HEAL DSpace

On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Gasinski, L en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T02:42:18Z
dc.date.available 2014-03-01T02:42:18Z
dc.date.issued 2003 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri http://hdl.handle.net/123456789/30929
dc.subject Clarke subdifferential en
dc.subject Coercive functional en
dc.subject Local linking en
dc.subject Locally Lipschitz functional en
dc.subject Non-smooth critical-point theory en
dc.subject Non-smooth Palais-Smale condition en
dc.subject.classification Mathematics en
dc.title On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential en
heal.type conferenceItem en
heal.identifier.primary 10.1017/S0013091502000159 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0013091502000159 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper we examine periodic problems driven by the scalar p-Laplacian. Using non-smooth critical-point theory and a recent multiplicity result based on local linking (the original smooth version is due to Brezis and Nirenberg), we prove three multiplicity results, the third for semilinear problems with resonance at zero. We also study a quasilinear periodic eigenvalue problem with the parameter near resonance. We prove the existence of three distinct solutions, extending in this way a semilinear and smooth result of Mawhin and Schmitt. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Proceedings of the Edinburgh Mathematical Society en
dc.identifier.doi 10.1017/S0013091502000159 en
dc.identifier.isi ISI:000183535600016 en
dc.identifier.volume 46 en
dc.identifier.issue 1 en
dc.identifier.spage 229 en
dc.identifier.epage 249 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record