HEAL DSpace

Multiscale modeling for image analysis of brain tumor studies

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Bauer, S en
dc.contributor.author May, C en
dc.contributor.author Dionysiou, D en
dc.contributor.author Stamatakos, G en
dc.contributor.author Buchler, P en
dc.contributor.author Reyes, M en
dc.date.accessioned 2014-03-01T02:11:30Z
dc.date.available 2014-03-01T02:11:30Z
dc.date.issued 2012 en
dc.identifier.issn 00189294 en
dc.identifier.uri http://hdl.handle.net/123456789/29919
dc.subject Brain tumor en
dc.subject glioma en
dc.subject image analysis en
dc.subject tumor biomechanics en
dc.subject tumor growth modeling en
dc.subject.other Atlas-based segmentation en
dc.subject.other Brain atlas en
dc.subject.other Brain images en
dc.subject.other Brain tumors en
dc.subject.other Cellular levels en
dc.subject.other Eulerian approach en
dc.subject.other Finite element computations en
dc.subject.other glioma en
dc.subject.other Growth simulation en
dc.subject.other Image-based modeling en
dc.subject.other Large-scale deformation en
dc.subject.other MR images en
dc.subject.other Multi-scale Modeling en
dc.subject.other Multiphysics model en
dc.subject.other Multiscales en
dc.subject.other Nonrigid registration en
dc.subject.other Patient images en
dc.subject.other Registration algorithms en
dc.subject.other Tissue deformations en
dc.subject.other Tumor growth en
dc.subject.other tumor growth modeling en
dc.subject.other Tumor patient en
dc.subject.other Tumor progressions en
dc.subject.other Algorithms en
dc.subject.other Biomechanics en
dc.subject.other Brain en
dc.subject.other Cell proliferation en
dc.subject.other Computer simulation en
dc.subject.other Deformation en
dc.subject.other Image analysis en
dc.subject.other Image segmentation en
dc.subject.other Tumors en
dc.subject.other Medical imaging en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other biomechanics en
dc.subject.other brain tumor en
dc.subject.other cell proliferation en
dc.subject.other finite element analysis en
dc.subject.other human en
dc.subject.other image analysis en
dc.subject.other mathematical computing en
dc.subject.other model en
dc.subject.other nuclear magnetic resonance imaging en
dc.subject.other prognosis en
dc.subject.other simulation en
dc.subject.other tumor growth en
dc.subject.other Algorithms en
dc.subject.other Brain en
dc.subject.other Brain Neoplasms en
dc.subject.other Computer Simulation en
dc.subject.other Glioma en
dc.subject.other Humans en
dc.subject.other Image Enhancement en
dc.subject.other Image Interpretation, Computer-Assisted en
dc.subject.other Magnetic Resonance Imaging en
dc.subject.other Models, Biological en
dc.subject.other Reproducibility of Results en
dc.subject.other Sensitivity and Specificity en
dc.title Multiscale modeling for image analysis of brain tumor studies en
heal.type journalArticle en
heal.identifier.primary 10.1109/TBME.2011.2163406 en
heal.identifier.secondary http://dx.doi.org/10.1109/TBME.2011.2163406 en
heal.identifier.secondary 5970097 en
heal.publicationDate 2012 en
heal.abstract Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression. © 2011 IEEE. en
heal.journalName IEEE Transactions on Biomedical Engineering en
dc.identifier.doi 10.1109/TBME.2011.2163406 en
dc.identifier.volume 59 en
dc.identifier.issue 1 en
dc.identifier.spage 25 en
dc.identifier.epage 29 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record