HEAL DSpace

Analytic theory of narrow lattice solitons

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Sivan, Y en
dc.contributor.author Fibich, G en
dc.contributor.author Efremidis, NK en
dc.contributor.author Bar-Ad, S en
dc.date.accessioned 2014-03-01T01:27:56Z
dc.date.available 2014-03-01T01:27:56Z
dc.date.issued 2008 en
dc.identifier.issn 0951-7715 en
dc.identifier.uri http://hdl.handle.net/123456789/18639
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Mathematical en
dc.subject.other NONLINEAR SCHRODINGER-EQUATIONS en
dc.subject.other WAVE-GUIDE ARRAYS en
dc.subject.other SOLITARY WAVES en
dc.subject.other BOUND-STATES en
dc.subject.other DISCRETE SOLITONS en
dc.subject.other OPTICAL LATTICES en
dc.subject.other SPATIAL SOLITONS en
dc.subject.other STABILITY THEORY en
dc.subject.other GROUND-STATES en
dc.subject.other MATTER WAVES en
dc.title Analytic theory of narrow lattice solitons en
heal.type journalArticle en
heal.identifier.primary 10.1088/0951-7715/21/3/008 en
heal.identifier.secondary http://dx.doi.org/10.1088/0951-7715/21/3/008 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The profiles of narrow lattice solitons are calculated analytically using perturbation analysis. A stability analysis shows that solitons centred at a lattice (potential) maximum or saddle point are unstable, as they drift towards the nearest lattice minimum. This instability can, however, be so weak that the soliton is 'mathematically unstable' but 'physically stable'. Stability of solitons centred at a lattice minimum depends on the dimension of the problem and on the nonlinearity. In the subcritical and supercritical cases, the lattice does not affect the stability, leaving the solitons stable and unstable, respectively. In contrast, in the critical case (e.g. a cubic nonlinearity in two transverse dimensions), the lattice stabilizes the (previously unstable) solitons. The stability in this case can be so weak, however, that the soliton is 'mathematically stable' but 'physically unstable'. © 2008 IOP Publishing Ltd and London Mathematical Society. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Nonlinearity en
dc.identifier.doi 10.1088/0951-7715/21/3/008 en
dc.identifier.isi ISI:000254305500010 en
dc.identifier.volume 21 en
dc.identifier.issue 3 en
dc.identifier.spage 509 en
dc.identifier.epage 536 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record