HEAL DSpace

Time-scale decomposition in voltage stability analysis of power systems

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Vournas, CD en
dc.contributor.author Sauer, PW en
dc.contributor.author Pai, MA en
dc.date.accessioned 2014-03-01T02:41:08Z
dc.date.available 2014-03-01T02:41:08Z
dc.date.issued 1995 en
dc.identifier.issn 01912216 en
dc.identifier.uri http://hdl.handle.net/123456789/30379
dc.subject multimachine power system en
dc.subject Power System en
dc.subject Singular Perturbation en
dc.subject Time Scale en
dc.subject Voltage Stability en
dc.subject Quasi Steady State en
dc.subject.other Computer simulation en
dc.subject.other Constraint theory en
dc.subject.other Electric loads en
dc.subject.other Electric power system interconnection en
dc.subject.other Mathematical models en
dc.subject.other Matrix algebra en
dc.subject.other Perturbation techniques en
dc.subject.other Synchronous machinery en
dc.subject.other System stability en
dc.subject.other Vectors en
dc.subject.other Algebraic constraint en
dc.subject.other Automatic generation control en
dc.subject.other Automatic voltage regulators en
dc.subject.other Generator overexcitation limiters en
dc.subject.other Load tap changer en
dc.subject.other Multimachine systems en
dc.subject.other Singular perturbation analysis en
dc.subject.other Thermostat controlled loads en
dc.subject.other Time scale decomposition en
dc.subject.other Voltage stability analysis en
dc.subject.other Electric power systems en
dc.title Time-scale decomposition in voltage stability analysis of power systems en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CDC.1995.479120 en
heal.identifier.secondary http://dx.doi.org/10.1109/CDC.1995.479120 en
heal.publicationDate 1995 en
heal.abstract In this paper singular perturbation analysis is applied to a number of power system problems related to voltage stability: First, the generator dynamics in a multimachine power system are accurately decomposed into voltage and frequency (electromechanical) dynamics. Then, the quasi steady state representation of generators for the simulation of slow voltage transients is explained and justified. Finally, the singularity of algebraic constraints leading to what is called 'loss of causality' is found to be equivalent to the instability of faster, unmodeled dynamics of network and loads. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings of the IEEE Conference on Decision and Control en
dc.identifier.doi 10.1109/CDC.1995.479120 en
dc.identifier.volume 4 en
dc.identifier.spage 3459 en
dc.identifier.epage 3464 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record