Nonlinear second-order multivalued boundary value problems

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Gasinski, L en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:19:20Z
dc.date.available 2014-03-01T01:19:20Z
dc.date.issued 2003 en
dc.identifier.issn 0253-4142 en
dc.identifier.uri http://hdl.handle.net/123456789/15429
dc.subject Convex and nonconvex problems en
dc.subject Hartman condition en
dc.subject Leray-Schauder alternative en
dc.subject Maximal monotone operator en
dc.subject Pseudomonotone operator en
dc.subject Vector p-Laplacian en
dc.subject.classification Mathematics en
dc.subject.other Laplace transforms en
dc.subject.other Mathematical operators en
dc.subject.other Problem solving en
dc.subject.other Theorem proving en
dc.subject.other Vectors en
dc.subject.other Hartman condition en
dc.subject.other Leray-Schauder alternative en
dc.subject.other Maximal monotone operator en
dc.subject.other Boundary value problems en
dc.title Nonlinear second-order multivalued boundary value problems en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02829608 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02829608 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper we study nonlinear second-order differential inclusions involv- ing the ordinary vector p-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the 'convex' and 'nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our result. en
heal.journalName Proceedings of the Indian Academy of Sciences: Mathematical Sciences en
dc.identifier.doi 10.1007/BF02829608 en
dc.identifier.isi ISI:000185414900006 en
dc.identifier.volume 113 en
dc.identifier.issue 3 en
dc.identifier.spage 293 en
dc.identifier.epage 319 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record