ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟ-ΟΙΚΟΝΟΜΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΚΤΗΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ ΓΥΑΛΙΟΥ

ΖΟΥΡΟΥ ΚΥΡΙΑΚΗ

Επιβλέπων καθηγητής: Σ. Καρέλλας
Περιεχόμενα

ΠΕΡΙΛΗΨΗ .. 4
SUMMARY .. 5
1.1 ΑΠΟΡΡΙΠΤΟΜΕΝΗ ΘΕΡΜΟΤΗΤΑ & ΑΝΑΚΤΗΣΗ ΑΠΟΡΡΙΠΤΟΜΕΝΗΣ ΘΕΡΜΟΤΗΤΑΣ6
2. Η ΒΙΟΜΗΧΑΝΙΑ ΤΗΣ ΥΑΛΟΥΡΓΙΑΣ .. 10
2.1 ΤΟ ΓΥΑΛΙ .. 10
2.2 ΤΑ ΣΤΑΔΙΑ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ .. 13
2.3 ΟΙ ΡΥΠΟΙ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ ... 16
3. ΑΝΑΚΤΗΣΗ ΘΕΡΜΟΤΗΤΑΣ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ ... 18
3.1 Η ΓΙΟΥΛΑ Α.Ε. .. 19
4. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ... 21
4.1 Ο ΚΥΚΛΟΣ RANKINE .. 21
4.2 ΔΙΑΦΟΡΕΣ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΟΡΓΑΝΙΚΟΥ ΚΥΚΛΟΥ RANKINE 23
4.3 ΟΡΓΑΝΙΚΑ ΜΕΣΑ .. 24
4.4 ΤΟ ΔΙΑΘΕΡΜΙΚΟ ΕΛΑΙΟ .. 27
4.5 Ο ΣΤΡΟΒΙΛΟΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ORC ... 27
4. 6 ΘΕΡΜΟΔΥΝΑΜΙΚΗ – ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ... 28
4.6.1 ΚΑΥΣΙΜΟ- ΚΑΥΣΑΕΡΙΟ .. 28
4.7 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ .. 31
4.7.1 ΚΥΚΛΩΜΑ ΜΕ ΑΠΟΜΑΣΤΕΥΣΗ .. 31
4.7.2 ΚΥΚΛΩΜΑ ΧΩΡΙΣ ΑΠΟΜΑΣΤΕΥΣΗ ΚΑΙ ΠΡΟΘΕΡΜΑΝΣΗ ΝΕΡΟΥ ΑΠΟ ΤΑ ΚΑΥΣΑΕΡΙΑ 35
4.8 ΤΟ ΚΥΚΛΩΜΑ RANKINE ΜΕ ΟΡΓΑΝΙΚΟ ΜΕΣΟ (ORC) ... 37
4.8.1 ΚΥΚΛΩΜΑ ORC ΧΩΡΙΣ ΑΝΑΓΕΝΝΗΤΗ ... 40
4.8.2 ΚΥΚΛΩΜΑ ΜΕ ΑΝΑΓΕΝΝΗΤΗ .. 42
4.9 ΕΞΕΡΓΕΙΑΚΗ ΜΕΛΕΤΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ .. 46
5. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΕΝΑΛΛΑΚΤΩΝ ... 51
5.1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ... 51
5.2 ΜΟΝΟΦΑΣΙΚΗ ΡΟΗ ΚΑΙ ΣΤΑ ΔΥΟ ΡΕΥΜΑΤΑ ... 56
5.3 ΑΛΛΑΓΗ ΦΑΣΗΣ-ΑΤΜΟΠΟΙΗΣΗ .. 59
6. ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ... 64
6.1 ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΕΓΚΑΤΑΣΤΑΣΗ .. 64
6.2 ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ... 66
6.2.1. ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΟΣ ΝΕΡΟΥ ΑΤΜΟΥ66
6.2.2. ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ORC68
6.1 ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ..69
ΠΕΡΙΛΗΨΗ

Η αύξηση του κόστους των ορυκτών καυσίμων και οι περιβαλλοντικές επιπτώσεις από την καύση αυτών καθιστούν αναγκαία τη στροφή προς άλλες πηγές ενέργειας. Οι οδηγίες της Ε.Ε. και πολλών φορέων προστασίας του περιβάλλοντος επιτάσσουν τη μείωση των εκπομπών.

Η απορριπτόμενη θερμότητα από βιομηχανικές διεργασίες μπορεί να αξιοποιηθεί για την παραγωγή ηλεκτρικής ενέργειας. Με την αξιοποίηση της «αποφυέγεται» η κατανάλωση κάποιας ποσότητας ορυκτών καυσίμων και συνεπώς αποφεύγονται κάποιες ποσότητες «εκπομπών».

Στην παρούσα εργασία μελετάται η ανάκτηση θερμότητα με κύκλο Rankine, στο βιομηχανικό τομέα της υαλουργίας και συγκεκριμένη για την περίπτωση της «Γιούλα Α.Ε.». Η θερμοκρασία των καυσαερίων στην είσοδο του συστήματος ανάκτησης είναι 483°C. Η προσδιδόμενη στο σύστημα ενέργεια είναι 2,7 MWth. Ετησίως εκλύονται 30467 τόνοι CO2 με την εφαρμογή ενός συστήματος ανάκτησης 23% αυτών μπορούν να αποφευχθούν Μελετώνται κυκλώματα ρανκίνη μέσο το νερό αλλά και κυκλώματα οργανικού κύκλου Rankine. Τα κυκλώματα υφίστανται θερμοδυναμική βελτιστοποίηση, πλήρη διαστασιολόγηση και θερμοοικονομικά βελτιστοποίηση. Αφού κριθεί ποιο κύκλωμα (με ποιο εργαζόμενο μέσο και σε ποιες παραμέτρους λειτουργίας) είναι το θερμοοικονομικά βέλτιστο, μελετάται η οικονομική βιωσιμότητα μίας εγκατάστασης ενός τέτοιου συστήματος.

Λέξεις-κλειδιά: Ανάκτηση θερμότητας, υαλουργία, αποφυγές εκπομπών, Rankine, ORC, οργανικά μέσα
Container glass manufacturing is a high temperature, energy-intensive process and rejects to the atmosphere high temperature exhaust gases. Waste heat recovery systems can be implemented in the process to utilize the rich energy content of the flue gases and contribute to the increase of the efficiency and also to significant abatement of the emissions.

The aim of this paper is to examine and compare two Waste Heat Recovery systems for the glass industry. Namely a water-steam Rankine cycle and an Organic Rankine Cycle (ORC) were designed for the case study of Yioula Glassworks S.A. The temperature of the exhaust gases is 450-500°C leading to a waste heat of around 2,5 MWth, while the annual CO₂ emissions from natural gas combustion in the furnace reaches the amount of 30467 tonnes per year. With the implementation of an ORC system, it is estimated that more than 600kWe can be recovered [1].

The ORC system has been designed and dimensioned for several working fluids (R245fa, isopentane, neopentane, pentane, toluene, MM, MDM) focusing on the increase of the efficiency and the decrease of the investment costs [2]. The waste heat recovery systems were compared energetically, exergetically and also from an economic perspective. Furthermore, the CO₂ avoidance benefits were precisely calculated.

Finally an economic feasibility analysis has been conducted in order to evaluate the viability of the implementation of the abovementioned applications. WHR installations in glass industry can reduce significantly the energy consumption operating costs, thus being an attractive investment which enhances the environmental policy of the industry according to the BAT.
1.1 ΑΠΟΡΡΙΠΤΟΜΕΝΗ ΘΕΡΜΟΤΗΤΑ & ΑΝΑΚΤΗΣΗ ΑΠΟΡΡΙΠΤΟΜΕΝΗΣ ΘΕΡΜΟΤΗΤΑΣ

Η βιομηχανική ανάκτηση θερμότητας αφορά ενέργεια η οποία παράγεται κατά την παραγωγική διαδικασία αλλά δεν τίθεται σε κάποια πρακτική αξιοποίηση—απορριπτόμενη θερμότητα. Πηγές ανάκτησης θερμότητας αποτελούν τα θερμά καυσαέρια που απελευθερώνονται στην ατμόσφαιρα, θερμά προϊόντα που εξέρχονται από βιομηχανικές διαδικασίες και μεταφορά θερμότητας από θερμές επιφάνειες. Η ακριβής ποσότητα απορριπτόμενης θερμότητας δε γίνεται να γίνεται να προσδιοριστεί επακριβώς αλλά έχει υπολογιστεί ότι 20-50% της βιομηχανικής ενεργειακής κατανάλωσης καταλήγει σε απορριφθείσα θερμότητα. Κάποιες απώλειες θερμότητας είναι αναπόφευκτες αλλά είναι δυνατό να την εφαρμογή συστημάτων ανάκτησης θερμότητας οι απώλειες να μειωθούν. Η ανάκτηση θερμότητας εμπεριέχει την έννοια της δέσμευσης και επαναχρησιμοποίησης της απορριφθείσας θερμότητας. Παραδείγματα εφαρμογών ανάκτησης θερμότητας αποτελούν η παραγωγή ηλεκτρισμού, η προθέρμανση του αέρα καύσης, η προθέρμανση της πρώτης ύλης, η ψύξη δια απορρόφησης και η θέρμανση εγκαταστάσεων [1]

Οι εγκαταστάσεις ανάκτησης θερμότητας τείνουν να μειώσουν τα λειτουργικά κόστη της βιομηχανίας αυξάνοντας την επαγγελματική αποδοτικότητα. Είχε υπολογιστεί ότι 8400 τρισεκατομμύρια Btu ενέργειας απορρίπτονται ετησίως στο περιβάλλον μέσω θερμών καυσαερίων

Στον τομέα της βιομηχανίας 20-50% της καταναλισκόμενης ενέργειας χάνεται ως απορριπτόμενη θερμότητα μέσω θερμών ρευμάτων ή και μέσω αγωγής συναγωγής και ακτινοβολίας από τις θερμές επιφάνειες του εξοπλισμού. Σε μερικές περιπτώσεις όπως σε βιομηχανικούς κλιβάνους μπορούν να βελτιώσουν την ενεργειακή αποδοτικότητα από 10-50%.

Η δεσμευμένη και επαναχρησιμοποιούμενη ενέργεια είναι ουσιαστικά ένα ελεύθερο ρύπων υποκατάστατο των κοστοβόρων και του ηλεκτρισμού.

- Συστήματα ανάκτησης θερμότητας περιορίζονται από παράγοντες όπως θερμοκρασιακούς περιορισμούς και κόστος εξοπλισμού

- Η περιοριστική απορριπτόμενη θερμότητα αφορά χαμηλές θερμοκρασίες

- Υπάρχουν βιομηχανικοί τομείς στους οποίους η ανάκτηση θερμότητας τίθεται επί περισσότερων περιορισμών όπως χημική σύσταση και οικονομία κλίμακας που περιορίζουν τις δυνατότητες ανάκτησης θερμότητας.

- Απώλειες από μη παραδοσιακές πηγές απώλειας θερμότητας είναι δύσκολο να ανακτηθούν αλλά είναι σημαντικές (π.χ. απώλειες ακτινοβολίας από θερμές επιφάνειες)
ΕΜΠΟΔΙΑ ΣΤΗΝ ΑΝΑΚΤΗΣΗ ΘΕΡΜΟΤΗΤΑΣ

Κόστη: Μακρά περίοδος αποπληρωμής, εξαιδικευμένα υλικά και κόστη, οικονομία κλίμακας καθώς αποφαίνονται συμφερότερα για μεγάλης κλίμακας έργα, λειτουργικά και συντήρησης κόστη.

Θερμοκρασιακοί περιορισμοί: Χημική σύσταση η χημική συμβατότητα των καυσαερίων με άλλα υλικά είναι εξαιρετικά δύσκολη επιτεύξιμη ιδιαίτερα όταν και τα δύο βρίσκονται σε υψηλές θερμοκρασίες.

Περιορισμένος διαθέσιμος χώρος στις βιομηχανίες για την εγκατάσταση τέτοιων συστημάτων, τα καυσαέρια απορρίπτονται σε πίεση παραπλάνητα της ατμοσφαιρικής καθώς και δύσκολη μεταφορά τους προς και μέσω του εξοπλισμού χωρίς τη διαπάνη περαιτέρω ενέργειας.

Οι απώλειες θερμότητας προκύπτουν από ανεπάρκειες κατασκευαστικές του συστήματος αλλά και από τους θερμοδυναμικούς περιορισμούς. Επί παραδείγματι τα καυσαέρια που απορρίπτονται στο περιβάλλον σε μία βιομηχανία αλουμίνας έχουν θερμοκρασία 2300°C, συνεπώς καυσαέρια υψηλού ενεργειακού περιεχομένου που ισούται ενεργειακά με το 60% της καταναλωθείσας στον κλίβανο ενέργειας.

Παραδείγματα πηγών απορριπτόμενης θερμότητας είναι τα καυσαέρια από κλιβάνους υαλουργίας, τσιμεντοβιομηχανίας, αέρια απόβλητα άλλων θερμικών διεργασιών, νερό ψύξης από αεροσυμπιεστές ή ΜΕΚ. Η θερμότητα αυτή μπορεί να αξιοποιηθεί στην προθέρμανση του αέρα καύσης, προθέρμανση του τροφοδοτικού νερού λέβητα, παραγωγή ηλεκτρισμού, παραγωγή ατμού για την παραγωγή ηλεκτρικής ενέργειας, θέρμανση του χώρου.

Με προθέρμανση του αέρα καύσης ο βαθμός απόδοσης ενός κλιβάνου αυξάνεται μέχρι και 50%. Ένα άλλο πλεονέκτημα είναι το γεγονός ότι μειώνει τις απαιτήσεις των συσκευών θερμικής μετατροπής μειώνοντας παράλληλα το κόστος εξοπλισμού. Πέραν όμως των οικονομικών οφελών η ανάκτηση θερμότητας είναι ελεύθερη αερίων του θερμοκηπίου θερμότητα. Λαμβάνοντας υπόψη ότι στις ΗΠΑ ο βιομηχανικός τομέας καταναλώνει το 1/3 της ενέργειας που συνδέεται με αέρια του θερμοκηπίου, τότε είναι και υπεύθυνη για το 1/3 των εκπομπών αερίων του θερμοκηπίου. Μειώνοντας τις απαιτήσεις των βιομηχανιών σε ορυκτά καύσιμα μειώνεται και η εκπομπή αερίων του θερμοκηπίου.

ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΑΠΟΡΡΙΠΤΟΜΕΝΗΣ ΘΕΡΜΟΤΗΤΑΣ

Η Ποσότητα ενέργειας ή ενεργειακό περιεχόμενο δηλώνεται σήμερα, ενώ η ποιότητα της απορριπτόμενης ενέργειας είναι μέτρο της χρησιμότητας αυτής. Η τελευταία εξαρτάται σε μεγάλο βαθμό από τη θερμοκρασία και την παροχή μάζας \(E = m\ h(t) \). Ωστόσο, η απορριπτόμενη θερμότητα \(m \) η παροχή μάζας του απορριπτόμενου ρεύματος και \(h(t) \) η ειδική ενθαλπία του ρεύματος στις συγκεκριμένες συνθήκες.
Οι περιπτώσεις απορριπτόμενης θερμότητας κατηγοριοποιούνται ανάλογα το θερμοκρασιακό τους εύρος χαμηλής, μέσης και υψηλής ποιότητας απορριπτόμενη θερμότητα με τον κάτωθι τρόπο.

<table>
<thead>
<tr>
<th>Αξιολόγηση ποιότητας θερμότητας</th>
<th>Θερμοκρασιακό επίπεδο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υψηλής ποιότητας</td>
<td>T>650°C</td>
</tr>
<tr>
<td>Μέσης ποιότητας</td>
<td>232<T<649°C</td>
</tr>
<tr>
<td>Χαμηλής ποιότητας</td>
<td>T>232°C</td>
</tr>
</tbody>
</table>

ΜΕΘΟΔΟΙ ΑΝΑΚΤΗΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΝ ΤΟΜΕΑ ΤΗΣ ΒΙΟΜΗΧΑΝΙΑΣ

1) **ΕΝΑΛΛΑΚΤΙΣ**

Οι εναλλάλτες μεταφέρουν θερμότητα από τα θερμά καυσαέρια στον αέρα καύσης. Η προθέρμανση του άερα καύσης οδηγεί στη μείωση των απαιτήσεων σε καύσιμο.

Ανακτητής – Recuperator ανακτά θερμότητα από καυσαέρια μέσης και υψηλής θερμοκρασίας, κατασκευάζονται συνήθως από μεταλλικά ή κεραμικά υλικά.

![Εικόνα 1.1 ΚΛΙΒΑΝΟΙ ΜΕ ΑΝΑΓΕΝΝΗΣΗ ΘΕΡΜΟΤΗΤΑΣ [1]](image)
Οι κλίβανοι με αναγέννηση θερμότητας αποτελούνται από δύο θαλάμους κατασκευασμένους από πυρότουβλα μέσω από τους οποίους ρέει ο θερμός και ψυχρός αέρας εναλλάξ. Καθώς ο αέρας καύσης περνάει μέσα από τον ένα θάλαμο τα πυρότουβλα και θερμαίνονται. Η ροή του αέρα στη συνέχεια προσαρμόζεται ούτως ώστε ο εισερχόμενος αέρας να περάσει από το θερμό θάλαμο ο οποίος μεταφέρει θερμότητα στον αέρα καύσης που εισέρχεται στον κλίβανο. Οι δύο θάλαμοι χρησιμοποιούνται κατά τρόπο τέτοιον ώστε ο ένας να προσαρμόζει την θερμότητα στον άλλο και η κατεύθυνση του αέρα μεταβάλλεται κάθε είκοσι λεπτά περίπου.

Εικόνα 1.2 Αναγεννητικός κλίβανος [3]

Προθέρμανση της πρώτης ύλης ή του εργαζόμενου μέσου.

Η πιο συνηθισμένη εφαρμογή είναι η προθέρμανση του νερού του λέβητα, μέσω ενός οικονομητήρα ο οποίος μεταφέρει θερμότητα από τα θερμά καυσαέρια στο εισερχόμενο στο λέβητα νερό.
2. Η ΒΙΟΜΗΧΑΝΙΑ ΤΗΣ ΥΑΛΟΥΡΓΙΑΣ

2.1 ΤΟ ΓΥΑΛΙ

Το γυαλί είναι υλικό στερεό και λόγω της απουσίας κρυσταλλικότητας στη δομή του, είναι άμορφο. Παρασκευάζεται με σύντηξη χαλαζιακής άμμου η οποία ουσιαστικά αποτελεί τον διαμορφωτή και ενός ή περισσότερων σταθεροποιητών προκειμένου να μην είναι το γυαλί εύθρυπτο και να μην αποσαθρώνεται από το νερό. Το κοινό γυαλί παρασκευάζεται με σύντηξη χαλαζιακής άμμου (SiO₂) (73,7%), ανθρακικού νατρίου (Na₂CO₃) (16%), οξείδιου του καλίου (K₂O) (0,5%) και ανθρακικού ασβεστίου (Ca(OH)₂) (5,2%) ανθρακικού μαγνησίου (MgCO₃) (3,6%) και οξείδιου του αργιλίου (Al₂O₃) (1%) (σταθεροποιητές). Ανάλογα με τον τύπο και το ποσοστό των συστατικών και των σταθεροποιητών λαμβάνονται και οι διάφοροι τύποι γυαλιού. [2]

<table>
<thead>
<tr>
<th>Συστατικό γυαλιού</th>
<th>Σύσταση κατά μάζα %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οξείδιο του πυριτίου (SiO₂)</td>
<td>71.0-73.0</td>
</tr>
<tr>
<td>Οξείδιο του νατρίου (Na₂O)</td>
<td>12.0-14.0</td>
</tr>
<tr>
<td>Οξείδιο του ασβεστίου (CaO)</td>
<td>9.0-12.0</td>
</tr>
<tr>
<td>Οξείδιο του μαγνησίου (MgO)</td>
<td>0.2-3.5</td>
</tr>
<tr>
<td>Οξείδιο του αλουμινίου (Al₂O₃)</td>
<td>1.0-3.0</td>
</tr>
<tr>
<td>Οξείδιο του καλίου (K₂O)</td>
<td>0.3-1.5</td>
</tr>
<tr>
<td>τριοξείδιο του θείου (SO₃)</td>
<td>0.05-0.3</td>
</tr>
<tr>
<td>Χρωστικές κλπ</td>
<td>ίχνη</td>
</tr>
</tbody>
</table>

Πίνακας 2.1.1 Η πρώτη ύλη της υαλουργίας
Εικόνα 2.1.1 Η πρώτη ύλη της υαλουργίας[3]

Το διοξείδιο του πυριτίου έχει σημείο τήξης πάνω από 2000 °C. Καθιστά δυνατή την Παρασκευή υλικών υψηλών απαιτήσεων όπως οι λάμπες αλογόνου ή υλικών οπτικών ινών. Λόγω του υψηλού σημείου τήξης είναι ανθεκτικότερο από το απλό γυαλί.

Το ανθρακικό νάτριο έχει χαμηλότερο σημείο τήξης περί τους 100°C και προστίθεται για να καταστήσει τη διαδικασία πιο αποτελεσματική, καθιστά όμως το γυαλί διαλυτό στο νερό κάτι το οποίο δεν είναι επιθυμητό στην Παρασκευή γυαλιού. Το ανθρακικό νάτριο προέρχεται από επιτραπέζιο αλάτι.

