o P EOvixé Metodfio Iloruteyvelo

2xor) Hhextpohoywv Mrpyovindv
xa Mnyovixedv TrToNoylotodyv

OFV
Bl

Toygac Teyvoroylac IIAnpogopxhc xau
TroloyloTtHv

3
(54
T
NPOMH 5.
XL
nVpPopos

')

A Test Suite for Model Checking Persistent

Memory Programs

AIITAQMATIKH EPTAYTA

SIIYPIAQN ITAYAATOX

Erprénoyv ¢ Kovotavtivoc Yarydvog

Av. Kabnyntic E.M.IL

Abrva, ToONog 2022

XN

m
(0)

Efvixé Metodfio Ilohuteyvelo
2xor) Hhextpohoywv Mrpyovindv
xa Mnyovixedv TrToNoylotodyv

Toygac Teyvoroylac IIAnpogopxhc xau
TroloyloTtHv

..{:;:D
‘§

(RS
TN
_I’ npPoMH .
\ jrlﬂl! ppopos

()
2h
OEV$
Bl

')

A Test Suite for Model Checking Persistent

Memory Programs

AIITAQMATIKH EPTAYTA

SITYPIAQN ITAYAATOX

Emprénov ¢ Kovotavtivog Yaydvag

Av. Kofnyntic E.M.IL

Eyxplbnxe amd tnv teiuely| e€etactin| emtpony| tnv 257 louiiou 2022.

Kovotavtivog Yorydvag Nuwdraog Hanaonbpou Fedypyiog I'voldpag
Av. Kofnyntic E.M.IL Koafnyntic E.M.IL Av. Kafnyntic E.M.IL

Abrva, ToONog 2022

Ynveidov ITavidtog

Awmhopatolyoc Hhextpohdyoc Mryavixdg xow Mnyovixde YTroroyiotodv E.M.IL

Copyright ©) Xrupidwv ITaudtog, 2022.
Me empONaln mavtog dixoumuatog. All rights reserved.

Anoryopeetan 1 avtrypagy, anobrixeuon xou Siavour| tng mopoloos epyasiag, €€ oNoXNpou Y
TUARATOS AUTAS, Yia EUTopxd oxond. Emitpéneton n avatdnwor, anodixeuorn xan Swovour| yia
OXOTO U1} XEEOOGKOTUXO, EXTUOEUTIXAS 1) EPELYNTIXYC PUOTE, UTO TNV TeolTdBeo Vo avapépeTon
N Ty TEOENEUOTE Xa Vo Satneeitan To ooy urvuua. Epwthuata mou agopolv Tt xehon e
gpyaoiog Yot XEpdOOXOTIXO OXOTO TEENEL Vo AnELBUVOVTOL TEOG TOV CUYYEAUPEA.

O andelg xon oL GUUTERACUATO IOV TEEPLEXOVTAL OE AUTO TO EYYEAPO EXPEALOLY TOV CUYYPAUPEN
xou OV mEENEL var epunveulel Tl avtimpocwrevouy T enlonueg Béoeic Tou Efvixod Metodfiou
[To\uteyveiou.

ITepixndm

Ou tekeutaleg e€eli&elc oTig TEvoNOYiEC uviung €xouy @épel 610 enixevipo tnv Enluovn MvAun
(EM), n onola mpoogépet emdboeic ouyxpiowes pe tic DRAM xou mpdofoon oe eninedo byte,
EVG TAEAANNAL efval un TTNTLX, ONAXOY Tol OEDOUEVA TNG TUPUUEVOUV Xl UETA TN OLUXOTN
Tapoy g NAexTELXoL pevpatog. o va e€acpakioet xavelc Ty opbotnTa tpoypauudtoy oe EM, ot
oUyyPOVES apyitEXTOVIXECS, OTwG 1) Intel x86, Tpoopépouv eldnéc evioréc mou yedpouy (flush) to
dedopéva Twv TTNTX®Y cache otny xUpta pvAun. Autéc oL eVIONES dNUOUEYOUY CUYXEXPLIEVES
oelpég eyypapnc otny EM. O gopuaiopods autedv Tov oelpmy diveton and o LovtéNa entuovng
uvAune xan xabopilel Tic EMTEENTES XAUTUC TEGELS TOU CUC THUATOS UETE Old XETOLdL AmOTUY (0L TOL.

Avt n gpyooia avantiooel i couvita eNéyyou yia tpoyedupoata EM. H coulta auty nept-
Ao PBaver litmus tests xou tests oc dopég dedopévwy. Ta litmus tests oToyxebouv ctov Exeyyo
e opBoTNTAC ToL pyakelou Tou yenoiuworoleitar Yot TNV emanBeucT opBdTNTaC TOou TEOYEdU-
natog. Lty epyocia auty| xenowlonotovue o epyareio PERSEVERE, to onolo uhornoiel ey vixn
eXéyou ovtélou v EM xou Beloxetow oe dlapxr) avdntuén. Méoo twv litmus tests xoto-
pépope va Peodue uio ecotepn| aotoyla Tou PERSEVERE, e€outlag tng omoloag dev uropovioe
va povterononbel cwotd 1o Px86 uovtélo enipovne pviunc. To yeyovdg autd avagéobnxe
otoug dnuovpyols tou PERSEVERE, ol onolot npdchecav emnhéov unootnelln otov mupriva
Tou gpyaretou. Ta tests o Sopéc dedouévwv oToyelouy GTOV EXEYXO OPLOUEVOY UNOTIOLNCEMY
BouwY dedOUEVOV X0plC UNEWBWUATE, XoBDSC Xl GE CUYXEXPUIEVOUS UETACYNUATIOHOUS OUTMOVY
and v mpoopatn BiAoypaplo TOU HETATEENOUY QUTES TIG OOUES OF AVBEXTIXOC YEAUUULXOTOL-
fiowwec (durably linearizable). Méow tne coultac pog propéoope vo eNéyEouue OTL oL Baoixéc
eEXDOXEC TV BOUWY VTV dev NTay avlEXTIXEC OE CUYXEOUGELS, EVE Ol UETUOYNUATIONOL TOUS
TEPVAVE EMITUYXWS TOug eENEYyoug pac. Eniong, nepapatiotixope pe e€dheu)rn opouévov flush
EVIOADY TV UETAOYNUATIOUWDY, To omolo 0dynoe ot moapafdoeic opbotnTtag. Autd onuaiver 6T
oL evioXég auTég ebvan amapaitnTes Yoo var eacpanicouy TNy ophdtnTa TwV Sop®Y K¢ TEOSG TIC
anotuyleg cuoTAUUTOC. Ocwpolue 6Tl 1 coulta eENEYyoL pag UTopel va xenowonondel wg odn-
Y6¢ Y To TS va xenowonoindolv epyareio eENéyyou poviélou oe EM yia tnv emorfevon
0pB6TNTAC AVOEXTIXWY douwy dedouévay xat BipAiobnxdy, xabde xon wg onueia avapopds yia
TNV ENBOON AUTWV TV ERYUNElWY.

NANASATIRIINAR L

Enipovn puvAun, Movtéla pviung, Xuvéneia uviung, Texvixéc exéyyou poviélou, Enarrbeuon
opbotnTaC Noyiouxol, Aopéc dedopévmv xnplc XAeWdOuaTA

Abstract

The latest advances in memory technologies have brought Persistent Memory to the spotlight.
Persistent Memory (PM) provides DRAM-like performance and byte-addressability, while
preserving its content in case of a crash (non-volatility). To ensure correctness of programs
targeting PM, memory architectures, like Intel’s x86, have introduced new instructions that
flush the contents of the volatile caches to the persistent domain. These instructions induce
certain persist orderings, which are formalized by persistency memory models and define the
allowed behaviours of the system after a crash.

This thesis develops a test suite for PM programs, consisting of both litmus and data
structure tests. Litmus tests aim to check the sanity of the tool used for verification. In
our case, we used PERSEVERE, which is a persistency model checking tool under current
development. Through our tests, we were able to pinpoint an internal inability of PERSEVERE
to support the Px86 memory model, which led its developers to provide additional support
in the tool’s core. The data structure tests try to test various implementations of lock-free
data structures, as well as some adaptations and transformations found in recent literature
that turn these implementations into durable linearizable ones. With our test suite, we were
able to check that the original implementations of these data structures were not durably
linearizable. On the other hand, the durable versions of the data structures pass our checks.
Furthermore, we experimented with eliminating explicit flush instructions in these versions,
which led to durably linearizability violations and therefore proving the necessity of these
instructions to ensure durable linearizability. Our test suite can be used as a guideline for
how to use model checking to verify durable data structures and persistent libraries, and can
serve as a benchmark for persistency model checking tools.

Key words

Persistent Memory, Memory models, Memory consistency, Model checking, Software verifi-
cation, Lock-free data structures

Evyopioticg

Euyopiote Oepud tov emPrénovta xoldnynt authc Tng dimiwpatiis, x. Koot Laydva, yia
N ouvey) xabodrynon xatd T didpxela TN exndvnonc tng. Ou cugfouléc xou ol xateubivoelg,
ToL You €dwoe, amodelyOnxay xaipieg yio Ty mopela g épeuvac. Koabopiotinr unrpée enlong
1N ouveloopd tou Muiydin Koxoloylovvdxn, urodrgpou diddxtopa oto Max Planck Institute
for Software Systems, énw¢ xau tou emPrénovta xabnynty| Tou %x. Bixtwpa Bagelddn. Puoixd
EUYAELO T XAl T UTONOLTL UENT) TNE EETao IS emitponiic, . Nixo Ilanacmipou xou x. I'idpyo
I'xobpa, oyt uévo yiotl amotéecav PENT aUTAC, oANS xou yiatl pou xivnoov to evdlapépovy
va aoyorndo ye tic I'\dooeg Hpoypopuatiopod o T Yroloylotixd Yuotiuota uéow tng
ddaoxonlog Twv padnudtwy Toug.

Euyopiote, eniong, toug xovivolg pou ¢ioug Tou CUVECQEpAY, WOTE VO TERACOUV T
xeovia Tov omoudwy pou oto E.M.IL euxdpiota xou emxodountixd. Idwadtepn pvelo Bo HBeXa
va 8¢ow oTtoug oupgortntée wou ANéEavdpo I'., Kwvotavtivo M., Nixozéta H., Idoova N.,
Xopttova X., Magzéva N.IL., Nixo Y., aAXd xar tov noudixd you @ido Nixo II., o onolog Ao
mévTa Oimhar pou xau e oTREle o€ GOEC BUOXONIES AVTLUETOTICO.

Téxog, o,Tldnmote €xw xatapépet Yéypet oTiyung O Ba ATay duvatd xwelc TN ey LTOCTH-
et&n mou wou mopelye N untépa pou. ‘Hroav ndvta exel, 6tav v eetaloUouy, xaL TNV EUYAELOTO
HECO OO TNV XAEOLEL HOU YLt UTO.

Ynupldwv Iavldroc,

Abrva, 251 Touniou 2022

ITepieyopeva

IMepixndm

Abstract

Evyapiotieg

ITepiexdpeva

KotdAoyYog TVEAXOVY . . .« . o o e e e e e

Katdhoyog oxnUaTOV o oL

Extetopevny EXAnvixr) Ilepindm o oo

Ewaywyh

Yuvénetar MvAung .

"EXeyyoc Movtéhou

Enipovn Mvrun . .

Aopéc Aedopévav

Youlta EXéyyou yio Enfpovny Mvrun . . o o 0 o oo

AnoteNéopata . . .

