HEAL DSpace

Numerical investigation of simultaneous heat and mass transfer mechanisms occurring in a gypsum board exposed to fire conditions

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kontogeorgos, D en
dc.contributor.author Founti, M en
dc.date.accessioned 2014-03-01T01:33:57Z
dc.date.available 2014-03-01T01:33:57Z
dc.date.issued 2010 en
dc.identifier.issn 1359-4311 en
dc.identifier.uri http://hdl.handle.net/123456789/20631
dc.subject Gypsum en
dc.subject Dehydration en
dc.subject Transient heat mass transfer en
dc.subject Porous materials en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other MOISTURE TRANSFER en
dc.subject.other BUILDING-MATERIALS en
dc.subject.other POROUS-MEDIA en
dc.subject.other CALCIUM-CARBONATE en
dc.subject.other HIGH-TEMPERATURES en
dc.subject.other COUPLED HEAT en
dc.subject.other PLASTERBOARD en
dc.subject.other WALLS en
dc.subject.other DECOMPOSITION en
dc.subject.other PERFORMANCE en
dc.title Numerical investigation of simultaneous heat and mass transfer mechanisms occurring in a gypsum board exposed to fire conditions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.applthermaleng.2010.03.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.applthermaleng.2010.03.006 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper investigates the simultaneous heat and mass transfer mechanisms occurring in a gypsum board exposed to fire conditions. An in-house developed code (HETRAN), simulating heat and mass transfer in porous building materials, has been used to predict the heat and mass transfer characteristics within gypsum boards. The code solves numerically a set of mass and energy equations appropriate for the heat and mass transfer in porous materials, assuming homogeneity, local thermodynamic equilibrium and mass transfer due to diffusion and pressure gradients. The predicted temperature evolution within the gypsum sample, with and without mass transfer, is compared to experimental data, demonstrating that vapor migration through the sample holds a significant role in the board behavior under elevated temperatures. The results demonstrate that vapor migrates towards both directions of the board (fire and ambient side), with diffusion mass transfer being the dominant mass transfer mechanism, whereas air moves towards the "fire side". The dehydration front moves from the "fire side" to the ambient side, with a high velocity in the beginning, which reduces as the front moves through the gypsum sample to the ambient side. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName APPLIED THERMAL ENGINEERING en
dc.identifier.doi 10.1016/j.applthermaleng.2010.03.006 en
dc.identifier.isi ISI:000278675300021 en
dc.identifier.volume 30 en
dc.identifier.issue 11-12 en
dc.identifier.spage 1461 en
dc.identifier.epage 1469 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record