Οξείδιο του ασβεστίου, εξάγεται από τον ασβεστόλιθο και αντισταθμίζει την επίδραση του ανθρακικού νάτριου ως προς τη διαλυτότητα του τελικού γυαλιού στο νερό οξείδιο του μαγνησίου και του αργιλίου μπορεί επίσης να προστεθούν για να ενισχύσουν τις ιδιότητες του γυαλιού. Πολλά ακόμη αξιοποιείται το υαλόθραυσμα που συλλέγεται από την ανακύκλωση. Η χρήση υαλόθραυσματος αυξάνει πολύ την αποδοτικότητα της εγκατάστασης, αφού πέραν της εξουκονόμησης πρώτων υλών μειώνει τις ενεργειακές απαιτήσεις παραγωγής γυαλιού καθώς όταν χρησιμοποιείται απαιτείται λιγότερη ενέργεια στον κλίβανο. Στην ποσότητα και ποιότητα της ανακύκλωσης καθοριστικό ρόλο παίζει το επίπεδο της ανακύκλωσης γυαλιού σε κάθε χώρα. Η παρτίδα τοποθετείται στον κλίβανο μαζί με το υαλόθραυσμα όπου τήκεται και στη συνέχεια διαμορφώνει το γυαλί.
Φυσικές ιδιότητες του γυαλιού

- Στερεό υψηλής σκληρότητας (7 στην κλίμακα Mohs).
- Μη κρυσταλλικής δομής άμορφο υλικό.
- Εύθραυστο. Τα θραύσματα του είναι οξύληκτα.
- Διαφανές για το φάσμα του ορατού φωτός.
- Δυσθερμαγωγό και μονωτικό υλικό.
- Αδρανές χημικά και βιολογικά.

Η ΒΙΟΜΗΧΑΝΙΑ ΤΗΣ ΥΑΛΟΥΡΓΙΑΣ

Η βιομηχανία της υαλουργίας χωρίζεται στον τομέα των γυάλινων δοχείων, των υαλοπινάκων, των υαλονημάτων και του υαλοβάμβακα.

Υαλοπίνακες

Οι υαλοπίνακες παράγονται με τη διαδικασία της έλασης και πιο συγκεκριμένα με τη διαδικασία Pilkington. Το γυαλί ρέει πάνω στην επιφάνεια του κασσιτέρου σχηματίζοντας μία πλωτή ταινία με τέλεια λείες επιφάνειες και στις δύο πλευρές και ένα ομοιόμορφο πάχος. Καθώς το γυαλί ρέει κατά μήκος του λουτρού κασσιτέρου, η θερμοκρασία από 1100°C που είναι αρχικά σταδιακά μειώνεται στους 600, εκεί ότου το φύλλο μπορεί να ανυψωθεί από τον κασσιτέρο επάνω σε κυλίνδρους. Η γυάλινη ταινία τραβιέται έξω από τα κυλίνδρους με μία ελεγχόμενη ταχύτητα. Η διακύμανση στην ταχύτητα της ροής και του κυλίνδρου καθορίζει το πάχος των γυάλινων φύλλων που θα σχηματιστούν.

Υαλονήματα

Ίνες υάλου(ονομάζεται επίσης ενισχυμένο με γυαλί πλαστικό, με ίνες υάλου ενισχυμένο πλαστικό, είναι ενισχυμένο με ίνες πολυμερές κατασκευασμένο από πλαστική μήτρα ενισχύεται από λεπτές ίνες από γυαλί. Το υαλόνημα είναι ένα ελαφρύ, εξαιρετικά ισχυρό
και ανθεκτικό υλικό. Αν και ιδιότητες αντοχής είναι κατά τι χαμηλότερες από αυτές των
ανθρακονημάτων και είναι λιγότερο άκαμπτο, το υλικό είναι συνήθως πολύ λιγότερο
εύθραυστο, και οι πρώτες ύλες είναι πολύ λιγότερο ακριβείς. Οι αντίχειρα και το βάρος του
eίναι επίσης πολύ καλύτερη σε σύγκριση με τα μέταλλα, και μπορεί εύκολα να
μορφοποιηθεί με διαδικασίες χυτεύσεως.

Γυάλινα Δοχεία

Η παρασκευή υάλινων δοχείων είναι ο μεγαλύτερος κλάδος της υαλουργίας και
αντιπροσωπεύει το 50-60% της συνολικής παραγωγής γυαλιού. Καλύπτει την
παρασκευή γυαλιών συσκευασίας, για τη συσκευασία φαγητού, ποτών, καλλυντικών
και αρωμάτων, φαρμακευτικών ειδών και τεχνικών προϊόντων (βάζα, μπουκάλια).

2.2 ΤΑ ΣΤΑΔΙΑ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ

ΠΡΟΕΤΟΙΜΑΣΙΑ ΠΡΩΤΗΣ ΥΛΗΣ

Η παρτίδα τοποθετείται σε μεγάλα σιλό (που τροφοδοτείται με φορτηγό ή βαγόνι). Μερικά
συστήματα προετοιμασίας παρτίδας περιλαμβάνουν την επεξεργασία υλικών,
όπως των πρώτων υλών διαλογής / κόσκινο, ξηραντική, ή προθέρμανσης. Είτε
αυτοματοποιημένο ή μη, το σύστημα προετοιμασίας της πρώτης ύλης, συναρμολογεί,
αναμιγνύει, και παραδίδει την πρώτη ύλη σύμφωνα με την προκαθορισμένη συνταγή.
Διαφορετικοί τύποι, χρώματα, ποιότητα, καθαρότητα των πρώτων υλών / διαθεσιμότητα,
σχεδιασμός κλίβανου επηρεάζουν τη συνταγή παρτίδας. [3]

Ο κλίβανος τροφοδοτείται με σταθερό ρυθμό και μέσα σε αυτόν αναπτύσσονται
θερμοκρασίες έως 1575ο C. Το κάσιμο που καταναλώνει είναι φυσικό αέριο ή
πετρέλαιο. Το μέγεθος του καθορίζεται από τη δυναμικότητα του και μετράται σε
τόνους/ημέρα. Υπάρχουν διάφοροι τύποι κλίβανων: με αναγέννηση θερμότητας,
κλίβανος καθαρού οξυγόνου είναι οι πιο σύγχρονοι και συχνότερα χρησιμοποιούν.

ΤΗΞΗ

Παρτίδα και υαλόθραυσμα θερμαίνονται στον κλίβανο σε θερμοκρασία 1500C. Προσμίξεις και
φυσαλίδες αφαιρούνται από το γυαλί και η διαδικασία συνεχίζει στους
1100 βαθμούς. Αυτό το στάδιο είναι το κλειδί της διαδικασία και μπορεί να διαρκέσει
μέχρι και 50 άρες.

ΜΟΡΦΟΠΟΙΗΣΗ

Το τηγμένο γυαλί ρέει από τον κλίβανο κατά μήκος μιας εμπρόσθιας εστίας σε ένα
στόμιο συλλογής στο τέλος. Από το κάτω μέρος του μπολ συλλογής, σχηματίζονται μία
έως τέσσερις παράλληλες ροές γυαλιού μέσω κατάλληλου μεγέθους στομίων. Αυτά τα
πρέπει να καλύπτει τα παράλληλα ρεύματα γυαλιού και σχηματίζονται ταυτόχρονα σε παράλληλη καλούπια επί μηχανής διαμόρφωσης.

Εικόνα 2.2.1 Η διαδικασία της μορφοποίησης

Υπάρχουν δύο τύποι μορφοποίησης η φυσήματος και πρεσαρίσματος. Η πρώτη χρησιμοποιείται για δοχεία με στενό λαιμό ενώ η δεύτερη περισσότερο για βάζα. Και στις δύο μεθόδους ένα ρεύμα τηγμένης υάλου κόβεται με μία λεπίδα διάτμησης και σχηματίζει έναν στερεό κύλινδρο, το σβόλο. Και στις δύο περιπτώσεις η διαδικασία ξεκινάει με την πτώση του σβόλου λόγω βαρύτητας, στη συνέχεια ο σβόλος καθοδηγείται από αλιθητήρες σε τυφλά καλούπια δύο μισά από τα οποία συσφίγγονται για να κλείσει και στη συνέχεια σφραγίζεται με το διάφραγμα προς τα επάνω. Στην πρώτη μέθοδο η ύαλος διοχετεύεται πρώτα μέσω μίας βαλβίδας στο διάφραγμα πειξόμενα το κάτω στο τρίων τμημάτων καλούπι-δαχτυλίδη. Τα δαχτυλίδια σφραγίζονται από κάτω από ένα μικρό έμβολο. Το εμβόλο απομακρύνεται ελαφρά ώστε να επιτρέψει στη διαμόρφωση μηχανή να μαλακώσει. Στη συνέχεια αέρας από την αντίθετη φωρά έρχεται μέσα από το έμβολο για να δημιουργηθεί το μόρφωμα.
Μετά από τη διαδικασία διαμορφώσεως, ορισμένα δοχεία -ιδιαίτερα αυτά που προορίζονται για τα αλκοολούχα ποτά-υποβάλλονται σε επεξεργασία για τη βελτίωση της χημικής σταθερότητας στο εσωτερικό τους, που ονομάζεται εσωτερική επεξεργασία ή απαλκάλωση. Αυτό συνήθως επιτυγχάνεται με την έγχυση ενός θείου-ή φθοριού πύρινου μίγματος που περιέχει αέριο σε φιάλες σε υψηλές θερμοκρασίες. Η παραχώρηση του αερίου γίνεται είτε στον αέρα που χρησιμοποιείται στη διαδικασία διαμόρφωσης (δηλαδή, κατά τη διάρκεια της τελικής εμφύσης του περιέκτη), ή μέσω ενός ακροφυσίου κατευθύνοντας ένα ρεύμα του αερίου μέσα στο στόμιο της φιάλης μετά τη διαμόρφωση. Η παραπάνω επεξεργασία καθιστά τον περιέκτη πιο ανθεκτικό στα αλκάλια, τα οποία μπορούν να προκαλέσουν αυξήσεις στο pH του προϊόντος και, σε ορισμένες περιπτώσεις, αποικοδόμηση περιέκτη.

ΑΝΟΠΤΗΣΗ

Στη συνέχεια το γυαλί ψύχεται και στερεοποιείται. Το θερμοκρασιακό προφίλ της επιφάνειας κατά την ψύξη πρέπει να είναι ομοιόμορφο αλλιώς θίγεται η ανθεκτικότητα του γυαλιού λόγω των επιφανειακών τάσεων. Ομοιόμορφη ψύξη επιτυγχάνεται με τη διαδικασία της ανόπτησης. Πρόκειται για μία εξειδικευμένη διαδικασία γνωστή ως διαδικασία Lehr κατά την οποία υπερσκευάζεται το γυαλί ως τους 580 περίπου και μετά ψύχεται για διάστημα 20-6000 λεπτών , χρόνος ο οποίος εξαρτάται από το πάχος του γυαλιού.[5]

Τέλος υποβάλλεται σε άλλες διαδικασίες επιστρώσεως κλπ.

Σχηματικά η παραγωγική διαδικασία του γυαλιού αποτύπωνεται παρακάτω

![Diagram](image_url)

Εικόνα 2.2.2 Η παραγωγική διαδικασία

Η υαλουργία είναι μία εμπορική βιομηχανία, παρόλο που έχουν βρεθεί διάφοροι τρόποι για να προστεθεί αξία στα προϊόντα της, ώστε σα βιομηχανία να παραμείνει ανταγωνιστική, παραπάνω από το 80% των προϊόντων πωλούνται σε άλλες
βιομηχανίες, και αυτό την καθιστά πολύ εξαρτημένη από τη βιομηχανία τροφίμων και πότων. Ενεργειακά οι μεγαλύτερες προκλήσεις που έχει να αντιμετωπίσει η υαλουργία είναι οι εκπομπές στον αέρα και η κατανάλωση ενέργειας. Η παράγωγη γυαλιού είναι μια δραστηριότητα που υψηλές ενεργειακές απαιτήσεις, η οποία οδηγεί σε εκπομπές προϊόντων καύσης και υψηλής θερμοκρασίας οξειδίων του ατμοσφαιρικού αζώτου. Οι εκπομπές των κλιβάνων περιέχουν σκόνη που προέρχεται από τη συστατική της παρτίδα και συνεπακόλουθη συμπύκνωση των εμπεριεχόμενων στην παρτίδα πτητικών. Από δεδομένα που μας παρέχει η βιομηχανία γυαλιού το 2005 εκλύθηκαν 6500 tn σκόνη, 10500 tn NOx, 80000 tn SO2, και 22 εκατ. tn CO2 που συνολικά συνιστούν το 0.8% των συνολικά εκπεμφθέντων ρύπων στην E.E. Από την καταναλωθείσα ενέργεια 15% καταναλώνεται ως ηλεκτρισμός, 30% από ορυκτά καύσιμα και 55% από φυσικό αέριο. Οι διαφορετικές στρατηγικές και ενεργειακές πολιτικές των χωρών μελών έχουν διαφορετική επίδραση στην ποσότητα και ποιότητα των εκπομπόμενων ρύπων ανά χώρα μέλος.

ΤΟ ΥΑΛΟΘΡΑΥΣΜΑ-ΣΗΜΑΣΙΑ ΤΗΣ ΑΝΑΚΥΚΛΩΣΗ

Η χρησιμοποίηση υαλοθραύσματος στη θέση της ακατέργαστης πρώτης ύλης είναι ένα αποτελεσματικό μέτρο για τη μείωση του διοξειδίου του άνθρακα, αφού οι ενεργειακές απαιτήσεις για την ενδοθερμή αντίδραση του σχηματισμού γυαλιού μειώνονται, το σημείο τήξης του υαλοθραύσματος είναι χαμηλότερο από αυτό των ακατέργαστων πρώτων υλών και η μάζα εισόδου στον κλίβανο ανά μονάδα παραγόμενου υλικού είναι 20% χαμηλοτέρη. Μπορεί χοντρικά να ειπωθεί ότι η μείωση των ενεργειακών απαιτήσεων του κλιβάνου κατά 2-3% μπορεί να επιτευχθεί με αύξηση του εισερχόμενου στην πρώτη φάση υαλοθραύσματος κατά 10%. Το υαλόθραυσμα πέραν του ότι μειώνει τις ενεργειακές απαιτήσεις και τις εκπομπές CO2, συμβάλλει στην μείωση των προϊόντων καύσης και κυρίως του ασβεστόλιθου του δολομίτη, το οποίο αναλύεται μέσα στον κλίβανο εκλύοντας διοξείδιο του άνθρακα. Το υαλόθραυσμα μπορεί να χρησιμοποιηθεί περισσότερο στην παραγωγή υάλινων δοχείων παρά στην παραγωγή επίπεδου γυαλιού. Το επίπεδο γυαλί απαιτεί υψηλότερη ποιότητα η οποία μπορεί να επιτευχθεί μόνο με καθαρή πρώτη ύλη. Παρόλο που το υαλόθραυσμα μπορεί να αποδεχθεί τόσο χρήσιμο στη μείωση των εκπομπών, ειδικά στην παραγωγή υάλινων δοχείων, ο βαθμός συλλογής υαλοθραύσματος ποικίλλει έντονα μέσα στην Ευρωπαϊκή Ένωση. Ο βαθμός συλλογής κυμαίνεται από 10% έως 90%, γεγονός που καταδεικνύει ότι υπάρχει σαφές περιθώριο για μεγαλύτερη χρήση του υαλοθραύσματος. Η διαθεσιμότητα του υαλοθραύσματος αποτελεί ακόμη έναν παράγοντα, που επηρεάζεται από τοπικούς παράγοντες. Ακόμη οι ποιοτικές απαιτήσεις ως προς το διαχωρισμό ανάλογα το χρώμα του γυαλιού εισάγονται από την πολιτική ανακύκλωσης και επηρεάζουν τη διαθεσιμότητα υψηλής ποιότητας υαλοθραύσματος για την υαλουργία. Ενώ για την παραγωγή πράσινου γυαλιού μπορεί να χρησιμοποιηθεί σχεδόν οποιοδήποτε χρώμα υαλοθραύσματος, για την παραγωγή άσπρου γυαλιού μπορεί να χρησιμοποιηθεί μόνο άσπρο.

2.3 ΟΙ ΡΥΠΟΙ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ

Παρόλο που οι τροφοδοτούμενοι με φυσικό αέριο κλίβανοι εκλύουν λιγότερο CO2 παρουσιάζουν χαμηλότερη ενεργειακή απόδοση λόγω της έντονης ακτινοβολίας της φλόγας και του περιεχομένου των καυσαερίων.
Περαιτέρω διαφορές στις εκπομπές διοξειδίου του θείου μπορεί να οφείλονται στην ποιότητα του προϊόντος, τη δυναμικότητα του κλιβάνου και την επιλογή του καυσίμου. Κυριαρχεί σε όλες τις βιομηχανίες γυαλιού το φυσικό αέριο ως καύσιμο κλιβάνου, ακολουθούν τα παράγωγα του πετρελαίου με προφανή όμως αύξηση του μεριδίου του φυσικού αερίου. Και τα δύο κάσιμα είναι εναλάξιμα στη διαδικασία τήξης. Το βαρύ πετρέλαιο καίγεται με μία φωτεινή φλόγα, η θερμότητα μέσω ακτινοβολίας μεταδίδεται καλύτερα στη μάζα του γυαλιού, που συνεπάγεται καλύτερη επιδόση αλλά χειρότερη επίδοση όσον αφορά στο εκπεμπόμενο \(\text{CO}_2 \).[5]

<table>
<thead>
<tr>
<th>ΡΥΠΟΣ</th>
<th>ΠΗΓΗ ΡΥΠΟΥ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αιωρούμενα σωματίδια</td>
<td>Πτητικά από τα συστατικά της πρώτης ύλης</td>
</tr>
<tr>
<td></td>
<td>Μεταφορά από λεπτόκοκκο υλικό στην πρώτη ύλη</td>
</tr>
<tr>
<td></td>
<td>Προϊόντα καύσης από ορισμένα ορυκτά καύσιμα</td>
</tr>
<tr>
<td>Οξείδια του Νατρίου</td>
<td>Θερμικά Nox από τις υψηλές θερμικοπαραθέσεις κατά την τήξη</td>
</tr>
<tr>
<td></td>
<td>Αποσύνθεση των νιτρικών συστατικών της πρώτης ύλης</td>
</tr>
<tr>
<td></td>
<td>Οξείδωση του θείου προϊόντων στο καύσιμο</td>
</tr>
<tr>
<td>Οξείδια του θείου</td>
<td>Αποσύνθεση θειούχων συστατικών της πρώτης ύλης</td>
</tr>
<tr>
<td></td>
<td>Παρουσία θείου στο καύσιμο</td>
</tr>
<tr>
<td>HCl</td>
<td>Παρόν ως πρόσμιξη σε ορισμένες πρώτες ύλες ειδικεύεται στο ανθρακικό</td>
</tr>
<tr>
<td></td>
<td>κάσιμο και καύσιμα υαλοθραυσμάτων</td>
</tr>
<tr>
<td></td>
<td>NaCl που χρησιμοποιείται ως πρώτη ύλη (εξευγενιστικός παράγον της)</td>
</tr>
<tr>
<td></td>
<td>σε ορισμένα υαλικά</td>
</tr>
<tr>
<td>Φθοριούχα /HF</td>
<td>Παρόντα ως πρόσμιξη σε ορισμένες πρώτες ύλες</td>
</tr>
<tr>
<td></td>
<td>Προστέθηκε ως πρώτη ύλη για την παραγωγή τμήματος συμπλέγοντας</td>
</tr>
<tr>
<td></td>
<td>ως το εφαρμόσιμο σε ιδιοτήτες στο τελικό προϊόν</td>
</tr>
<tr>
<td></td>
<td>Προστέθηκε ως πρώτη ύλη στην συνεχή ίνα καύσιμο της θείου χρήσης και σε υαλοθραυσμάτων</td>
</tr>
<tr>
<td></td>
<td>χρησιμοποιούνται σε πρότυπα υαλικά</td>
</tr>
<tr>
<td></td>
<td>Προστέθηκε ως πρώτες ύλες για τη σταθερότητα της θείου χρήσης</td>
</tr>
<tr>
<td></td>
<td>Ως επιπλέον συστατικό στο πρότυπο</td>
</tr>
<tr>
<td>Βαρέα Μέταλλα</td>
<td>Παρόντα ως υποστοχαστικά σε μερικές πρώτες ύλες , επαναχρησιμοποιήσεις</td>
</tr>
<tr>
<td></td>
<td>καύσιμα υαλοθραυσμάτων και καυσίμα</td>
</tr>
<tr>
<td></td>
<td>Χρησιμοποιούνται σε ειδικές συνθήκες υαλικού (μελοβιδούχο κρύσταλλο, ειδικά χρωματιστά υαλικά)</td>
</tr>
<tr>
<td></td>
<td>Σελήνιο που χρησιμοποιείται ως χρωστική ή σαν πράγματος σε ορισμένα υαλικά</td>
</tr>
<tr>
<td></td>
<td>Προϊόν ατελούς καύσης</td>
</tr>
<tr>
<td>Διοξείδιο του άνθρακα</td>
<td>Προϊόν ατελούς καύσης</td>
</tr>
<tr>
<td></td>
<td>Εκλείπεται μετά την αποσύνθεση των ανθρακούχων στην πρώτη ύλη</td>
</tr>
<tr>
<td>Μονοξείδιο του άνθρακα</td>
<td>Προϊόν ατελούς καύσης</td>
</tr>
<tr>
<td>Υδρόθειο</td>
<td>Σχηματίζονται από την πρώτη ύλη ως προϊόν καύσης λόγω των βαρυκρατικών υαλικών στο διάφορα σημεία του</td>
</tr>
</tbody>
</table>
3. ΑΝΑΚΤΗΣΗ ΘΕΡΜΟΤΗΤΑΣ ΣΤΗΝ ΥΑΛΟΥΡΓΙΑ

Εικόνα 3.1 Ανάκτηση θερμότητας στην υαλουργία [7]

<table>
<thead>
<tr>
<th>ΓΕΡΜΑΝΙΑ OSTERWEDDINGEN I- EUROGLASS (700tn/day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ</td>
<td>ΑΤΜΟΣΤΡΟΒΙΛΟΣ-SIEMENS SST-110</td>
</tr>
<tr>
<td>ΠΙΕΣΗ ΥΓΡΟΥ ΑΤΜΟΥ</td>
<td>40bar</td>
</tr>
<tr>
<td>ΕΝΔΙΑΜΕΣΗ ΠΙΕΣΗ</td>
<td>1,2-8 bar</td>
</tr>
<tr>
<td>ΠΙΕΣΗ ΑΠΑΕΡΙΩΝ</td>
<td>0,2-0,35 bar</td>
</tr>
<tr>
<td>ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ</td>
<td>2,175 MW (60% ιδιοαπαιτήσεων)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΙΤΑΛΙΑ-SANGALLI VETRO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ</td>
<td>ORC CYCLE</td>
</tr>
<tr>
<td>ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ</td>
<td>2,3MW</td>
</tr>
<tr>
<td>ΠΑΡΑΓΟΜΕΝΗ ΕΝΕΡΓΕΙΑ</td>
<td>9600 Mwh/yr</td>
</tr>
<tr>
<td>ΜΕΙΩΣΗ ΡΥΠΩΝ ΚΑΤΑ</td>
<td>8300 t/yr CO2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΙΤΑΛΙΑ-SAN GEORGIO DI NOGARO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΕΘΟΔΟΣ ΑΝΑΚΤΗΣΗΣ</td>
<td>ORC CYCLE</td>
</tr>
<tr>
<td>ΠΑΡΑΓΟΜΕΝΗ ΕΝΕΡΓΕΙΑ</td>
<td>1,5 - 2 MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUNEO-GEA BISCHOFF/ACG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μέθοδος ανάκτησης : ORC CYCLE</td>
<td>ORCCYCLE Turboden 12HRS</td>
</tr>
<tr>
<td>Φορτίο</td>
<td>1,3MW</td>
</tr>
<tr>
<td>βαθμός απόδοσης</td>
<td>2</td>
</tr>
</tbody>
</table>
Η βιομηχανία γυαλιού ΓΙΟΥΛΑ Α.Ε. καλύπτει στην παραγωγή της κατά κύριο λόγο δύο λειτουργικούς τομείς: της συσκευασίας, και του επιτραπέζιου είδους. Ο όμιλος αποτελείται από 6 εταιρείες που λειτουργούν στην Ελλάδα, τη Βουλγαρία, τη Ρουμανία και την Ουκρανία. Οι 7 τεχνολογικά άρτιες μονάδες παραγωγής με 15 υπερσύγχρονους κλιβάνους τήξεως γυαλιού και 49 γραμμές σηματοδότησης προφαντών, παράγουν ετησίως πάνω από 2 δισεκατομμύρια τεμάχια συσκευασίας, 125 εκατομμύρια τεμάχια επιτραπέζιων προϊόντων, 52.000 τόνους φαρμακευτικού γυαλιού και 650.000 τετραγωνικά μέτρα διακοσμητικού τζαμιού.

