HEAL DSpace

Post-buckling analysis of viscoelastic plates with fractional derivative models

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Babouskos, NG en
dc.date.accessioned 2014-03-01T01:34:19Z
dc.date.available 2014-03-01T01:34:19Z
dc.date.issued 2010 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri http://hdl.handle.net/123456789/20695
dc.subject Analog equation method en
dc.subject Boundary element method en
dc.subject Buckling en
dc.subject Fractional derivatives en
dc.subject Large deflections en
dc.subject Plates en
dc.subject Viscoelasticity en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Analog equation methods en
dc.subject.other Boundary elements en
dc.subject.other Fractional derivatives en
dc.subject.other Large deflection en
dc.subject.other Plates en
dc.subject.other Beams and girders en
dc.subject.other Boundary element method en
dc.subject.other Buckling en
dc.subject.other Control nonlinearities en
dc.subject.other Differentiation (calculus) en
dc.subject.other Elasticity en
dc.subject.other Initial value problems en
dc.subject.other Ordinary differential equations en
dc.subject.other Plates (structural components) en
dc.subject.other Poisson equation en
dc.subject.other Viscoelasticity en
dc.subject.other Viscosity en
dc.subject.other Nonlinear equations en
dc.title Post-buckling analysis of viscoelastic plates with fractional derivative models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enganabound.2010.07.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enganabound.2010.07.003 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The post-buckling response of thin plates made of linear viscoelastic materials is investigated. The employed viscoelastic material is described with fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plate element, are three coupled nonlinear fractional partial evolution type differential equations in terms of three displacements. The nonlinearity is due to nonlinear kinematic relations based on the von Karman assumption. The solution is achieved using the analog equation method (AEM), which transforms the original equations into three uncoupled linear equations, namely a linear plate (biharmonic) equation for the transverse deflection and two linear membrane (Poisson's) equations for the inplane deformation under fictitious loads. The resulting initial value problem for the fictitious sources is a system of nonlinear fractional ordinary differential equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term nonlinear fractional differential equations. The numerical examples not only demonstrate the efficiency and validate the accuracy of the solution procedure, but also give a better insight into this complicated but very interesting engineering plate problem (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Analysis with Boundary Elements en
dc.identifier.doi 10.1016/j.enganabound.2010.07.003 en
dc.identifier.isi ISI:000282112900005 en
dc.identifier.volume 34 en
dc.identifier.issue 12 en
dc.identifier.spage 1038 en
dc.identifier.epage 1048 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record