HEAL DSpace

Vorticity-preserving motions in classical space-time

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kadianakis, N en
dc.date.accessioned 2014-03-01T01:06:43Z
dc.date.available 2014-03-01T01:06:43Z
dc.date.issued 1986 en
dc.identifier.issn 0369-3554 en
dc.identifier.uri http://hdl.handle.net/123456789/9579
dc.subject 02.40. en
dc.subject 03.40. en
dc.subject Classical mechanics of continuous media : general mathematical aspects en
dc.subject differential geometry and topology en
dc.subject Geometry en
dc.subject.classification Physics, Multidisciplinary en
dc.title Vorticity-preserving motions in classical space-time en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02749004 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02749004 en
heal.language English en
heal.publicationDate 1986 en
heal.abstract In this work we state and prove, in a frame-independent way, necessary and sufficient conditions for vorticity-preserving motions in classical space-time. Also we prove appropriate generalizations of classical Kelvin's theorems for isentropic and isochoric motions. In order to achieve a frame-independent formulation, we use the concept of classical nonrelativistic space-time, considered as a 4-dimensional differentiable manifold M endowed with an affine connection Γ. In this respect our results are generalizations of classical frame-dependent ones, based on a much simpler flat space-time M =T x E, where the « time »T and the « space »E are Euclidean spaces of dimension one and three, respectively. © 1986 Società Italiana di Fisica. en
heal.publisher Società Italiana di Fisica en
heal.journalName Il Nuovo Cimento B Series 11 en
dc.identifier.doi 10.1007/BF02749004 en
dc.identifier.isi ISI:A1986E426000005 en
dc.identifier.volume 95 en
dc.identifier.issue 1 en
dc.identifier.spage 82 en
dc.identifier.epage 98 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record