Η μονάδα της Αττικής

Στη μονάδα της Αττικής λειτουργεί μόνον ο ένας κλίβανος θερμικής ισχύος 500 kW με καύσιμο το φυσικό αέριο και αναγέννηση θερμότητας. Οι θερμικές απαιτήσεις της μονάδας είναι της τάξεως 4184 kJ/kg παραγόμενου γυαλιού. Η θερμοκρασία των απορριπτόμενων καυσαέριων κυμαίνεται στο εύρος των 450-500 °C. Η κατανάλωση καυσίμου είναι της τάξεως των 1560 Nm3/h και ο λόγος αέρα καύσης στον κλίβανο είναι 1.1. Η μονάδα λειτουργεί επί 24ώρου βάσεως. Η ποσότητα εκπεμπόμενου CO2 ορυκτής προέλευσης ανέρχεται σε 30645 τόνους ετησίως.[6]

Εικόνα 3.1.1 Ο κλίβανος της Γιουλα Α.Ε. [6]
Ανάκτηση Θερμότητας στη ΓΙΟΥΛΑ Α.Ε. - Η υφιστάμενη κατάσταση

Στη Γιούλα αξιοποιείται ήδη η απορριπτόμενη θερμότητα σε κάποιες μορφές της. Πρώτον, ο εγκατεστημένος κλίβανος κλίβανος είναι κλίβανος με αναγέννηση.

Αποτελείται από δύο θαλάμους πυρότοβλων σε μορφή "πλέγματος", μέσω των οποίων ρέει ζεστός και κρύος αέρα εναλλάξ. Τα καυσαέρια διέρχονται μέσω του ενός θαλάμου, τα πυρότοβλα απορροφούν θερμότητα από το καυσαέρι και την θερμαίνονται. Η ροή του αέρα στη συνέχεια ρυθμίζεται έτσι ώστε όταν ο εισερχόμενος αέρας καύσης διέρχεται μέσω του θερμού πλέγματος, το οποίο μεταφέρει τη θερμότητα στον αέρα καύσης που εισέρχονται στην κάμινο. Οι δύο θάλαμοι χρησιμοποιούνται έτσι ώστε, ενώ ο ένας απορροφά θερμότητα από το καυσαέρι όλος μεταφέρει τη θερμότητα στον αέρα καύσης. Η κατεύθυνση της ροής του αέρα μεταβάλλεται περίπου κάθε 20 λεπτά.

Δεύτερον αξιοποιείται η παροχή του νερού ψύξης των αεροσυμπιεστών σε μία ψυκτική κλιματιστική μονάδα μέσω πλακοειδών εναλλακτών νερού-λαδιού. Η εγκατάσταση δεν έχει κάποια ανάγκη για νερό ή ψύξη θέρμανσης. Για το λόγο αυτό, δε μελετάται καθόλου στην παρούσα εργασία το σενάριο της συμπαραγωγής ηλεκτρισμού και θερμότητας.

Επίσης δεν υπάρχουν πηγές αναξιοποίητης παροχής νερού που θα μπορούσαν να αξιοποιηθούν στο συμπυκνωτή ως μέσο ψύξης. Για το λόγο αυτό οι ψύκτες θεωρήθηκαν αερόψυκτοι.[6]

Σχήμα 3.1.1 Διάταξη με αναγεννητικό κλίβανο στην υαλουργία
4.ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ

4.1 Ο ΚΥΚΛΟΣ RANKINE

<table>
<thead>
<tr>
<th>επεξήγηση συμβόλων</th>
<th>μονάδες</th>
</tr>
</thead>
<tbody>
<tr>
<td>η<sub>θ</sub></td>
<td>θερμικός βαθμός απόδοσης</td>
</tr>
<tr>
<td>η<sub>HT</sub></td>
<td>βαθμός απόδοσης μεταφοράς θερμότητας</td>
</tr>
<tr>
<td>η<sub>sys</sub></td>
<td>βαθμός απόδοσης συστήματος</td>
</tr>
<tr>
<td>Q<sub>in</sub></td>
<td>παρεχόμενη ενέργεια από το καυσαέριο</td>
</tr>
<tr>
<td>Q<sub>n,th</sub></td>
<td>μέγιστη θεωρητική παρεχόμενη ενέργεια από το καυσαέριο εάν εξέρχονται σε θερμοκρασία αναφοράς</td>
</tr>
<tr>
<td>P<sub>el</sub></td>
<td>ενέργεια ακροδέκτες γεννήτριας</td>
</tr>
<tr>
<td>m</td>
<td>παροχή μάζας</td>
</tr>
<tr>
<td>h</td>
<td>ενθαλπία</td>
</tr>
<tr>
<td>cp</td>
<td>ειδική θερμοχωρητικότητα</td>
</tr>
<tr>
<td>p</td>
<td>πίεση</td>
</tr>
<tr>
<td>T</td>
<td>θερμοκρασία</td>
</tr>
<tr>
<td>δείκτες</td>
<td></td>
</tr>
<tr>
<td>gas</td>
<td>καυσαέριο</td>
</tr>
<tr>
<td>w</td>
<td>νερό</td>
</tr>
<tr>
<td>oil</td>
<td>διαθερμικό έλαιο</td>
</tr>
<tr>
<td>in</td>
<td>είσοδος συστήματος</td>
</tr>
<tr>
<td>out</td>
<td>έξοδος συστήματος</td>
</tr>
<tr>
<td>SH</td>
<td>υπερθεματήρας</td>
</tr>
<tr>
<td>evap</td>
<td>ατμοποιητής</td>
</tr>
<tr>
<td>eco</td>
<td>οικονομητήρας</td>
</tr>
<tr>
<td>o</td>
<td>συνθήκες αναφοράς</td>
</tr>
</tbody>
</table>

Για την ανάκτηση θερμότητας μελετήθηκαν κυκλώματα Rankine νερού-ατμού και οργανικών μέσων. Η αρχή λειτουργίας τους είναι ίδια, διαφέρουν όμως στο εργαζόμενο μέσο. Αρχικά μεταφέρεται η θερμότητα από το καυσαέριο στο εργαζόμενο μέσο, στη
συνέχεια ο ατμός του εργαζόμενου μέσου εκτονώνεται στο στρόβιλο ο οποίος κινεί μία γεννήτρια και παράγει ηλεκτρική ενέργεια. Ο υγρός ατμός στην έξοδο του στροβίλου συμπυκνώνεται στο συμπυκνωτή, και το συμπύκνωμα μέσω της αντλίας συμπυκνώματος οδηγείται πάλι στους εναλλάκτες.

Εικόνα 4.1.1 Ο κύκλος Rankine μονογραμμικό σχέδιο
Εικ. 4.1.2 Ο κύκλος Rankine TS διάγραμμα

Βασικές παραμέτρους λειτουργίας αποτελούν η θερμοκρασία και η παρεξήγηση από την πηγή θερμότητα, η υψηλή πίεση του κυκλώματος και η πίεση συμπύκνωσης.

\[Q_{in} = \dot{m} (h_3 - h_2) = \dot{m}_{th} C_{p,th} (T_{h,th} - T_{c,th}) \] (4.1.1)

\[P_{el} = \dot{m} (h_3 - h_4) \] (4.1.2)

\[\eta_{th} = \frac{P_{el}}{Q_{in}} \] (4.1.3)

\[\eta_{HT} = \frac{Q_{in}}{Q_{in,max}} \] (4.1.4)

\[Q_{in} = \dot{m}_{gas} \cdot (h_{gas,in} - h_{gas,out}) \] (4.1.5)

\[Q_{in,th} = \dot{m}_{gas} \cdot (h_{gas,in} - h_{gas,th}) \] (4.1.6)

\[\eta_{sys} = \eta_{HT} \cdot \eta_{th} \] (4.1.7)

όπου \(\eta_{th} \) ο θερμικός βαθμός απόδοσης του συστήματος, \(\eta_{HT} \) ο βαθμός μετάδοσης θερμότητας του συστήματος, ο οποίος ισούτα με το λόγο της θερμότητας που απορρόφησε το εργαζόμενο μέσο προς τη θερμότητα που δύναται να δώσει η πηγή
Qmax (εν προκειμένω τα καυσαέρια στην περίπτωση που ήταν δυνατό να εξαχθούν στην ατμόσφαιρα σε θερμοκρασία περιβάλλοντος 25°C)

4.2 ΔΙΑΦΟΡΕΣ ΚΥΚΛΟΥ RANKINΕ NEPOY ATMΟY KAI ΟΡΓΑΝΙΚΟΥ ΚΥΚΛΟΥ RANKINE

Ο κύκλος RANKINE νερού ατμού

- Απαιτεί υπερθέρμανση προκειμένου να αποφευχθεί η υγροποίηση του ατμού στις τελευταίες βαθμίδες του στροβίλου και να προκαλέσει τη διάβρωση των πτερυγίων.
- Είναι ιδανικός για την αξιοποίηση πηγών θερμότητας υψηλών θερμοκρασιών.
- Οι θερμοδυναμικοί κύκλοι νερού ατμού μπορούν να λειτουργήσουν σε μεγαλύτερες λόγους πίεσης και έχουν καλότερες ιδιότητες μεταφοράς θερμότητας.

Ο οργανικός κύκλος RANKINE

- Υπάρχουν οργανικά ρευστά τα οποία δεν απαιτούν υπερθέρμανση αφού λόγω της κλίσης της καμπύλης κορεσμένου ατμού στο διάγραμμα θερμοκρασίας εντροπίας τους μετά την εκτόνωσή τους βρίσκονται πάντα στην υπέρθερμη περιοχή.
- Τα οργανικά μέσα πέραν της απουσίας ανάγκης υπερθέρμανσης, μπορούν να αξιοποιηθούν σε χαμηλότερη θερμοκρασία ατμοποίησης και να πετυχαίνουν ανταγωνιστικό ηλεκτρικό βαθμό απόδοσης, ή γενικά καλύτερη απόδοση σε ακόμη χαμηλότερες θερμοκρασίες. Ένας μεγάλος αριθμός οργανικών μέσων όμως έχει θερμοκρασία ζέσεως πολύ χαμηλότερη από αυτή του νερού. Ενδείκνυται για την αξιοποίηση πηγών θερμότητας χαμηλότερων θερμοκρασιών, 370°C και χαμηλότερων.
- Συνήθως χρησιμοποιείται ενδιάμεσο κύκλωμα διαθερμικού ελαίου το οποίο παραλαμβάνει τη θερμότητα από τα καυσαέρια και τη μεταφέρει στο εργαζόμενο μέσο.[8]
4.3 ΟΡΓΑΝΙΚΑ ΜΕΣΑ

Η κλίση της καμπύλης κορεσμένου ατμού $\frac{dt}{dS}$ στο διάγραμμα θερμοκρασίας εντροπίας $T-s$ είναι δυνατό να είναι αρνητική, όπως αυτή της αμμωνίας επί παραδείγματι σχεδόν μηδενική, όπως του R123 ή και θετική όπως του ΗF7000. Με το κριτήριο αυτό τα οργανικά μέσα κατατάσσονται σε τρεις κατηγορίες[9]

- Υγρά ρευστά (wet fluids) τα οποία έχουν αρνητική κλίση της καμπύλης κορεσμένου ατμού και κατά κανόνα μικρή μοριακή μάζα, όπως το νερό $M=18$
- Ισεντροπικά ρευστά (isentropic fluids) τα οποία έχουν σχεδόν κατακόρυφη καμπύλη κορεσμένου ατμού και χαρακτηρίζονται από μοριακό βάρος μεσαίας τιμής π.χ. $M=134$ του R245fa
- Ξηρά ρευστά (dry fluids) τα οποία έχουν θετική κλίση και χαρακτηρίζονται από μεγαλύτερα μοριακά βάρη της τάξεως των 200.
ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΕΡΓΑΖΟΜΕΝΟΥ ΜΕΣΟΥ

- Η πίεση του σημείου δρόσου του στο σημείο αρχικής συμπύκνωσης θα πρέπει να είναι το χαμηλότερο δυνατό, για να ελαχιστοποιηθεί κατά το δυνατό το κόστος ανά μονάδα επιφάνειας του συμπυκνωτή, το οποίο αυξάνεται αυξανομένης της πίεσης), αλλά μεγαλύτερη της ατμοσφαιρικής για την αποφυγή εισόδου αέρα στο σύστημα.
- Η ενθαλπία διαφορά στο στρόβιλο να είναι μεγάλη, ώστε να αυξάνεται η αποδοτικότητα του κύκλου, ενώ η παροχή του εργαζόμενου μέσου να μειώνεται. Παράλογα αυτά δεν θα πρέπει να είναι τόσο μεγάλη ώστε να απαιτούνται πολυμάθειες και κοστοβόρες τουρμπίνες.
- Η πίεση εισόδου στο στρόβιλο να είναι σχετικά χαμηλή ώστε να ελαχιστοποιείται το κόστος ανά μονάδα επιφάνειας του ατμοποιητή.
- Το εργαζόμενο μέσο θα πρέπει να είναι θερμικά ευσταθές στη μέγιστη αναμενόμενη θερμοκρασία φύλματος.
- Ο ειδικός όγκος του εργαζόμενου μέσου στην έξοδο του στροβίλου να είναι μικρός ώστε να είναι μικρές οι διαστάσεις του στροβίλου, δεδομένου ότι η διάμετρος του στροβίλου είναι ανάλογη της τετραγωνικής ρίζας της ογκομετρικής παροχής του εργαζόμενου μέσου.
- Η αγωγιμότητα του εργαζόμενου μέσου ως υγρό ή ατμός θα πρέπει να είναι μικρές για να ελαχιστοποιηθεί η επανάληψη συναλλαγής των εναλλακτικών.
- Η συνεκτικότητα του εργαζόμενου μέσου ως υγρό ή ατμός θα πρέπει να είναι χαμηλή ώστε να μειωθούν οι απώλειες πίεσης λόγω θρίβων και αυξηθεί ο συντελεστής διαγωγιμότητας.
- Το εργαζόμενο μέσο θα πρέπει να είναι ευστάθες, μη ρυπογόνο, μη διαβρωτικό, μη τοξικό και μη εύφλεκτο. Εστω θα πρέπει να συνοδεύεται το προϊόν με οδηγίες χειρισμού.

Εικ. 4.3.1 Διαγράμματα Τ-s ξηρών, υγρών και ισεντροπικών ρευστών

- Υγρό ρευστό
- Επρό ρευστό
- Ισεντροπικό ρευστό

Διαγράμματα Τ-s ξηρών, υγρών και ισεντροπικών ρευστών

![Diagram of T-s for dry, wet, and isentropic flows](image_url)
Δεν υπάρχει κανένα εργαζόμενο μέσο το οποίο ταυτόχρονα να καλύπτει όλες τις παραπάνω απαιτήσεις. Για την επιλογή ενός εργαζόμενου μέσου[10],[11] Αρχικά απορρίπτονται όσα έχουν θερμοκρασία ατμοποίησης στους 95ο είναι εκτός του εύρους 5-200psa στη συνέχεια πρέπει να ληφθούν υπόψη δεδομένα θερμοδυναμικά, κόστους εξοπλισμού και τα προτεινόμενα για εγκαταστάσεις ORC οργανικά μέσα είναι συνήθως χλωροφθοράνθρακες (CFC), υδροχλωροφθοράνθρακες (HCFC), υδροφθορανθράκων (HFC) και υδροφθορανθράκες (HFEs). Το πρώτο C σε CFC και HCFC παριστάνει χλώριο που κάνει μια καταστρέφουν το οζονίο ουσιών. CFCs και οι υδροχλωροφθοράνθρακες είναι μια απειλή για τη στοιβάδα του οζονίου, ενώ τα HFC και HFEs δεν είναι. Τελικά HFCs θα αντικαταστήσει HCFCs λόγω μηδενικής αξίας του οζονίου δυναμικό καταστροφής (ODP). το HFC-134a (R134a) αντικαθίσταται από R1234yf λόγω του υψηλού δυναμικού θέρμανσης του πλανήτη.

Η επιλογή είναι κρίσιμη αφού το εργαζόμενο μέσο θα πρέπει να έχει όχι μόνο θερμοφυσικές ιδιότητες που να ταιριάζουν στην εφαρμογή αλλά επίσης να καλύπτει τις απαιτήσεις ασφαλείας και κόστους. Η υψηλή λανθάνουσα θερμότητα, υψηλή πυκνότητα και χαμηλή ειδική θερμότητα προτιμώνται, καθώς ένα υγρό με υψηλή λανθάνουσα και πυκνότητα απορροφά περισσότερη θερμότητα από την πηγή κατά την ατμοποίηση και μειώνει αυτόματα τις απαιτήσεις σε παροχή μάζας, και το συνολικό μέγεθος της εγκατάστασης, καθώς και την κατανάλωση της αντλίας.

Η θερμοκρασία συμπύκνωσης είναι απαραίτητη είναι συνήθως πάνω από 30 °C προκειμένου να απορρίπτεται θερμότητα στο περιβάλλον, γι’ αυτό ρευστά όπως το μεθάνιο με κρίσιμες θερμοκρασίες πολύ χαμηλότερες των 30 °C θεωρούνται ακατάλληλα για συμπυκνωθέντα. Μία ακόμη κριτικής σημασίας παράμετρος είναι το σημείο πήξεως, το οποίο θα πρέπει να είναι χαμηλότερο της χαμηλότερης θερμοκρασίας που εμφανίζεται στον κύκλο. Τέλος ο υγρός υγρός θα πρέπει να λειτουργεί σε μεγάλο εύρος θερμοκρασιών. Πολύ υψηλή πίεση η υψηλή νερομόρια δημιουργεί επιδρά την αξιοπιστία του κύκλου, και αυξάνει το κόστος.

Όσο υψηλότερο είναι το σημείο ζέσεως τόσο χαμηλότερη αναμένεται να είναι η πίεση συμπύκνωσης. Αυτό οδηγεί σε χαμηλότερες τιμές πυκνότητας και μεγαλύτερες τιμές ειδικού όγκου μετά την εκτόνωση. Σε κάθε περίπτωση κάτι τέτοιο θα είχε αποτελέσμα απαίτηση για μεγαλύτερης διαμέτρου πετρόγονη του στροβίλου και έναν πολύ υψηλής πίεσης συμπυκνωτή. Τα οργανικά μέσα έχουν 10 φορές μεγαλύτερο μοριακό βάρος και γι’ αυτό απαιτούν μικρότερης διαμέτρου πετρόγονη στους στροβίλους. Όμως η θερμότητα ατμοποίησης των οργανικών μέσων είναι 10 φορές μικρότερη.
συγκρινόμενη με του νερού/ατμού , αυτό οδηγεί σε μεγαλύτερες παροχές μάζας , και άρα μεγαλύτερες απαιτήσεις σε αντλίες συμπυκνώματος.

Συχνά χρησιμοποιείται ένας αναγεννητής μετά το στρόβιλο. Μετά την εκτόνωση το οργανικού μέσου παραμένει σε υπέρθερμη κατάσταση, σε θερμοκρασία πολύ υψηλότερη της θερμοκρασίας συμπύκνωσης. Η αισθητή αυτή θερμότητα που προκύπτει από τη θερμοκρασιακή διαφορά της κατάστασης εξόδου από το στρόβιλο και αυτής εξόδου από το συμπυκνωτή μπορεί να αξιοποιηθεί προκειμένου να προθερμανθεί το οργανικό υγρό με έναν εναλλαχτικό μετά το συμπυκνωτή. Όσο υψηλότερη είναι η θερμοκρασία ατμοποίησης τόσο μεγαλύτερη είναι η επίδραση του αναγεννητή στη συνολική απόδοση του κύκλου.[12]

4.4 ΤΟ ΔΙΑΘΕΡΜΙΚΟ ΕΛΑΙΟ

Η χρήση διαθερμικού ελαίου είναι συνήθης για υψηλής θερμοκρασίας ORC συστημάτων. Με τη χρήση διαθερμικού ελαίου αποφεύγεται η υπερθέρμανση του οργανικού μέσου και καθιστά δυνατή η λειτουργία του εναλλάκτη και αποτελεί σε τιμές πίεσης ίσες με την ατμοσφαιρική.

