Ο επιβλέπων του έργου με τη χρήση μιας εφαρμογής επαυξημένης πραγματικότητας θα μπορούσε σε κάθε χρονική στιγμή να παρακολουθεί την εξέλιξη του έργου και να οπτικοποιεί μέσω των γραφικών της εφαρμογής τη μορφή της κατασκευής στο επόμενο στάδιο. Η θέση στις περιπτώσεις αυτές συνήθως γίνεται μέσω φορητών συσκευών παλάμης και σπανιότερα με τη χρήση HMD εξοπλισμού.
7.2.4 Σχολιασμός
Στην κατηγορία αυτή ανήκουν οι εφαρμογές που γίνεται προβολή περιγραφικής πληροφορίας με τη μορφή κειμένου σχετικό με το αντικείμενο που τη δεδομένη στιγμή παρατηρείται από τον χρήστη. Η πληροφορία σχετίζεται άλλοτε με το κάθε αυτό αντικείμενο που παρατηρείται και άλλοτε με τις δυνατότητες του χρήστη σε σχέση με τα χρήσεις που εντοπίζονται στον περιβάλλοντα χώρο. Το είδος της πληροφορίας εξαρτάται από το σκοπό της εφαρμογής που καλεί ο χρήστης. Τέτοιες εφαρμογές συναντώνται σήμερα συνήθως σε μουσεία με σκοπό την ξενάγηση των επισκεπτών και σε εμπορικά καταστήματα. Η περιγραφική πληροφορία αντλείται συνήθως από ΣΔΒΔ με το οποίο συνδέεται το σύστημα AR.

Εικόνα 32: Εφαρμογή AR Annotation (σχολιασμός).

Εικόνα 33: Εφαρμογή AR Annotation (σχολιασμός).

7.2.5 Ενημέρωση
Στον τομέα της ενημέρωσης κλασσικό παράδειγμα είναι τα δελτία καιρού όπου ο παρουσιαστής φαίνεται να βρίσκεται μπροστά από ένα χάρτη πρόγνωσης ενώ στην πραγματικότητα ο είναι στο στούντιο και πίσω του υπάρχει ένα πράσινο ή μπλε φόντο. Σε ζωντανό χρόνο γίνεται επεξεργασία της εικόνας όπου το πράσινο φόντο αντικαθίσταται από τον χάρτη πρόγνωσης του καιρού.
Χαρακτηριστικό είναι και το παράδειγμα των εφημερίδων επαυξημένης πραγματικότητας. Σε αυτή την περίπτωση πρόκειται για εφημερίδες οι οποίες δίπλα από τη στήλη του άρθρου εντοπίζεται συγκεκριμένο εικονόσημα. Όταν το εικονόσημα ανιχνευτεί από τη συσκευή στην οποία είναι εγκατεστημένη η εφαρμογή επαυξημένης πραγματικότητας τότε μέσω της οθόνης της συσκευής γίνεται θέαση επιπλέον πληροφορίας σχετική με την είδηση με τη μορφή βίντεο ή άλλης τρισδιάστατης απεικόνισης.

Εικόνα 33: Εφαρμογή AR στην Ενημέρωση

7.2.6 Υπηρεσίες πλοήγησης

Οι υπηρεσίες πλοήγησης βασίζονται σε κινητούς χρήστες. Οι ανάγκες για τον προσδιορισμό κατευθύνσεων εντοπίζονται πάνω στην τρέχουσα γεωγραφική θέση τους. Στην περίπτωση που η πλοήγηση γίνεται μέσω εφαρμογής επαυξημένης πραγματικότητας ο χρήστης δεν απαιτείται να διαβάζει χάρτη και κατά συνέπεια να αποσπάται η προσοχή του από τον δρόμο αλλά ακολουθεί απλώς την πορεία που μέσω γραφικών επικοινωνεί στην οθόνη της συσκευής. Επίσης, η επαυξημένη εφαρμογή συνδυάζει την απεικόνιση με πληροφορία που παρέχεται με ήχο το οποίο ενισχύει την παρεχόμενη πληροφορία και διευκολύνει τον οδηγό καθώς δεν απαιτείται η αποκλειστική επαφή με την οθόνη.