Ernthoyoc

Keipevo ota oryyAixd
1. Introduction e
1.1 OVEIVIEW . . . v ot e e e e e e e e e e e
1.2 Contributions L e e
1.3 Organization e e
2. Memory Consistency and Model Checking
2.1 Memory Consistency o e
2.1.1 Sequential Consistency (SC)
2.1.2 Total Store Order (TSO)
2.1.3 Axiomatic versus Operational Memory Models
2.2 Verification L
2.2.1 Stateless Model Checking
2.2.2 Partial Order Reduction
223 GENMC e

2.2.4 KATER

11

13

15

17
17
18
18
19
21
24
28
30

35

35
35
35
36

37
37
37
38
40
41
41
42
43
43

11

3. Persistent Memory 45
3.1 Basics of Persistent Memory 45
3.2 Memory Persistency Models o oo oo 46

3.2.1 Epoch Persistency o o 47
3.2.2 Persistent x86-TSO (Px86) 48
3.2.3 Refinementson Px86 50
3.3 Model Checking for Persistency 0. 51

4. Data Structures 53
4.1 Preliminaries o 0 e e e e e e e e e e e e e 53
4.2 Lock-Free Data Structures 54

4.2.1 Harris’ Linked-List 54
4.2.2 MS-Queueo e e 56
4.2.3 Skiplist oL 57
4.3 Durable Data Structures 58
4.3.1 Durable Linearizability o oo, 58
4.3.2 Persistent Queue 60
4.3.3 NVTraverse o . i o e e e e e e e 60

5. Test Suite e e e e 63
5.1 Litmus Tests e e e e 63
5.2 Data Structure Tests e 66

5.2.1 NVTraverse Tests. o i e e e e e 66
5.2.2 Persistent Queue Tests o 68
5.3 Flush Elimination Tests e 70

6. Results 73
6.1 Results of Litmus Tests 73
6.2 Results of Data Structure Tests oo 73

6.2.1 Results of NVTraverse Tests 73
6.2.2 Results of Persistent Queue Tests 75
6.3 Results of Flush Elimination Tests 75
6.4 Comparison with Consistency Checking 76

7. Epilogue e e e 79
7.1 Related Work e 79
7.2 Conclusion and Future Work 79

A. Test Suite Interface 81

B. Source Code e 83
B.1 Litmus Tests e e e 83
B.2 Data Structure Tests e e e 86
B.3 Flush Elimination Tests i e 88

Bibliography 89

12

Koatdhoyog mivaxwyv

0.1
0.2
0.3
0.4

0.5

Arnoteréoparta tng emdinbeuong opboTNTAC UXEDY TROYEUUUATWY L . . 28
ArnoteNéoparta tng emdindevong opbotntac yioe to NVTraverse. 29
Arnoteréoparto tng emdinbevong opbodtnTag yioe Ty Persistent Queue 29
Anotehéopata tng endinbevong opbotntag yio to NVTraverse pe agaipeon opt-

OUEVOY FLUSh EVIONDV.. « . . v v v vt e e 30
20Y%EIoN ENEYYOU CUVETELNC XL ETUIOVAG « « « « v v v v v e e e e e e e 31

ITivaxeg oto ayyAixo xeipevo

6.1
6.2
6.3
6.4
6.5

Results for litmus tests. 73
Results for NVTraverse tests. 74
Results for Persistent Queue tests. 0. 75
Results for NVTraverse tests with selectively removed flushes. 76
Comparison between consistency and persistency verification. 77

13

Katdloyog oynudtwv

0.1
0.2
0.3
0.4
0.5

ATNG oxONOUBIIXG TEOYEOMUAL « « v v o o 20
Apyuh) xatdotaor g Notog ye Toug xOuPoug ng xou M3 .. L L L 23
Koatdotaon tng Notag totwyufneev tocrash . . . o oo 23
'E€odoc tou PERSEVERE i to WW litmus test 26
Litmus test UETAQPORAC UNVOUOTOS & v v v v v v v s 26

IAARATA OTO AYYALXO XEIUEVO

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4

Al

Modeling Sequential Consistency with a switch. 38
Modeling TSO with a switch and store buffers. 39
Store buffering litmus test showing the difference between SC and TSO. . .. 39
Restoring SC with the use of mfence in SB. 40
N threads performing a write to some variables 42
Memory-storage hierarchy with the newly introduced Persistent Memory layer 45

Simple sequential program Lo 46
Example of pfence instruction Lo 0oL 47
Px86 storage subsystemo 49
Simple sequential programs showcasing the difference of the explicit persist

instructions of Intel’s x86 o 49
Adding an sfence; instruction after flushgpe 50
Initial state of linked-list, 54
State of linked-list after the concurrent insert and delete 55
Marking the next field of the deleted node 55
Example of an MS-Queue 56
Empty queue Y
Dequeue and enqueue concurrently on an empty queue 57
Example of skiplist e 58
Inserting a node to a skiplist L L o oo 58
Initial list containing ng and n3. Lo 59
State of the linked-list right before the crash. 59
Output of PERSEVERE for the WW litmus test 64
Output of PERSEVERE for the WFW litmus test 65
Message passing litmus test L oo oo 65
CAS-based locking litmus test 65
Error graph for WW litmus test. 81

15

Extetapevn EXAnvixn Ilepidndn

H x0pia yYAdooa tne mopodoas SIMAGPATIXAS epyaciog etvon 1 oy yAxr), xuplwe yiot Noyoug
TEOCPACUOTNTAC XA ATOB0ONG TOV TEXVIXWY OpwV. LTNV eXTETOPEVN eAANVIXY Tepidndn Oo
ouvolioouue To TEPLEYOUEVO TG, Bivovtag éugacT oToug Pacixols oplouols, Tic uebodoloyleg
Tou axolovdOnxay xan To anoteéoyota mou thpoue. H Sour| tng evotnag authc elvon oe éva
TEOC €VaL AVTIOTOlYNOT UE TO oy YA XelUevo.

Ewcoyoyn

‘Eva and o mo eAT80(QOpa TEXVONOYIXE ETLTEDYUATA TOV TENEUTHUWY ETWV GTOV TOUEN TG
QPYLTEXTOVIXAC UTONOYLO TV elvau 1) etoarywy i Tne Enipovne MyvAune (EM). H EM otoyelel oty
aVTIXTAo oo Twv Topadootaxey DRAM, evd etvan un monuixy, dnhody Swotneel To Tepleyouevo
NG UETA amd Baxomy| PEVUATOS, OTWS XAVOLY OL dloXOoL.

Qo1600, 10 Vo Ypdel xavels opbd npoypdupata yioo EM eugoviler apxetéc duoxoXieg. Ta
TopddELY UL, Utopoly va ouufolv arotuyies cuoThuatog (system crashes) onowdhnote otiyun
XUTA TNV EXTENECT) TOU TPOYEOUUATOS, YEYOVOS TOU UTOEEL Vo 0By OEL OE ACUVETElS XoTo-
oTdoe TS WVAUNS xatd T didpxeta TN dtadixaotag avdxtnong (recovery) tng xatdotaong
TOU TROYEUUUIATOS. LUVETKC, Ol TROYRAUUUATIO TEC TRETEL VO XATAVOTICOUY TOND TROCEXTIXY. TIC
AVOUEVOUEVES CUUTEQLPORES TV TEOYPIUUATOV TOUS G TEOS To TV GPANUATO, GANGL XAk VoL
xenotponotioouy eldxéc evioréc (m.y. £lush) ol onoleg ypdpouv ta dedopéva twv caches oty
EM. Ou ouurepipopéc tng EM umopolv vo poviehononboly ye tn xefom TwV HovTéiwy empovng
(persistency models), to omolor xabopilouv N oed pe v onola ypdpovton To dedouéva oty
eniuovn uviun.

Ye auth) v epyaoia, Ba culnThcouue THOC UToEoUV Vo XenoylononBoly o LOVTENS ETLUO-
VAc o€ oLVdLAoWOG Ue UeBdBoug eAdyyov povtédov (model checking), ol onoleg elvan TONY oy LEES
TEYVXES ETANADELOTC NOYIOUIXOU, TEOXEWEVOU VoL ENEYEOUUE TNV 0pHOTNTA BlopoE®Y TEOYEoU-
udtov EM. O éxeyyoc yoviélou yia EM eodyel véeg mpox\ioels, Onwe To yeyovog OTL éva
oAU umopel vor cUUPEL OTOLONTOTE GTVYUT xATd TN BldpXELd TOU TEOYEdUUATOS. AuTd 00T YEl
o€ TON) UEYANDTEQO X(WPO XATACTACEWY AN 6,TL TA TAUTOYEOVA TEOYEAUMATA Xwelc crashes.
Oa yenowonoindel to cpyorelo PERSEVERE yia vo eéyEoupe npoypduuato EM xdto and to
Px86 povtého empovrc.

H x0pia cuvelogopd tne epyaoiog eivan 1 dnuiovpyla plag coultag eENEYYOU TEOYROUUATWY
en{povne pvhunc. Xt couita authAv tep o PdvovTon tixpd cuvbeTind tpoypduupata (litmus tests)
HE oxoTd ToV ENEYXO TNG 0pBOTNTAC TOL Epyaleiou, AANG xou TEOYEAUUATA Yidl SOUES BEBOUEVOV
KWELC HNELDWUOTAL, YL T OTIOLXL YENOUOTIOLACAUUE TOCO TIG ATAES TAUTOYEOVES UNOTIOLAOELS TOoUG,
660 xoU XAUVOUPLES TOPAANXYES TOUG TOUC, Ol oTtoleg elvan avlextinds yoauuxonotoyes (durably
linearizable). H ovBetixr yeapuxonomoudtnta elvor 10 Paowd xpithipto opbotntag yior Sopég
oedouévoy oty EM xo péow tng couitag pag emfPeforddyoope 6tL oL ankég exdoyEC TwV BoUwY
AUTOV OV Elvol aVIEXTIDS YRUUUXOTIOLACIIES, OANG Xat OTL 1) apalpeot) £lush eVIONGDY amd TiC
TUEONNXYEC TV douwy odnyel ot mapafdoel ophotnrog.

Exto¢ amd o melpoatixd AmoTENEGUATOL TTOU TOEOUGLALOVTOL GE AUTHY T1) SITAWUATIXY EQY0-
ola ue xpron tng Teéyxovoag coultag, Bewpolue OTL 1 couvita pag uTopel Vol ATOTENEGEL 0BTYO YiaL
NV Xenom epYoNelwv eEXEYY oL poviérou atny EM e oxond tnyv enolriBeuomn avhextindy douwy
xat BuBNofnxwv, adNd xan wg onueio avagopds yia T olyxpelom T€Tolou eldoug epyaNelwy.

17

Yuveéneia MvAuncg

To cOyyeove UTONOYLIOTIXG CUC THUATA XETOLLOTIOLOLY TONNATIAOUC TUPTVEC UE OXOTO TNV
avénon e enidoorc toug. To mo cuvnBiouévo yovtého uviung o autd To CUCTAHUATO Elvon
N xowr VAU, dniadn ta ddpopa VAaTa dpouv téve oTic Bieg Béoeic uvhune [Advedt]. To
EPWTNUA TOU EVXOYA YEVVATOL Efvon: mota elvat 1 oetod e Ty omola ta Sidgpogpa viuata fAémovy Ta
anoteéopara TG extéleons twy vrodolmwy yiudrwy; H andvtnor diveton and o povtéla oviéneiag
(consistency models) pe Pdon ta onola umopel xavels va mpoodioploel tar anoTeENéGUATA EVOG
TONLVNUATLIXOD TROY PAUUATOS.

