Numerical error analysis in Zernike moments computation

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papakostas, GA en
dc.contributor.author Boutalis, YS en
dc.contributor.author Papaodysseus, CN en
dc.contributor.author Fragoulis, DK en
dc.date.accessioned 2014-03-01T01:24:46Z
dc.date.available 2014-03-01T01:24:46Z
dc.date.issued 2006 en
dc.identifier.issn 0262-8856 en
dc.identifier.uri http://hdl.handle.net/123456789/17423
dc.subject Feature extraction en
dc.subject Finite precision error en
dc.subject Image vision en
dc.subject Numerical stability en
dc.subject Recursive computation en
dc.subject Zernike moments en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Optics en
dc.subject.other Algorithms en
dc.subject.other Convergence of numerical methods en
dc.subject.other Feature extraction en
dc.subject.other Measurement errors en
dc.subject.other Recursive functions en
dc.subject.other Finite precision error en
dc.subject.other Image vision en
dc.subject.other Recursive computation en
dc.subject.other Zernike moments en
dc.subject.other Computational methods en
dc.title Numerical error analysis in Zernike moments computation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.imavis.2006.02.015 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.imavis.2006.02.015 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract An exact analysis of the numerical errors being generated during the computation of the Zernike moments, by using the well-known 'q-recursive' method, is attempted in this paper. Overflow is one kind of error, which may occur when one needs to calculate the Zernike moments up to a high order. Moreover, by applying a novel methodology it is shown that there are specific formulas, which generate and propagate 'finite precision error'. This finite precision error is accumulated during execution of the algorithm, and it finally 'destroys' the algorithm, in the sense that eventually makes its results totally unreliable. The knowledge of the exact computation errors and the way that they are generated and propagated is a fundamental step for developing more robust error-free recursive algorithms, for the computation of Zernike moments. © 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Image and Vision Computing en
dc.identifier.doi 10.1016/j.imavis.2006.02.015 en
dc.identifier.isi ISI:000240577200005 en
dc.identifier.volume 24 en
dc.identifier.issue 9 en
dc.identifier.spage 960 en
dc.identifier.epage 969 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record