Εικόνα 34: Εφαρμογή πλοήγησης Wikitude Drive.
7.2.7 Ψυχαγωγία
Εως σήμερα οι εφαρμογές αυτές έχουν βρει έδαφος στον τομέα της ψυχαγωγίας και της κοινωνικής δικτύωσης. Τα έξυπνα κινητά χάρι στην κάμερα και την ποικιλία των αισθητήρων που φέρουν, παρέχουν νέες δυνατότητες στην ανάπτυξη πρωτοπόρων και διασκεδαστικών εφαρμογών. Παραδείγματος χάριν, το iPhone και το Android διαθέτουν εφαρμογές χάριν στις οποίες ο χρήστης όχι μόνο μπορεί μαθαίνει πληροφορίες για τον χώρο στον οποίο κινείται, αλλά έχει τη δυνατότητα να μοιράζεται τις δικές του εντυπώσεις του με τους φίλους του. Επιπλέον, υπάρχουν ηλεκτρονικά παιχνίδια που εμπλουτίζουν τον κόσμο τους με εικόνες από τον πραγματικό κόσμο αυξάνοντας την αίσθηση του ρεαλισμού και το επίπεδο εθισμού.

Εικόνα 35: Εφαρμογή AR στην Ψυχαγωγία.

7.2.8 Άμυνα και ασφάλεια
Ο στρατός ήταν και είναι ένας από τους πιο καλοπληρωμένους οργανισμούς, και έχει τη δυνατότητα να ξοδεύει πολλά λεφτά σε έρευνες σχετικές με τη τεχνολογία. Πολλές από τις “εφευρέσεις” που έχουν γίνει από στρατιωτικούς οργανισμούς, έχουν μετέπειτα χρησιμοποιηθεί και στη καθημερινή ζωή. Το καλύτερο παράδειγμα για αυτή τη περίπτωση είναι το διαδίκτυο.

Ο στρατός ενδιαφέρεται για την επαυξημένη πραγματικότητα εδώ και χρόνια, κι έτσι πολλές ιδέες σχετικές με αυτή έχουν ήδη εφαρμοστεί σε αεροσκάφη και στρατιωτικά. Μία τέτοια ιδέα είναι τα HUDs που χρησιμοποιούνται προκειμένου να παρέχει κατακόρυφο τον στόχο και άλλα στοιχεία στον πιλότο. Ο στρατός ενδιαφέρεται για την επαυξημένη πραγματικότητα στο στρατό και χρησιμοποιεί τα HUDs που χρησιμοποιούνται στα αεροσκάφη και στα στρατιωτικά.
συστήματα αυτά χρησιμοποιώντας μονάδες πλοήγησης μπορούν να καθοδηγούν τους στρατιώτες σε άγνωστα εδάφη, ενώ με online επεξεργασία εικόνας ή με χρήση υπέρυθρης ακτινοβολίας μπορούν να εντοπίζουν λεπτομέρειες οι οποίες διαφεύγουν από το ανθρώπινο μάτι (Pakula, 2007).

Για να επιτευχθούν όλες αυτές οι λειτουργίες, οι στρατιώτες προμηثεύονται ένα σύστημα συνδεδεμένο σε ένα δίκτυο υψηλής ταχύτητας, το οποίο τους επιτρέπει να επικοινωνούν με τα υπόλοιπα μέλη της ομάδας αλλά και με ένα κέντρο από όπου παίρνουν εντολές. Με αυτό τον τρόπο κάθε στρατιώτης λειτουργεί σαν αισθητήρας και αναβαθμίζει δεδομένα από το πεδίο μάχης για όλους τους υπόλοιπους. Μέχρι τώρα οι πληροφορίες που μοιράζονται οι στρατιώτες είναι χάρτες, συστήματα πλοήγησης και ενίσχυση όρασης και ακοής. Η όραση βελτιώνεται με χρήση νυχτερινής όρασης, υπέρυθρης ώθησης και ακτινοβολίας και επεξεργασία εικόνας, με αποτέλεσμα ο εχθρός να εντοπίζεται γρηγορότερα. Επίσης, οι στρατιώτες εφοδιάζονται με κάμερες, εγκατεστημένες στα όπλα τους ώστε να μπορούν να παρατηρούν το πεδίο μάχης χωρίς να γίνονται αντιληπτοί (Pakula, 2007).