‘Evo and ta Bacixdtepa ovtéla cuvETElog ot (ong autd mou Peloxeton mo xovid TNy
VTN TRV TEOYEUUUATIO THOY YLot TONUVNUATIXG TEoYpduuata etvar 1 AxolouBiaxy| Xuvénelo
(Sequential Consistency) o oplopdc tne onolac €xet dobel and tov Leslie Lamport [Lamp79]
¢ eEng.

Optopbc. (AxolouBioxh Xuvéneia) Eva notvadonro ovotnua eivar axolovthaxd ov-
VemES edv To amotéleoua xdde extédeons evos mpoyodyuparos elvar To (8o pie To va Eyovy exteleotel
dles ou Aertovgyies axolovihaxd (dnradn va meguuéver) pia eveodn va oroxlnowdel 1 moonyoiuern)
xat va Suatmoelrar 1 oepd Tov mEoyedupatos ya xdlde emelegyaoty.

Ovotaotixd, n Axoloubiaxr Yuvéneia eacpanilel 6Tl udpyet uio oxr didtaln Twyv load
xaL Twv store evToa@v, tnv omoia “BPAEmouy” Ol Tar viuaTta Toawtdyeova Ue Tov (Blo TedTo.
To mpofinua ye v Axolouvboxy Xuvénelo ebvon tL ToAD meploplotint], xabwg xdbe oTiyun
unopel vo exteNeltan wévo pio Evtonn. Xdveton, dNAadY|, 0 TULUANNNOUOS ATO TN XEHOT) TOANDY
TUEHVLV.

N var avtigetwmiotel autd 10 Qouvouevo, €xouv mpotalel mo yohapd HOVTENN CUVETELC,
onoe 1 OXwer) Xewpd Anobrixevone (T'SO - Total Store Ordering). Autd 1o povtélo cuvénelog
elodyel ewdwolg store buffers oe xdbe muprva, uéon tov omolwv “xplfeto” 1 xobuctépnon
Twv stores. Ta loads umopolv va exteholvton mpy oXoxAnpwbolv mporyouueva xatd oelpd
TpoYeduUaToC Writes, xenotdonowwvtag tov buffer Tou nuprva Toug yio var Slafdlouv T TiéS
TV stores. Autd, Gpng, €xel we anoTéENEOUN Vo Elvol ETUTEENTES TEPLOCOTEPES CUUTEPLPORES OE
oxéon pe 1o SC poviéro. o v amo@uyr TE€Tolwy GUUTERLPOEMOY elvan amopolTnTn 1 Xeron
fence evtorov. To TSO povtého yenoulonoteiton eVpEwe amd GUYYEOVES UPYLTEXTOVIXES, OTIWS
1 x86 tn¢ Intel.

Ot nopamdve Teplypa@éc TV LOVTENWY CUVETELAS EYLVOY UE YENOT) AELTOVRYLXNS CTUACLONO-
viag, dnhadY| xdvoue pio apaipecn ToU CUCTAUATOS YETMOWOTOLOVTIG WBUVIXE douxd GToLKEld,
onwe toug store buffers, yia va meprypddoapue mwg to clotnua petofalver and pio xatdo Toom
OTNV ETMOUEVY).

Trdpyet, opwe, xou pio SLPORETIXY| TEOCEYYION VLol VAL EXPEUCTOUY TO HOVTENA GUVETELNS
ue yenon oliopatic onuactoroyiog [Algll2]. Luyxexpwéva, opilovta oyéoec petald twyv
BLapOEmV AELTOLEYLOY TNES UvAUNG Xt TBevTtar cuyxexpluévol teploplolol o8 aUTES TIC OXETELS.
Tao aLopotind LoVTENS KENOLOTOOVY TEOXTXE EVVOLES OXECLOXNS INYEPEAC oL Ol TEPLOPLOWOL
mou tibevton dnuovpyoly €va ahvoro alwudtey, To onolo opllel TIC CUUTERLYPORES Tou elvor
GUVETE(S UE TO EXUCTOTE UOVTENO.

"EXeyyoc Movtélou

H dwidwacio tne emanffevong opbdtntog evog TEOYEIUUATOS OVapERETOL GTN HadnuaTLX
anodelln 6Tl T0 MEdYeouua elvar cLUPOVo UE xdmoto xpithielo opBdtnTag. Mia evgéwg yenot-
pomotolpevn taxtix) oe autd o medlo elvan o éNeyyoc povtélou (model checking), dnhody n
CUC TNUATIXY EEEVEEDVNOT TOL YWEOU XATACTACEWY TOU TEOYEAUHATOS Xou 1 ETaifeucT Tou
xprtnelov opbotnTag o xdbe xatdoTaon.

O mpddteg MpooeYYIOES Yo TOV EXEYYO ULOVTENOL amODAXELAY TIC XATUC TACELS TOU €X0UV
emoxepbel, yio vo uny tig EavaemioxepBolv oo péNNov. Autd, duwe, elvar TeofAnuoTind, xaboe

18

Ol XATAO TAOELS AUTES UTOPEL Vo ypetdlovTal TOND UEYANO aptbud G TolYElwY TOU GUG TAUATOS VLot
VO TROGOLOPLG TOVY, OTWE T TEQLEXOUEVA TNG UVAUNS, TOV XATOYwenTOV x.AT. Tn Nborn oc autod
70 TEOBANUA Sivouv oL TEXVIXES TOL ENEYY 0L LOVTENOU Ywelc xatdoTaon (SMC - Stateless Model
Checking), ot onolec dev ypedleton va anofnxedouv auTéS TIC XaTUO TEOELS.

Opwg, oxdpa xon oL TeXVXEC ENEYYOU UOVTENOU X0plC XAUTACTACT TUPAUUEVOLY EUSAWTES
070 PEYONDTEPO TROBANUA TOV TONUVNUATIXOY oY PaUUdToY, To onolo eivon 1 exbetixn (¥ xou
YELROTERT) aENOT TOL 0ELBUOY TOV XATAC TACEWY WS TPOS TOV UELUS TWV YNUATOY XAl TO UHAXOS
Tou mpoypedupatoc. Lo va petwbel o aplBuodc Twv eEXTENECEWY TV EQYONEIWY ENEYYOU LOVTEN®DY
ywele xatdotaoy yeeldletal xovelc Vo TopUTNEHoEL OTL TOANES Ad AUTEC TIC EXTENECELS £lvol
loodlvaes, dnAadh odnyolv otic Blec xataotdoeic. o mopdderypa, av oAN&EeL 1 oepd and
0o Buadoyxd loads, o xabéva oe BlapopeTin) UETOUPANTY, TO AMOTENECUO EVOS TROYEAUUITOS
Bo mapapeiver To Bo. Tétolou eldoug avopilelc eviordv ovoudlovtar wodtvaues xon to SMC
yeewaletar va eEgpeuVroeL UOVO Wla amd aUTEC.

Ou teyvixéc nou evionilouv Tétolec xNAoELS loOBLUVAULUC EXTENECEMY EVOC TROYEAUUITOS
HE o%0T6 TN PEIWOT TWV GUVONXOY xoTtao Tdoewy xoholvtaw Partial Order Reduction (POR)
(EXdttoon Poociouévn oe Mepiée Awtdéeic). Ou mpdipes texvinés eNdttoone Pactopéves oe
HeEIXES BLUTAEELS UTONOYLLOY GTATIXG TIC XAACELS LOOBLUVAULIOG, EVE OL TO GUYPOVES TETOLES TE-
€ avagépovtar wg texvixée Avvauxnc Eddrrwons faowouévn oe Megués Avardéeic (DPOR
- Dynamic Partial Order Reduction) [Flan05, Abdul4] 86t unoloyilovv Tic xAdoelg Loo-
ouvolag BUVAIXA XATE TNV EXTENEDT] TOU TROYEAUUIATOS UE XENOT EVOS BROUONOYNTY| XeOVOoU
EXTENEDTC.

‘Eva 60yypeovo xaw ol arodotixd SMC epyakelo, nou yenowonotel uia woppr) DPOR, eivou
10 GENMC [Koko21b|. To cuyxexpiuévo gpyaheio xataoxeudlel otadiaxd €vo ypdpo exTténe-
ONG TOU TEOYEAUUATOS ot ENEYXEL O xdBe Priuc av o ypdpog elvon GUVETHSC GUUPWVIL UE TOV
oELOUATIXG OPIOUO TOU EXACTOTE HOVTENOU cLVETELWC. H eloaywy Twv 81dpopnv HoviEAwY GTo
GENMC yivetan pe 1 yerion evog und avdntuén epyoaelou, To onolo ovoudletar KATER. To
KATER 0€xeton cav elcodo €va apyelo mou meplypd@el e 0poug oxeotoxiic dnyePpac €va yo-
VTENO CUVETELNG ot Blvel ooy €€000 %WOLXa, 0 omolog Unopel TOND edxola va evonuatndel atov
nuprva. Tou GENMC.

Enipwovn Mvrun

O e€eli&eic otig TevoNoYieg UVAUNG To TENEUTALO YEOVIX XOU TILO CUYXEXPWEVA 1) AVATTTUEN
e Enipovne MvAune (EM) [Lee09, Kawal2] éyxouv mpoaxtixd ye@ueOoEeL T0 ydouo HETOEY TwV
dr\otepwy Pobuidwv e epapyiac uviune (RAM, caches, xatoywentés) xar Tov XoUNAOTE-
pwv Babuidwv (amobnxevtixds xweog, t.x. SSD, HDD). H EM npoogépel npécfacn ot eninedo
byte, eved mapdAANAo elvon un TINTIXY, ONAadY| Tar BESOPEVA TN TAUPAUEVOUY ol UETE T1| Olo-
XOTN TopOoX NG MAEXTEXOL peluatog. Ol embooelg TN, UINO T, elvon cuUYXEIoWES PE AUTES TNG
DRAM. Autf) otwyur, n EM eivan eunopixd dwbéown and tnyv Intel pye v teyxvoloylo
Optane [Intel9b] xou yropel vor tonofetnbel pall pe ™ DRAM oto 8iddpopo uvAunc A va tnv
AVTIXATAC THOEL TENEIWC.

H enfyovn puviun, ouwg, dnulovpyel oplouéveg BuoxoNieg yia Toug mpoypouuatiotég. Ou
caches avopévetal va Tapaelvouy TTNTIXES, EVE) To OEDOUEVA TOUG BEV EYYRAPOVTAL G T UVAUN
PECWC, OANG OE xdmotar HENNOVTIXT (Tibavoy un vieteppviotiny)) otyph. ¢ anotéeoua, o
rpoyedupata EM unopolv va odnyfioouv tn uvAun Uetd and éva crash oe xotaotdoelg mou
Oev elvol ETMUTEENTES amd TO UOVTENO GUVETELNC TOU CUCTAUNTOS, Onwe delyvouue e to Llopd-
oerypo 0.1

19

IMopdderypa 0.1: Evyypoap?n dedopévoy ctnv EM extdg oeipdg

Ac Bewprioouye to axdlovbo axoloubiaxd TedYeauUa, O6Tou oL uETABANTES X xou ¥ elvan
apyLxomolnuéveg ue 0.

SxApo 0.1: Anh6 axoloubBiaxd mpdypouuo.

