A density version of the Halpern-L\"{a}uchli theorem

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Dodos, P en
dc.contributor.author Kanellopoulos, V en
dc.contributor.author Karagiannis, N en
dc.date.accessioned 2014-03-01T01:59:00Z
dc.date.available 2014-03-01T01:59:00Z
dc.date.issued 2010 en
dc.identifier.uri http://hdl.handle.net/123456789/28820
dc.relation.uri http://arxiv.org/abs/1006.2671 en
dc.subject Level Set en
dc.subject Satisfiability en
dc.title A density version of the Halpern-L\"{a}uchli theorem en
heal.type journalArticle en
heal.publicationDate 2010 en
heal.abstract We prove a density version of the Halpern-L\"{a}uchli Theorem. This settlesin the affirmative a conjecture of R. Laver. Specifically, let us say that atree $T$ is homogeneous if $T$ has a unique root and there exists an integer$b\meg 2$ such that every $t\in T$ has exactly $b$ immediate successors. Weshow that for every $d\meg 1$ and en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record