Modulation-feature based textured image segmentation using curve evolution

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kokkinos, I en
dc.contributor.author Evangelopoulos, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:42:53Z
dc.date.available 2014-03-01T02:42:53Z
dc.date.issued 2004 en
dc.identifier.issn 15224880 en
dc.identifier.uri http://hdl.handle.net/123456789/31122
dc.subject Component Analysis en
dc.subject Curve Evolution en
dc.subject Feature Vector en
dc.subject Image Segmentation en
dc.subject Texture Analysis en
dc.subject Texture Segmentation en
dc.subject Variational Models en
dc.subject.other Algorithms en
dc.subject.other Computer vision en
dc.subject.other Image analysis en
dc.subject.other Integral equations en
dc.subject.other Lagrange multipliers en
dc.subject.other Mathematical models en
dc.subject.other Modulation en
dc.subject.other Textures en
dc.subject.other Dominant components analysis (DCA) en
dc.subject.other Nonlinear algorithms en
dc.subject.other Segmentation algorithms en
dc.subject.other Texture segmentation en
dc.subject.other Image segmentation en
dc.title Modulation-feature based textured image segmentation using curve evolution en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2004.1419520 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2004.1419520 en
heal.publicationDate 2004 en
heal.abstract In this paper we incorporate recent results from AM-FM models for texture analysis into the variational model of image segmentation and examine the potential benefits of using the combination of these two approaches for texture segmentation. Using the Dominant Components Analysis (DCA) technique we obtain a low-dimensional, yet rich texture feature vector that proves to be useful for texture segmentation. We use an unsupervised scheme for texture segmentation, where only the number of regions is known a-priori. Experimental results on both synthetic and challenging real-world images demonstrate the potential of the proposed combination. © 2004 IEEE. en
heal.journalName Proceedings - International Conference on Image Processing, ICIP en
dc.identifier.doi 10.1109/ICIP.2004.1419520 en
dc.identifier.volume 5 en
dc.identifier.spage 1201 en
dc.identifier.epage 1204 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record