HEAL DSpace

Decrement of cellulose recalcitrance by treatment with ionic liquid (1-ethyl-3-methylimidazolium acetate) as a strategy to enhance enzymatic hydrolysis

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Xiros, C en
dc.contributor.author Vafiadi, C en
dc.contributor.author Topakas, E en
dc.contributor.author Christakopoulos, P en
dc.date.accessioned 2014-03-01T02:08:36Z
dc.date.available 2014-03-01T02:08:36Z
dc.date.issued 2012 en
dc.identifier.issn 02682575 en
dc.identifier.uri http://hdl.handle.net/123456789/29682
dc.subject Biocatalysis en
dc.subject Biofuel en
dc.subject Biomass en
dc.subject Mathematical modelling en
dc.subject Pre-treatment en
dc.subject.other Biocatalysis en
dc.subject.other Bioconversion process en
dc.subject.other Bioconversion yields en
dc.subject.other Bioprocesses en
dc.subject.other Cellulose crystallinity en
dc.subject.other Crystalline cellulose en
dc.subject.other Enzymatic Degradation en
dc.subject.other Fusarium oxysporums en
dc.subject.other Glucose production en
dc.subject.other High conversions en
dc.subject.other High crystallinity en
dc.subject.other Hydrolysis rate en
dc.subject.other In-situ en
dc.subject.other Liquid treatment en
dc.subject.other Mathematical modelling en
dc.subject.other Molecular solvents en
dc.subject.other Pre-Treatment en
dc.subject.other Simultaneous saccharification and fermentation en
dc.subject.other Structural change en
dc.subject.other Biofuels en
dc.subject.other Biomass en
dc.subject.other Cellulose en
dc.subject.other Enzymatic hydrolysis en
dc.subject.other Glucose en
dc.subject.other Rate constants en
dc.subject.other Substrates en
dc.subject.other Volatile fatty acids en
dc.subject.other Ionic liquids en
dc.subject.other 1 ethyl 3 methylimidazolium acetate en
dc.subject.other 1 methylimidazole en
dc.subject.other cellulose en
dc.subject.other glucose en
dc.subject.other ionic liquid en
dc.subject.other polymer en
dc.subject.other unclassified drug en
dc.subject.other article en
dc.subject.other biotransformation en
dc.subject.other chemical reaction en
dc.subject.other crystallization en
dc.subject.other Fusarium oxysporum en
dc.subject.other hydrolysis en
dc.subject.other nonhuman en
dc.subject.other reaction analysis en
dc.subject.other solvation en
dc.subject.other Fusarium oxysporum en
dc.title Decrement of cellulose recalcitrance by treatment with ionic liquid (1-ethyl-3-methylimidazolium acetate) as a strategy to enhance enzymatic hydrolysis en
heal.type journalArticle en
heal.identifier.primary 10.1002/jctb.2756 en
heal.identifier.secondary http://dx.doi.org/10.1002/jctb.2756 en
heal.publicationDate 2012 en
heal.abstract Background: The high crystallinity of cellulose underlies the recalcitrance that this polymer presents in enzymatic degradation. Thus, a pre-treatment step is applied in most bioconversion processes. Treatments with ionic liquids are considered an emerging pre-treatment technology, owing to their high efficiency in solvating cellulose, over molecular solvent systems. Results: Crystalline cellulose with and without ionic liquid (1-ethyl-3-methylimidazolium acetate) treatment, both commercially available, were used as substrates in enzymatic hydrolysis reactions using the earlier evaluated cellulolytic system of Fusarium oxysporum. The in situ removal of the hydrolysate during reactions enhanced the reaction rate as well as the overall glucose production. Ionic liquid treatment significantly decreased cellulose crystallinity and enhanced bioconversion yields and rates. The effects of cellulose structural changes during treatment on hydrolysis rate were investigated and the recalcitrance constants were determined. Conclusion: The study showed that ionic liquid-treated cellulose became more homogeneous and more easily degradable than the untreated cellulose, a conclusion that was expressed mathematically by the difference in the recalcitrance constants for the two substrates. It was concluded that glucose production from ionic liquid-treated cellulose could achieve very high conversion yields in consolidated bioprocesses or during simultaneous saccharification and fermentation. © 2012 Society of Chemical Industry. en
heal.journalName Journal of Chemical Technology and Biotechnology en
dc.identifier.doi 10.1002/jctb.2756 en
dc.identifier.volume 87 en
dc.identifier.issue 5 en
dc.identifier.spage 629 en
dc.identifier.epage 634 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record