Dispersion characteristics of arbitrary periodic structures with rectangular grooves

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Tigelis, IG en
dc.contributor.author Raguin, J-Y en
dc.contributor.author Ioannidis, ZC en
dc.contributor.author Latsas, GP en
dc.contributor.author Amditis, AJ en
dc.date.accessioned 2014-03-01T01:28:10Z
dc.date.available 2014-03-01T01:28:10Z
dc.date.issued 2008 en
dc.identifier.issn 0195-9271 en
dc.identifier.uri http://hdl.handle.net/123456789/18745
dc.subject Floquet theorem en
dc.subject Rayleigh criterion en
dc.subject Rectangular grooves with smooth edges en
dc.subject Slow-wave structures en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Optics en
dc.subject.classification Physics, Applied en
dc.subject.other Floquet theorem en
dc.subject.other Rayleigh criterion en
dc.subject.other Slow wave structures en
dc.subject.other Space Harmonic Method (SHM) en
dc.subject.other Surface corrugations en
dc.subject.other Transverse magnetic modes en
dc.subject.other Boundary conditions en
dc.subject.other Circular waveguides en
dc.subject.other Dispersion (waves) en
dc.subject.other Periodic structures en
dc.title Dispersion characteristics of arbitrary periodic structures with rectangular grooves en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10762-008-9338-9 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10762-008-9338-9 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The dispersion characteristics of a circular cylindrical waveguide with periodic surface corrugations consisting of rectangular grooves with smoothing are examined using the Space Harmonic Method (SHM). The whole structure is divided into two regions, one describing the propagation volume and one inside the grooves. In the first region, the Floquet theorem is applicable and the field distribution is expressed as a summation of spatial Bloch components, whereas in the second one an appropriate Fourier expansion of standing waves is used. Applying the boundary conditions an infinite system of equations is obtained, which is solved numerically by truncation. Several cases are considered, including the limiting cases of a sinusoidal and a rectangular corrugation profile, to check the accuracy of the method proposed as well as its dependence on the corrugation profile. Numerical results are presented only for transverse magnetic modes, although the formalism can be easily extended to include all kinds of waves that can in principle propagate in such a structure. © 2008 Springer Science+Business Media, LLC. en
heal.journalName International Journal of Infrared and Millimeter Waves en
dc.identifier.doi 10.1007/s10762-008-9338-9 en
dc.identifier.isi ISI:000253755400010 en
dc.identifier.volume 29 en
dc.identifier.issue 4 en
dc.identifier.spage 432 en
dc.identifier.epage 442 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record