HEAL DSpace

On discontinuous strain fields in incompressible finite elastostatics

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Lazopoulos, KA en
dc.date.accessioned 2014-03-01T01:24:47Z
dc.date.available 2014-03-01T01:24:47Z
dc.date.issued 2006 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri http://hdl.handle.net/123456789/17430
dc.subject Bifurcations en
dc.subject Continuum mechanics en
dc.subject Discontinous strain en
dc.subject Finite elasticity en
dc.subject Singularities en
dc.subject Two phase states en
dc.subject.classification Mechanics en
dc.subject.other Continuum mechanics en
dc.subject.other Deformation en
dc.subject.other Maxwell equations en
dc.subject.other Problem solving en
dc.subject.other Tensors en
dc.subject.other Bifurcations en
dc.subject.other Discontinous strain en
dc.subject.other Finite elasticity en
dc.subject.other Two phase states en
dc.subject.other Elasticity en
dc.title On discontinuous strain fields in incompressible finite elastostatics en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2005.07.047 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2005.07.047 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are considered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the simplest singularities, including Maxwell's sets, are the cusp singularities, cusp conditions for the total energy function of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple shearing problem. (c) 2005 Published by Elsevier Ltd. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2005.07.047 en
dc.identifier.isi ISI:000238550000018 en
dc.identifier.volume 43 en
dc.identifier.issue 14-15 en
dc.identifier.spage 4357 en
dc.identifier.epage 4369 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record