HEAL DSpace

On the low frequency asymptotics for the 2-D electromagnetic transmission problem

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Anestopoulos, CN en
dc.contributor.author Argyropoulos, EE en
dc.date.accessioned 2014-03-01T01:24:48Z
dc.date.available 2014-03-01T01:24:48Z
dc.date.issued 2006 en
dc.identifier.issn 1446-1811 en
dc.identifier.uri http://hdl.handle.net/123456789/17437
dc.subject Electromagnetic transmission en
dc.subject Low frequency en
dc.subject Scattering theory en
dc.subject.classification Mathematics, Applied en
dc.subject.other HELMHOLTZ-EQUATION en
dc.subject.other SCATTERING en
dc.title On the low frequency asymptotics for the 2-D electromagnetic transmission problem en
heal.type journalArticle en
heal.identifier.primary 10.1017/S1446181100009913 en
heal.identifier.secondary http://dx.doi.org/10.1017/S1446181100009913 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We examine the transmission problem in a two-dimensional domain, which consists of two different homogeneous media. We use boundary integral equation methods on the Maxwell equations governing the two media and we study the behaviour of the solution as the two different wave numbers tend to zero. We prove that as the boundary data of the general transmission problem converge uniformly to the boundary data of the corresponding electrostatic transmission problem, the general solution converges uniformly to the electrostatic one, provided we consider compact subsets of domains. © Australian Mathematical Society 2006. en
heal.publisher AUSTRALIAN MATHEMATICS PUBL ASSOC INC en
heal.journalName ANZIAM Journal en
dc.identifier.doi 10.1017/S1446181100009913 en
dc.identifier.isi ISI:000236631600007 en
dc.identifier.volume 47 en
dc.identifier.issue 3 en
dc.identifier.spage 397 en
dc.identifier.epage 411 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record