Small point sets for simply-nested planar graphs

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Angelini, P en
dc.contributor.author Di Battista, G en
dc.contributor.author Kaufmann, M en
dc.contributor.author McHedlidze, T en
dc.contributor.author Roselli, V en
dc.contributor.author Squarcella, C en
dc.date.accessioned 2014-03-01T02:54:01Z
dc.date.available 2014-03-01T02:54:01Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri http://hdl.handle.net/123456789/36538
dc.subject.other Open problems en
dc.subject.other Planar graph en
dc.subject.other Point set en
dc.subject.other Drawing (graphics) en
dc.subject.other Geometry en
dc.subject.other Graph theory en
dc.title Small point sets for simply-nested planar graphs en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-25878-7_8 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-25878-7_8 en
heal.publicationDate 2012 en
heal.abstract A point set P∈⊆∈R2 is universal for a class G if every graph of has a planar straight-line embedding into P. We prove that there exists a O(n(log n/log log n)2)size universal point set for the class of simply-nested n-vertex planar graphs. This is a step towards a full answer for the well-known open problem on the size of the smallest universal point sets for planar graphs [1, 5, 9]. © 2012 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-25878-7_8 en
dc.identifier.volume 7034 LNCS en
dc.identifier.spage 75 en
dc.identifier.epage 85 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record