Ο εναλλάκτης στον οποίο ανακτάται θερμότητα από τα καυσαέρια και μεταφέρεται στο διαθερμικό ελαιό, ονομάζεται ανακτητής. Η επιλογή διαθερμικού ελαίου επηρεάζει σημαντικά την απόδοση της εγκατάστασης. Τα χαρακτηριστικά ενός καλού διαθερμικού ελαίου είναι:

- Θερμική και χημική σταθερότητα
- Υψηλή ειδική θερμότητα
- Μη τοξικότητα
- Συμβατότητα
- Χαμηλή συνεκτικότητα
- Χαμηλό κόστος

4.5 Ο ΣΤΡΟΒΙΛΟΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ORC

Ο ισεντροπικός βαθμός απόδοσης του στροβίλου ποικίλλει ανάλογα την παραγόμενη ισχύ και το σχεδιασμό. Γενικά σε εγκαταστάσεις ORC χρησιμοποιούνται στροβίλοι με συγκεκριμένο σχεδιασμό για την κάθε περίπτωση με μεγαλύτερη απόδοση από τους συνηθισμένους στροβίλους. Γενικά οι στροβίλοι αυτοί παρουσιάζουν τα παρακάτω πλεονεκτήματα:

- Χαμηλό κόστος συντήρησης και μεγάλη διαθεσιμότητα.
- Πολύ εύκολη λειτουργία
- Καλή απόδοση στο μερικό φορτίο
- Όσο χαμηλότερη πίεση συστήματος, τόσο χαμηλότερες απαιτήσεις σε νομοθεσίες ασφαλείας
4.6 ΘΕΡΜΟΔΥΝΑΜΙΚΗ – ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ

4.6.1 ΚΑΥΣΙΜΟ- ΚΑΥΣΑΕΡΙΟ

Στο φύλλο «καυσαέρια » του βιβλίου excel καθίσταται δυνατός ο υπολογισμός σύστασης των καυσαερίων για κάθε μίγμα φυσικού αερίου και κάθε λόγο αέρα καύσης, τιμές οι οποίες εισάγονται από το χρήστη. Επιστρέφονται ως αποτελέσματα η κατά μάζα και κατ’ όγκο σύσταση του καυσίμου καθώς και η παροχή μάζας αυτού.

Δεδομένης της παροχής καυσίμου για την διενέργεια ακριβείτερων υπολογισμών θεωρήθηκε μία συγκεκριμένη σύσταση καυσίμου με τιμή της κατ’ όγκο αναλογίας κάθε συστατικού ρεαλιστική.

Σύμφωνα με τη ΔΕΠΑ η Ελλάδα προμηθεύεται φυσικό αέριο από τη Ρωσία, την Αλγερία και την Τουρκία, η σύσταση του οποίου φαίνεται στον παρακάτω πίνακα.[13]

<table>
<thead>
<tr>
<th>Συστατικό ή ιδιότητα</th>
<th>Ρωσικό Φ.Α.</th>
<th>Αλγερινό Φ.Α.</th>
<th>Τουρκικό Φ.Α.</th>
<th>Α.Θ.Δ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μεθάνιο (CH₄)</td>
<td>85,00</td>
<td>-</td>
<td>96,00</td>
<td>8600 kcal/m³</td>
</tr>
<tr>
<td>Αιθάνιο (C₂H₆)</td>
<td>-</td>
<td>7,00</td>
<td>8,50</td>
<td>9200 kcal/m³</td>
</tr>
<tr>
<td>Προπάνιο (C₃H₈)</td>
<td>-</td>
<td>3,00</td>
<td>3,00</td>
<td>9640 kcal/m³</td>
</tr>
<tr>
<td>Βουτάνιο (C₄H₁₀)</td>
<td>-</td>
<td>2,00</td>
<td>0,70</td>
<td>10650 kcal/m³</td>
</tr>
<tr>
<td>Πεντάνιο (C₅H₁₂)</td>
<td>-</td>
<td>1,00</td>
<td>0,23</td>
<td>8100 kcal/Scm</td>
</tr>
<tr>
<td>CO₂</td>
<td>-</td>
<td>3,00</td>
<td>-</td>
<td>10427 kcal/Scm</td>
</tr>
<tr>
<td>N₂</td>
<td>-</td>
<td>5,00</td>
<td>1,40</td>
<td>101325 bar</td>
</tr>
<tr>
<td>O₂</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>8600 kcal/m³</td>
</tr>
<tr>
<td>Ολικό Θείο</td>
<td>-</td>
<td>60 mg/m³</td>
<td>30 mg/m³</td>
<td>8100 kcal/Scm</td>
</tr>
<tr>
<td>Α.Θ.Δ.</td>
<td>8600 kcal/m³</td>
<td>9200 kcal/m³</td>
<td>10650 kcal/m³</td>
<td>10427 kcal/Scm</td>
</tr>
</tbody>
</table>

Πίνακας 4.6.1.1 Η σύσταση του Φ.Α. στην Ελλάδα

* το m³ και η Ανώτερη Θερμογόνος Δύναμη ορίζονται για το Ρωσικό Φ.Α. στους 20°C και πίεση στα 1,01325 bar, για το Αλγερινό στους 0° Και πίεση 1,01325bar και για το τουρκικό στους 15°C και πίεση 1,01325 bar.

Κανονικές συνθήκες πίεσης και θερμοκρασίας (Κ.Σ.) – Normal Conditions (NP)

T=0 °C, P=1atm= 1,01325bar
Με βάση τα παραπάνω επιλέχθηκε σύσταση καυσίμου κατ’ όγκο:

Μεθάνιο (CH₄)	92%
Αιθάνιο (C₂H₆)	3,5%
Προπάνιο (C₃H₈)	0,5%
Βουτάνιο (C₄H₁₀)	1%
Πεντάνιο (C₅H₁₂)	0,025%
CO₂	1%
N₂	1,975%
O₂	0,00001%

Στη ΓΙΟΥΛΑ Α.Ε. η καύση του φυσικού αερίου γίνεται με λόγο αέρα καύσης 1,1

Σύμφωνα με το μηχανισμό της καύσης προκύπτουν τα παρακάτω:

\[
\begin{align*}
\text{CH}_4 + 2,2 \frac{(O_2 + 3,75N_2)}{} & \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + 0,2 \text{O}_2 + 8,25 \text{N}_2 \\
\text{C}_2\text{H}_6 + 3,85 \frac{(O_2 + 3,75N_2)}{} & \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O} + 0,35 \text{O}_2 + 14,43 \text{N}_2 \\
\text{C}_3\text{H}_8 + 5,5 \frac{(O_2 + 3,75N_2)}{} & \rightarrow 3\text{CO}_2 + 4\text{H}_2\text{O} + 0,5 \text{O}_2 + 20,625 \text{N}_2 \\
\text{C}_4\text{H}_{10} + 6,5 \frac{(O_2 + 3,75N_2)}{} & \rightarrow 4\text{CO}_2 + 5\text{H}_2\text{O} + 0,65 \text{O}_2 + 24,375 \text{N}_2 \\
\text{C}_5\text{H}_{12} + 8,8 \frac{(O_2 + 3,75N_2)}{} & \rightarrow 5\text{CO}_2 + 6\text{H}_2\text{O} + 0,8 \text{O}_2 + 33 \text{N}_2
\end{align*}
\]

Η παροχή του καυσίμου είναι \(m_{\text{fuel}} = 1560 \text{Nm}^3/\text{h}\), δεδομένης της κατ’ όγκο αναλογίας των συστατικών του βρίσκεται η ογκομετρική παροχή του καθενός, στη συνέχεια με βάση την πυκνότητα βρίσκεται η παροχή μάζας του καθενός, αυτή διαιρούμενη με το μοριακό βάρος του αντίστοιχου συστατικού, δίνει την παροχή του σε kmol ανά ώρα.

Επίσης, καθώς η κατ’ όγκο αναλογία συμπίπτει με την αναλογία \textit{mol} από καθεμία από τις παραπάνω εξισώσεις υπολογίζονται τα \textit{mol} προϊόντων \textit{CO}_2, \textit{H}_2\text{O}, \textit{O}_2, \textit{N}_2 ανά \textit{mol} καυμάριου συστατικού. Πολλαπλασιάζοντας τις προκύπτουσες τιμές με το συντελεστή κατ’ όγκο αναλογίας και την παροχή \textit{mol}/\text{h} του κάθε συστατικού και αθροίζοντας τα αποτελέσματα προκύπτουν τα συνολικά \textit{mol} προϊόντων ανά ώρα. Σ’ αυτά προστίθενται τα \textit{mol} \textit{O}_2\text{N}_2\text{H}_2\text{O} τα οποία θεωρήθηκαν άκαυστα και μη αντιδρώντα. Η προκύπτουσα κατ’ όγκο σύσταση \(v/v\) στη συνέχεια τροφοδοτεί τα κελιά του υπολογιστικού φύλλου \textit{input} στη συνέχεια \textit{composition} και στη συνέχεια, στο κελί F13 του φύλλου \textit{input} ορίζεται μίγμα με την εντολή \textit{fluidString} και τη σύσταση αυτή.

Μετά τον ορισμό της ακριβούς σύστασης του καυσαερίου στο κελί F13 με αναφορά στο κελί αυτό καθάριστη \(\text{νύκτη}\) η εύρεση όλων των θερμοδυναμικών μεγεθών που το αφορούν σε κάθε σημείο του κυκλώματος, όπως επί παραδείγματι η ειδική θερμοχωρητικότητα του για κάθε ζεύγος πίεσης και θερμοκρασίας και το σημαντικό μέγεθος του σημείου δρόσου. Σημείο δρόσου ορίζεται η θερμοκρασία εκείνη για κάθε
τιμή πίεσης στην οποία το καυσαέριο είναι κορεσμένο και δεν μπορεί να παραλάβει
περαιτέρω υγρασία. Για το λόγο αυτό αρχίζει το φαινόμενο της υγροποίησης. Το όξινο
σημείο δρόσου καθορίζει την ελάχιστη θερμοκρασία στην οποία επιτρέπεται να
εξέλθουν τα καυσαέρια στην ατμόσφαιρα. Εν τέλει επιλέχθηκε τα καυσαέρια να
εξέρχονται στους 180° C. Υπολογίζοντας με ακρίβεια όλα τα θερμοδυναμικά
χαρακτηριστικά σε κάθε θέση οι υπολογισμοί διενεργούνται με ακρίβεια με
πραγματικές και όχι βιβλιογραφικές τιμές.

Το σημείο δρόσου υπολογίστηκε στους 54°C

<table>
<thead>
<tr>
<th>fuel</th>
<th>v/v</th>
<th>vol_flow(Nm3/s)</th>
<th>density</th>
<th>kg/s</th>
<th>kmol/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>methane</td>
<td>92</td>
<td>0,398667</td>
<td>0,717856</td>
<td>0,286185</td>
<td>0,017839</td>
</tr>
<tr>
<td>ethane</td>
<td>3,5</td>
<td>0,015167</td>
<td>1,355777</td>
<td>0,020563</td>
<td>0,000684</td>
</tr>
<tr>
<td>propane</td>
<td>1</td>
<td>0,004333</td>
<td>2,011681</td>
<td>0,008717</td>
<td>0,000198</td>
</tr>
<tr>
<td>butane</td>
<td>0,5</td>
<td>0,002167</td>
<td>2,705417</td>
<td>0,005862</td>
<td>0,000101</td>
</tr>
<tr>
<td>pentane</td>
<td>0,025</td>
<td>0,000108</td>
<td>645,0933</td>
<td>0,069885</td>
<td>0,000969</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>0,004333</td>
<td>1,977923</td>
<td>0,008571</td>
<td>0,000195</td>
</tr>
<tr>
<td>NITROGEN</td>
<td>1,975</td>
<td>0,008558</td>
<td>1,251075</td>
<td>0,010707</td>
<td>0,000382</td>
</tr>
<tr>
<td>OXYGEN</td>
<td>0</td>
<td>0</td>
<td>1,429821</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

| vol.flow_rate (Nm3/h) | 1560 |

ΠΡΟΪΟΝΤΑ

<table>
<thead>
<tr>
<th></th>
<th>kmol/s</th>
<th>kg/s</th>
<th>v/v gas</th>
<th>w/w gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>0,025623</td>
<td>1,127669</td>
<td>0,094506</td>
<td>0,148853</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0,195921</td>
<td>5,488429</td>
<td>0,722618</td>
<td>0,724477</td>
</tr>
<tr>
<td>oxygen</td>
<td>0,004746</td>
<td>0,15188</td>
<td>0,017506</td>
<td>0,020048</td>
</tr>
<tr>
<td>water</td>
<td>0,044836</td>
<td>0,807733</td>
<td>0,165369</td>
<td>0,106621</td>
</tr>
</tbody>
</table>

Συνολική θαλάμη (kg/s): 7,5757

Συνολική μολ (kg/s): 0,271127

Εικ. 4.6.1.1 Το φύλλο «καυσαέρια» (παρατίθενται τα συστατικά στην Αγγλική καθώς οι τιμές
αντλούνται από Refprop)
4.7 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΤΟ ΚΥΚΛΩΜΑ ΝΕΡΟΥ ΑΤΜΟΥ

4.7.1 ΚΥΚΛΩΜΑ ΜΕ ΑΠΟΜΑΣΤΕΥΣΗ

Εικ. 4.7.1.1 Κυκλώμα Rankine με απομάστευση

Τα θερμά καυσαέρια περνούν από το σύστημα Υπερθερμαντήρας-ατμοποιητής-οικονομητήρας και εξέρχονται στην ατμόσφαιρα σε θερμοκρασία 180°C. Ο υπέρθερμος ατμός εισέρχεται στο Στρόβιλο και αποτονώνεται στα 0,198 bar. Η χαμηλή πίεση του κυκλώματος επιλέχθηκε κατά το δυνατόν χαμηλή με τον περιορισμό να είναι η θερμοκρασία κορεσμού 60 ώστε να λειτουργία ο αερόψυκτος συμπυκνωτής αποδοτικά. Παροχή ατμού απομαστεύεται στα 1 bar για να θερμάνει τροφοδοτικό νερό στον απαεριωτή. Το εξερχόμενο από το τροφοδοτικό νερό, περνά από την αντλία όπου ανυψώνεται η πίεση του και εισέρχεται στον οικονομητήρα.

ΠΙΝΑΚΑΣ ΠΑΡΑΔΟΧΩΝ

<table>
<thead>
<tr>
<th>Θερμοκρασία συμπύκνωσης νερού</th>
<th>60° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πίεση συμπύκνωσης νερού</td>
<td>0,198 bar</td>
</tr>
<tr>
<td>Θερμοκρασία εξόδου καυσαερίων στο περιβάλλον</td>
<td>180° C</td>
</tr>
<tr>
<td>Πίεση απομάστευσης</td>
<td>1 bar</td>
</tr>
<tr>
<td>Μέγιστη θερμοκρασία υπερθέρμανσης</td>
<td>460 ° C</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης</td>
<td>85%</td>
</tr>
<tr>
<td>Στροβίλου</td>
<td>85%</td>
</tr>
<tr>
<td>Αντλίας</td>
<td>70%</td>
</tr>
</tbody>
</table>
Δεδομένης της χαμηλής πίεσης του κυκλώματος, στόχος της θερμοδυναμικής βελτιστοποίησης είναι η εύρεση της μέγιστης δυνατής πίεσης στην οποία μπορεί να λειτουργήσει το κύκλωμα. Περιορισμός τίθεται από το pinch point των εναλλακτών. Διενεργήθηκαν υπολογισμοί για τιμές πίεσης από 10 έως 27 bar. Ο περιορισμός τέθηκε από τον ατμοποιητή ο οποίος για pinch point 10 η μεγαλύτερη πίεση στην οποία μπορεί να λειτουργήσει είναι 26,5 bar. Σε υψηλότερες πιέσεις η θερμοκρασιακή του ρεύματος καυσαερίου και του ρεύματος νερού μειώνεται σε τιμές μικρότερες των 10K.

Από τους υπολογισμούς που έγιναν υπολογίστηκε ότι ο θερμικός βαθμός απόδοσης και η παραγόμενη ισχύς αυξάνονται αυξανόμενη της υψηλής πίεσης.

![Diagram Q-T](image)

Διάγραμμα Της θερμοδυναμικής βέλτιστο σημείο λειτουργίας

Στο παρακάτω σχήμα παρατηρούμε πως αυξανόμενης της υψηλής πίεσης για δεδομένη χαμηλή πίεση του κυκλώματος αυξάνεται και η παραγόμενη ισχύς και ο θερμικός βαθμός απόδοσης.
Επικεφαλής: Μέγεθος
Τιμή

Υψηλή πίεση	26,5 bar
Θερμοκρασία υπερθέρμανσης	460 °C
Pel	704 kW
ηth	26,11%
ηHT	48,32%
ηsys	14,76%

Σε κάθε έναν από αυτούς τους εναλλάκτες ισχύει:

\[\dot{m}_{gas} \cdot (h_{gas, in} - h_{gas, out}) = \dot{m}_w \cdot (h_{w, out} - h_{w, in}) \]

(4.7.1.1)

με δεδομένες τις θερμοκρασίες εισόδου του καυσαερίου στον υπερθερμαντήρα και εξόδου του καυσαερίου από τον οικονομητήρα

(4.7.1.2)
Η απορριπτόμενη θερμότητα στο περιβάλλον στο συμπυκνωτή ισούται με
\[Q_{\text{cond}} = m_w \cdot (h_f^{\text{out}} - h_{\text{sat, liq}}) \]
ο συμπυκνωτής μπορεί να είναι αερόψυκτος ή υδρόψυκτος.
Εν προκειμένω είναι αερόψυκτος αφού δεν υπάρχει κάποια αναξιοποίητη παροχή νερού που θα μπορούσε να εξυπηρετήσει τις ανάγκες αυτές φύξης.

Στις αιδιοκαταναλώσεις της εγκατάστασης υπολογίζεται η καταναλωθείσα από τον ηλεκτροκινητήρα της αντλίας ενέργεια. Αυτή θεωρήθηκε ότι ισούται με:

\[W_p = m_w \cdot (h_f - h_i) / \eta \]
Μελετήθηκε το κύκλωμα νερού ατμού χωρίς απομάστευση ατμού από το στρόβιλο για την απαερίωση. Η απαιτούμενη θερμότητα για την απαερίωση δίνεται από τα καυσαέρια μέσω ενός πρόσθετου εναλλάκτη. Το συμπύκνωμα που εξέρχεται από το τροφοδοτικό δοχείο χωρίζεται σε δύο ρεύματα. Το πρώτο το οποίο προορίζεται για την απαερίωση και προθερμαίνεται στο εναλλάκτη 1α, του προσδίδεται θερμότητα ίση με της περίπτωσης που μελετήθηκε πρωτύτερα και εισέρχεται ξανά στον απαεριωτή. Το δεύτερο ρεύμα εισέρχεται στον οικονομητήρα στον ατμοποιητή και τον υπερθερμαντήρα και στη συνέχεια αποτονώνεται στο στρόβιλο.

<table>
<thead>
<tr>
<th>ΠΙΝΑΚΑΣ ΠΑΡΑΔΟΧΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία συμπύκνωσης νερού</td>
</tr>
<tr>
<td>Πίεση συμπύκνωσης νερού</td>
</tr>
<tr>
<td>Θερμοκρασία εξόδου καυσαερίων στο περιβάλλον</td>
</tr>
<tr>
<td>Πίεση τροφοδοτικού δοχείου</td>
</tr>
<tr>
<td>Μέγιστη θερμοκρασία υπερθέρμανσης</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης</td>
</tr>
<tr>
<td>Στροβίλου</td>
</tr>
<tr>
<td>Αντλίας</td>
</tr>
</tbody>
</table>
Σε σχέση με την περίπτωση της απομάστευσης στην περίπτωση αυτή αξιοποιείται μεγαλύτερο μέρος της ενέργειας των καυσαερίων αφού αυτά εξήλθαν σε χαμηλότερη θερμοκρασία σε σχέση με πριν. Εξ' αιτίας αυτού και του γεγονότος ότι χωρίς την απομάστευση αποτονώνεται μεγαλύτερη ποσότητα στον στρόβιλο, η παραγόμενη ισχύς αυξήθηκε καθώς και ο θερμικός βαθμός απόδοσης.
4.8 ΤΟ ΚΥΚΛΩΜΑ RANKINE ΜΕ ΟΡΓΑΝΙΚΟ ΜΕΣΟ (ORC)

Μελετήθηκαν κυκλώματα με εργαζόμενο μέσο ξηρό ρευστό προκειμένου να μην απαιτείται υπερθέρμανση. Μελετήθηκαν τα D4, D5, MDM, MM από την οικογένεια των σιλοξανών, (πρόκειται για πυριτιούχα έλαια) και το τολουένιο και το πεντάνιο από την οικογένεια των υδρογονανθράκων.