ITopdho mou 1 eyypagpr oto x mponyeitan TNE eyypaPric oTo ¥, elvar mBavo 1 yeauur Tng
cache tou y va eyypagel otnv EM mowv and auty tou x. Edv cupel éva crash yetd tnv
EYYPUPTH) TOU ¥ XU TRV TNV EYYEAPY TOu X, TOTE elvon mhovd xatd TNV avdxTtnon tou
TEOYPAUUATOS, TO ¥ VO TEPLEYEL TNV TWH 1, eved To x var e€axoroubel var €xet tnv Ty 0.
Efvar onuovtind v onuelwdel 6t 1 xatdotaon e uvAiung x = 0 Ay = 1 dev pnopel vo
rapatnendel xdtw and to poviého Axoloubioxrc Luvénelag) To poviého ONixnc Xeipdc
Anobfxevone (TSO).

‘Onog xan pe to povtéla cuvEnelg, €ToL xou oty Tepintwon tng EM, urnopoldue va oploouue
Tor AeyOpeva povténa empovic (persistency models) [Pelll4]. Méow autddv tov poviéov, o
TEOYEUUMATIO TAG UTOPEL VoL XAUTAVOY|OEL T OELRA TV EYYPAUPWOY TOU UTOPEL Vo EUPavicTel 6TO0
TEOYEUUUE TOU, ot ETOL VoL PBydNEl CUUTERACUATO Yiol TH) CUUTERLPOPA TOU TEOYEAUHUATOS TOU,
aUTAY TN QPopd, OUWS, K¢ TEOC T crashes.

To yovtéa EMPOVAC UTopovV Vo XaTryoploToinfoly we TEog TN OYECT TOUC UE TO LOVTEND
CUVETELNG TOU GUOTHRATOS, ONAAON av 1 oelpd mou yivovtal ol eyypaéc otnv EM elvan 1 (B
ue TN oepd ou opiletar and To YovTéENO cuVETEG. Av ol BUo celpég TawtilovTon, TOTE UAGUE
Yo QUOTNEE HOVTENO ETULUOVAC, EVE oV Efval DLUOPETIXES €XOLUE yadapd wovtéNo emuovrg. Ta
YONUES LOVTENA YENOWOTOLOOVTOL LA VA TEOGPEREOLY XUNVTERES ETUOOCEC amd Tor o Tned. Mia
SANT) XaTT Y 0pOTIOINGT TWY LOVTEN®Y ETUOVAC Elvan av ot eyypagéc otnv EM yivovtou alyypova,
ONAadY) TNV oTLYUn Tou exteNelton 1 avTio ol EVTIONT, | aclypova, dnhadT| anobnxebovTal oe
xdmotov entyovo buffer xou extelolvron apydtepa.

To o Swdedopévo woviého empovic eivon to Px86 [Raad20], to onolo yovieornotel 1
onuactonoyia g apyttextovixnc x86 tne Intel, n omola UNomolel o TSO poviého ouvénelog.
To Px86 eivon yohapd xou aclyypovo, xabaog yenowonotel évay xaborixd enlpovo buffer yio va
amofnxelel tic eyypagéc, 6tav autéc Pyaivouv and tov avtiotouxo (store) buffer tou exdortote
TUEYVOL.

H x86 apyitextovixn tpocgépet Tig evioég clflush xou clflushopt, ol onoleg xdvouy flush
ulo cache line, xa@cdc xou v sfence, 1 omola xENCUOTOLEITOL YLl VO GUYYEOVICEL TIC EYYRAUPES
otnv EM ané Swupopetind threads. H xprion tng c1flush unopel va anoteédel tny un embuunty
oupneplpopd Tou Tpoyeduuatog WW, av tonofetndel yetald tov 6Vo eyypapny. ‘Oung, Noyo
e aclyyeovne @bong tou Px86, 1 evioly auty neplop(lel wovo tn oelpd mou umopel vo yivouy
oL eyypagéc otnv EM xou o1 6L) eyypagy| tou x oty EM 0o €xel mponynbel tne extéleone
NG EVIOAAG TOU Y.

H acOyypovn glorn tou yoviéhou Px86 eivan avtiBetn ye v avtidndn mou éxouv ol npo-
YEOUUATIOTES YL TN ¥eNoM TwV eVTONGY clflush xou c1flushopt, xabde xou ye v npdopaty
BBXoypapio yia tpv EM [Pelll4, Izral6, Friel8, Frie2la, Scar20]. To npdfAnua autd €pye-
Tan vou AooeL plo tpdogaty avabedpenorn tou Px86 povtélou, 1 onolo yenowonolel olyypoveg
EVTONEC xau amodexvieTon OTL elvon 1oodUvaun pe to Px86. To povtého autd, to onolo ovoudle-
ot PTSOgyn [Khyz21], xenowonotel évav enipovo buffer yio xdbe ypapur tne cache, to onolo
odnyel oy éxgpaon g oelpds eyypapnc otny EM wg pepuy| Sudtaln. O yepinés dlatdiels

20

urmopolv va xenotwononBoly and epyarela SMC, nmou yenowonowiv xdnowr DPOR uébodo
yia TNV €EEPELYNOT] TOU YWEOU XATAC TACEWMY TOU TEOYEAUUATOS. TNV epyacio auth Ba yenot-
ponoiooupe to epyoreto PERSEVERE [Koko2lal, to onolo éxel npdogarta enextabel Mote vo
novtehonolel TV avabewenuévn exdoyr| Tou poviélou empovic Px86.

To PERSEVERE ypenowonotel tov mupriva tou GENMC xou npocBétel utocthpiln yio tov
éxeyyo tne emuovhc. Ilo ouyxexpiuéva, mpoolétel oTo mEdypaupa €va axdua viua, To omoio
xoXelton mapatnenthc avéxtnone (recovery observer). To vAuo awtd exteeitan oe xdbe Briua
NG XATAOXEVHC TOU YRAPOU EXTENECTC, LOVIENOTOLWVTAS TN OLodxacial avdxTnong evog mpo-
YEAUUATOS HETA amd xdmolo crash, xou eENéyyel av TnpolvToL Tar agLOUATA ETLUOVHC TTou opllovTon
and TO UOVTENO ETUOVAS.

It xerion tou epyalelou, 0 TEOYPAUUATIOTAC TEENEL VoL 0ploEL XAMOLES ETUOVES UETO-
BAntéc, oL omolec elvon or pudéveg mou emtpénetan vo diafoacTtodv xatd TN Bradixacion avaxTy-
oNg ToU TEOYEAUUATOS. O 0plopoS aUTHY TwV UETAPANTOV YivVEToL UE XENOT TN HAXPOEVTONAS
__VERIFIER_persistent_storage(). To epyaheio, enlong, mpoopépet tig axdloubeg eviokég
xau \ettovpyieg EM:

1. __VERIFIER_pbarrier(), onola yenowwonoieitar og “pedytng”, o omolog opllel 6Tl OXeg
OL TPOTYOUUEVES EVIONES TOU ROy eduUaTtog Ba Bewpolvtar 6Tl €xouv eyypagel oty EM
xoTd TN Sradixacia TG AVAXTNONS TOU TROY EAUUATOC.

2. __VERIFIER_clflush(), nonola déyetan oav mopdueteo tn Siedbuvorn pwlac petaBAntic xou
ulotmolel N onuoctoloylo Tng clflush eviofc pe Tt onuactoloyia Tou avabenpnuévou
uovtéou Px86.

3. __VERIFIER_recovery routine(), 1 omola efvon 1 cuvdptnon mou TepLEyEL TOV XWOXA
Tou Bot TEEEEL XUTA TNV AVEXTNOT TOU TEOYEEUUATOS

[o tnv meprypapy| Tou YovtéNou emuovig yxenotuonoleital To KATER.

Aopgg Acdouevoyv

Ye éva meptBAIANOV TaUTOYEOVNE EXTENECTIC TIROYPUUUATWY, BLAPOEO VAUXTO UTOROVY VoL EXTE-
Aécouv hettoupyieg mdve o o dour dedouévmv mou potpdleton yetadl toug. Kdbe Nettoupyla
ouvdéetan pe Ty airnomn (request) xou TV andxpion (response) tne. Mia totopia propel va opt-
otel WG Uit TEMEPAOUEVT] oxONOLBIN TV UTHOEWY Xl TOV ATOXQPICEWY TV AELTOURYLOV TOU
extENOLUVTAL amtd BLdpopa VAUATA 6TO TowTdyeovo neptfdihov. Mio o topla ovoudleton oeptaxm
eav xdbe altnon wlac Aertouvpylag axoroubelton auéone ot oelpd TNe o Toplag and TNV amdXEIoN
me.

Me Bdomn tnv évvola tne wotoplag, umopel va optotel to Pacind xpitiiplo ophotnTag plag dourg
dedopévwv ot TouTtoYEovo TEpBEANOY, To onolo elvan 1 yoauuxomomoydtya (linearizability)
[Herl90]. Thio ouyxexpuéva, pio otopio elvon ypapuxotoiown avy elvon Lloodivour e xdmola
oeiptaxt| wotoplo. TTpaxtixd, 1 ypouuxonomnowéTnTL CNUAVEL OTL OL BLAPOPES AELTOLEYIES (ai-
VETOL Vor ABAvVOUVY Y Mpo atopxd péco 6To Bldotnua Tou oplletal omd TNV olTnom xaL TNV
andxELoT) TOUC.

O ypopuixonowowes douég dedouévmv ixavorotoLy enlong tnv non-blocking wdtnTa, o1-
Nadr) wlo aftnon xdmolag hettoupyiog o ypeldletar Vo TEQUUEVEL TNV ONOXAHEWOT) XATOLIG GANNG
expeUpnc ettovpylog. Autod épyeton o avtifeon pe tn cuviBn TpocEyylon TS XENONC XNEWW-
HATOVY Lot TNV EEACPANOT) GLUYYEOVIOUOL G TS Boués Bedouévay, xafng To XAEWBOUAT UTopoVY
var 0d1yioouv oe ade€oda (deadlocks xau livelocks).

Bdion tne napandve 1b16tnTog unopoly vo opto Toiv 500 GUVIHXES TEOOGBOU Yia TUUTOYEOVES
OOUEC DEBOUEVWYV:

21

eXevbepio and xAeddpota (lock-freedom) Mia pébodoc Néyetan bt elvan exeBepn and
HAELBOUOTA EQV LTEEYEL Xdmolal ey yYONoT 0Tl UETAEY TOV EXTENOUYTOV VAUATOV, TOUNIXI-
otov éva Bo tepuatiosl oe menepaouévo apldud Prudtwy.

eXevbepio and avopovy (wait-freedom) Mia pébodoc Néyeton étu elvon exelbepn and
avopovY) €8V ey yudTon 6TL ONaL Tar vrudta B Tepuaticouy oe nenepacuévo aptbud Prudtwy.
Mio pébodoc ywelc avouovr elvan mévTto xon ywele XAeWBOUATa, 0ANG eV Lo Vel To avtibeTo.

Yy epyooia auty) Ba aoyornBolue pe xdnoec Pooinés dopéc eNelBepeg amd UNEWBGUATA,
Tic onoleg Ba ypnowwonoioouvye oty mEWpaUaTIX? Log dtaduxacio. Ou doués dedouévav yweic
XNEWBOUATY Ypnotponotoly evionés, étwe tnv CAS (compare-and-swap), n onoio cuyxplvel pe
ATOULXO TEOTO TO TEPLEYOUEVO Ulag BEomNg UVANG UE Wlal avoe VOUEVT) TWT 1o oy ouTH efvan dvTwg
1) LVOUEVOUEVT], OVOVEWVEL XATIANTAL TNV TWn TNG. XenolonoldvTag, Aotndy, tnv CAS evioly,
oL BOUEC Y wPlC UNEWBWUATE ENEYYOLY CUYXEXPWEVOUC BelxTES Xa xOUPoug TNG EXACTOTES BOUNC
xa o€ MepinTwon Tou 1 evioly) anotiyel Eavapyilouy TN uéhodd toug and v apy).