Παρόλη την προσπάθεια για τη διάδοση της χρήσης των εφαρμογών αυτών και τη συνεχή βελτίωση τους εξακολουθεί να υπάρχει ένα μεγάλο πρόβλημα στην ανάπτυξή τους το οποίο είναι το υψηλό υπολογιστικό κόστος. Η επεξεργασία εικόνων και η σύνθεση τρισδιάστατων μοντέλων είναι μια ακριβή σε υπολογιστική δύναμη διαδικασία. Για το λόγο αυτό, κατά τα πρώτα χρόνια, η χρήση εφαρμογών εκτεταμένης πραγματικότητας επιτρεπόταν μόνο σε μεγάλους οργανισμούς, όπως ο στρατός ή οι επιχειρήσεις, που είχαν την οικονομική δυνατότητα να αγοράσουν ακριβούς εξοπλισμούς. Εντούτοις, η ανάπτυξη όλο και "ισχυρότερων" υπολογιστών που χωρούν στο μέγεθος μιας κινητής συσκευής καθιστούν την εκτεταμένη πραγματικότητα προσβάσιμη στον απλό χρήστη.
8 Ο ρόλος του χρήστη

8.1 Ο ρόλος του χρήστη

Μέχρι σήμερα δεν εντοπίζεται στη διεθνή βιβλιογραφία σημαντική έρευνα που να αφορά στον τομέα της επαυξημένης πραγματικότητας βάσει θέσης αλλά και στις περιπτώσεις τεχνολογίας προηγούμενης γενιάς όπως οι εφαρμογές AR ή οι απλές LBS και η οποία να επικεντρώνεται στον τρόπο με τον οποίο η τεχνολογία αλληλεπιδρά με αυτούς που τη χρησιμοποιούν.

Συχνά ο ανθρώπος λειτουργεί μόνο ως πειραματόζωο ώστε να εφευρεθεί ένα νέο σύστημα επαυξημένης πραγματικότητας ενώ θα έπρεπε ο χρήστης να συμμετέχει στο στάδιο του σχεδιασμού. Πρόσφατοι μελετητές ελπίζουν να συμπεριληφθούν και οι ανθρώπινοι παράγοντες στην έρευνα σχετικά με την επαυξημένη πραγματικότητα βάσει θέσης, ώστε ο χρήστης που συμμετέχει να μην αγνοείται αλλά οι αντιδράσεις του σε σχέση με το εικονικό και πραγματικό περιβάλλον να λαμβάνονται υπόψη με σκοπό τη βελτίωση της τεχνολογίας. Με τον τρόπο αυτό οι εφαρμογές θα γίνονται όλο και πιο αποτελεσματικές, ρεαλιστικές και ελκυστικές σε σχέση με τον σκοπό για τον οποίο έχουν σχεδιαστεί.

Η εργασία που δημοσιεύτηκε από τον Ellis το 1998 ο οποίος συμπεριέλαβε σε αυτήν και τους ανθρώπινους παράγοντες έχει συντελέσει σημαντικά στη λογική της συμμετοχής του χρήστη στο σχεδιασμό. Ο Ellis διεξήγαγε μια λεπτομερή πειραματική έρευνα στην αντίληψη του βάθους των εικονικών και των πραγματικών αντικειμένων σε ένα σκηνικό επαυξημένης πραγματικότητας. Η δουλειά του επικεντρώθηκε στα περιβάλλοντα όπου κυρίαρχα σημασία είχαν αντικείμενα σε κοντινή απόσταση, μικρότερη των δύο μέτρων.

Στα πειράματα του Ellis, τα άτομα έπρεπε να μετακινήσουν έναν πραγματικό δείκτη ώστε να ταιριάζει με το βάθος του εικονικού αντικειμένου, μέσα από διάφορες συνθήκες απεικόνισης και διάφορες ευκαιρίες περιβάλλοντα. Το πιο ενδιαφέρον αποτέλεσμα ήταν διαφάνεια η οποία προέκυπτε σε ορισμένες περιπτώσεις, όταν οι χρήστες φορώντας μια οπτική συσκευή απεικόνισης (optical see-through display) μπορούσαν να δουν ένα εικονικό αντικείμενο το οποίο ήταν τοποθετημένο πίσω από έναν πραγματικό αντικείμενο, το οποίο κανονικά έπρεπε να είναι συμπαγές.

