Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Sulem, J en
dc.contributor.author Stefanou, I en
dc.contributor.author Veveakis, E en
dc.date.accessioned 2014-03-01T01:37:07Z
dc.date.available 2014-03-01T01:37:07Z
dc.date.issued 2011 en
dc.identifier.issn 1434-5021 en
dc.identifier.uri http://hdl.handle.net/123456789/21450
dc.subject Cosserat continuum en
dc.subject Earthquakes en
dc.subject Landslides en
dc.subject Shear heating en
dc.subject Stability analysis en
dc.subject Undrained adiabatic shearing en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Applied en
dc.subject.other Adiabatic limit en
dc.subject.other Adiabatic shearing en
dc.subject.other Cosserat en
dc.subject.other Cosserat continuum en
dc.subject.other Destabilizing effect en
dc.subject.other Fluid transfer en
dc.subject.other Frictional work en
dc.subject.other Ill posed en
dc.subject.other Ill posed problem en
dc.subject.other Instability modes en
dc.subject.other Microinertia en
dc.subject.other Plasticity theory en
dc.subject.other Pore fluids en
dc.subject.other Rock layers en
dc.subject.other Sharp transition en
dc.subject.other Shear heating en
dc.subject.other Shear zone en
dc.subject.other Stability analysis en
dc.subject.other Thermal pressurization en
dc.subject.other Undrained en
dc.subject.other Undrained adiabatic shearing en
dc.subject.other Undrained shearing en
dc.subject.other Earthquakes en
dc.subject.other Heating en
dc.subject.other Initial value problems en
dc.subject.other Landslides en
dc.subject.other Shear flow en
dc.subject.other Shearing en
dc.subject.other Shearing machines en
dc.subject.other Stress-strain curves en
dc.subject.other Linear stability analysis en
dc.title Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10035-010-0244-1 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10035-010-0244-1 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Stability of undrained shearing in a classical Cauchy continuum has been first analyzed by Rice (J Geophys Res 80(11):1531-1536, 1975) who showed that instability occurs when the underlying drained deformation becomes unstable (i.e. in the softening regime of the corresponding drained stress-strain curve). However Vardoulakis (Int J Numer Anal Methods Geomech 9:339-414, 1985; Int J Numer Anal Methods Geomech 10:177-190, 1986) has shown that Rice's linear stability analysis, if performed at the state of maximum deviator, leads to a sharp transition from infinitely stable to infinitely unstable behaviour, which indicates that the solution of the considered initial-value problem does not exist and consequently that the corresponding problem is mathematically ill-posed. Vardoulakis (Géotechnique 46(3):441-456, 1996; Géotechnique 46(3):457-472, 1996) proposed a regularization of the ill-posed problem in the softening regime by resorting to a second grade extension of plasticity theory. In this paper, the kinetics of a granular material is described by a Cosserat continuum as first suggested by Mühlhaus and Vardoulakis (Géotechnique 37:271-283, 1987) and we incorporate the effect of shear heating due to the dissipation of the frictional work. The undrained adiabatic limit is applicable as soon as the slip event is sufficiently rapid and the shear zone broad enough to effectively preclude heat or fluid transfer as it is the case during an earthquake or a landslide. It is shown that shear heating has a destabilizing effect and that instability can occur in the hardening regime if the amount of dilatant strengthening is not sufficient as compared to the effect of thermal pressurization of the pore fluid. It is shown that the linear stability analysis with macro and micro inertia terms leads to the selection of a preferred wave length of the instability mode corresponding to the instability mode with fastest (but finite) growth coefficient. © 2011 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Granular Matter en
dc.identifier.doi 10.1007/s10035-010-0244-1 en
dc.identifier.isi ISI:000290676900015 en
dc.identifier.volume 13 en
dc.identifier.issue 3 en
dc.identifier.spage 261 en
dc.identifier.epage 268 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record