Ενδεικτικά αναφέρεται το state-of-the-art στη βιομηχανία τη σημερινή εποχή[12]

<table>
<thead>
<tr>
<th>ΚΑΤΑΣΚΕΥΑΣΤΗΣ</th>
<th>ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥΣ</th>
<th>ΘΕΡΜΟΚΡΑΣΙΑ ΠΗΓΗΣ</th>
<th>ΟΡΓΑΝΙΚΟ ΜΕΣΟ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORMAT</td>
<td>200kW-7.5MW</td>
<td>150-300</td>
<td>πεντάνιο</td>
</tr>
<tr>
<td>TURBODEN</td>
<td>200KW-4MW</td>
<td>100-400</td>
<td>πυριτιούχο έλαιο</td>
</tr>
<tr>
<td>TRIIOGEN</td>
<td>50KW-2MW</td>
<td>>350</td>
<td>τολουένιο</td>
</tr>
<tr>
<td>CRYOSTAR</td>
<td>300KW-1.8MW</td>
<td>>100</td>
<td>R134</td>
</tr>
</tbody>
</table>

Πίνακας 4.8.1. state of the art εταιρειών

Σχετικά με τα μελετηθέντα οργανικά μέσα παρατίθεται ο πίνακας των θερμοδυναμικών τους χαρακτηριστικών

<table>
<thead>
<tr>
<th>Εργαζόμενο μέσο</th>
<th>CAS-NU</th>
<th>ρcrit (bar)</th>
<th>T\textsubscript{boil} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>107-51-7</td>
<td>19,51</td>
<td>100,52</td>
</tr>
<tr>
<td>MDM</td>
<td>107-46-0</td>
<td>14,15</td>
<td>152,53</td>
</tr>
<tr>
<td>D4</td>
<td>556-67-2</td>
<td>13,32</td>
<td>175</td>
</tr>
<tr>
<td>D5</td>
<td>541-02-6</td>
<td>11,6</td>
<td>210,95</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>41,06</td>
<td>110,6</td>
</tr>
<tr>
<td>Pentane</td>
<td>109-66-0</td>
<td>33,6</td>
<td>36</td>
</tr>
</tbody>
</table>

Πίνακας 4.8.2. Χαρακτηριστικά των μελετηθέντων οργανικών ρευστών
Για κάθε οργανικό μέσο λήφθηκαν οι παρακάτω παραδοχές

<table>
<thead>
<tr>
<th>Οργανικό μέσο</th>
<th>θερμοκρασία συμπύκνωσης tcond(°C)</th>
<th>Πίεση συμπύκνωσης plow (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>60</td>
<td>2,658</td>
</tr>
<tr>
<td>MDM</td>
<td>66.6</td>
<td>0,5</td>
</tr>
<tr>
<td>D4</td>
<td>87.1</td>
<td>0,5</td>
</tr>
<tr>
<td>D5</td>
<td>143.2</td>
<td>0,5</td>
</tr>
<tr>
<td>toluene</td>
<td>60</td>
<td>1,843</td>
</tr>
<tr>
<td>pentane</td>
<td>60</td>
<td>2,136</td>
</tr>
</tbody>
</table>

Πίνακας 4.8.3. Συνθήκες μελέτης των οργανικών μέσων

Η θερμοκρασία εξόδου των καυσαερίων από τη διεργασία είναι ένας πολύ σημαντικός παράγοντας που σχετίζεται άμεσα προφανώς με το θερμικό επίπεδο της πηγής θερμότητας. Μία τιμή της τάξεως των 180° τέθηκε, αποφεύγοντας το άξιο σημείο δρόσου για καύσιμα που περιέχουν θείο. Σε ορισμένες περιπτώσεις η θερμοκρασία εξόδου των καυσαερίων ανυψώθηκε προκειμένου να ικανοποιηθούν τα pinch points των εναλλακτών.

Πτώση πίεσης σε σωλήνες και εναλλάκτες θεωρήθηκε αμελητέα. Το κάθε μελετηθέν κύκλωμα χαρακτηρίζεται ουσιαστικά από δύο πιέσεις την υψηλή και τη χαμηλή. Η υψηλή πίεση (καταστάσεις 1,2,3,3s,7) είναι μία βασική παράμετρος και ειδικά στα πυριτιούχα έλαια επιλέχθηκε συναρτήσει της ελαττωμένης μορφής φιλ, με τιμές 0.5, 0.6, 0.7, 0.8, 0.9 για να διαμορφωθούν συγκρίσιμες συνθήκες για τα ρευστά. Η τιμή της χαμηλής πίεσης (καταστάσεις 4,5,6) είναι για τα πυριτιούχα έλαια 5kPa ενώ για τα υπόλοιπα τέθηκε τιμή 60 βαθμοί κελσίου. Το κάθε μελετηθέν κύκλωμα χαρακτηρίζεται ουσιαστικά από δύο πιέσεις την υψηλή και τη χαμηλή. Η υψηλή πίεση (καταστάσεις 1,2,3,3s,7) είναι μία βασική παράμετρος και ειδικά στα πυριτιούχα έλαια επιλέχθηκε συναρτήσει της ελαττωμένης μορφής φιλ, με τιμές 0.5, 0.6, 0.7, 0.8, 0.9 για να διαμορφωθούν συγκρίσιμες συνθήκες για τα ρευστά. Η τιμή της χαμηλής πίεσης (καταστάσεις 4,5,6) είναι για τα πυριτιούχα έλαια 5kPa ενώ για τα υπόλοιπα τέθηκε τιμή 60 βαθμοί κελσίου. Για τα πυριτιούχα έλαια η τιμή της χαμηλής πίεσης αυξάνεται σε περιπτώσεις που προκύπτει τιμή θερμοκρασίας εξόδου από το συμπυκνωτή 60 βαθμοί κελσίου. Για τα πυριτιούχα έλαια η τιμή της χαμηλής πίεσης αυξάνεται σε περιπτώσεις που προκύπτει τιμή θερμοκρασίας εξόδου από το συμπυκνωτή μικρότερη των 60°, προκειμένου να διατηρείται μία καλή ψυκτική αποδοτικότητα σε κανονικές ατμοσφαιρικές συνθήκες και το κριτήριο αυτό οδηγεί σε διαφορετικές συνθήκες συμπύκνωσης που φαίνονται αναλυτικά στον πίνακα.

Το pitch point των εναλλακτών -ελάχιστη θερμοκρασιακή διαφορά των δύο ρευμάτων τέθηκε 10 K και επειδή οι εναλλάκτες είναι αντιρροής παρουσιάζονται στην έξοδο του θερμικού ρεύματος και στην είσοδο του ψυχρού. Δεδομένης αυτής της συνθήκης σε κάποιες περιπτώσεις χρειάστηκε να μεταβληθεί η θερμοκρασία εξόδου των καυσαερίων και άρα και η συνολικά προσφερόμενη ενέργεια στο σύστημα. Για
παράδειγμα με εργαζόμενο μέσο το D5 και για υψηλή πίεση ίση με 0.8 , προκύπτει τιμή θερμοκρασίας εισόδου στον προθερμαντήρα που δεν κανονοπει τη συνθήκη του pitch point , γι’ αυτό επιλέξθηκε να εξαχθούν τα καυσαέρια σε υψηλότερη θερμοκρασία , επηρεάζοντας αυτοματά τη τιμή της θερμοκρασίας του διαθερμικού ελαίου σε κάθε θέση αυξώνοντας της και αυτήν αντίστοιχα με τα pitch points του εναλλάκτη καυσαερίων , και αρού η τιμή αυτής βαίνει αυξανόμενη υπάρχει μία τιμή εξόδου καυσαερίων για την οποία η τιμή του διαθερμικού ελαίου στην έξοδο του προθερμαντήρα είναι κατά 10 βαθμούς υψηλότερη από αυτή του οργανικού μέσου.

ΜΕΘΟΔΟΣ ΥΠΟΛΟΓΙΣΜΟΥ

<table>
<thead>
<tr>
<th>Μέγιστη θερμοκρασία διαθερμικού ελαίου</th>
<th>380°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατάσταση οργανικού μέσου στην έξοδο του οικονομητήρα</td>
<td>κορεσμένο υγρό</td>
</tr>
<tr>
<td>Κατάσταση οργανικού μέσου στην έξοδο του ατμοποιητή</td>
<td>κορεσμένος ατμός</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης στροβίλου</td>
<td>85%</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης αντλίας</td>
<td>70%</td>
</tr>
<tr>
<td>Απώλειες θερμότητας στους εναλλάκτες</td>
<td>αμελητέες</td>
</tr>
<tr>
<td>Απώλειες πίεσης στη σωλήνωση</td>
<td>αμελητέες</td>
</tr>
</tbody>
</table>

ΕΝΑΛΛΑΚΤΗΣ ΚΑΥΣΑΕΡΙΩΝ ΛΑΔΙΟΥ

\[
Q = m_{gas} C_{p,gas} (T_{gas,in} - T_{gas,out}) = m_{oil} (h_{oil,out} - h_{oil,in}) \tag{4.8.1}
\]

ΟΙΚΟΝΟΜΗΤΗΡΑΣ

\[
Q_{evap} = m_{oil} (h_{oil,in} - h_{oil,med}) = m_{org} C_{org} (T_{org} - T_{org}') \tag{4.8.2}
\]

ΑΤΜΟΠΟΙΗΤΗΣ

\[
Q_{eco} = m_{oil} (h_{oil,med} - h_{oil,out}) = m_{org} C_{org} (T_{org}' - T_{eco,in}) \tag{4.8.3}
\]

Στο σχεδιασμένο υπολογιστικό φύλλο του EXCEL αυτόματα διορθώνονται οι θερμοκρασίες ώστε να μην υπάρξει κάποιο πρόβλημα με τα pinch points των εναλλακτών επίσης αυτόματα γίνονται ισολογισμοί μάζας σε ενέργεια σε κάθε στοιχείο του κυκλώματος και παράγονται τα διαγράμματα Q-T.

Ο συμπυκνωτής.

Στη συγκεκριμένη υαλουργία δεν υπάρχει παροχή υγρού η οποία να μένει αναξιοποίητη από κάποιο πηγή (π.χ. νερό ψύξης) γι’ αυτό ο συμπυκνωτής σχεδιάζεται αερόψυκτος. Η χαμηλή πίεση είναι καθορισμένη για κάθε οργανικό μέσο , υποθέτοντας μία θερμοκρασία συμπύκνωσης η θέση 1 είναι πλήρως καθορισμένη, (quality=q=0, p=p_{low}) κατά συνέπεια δεδομένου του βαθμού απόδοσης της αντλίας η θέση 7 είναι επίσης πλήρως καθορισμένη, η οποία στην περίπτωση απουσίας αναγεννητή συμπίπτει με τη θέση 1-εισόδου του προθερμαντήρα.
\[Q_{\text{cond}} = m_{\text{org}} C_{\text{p,org}} (T_{\text{org,cond,in}} - T'_{\text{org}}) \]

(4.8.4)

Η εξόδου από το στροβίλο θέση 4, δεδομένου του βαθμού απόδοσης του στροβίλου είναι επίσης πλήρως καθορισμένη.

\[h_{T,\text{out}} = h_{T,\text{in}} - \eta_{T,\text{in}} (h_{T,\text{in}} - h_{T,\text{in}}) \]

(4.8.5)

4.8.1 ΚΥΚΛΩΜΑ ORC ΧΩΡΙΣ ΑΝΑΓΕΝΝΗΤΗ

<table>
<thead>
<tr>
<th>(\text{D4})</th>
<th>(p) (bar)</th>
<th>(P_{\text{gross}}) (kW)</th>
<th>(P_{\text{net}}) (kW)</th>
<th>(T_{\text{evap}}) (K)</th>
<th>(\eta_{\text{th}})</th>
<th>(\eta_{\text{HT}})</th>
<th>(\eta_{\text{sys}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr</td>
<td>0,5</td>
<td>6,66</td>
<td>351,7</td>
<td>344,66</td>
<td>541,1</td>
<td>0,13</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>7,99</td>
<td>355,7</td>
<td>347,48</td>
<td>552,48</td>
<td>0,13</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td>9,32</td>
<td>358,8</td>
<td>349,49</td>
<td>562,46</td>
<td>0,13</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
<td>10,7</td>
<td>361,4</td>
<td>351,02</td>
<td>571,34</td>
<td>0,13</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,9</td>
<td>12</td>
<td>363,9</td>
<td>352,36</td>
<td>579,32</td>
<td>0,13</td>
<td>0,45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{D5})</th>
<th>(\text{phigh}) (bar)</th>
<th>(P_{\text{gross}}) (kW)</th>
<th>(P_{\text{net}}) (kW)</th>
<th>(T_{\text{evap}}) (K)</th>
<th>(\eta_{\text{th}})</th>
<th>(\eta_{\text{HT}})</th>
<th>(\eta_{\text{sys}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr</td>
<td>0,5</td>
<td>5,8</td>
<td>293,98</td>
<td>287,69</td>
<td>574,19</td>
<td>0,11</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>6,96</td>
<td>296,538</td>
<td>289,27</td>
<td>585,7</td>
<td>0,11</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td>8,12</td>
<td>298,568</td>
<td>290,35</td>
<td>595,69</td>
<td>0,08</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
<td>9,28</td>
<td>300,342</td>
<td>291,16</td>
<td>604,48</td>
<td>0,11</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>0,9</td>
<td>10,44</td>
<td>302,093</td>
<td>291,93</td>
<td>612,26</td>
<td>0,11</td>
<td>0,45</td>
</tr>
<tr>
<td>MDM</td>
<td>p (bar)</td>
<td>Pgross (kW)</td>
<td>Pnet (kW)</td>
<td>Tevap (K)</td>
<td>ηth</td>
<td>ηHT</td>
<td>ηsys</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>pr</td>
<td>0.5</td>
<td>7.075</td>
<td>370.72</td>
<td>363.37</td>
<td>519.61</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>8.49</td>
<td>375.02</td>
<td>366.48</td>
<td>530.78</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>9.905</td>
<td>378.4</td>
<td>368.72</td>
<td>540.55</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>11.32</td>
<td>381.27</td>
<td>370.42</td>
<td>549.24</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>12.74</td>
<td>383.93</td>
<td>371.9</td>
<td>557.06</td>
<td>0.14</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr</td>
<td>0.5</td>
<td>9.755</td>
<td>386.07</td>
<td>374.32</td>
<td>475.63</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>11.71</td>
<td>395.51</td>
<td>381.81</td>
<td>486.59</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>13.66</td>
<td>403.07</td>
<td>387.42</td>
<td>496.2</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>15.61</td>
<td>409.42</td>
<td>391.83</td>
<td>504.74</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>17.56</td>
<td>415.05</td>
<td>395.4</td>
<td>512.38</td>
<td>0.15</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΤΟΛΟΥΕΝΙΟ</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (°C)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>529.35</td>
<td>522.42</td>
<td>210.65</td>
<td>0.1964</td>
<td>0.453</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>539.57</td>
<td>531.95</td>
<td>216.95</td>
<td>0.1999</td>
<td>0.454</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>563.85</td>
<td>554.28</td>
<td>233.37</td>
<td>0.2092</td>
<td>0.453</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>589.35</td>
<td>576.91</td>
<td>253.32</td>
<td>0.2186</td>
<td>0.453</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>600.09</td>
<td>586.08</td>
<td>262.76</td>
<td>0.2226</td>
<td>0.453</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>24.6</td>
<td>615.93</td>
<td>599.05</td>
<td>277.99</td>
<td>0.2285</td>
<td>0.453</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>28.7</td>
<td>626.87</td>
<td>607.43</td>
<td>289.88</td>
<td>0.2325</td>
<td>0.453</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>32.9</td>
<td>635.7</td>
<td>613.65</td>
<td>300.38</td>
<td>0.2358</td>
<td>0.453</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>36.9</td>
<td>642.72</td>
<td>617.82</td>
<td>309.69</td>
<td>0.2384</td>
<td>0.453</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΠΕΝΤΑΝΙΟ</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>297</td>
<td>285</td>
<td>125.07</td>
<td>0.1104</td>
<td>0.453</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>16.8</td>
<td>370.47</td>
<td>350</td>
<td>153.29</td>
<td>0.1374</td>
<td>0.454</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>392.96</td>
<td>368.45</td>
<td>164.09</td>
<td>0.1457</td>
<td>0.454</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>410.66</td>
<td>382.07</td>
<td>173.58</td>
<td>0.1523</td>
<td>0.454</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>26.9</td>
<td>424.92</td>
<td>392.09</td>
<td>182.03</td>
<td>0.1576</td>
<td>0.454</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>30.2</td>
<td>436.27</td>
<td>398.8</td>
<td>189.64</td>
<td>0.1618</td>
<td>0.454</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>
4.8.2 ΚΥΚΛΩΜΑ ΜΕ ΑΝΑΓΕΝΝΗΤΗ

Ενδιάμεσο κύκλωμα διαθερμικού ελαίου

Στροβίλος

Ορυκτομηχανής-ατμοποιητής

Αναγεννητής

Αντλία

ΟΡΚ
<table>
<thead>
<tr>
<th>Μέγιστη θερμοκρασία διαθερμικού ελαίου</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατάσταση οργανικού μέσου στην έξοδο του οικονομητήρα</td>
<td>κορεσμένο υγρό</td>
</tr>
<tr>
<td>Κατάσταση οργανικού μέσου στην έξοδο του ατμοποιητή</td>
<td>κορεσμένος ατμός</td>
</tr>
<tr>
<td>Κατάσταση οργανικού μέσου στην έξοδο του αναγεννητή(θερμό ρεύμα)</td>
<td>κορεσμένος ατμός</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης στροβίλου</td>
<td>85%</td>
</tr>
<tr>
<td>Ισεντροπικός βαθμός απόδοσης αντλίας</td>
<td>70%</td>
</tr>
<tr>
<td>Απώλειες θερμότητας στους εναλλάκτες</td>
<td>αμελητέες</td>
</tr>
<tr>
<td>Απώλειες πίεσης στις σωληνώσεις</td>
<td>αμελητέες</td>
</tr>
</tbody>
</table>

ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

<table>
<thead>
<tr>
<th>D4</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηθ</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>6,66</td>
<td>564,06</td>
<td>279,71</td>
<td>541,1</td>
<td>0,2274</td>
<td>0,417</td>
<td>0,09</td>
</tr>
<tr>
<td>0,6</td>
<td>7,99</td>
<td>570,56</td>
<td>284,4</td>
<td>552,48</td>
<td>0,242</td>
<td>0,397</td>
<td>0,1</td>
</tr>
<tr>
<td>0,7</td>
<td>9,32</td>
<td>574,18</td>
<td>287,06</td>
<td>562,46</td>
<td>0,2383</td>
<td>0,405</td>
<td>0,1</td>
</tr>
<tr>
<td>0,8</td>
<td>10,7</td>
<td>578,25</td>
<td>288,58</td>
<td>571,34</td>
<td>0,2544</td>
<td>0,382</td>
<td>0,1</td>
</tr>
<tr>
<td>0,9</td>
<td>12</td>
<td>581,17</td>
<td>289,71</td>
<td>579,32</td>
<td>0,2585</td>
<td>0,378</td>
<td>0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D5</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηθ</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>5,8</td>
<td>459,15</td>
<td>449,33</td>
<td>301,19</td>
<td>0,2265</td>
<td>0,341</td>
<td>0,08</td>
</tr>
<tr>
<td>0,6</td>
<td>6,96</td>
<td>460,83</td>
<td>449,57</td>
<td>312,7</td>
<td>0,2299</td>
<td>0,337</td>
<td>0,08</td>
</tr>
<tr>
<td>0,7</td>
<td>8,12</td>
<td>461,32</td>
<td>448,62</td>
<td>322,69</td>
<td>0,242</td>
<td>0,321</td>
<td>0,08</td>
</tr>
<tr>
<td>0,8</td>
<td>9,28</td>
<td>461,35</td>
<td>447,24</td>
<td>331,48</td>
<td>0,2475</td>
<td>0,314</td>
<td>0,08</td>
</tr>
<tr>
<td>0,9</td>
<td>10,4</td>
<td>461,71</td>
<td>446,17</td>
<td>339,26</td>
<td>0,2518</td>
<td>0,308</td>
<td>0,08</td>
</tr>
<tr>
<td>MDM</td>
<td>p (bar)</td>
<td>Pgross (kW)</td>
<td>Pnet (kW)</td>
<td>Tevap (K)</td>
<td>ηth</td>
<td>ηHT</td>
<td>ηsys</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0,5</td>
<td>7,08</td>
<td>634,94</td>
<td>622,34</td>
<td>246,61</td>
<td>0,2437</td>
<td>0,438</td>
<td>0,11</td>
</tr>
<tr>
<td>0,6</td>
<td>8,49</td>
<td>643,36</td>
<td>628,72</td>
<td>257,78</td>
<td>0,2524</td>
<td>0,429</td>
<td>0,11</td>
</tr>
<tr>
<td>0,7</td>
<td>9,91</td>
<td>649,34</td>
<td>632,71</td>
<td>267,55</td>
<td>0,2595</td>
<td>0,421</td>
<td>0,11</td>
</tr>
<tr>
<td>0,8</td>
<td>11,3</td>
<td>653,15</td>
<td>635,26</td>
<td>276,24</td>
<td>0,265</td>
<td>0,415</td>
<td>0,11</td>
</tr>
<tr>
<td>0,9</td>
<td>12,7</td>
<td>657,7</td>
<td>637,09</td>
<td>284,06</td>
<td>0,2695</td>
<td>0,41</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>30,2</td>
<td>436,27</td>
<td>125,8</td>
<td>189,64</td>
<td>0,1618</td>
<td>0,454</td>
<td>0,07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>9,76</td>
<td>571,42</td>
<td>554,63</td>
<td>202,63</td>
<td>0,2122</td>
<td>0,453</td>
<td>0,1</td>
</tr>
<tr>
<td>0,6</td>
<td>11,7</td>
<td>597,81</td>
<td>557,11</td>
<td>213,59</td>
<td>0,2296</td>
<td>0,438</td>
<td>0,1</td>
</tr>
<tr>
<td>0,7</td>
<td>13,7</td>
<td>618,74</td>
<td>594,74</td>
<td>223,2</td>
<td>0,2299</td>
<td>0,453</td>
<td>0,1</td>
</tr>
<tr>
<td>0,8</td>
<td>15,6</td>
<td>643,82</td>
<td>607,53</td>
<td>231,74</td>
<td>0,2388</td>
<td>0,454</td>
<td>0,11</td>
</tr>
<tr>
<td>0,9</td>
<td>17,6</td>
<td>645,15</td>
<td>619,52</td>
<td>239,38</td>
<td>0,2269</td>
<td>0,478</td>
<td>0,11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΠΕΝΤΑΝΙΟ</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (°C)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>321,67</td>
<td>308,79</td>
<td>125,07</td>
<td>0,119</td>
<td>0,454</td>
<td>0,054</td>
<td></td>
</tr>
<tr>
<td>16,8</td>
<td>417,77</td>
<td>394,73</td>
<td>153,29</td>
<td>0,155</td>
<td>0,453</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>20,16</td>
<td>448,28</td>
<td>420,33</td>
<td>164,09</td>
<td>0,166</td>
<td>0,453</td>
<td>0,075</td>
<td></td>
</tr>
<tr>
<td>23,52</td>
<td>471,48</td>
<td>438,65</td>
<td>173,58</td>
<td>0,175</td>
<td>0,453</td>
<td>0,079</td>
<td></td>
</tr>
<tr>
<td>26,88</td>
<td>488,13</td>
<td>450,41</td>
<td>182,03</td>
<td>0,181</td>
<td>0,181</td>
<td>0,082</td>
<td></td>
</tr>
<tr>
<td>30,24</td>
<td>497,03</td>
<td>454,35</td>
<td>189,64</td>
<td>0,184</td>
<td>0,454</td>
<td>0,084</td>
<td></td>
</tr>
<tr>
<td>28,74</td>
<td>772,84</td>
<td>386,84</td>
<td>309,2</td>
<td>0,553</td>
<td>0,235</td>
<td>0,13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΤΟΑΟΥΕΝΙΟ</th>
<th>p (bar)</th>
<th>Pgross (kW)</th>
<th>Pnet (kW)</th>
<th>Tevap (K)</th>
<th>ηth</th>
<th>ηHT</th>
<th>ηsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>601,38</td>
<td>593,51</td>
<td>210,65</td>
<td>0,223</td>
<td>0,454</td>
<td>0,101</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>617,16</td>
<td>608,46</td>
<td>216,95</td>
<td>0,229</td>
<td>0,453</td>
<td>0,104</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>655,96</td>
<td>644,82</td>
<td>233,37</td>
<td>0,243</td>
<td>0,453</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>17,5</td>
<td>698,52</td>
<td>683,77</td>
<td>253,32</td>
<td>0,259</td>
<td>0,454</td>
<td>0,117</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>716,8</td>
<td>700,08</td>
<td>262,76</td>
<td>0,266</td>
<td>0,453</td>
<td>0,121</td>
<td></td>
</tr>
<tr>
<td>28,74</td>
<td>760,86</td>
<td>737,3</td>
<td>289,88</td>
<td>0,282</td>
<td>0,453</td>
<td>0,128</td>
<td></td>
</tr>
<tr>
<td>36,9</td>
<td>772,84</td>
<td>750,6</td>
<td>309,2</td>
<td>0,553</td>
<td>0,235</td>
<td>0,13</td>
<td></td>
</tr>
</tbody>
</table>
Τελικά θερμοδυναμικά βέλτιστο κρίνεται το ακολουθεί το τολουένιο και ακολουθεί σε θερμοδυναμικές επιδόσεις το MDM.