Ο Ellis και άλλοι οι οποίοι ερευνούν την αντίληψη του βάθους στα συστήματα (Drascic και Milgram), συμπεραίνουν ότι χρειάζεται ακόμα πολύ δουλειά ώστε να μπορέσουν να απεικονιστούν τα εικονικά και τα πραγματικά αντικείμενα στο σωστό σχετικό βάθος. Παρόλο που υπάρχουν σίγουρα πολλές αλληλεπιδράσεις μεταξύ της αναπόσπαστης αντίληψης και το βάθος των αντικειμένων στις επαυξημένες επιπέδες έρευνας, υπάρχουν ακόμα πολλές δυσκολίες στα περιβάλλοντα που να προσδιορίσει ποιο είναι το κατάλληλο βάθος.
Με το παράδειγμα της εφαρμογής του Ellies διαπιστώνει κανείς πως η συμμετοχή του χρήστη κατά τον σχεδιασμό και τη δοκιμή κάθε νέας τεχνολογίας είναι απαραίτητη. Με τον τρόπο αυτό εντοπίζονται ασάφειες του συστήματος και κατά συνέπεια είναι δυνατή η εκ των προτέρων εξάλειψή τους, πριν δηλαδή οι εφαρμογές διατεθούν στο κοινό. Επίσης, γίνεται έλεγχος της αποτελεσματικότητας των υποψήφιων αλγορίθμων και αξιολόγησή τους από τον ίδιο τον χρήστη.
9 Διαπιστώσεις

Στο κεφάλαιο αυτό διατυπώνονται τα συμπεράσματα που προέκυψαν με την ολοκλήρωση της μεταπτυχιακής εργασίας. Αυτά διακρίνονται σε γενικά συμπεράσματα που σχετίζονται τόσο με τον χρήστη όσο και με το περιβάλλον στο οποίο εκτελείται η κάθε εφαρμογή αλλά και σε ειδικότερα τεχνικά θέματα που έχουν εντοπιστεί και χρήζουν περαιτέρω εξέτασης.

Η εργασία αυτή είχε σκοπό την βιβλιογραφική έρευνα των δύο τεχνολογιών α) επαυξημένη πραγματικότητα και β) υπηρεσίες βάσει θέσης. Αφού, μελετήθηκαν οι δύο τεχνολογίες και η πορεία τους στην επιστημονική κοινότητα στη συνέχεια έγινε μελέτη και καταγραφή του τρόπου με τον οποίο αυτές οι δύο τεχνολογίες συνδυάζονται με σκοπό τη δημιουργία προηγμένης τεχνολογίας τρίτης γενιάς όπως αποκαλείται και η οποία είναι η τεχνολογία επαυξημένης πραγματικότητας βάσει θέσης.

Επιπλέον, σύμφωνα με έρευνα που δημοσιεύθηκε από τον μεγαλύτερο οίκο έρευνας στον κλάδο της τεχνολογίας και των πληροφοριών και συγκεκριμένα από την εταιρεία Gartner Inc, η τεχνολογία Επαυξημένης πραγματικότητας βάσει θέσης είναι στις πρώτες 10 τεχνολογίες της εποχής μας παγκοσμίως. Επίσης, ο οίκος Juniper Research προβλέπει ότι 1,5 δισεκατομμυρία δολάρια θα είναι τα έσοδα από τις εφαρμογές της τεχνολογίας αυτής μέχρι το 2015. Οι επιστήμονες που ερευνούν την τεχνολογία υποστηρίζουν πως βρισκόμαστε στην αυγή μιας νέας εποχής που ο πραγματικός κόσμος θα εμπλουτιστεί με εικονικά αντικείμενα στα οποία οι πολίτες θα έχουν πρόσβαση με την χρήση ψηφιακών συσκευών ώστε να ανακτούν όλα τα παραπάνω ψηφιακά δεδομένα

