Raman study of the heavy fermion system URu2Si2 at low temperatures and high hydrostatic pressures

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Lampakis, D en
dc.contributor.author Palles, D en
dc.contributor.author Liarokapis, E en
dc.contributor.author Mydosh, JA en
dc.date.accessioned 2014-03-01T01:25:02Z
dc.date.available 2014-03-01T01:25:02Z
dc.date.issued 2006 en
dc.identifier.issn 0921-4526 en
dc.identifier.uri http://hdl.handle.net/123456789/17515
dc.subject Heavy fermions en
dc.subject Pressure effects en
dc.subject Raman spectroscopy en
dc.subject.classification Physics, Condensed Matter en
dc.subject.other Hydrostatic pressure en
dc.subject.other Low temperature effects en
dc.subject.other Phase separation en
dc.subject.other Pressure effects en
dc.subject.other Raman spectroscopy en
dc.subject.other Single crystals en
dc.subject.other Heavy fermions en
dc.subject.other Hydrostatic pressure measurements en
dc.subject.other Low temperatures en
dc.subject.other Fermions en
dc.title Raman study of the heavy fermion system URu2Si2 at low temperatures and high hydrostatic pressures en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.physb.2006.01.362 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.physb.2006.01.362 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A systematic Raman study has been carried out on single crystals of the heavy fermion URu2Si2 compound at low temperatures (down to similar to 6 K) and high hydrostatic pressures (up to similar to 5 GPa). At ambient pressures and below 20 K, small modifications in the Si A(1g) mode have been observed. With increasing pressure, this mode shifts to higher energies at a high increment rate (> 6cm(-1)/GPa) at room temperature, while the pressure dependence of its linewidth shows an anomalous behavior decreasing suddenly above similar to 2GPa. Hydrostatic pressure measurements at similar to 2.4 GPa and low temperatures have revealed a broad weak peak at similar to 370cm(-1), which is absent at ambient pressures and disappears above similar to 200 K. These effects can be related with a pressure-dependent phase separation. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Physica B: Condensed Matter en
dc.identifier.doi 10.1016/j.physb.2006.01.362 en
dc.identifier.isi ISI:000238426600247 en
dc.identifier.volume 378-380 en
dc.identifier.issue SPEC. ISS. en
dc.identifier.spage 578 en
dc.identifier.epage 580 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record