Improving the lower bounds on inequivalent Hadamard matrices through orthogonal designs and meta-programming techniques

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Koukouvinos, C en
dc.contributor.author Simos, DE en
dc.date.accessioned 2014-03-01T01:33:38Z
dc.date.available 2014-03-01T01:33:38Z
dc.date.issued 2010 en
dc.identifier.issn 0168-9274 en
dc.identifier.uri http://hdl.handle.net/123456789/20501
dc.subject Hadamard matrices en
dc.subject Meta-programming en
dc.subject Non-periodic autocorrelation function en
dc.subject Orthogonal designs en
dc.subject Sequences en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithmic construction en
dc.subject.other Circulants en
dc.subject.other Hadamard matrices en
dc.subject.other Lower bounds en
dc.subject.other Meta Programming en
dc.subject.other New construction en
dc.subject.other Orthogonal design en
dc.subject.other Periodic autocorrelation functions en
dc.subject.other Symmetric block matrices en
dc.subject.other Systems of equations en
dc.subject.other Correlation detectors en
dc.subject.other Design en
dc.subject.other Regression analysis en
dc.subject.other Orthogonal functions en
dc.title Improving the lower bounds on inequivalent Hadamard matrices through orthogonal designs and meta-programming techniques en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apnum.2009.06.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apnum.2009.06.002 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper, we construct inequivalent Hadamard matrices based on several new and old full orthogonal designs, using circulant and symmetric block matrices. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations do not possess solutions. In addition, we give some new constructions for orthogonal designs derived from sequences with zero autocorrelation. The orthogonal designs used to construct the inequivalent Hadamard matrices are produced from theoretical and algorithmic constructions. (C) 2009 IMACS. Published by Elsevier By. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Applied Numerical Mathematics en
dc.identifier.doi 10.1016/j.apnum.2009.06.002 en
dc.identifier.isi ISI:000277031000006 en
dc.identifier.volume 60 en
dc.identifier.issue 4 en
dc.identifier.spage 370 en
dc.identifier.epage 377 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record