HEAL DSpace

EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION

DSpace/Manakin Repository

Show simple item record

dc.contributor.author SIMOS, TE en
dc.date.accessioned 2014-03-01T11:45:30Z
dc.date.available 2014-03-01T11:45:30Z
dc.date.issued 1992 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri http://hdl.handle.net/123456789/37461
dc.subject SCHRODINGER EQUATION en
dc.subject RESONANCE PROBLEM en
dc.subject PHASE-LAG en
dc.subject.classification Mathematics, Applied en
dc.title EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION en
heal.type other en
heal.language English en
heal.publicationDate 1992 en
heal.abstract Two-step sixth-order methods with phase-lag of order eight, ten and twelve are developed for the numerical integration of the special second-order initial-value problem. An application to the one-dimensional Schrodinger equation on the resonance problem indicates that these new methods are generally more accurate than methods developed by Chawla, Rao and Neta (this journal, 1986, 1987). en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS en
dc.identifier.isi ISI:A1992HJ34600009 en
dc.identifier.volume 39 en
dc.identifier.issue 1 en
dc.identifier.spage 89 en
dc.identifier.epage 94 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record