9.1 Γενικές διαπιστώσεις

9.1.1 Γενικά

Στη συγκεκριμένη ενότητα παρατίθενται διαπιστώσεις οι οποίες προέκυψαν από την έρευνα που ολοκληρώθηκε στο πλαίσιο της παρούσας μεταπτυχιακής εργασίας. Γενική διαπίστωση αποτελεί το γεγονός ότι πρόκειται για εφαρμογές τελαυταίας τεχνολογίας οι οποίες υλοποιούνται κυρίως μέσω της χρήσης ψηφιακών συσκευών. Με τις εφαρμογές αυτές ο χρήστης διευκολύνεται στην καθημερινότητά του σημαντικά καθώς απαντώνται αναγκαία και χρήσιμα για εκείνον ερωτήματα. Επιπλέον, από τα στατιστικά που προκύπτουν από τις εφαρμογές αυτές μπορεί να εξαχθούν χρήσιμα συμπεράσματα για τη συμπεριφορά των κοινωνικών συνόλων.

Ωστόσο, εντοπίζονται κάποιοι γενικοί κινδύνοι σχετικά με:

α) την προστασία των προσωπικών δεδομένων και
β) το βαθμό στον οποίο η επαυξημένη απεικόνιση αποσπά τον χρήστη από το πραγματικό περιβάλλον.
9.1.2 Ο χρήστης
Ο χρήστης είναι σημαντικό να επιτρέπει στην υπηρεσία να εξετάσει θέματα όπως: a) η ηλικία και το φύλο τους, για παράδειγμα, ένα παιδί έχει ελάχιστες πιθανότητες να ενδιαφέρεται για τη θέση ενός μπαρ που είναι συνήθεια ενήλικα, β) οι προσωπικές προτιμήσεις τους, για παράδειγμα, ποια γλώσσα θέλουν να έχουν την υπηρεσία και γ) ποιοι είναι οι φίλοι και οι συνάδελφοι τους και αν επιθυμούν να κοινωνικοποιηθούν και να συνεργαστούν. Με τον τρόπο αυτό είναι δυνατή από το σύστημα η ταξινόμηση του χρήστη σε συγκεκριμένη ομάδα και κατά συνέπεια η διάθεση συγκεκριμένης πληροφορίας σε αυτόν. Ειδικά στην περίπτωση που η πληροφορία διατίθεται χωρίς να έχει υποβληθεί συγκεκριμένο εκ των προτέρων ερώτημα με τον τρόπο αυτό αποκλείονται περιπτώσεις.

9.1.3 Η θέση
Η θέση του χρήστη και ειδικότερα της συσκευής μέσω της οποία εκτελείται η εφαρμογή αποτελεί ίσως τη σημαντικότερη παράμετρο του συστήματος. Ανάλογα με τη θέση αυτή εντοπίζονται συγκεκριμένες πληροφορίες και διατίθενται ανάλογες υπηρεσίες. Η τοποθεσία ενός χρήστη μπορεί να είναι απόλυτη, για παράδειγμα, όταν περιγράφεται με γεωγραφικό προσδιορισμό συντεταγμένων, ή σχετική, για παράδειγμα, ένα δωμάτιο μέσα σε ένα κτίριο. Τόσο η μέθοδος που χρησιμοποιείται για τον προσδιορισμό της θέσης όσο και η ακρίβεια προσδιορισμού της θα πρέπει να προσδιορίζονται πάντα δεδομένων των απαιτήσεων της εφαρμογής.

9.1.4 Προσανατολισμός
Ο προσανατολισμός του χρήστη, είναι σημαντικός ώστε να καθοριστεί η κατεύθυνση του χρήστη όταν αυτός κινείται. Για παράδειγμα, στην περίπτωση μιας εφαρμογής πλοήγησης ο προσανατολισμός είναι σημαντικός για τον τρόπο αυτό ελέγχεται αν ο χρήστης κινείται προς τη σωστή κατεύθυνση ή όχι.