‘Evo Baocixd napdderypa dounc xoplc xhewdopato ebvar 1 cuvdedeuévn Nota tou Harris
(Harris’ linked-list) [HarrO1]. H Nota auth yenowonotel ™ heybuevn uébodo diorypaphic oe
dVo Pruata, 6mou To TEWTO Briuc YoEXJEEL TOV TEOG OLoty PPt XOUPO, APoLEMVTAC NOYLXd amtd
N NoTa, xou To BelTEPO TOV aaLEel XaL QUOIXE GE XATOLL UETAYEVECTERY YEovixT otiyur. H
ouvdedeuévn Nota tou Harris npoogépet uebddoug elocaymync xou Sworypaghc pe exeubepla and
xhewdopato xan avalitnon otouxelou e exeubepla amd ovoovy).

Enéxtaon tng ouvoedepévne Motag arotelel n doun skiplist. H dour| auty| arotekelton and
TN GUVOEDEUEVES NOTEC TONNWY ETTEOWY, OTOL GTO YAUN\OTEPO eninedo Pploxovion dXa
Ta oToyela TG MoToag. Xta Pnhotepa enineda Prénouue ONo o WxpdTERO apllud xoufwy,
Toe omolat aToxeloLY G YenyopdTeen avalftnon otoiyelnwy e Notag, 1 onola €xel xpovixy
roxumhoxotnta O(log N). H exdoyt xoplc xhewdoduata e skiplist Baciletor 610 unyaviopsd
napxaplopatog Tng ouvdedeuévne Aotag Tou Harris xau ol Aettoupyieg tng ixavonololy Tig (Bieg
ouvbixec Tpoddou pe oty [Mich02b, Herl08].

TéNog, pla oxdun evpéwe Sladedouévn dour| xwelc xXewdwuata etvon 1 ovpd Michael-Scott
(MS-Queue) [Mich96]. H Swadixaoio ewoaywyhc (enqueue) xou e€aywyhc (dequeue) otovyeinv
and ™ Mota yivetaw and 800 onueia tpdcPacng ot Aota, to delxtn head xau to Selxtn tail
avtiotorya. H MS-Queue xdvel xpron e CAS evtoric yio vo oANEEeL Toug delxteg awtolg,
otay xohoLvTow ot avtioToryec pébodol. Idaitepn npocoyn divetan oty nepintwon mou 1 ANoTta
elvan xevr. Ou 800 uéhodol enqueue xou enqueue €youv exeubeplar amd (AEWBOUATL.

H ypappixonomnoiudtnta dev unopel va egoppootel aneubelag otny eniovn uviun Noyw Twv
crashes. ' autd T0 Noyo €xel mpotalel plo eméxtacm tng, 1 onola xohelton avitextixn yoauuxo-
nomoyudrnra (durable linearizability) [1zral6]. H avBextixy yoopuixonomoudtnta emPBErNet T
gnelta amod €va crash, 6Xec ol Aettoupyieg mou €xouv ohoxinpwdel mewv and o crash Oo mpémet
va €xouv eyypagel xou oty EM xou va elvon aviyveloluee xatd Ty avaxtnor Tou Teoyedy-
uatog. Mropel edxola va detyBel 6TL oL Boués xwplc XNEWBOUATA, TOU TUPOUCLICUUE, OV Elvor
AVOEXTIXDS YRPUUUXOTIOLACIIES, O (atveton oTo Ilapdderyua 0.2 vl TNV cuVOedeuévn NoTa
Tou Harris.

22

IMopdderypa 0.2: ITapafiocn TN AVOEXTIXNC OCESLELOTOLNOLUOTNTAS OF

pla cuvVBedepnevn Ao ta

Ac¢ Bswprioovpe pla cuvBedeuévn AioTa amoTeNoUUEYY and dVo xéufoug, dmou o évag
neptéyel o xAewdl 0 (xépfoc ng) xou 0 dANog to xXewi 3 (xoufoc n3), 6T Paiveton 6TO
Yyfue 0.2. A unobBéoouue enione 6t 8o vApata (T'1 xou T2) BENouv va elodyouy o
Nota x6pfoug pe 1o xhewdi 1 (xépfoc ny) xou to xXewdl 2 (x6ufog na).

Y

O .

3

SxApo 0.2: Apyin| xatdotaon tne MoTag Ye Toug xoufoug ng xan na.

To viua T'1 extelel plo CAS evtoNy| xan axkalet to delxtn next tou xéuPouv ng Tpog Tov
%x6ufo ni, ONOTE XU CTOMATIEL TNV EXTENEST TOU XWPIG VA EYYEAPeEL TIC aANXYEC oTNV
EM. 'Ereita, o viua T2 Eexvder Ty extéNeot| Tou xou exteel uio CAS, 1 omolor ahN&lel
T0 next delxtn Tou x6PPoL Ny, GoTe va delyvel oTov ng. TéNog, To T2 ypdypet (ue £lush)
Tic adaryéc oty EM xan ohoxnpvel emituyme Ty elocaywyn Tou ng. H xatdotaon tng
MoTag ™ otiyun awth gatvetow oto Myruo 0.3. MO TENELDOEL, OUwe, TNV EXTENEDY
Tou t0 T2, cuuPduvel €va crash.

0

A
Y
W

Y

111~ 2]

SyxApa 0.3: Kotdotaon tne Motoc) otyur new to crash. Ou cuveyels ypouués éxouv
eyypagel otnv EM, eved ol dlaxexouéveg oyL.

Metd to crash, 160 o x6ufog n1, 660 xou 0 ng €xouv xabel, apol o delxtng and Tov ng
Tpo¢ tov np Oev €xel eyypagel oty EM mpwv to crash. ‘Etol, nopdho mou €xel oroxhn-
pwhel N Aettoupyio tou T2 (ewoarywyh Tou n2) mpwv To crash, To anoteNéopotd Tou dev
uTopoLY va aviyveuboly xotd TN daduxacta avdxtnong. Auté etvan pla tapafioon avlexti-
¢ oelplomoinoudTnTac. Ag onueldoouye, 6Tl ot TeplnTwan mou to viua 12 eiye ypddel
otnv EM 1o 8eixtn and tov ng o010 ng, 161 quTd TO ToEddELYU B YiToy avBexTinmS
Y QOUULXOTIOLAGLUO.

Yy npdogotrn PiPhoypagpia €xouv mpotabel xdmoleg tpomomowioelg Bouwy Ywelc XA\el-
douata, ol onoleg elvon avbextnd ypouuxonoolues. ‘Eva mopdderyua elvoaw 1 Persistent (A
Durable) Queue, 1 onola elvon enéxtaon e MS-Queue. Tty eniteudn avbextixdtnrag xen-
oyonoloVVToL TEooexTxd Tonoletnuévee £lush evionéc.

H npocéyyion v v eniteuén avlextixotntog tng Persistent Queue mpobnofétel moXd
XN XATUVON oM TNS doUNC BEdOUEVWY Xou ThavoTaTo BEV UTopEl VoL YEVIXEUTEL O IANEC BOUEC.
[o autdv t0 Noyo, €xouv mpotabel didpopol autdpatol petaoynuatiopol. O medTtog TéTolog
HETAOYNUATIONOG XaXeltan petaoynuatiowde Izraelevitz [lzral6] xou npoxtixd mpoobétel £flush
EVIONEC PETA oo xdbe Budfaoua 1 eyypapy| piog petafntnc.

‘Evoc mo anodotixde petaoynuatiopds eivar o NVTraverse [Frie21al, o onolog petotpénet
pla ouxoyévela Soumv dedouévwv exelBepec amd xXewdoyata (oTtnv omola nephouPdvovton 1
ouvdedepévn Nota tou Harris xou 7 skiplist) oe avbextixde ypopuixonotioes ye autduoto
TeoTO.

23

Algorithm 1: Operation in a NVTraverse data structure

T Operation(Node root, T input):

while true do

Node entry = findEntry(root, input);
List<Node> nodes = traverse(entry, input);

ensureReachable(nodes.head());
makePersistent(nodes);

bool restart, T val = critical(nodes, input);
if Irestart then

return val;
end

end

O Alyopibuoc 1 mapoucidler tn Aettovpyla ulag NVTraverse Sourc dedouévov, émou ue
OXOUEVO Ypwua etvar ot uéBodol mou mpootiBevtan i var eacpoaricovy TNy avBextixdtnTo.
H uébodoc ensureReachable elocponilel 6t undpyer avbextixd povomdtt yio tov xoufo,
cTov ornolo yivetow 1 exdotote Nettoupyia, eve 1 makePersistent xdvel flush toug avaryxaloug
%x6uPoug Tou YoVOTUTION, MO TE VoL BLUCPANOTEL 1) avBEXTIXT] YEOUUUXOTIONCLUOTNTO.

Yovita EXéyyou yia Enipovn Mvyvrun

H x0pla ouvelopopd authic tng epyaciog elvon 1 dnuovpyio plag coultag eENéyyou yia Tpo-
Yeduuoata entuovng uvhung, 1 omola amoteeiton ano:

1. Litmus tests. To litmus tests efvou wxpd cuvbetixd benchmarks, to onola otoyebouv
GTOV EXEYYO TOU EQYAUNELOU YLl CUYXEXQUIEVEC GUUTIEQLPOPES TOU HOVTENOU TOU UNOTOLEL.

2. Tests douwv dedouevwv. Ilpooeytixd xataoxsvaouéva tests avBexTixdy xau un Souy
OEDOUEVOY X0plC XNEWBWUATA.

‘Evoc 016)0¢ authic Tng couitag exéyyou elvon vor eNéyEel TNy ophoTnTal X TNV EMEXTACL-
uotnTa Tou gpyorelou PERSEVERE. ‘Onog o 8olue odvtopa, uéow tng couitag pag unopéoape
va Beolue pia econtepuxr| aduvauioc Tou PERSEVERE, mou odnyoloe otn Ndbog poviehonoinon
ulag ouunepupopds tou Px86. 'Evac mo yewxdg 6toxo¢ g couitag elvon va xpnouysonoundel
o¢ Pdon i) dnwovpyio onueiov avagopds (benchmarks) v epyadeta enakribevone EM
TEOY POUUATOV.

Apyd, toviCoupe 6TL T tests tng couitag elvon dVo WOV, XNy TEHOTN xaTtnyopio clivon
auTd Tor omolal €xouv xdmolo assertion, To onolo dev mpénel vo nopafdleton oe xouio ExTENEOT).
Avutd to tests Bewpolvion acpary. Xtn deltepn xatnyoplo Peloxovton tests ota omola xdmoto
assertion avouéveta va amoTtuyydvel xou ouuforilovton wg un aogant. Xe autd 1o PERSEVERE
Tpénel var evToTilel X4molo GPINUAL.

O EextvAooupe TNV avaAUCT] TNG COLITAC PaC PE TNV LIoTolnor Tou mopadelypatog WW,
1 omoia gaivetan oo Llpdyeaupa 1. T va oploouue Tic yetafAntéc x xou y wg en{poveg, yenot-
pomololue T woxpoevtoNy) __VERIFIER_persistent_storage (). Apyixomololye tig 600 yeto-
BAntéc we 0 xan exteNoVye to entpovo gedryuo __VERIFIER_pbarrier () yio vo oploTel n apyix
xatdotaon e EM. ¥tn poutiva avdxtnong __VERIFIER_recovery_routine () diafdlouvue Tic
enipoveg petafntéc xou e€etdloupe ue N xpromn evog assertion edv umopolv vo ndpouv Tov ave-
mBunTo cuvduaoud x = 0 Ay = 1. To PERSEVERE evtonilel napaficon tou assertion, dnwg
qabveton xan oto Ly fuo 0.4, yeyovog mou onualvel 6Tl 1 xatdotoor auth yivetan va emiteuybel.

