HEAL DSpace

An algorithm for constructing convexity and monotonicity-preserving splines in tension

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Sapidis, NS en
dc.contributor.author Kaklis, PD en
dc.date.accessioned 2014-03-01T01:39:23Z
dc.date.available 2014-03-01T01:39:23Z
dc.date.issued 1988 en
dc.identifier.issn 01678396 en
dc.identifier.uri http://hdl.handle.net/123456789/22749
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0024047722&partnerID=40&md5=4387292643be8099527084c295cd9fc2 en
dc.subject convexity- (monotonicity-) preserving interpolants en
dc.subject convexity-admissible data sets en
dc.subject Exponential spline in tension en
dc.subject.other COMPUTER AIDED DESIGN en
dc.subject.other COMPUTER AIDED GEOMETRIC DESIGN en
dc.subject.other INTERPOLATORY SPLINE IN TENSION en
dc.subject.other MONOTONICITY-PRESERVING SPLINES en
dc.subject.other MATHEMATICAL TECHNIQUES en
dc.title An algorithm for constructing convexity and monotonicity-preserving splines in tension en
heal.type journalArticle en
heal.publicationDate 1988 en
heal.abstract In this paper we consider the problem of constructing an interpolatory spline in tension that matches the convexity and monotonicity properties of the data. In this connection, an algorithm is presented relying on the asymptotic properties of the splines in tension and making use of the generalized Newton-Raphson methods developed by Ben-Israel. The numerical performance of the proposed algorithm is tested and discussed for several data sets. © 1988. en
heal.journalName Computer Aided Geometric Design en
dc.identifier.volume 5 en
dc.identifier.issue 2 en
dc.identifier.spage 127 en
dc.identifier.epage 137 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record