Surface lattice solitons: Analytical solutions

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kominis, Y en
dc.contributor.author Papadopoulos, A en
dc.contributor.author Tsopelas, I en
dc.contributor.author Droulias, S en
dc.contributor.author Efremidis, N en
dc.contributor.author Papazisimos, G en
dc.contributor.author Hizanidis, K en
dc.date.accessioned 2014-03-01T02:51:16Z
dc.date.available 2014-03-01T02:51:16Z
dc.date.issued 2007 en
dc.identifier.issn 0277786X en
dc.identifier.uri http://hdl.handle.net/123456789/35437
dc.subject Lattice solitons en
dc.subject Nonlinear guided waves en
dc.subject Surface solitons en
dc.subject.other Crystal lattices en
dc.subject.other Nonlinear analysis en
dc.subject.other Phase space methods en
dc.subject.other Refractive index en
dc.subject.other Robustness (control systems) en
dc.subject.other Wave propagation en
dc.subject.other Analytical solutions en
dc.subject.other Lattice solitons en
dc.subject.other Nonlinear guided waves en
dc.subject.other Surface solitons en
dc.subject.other Solitons en
dc.title Surface lattice solitons: Analytical solutions en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.722684 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.722684 en
heal.identifier.secondary 65810M en
heal.publicationDate 2007 en
heal.abstract A novel phase-space method is employed for the construction of analytical stationary solitary waves located at the interface between a periodic nonlinear lattice of the Kronig-Penney type and a linear (or nonlinear) homogeneous medium. The method provides physical insight and understanding of the shape of the solitary wave profile and results to generic classes of localized solutions having a zero background or nonzero semi-infinite background. For all cases, the method provides conditions for the values of the propagation constant of the stationary solutions and the linear refractive index in each part in order to assure existence of solutions with specific profile characteristics. The evolution of the analytical solutions under propagation is investigated for cases of realistic configurations and interesting features are presented while their remarkable robustness is shown to facilitate their experimental observation. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.722684 en
dc.identifier.volume 6581 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record