Speeded-up, relaxed spatial matching

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Tolias, G en
dc.contributor.author Avrithis, Y en
dc.date.accessioned 2014-03-01T02:53:28Z
dc.date.available 2014-03-01T02:53:28Z
dc.date.issued 2011 en
dc.identifier.uri http://hdl.handle.net/123456789/36348
dc.subject.other Descriptors en
dc.subject.other Feature correspondence en
dc.subject.other Geometric invariance en
dc.subject.other Matching process en
dc.subject.other Multiple matching en
dc.subject.other Non-rigid objects en
dc.subject.other One-to-one mappings en
dc.subject.other Re-ranking en
dc.subject.other Rigidity constraint en
dc.subject.other Space requirements en
dc.subject.other Spatial matching en
dc.subject.other State of the art en
dc.subject.other Image retrieval en
dc.subject.other Search engines en
dc.subject.other Image processing en
dc.title Speeded-up, relaxed spatial matching en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICCV.2011.6126427 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICCV.2011.6126427 en
heal.identifier.secondary 6126427 en
heal.publicationDate 2011 en
heal.abstract A wide range of properties and assumptions determine the most appropriate spatial matching model for an application, e.g. recognition, detection, registration, or large scale image retrieval. Most notably, these include discriminative power, geometric invariance, rigidity constraints, mapping constraints, assumptions made on the underlying features or descriptors and, of course, computational complexity. Having image retrieval in mind, we present a very simple model inspired by Hough voting in the transformation space, where votes arise from single feature correspondences. A relaxed matching process allows for multiple matching surfaces or non-rigid objects under one-to-one mapping, yet is linear in the number of correspondences. We apply it to geometry re-ranking in a search engine, yielding superior performance with the same space requirements but a dramatic speed-up compared to the state of the art. © 2011 IEEE. en
heal.journalName Proceedings of the IEEE International Conference on Computer Vision en
dc.identifier.doi 10.1109/ICCV.2011.6126427 en
dc.identifier.spage 1653 en
dc.identifier.epage 1660 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record