A boundary element method solution for anisotropic nonhomogeneous elasticity

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Nerantzaki, MS en
dc.contributor.author Kandilas, CB en
dc.date.accessioned 2014-03-01T01:27:38Z
dc.date.available 2014-03-01T01:27:38Z
dc.date.issued 2008 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri http://hdl.handle.net/123456789/18518
dc.subject Boundary Element Method en
dc.subject Boundary Integral Equation en
dc.subject Fundamental Solution en
dc.subject Integral Representation en
dc.subject Partial Differential Equation en
dc.subject Radial Basis Function en
dc.subject Second Order en
dc.subject.classification Mechanics en
dc.subject.other Anisotropy en
dc.subject.other Boundary integral equations en
dc.subject.other Feedforward neural networks en
dc.subject.other Image segmentation en
dc.subject.other Linear equations en
dc.subject.other Numerical analysis en
dc.subject.other Poisson equation en
dc.subject.other Probability density function en
dc.subject.other Radial basis function networks en
dc.subject.other Analog equations en
dc.subject.other Anisotropic en
dc.subject.other Anisotropic bodies en
dc.subject.other Fictitious sources en
dc.subject.other Field functions en
dc.subject.other Fundamental solutions en
dc.subject.other Governing equations en
dc.subject.other Integral representations en
dc.subject.other Nonhomogeneous en
dc.subject.other Numerical results en
dc.subject.other Plane elastostatic problems en
dc.subject.other Radial basis functions en
dc.subject.other Second orders en
dc.subject.other Two components en
dc.subject.other Variable co-efficient en
dc.subject.other Boundary element method en
dc.title A boundary element method solution for anisotropic nonhomogeneous elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-008-0020-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-008-0020-z en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A new BEM approach is presented for the plane elastostatic problem for nonhomogeneous anisotropic bodies. In this case the response of the body is described by two coupled linear second order partial differential equations in terms of displacement with variable coefficient. The incapability of establishing the fundamental solution of the governing equations is overcome by uncoupling them using the concept of analog equation, which converts them to two Poisson's equations, whose fundamental solution is known and the necessary boundary integral equations are readily obtained. This formulation introduces two additional unknown field functions, which physically represent the two components of a fictitious source. Subsequently, they are determined by approximating them globally with radial basis functions series. The displacements and the stresses are evaluated from the integral representation of the solution of the substitutes equations. The presented method maintains the pure boundary character of the BEM. The obtained numerical results demonstrate the effectiveness and accuracy of the method. © 2008 Springer-Verlag. en
heal.publisher SPRINGER WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-008-0020-z en
dc.identifier.isi ISI:000260218100006 en
dc.identifier.volume 200 en
dc.identifier.issue 3-4 en
dc.identifier.spage 199 en
dc.identifier.epage 211 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record