9.1.5 Ιστορικό πλοήγησης
Το ιστορικό της πλοήγησης επιτρέπει στους χρήστες να δουν πού ήταν, τι έχουν δει και τι έχουν κάνει. Αυτό μπορεί να είναι χρήσιμο στην πλοήγηση για να προσανατολίσει το χρήστη, καθώς αυτός κινείται και να του επιτρέψει να επιστρέψει σε προηγούμενη θέση στην περίπτωση που έχει αποπροσανατολιστεί. Μπορεί επίσης να βοηθήσει το χρήστη στη δημιουργία ενός προφίλ με τα ενδιαφέροντα του, ενισχύοντας την παροχή σχετικών πληροφοριών.

9.1.6 Σκοπός χρήσης
Ο σκοπός της χρήσης ορίζεται από τις δραστηριότητες, τους στόχους, τα καθήκοντα και τους ρόλους των χρηστών. Διαφορετικοί τύποι χρήσης απαιτούν διαφορετικούς α) τύπους πληροφοριών, β) τύπους παρουσίασης, για παράδειγμα χάρτες, κείμενο ή ομιλία και γ) τρόπους αλληλεπίδρασης.
9.1.7 Κοινωνική και πολιτισμική κατάσταση
Η κοινωνική κατάσταση των χρηστών χαρακτηρίζεται από α) τη γειτνίαση με άλλους, β) τις κοινωνικές σχέσεις και, γ) τις συλλογικές εργασίες. Για παράδειγμα, ένας χρήστης μπορεί να θέλει να «ακολουθεί το πλήθος» και να ενδιαφέρεται για τον εντοπισμό των δημοφιλέστερων μπαρ, ή άλλων χώρων όπως για παράδειγμα, εκθέσεις, ομιλίες, ή, εναλλακτικά, να αποφύγει τέτοιους χώρους.

9.1.8 Ιδιότητες συστήματος
Αυτό σχετίζεται με την υποδομή του υπολογιστή που ο χρήστης χρησιμοποιεί. Τον τύπο της συσκευής που χρησιμοποιεί και ποιες είναι οι δυνατότητες της (π.χ. οθόνη αφής, έγχρωμη ή ασπρόμαυρη, κλπ.). Αν έχουν πρόσβαση σε μια συνεχή σύνδεση στο διαδίκτυο ή αν είναι μόνο διαλείπουσα. Το εύρος ζώνης της σύνδεσης. Η ποιότητα των πληροφοριών θέσης, π.χ. η κάλυψη GPS.

9.2 Τεχνικά θέματα
Εκτός από τις γενικές διαπιστώσεις που καταγράφονται στην προηγούμενη ενότητα έχουν εντοπιστεί και συγκεκριμένα τεχνικά ζητήματα τα οποία επηρεάζουν σημαντικά το αποτέλεσμα των εφαρμογών επαυξημένης πραγματικότητας βάσει θέσης.

9.2.1 Ανίχνευση (Tracking)
Ένα από τα σημαντικότερα ζητήματα που απασχολούν τοις ερευνητές σήμερα είναι η βελτίωση των αλγοριθμών που χρησιμοποιούνται για την παρακολούθηση - ανίχνευση του αντικειμένου στον χώρο, χωρίς σφάλματα τα οποία οδηγούν σε λανθασμένες απεικονίσεις. Για την ανίχνευση του αντικειμένου χρησιμοποιούνται ψηφιακές φωτογραφικές μηχανές ή /και άλλοι οπτικοί αισθητήρες, επιταχυνσιόμετρα, GPS, γυροσκόπια, πυξίδες και αισθητήρες ασύρματων δικτύων. Οι τεχνολογίες αυτές προσφέρουν διαφορετικά επίπεδα ακρίβειας και η επιλογή τους εξαρτάται από τις απαιτήσεις της εφαρμογής.
Οι μέθοδοι που χρησιμοποιούνται για την ανίχνευση είναι α) η μέθοδος με χρήση επίπεδων στόχων (markers) συγκεκριμένου σχήματος οι οποίοι τοποθετούνται στο πραγματικό αντικείμενο που θα προβληθούν τα γραφικά, β) η μέθοδος που βασίζεται στην ανίχνευση χαρακτηριστικών που ανήκουν στο ίδιο το πραγματικό αντικείμενο και γ) ο συνδιασμός των δύο προηγούμενων μεθόδων ο οποίος συνήθως αποτελεί τη βέλτιστη λύση.
Όπως προκύπτει από την βιβλιογραφική έρευνα που έγινε στο πλαίσιο αυτής της εργασίας η επαυξημένη πραγματικότητα είναι μια πολλά υποσχόμενη τεχνολογία η οποία μελλοντικά θα φέρει σημαντικές αλλαγές στον τρόπο με τον οποίο ο χρήστης αποκτά πρόσβαση στην πληροφορία.
Από τη μία πλευρά και βάσει όσων περιγράφηκαν στα προηγούμενα κεφάλαια ο χρήστης διευκολύνει σημαντικά από τη χρήση τέτοιων εφαρμογών καθώς αποκτά εύκολα πρόσβαση σε πληροφορία που η απεικόνιση του πραγματικού κόσμου δεν είναι δυνατό να του παρέχει από μόνη της, από την άλλη όμως πλευρά ενέχουν ορισμένοι γενικοί κίνδυνοι
οι οποίοι σήμερα δεν έχουν απασχολήσει σημαντικά τόσο τους χρήστες της τεχνολογίας αυτής όσο και τους δημιουργούς των εφαρμογών.