24

#include <stdio.h>
#include <stdlib.h>
#include <atomic>
#include <pthread.h>
#include <assert.h>
#include <genmc.h>

#define relaxed std::memory_order_relaxed

__VERIFIER_persistent_storage(std::atomic_int x);
__VERIFIER_persistent_storage(std::atomic_int y);

; extern *’C’’{

void __VERIFIER_clflush(voidx);

5 }

7 void __VERIFIER_recovery_routine(void)
{
assert (! (x.load(relaxed) == 0 && y.load(relaxed) == 1));
return;
}

int main()

{
x.store(0, relaxed);
y.store (0, relaxed);

__VERIFIER_pbarrier ();

x.store(1l, relaxed);
y.store(l, relaxed);

return O;

IMeoypoprpor 1: WW litmus test

Méoca and 1 yxeron tov litmus tests, xatagpépaue vo Ppodue pio ecwtepinr| aduvouio Tou
PERSEVERE. ITio cuyxexpwéva, 10 mpdypouua mou @olvetar oo yrua 0.5, avédelle 6Tl To
PERSEVERE 06ev unopotoe vo povtehonowioetl to £lush ylog petafAnTrg amd Slapopetind viua
and autd mou €xel yivel N eyypapt). Ou dnwovpyol tou PERSEVERE d16plncay to mpdBAnua
aUTO TPOGHETOVTOG ETUTAEOV UTOGTHEIEY GTOV TUEYVAL TOU ERYANEOU.

‘Ocov agopd ta tests yia Tic SoPEC DEBOUEVOV, TELRAUATIO TAXOUE oEYIXA UE TT) GUVOEDEUEVT
Mo to xou) skiplist. ITio cuyxexpyéva, exéyEoue TEELG EXDOYES AVTOV TV SOUWY:

1. Tiwc apyxéc exdoyéc Tov dounv (e.g., Harris’ linked-list), oi onolec dev eivor avbextixndde
Y QUK OTIOL | OLUES.

2. To petaoynuotioud Izraelevitz.

3. To yetaoynuatioud NVTraverse.

Ta tests poac eotiacav oe d0o dZovec:

1. Na 8ei&ouye 6TL o1 apyixéc exdoyEg DEV Elvol TEAYUOTL AVIEXTIXWS YEOUUUMXOTIOLACIIES, EVE
oL GANec exBoyéc mePVAVE ETUTUYWC TOUC EAEYYOoUC Woc. [autd, to tests Twv apyixdv
EXDOYWY ONADVOVTUL WS UTPINT), EVE TV 000 UETACKNUATIOUOY O [UT] ATPUNT).

2. No gTid&ouue xdmola yeydha xou meplmhoxa tests yio va Solue nwg avtomoxplvetan o auTd
70 PERSEVERE.

25

Error detected: Recovery error!
Event (1, 2) in graph:

<—1, 0> main:
(0, 1):
(0, 2):
(0, 3):
(0, 4):
(0, 5):
(0, 6):

Wrlx (x..._.a_, 0) atomic:949
Wrlx (y..._.a_, 0) atomic:949
PERSISTENCY _BARRIERrel L.31
Wrlx (x..._.a_, 1) atomic:949
Wrlx (y..._.a_, 1) atomic:949
THREAD_END

<—1, 1> __VERIFIER recovery.routine:

(1, 1):
(1, 2):

Coherence:

Rrlx (x..._.a_, 0) [(0, 1)] atomic:957
Rrlx (y..._.a_, 1) [(0, 5)] atomic:957

y....a: [(0, 2) (0, 5)]
X..._a: [(0, 1) (0, 4)]

Assertion violation: !(x.load(relaxed) == 0 &% y.load(relaxed) == 1)
Number of complete executions explored: 2
Total wall—clock time: 0.04s

SxApo 0.4: 'EEodoc tou PERSEVERE vyl o WW litmus test. H é€060¢ anoteheitan amd to idog
TOU GPANHTOC oL evioTio tnxe (assertion violation), Tnv extéleom nou odhynoe
0TO GQIAUL, TOV aptBud TOV EXTENéGEMY oL eEepelVNOE (XU TTOU UTAGOXAPE) TO
epyohelo, xabdg xaL To GUVOAIXS XEOVO EXTENEOTC.

x:=42; || a:=1y;

y:=7; | if (a#0);
Flush (2W+RFW)

z:=1;

YxApa 0.5: Litmus test petagopdc unvopotoc (2W+RFW). H petafintd x ypdpetan and to
TewTOo VAuo xou yivetow flush amd 1o dedtepoO.

((s1)[1)((ox)l(i2)](tx)) — (((pw) (+(w]d)")")[((w]d)" (+(w|d)")))

6TOU

e 10 1 avagépeTal 0T oUVOESEUEVN NoTa, eved To s1 avagépetar otr skiplist

® TO Or AVOPERETAL OTIC ATAES EXDOYES TwV doutV (T.). ouvdedeuévn Niota Harris), to iz
AVUPEPETOL OTO PETAOYNUATIONS Tou Izraelevitz, eve To tr ava@épeTon GTO UETACYNUOTL-
ou6 NVTraverse

® 10 pw oNualvel OTL £xouv YIVEL XATOIES ELCAYWYES GTN) BOUT| TIELY TO PEAYU dEYIXOToinong

EM

, + ’ , ’ ’ ’ ’ ’ ;7 2 ’
0 6poc +(w|d)" onuaiver 6tL éva véo viua dnutoupyeiton, To ontolo extenel évav aubaipeTo

oplBud and ewoorywyés 1/xon Sorypapéc otorxeiwv ot dour.

[N mopdideryua, o test Lor-pw+w+d eNéyyel TNV aEyix?] Ex00YY| TG CUVOEDEUEVNC NoTag, €yo-
VTUC ELOQYEL XATOW GTOUXEX TPV TO (PEAYUOL AEYIXOTOINONG XAl GTY) CUVEXELXL ONULIOVEYOUVTOL
0UO VAUATA, OTIOU TO EVal XAVEL Lo ELCUYWYT) XU TO GANO Wi Slory papt.

26

1

2

18
19
20
21

22

24

}

I ta tests tng Persistent Queue axoXoubrcoue napduoia ovopatodoaoio ye 1o NVTraverse:

((msq)|(dq)) — (((pe)(+(e[d)")")((e]a)"(+(e|d)")"))
6mou

e 10 msq avagépeton oty MS-Queue, evey to dq oty Durable Queue. Ta tests yio tnv
MS-Queue dnhdvovtow og Un ac@at, eve yia Ty Durable Queue wg ac@on.

® pe onuaivel OTL €x0UV YIVEL XATOLEG ELCAYWYES O TN BOUY| TRV TO PEAYUN dEYIXOToinong
EM

e 0 6poc +(e|d)* onpaiver dTL évar vEo viAua dnuioupyeiton, To ontolo exteel évav aubaipeTo
opBud and ewooywyé (enqueues) 1/xou Swrypopéc (dequeues) otoxelwv oty Sour.

ITépa amd TOV AmAG EXEYHO TWV OOUWY, TELRUUATIO THXAUE ETLONG XoU UE TNV APALPECT EVTION®Y
flush and tov %o Tou NVTraverse. Yxomog authc tne dtadixactoc etvon vor exeyybel ov
UTOPOVUE VoL dpotp€couUE xdmota amod ta flush yio va emtdyouvue xo\Utepn enldoor ¥ av elvou
O amopolTTa yLor vor eEAc@aN TEl 1) avBEXTIXY YEOUULXOTIONGLUOTHTAL.

H agaipeon tov flush eviol®v yiveton Ye Tt xeron xdmotag onuatag. Yto Ilpdypouuo 2
gpatvovtal €xouue 600 onpaieg mou xdvouv auth TN douield. H onuaio BIMF agoupel to flush
META TN dnploveryia Tou Mo elcarywy) xoufou, evéd 1 BICF agaipel to flush yetd tnv extéleon
g CAS 7yl var oANGEeL To BelxTn Tou mpomyoluevou xéuPou, wote va delyvel 6Tov x6ufo mou
ELOQYETOL.
bool insert(int k, int item) {

wvhile (true) {

Window* window = find(head, k);
Node* pred = window->pred;

Node* curr = window->curr;
free(window) ;
if (curr && curr->key == k)

return false;

Node* node = getNewNode();
node->set(k, item, curr);
#ifndef BIMF
FLUSH (node) ;
#endif

; #ifdef BICF

bool res = pred->CAS_next(curr, node);
#else

bool res = pred->CAS_nextF(curr, node);
#endif

if (res)

return true;

}

IMebypoppa 2: Koddixac vl) yeipoxivntn agalpeon flush eviodv oTtn cuvdptnon
sloayoyng otovxelwv oty NVTraverse éxdoon tng cuvdedeuévng Notag.
Daivovton dYo onuaiec mou agawpolv £lush (BIMF xou BICF).

IBwadtepo evolapepdy yio Ty agalpeon £lush eviohwv anotehel o TpéTog Tou yivovtar £lush
avTixelyeva, 6mng o xoufog tng cuvdedeuéveg Aotag. H ouvdptnon __VERIFIER_clflush()
tou PERSEVERE nolpvel wg mopduetpo tn diebBuvon plag yetafAnthAc xou tnv xdvel flush.
‘Ouwg, dtav €xoupe pioa oXdxAnen dour, To PERSEVERE 0ev xdver flush ol o medlo tng,
AN wévo to mpwto. T var eaoparioTel, Aoundy, 1 owoTh eyyeapr Tov dedopévey otnv EM,
Tpénel Vo yenowonoijcouue TNy __VERIFIER_clflush() yix xdbe éva amd o medla Tng doung.

27

Yto Ilpoypapua 3 €yxovue oploel T onualo BMFN, 1 onola 6tav evepyornoteitar xdvel flush 1t
doun| xau Oyt to xdbe medio EeywpeloTd.
| void FLUSH(Node *n)
2 {
3 #ifdef BMFN
| __VERIFIER_clflush(&n);
5 #else
¢ __VERIFIER_clflush(&(n->key));
7 __VERIFIER_clflush(&(n->value));
8 __VERIFIER_clflush(&(n->next));
9 #endif
0 }

IMeoyeoppar 3: H onuaio BUFN evepyonotel T AavBoouévn diadxactio tou £lush tou xéufou
ulog ouvoedeuévne o tog.

Amoteléocpata

Yrov Iivaxo 0.1 ntapadétovye ta amoteNéoporta vl ta litmus tests. ‘Ola T litmus tests ené-
otpedav o avopevoueVa amoTeENEaUATA xot PAETOVUE OTL amoutoVy Uixpd oplbud amd exteNéoels.
Auto elvon hoyid, xabde 1 ToAuTAOXOTNTA Toug Elvan UixeEn.

