HEAL DSpace

Scheduling starting times for an active redundant system with non-identical lifetimes

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kokolakis, G en
dc.contributor.author Papageorgiou, E en
dc.date.accessioned 2014-03-01T01:25:06Z
dc.date.available 2014-03-01T01:25:06Z
dc.date.issued 2006 en
dc.identifier.issn 0307-904X en
dc.identifier.uri http://hdl.handle.net/123456789/17545
dc.subject Active redundancy en
dc.subject Non-identical units en
dc.subject Optimal ordering en
dc.subject Parallel system en
dc.subject Recursive probabilistic analysis en
dc.subject Reliability en
dc.subject Standbys en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Optimization en
dc.subject.other Probability en
dc.subject.other Redundancy en
dc.subject.other Reliability en
dc.subject.other Scheduling en
dc.subject.other Active redundancy en
dc.subject.other Non-identical lifetimes en
dc.subject.other Optimal ordering en
dc.subject.other Parallel system en
dc.subject.other Recursive probabilistic analysis en
dc.subject.other Standbys en
dc.subject.other Operations research en
dc.subject.other Operations research en
dc.subject.other Optimization en
dc.subject.other Probability en
dc.subject.other Redundancy en
dc.subject.other Reliability en
dc.subject.other Scheduling en
dc.title Scheduling starting times for an active redundant system with non-identical lifetimes en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apm.2005.08.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apm.2005.08.010 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Here we examine an active redundant system with scheduled starting times of the units. We assume availability of n non-identical, non-repairable units for replacement or support. The original unit starts its operation at time s(1) = 0 and each one of the (n - 1) standbys starts its operation at scheduled time s(i) (i = 2,..., n) and works in parallel with those already introduced and not failed before s(i). The system is up at times s(i) (i = 2,..., n), if and only if, there is at least one unit in operation. Thus, the system has the possibility to work with up to n units, in parallel structure. Unit-lifetimes T-i (i = 1,..., n) are independent with cdf F-i, respectively. The system has to operate without inspection for a fixed period of time c and it stops functioning when all available units fail before c. The probability that the system is functioning for the required period of time c depends on the distribution of the unit-lifetimes and on the scheduling of the starting times s(i). The reliability of the system is evaluated via a recursive relation as a function of the starting times s(i) (i = 2,..., n). Maximizing with respect to the starting times we get the optimal ones. Analytical results are presented for some special distributions and moderate values of n. (c) 2005 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematical Modelling en
dc.identifier.doi 10.1016/j.apm.2005.08.010 en
dc.identifier.isi ISI:000241621100004 en
dc.identifier.volume 30 en
dc.identifier.issue 12 en
dc.identifier.spage 1535 en
dc.identifier.epage 1545 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record