Compact invariant sets for some quasilinear nonlocal Kirchhoff strings on R-N

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papadopoulos, PG en
dc.contributor.author Stavrakakis, NM en
dc.date.accessioned 2014-03-01T01:28:03Z
dc.date.available 2014-03-01T01:28:03Z
dc.date.issued 2008 en
dc.identifier.issn 0003-6811 en
dc.identifier.uri http://hdl.handle.net/123456789/18685
dc.subject quasilinear hyperbolic equations en
dc.subject Kirchhoff strings en
dc.subject global attractor en
dc.subject unbounded domains en
dc.subject generalised sobolev spaces en
dc.subject weighted L-p spaces en
dc.subject.classification Mathematics, Applied en
dc.subject.other WAVE-EQUATIONS en
dc.subject.other GLOBAL EXISTENCE en
dc.subject.other ATTRACTORS en
dc.title Compact invariant sets for some quasilinear nonlocal Kirchhoff strings on R-N en
heal.type journalArticle en
heal.identifier.primary 10.1080/00036810601127418 en
heal.identifier.secondary http://dx.doi.org/10.1080/00036810601127418 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract We consider the quasilinear nonlocal dissipative Kirchhoff String problem u(u)-phi(x) vertical bar vertical bar x Delta u + delta u(t) + f(u) = 0, x is an element of R-N, t >= 0, with the initial conditions u(x, 0) = u(0)(x) and u(t)(x, 0) = u(1)(x), in the case where N >= 3, delta >= 0, f(u) = |u|(a)u for example, and (phi(x))(-1) is an element of L-N/2(R-N) boolean AND L-infinity(R-N) is a positive function. The purpose of our work is to study the long-time behaviour of the solution of this equation. The compactness of the embeddings D(A) subset of D-1,D-2 (R-N) subset of L-g(2) (R-N) is widely applied. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName APPLICABLE ANALYSIS en
dc.identifier.doi 10.1080/00036810601127418 en
dc.identifier.isi ISI:000253642600001 en
dc.identifier.volume 87 en
dc.identifier.issue 2 en
dc.identifier.spage 133 en
dc.identifier.epage 148 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record