HEAL DSpace

Exploring close-optimal solutions for the time constrained scheduling problem in project management

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kiriklidis, C en
dc.contributor.author Kirytopoulos, K en
dc.contributor.author Rokou, E en
dc.date.accessioned 2014-03-01T02:53:16Z
dc.date.available 2014-03-01T02:53:16Z
dc.date.issued 2011 en
dc.identifier.issn 21573611 en
dc.identifier.uri http://hdl.handle.net/123456789/36205
dc.subject genetic algorithm en
dc.subject project management en
dc.subject resource leveling en
dc.subject Time constraint project scheduling en
dc.subject.other Fitness functions en
dc.subject.other Project scheduling problem en
dc.subject.other Resource leveling en
dc.subject.other Resource usage en
dc.subject.other Time constrained scheduling en
dc.subject.other Time constraints en
dc.subject.other Two stage approach en
dc.subject.other Two-stage heuristic algorithms en
dc.subject.other Genetic algorithms en
dc.subject.other Heuristic algorithms en
dc.subject.other Industrial engineering en
dc.subject.other Project management en
dc.title Exploring close-optimal solutions for the time constrained scheduling problem in project management en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEEM.2011.6118035 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEEM.2011.6118035 en
heal.identifier.secondary 6118035 en
heal.publicationDate 2011 en
heal.abstract This paper presents a new approach for the Time Constraint Project Scheduling Problem (TCPSP). A two stage heuristic algorithm was developed for this problem. During the first stage a genetic algorithm using as fitness function, a function composition of max resource usage and the differences between actual and desirable resource usage, is executed to get a set of solutions. The second stage consists of choosing the best chromosomes and moving the solution's set start times ±1 to randomly generate another set of solutions. Experimental results of the two stage approach are presented and compared to the single genetic algorithm results. © 2011 IEEE. en
heal.journalName IEEE International Conference on Industrial Engineering and Engineering Management en
dc.identifier.doi 10.1109/IEEM.2011.6118035 en
dc.identifier.spage 844 en
dc.identifier.epage 847 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record