Δύο από τα σημαντικότερα ζήτηματα που ίσως αποτελέσουν κίνδυνο και σκόπελο στη διάδοση της χρήσης εφαρμογών επαυξημένης πραγματικότητας είναι α) η προστασία των προσωπικών δεδομένων και β) ο βαθμός στον οποίο η επαυξημένη απεικόνιση αποτάστα τον χρήστη από το πραγματικό περιβάλλον και κατά συνέπεια οι επιπτώσεις αυτής της ‘διαταραχής’ στην κοινωνική του συμπεριφορά.

Τα παραπάνω αποτελούν ζητήματα που αφορούν σε γενικούς κινδύνους και δυσκολίες που μπορεί να αντιμετωπιστούν μελλοντικά στον τρόπο με τον οποίο θα γίνεται η χρήση και η εφαρμογή της τεχνολογίας επαυξημένης πραγματικότητας. Πέραν αυτών όμως θα πρέπει να σημειωθούν και τα τεχνικά ζητήματα που απασχολούν σήμερα τους ερευνητές της τεχνολογίας αυτής.

9.2.2 Αποκρύψεις και Συντονισμός (occlusions)

Η μέθοδος γεωαναφοράς των γραφικών στο πραγματικό αντικείμενο αποτελεί ένα από τα σημαντικότερα ζήτηματα που εξετάζονται σήμερα από τους ερευνητές. Σε πολλές περιπτώσεις παρατηρείται κατά την εξέλιξη της εφαρμογής τα πραγματικά αντικείμενα να προκαλούν απόκρυψη του εικονικού. Σε αυτές τις περιπτώσεις προκαλείται σύγχυση στην αντίληψη των χρηστών με αποτέλεσμα λανθασμένες απεικονίσεις και σύγχυση μεταξύ των χρηστών. Σήμερα, δομούνται και δοκιμάζονται συνεχώς νέοι αλγόριθμοι οι οποίοι σκοπό έχουν να επιλύσουν το πρόβλημα των αποκρύψεων και να επιτύχουν πλήρη συντονισμό μεταξύ της χρονικής στιγμής που προσδιορίζεται η θέση του πραγματικού αντικειμένου με τη σκηνή που προβάλλεται τελικά.

9.2.3 Αλληλεπίδραση (interaction)

Οι χρήστες μέσα σε ένα μεικτό περιβάλλον, λόγω της επαυξημένης πραγματικότητας έχουν δυσκολίες αλληλεπίδρασης με το περιβάλλον. Οι χρήστες προσπαθούν να συντονίσουν την εικονική πληροφορία με την περιβάλλουσα πραγματικότητα το οποίο πολλές φορές προκαλεί πρόβλημα στο συντονισμό. Το ζήτημα αυτό συναντάται συνήθως σε περιπτώσεις όπου η θέαση γίνεται μέσω ψηφιακού προβολέα και το αποτέλεσμα της επαυξημένης εφαρμογής δεν είναι απομονωμένο από τον περιβάλλοντα χώρο όπως για παράδειγμα όταν η θέαση γίνεται μέσω οθόνης υπολογιστή.

