HEAL DSpace

Progressively refining discrete gradient projection method for semilinear parabolic optimal control problems

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T02:43:28Z
dc.date.available 2014-03-01T02:43:28Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri http://hdl.handle.net/123456789/31431
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-24144437181&partnerID=40&md5=193244f4768a97e1618e396921ee1bda en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Approximation theory en
dc.subject.other Constraint theory en
dc.subject.other Finite element method en
dc.subject.other Numerical methods en
dc.subject.other Partial differential equations en
dc.subject.other Problem solving en
dc.subject.other Accumulation points en
dc.subject.other Gradient projection method en
dc.subject.other Optimal control problems en
dc.subject.other Optimality conditions en
dc.subject.other Control theory en
dc.title Progressively refining discrete gradient projection method for semilinear parabolic optimal control problems en
heal.type conferenceItem en
heal.language English en
heal.publicationDate 2005 en
heal.abstract We consider an optimal control problem defined by semilinear parabolic partial differential equations, with convex control constraints. Since this problem may have no classical solutions, we also formulate it in relaxed form. The classical problem is then discretized by using a finite element method in space and a theta-scheme in time, where the controls are approximated by blockwise constant classical ones. We then propose a discrete, progressively refining, gradient projection method for solving the classical, or the relaxed, problem. We prove that strong accumulation points (if they exist) of sequences generated by this method satisfy the weak optimality conditions for the continuous classical problem, and that relaxed accumulation points (which always exist) satisfy the weak optimality conditions for the continuous relaxed problem. Finally, numerical examples are given. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.isi ISI:000229020800028 en
dc.identifier.volume 3401 en
dc.identifier.spage 240 en
dc.identifier.epage 248 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record