HEAL DSpace

Shape and motion reconstruction of non rigid objects from their 2D projections under uniform expansion conditions

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Provatidis, CG en
dc.contributor.author Venetsanos, DT en
dc.date.accessioned 2014-03-01T01:25:08Z
dc.date.available 2014-03-01T01:25:08Z
dc.date.issued 2006 en
dc.identifier.issn 0015-7899 en
dc.identifier.uri http://hdl.handle.net/123456789/17556
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Engineering, Mechanical en
dc.subject.other FACTORIZATION METHOD en
dc.subject.other IMAGE STREAMS en
dc.subject.other RECOVERY en
dc.title Shape and motion reconstruction of non rigid objects from their 2D projections under uniform expansion conditions en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10010-006-0031-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10010-006-0031-7 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper deals with the 3D-motion and structure reconstruction of a particular class of nonrigid objects based on a sequence of their 2D orthographic projections (images). The investigation focuses on the case where it is known a-priori that the object deforms continuously in a uniform manner performing either expansion or contraction at a constant but, at the same time, unknown rate. Epipolar equations are properly extended to meet the requirements of this particular problem. It is shown that four point correspondences over four views yield a unique solution to motion and structure reconstruction. The theory is supported by a numerical result. en
heal.publisher SPRINGER HEIDELBERG en
heal.journalName FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH en
dc.identifier.doi 10.1007/s10010-006-0031-7 en
dc.identifier.isi ISI:000241281600006 en
dc.identifier.volume 70 en
dc.identifier.issue 3 en
dc.identifier.spage 187 en
dc.identifier.epage 197 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record