Πίνακας 4.8.1 Σύγκριση ηHT με και χωρίς αναγεννητή

Στον Πίνακα 4.8.1 συγκρίνονται οι βαθμοί μεταφοράς θερμότητας για κάθε οργανικό μέσο σε κύκλωμα με αναγεννητή και χωρίς αναγεννητή με την προϋπόθεση να δουλεύει το
καθένα στη μέγιστη πίεση άρα στις καλύτερες θερμοδυναμικά συνθήκες. Παρατηρούμε ότι στο κύκλωμα με αναγεννητή ο βαθμός μετάφορας θερμότητας μειώνεται. Αυτό συμβαίνει διότι στη θέση 3 η θερμοκρασία αυξάνεται σε σχέση με την αντίστοιχη θέση του κυκλώματος χωρίς αναγεννητή. Λόγω των περιορισμών των pinch points προκειμένου να λειτουργεί σωστά το κύκλωμα ανυψώνουμε τη θερμοκρασία του διαθερμικού ελαίου και άρα και τη θερμοκρασία εξόδου των καυσαερίων. Η θερμότητα που απορροφάται τώρα από τα καυσαέρια είναι λιγότερη από πριν. Αυτός είναι ο λόγος που μειώνεται ο βαθμός απόδοσης μεταφοράς θερμότητας.

4.9 ΕΞΕΡΓΕΙΑΚΗ ΜΕΛΕΤΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ

Η έννοια της εξέργειας αντιπροσωπεύει το διαθέσιμο ποσό ενάργειας ενός συστήματος από το περιβάλλον του. Επί παραδείγματι μπορεί να φέρει το σύστημα σε θερμική ισορροπία με το περιβάλλον του. Αν θεωρήσουμε το περιβάλλον τη θερμή δεξαμενή τότε εξέργεια είναι η ενέργεια που είναι διαθέσιμη να χρησιμοποιηθεί. Αφού το σύστημα περιβάλλον φτάσει σε ισορροπία η εξέργεια μηδενίζεται.

Ο όρος εξέργεια επινόηθηκε το 1956 από τον Rant Zoran με ρίζα την ελληνική ERGON και το πρόθεμα (Εχ δηλαδή πρώην-πρώην έργο. Η ενέργεια ποτέ δεν καταστρέφεται, γνωστό από το πρώτο θερμοδυναμικό αξίωμα , αλλάζει μόνο από τη μία μορφή στην άλλη. Η εξέργεια οφείλεται για την αντιστρεπτική των διαδικασιών έξω της αύξησης της εντροπίας. Η εξέργεια καταστρέφεται όταν μία διαδικασία συνεπάγεται αλλαγή θερμοκρασίας. Αυτή η καταστροφή είναι ανάλογη της αύξησης της εντροπίας του χώρου

Η εξέργεια ενός συστήματος το οποίο βρίσκεται σε ισορροπία με το περιβάλλον του είναι μηδέν. Η εξέργεια δεν είναι θερμοδυναμική ιδιότητα της ύλης έχει μονάδα μέτρησης το joule η εσωτερική ενέργεια μετράται πάντα σε σχέση μία κατάσταση αναφοράς και ως εκ τούτου αποτελεί ένα εκτατικό μέγεθος.

Ο σκοπός της εξεργειακής ανάλυσης.

Η βελτιστοποίηση του συστήματος.
Αναλύοντας την καταστροφή της εξέργειας από κάθε συνιστώσα του συστήματος μεμονωμένα, μπορούμε να καταλήξουμε σε χρήσιμα συμπεράσματα ως προς το που πρέπει να εφιστούμε την προσοχή μας για να αυξήσουμε την αποδοτικότητα του συστήματος.

Χρησιμοποιείται ακόμη για τη σύγκριση των συνιστωσών ή συστημάτων και την λήψη πιο εμπεριστατωμένων αποφάσεων κατά το σχεδιασμό.

Ως έναν αναστρέψιμο έργο είναι η μέγιστη ποσότητα έργου που είναι δυνατό να παραχθεί σε μία διαδικασία δεδομένων των αρχικών και τελικών συνθηκών.

Μη αντιστρεπτική είναι καταστραμμένη εξέργεια δαπανημένο δυναμικό. Αντιπροσωπεύει την ενέργεια που θα μπορούσε να είχε μετατραπεί σε έργο αλλά αντί αυτού καταστράφηκε.

Για τη μεγιστοποίηση του βαθμού απόδοσης επιδιώκουμε η αντιστρεπτική να είναι η ελάχιστη δυνατή.

Ελέγχομε γραμμομοριακή εξέργεια

\[E = N \cdot \varepsilon_{ph} \]

(4.9.1)

\[\varepsilon_{ph} = (h-h_o)-T_s (s-s_o) [16],[17],[18] \]

Οπου \(N \) η γραμμομοριακή ροή (mol s\(^{-1}\)), υπάρχουν και άλλες μορφές εξέργειας όπως η κινηματική, η χημική κλπ οι οποίες δε μελετώνται στην παρούσα εργασία. Ο υπολογισμός της γραμμομοριακής εξέργειας είναι το αποτέλεσμα της χρήσης 4 θερμοδυναμικών μεγεθών της θερμοκρασίας, της πίεσης, της ενθαλπίας και της εντροπίας, η σχέση που συνδέει τα παραπάνω μεγέθη μεταξύ τους είναι η εξής:

Το αποτέλεσμα της προκύπτουσας ισχύος είναι ίσο με την ισχύ. Οι απώλειες εξέργειας λόγω μανικών και ηλεκτρικών ανεπαρκειών λήφθηκαν υπόψη ενώ αμελήθηκαν οι ενεργειακές απώλειες των συνιστωσών του συστήματος, οι ενεργειακές και εξεργειακές απώλειες έχουν αθροιστεί υπό τον όρο αντιστρεπτική.

Εξίσωση εξεργειακής ισορροπίας ενός όγκου ελέγχου

\[E_{in} = E_{out} + E_{loss} + I \]

(4.9.2)

gια το σύστημα βαθμός εξεργειακής απόδοσης μπορεί να οριστεί ως ο λόγος της εξέργειας που παράγεται και ένα προκειμένω της ισχύος και της καταναλωθείσας εξέργειας

ο βέτιστος κύκλος νερού ατμού με βαθμό απόσοδης συτήματος και παραγόμενη ισχύ
Είναι, η εξέργεια στην είσοδο του συστήματος, , Εout στην έξοδο , Eloss, οι απώλειες εξέργειας, Ι η εωτερική αναστρεψιμότητα

Εξέργειαν, βαθμός απόδοσης

Ολική αναστρεψιμότητα του συστήματος είναι το άθροισμα των επιμέρους αναστρεψιμοτήτων των συνιστωσών του συστήματος.

\[\zeta = \frac{P_i}{\sum E_{in}} \] \hspace{1cm} (4.9.3)

Το Eloss θα θεωρηθεί αμελητέο άρα η συνολική αναστρεψιμότητα δίνεται από τη σχέση

Για κάθε συνιστώσα του καθενός κυκλώματος υπολογίζονται οι εξεργειακός βαθμός απόδοσης και η καταστροφή της εξέργειας ί.

Εναλλάκτες θερμότητας

\[I_{hex} = E_{h,in} + E_{c,in} - E_{h,out} - E_{c,out} \] \hspace{1cm} (4.9.4)

\[\zeta = \frac{E_{c,out} - E_{c,in}}{E_{h,in} - E_{h,out}} \]

Στρόβιλοι

\[I_T = E_{in,T} - E_{out,T} - P_T \] \hspace{1cm} (4.9.5)

\[\zeta = \frac{P}{E_{in,T} - E_{out,T}} \]

Αντλίες

\[I_{pp} = E_{in,p} - E_{out,p} + P_{pp} \] \hspace{1cm} (4.9.6)

\[\zeta = \frac{E_{out,p} - E_{in,p}}{P_{pp}} \]

\[I = \sum I_i \]
Ισοτήτα συστήματος = \sum \text{ισοτήτες}

ΚΥΚΛΩΜΑ ΝΕΡΟΥ ΑΤΜΟΥ ΜΕ ΑΠΟΜΑΣΤΕΥΣΗ

<table>
<thead>
<tr>
<th>ΣΤΟΙΧΕΙΟ</th>
<th>ΑΝΤΙΣΤΡΕΨΙΜΟΤΗΤΑ</th>
<th>ΕΞΕΡΓΕΙΑΚΟΣ Β.ΑΠ. ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>οικονομητήρας</td>
<td>35,23</td>
<td>80,26%</td>
</tr>
<tr>
<td>ατμοποιητής</td>
<td>166,05</td>
<td>79,42%</td>
</tr>
<tr>
<td>υπερθερμαντήρας</td>
<td>43,31</td>
<td>88,65%</td>
</tr>
<tr>
<td>Στρόβιλος</td>
<td>121,69</td>
<td>86,24%</td>
</tr>
<tr>
<td>Αντλία συμπυκνώματος</td>
<td>2,29</td>
<td>53,22%</td>
</tr>
<tr>
<td>Αντλία τροφοδοτικού</td>
<td>0,068</td>
<td>51,21%</td>
</tr>
<tr>
<td>Απώλειες Συμπυκνωτή</td>
<td>190,44</td>
<td></td>
</tr>
<tr>
<td>Απώλειες Γεννήτριας</td>
<td>22,74</td>
<td></td>
</tr>
<tr>
<td>Απώλειες καυσαερίου</td>
<td>1321,7</td>
<td></td>
</tr>
<tr>
<td>Γεννήτρια</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>Παρεχόμενη εξέργεια</td>
<td>2481,27</td>
<td></td>
</tr>
<tr>
<td>Εξέργειακός β.α.</td>
<td>29,82%</td>
<td></td>
</tr>
</tbody>
</table>

ΚΥΚΛΩΜΑ ΝΕΡΟΥ ΑΤΜΟΥ ΧΩΡΙΣ ΑΠΟΜΑΣΤΕΥΣΗ ΜΕ ΠΡΟΘΕΡΜΑΝΣΗ ΑΠΟ ΤΑ ΚΑΥΣΑΕΡΙΑ

<table>
<thead>
<tr>
<th>ΣΤΟΙΧΕΙΟ</th>
<th>ΑΝΤΙΣΤΡΕΨΙΜΟΤΗΤΑ</th>
<th>ΕΞΕΡΓΕΙΑΚΟΣ Β.ΑΠ. ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>οικονομητήρας</td>
<td>33,829</td>
<td>84,28%</td>
</tr>
<tr>
<td>ατμοποιητής</td>
<td>165,497</td>
<td>80,22%</td>
</tr>
<tr>
<td>υπερθερμαντήρας</td>
<td>43,65</td>
<td>86,08%</td>
</tr>
<tr>
<td>Προθερμαντήρας καυσ.</td>
<td>18,2</td>
<td>60,05%</td>
</tr>
<tr>
<td>Στρόβιλος</td>
<td>123,8</td>
<td>86,26%</td>
</tr>
<tr>
<td>Αντλία συμπυκνώματος</td>
<td>0,76</td>
<td>82,73%</td>
</tr>
<tr>
<td>Αντλία τροφοδοτικού</td>
<td>0,08</td>
<td>84,06%</td>
</tr>
<tr>
<td>Απώλειες Συμπυκνωτή</td>
<td>193,3</td>
<td></td>
</tr>
<tr>
<td>Απώλειες καυσαερίου</td>
<td>1107,5</td>
<td></td>
</tr>
<tr>
<td>Απώλειες Γεννήτριας</td>
<td>23,38</td>
<td></td>
</tr>
<tr>
<td>Γεννήτρια</td>
<td>761,8</td>
<td></td>
</tr>
<tr>
<td>Παρεχόμενη εξέργεια</td>
<td>2481,27</td>
<td></td>
</tr>
<tr>
<td>Εξέργειακός β.α.</td>
<td>30,7%</td>
<td></td>
</tr>
</tbody>
</table>

Στα δύο αυτά κυκλώματα η παρεχόμενη από τα καυσαέρια εξέργεια είναι ίση με 2481,27
κύκλωμα ORC χωρίς αναγεννητή

<table>
<thead>
<tr>
<th>στοιχείο</th>
<th>αντιστρεψιμότητα Ι</th>
<th>εξεργειακός β.Α.Π. ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>οικονομητήρας</td>
<td>318,56</td>
<td>71,83%</td>
</tr>
<tr>
<td>ατμοποιητής</td>
<td>80</td>
<td>80,22%</td>
</tr>
<tr>
<td>ΛΑΘ</td>
<td>124,44</td>
<td>90,71%</td>
</tr>
<tr>
<td>στρόβιλος</td>
<td>83,3912</td>
<td>88,81%</td>
</tr>
<tr>
<td>αντλία τροφοδοτικού</td>
<td>17,98</td>
<td>72,54%</td>
</tr>
<tr>
<td>απώλειες συμπυκνωτή</td>
<td>216,7</td>
<td></td>
</tr>
<tr>
<td>απώλειες καυσαερίων</td>
<td>978,27</td>
<td></td>
</tr>
<tr>
<td>απώλειες γεννήτριας</td>
<td>19,73</td>
<td></td>
</tr>
<tr>
<td>Γεννήτρια</td>
<td>642,49</td>
<td></td>
</tr>
<tr>
<td>παρεχόμενη εξέργεια</td>
<td>2481,27</td>
<td></td>
</tr>
<tr>
<td>εξεργειακός β.α.</td>
<td>25,89%</td>
<td></td>
</tr>
</tbody>
</table>

κύκλωμα ORC με αναγεννητή

<table>
<thead>
<tr>
<th>στοιχείο</th>
<th>αντιστρεψιμότητα Ι</th>
<th>εξεργειακός β.Α.Π. ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>οικονομητήρας</td>
<td>204,68</td>
<td>84,28%</td>
</tr>
<tr>
<td>ατμοποιητής</td>
<td>95,255</td>
<td>80,22%</td>
</tr>
<tr>
<td>αναγεννητήτης</td>
<td>24,03</td>
<td>81,5%</td>
</tr>
<tr>
<td>ΛΑΘ</td>
<td>124,45</td>
<td>90,71%</td>
</tr>
<tr>
<td>στρόβιλος</td>
<td>101,01</td>
<td>88,81%</td>
</tr>
<tr>
<td>αντλία τροφοδοτικού</td>
<td>21,76</td>
<td>72,53%</td>
</tr>
<tr>
<td>απώλειες συμπυκνωτή</td>
<td>202,4</td>
<td></td>
</tr>
<tr>
<td>απώλειες καυσαερίων</td>
<td>905,54</td>
<td></td>
</tr>
<tr>
<td>απώλειες γεννήτριας</td>
<td>23,90</td>
<td></td>
</tr>
<tr>
<td>Γεννήτρια</td>
<td>778,25</td>
<td></td>
</tr>
<tr>
<td>παρεχόμενη εξέργεια</td>
<td>2481,27</td>
<td></td>
</tr>
<tr>
<td>εξεργειακός β.α.</td>
<td>31,36%</td>
<td></td>
</tr>
</tbody>
</table>

Παρατηρούμε ότι ο εξεργειακός βαθμός απόδοσης αυξάνεται σημαντικά με τη χρήση αναγεννητή. Και συνολικά από τα τέσσερα κυκλώματα το πιο αποδοτικό είναι το κύκλωμα ORC αναγεννητή, ακολουθεί το κύκλωμα υερού χωρίς απομάστευση.
5. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΕΝΑΛΛΑΚΤΩΝ

5.1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

Οι εναλλάκτες θερμότητας μπορούν να ταξινομηθούν με βάση την μορφή της ροής των ρευστών ή με βάση τις κατασκευαστικές ιδιαιτερότητες τους. Τυπικοί εναλλάκτες θερμότητας είναι οι πλάκοειδείς (plate & frame), αυλών-κελύφους (shell & tube) και οι εναλλάκτες σταυρωτής ροής (crossflow). Την πιο απλή μορφή εναλλάκτη αυλών-κελύφους αποτελεί ο απεικονιζόμενος στο σχήμα εναλλάκτης διπλού σωλήνα.

Τα πλεονεκτήματα τα της χρήσης shell and tube εναλλακτών

- Η μεταφορά θερμότητας βρασμού ή συμπύκνωσης μπορεί να λάβει χώρα είτε στους σωλήνες είτε στο κέλυφος και ο προσανατολισμός των σωλήνων μπορεί να είναι οριζόντιος ή κατακόρυφος
- Η πιέσεις και οι αντίστοιχες πτώσεις που δύναται να εμφανιστούν κυμαίνονται σε ένα μεγάλο εύρος
- Οι θερμικές καταπονήσεις μπορούν να διαχειριστούν χωρίς μεγάλα κόστη
• Υπάρχει μεγάλη ευελιξία ως προς την επιλογή του ήλικου ώστε να καταστεί ανθεκτικός ο έναλλάκτης στη διάβρωση από διάφορα εργαζόμενα μέσα.
• Επεκταμένες επιφάνειες συναλλαγής θερμότητας μπορούν να χρησιμοποιηθούν ώστε να ενισχυθεί η μετάδοση θερμότητας
• Ο καθαρισμός και η επιδιόρθωση μπορούν να γίνουν πολύ άμεσα αφού ο έναλλάκτης λύνεται για αυτό το λόγο[19]

Η πλευρά των σωλήνων χρησιμοποιείται κυρίως για το ρευστό που είναι πιθανότερο να προκαλεί σε επικαθήσεις στα τοιχώματα, ή για το περισσότερο διαβρωτικό ή για αυτό το οποίο βρίσκεται σε υψηλότερη πίεση. Ο καθαρισμός του εσωτερικού των σωλήνων είναι ευκολότερος από τον καθαρισμό του εξωτερικού μέρους αυτών. Όταν αέριο ή ατμός χρησιμοποιείται ως υγρό μετάδοσης θερμότητας, κατά κανόνα τοποθετείται στην πλευρά του κελύφους. Ακόμη ρευστά υπόθεσης συνεκτικότητας, για τα οποία η πτώση πίεσης κατά μήκος των σωλήνων μπορεί να είναι απαγορευτική, εισάγονται στο κέλυφος.

Το πιο σύνηθες υλικό κατασκευής είναι ο χάλυβας ακόμη άλλα υλικά μπορούν να χρησιμοποιηθούν όπως το ατσάλι ή ο χαλκός, η επιλογή καθορίζεται από την ανθεκτικότητα αυτών των υλικών σε διάβρωση και μηχανικές καταπονήσεις της εκάστοτε κατασκευής.

Η συνήθης υλικές κατασκευής είναι ο χάλυβας ακόμη άλλα υλικά μπορούν να χρησιμοποιηθούν όπως το ατσάλι ή ο χαλκός, η επιλογή καθορίζεται από την ανθεκτικότητα αυτών των υλικών σε διάβρωση και χημικές καταπονήσεις της εκάστοτε κατασκευής.

Το θερμοκρασιακό προφίλ και οι συνθήκες ροής αλλάζουν έντονα κατά μήκος του έναλλάκτη. Προκειμένου να επιτευχθεί μεγαλύτερη ακρίβεια ο κάθε εναλλάκτης διαιρείται σε 500 χωρία για να μελετηθεί. Κάθε χωρίο έχει μία είσοδο και μία έξοδο, σημεία στα οποία η θερμοκρασία είναι γνωστή (αφού προκύπτει από τη διακριτοποίηση του χώρου της θερμοκρασίας από την έξοδο μέχρι την έναλλάκτη ακόμη είναι γνωστή η πίεση αφού κατά μήκος του εναλλάκτη θεωρούμε αμελητέες απώλειες πίεσης. Άρα σε κάθε θέση με γνωστή πίεση και θερμοκρασία καθίσταται δυνατός ο υπολογισμός όλων των θεμοφυσικών μεγεθών κατά μήκος του έναλλάκτη.

