Biaffine matrix inequality properties and computational methods

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Goh, K en
dc.contributor.author Turan, L en
dc.contributor.author Safonov, M en
dc.contributor.author Papavassilopoulos, G en
dc.contributor.author Ly, J en
dc.date.accessioned 2014-03-01T02:48:13Z
dc.date.available 2014-03-01T02:48:13Z
dc.date.issued 1994 en
dc.identifier.uri http://hdl.handle.net/123456789/33639
dc.subject Computational Method en
dc.subject Global Optimization en
dc.subject Matrix Inequalities en
dc.subject nonsmooth optimization en
dc.subject Robust Control en
dc.subject Symmetric Matrices en
dc.title Biaffine matrix inequality properties and computational methods en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ACC.1994.751863 en
heal.identifier.secondary http://dx.doi.org/10.1109/ACC.1994.751863 en
heal.publicationDate 1994 en
heal.abstract Many robust control synthesis problems, including μ/km-synthesis, have been shown to be reducible to the problem of finding a feasible point under a biaffine matrix inequality (BMI) constraint. The paper discusses the related problem of minimizing the maximum eigenvalue of a biaffine combination of symmetric matrices, a biconvex, nonsmooth optimization problem. Various properties of the problem are examined and several en
heal.journalName American Control Conference en
dc.identifier.doi 10.1109/ACC.1994.751863 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record