Global optimization technique for velocity control of redundant robots

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Zagorianos, A en
dc.contributor.author Tzafestas, S en
dc.contributor.author Dimou, P en
dc.date.accessioned 2014-03-01T02:48:16Z
dc.date.available 2014-03-01T02:48:16Z
dc.date.issued 1994 en
dc.identifier.uri http://hdl.handle.net/123456789/33677
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0028745941&partnerID=40&md5=d0686012e5dfd480be236ade4e23c2ef en
dc.subject.other Equations of motion en
dc.subject.other Integral equations en
dc.subject.other Inverse problems en
dc.subject.other Joints (structural components) en
dc.subject.other Kinematics en
dc.subject.other Manipulators en
dc.subject.other Motion planning en
dc.subject.other Optimization en
dc.subject.other Redundancy en
dc.subject.other Velocity control en
dc.subject.other Hamiltonian principle en
dc.subject.other Lagrangian equations en
dc.subject.other Redundant robots en
dc.subject.other Robots en
dc.title Global optimization technique for velocity control of redundant robots en
heal.type conferenceItem en
heal.publicationDate 1994 en
heal.abstract Kinematic and control considerations of redundant robots, i.e. robots with more than six axes of motion are currently of increasing interest. The inverse kinematic problem of such robots is treated here by taking into account both the system dynamics, expressed by its Lagrangian L, and the kinematic constraints of the robot. As an objective criterion the Hamilton principle is adopted which states that the actual path in the configuration space renders the value of the definite integral I = ∫t(1)t(2)I,dt stationary with respect to all arbitrary variations of the path between two time instants t1 and t2. Hence one asks for the best set of solutions which minimize the above integral, over the robot path, while the kinematic equation x = J(q)q of the manipulator holds. But the stationary of the Hamilton principle implies the satisfaction of the Euler-Lagrange equations. Thus the joints of the manipulator are forced to follow the optimum path, obeying, at each time, the dynamic equations of the system. A numerical example concerning a robotic manipulator with one degree of redundancy illustrates the method. en
heal.publisher Computational Mechanics Publ en
heal.journalName [No source information available] en
dc.identifier.spage 219 en
dc.identifier.epage 223 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record