Θεωρείται ότι όλη η ενέργεια μεταφέρεται από το θερμό στο ψυχρότερο ρευστό.

\[Q = m_{hot} C_{p, hot} (T_{hot, in} - T_{hot, out}) = m_{cold} C_{p, cold} (T_{cold, out} - T_{cold, in}) \] (5.1.1)

όπου με δείκτη hot επισημαίνονται οι ποσότητες του θερμού ρεύματος και με δείκτη cold του ψυχρού

οπότε για την 1-οστή διαμέριση ισχύει: \[Q_{1} = m \left[(T_{1}, p) - h(t, p) \right] \] (5.1.2)

Για τους εναλλάκτες ισχύει η παρακάτω σχέση
\[Q = UAF \Delta T_{lm} \]

(5.1.3)

όπου \(U \) σε \(W/m^2K \) η συνολική θερμική αγωγιμότητα του εναλλάκτη, \(A \) η επιφάνεια συναλλαγής θερμότητας αυτού(\(m^2 \)), \(F \) ο παράγοντας διόρθωσης της μέσης λογαριθμικής διαφοράς θερμοκρασιών και \(LMTD \), η μέση λογαριθμική διαφορά θερμοκρασιών των δύο ρευμάτων.[47],[48]

\[\Delta T_{lm} = \frac{(T_1 - T_2) - (T_2 - T_1)}{\ln \left(\frac{T_1 - T_2}{T_2 - T_1} \right)} \]

(5.1.4)

όπου \(T_1 \) η θερμοκρασία εισόδου του θερμού υγρού

\(T_2 \) η θερμοκρασία εξόδου του θερμού υγρού

\(t_1 \) η θερμοκρασία εισόδου του ψυχρού υγρού

\(t_2 \) η θερμοκρασία εξόδου του ψυχρού υγρού

Συντελεστές συναγωγής θερμότητας

Ο προσδιορισμός του συνολικού συντελεστής μετάδοσης θερμότητας του εναλλάκτη είναι εξαιρετικά σημαντικό πεδίο του θερμικού σχεδιασμού και ανάλυσης του εναλλάκτη θερμότητας

\[\frac{1}{U_o} = \frac{1}{h_o} + \frac{s}{\lambda} \left(\frac{A_o}{A_{im}} \right) + \frac{1}{h_i} \left(\frac{A_i}{A} \right) + R_{f,o} + R_{f,i} \]

(5.1.5)

Ο συντελεστή μεταφοράς θερμότητας του εναλλάκτη έχει δείκτη “o” καθώς βασίζεται στην εξωτερική επιφάνεια συναλλαγής θερμότητας των σωλήνων. Στην παραπάνω εξίσωση \(h_o \) είναι ο συντελεστής μεταφοράς θερμότητας του ρέοντος στο κέλυφος ρευστού,\(h_i \) είναι ο συντελεστής μεταφοράς θερμότητας του ρέοντος στους σωλήνες ρευστού , \(A_i \) και \(A_o \) είναι οι εσωτερική και εξωτερική επιφάνεια συναλλαγής ενός εκ των σωλήνων. Οι αντιστάσεις επικαθήσεων \(R_{f,o} \) για το κέλυφος και \(R_{f,i} \) για τους σωλήνες.
Για το συντελεστή μεταφοράς θερμότητας του ρευστού που ρέει στο κέλυφος θεωρείται πιο περίπλοκο. Η παρουσία των διαφραγμάτων (baffles) πρέπει να ληφθεί υπόψη όταν υπολογίζεται η ταχύτητα του ρευστού.

\[\text{Re} = \frac{D_o V_{\text{max}}}{\mu} \]

όπου \(D_o \) η εξωτερική διάμετρος του σωλήνα και \(V_{\text{max}} \) η μέγιστη ταχύτητα του ρευστού μέσα στο κέλυφος.

Για την εύρεση της μέγιστης ταχύτητας υπολογίζεται πρώτα η ισοδύναμη επιφάνεια ροής περιοχής εγκάρσιας ροής

![Diagram](image.png)

Εικ. 5.1.2 Η ροή στο κέλυφος

Περιοχή εγκάρσιας ροής=\((\text{ID}_\text{κελύφους})\cdot \text{απόσταση διαφραγμάτων } \{\text{ελεύθερος χώρος ροής}\}/\text{απόσταση σωλήνων}[19],

\text{Cross}_\text{flow} \text{ are= } \text{Shell}_\text{ID}\cdot \text{Baffle spacing} \cdot \text{clearance}/\text{pitch}

Όπου \(l \) ο ελεύθερος χώρος ροής του ρευστού στο shell ισούται με την απόσταση των κέντρων των σωλήνων πλην το μήκος δύο ακτινών αυτών και pitch \(S_n \) το μήκος του ευθύγραμμου τμήματος που συνδέει τα κέντρα δύο σωλήνων. Σαφέστερα αποτυπώνονται στο παρακάτω σχήμα.

Η μέγιστη ταχύτητα λοιπόν αρίζεται ως ο λόγος της ογκομετρικής παροχής του ρευστού που ρέει στο κέλυφος προς την τιμή της περιοχής εγκάρσιας ροής
\[V_{\text{max}} = \frac{\dot{V}_{\text{flow}}}{A_s} \]

(5.1.7)

Ο συντελεστής \(h \) προκύπτει από τον παρακάτω συσχετισμό.

\[Nu = \frac{h D}{k} = C \text{Re}^n \text{Pr}^{1/3} \]

(5.1.8)

Ο εκθέτης \(n \) και η σταθερά \(C \) εξαρτώνται από το λόγο pitch/ εξωτερική διάμετρος σωλήνα και παρατίθενται σε πίνακα στο βιβλίο του Holman.

Τιμές της σταθεράς \(C \) συναρτήσει της κατακόρυφης και οριζόντιας απόστασης των σωλήνων[19]

<table>
<thead>
<tr>
<th>Sn/Do</th>
<th>1.25</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp/Do</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>0.386</td>
<td>0.305</td>
<td>0.111</td>
<td>0.0703</td>
</tr>
<tr>
<td>1.5</td>
<td>0.407</td>
<td>0.278</td>
<td>0.112</td>
<td>0.0753</td>
</tr>
<tr>
<td>2</td>
<td>0.464</td>
<td>0.332</td>
<td>0.254</td>
<td>0.220</td>
</tr>
<tr>
<td>3</td>
<td>0.322</td>
<td>0.396</td>
<td>0.415</td>
<td>0.317</td>
</tr>
</tbody>
</table>

Τιμές του εκθέτη \(n \) συναρτήσει της κατακόρυφης και οριζόντιας απόστασης των σωλήνων

<table>
<thead>
<tr>
<th>Sn/Do</th>
<th>1.25</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp/Do</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>0.592</td>
<td>0.608</td>
<td>0.704</td>
<td>0.752</td>
</tr>
<tr>
<td>1.5</td>
<td>0.586</td>
<td>0.620</td>
<td>0.702</td>
<td>0.744</td>
</tr>
<tr>
<td>2</td>
<td>0.570</td>
<td>0.602</td>
<td>0.632</td>
<td>0.648</td>
</tr>
<tr>
<td>3</td>
<td>0.601</td>
<td>0.584</td>
<td>0.581</td>
<td>0.608</td>
</tr>
</tbody>
</table>

Αντιστοιχία υγρού σε κέλυφος ή σωλήνες

1. Υψηλή πίεση: Σε περίπτωση που κάποιο ρεύμα είναι σε υψηλή πίεση, είναι προτιμότερο να τοποθετηθεί αυτόν το ρεύμα στου σωλήνες, ώστε μόνο αυτοί και τα εξαρτήματα που συνδέονται με αυτούς να χρειάζονται ειδικό σχεδιασμό για να αντέξουν τις μηχανικές καταπονήσεις. Το κέλυφος μπορεί να κατασκευαστεί από άλλο ελαφρύτερο υλικό. Αν και τα δύο ρεύματα είναι σε υψηλή πίεση άλλοι παράγοντες θα καταδείξουν ποιο θα τοποθετηθεί στο κέλυφος και ποιο στους σωλήνες.

2. Διάβρωση: Η διάβρωση περισσότερο υποδεικνύει το υλικό κατασκευής του εναλλάκτη παρά του σχεδιασμού αυτού. Δεδομένου ότι τα ανθεκτικά σε
διάβρωση υλικά είναι ακριβότερα, το πιο διαβρωτικό ρεύστο τοποθετείται σε σωλήνες.

3. Επικαθήσεις η διάβρωση υπεισέρχεται στο σχεδιασμό σχεδόν κάθε τύπου εναλλάκτη, αλλά συγκεκριμένα ρεύστα προκαλούν τόσο έντονες επικαθήσεις ώστε ο σχεδιασμός να καθορίζεται ολοκληρωτικά από α) ελαχιστοποίηση των επικαθήσεων-με αύξηση επί παραδείγματι της ταχύτητας β) τη διευκόλυνση του καθαρισμού

4. Χαμηλός συντελεστής μετάδοσης θερμότητας αν το ένα από τα δύο ρεύματα έχει εξαιρετικά χαμηλό συντελεστή μεταφοράς θερμότητας, αυτό τοποθετείται στο κέλυφος ώστε να χρησιμοποιηθεί μεγαλύτερη επιφάνεια και να μειωθεί το κόστος του εναλλάκτη. [19],[20],[21]

5.2 ΜΟΝΟΦΑΣΙΚή ΡΟΗ ΚΑΙ ΣΤΑ ΔΥΟ ΡΕΥΜΑΤΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΤΟΥ ΡΕΥΣΤΟΥ ΚΕΛΥΦΟΥΣ [20],[22]

Ο τρόπος με τον οποίο γίνεται η επιλογή του αριθμού των σωλήνων και το μήκος αυτών θα αναλυθεί παρακάτω.

Έστω ότι έχουμε N σωλήνες

Η ταχύτητα ροής (παροχή μάζας ανά τετραγωνικό μέτρο επιφάνειας ροής)

\[V = \frac{m}{N \frac{\pi}{4} d_i^2} \] (5.2.1)

ο αριθμός Reynolds δίνεται από τη σχέση

\[\text{Re} = \frac{d_i V}{\mu} \] (5.2.2)

ο αριθμός Prandtl υπολογίζεται από το πρόγραμμα REFPROM και ισούται με

\[\text{Pr} = \frac{C_p \mu}{\lambda} \] (5.2.3)

Ο συντελεστής μεταφοράς θερμότητας του ρευστού στους σωλήνες δίνεται από τη σχέση

\[h_i = 0.023 \frac{k}{d} \text{Re}^{0.8} \text{Pr}^{0.333} \] (5.2.4)
ΥΠΟΛΟΓΙΣΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΤΟΥ ΡΕΥΣΤΟΥ ΚΕΛΥΦΟΥΣ

Υπολογίζεται ο ελεύθερος χώρος

\[C = P - d \]

η επιφάνεια ροής του κελύφους

\[a_r = \frac{IDCB}{P_r} \]

η παροχή μάζας στο κέλυφος ανά μονάδα επιφάνειας

\[V_{shell} = \frac{\dot{M}}{a_r} \]

ΚΑΤΕΥΘΥΝΣΗ ΡΟΗΣ ΣΤΟ ΚΕΛΥΦΟΣ

Η ισοδύναμη διάμετρος του κέλυφους για τετραγωνική διάταξη των σωλήνων δίνεται

\[d = \frac{4 \left(P_t^2 - \pi \frac{d_o^2}{4} \right)}{\pi d_o} \]

Αφού υπολογιστεί ο Prandtl της ροής κελύφους, καθίσταται δυνατός ο υπολογισμός του συντελεστή μεταφοράς θερμότητας για τη ροή κελύφους

\[h_o = 0.36 \frac{k}{d} \text{Re}^{0.55} \text{Pr}^{0.333} \]
ΜΟΝΟΦΑΣΙΚΗ ΡΟΗ
ECONOMIZER & REGENERATOR
ECONOMIZER

Στον οικονομητήρα λαμβάνει χώρα πρόσδοση θερμότητας από το διαθερμικό λάδι στο οργανικό μέσο, μέχρι να φτάσει το τελευταίο σε θερμοκρασία κορεσμού, δεδομένης της υψηλής πίεσης.

tο οργανικό μέσο τοποθετείται στους σωλήνες μια το διαθερμικό έλαιο στο κέλυφος. Γνωρίζουμε τις θερμοκρασίες εισόδου και εξόδου και των δύο ρευμάτων από ισολογισμούς ενέργειας. Ο εναλλάκτης διαιρείται σε 500 χωρία για την εξασφάλιση μεγαλύτερης ακρίβειας αφού κάθε χωρίο έχει διαφορετική θερμοκρασία και συνεπώς τα ρευστά έχουν διαφορετική τιμή δυναμικής συνεκτικότητας, η θερμική αγωγιμότητα, η θερμοχωρητικότητα και ο αριθμός Pr.[21],[22],[23]

Για τη μονοφασική ροή ο αριθμός Nu υπολογίστηκε από την εξίσωση Gnielinski

\[
Nu = \frac{\frac{\xi}{8} (Re - 1000) Pr}{1 + 12.7 \frac{\xi}{8} (Pr^{\frac{1}{2}} - 1)}
\]

\[
0.5 < Pr < 500
\]

\[
2300 < Re < 10^6
\]

για το οργανικό μέσο ο συντελεστής μεταφοράς θερμότητας υπολογίστηκε από τη σχέση

\[
h_{nc} = \frac{Nu \cdot \lambda_c}{d_i} \text{ για το εκάστοτε n-οστό χωρίο.}
\]

ΑΝΑΓΕΝΝΗΤΗΣ

Για τον αναγεννητή γνωρίζουμε τη θερμοκρασία εισόδου του θερμού ρεύματος και τη θερμοκρασία εισόδου του ψυχρού. Η πρώτη είναι δεδομένη ως έξοδος του στροβίλου και η δεύτερη ως έξοδος της αντλίας συμπυκνώματος. Επιδιώκουμε η ξηρότητα του θερμού ρεύματος στην έξοδο του αναγεννητή να είναι ίση με 1 να εισέρχεται δηλαδή στο συμπυκνωτή κορεσμένος ατμός. Η ενθαλπική διαφορά στο θερμό ρεύμα είναι ίση με αυτή του ψυχρού αφού θεωρούμε μηδενικές απώλειες στον εναλλάκτη και η μάζα θερμού και ψυχρού ρεύματος είναι ίσες
αφού δεν έχουμε απώλειες παροχής μάζας. Για τον προσδιορισμό της κατάστασης του ψυχρού ρεύματος στην έξοδο προσθέτουμε στην τιμή ενθαλπίας εισόδου ψυχρού ρεύματος την ενθαλπική διαφορά αυτή, και αφού είναι δεδομένη η πίεση στη θέση αυτή του κυκλώματος (ίση με την υψηλή πίεση αυτού) μπορεί να προσδιοριστεί και η θερμοκρασία αυτού.

Ελεγχος pinch point

Με τη συνθήκη η ξηρότητα να είναι 1 στην είσοδο του συμπυκνωτή υπάρχει ο κίνδυνος να μην πληρείται η προϋπόθεση για pinch point ίσο με 10Κ, και η θερμοκρασία εξόδου του θερμού ρεύματος πλην της θερμοκρασίας εισόδου του ψυχρού να είναι μικρότερη από 10 K, σε αυτή την περίπτωση η θερμοκρασία της έξοδο του θερμού ρεύματος θησε5 γίνεται αυτόματα κατά 10 K μεγαλύτερη αυτής της εισόδου του ψυχρού και εκπληκτίζονται από την αρχή οι ισολογισμοί μάζας και ενέργειας στον αναγεννητή.

ΕΝΑΛΛΑΚΤΗΣ ΔΙΑΘΕΡΜΙΚΟΥ ΕΛΑΙΟΥ-ΚΑΥΣΑΕΡΙΩΝ

Στον εναλλάκτη αυτόν στο κέλυφος είναι το καυσαέριο και στους σωλήνες το διαθέρμικο έλαιο.Η ροή είναι μονοφασική και υπολογίστηκαν όλα τα μεγέθη κατά τα παραπάνω.

5.3 ΑΛΛΑΓΗ ΦΑΣΗΣ-ΑΤΜΟΠΟΙΗΣΗ

Ως βρασμός καλείται ο σχηματισμός φυσαλίδων ατμού στην επιφάνεια θέρμανσης. Αυτές οι φυσαλίδες σχηματίζονται σε περιοχές πυρήνων των οπίων ο αριθμός και η θέση εξαρτώνται από την ταχύτητα , τις ιδιότητες του ρευστού και τις συνθήκες λειτουργίας. Ο συντελεστής μεταφοράς θερμότητας βρασμού εξαρτάται σε μεγάλο βαθμό από τη διαφορά θερμοκρασίας της επιφάνειας και του υγρού. Επίσης επηρεάζεται από το λόγο υγρού-τμού , δηλαδή την ξηρότητα σε κάθε θέση και τις ταχύτητες οι οποίες είναι συνάρτηση του σχεδίασμου του ατμοποιητή και των συνθηκών λειτουργίας αυτού. Η ροή ισολογισμός της ακριβούς τιμής του συντελεστή μεταφοράς θερμότητας βρασμού είναι πολυπαραμετρικής σε βαθμό τέτοιο ώστε να καθίσταται πρακτικά ανέφικτος

Όταν μία επιφάνεια εισέρχεται σε υγρό το οποίο βρίσκεται στο σημείο βρασμού του , τότε η θερμοκρασία της επιφάνειας αυξάνεται , σχηματικά αναπαρίσταται η ροή θερμότητας και ο προκύπτων συντελεστής μεταφοράς θερμότητας συναρτήσει της θερμοκρασιακής διαφοράς ανάμεσα στη θερμαινόμενη επιφάνεια και το σημείο βρασμού του υγρού.[20]
Εικόνα 5.3.1 Η καμπύλη βρασμού

Από το Α Α’ η μεταφορά θερμότητας γίνεται με φυσική συναγωγή και καμία φυσαλίδα δεν εμφανίζεται, το ρευστό βρίσκεται σε υπέρθερμη κατάσταση και η ατμοποίηση εμφανίζεται στο σημείο επαφής υγρού ατμού. Στο σημείο α η α’ η τοπική υπερθέρμανση είναι ικανή να ενεργοποιήσει πυρήνες στην επιφάνεια θέρμανσης και να σχηματιστούν φυσαλίδες ατμού.

Η απότομη σχεδόν εκρηκτική δημιουργία φυσαλίδων προκαλεί ραγδαία αύξηση της τοπικής ταχύτητας και αυξάνει τη μεταφορά θερμότητας. Στην περιοχή αβ έχουν ενεργοποιηθεί πολλοί πυρήνες και εκεί πλέον θεωρείται η περιοχή πυρηνοποιησης-βρασμού ατμού.

Στο σημείο Β της καμπύλης ροής θερμότητας, η ροή θερμότητας μειώνεται χωρίς περαιτέρω αύξηση της θερμοκρασίας επιφάνειας. Μετά το Β εμφανίζεται ο βρασμός φιλμ στο βρασμό φιλμ μια συνεχής στρώση ατμού καλύπτει την επιφάνεια θέρμανσης και αποτρέπει το ρευστό από την επαφή με την επιφάνεια αυτή. Η μονωτική αυτή επίδραση του ατμού μειώνει το ρυθμό μεταφόρας θερμότητας και τον αντίστοιχο συντελεστή μεταφόρας θερμότητας. Όσο η θερμοκρασιακή διαφορά αυξάνεται τόσο παχύτερο γίνεται το στρώμα ατμού και φτάνει ένα μέγιστο πάχος στο σημείο С', μετά από το οποίο ο συντελεστής μεταφοράς θερμότητας σταδιακά αυξάνεται εξαιτίας της ακτινοβολίας και πιθανώς λόγω επιδράσεων συναγωγής μέσα στο φιλμ.
Βρασμός στο εσωτερικό σωλήνων

Ο τοπικός συντελεστής μεταφοράς θερμότητας βρασμού για την ατμοποίηση μέσα σε σωλήνα atp ορίζεται ως

\[a_{tp} = \frac{q}{(T_{wall} - T_{sat})} \] \hspace{1cm} (5.3.1)

όπου \(q \) η τοπική ροή θερμότητας, \(T_{wall} \) η τοπική θερμοκρασία τοιχώματος την κατεύθυνση των αξόνων κατά μήκος των σωλήνων του ατμοποιητή, η οποία θεωρείται ομοιόμορφη περιμετρικά του σωλήνα.

Τα μοντέλα ροής βρασμού συνήθως υποθέτουν δύο μηχανισμούς μετάδοσης θερμότητας, τη μετάδοση θερμότητας βρασμού πυρήνων και τη μετάδοση θερμότητας με συναγωγή. Στην πρώτη, οι φυσαλίδες κυλούν εξαιτίας της κατά μέγαλο μέρος αξονικής ροής και συνεπώς το στρώμα ατμοποίησης κάτω από τις αυξανόμενες φυσαλίδες να επηρεάζεται. Βρασμό από συναγωγή αναφέρεται στη διαδικασία συναγωγής θερμότητας ανάμεσα στην θερμή επιφάνεια και το υγρή φάση.

Οι συντελεστές \(a_{nb}, a_{cb} \) συνδέονται με την παραπάνω σχέση με το συνολικό συντελεστή μετάδοσης θερμότητας ατμοποίησης του προς ατμοποίηση ρευστού.

\[a_{tp} = \left[(a_{nb})^n + (a_{cb})^n \right]^{1/n} \] \hspace{1cm} (5.3.2)

Μοντέλα κατά Steiner και Taborek

Ο τοπικός συντελεστής βρασμού ροής προκύπτει από μία συμπτωτική προσέγγιση χρησιμοποιώντας εκθέτη \(n \) ίσο με 3

\[a_{tp} = \left[(a_{nb})^3 + (a_{cb} F_{tp})^3 \right]^{1/3} \] \hspace{1cm} (5.3.3)

στην παραπάνω εξίσωση οι παράμετροι είναι οι εξής:

\(a_{nb} \), ο τοπικός συντελεστής βρασμού πυρήνων για μία τιμής ροής θερμότητας αναφοράς ίσης με \(q_{o} \) στην ελαττωμένη πίεση \(p_{r} \) ίση με 0.1

\(F_{nb} \) ο συντελεστής διόρθωσης του παραπάνω συντελεστή

\(a_{cb} \), ο τοπικός συντελεστής μεταφοράς δια συναγωγής της υγρής φάσης η οποία θεωρεί το σύνολο της ροής σε υγρή φάση και προκύπτει από την Gnielinski συσχέτιση.