9.2.4 Γεωαναφορά και ευθυγράμμιση (alignment)

Η γεωαναφορά των εικονικών αντικειμένων στο πραγματικό περιβάλλον είναι ένα από τα πιο δύσκολα προβλήματα που απασχολούν τους ερευνητές. Το γεγονός ότι η ανθρώπινη όραση ανιχνεύει ακόμη και πολύ μικρές αστοχίες στη γεωαναφορά των γραφικών οι οποίες μπορεί να αντιστοιχούν σε μετατοπίσεις μερικών Pixel ενισχύει τη δυσκολία επίλυσης του προβλήματος. Η ανθρώπινη όραση σε συνδυασμό με σφάλματα χρονοκαθυστέρησης του συστήματος και λάθη στην ευθυγράμμιση εικονικού με πραγματικό αντικείμενο μπορεί να έχουν ως αποτέλεσμα μια επαυξημένη απεικόνιση στην οποία τα γραφικά δεν είναι με
ακρίβεια γεωαναφερμένα στην ακριβή τους θέση αλλά φαίνεται να ‘επιπλέουν’ στο πραγματικό περιβάλλον.

Μέχρι αυτά τα ζητήματα να επιλυθούν από την επιστημονική κοινότητα με τη δόμηση βελτιωμένων συστημάτων και την εφαρμογή εξελιγμένων αλγορίθμων που θα οδηγούν στην απαλοιφή τους, οι εφαρμογές επαυξημένης πραγματικότητας δύσκολα θα γίνουν αποδεκτές από τομείς στους οποίους τα σφάλματα μπορεί να οδηγήσουν σε λάθη με σοβαρές συνέπειες όπως για παράδειγμα στην ιατρική.
Αναφορές

Στην ελληνική γλώσσα

Αδάμ Κ., 2012, Γεωμετρία του στερεοζεύγους από βαθμονομημένες και από μη βαθμονομημένες μηχανές, Διπλωματική εργασία, Σχολή Αγρονόμων Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.

Καρράς Γ., Γραμμικοί Μετασχηματισμοί Συντεταγμένων στη Φωτογραμμετρία, Σπουδαστικές σημειώσεις ΕΜΠ, Αθήνα.

Έναγλώσσες

Chia W. K., Cheok D. A., Prince S., 2002, Online 6 DOF Augmented Reality Registration from Natural Features, Dept. of Electrical and Computer Engineering, National University of Singapore.

Deuker A., 2008, Del 11.2: Mobility and LBS.

McGee M., 1999, Integral perception in augmented reality: Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Industrial and Systems Engineering. Dr. Woodrow
Barfield, Chairman Dr. Jan Helge Bøhn, Dr. Thomas A. Dingus, Dr. Deborah Hix, Dr. Brian M. Kleiner, Blacksburg, Virginia.

Pakula T., 2007, Augmented reality in military, Future computer interfaces

Quercia D.; Lathia N.; Calabrese F.; Di Lorenzo G.; Crowcroft J., 2010, Recommending Social Events from Mobile Phone Location Data.2010 IEEE International Conference on Data Mining. pp.971.

Raubal M., 2010, Going mobile: The need for research on mobile decision-making, Las Navas 2010, July 7

Rein A., Ular M., 2005, Location based services—new challenges for planning and public administration?. Futures. 37: 547–561

Rudolph P., Peterson D., 2001, Spatial orientation, Wayfinding and Representation, Department of Computer Science, Naval Postgraduate School.

Ιστοσελίδες

www.abiresearch.com
www.citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.275
www.computer.org/portal/web/csdl/doi/10.1109/AICCSA.2007.370940
www.hitl.washington.edu/artoolkit/
www.hthangmessage.com
www.ismar.net
www.indoorlbs.com
www.i-glasses.com
www.graphics.cs.columbia.edu
www.polestar.eu
www.metaio.com
www.ngm.nationalgeographic.com/big-idea/14/augmented-reality-pg1
www.wikitude.com
www.en.wikipedia.org/wiki/International_Symposium_on_Mixed_and_Augmented_Reality