ExteNéoeic

Avay.Anoténeopa II\fpeic Ppoyuévee Xpodvog

2W+2W UN ACPANES 3 0.04
2W+RFW ACPANES 3 0.04
2WRWHWEW U1 ACQANES 1 0.04
6w ACPANES 4 0.04
CAS+CAS ACPANES 5 0.04
WFW ACPANES 2 0.04
WEFW+RW ACPYONEC 3 0.04
WMW+WEFW Un ACPANES 2 0.04
Ww UN ACPANES 2 0.04
WW+RMFW ACPANES 3 0.04

ITivaxoag 0.1: Amotedéopota tTng endindeucns opBdtnToc Wxe®dyY TEoYREUUUATOY

Yrov Ilivaxa 0.2 mapabétouye o anoteNéopata yia To tests Tou NVTraverse. Ou apyuxée
exdoyéc 1600 Tng ouvdedeuévng Notag, xabmg xan g skiplist, éxouv oploTel wg un ooy,
enedn 6ev elvon avBextinmg yeoupxonoowes. ‘Ol to oyetind tests evronilouv xdmolo mopa-
Blaon cuvénelag xatd to recovery.

Ta undhoina tests opilovton we aopony, xabde dev avopévouy xdmola Tapafioon avlexti-
x¢ oepomoinootntag. Ipdyuatt, oyeddv OXa Ta tests eMOoTEEPOUV TO AVOUEVOUEVO ATOTE-
Neopata, extoc and dvo. To liz-pw+d+d nopdyel ecntepixd o@diua oto PERSEVERE, evd)
10 sltr-pw+w+w evronilel xdmnota napafioacn ophdtntoc, n onola mbavdy ogelietan oe xdmolo
NdBoc oty uhomoinor tne skiplist, m.y. Aeinet xdmowo flush. TéNog, to peydha tests pe to tpla
VARATO TTaedryouy Tévew omd 40 yINAOES EXTENETELS YLoL TNV ATAT) GUVOEDEUEVT NoTa, EVE Yl
v skiplist Eemepvoiv T0 bpLo xpedVoL Tou €xouue Béoel, To omolo elvon 24 Kpeg.

Ytov livaxa 0.3 gatvovton tor amoteéopata yio Ty Persistent Queue. "Eyouye ulonowioel
Ayotepa tests yio Ty Persistent Queue oe oUyxpion ye to NVTraverse, xabde lvon Aiyotepo
meplmhoxy %o Bev ETOEVIEL TOANES TpoPANuaTIXéC cuuTERLPOpES. ‘Onwg xou pe To NV Traverse,
oL UN aVOEXTIXOC YEUUUXOTIOCWIES EXOOXES 0pllovTal g UN ao@oNT]) xou To tests yia Tnv
Durable Queue w¢ aogpaurr|. Ta anotehéoyoto elvol o AVOUEVOUEVA.

28

ExteNéoeic

Avay.Anotéheocpa II\Apeic Ppayuévee Xpodvog
lor-ww UN ACPUNES 5 0.10
lor-pw+d+d UN AGPANES 9 0.28
lor-pw+w+d UN ACPANES 3 0.15
lor-pw+w+w UN ACPANES 2 0.15
lor-pw+ww U AOQANES 6 0.17
lor-pw+w+w+d Un AGPANES 3 0.18
lor-pw+w+ww U1 ACQANES 6 0.26
liz-ww ACPANES 3 0.13
liz-pw+d+d ACPANES N N N
liz-pw+w+d ACPANES 116 3.59
liz-pw+w+w ACPANES 35 1.37
liz-pw+ww ACPANES 3 0.16
liz-pw+w+w+d ACPANES 42293 1981.83
liz-pwtwtuw ACPANES 123 7.77
ltr-ww ACPANES 3 0.17
ltr-pw+d+d ACPANES 118 2 10.41
ltr-pw+w+d ACPANES 76 3.11
ltr-pu+w+w ACPANES 25 1.38
ltr-pwtww ACPANES 3 0.20
ltr-pw+w+u+d ACPANES 13902 1019.78
ltr-pwtwtuw ACPANES 108 10.04
slor-pw+d+d UN ACPUNES 4 0.14
slor-pw+w+w UN ACPANES 2 0.16
slor-pw+w+w+d U AOQANES 5 0.32
sliz-pw+d+d ACPANES 7119 16 2869.06
sliz-pw+w+w ACPANES 15 7.39
sliz-pw+w+w+d ACPANES ® ® ®
sltr-pw+d+d ACPANES 26732 14 12247.60
sltr-pwtw+w seoeNés 1812 3 460.08
sltr-pw+wtw+d ACPANES ® ® ®

ITivaxag 0.2: AnoteNéopata tng endandevong opbotntoc v 1o NVTraverse. O: 6plo ypb-
vou (>240peg), ! ecwtepnd TpdPANua oto PERSEVERE, Sterredppten: Ndbog
AmOTENEOUN (OE CUYXPLON UE TO AVOUEVOUEVO)

ExteNéoeic

Avop.Anotéreopo II\rpeic Pparyuévee Xpodvoc

ms-e U1 ACPANES 3 0.08
ms-pe+e+e UN ACPANES 2 0.10
dg-e ACPUNES 1 0.10
dg-pe+e+d ACPANES 6 0.18
dg-pete+e ACPANES 28 24 0.53
dg-pe+d+d ACPANES 28 2 0.83

ITivaxag 0.3: Anotehéopata tTng endindeuong opbdtntoc yio v Persistent Queue

29

Yrov Iivoxa 0.4 nopouoidlovton ta anoteNéopata yio T dadixacio agalpeong flush evro-
Aov. Onwe galvetat, oL TEPLOCOTEPES ONUNLES TOEAYOUY GQANUA OE TOUNAXLOTOV €va test. Auto
UTOBNAGVEL OTL OXeg ot flush evionég elvan amopaitnTeg Yoo TNV e€ao@diion avBexTixhc ypou-
uxonownowotnracs. H uévn e€alpeon eivan 1 onuaio BRMF, 1 onola apounpet to flush apéowng petd
Vv nedcPoct otov xoufo mou mpdxelton va agoipedel. Autd, woT6G0, Sev onuaivel OTL aUTO TO
flush pnopel va agarpebel. Etvon mbavo vo avoxougbel xdmolo opdiua o mo mepinhoxa tests.

To test ltr-pw+wtw-tmf avticToyel emaxpifde oto [lopdoerypo 0.2, xabdg €xer apoupedel
to flush nou ewodyeton and To NVTraverse yio vo e€acpoliotel 6Tt T0 povomdTtl npog Tov xoufo
mou elodyeton €xel eyypagel otnv EM. Erniong, unopolue va nopatnericouue 6tL 1 agaipeon
flush eviol®v odnyel oe nMeplocOTERES EXTENETELS, OTWCS YIA TORADELYUO GTNV TERINTOON TOU
test 1tr-pw+w+d-tmf, 510 onolo e€epeuveitar wla emmAéov exTéNeTT o€ GUYXELON UE TNV EXBOXT
ue Oxa toe flush. Auto elvan hoynd, xabdg aponpdyvtog £lush eVIONE EMTEENOLUE TEPLOCOTERES
mbavéc xataotdoeic Yetd and xdnowo crash.

ExteNéoeic

Amotékeopa IIN\rpeic Ppaypévee Xpdvog

ltr-pw+w+w-mfn un aoparéc 2 0.55
ltr-pw+w+d-mfn un aoQorég 3 0.29
ltr-pwtw+w-imf un aoQorég 2 0.59
ltr-pw+w+d-imf un aoporég 3 0.19
ltr-pwtw+w-icf un aoporég 2 0.21
ltr-pw+w+d-icf ACPANES 76 3.37
ltr-pw+d+d-tmf ACPANES 119 2 5.77
ltr-pwtw+w-tmf un aoQorég 2 0.23
ltr-pw+w+d-tmf ACPANES 7 1.63
ltr-pw+d+d-rmf ACPANES 118 2 11.30
ltr-pw+w+d-rmf ACGPANES 76 3.43
ltr-pw+d+d-rcf un aoparéc 71 7.29
ltr-pwtwt+d-rcf ACPUNES 76 3.41

ITivaxag 0.4: AnoteNéopata tng endinbeuong opbdtntag v 1o NVTraverse ye agaipeon
oplouévoy flush evio®yv..

TéNog, xdvaye xou pla alyxplomn UeTol) TOU ENEYYOU LOVTENOU Yiol LOVTENA GUVETELOG Ol
povténa empovig. To anoteléopata @aivovton otov Ilivaxa 0.5. o Tov éxeyyo Tng cuvénelag
yenowonotooue 10 GENMC ye o TSO povtého cuvénewag. ‘Onwe avopévetat, Tapatnpolue
OTL 0TNY TEPIMTWON Tou EXNEYYOU TNE eMpOVHG, To epyaeio e&epeuvel TOND peyoNiTepo aptbud
EXTENECEWY, EMC %ot 4 TéEelc tapandve (s1-pw+d+d). Autd elvon amoNiToc Noyind, xabde oTov
EXeyxo TN emuoviAc meénel va AngBoly unddn oyt UOVO 1 CUVETELX TOU TROYEAUUATOS, OANG
xat oL Thavég xotac Tdoelc HeETA and €va crash.

Eniloyoc

H epyaoio auth| mparyUatedTnNXe TNV TOUY| DLUPORETIXWY TEBIMV XU TO CUYXEXQUIEVI TOU
ENEYYOU 0p06TNTOG PECW TEXVIXDV EXNEYYOU HOVTENOL, TNS EM ot TV Hoviéhwy emuovrig xou
TWYV BOMY BEBOUEVOV Y wpic xhewnuata. Tlapouvoidoaue plo coulta exéyyou npoypauudtov EM,
1 omola pnopel va yenoytononbel and epyanelor eENEyyou povTtéNoL yio TV enanridevor opboTnTag
TV TEOYRAUUATWY, AANG Xl TV (BLOV TwV EQYUNElDV.

30

GENMC TSO PERSEVERE
Avdy.Anotéheopor II\Apeic Ppaypéves Xpdvoc IDifpeic Ppoyuévec Xpdvog

CAS+CAS ACPANES 4 0.04 5(44) 0.04
1-pw+w+d ACPUNES 14 0.09 126 2 5.60
1-pwtw+w+d ACPANES 1543 2 5.49 13902 1019.78
sl-pw+d+d ACPUNES 50 1 0.26 26732 14 12247.60
sl-pw+w+w+d ACPUNES 1400 9.20 C} C} C}

ITivoxcag 0.5: X0yxplomn eENEYY0U CUVETELNG oL ETLIOVAS

Méoa and 1o tests tng coultag pac pnopéoaue v Bpolue éva ecwtepd mEdPANUa Tou
PERSEVERE, 10 onolo avagépnxe otoug dnuloupyols tou gpyakeiou, ol omolo oTn cuvéyeia
Tpochecay emnAéoV UTOG THEIEY GTOY TUETVOL TOL ERYONEOU YLol VoL AVTIETOTIO TEl TO TEOBATUOL.
Emn\éov, emPefoncdoope 6Tl oL anhéc exdoxés xdnowv Bacixdv Bed0UEVLV YwEl XAEWDOUATA
oev elvan avOEXTIXG YRUUUIXOTIOLACWIES, EVG OL aVBEXTIXEC EXBOYEC TOUG TEPACAUY ONOUG TOUC
exéyyoug pag. Télog, ye v agalpeorn flush eviodv and tnv vionoinorn tou NVTraverse,
OElEaUE TNV AVary XA TNTAL TOUS Lot VoL eEAGPANIcoLY TNy 0pBdtnTar Tng dourc, xabng mpoéxuntay
rapafLdoeic opbotnTac.