\(F_{tp} \), ο πολλαπλασιαστής διφασικής ροής ο οποίος ευθύνεται για την ενίσχυση της συναγωγής από τη μεγαλύτερη ταχύτητα της διφασικής ροής η οποία είναι σαφώς μεγαλύτερη από αυτή της υγρής φάσης μέσα στο κανάλι.
Η συσχέτιση Gnielinski από την οποία προκύπτει ο συντελεστής αLt είναι η παρακάτω

\[
\frac{a_{\mu}d_i}{k_L} = \frac{(f_L/8)(\text{Re}_{Lt} - 1000)\text{Pr}_L}{1 + 12.7(f_L/8)^{1/8}(\text{Pr}_L^{2/3} - 1)} \tag{5.3.4}
\]

Ο συντελεστής τριβής \(f_L\) δίνεται από τη σχέση

\[
f_L = \left[0.7904\ln(\text{Re}_{Lt}) - 1.64\right]^2 \tag{5.3.5}
\]

Σχέση η οποία ισχύει για 4000<\(\text{Re}_{Lt}\)<500000 και 0.5<\(\text{Pr}_L\)<2000. Για την εκτίμηση του αριθμού \(\text{Re}\) χρησιμοποιείται η συνολική παροχή μάζας του ρέοντος υγρού και ατμού έτσι ώστε τελικά ο αριθμός Reynolds να δίνεται από τον τύπο

\[
\text{Re}_{Lt} = \frac{\dot{m}d_i}{\mu_L} \tag{5.3.6}
\]

Ο συντελεστής πολλαπλασιασμού \(F_o\) είναι για την ατμοποίηση δια συναγωγής η οποία εμφανίζεται για \(x<\text{xcrit}\) q>\(Q_{onb}\) ή για αλόκληρο το εύρος ξηρότητας εάν το q<\(q_{ONB}\)

\[
F_o = \left[1 - (1-x)^{1.5} + 1.9x\left(\frac{\rho_L}{\rho_G}\right)^{0.35}\right]^{0.1} \tag{5.3.7}
\]

Η έκφραση αυτή καλύπτει εύρος \(\rho_L/\rho_G\) από 3.75 έως 5000 και συγκλίνει στην τιμή 1 καθώς το \(x\) τείνει στο 0.

Όταν q>\(q_{onb}\) μόνο ατμοποίηση λόγω συναγωγής λαμβάνει χώρα και εκτείνεται από \(x=0\) έως \(x=1\) έως \(x=1\)

Η ελάχιστη ροή θερμότητας που ορίζει την έναρξη του βρασμού πυρήνων δίνεται από την παρακάτω εξίσωση

\[
q_{ONB} = \frac{2\sigma\text{F}_{sat}a_{Lt}}{r_c\rho_G H_{LG}} \tag{5.3.8}
\]

σ η επιφανειακή τάση, ρο η κρίσιμη ακτίνα ατμοποίησης σε m και Hlg η λανθάνουσα θερμότητα ατμοποίησης. Μία συναυστώμενη τιμή για την ακτίνα ro είναι η 0.310-6μ

Για τιμές q>\(q_{onb}\) λαμβάνει χώρα βρασμός πυρήνων

Ο συντελεστής \(F_{nb}\) περιλαμβάνει την επίδραση της ελαττωμένης πίεσης, της ροής θερμότητας, της διαμέτρου των σωλήνων, της τραχύτητας επιφανείας και τον συντελεστή διόρθωσης του υπολειμματικού μοριακού βάρους

\[
F_{nb} = F_{nf}\left(\frac{q}{q_n}\right)^{0.4}\left(\frac{d_i}{d_{i,n}}\right)^{-0.4}\left(\frac{R_p}{R_{p,n}}\right)^{0.133}F(M) \tag{5.3.9}
\]

Ο συντελεστής διόρθωσης της πίεσης \(F_p\), ισχύει για \(p<0.95\) και ευθύνεται για την αύξηση του συντελεστή μετάδοσης βρασμού αυξανομένης της πίεσης.
\[F_{pf} = 2.816 p_r^{0.45} + \left\{ 3.4 + \left[\frac{1.7}{1 - p_r^7} \right] \right\} p_r^{3.7} \] (5.3.10)

Ο εκθέτης βρασμού πυρήνων ισούται με \(nf = 0.7 - 0.13 \exp(1.105 p_r) \) για τα μη κρυογενή

Η τυπική τιμή διαμέτρου αναφοράς \(d_{in} \) είναι 0.01 m, η τυπική τιμή επιφανειακής τραχύτητας είναι \(R_{p,o} = 1 \) μμ, ο όρος \(R_p \) καλύπτει εύρος τιμών 0.1 έως 18 μm.

Ο συντελεστής διάρθωσης του υπολειμματικού μοριακού βάρους για μοριακά βάρη που κυμαίνονται στο εύρος 10 έως 187, δίνεται από την παρακάτω σχέση

\[F(M) = 0.377 + 0.199 \ln(M) + 0.000028427 M^2 \] (5.3.10)

Η μέγιστη τιμή του \(F(M) \) είναι 2.5 ακόμη και όταν από την παραπάνω παράσταση προκύπτει μεγαλύτερη τιμή.

Για τη διαστασιολόγηση του ατμοποιητή διαιρέθηκε σε 100 τμήματα και μελετήθηκε το καθένα ξεχωριστά για την εξασφάλιση μεγαλύτερης ακρίβειας. Για εύρος ξηρότητας από 0 έως 1 από κορεσμένο υγρό δηλαδή που εξέρχεται από τον economizer έως κορεσμένος ξηρός που θεωρούμε ότι εξέρχεται από τον ατμοποιητή, μη βήμα 0.01 υπολογίστηκε η ενθαλπία του οργανικού μέσου και ο συντελεστής \(F_p \) ο οποίος μεταβάλλεται για κάθε τιμή ξηρότητας. Για 101 τιμές ξηρότητας προκύπτουν 100 χωρία ομόκεντρα και ίσα μέσα στον εναλλάκτη. Από το ν-οστό χωρίο στο (ν+1) μεταβιβάζεται θερμότητα ίση με \(q_{r+1} = \dot{m}(h_{r+1} - h_r) \) (5.3.11)

Για κάθε χωρίο υπολογίζεται ο τοπικός συντελεστής μεταφοράς θερμότητας \(a_{tr} \) η μέση λογαριθμική θερμοκρασιακή διαφορά LMTD και ο συντελεστής μεταφοράς θερμότητας του ρέου στο κέλυφος ρευστού, ο οποίος υπολογίζεται κατά τα γνωστά αφού δεν παρουσιάζεται αλλαγή φάσης στη ροή αυτή.

ΕΠΙΦΑΝΕΙΑ ΣΥΝΑΛΛΑΓΗΣ ΠΡΟΘΕΡΜΑΝΤΗΡΑ: 98 \(\text{m}^2 \)

ΕΠΙΦΑΝΕΙΑ ΣΥΝΑΛΛΑΓΗΣ ΑΤΜΟΠΟΙΗΤΗ: 56 \(\text{m}^2 \)

ΕΠΙΦΑΝΕΙΑ ΣΥΝΑΛΛΑΓΗΣ ΑΝΑΓΕΝΝΗΤΗ: 158 \(\text{m}^2 \)

ΕΠΙΦΑΝΕΙΑ ΣΥΝΑΛΛΑΓΗΣ ΚΑΥΣΑΕΡΙΟΥ ΕΛΑΙΟΥ: 200 \(\text{m}^2 \)
6. ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

6.1 ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΕΓΚΑΤΑΣΤΑΣΗΣ

Για συστήματα ανάκτησης θερμότητας με νερό-ατμό το κόστος επένδυσης υπολογίζεται με βάση το κόστος των μεμονωμένων στοιχείων του εξοπλισμού, αφού δεν γίνεται σχεδόν ποτέ προσφορά πακέτου εγκατάστασης. Αντίθετα τα συστήματα ανάκτησης θερμότητας ORC είναι διαθέσιμα σαν πακέτο εξοπλισμού, γι' αυτό δεν είναι δυνατή η οικονομική μελέτη με αναφορά στο κάθε στοιχείο του εξοπλισμού.

ΟΙΚΟΝΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΥΚΛΩΜΑΤΟΣ ΝΕΡΟΥ ΑΤΜΟΥ

Το ειδικό κόστος του στροβίλου \(C_{\text{steam,turbine}} \) εξαρτάται σε μεγάλο βαθμό από τη συνολική παραγόμενη ισχύ του στροβίλου \(P_{el} \). Τιμές στροβίλου στην αγορά κυμαίνονται από 200€/kW για έναν ατμοστρόβιλο 24.5 MW έως 410€/kW για μία έναν ατμοστρόβιλο 6.5 MW.[27]

\[
C_{\text{steam,turbine}} = \begin{cases}
16715 \cdot P_{el,T}^{-0.4218} \text{ (€/KW)} & \text{Pel<12 MW} \\
8357 \cdot P_{el,T}^{-0.4218} + 1445 \cdot P_{el,T}^{-0.3} \text{ (€/KW)} & \text{Pel>12 MW}
\end{cases}
\]

(6.1.1.)

(6.1.2.)

ΕΝΑΛΛΑΚΤΕΣ ΝΕΡΟΥ – ΚΑΥΣΑΕΡΙΩΝ- ΛΑΘ

Ο παρακάτω τύπος δείχνει την εξάρτηση του ειδικού κόστος των εναλλακτών από την παροχή μάζας του καυσαερίου και τη θερμοκρασιακή διαφορά του ρεύματος του καυσαερίου πριν και μετά τους εναλλάκτες.

\[
C_{HRSG} = \left[\frac{Q_{HRSG}}{\log(T_{gas,\text{in}} - T_{gas,\text{out}})} \right]^{0.8} + 4728 \cdot m_w + 263 \cdot m_{gas} \text{ (€/KW)}
\]

(6.1.3.)

Όπου \(Q \) το ποσό θερμότητας που παραλαμβάνει το νερό από τα καυσαέρια

Ο παραπάνω μαθηματικός τύπος δεν εφαρμόζεται στην περίπτωση διαφορετικών πιέσεων μεταξύ των εναλλακτών η με απώλειες πίεσης στο ρεύμα
καυσαερίων. Στις περιπτώσεις αυτές το κόστος υπολογίζεται με αναφορά στη γεωμετρία και την επιφάνεια συναλλαγής των εναλλακτών.

ΣΥΜΠΥΚΝΩΤΗΣ

Για αερόψυκτους συμπυκνωτές το ειδικό κόστος επένδυσης κυμαίνεται από 130-220 €/kW

\[
C_{\text{condenser}} = 5377 \cdot P_{el}^{-0.288} \text{(€/KW)} \quad (6.1.4)
\]

<table>
<thead>
<tr>
<th>κόστος εξοπλισμού</th>
<th>Lucas</th>
<th>Chacartegui</th>
</tr>
</thead>
<tbody>
<tr>
<td>συναρμολόγηση</td>
<td>4%</td>
<td>100%</td>
</tr>
<tr>
<td>σωληνώσεις</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>Μόνωση</td>
<td>7%</td>
<td>89%</td>
</tr>
<tr>
<td>ηλεκτρικός εξοπλισμός</td>
<td>19%</td>
<td>89%</td>
</tr>
<tr>
<td>μετρήσεις - έλεγχος</td>
<td>35%</td>
<td>66%</td>
</tr>
<tr>
<td>τεχνική μελέτη</td>
<td>45%</td>
<td>66%</td>
</tr>
<tr>
<td>Συνολικό κόστος</td>
<td>250%</td>
<td>250%</td>
</tr>
</tbody>
</table>

Για τον υπολογισμό του συνολικού κόστους της επένδυσης χρησιμοποιείται η μέθοδος των προσαυξημένων υπολογισμών. [28],[29] Οι συντελεστές προσαύξησης υπολογίζονται με βάση τον παραπάνω πίνακα και προκύπτει ότι το κόστος κάθε μεμονωμένου στοιχείου εξοπλισμού πρέπει να πολλαπλασιαστεί επί 250% για μία προσέγγιση του συνολικού κόστους του συστήματος ανάκτησης.

Ο υπολογισμός του συνολικού κόστους εγκατάστασης μίας μονάδας ORC ως άθροισμα των κοστών επιμέρους συστατικών του είναι πολύ πιο δύσκολος σε σχέση με το κύκλωμα νερού ατμού. Ο παρακάτω τύπος είναι περισσότερο εμπειρικό. Και δεν περιλαμβάνει τον εναλλάκτη διαθερμικού ελαίου καυσαερίων –αφού αυτός δεν περιλαμβάνεται συνήθως στο σημείο της εγκατάστασης. Το κόστος του εναλλάκτη αυτού υπολογίζεται περίπου στο 55% του κόστους της υπόλοιπης μονάδας

\[
C_{\text{ORC_εγκατάστασης}} = 5000 \cdot P_{el}^{-0.174} \text{(€/KW)} \quad (6.1.5)
\]
6.2 ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

6.2.1. ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΟΣ ΝΕΡΟΥ ΑΤΜΟΥ

Σκοπός της θερμοοικονομικής βελτιστοποίησης είναι η εύρεση της θερμοοικονομικά βέλτιστων συνθηκών λειτουργίας. Σε ένα σημείο λειτουργίας που μεγιστοποιεί την απόδοση δεν είναι απαραίτητα και το οικονομικά συμφερόντο- σημείο λειτουργίας. Η απόδοση της εγκατάστασης και το κόστος αυτής περιέχεται κυρίως από την υψηλή πίεση λειτουργίας και τη θερμοκρασία υπερθέρμανσης. Η χαμηλή πίεση θεωρήθηκε δεδομένη.

Αρχικά επιδιώκεται η εύρεση της βέλτιστης πίεσης λειτουργίας του συστήματος. Θεωρώντας σταθερή τιμή της θερμοκρασίας υπερθέρμανσης υπολογίζεται με τους τις παραπάνω σχέσεις το κόστος εγκαταστάσεως/ Kw ταυτόχρονα η καθαρή παραγόμενη ενέργεια για κάθε τιμή υψηλής πίεσης.[30],[31]

Από της ανάλυση προέκυψε το παρακάτω διάγραμμα

\[C_{ORC} = 1,55 \cdot C_{ORC_{εγκατάστασης}} \ (€/KW) \] (6.1.6)
Άρα η λειτουργία του κυκλώματος νερού-ατμού τίθεται σε συνθήκες πίεσης και θερμοκρασίας υπερθέρμανσης

\[p_{\text{high}} = 26.5 \text{ bar} \quad T_{\text{SH}} = 730K = 486.85^\circ C \]

με θερμικό βαθμό απόδοσης 27.7%, \(P_{\text{gross}} = 762 \text{kW} \), \(P_{\text{NET}} = 740 \text{kW} \)

Το κόστος εξοπλισμού προκύπτει 1375 άρα βάσει της θεωρίας του Lucas το κόστος εγκατάστασης επαυξάνεται κατά 25% του κόστους εξοπλισμού.

Το κόστος εγκατάστασης προκύπτει 2620099 €

Σ’ αυτό προστίθεται το κόστος διαφόρων απρόβλεπτων εξόδων κατά την εγκατάσταση ίσο με 5% του κόστους κεφαλαίου.

με το πρόγραμμα διαστασιολόγησης της GEA για τους αερόψυκτους συμπυκνωτές AIR COOLED CONDENSERS υπολογίστηκε ότι απαιτούνται 4 ανεμιστήρες, έκαστος από τους οποίους καταναλώνει 21,4kW. Η συνολική επιφάνεια που απαιτούν είναι 111m²
6.2.2. ΘΕΡΜΟΟΙΚΟΝΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ORC

Κατά ανάλογο τρόπο μελετήθηκαν θερμοοικονομικά τα συστήματα ORC που προκύπτουν για κάθε εργαζόμενο μέσο σε κάθε πίεση και θερμοκρασία λειτουργίας.[31] Ενδεικτικά παρατίθεται το διάγραμμα κόστους εγκατάστασης – πίεσης-ισχύος για το κύκλωμα με αναγεννητή και εργαζόμενο μέσο το τολουένιο.

Παρατηρούμε ότι η θερμοοικονομικά βέλτιστη λύση είναι και θερμοδυναμικά βέλτιστη.
6.1 ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Για καθέναν από τους μελετηθέντες κύκλους επιλέχθηκε ο βέλτιστος θερμοοικονομικά και θα αξιολογηθεί. Θα μελετηθούν δύο σενάρια, το πρώτο με επιδότηση ΠΑΒΕΤ και το δεύτερο με δάνειο 50% επί του κόστους κεφαλαίου.

Θεωρήθηκαν ετήσια έξοδα ασφάλισης 0,2 επί του Κόστους Κεφαλαίου

Κόστος συντήρησης και λειτουργίας ίσο με 20% του Κόστους εξοπλισμού συν το κόστος των αερόψυκτων μονάδων

Για κάθε έτος υπολογίστηκαν τα έσοδα από την πώληση της ηλεκτρικής ενέργειας

Τα έξοδα προ φόρου ίσα με το ΚΣΛ, το κόστος ασφάλισης και λοιπά έξοδα που τέθηκαν ίσα με 0,8% επί του Κόστους Επένδυσης

Το φορολογητέο ποσό τέθηκε ίσο με τη διαφορά εσόδων-εξόδων μείον τις ετήσιες αποσβέσεις του εξοπλισμού

Ο φόρος προέκυψε ως το γινόμενο του φορολογητέου ποσού επί 25%[33]

Τα έξοδα μετά φόρου είναι τα έξοδα προσαυξημένα κατά το φόρο

Τα καθαρά έσοδα ετησίως είναι ίσα συνεπώς με τα έσοδα πλην τα έξοδα μετά φόρου.

ΕΠΙΔΟΤΗΣΗ ΠΑΒΕΤ[35]

Το πρόγραμμα του ΕΣΠΑ δίνει τη δυνατότητα μέχρι 75% επιχορήγηση. Για τις παραπάνω συνθήκες

Κύκλωμα Νερού ατμού

Για πίεση λειτουργίας 26,5 bar και θερμοκρασία υπερθέρμανσης 460°C

Επιλέχθηκε επιτόκιο αναγωγής 7% και ορίζοντας επένδυσης 15 έτη.

Θεωρείται επιδότηση ΠΑΒΕΤ 75%

<table>
<thead>
<tr>
<th>Το Κόστος εξοπλισμού</th>
<th>1132855,378 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Το κόστος κεφαλαίου</td>
<td>2620099,45 €</td>
</tr>
</tbody>
</table>
Κύκλωμα ORC (Τολουένιο με αναγεννητή)

<table>
<thead>
<tr>
<th>Το Κόστος εξοπλισμού</th>
<th>2501050 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Το κόστος κεφαλαίου</td>
<td>3876828 €</td>
</tr>
</tbody>
</table>

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ - ΤΟ ΚΥΚΛΩΜΑ ΝΕΡΟΥ ΑΤΜΟΥ ΜΕ 75% ΕΠΙΧΟΡΗΓΗΣΗ

Τα έσοδα υπολογίστηκαν με τιμή πώλησης της ηλεκτρικής ενέργειας 87,85/MWh [36] για 8700 ώρες λειτουργίας.

ΕΤΗΣΙΕΣ ΧΡΗΜΑΤΟΡΡΟΕΣ

Με το κριτήριο αυτό η επένδυση αποδεικνύεται βιώσιμη και αποσβαίνει στα 4,2 έτη.

Κόστος Κιλοβατώρας: 0,06148€
Το επιτόκιο αναγωγής που μηδενίζει την καθαρή παρούσα αξία είναι 28% κατά πολύ μεγαλύτερο του κόστους του χρήματος.

Με δανειοδότηση από τράπεζα με επιτόκιο 7% και χρόνο αποπληρωμής 6 έτη η επενδύση δεν είναι βιώσιμη. Φαίνεται να αποσβαίνει μετά τα 20 έτη. Το ενδογενές ποσοστό απόδοσης κυμαίνεται στο 0,5% επιβαιβεώνοντας τα παραπάνω και η καθαρή παρούσα αξία είναι αρνητική. Ο λόγος που συμβαίνει αυτό είναι το υψηλό επιτόκιο δανεισμού, ο βραχύς χρόνος αποπληρωμής του δανείου. Με λίγες δοκιμές προέκυψε ότι για επιτόκιο δανεισμού 7% το έργο έχει περίοδο αποπληρωμής τα 14 χρόνια εάν χρηματοδοτηθεί κατά 25% και το κόστος του χρήματος μειωθεί στο 4%.

Κόστος κιλοβατώρας: 0,1085€ τα πρώτα 6 χρόνια 0,070€ κάθε επόμενο έτος.

ΕΤΗΣΙΕΣ ΧΡΗΜΑΤΟΡΡΟΕΣ
ΚΥΚΛΩΜΑ ORC

ΜΕ ΕΠΙΧΟΡΗΓΗΣΗ 75%

Η τιμή της καθαράς παρούσας αξίας είναι θετική άρα η επένδυση είναι βιώσιμη. Ο χρόνος αποπληρωμής φαίνεται να είναι στα 6,5 χρόνια. Ο εσωτερικός βαθμός απόδοσης είναι 18% κατά πολύ μεγαλύτερος του κόστους του χρήματος, Μικρότερος όμως της αντίστοιχης επένδυσης με νερό.

Κόστος κιλοβατώρα 0,0349€

IRR=18%
Η καθαρή παρούσα αξία είναι αρνητική. Χρόνος αποπληρωμής περίπου τα 20 έτη. Σε μία χώρα με μικρότερο κόστος χρήματος ή χαμηλότερο επιτόκιο δανεισμού ο χρόνος αποπληρωμής θα ήταν μικρότερος.

Κόστος κιλοβατώρας 0,095€ για τα πρώτα έξι χρόνια 0,032€ για κάθε επόμενο.
ΒΙΒΛΙΟΓΡΑΦΙΑ

[6] ΠΙΟΥΛΑ Α.Ε. ΑΠΕΥΘΥΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑ

[7] Siemens Glass Focus 2010

[9] 34F.J. Fernández*, M.M. Prieto, I. Suárez, Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids

[10] Vankeirsbilck I.I, Vanslambrouck B.*1, Gusev S.1, De Paepe M.2 Organic Rankine Cycle as efficient alternative to steam cycle for small scale power generation.

[14] www.therminol.com

[16] Sotirios Karellas, Assist.-Prof.; Aris-Dimitrios Leontaritis; Georgios Panousis;

[23] Veirein Deutscher Ingenieure, VDI HEAT ATLAS

[33] Δημήτριος Χ. Παναγιωτακόπουλος , “Συστημική Μεθοδολογία και Τεχνική Οικονομική”, Ζυγός, Β’έκδοση

[34] ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ, ΝΟΜΟΣ 3851, Αρ. Φύλλου 85, 4 Ιουνίου 2010
