A displacement solution for transverse shear loading of beams using the boundary element method

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Protonotariou, VM en
dc.date.accessioned 2014-03-01T01:27:40Z
dc.date.available 2014-03-01T01:27:40Z
dc.date.issued 2008 en
dc.identifier.issn 0045-7949 en
dc.identifier.uri http://hdl.handle.net/123456789/18528
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Principal shear axes en
dc.subject Shear en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Civil en
dc.subject.other Deformation en
dc.subject.other Prisms en
dc.subject.other Problem solving en
dc.subject.other Shear stress en
dc.subject.other Principal shear axes en
dc.subject.other Shear centers en
dc.subject.other Shear deformation coefficients en
dc.subject.other Transverse shear stresses en
dc.subject.other Boundary element method en
dc.title A displacement solution for transverse shear loading of beams using the boundary element method en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compstruc.2007.06.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compstruc.2007.06.005 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of prismatic beams of arbitrary simply or multiply connected cross section. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal ones. The transverse shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. A boundary value problem is formulated with respect to a warping function and solved employing a pure BEM approach requiring only a boundary discretization. The evaluation of the transverse shear stresses at any interior point is accomplished by direct differentiation of this function, while the coordinates of the shear center are obtained from this function using only boundary integration. The shear deformation coefficients are obtained from the solution of two boundary value problems with respect to warping functions appropriately arising from the aforementioned one, using again only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The accuracy of both the thin tube theory and the engineering beam theory is examined through examples of practical interest. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.journalName Computers and Structures en
dc.identifier.doi 10.1016/j.compstruc.2007.06.005 en
dc.identifier.isi ISI:000255602700015 en
dc.identifier.volume 86 en
dc.identifier.issue 7-8 en
dc.identifier.spage 771 en
dc.identifier.epage 779 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record