Avagopd ye oxetinn Biioypaplo, oANE xou HENNOVTLXY EMEXTACT, TNG COLLTAC Wog, UTdp-
xouv ToANEC PiNobrixec EM Snuboia dwbéoruec, dnoc n PMDK [Intel5]. Emnkéov, undpyet
HEYEAT owihiot LNoTooewy Boutv dedopévwy yio EM [Leel9, Izad21, Cai2l, Kim21], énwcg
key-value stores, 6évtpa x.Am. Me napdpoto tpémo ue to NVTraverse, €éxouv mpotabel avBextixol
HETAOYNUATIONO! Y ROUUXOTIOLACLUOV SounY dedopévayv [Frie21b], xabne xa optopéves Bipiio-
BYxec mou anoutoly eNdylo Ty ToéuPoon Tou xeoTn o TV enitevdn avBextixdtnTog [Wei22).
Mio yeXovtixry eméxtoacy tng coultog pag, Bo umopodoe vo mepNdPelr TOANES amd auTEC TIC
douég xou mopadelypota and Tic BiPiobrxeg.

Enione, Ba eiye evbiopépov va npootebolv xou diha poviéra 6to PERSEVERE (pe 1t
xefion tou kater), 6moc avotned poviéna empovic, . TSOPER [Ekem21], a\N& xou &X\-
Nov apyrtextovixy, t.x. PARMvS [Raadl8]. Oa unopoloe, emniéoyv, va yexetnbel n evpwotio
(robustness) ueTal }oNUpOY ot UG TAEOV LOVTEN®V ETLHOVAS, ONAadT va e€etao el xatd ndéco
T0 und e&étaom nEdypaupa eppavilel TiC (BlEC CUUTERLPORES HETAEDY TV BVO UOVTENWV.

Téxog, Bo punopolice va mpootedel unootApEn v Ti¢ eviorég clflushopt xou sfence
cto PERSEVERE, étol &xote va peretnfolv xdmoiec BeXTIoTOMOMNUEVES EXDOYES TOV BOUWY
OEBQOUEVLV.

31

Kelpevo ota oyyAuxd

Chapter 1

Introduction

1.1 Overview

In computer architecture, one of the most promising technological breakthroughs of recent
years is the introduction of Persistent Memory. Persistent Memory aims to replace traditional
DRAMSs, while being non-volatile, i.e., preserving its contents after a crash, like disks do.

However, writing crash-safe programs for Persistent Memory is tricky. Crashes can happen
at any time during the program’s execution and can lead to inconsistent states during the
recovery process. Therefore, programmers have to carefully reason about the behaviour of
their programs with respect to crashes. This behaviour can be formalized with the use of
persistency memory models, which define the order in which memory operations persist.

In this thesis, we are going to discuss how persistency memory models can be used in
combination with model checking, which is a powerful verification technique, in order to
check the correctness of various Persistent Memory programs. Persistency model checking
introduces new challenges. For example, a crash can happen at any time during program
execution leading to a far bigger state space than non-crashing concurrent programs. Recent
model checking tools use state space reduction techniques like Dynamic Partial Order Re-
duction [Flan05, Abdul4] in order to avoid exploring redundant executions. One such tool is
PERSEVERE [Koko21a|, which we are going to use in this thesis.

An important class of concurrent programs are those that implement so called lock-free
data structures. These data structures ensure that the memory is always in a consistent
state. As a result, they may seem like very intuitive fit for Persistent Memory. However,
in a crashing execution it is possible for these data structures to be left in an inconsistent
state due to cache volatility. There have been various studies on how to ensure durability
for lock-free data structures [Friel8; Frie21a| and we are going to investigate how to employ
persistency model checking in order to test them.

In summary, the new challenges that arise with the introduction of Persistent Memory
create new opportunities for research in the field of verification. In this thesis, we are going to
discuss the basics of model checking, persistency memory models and lock-free data structures
and we are going to employ model checking in order to verify Persistent Memory programs.

1.2 Contributions

The main contribution of this thesis is a test suite that can be used by testing and model
checking tools to test Persistent Memory programs. This suite consists of some litmus tests
and some tests on lock-free data structures. The former can be used to check some basic
and more complex behaviours of the Px86 persistency model. The latter can test that the
naive implementations of some lock-free data structures are not durably linearizable, while
certain implementations from recent literature, which use carefully placed explicit persist
instructions, are in fact durably linearizable. Furthermore, we added some tests on these
lock-free data structures that can serve as benchmarks to check the efficiency of persistency

35

verification tools and the reduction that these tools can achieve. This test suite can serve as
a guideline for using model checking to verify durable data structures and persistent libraries.
As our testing tool we used PERSEVERE, which is a project under continuous development
for persistency model checking. Through these tests we were able to point out some missing
behaviour of PERSEVERE, which was later added to the tool.

1.3 Organization

36

This thesis is structured as follows:

In Chapter 2, we summarize the basics of memory consistency models and the state-
less model checking techniques that we are going to use for verifying the desired data
structures

In Chapter 3, we discuss the new opportunities that come with the recent development
of Non-Volatile Memories and the challenges that arise with programming Persistent
Memory programs. Furthermore, we delve into the details of memory persistency mod-
els with emphasis on the persistency model of Intel’s x86 architecture and analyze how
model checking can be utilized for verifying Persistent Memory programs designed for
that architecture.

In Chapter 4, we explore some basic designs principles of lock-free data structures and
analyze how these data structures can be adapted in order to provide safety guarantees
when they are used on a machine that utilizes Persistent Memory.

In Chapter 5 we present the main contribution of this thesis, which is the design of a
test suite for verification of Persistent Memory programs.

In Chapter 6, we discuss the results from running our test suite.

Finally, in Chapter 7, we conclude with a discussion on some related work and propose
some possible future extensions of our work.

Chapter 2

Memory Consistency and Model Checking

2.1 Memory Consistency

Modern computer systems utilize multiple cores in order to achieve better performance.
The most common memory architecture for these systems is the shared memory model
[Adve96]. This model implies that the various cores share a common main memory, which
can be accessed with load, store and read-modify-write (e.g. Compare-And-Swap) instruc-
tions. Memory operations can be issued concurrently by multiple cores. Finally, each core
can have its own cache hierarchy.

A major question arises from the simultaneous issue of memory operations by multiple
cores: In what order do memory operations become wisible to other threads and to main
memory? The answer to this question is given by memory consistency models. Memory
consistency models specify the allowed behaviour of multithreaded programs on a computer
system that supports the shared memory architecture and therefore allow programmers to
reason about the visible order of reads and writes among the various threads.

We are going to focus on two prominent consistency models, namely Sequential Consis-
tency and Total Store Order.

2.1.1 Sequential Consistency (SC)

The definition of Sequential Consistency was given by Leslie Lamport on his famous paper
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”.

Definition 2.1 (Sequential Consistency [Lamp79]). A multiprocessor is sequentially consis-
tent if the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor occur in
this sequence in the order specified by its program.

Essentially, sequential consistency guarantees that a global total order of loads and stores
exists and is observed in the same way by all threads. As stated in Definition 2.1, the program
order of each thread is preserved, i.e., loads and stores are ordered with respect to program
order. Finally, under SC, each read reads from the most recent write to the same location in
that total order.

Lamport makes use of a FIFO queue to describe a sequentially consistent system. How-
ever, an easier way to illustrate SC is shown in Figure 2.1. A switch is placed between the
various processors and the main memory and selects one core at a time to execute a mem-
ory operation. The switch waits until the core completes the operation, which makes the
operation appear to execute atomically, and subsequently repeats this procedure. It should
be noted that the assignment of which core executes an operation does not affect the con-
sistency of the model (it can be random), but instead it just defines a memory order that is
sequentially consistent.

Although SC seems to match the programmer’s intuition that there exists a single main
memory and all operations must happen atomically in (program) order, it showcases two

37

@ @
¢ T
/ SWITCH \

MEMORY

Figure 2.1: Modeling Sequential Consistency with a switch [Sorill].

main drawbacks. Firstly, it restricts many hardware and compiler optimizations in order to
prevent reordering of operations or out-of-order executions. Secondly, SC is extremely slow.
Since only one operation is allowed to execute at a time, while the processors should wait until
this operation completes (in order to get a chance to be selected by the switch), the benefit of
writing parallels programs is greatly diminished. As a result, most computer systems avoid
implementing SC as their memory consistency model.

2.1.2 Total Store Order (TSO)

In order to achieve better performance, computer architects have proposed more relaxed
memory models than SC. A very common memory model is Total Store Order (TSO). TSO
introduces the notion of store buffers. Store buffers are First-In-First-Out (FIFO) buffers that
lie between the thread’s core and the memory hierarchy (caches and main memory).

The role of the store buffer is to hold pending write operations instead of immediately
propagating them into the memory hierarchy. More precisely, when a thread executes a store,
this store is delayed and placed in the store buffer. This delayed write will be propagated to
the memory hierarchy and will therefore become visible to other threads non-deterministicly
at some future time. It will maintain, however, the order in which it inserted the buffer, since
the buffer is FIFO.

This practice may seem odd at first, but it produces huge performance improvement.
The reason for that is the fact that it actually hides the latency of the write, which can be
extremely costly if it leads to a cache miss or if the cache is write-through. The execution
can proceed to the next instruction. Contrary to writes, loads can be executed immediately.
More concretely, when a threads issues a load instruction, it first searches its own store buffer.
If multiple entries of the memory location that is being read exist, the thread reads the last
buffered write in that location. If no entry for that location exists in the thread’s store buffer,
it will then try to retrieve the value from memory. Essentially TSO allows loads to execute
before earlier in program order stores, which helps to hide the write latency.

The implementation of TSO can also be modeled with a switch [Sorill] as shown in
Figure 2.2. The only difference between SC and TSO is the addition of the store buffer for
every core and the procedure that is followed after every store instruction, as described above.

TSO seems like a solid improvement from the poor performing SC model. There is,
however, a catch: TSO can produce some counter-intuitive results like the one in Example 2.1.

38

/ SWITCH \

MEMORY

Figure 2.2: Modeling TSO with a switch and store buffers [Sorill].

Example 2.1: SC and TSO behaviours

Consider the following mutlithreaded program, where x and y are memory locations
initialized with 0 and ry and r, are registers:

x:=1; (1)

y:=1; (3)
ri:=y; (2) (SB)

ry:=x; (4)

Figure 2.3: Store buffering litmus test showing the difference between SC and TSO.

We want to find all possible combinations of values that the registers r; and r, can
hold when the two threads have completed their execution.

Firstly, we are going to consider SC. It is easy to enumerate all the possible interleavings
of this program as follows:

o (1) =»(2) »(3) »(4) : r1 =0Ary =1
e (1) =(3) =(2) »(4) :r1=1A13=1
e (1) =(3) »(4) »(2) rry=1Ary=1
e 3) (1) =(2) 2(4) : r1=1A1ry=1
e (3) (1) »(4) »(2) try=1Ar =1
e (3) »(4) »(1) =(2): r1=1A13=0

As we can see, there is no execution under SC in which the two registers have the
value 0. However, this is not the case under TSO. Let’s consider the interleaving (1)
—(3) —(2) —(4). In this case, both the store to x and the store to y are stored in
their thread’s store buffer. Afterwards the two registers read x and y, but since there
is no entry in their store buffer, they get the values from memory, which stills holds
0 for both x and y. Finally, at some future point the entries in the store buffers are
propagated to main memory. Therefore, after the execution of the program we have
the state r{ = 0 A ry = 0.

39

In order to control the behaviours introduced by TSO, programmers can use memory
fence instructions, like mfence. Executing these instructions ensures that all store operations
prior to the fence (in program order) will take effect in memory before the operations that are
after the fence. In other words, a fence instruction flushes the store buffer of the executing
thread.

Using fences it is possible to regain SC. This can happen in case a fence is added after
every instruction, like in Example 2.2

Example 2.2: Use of mfence to restore SC

Placing an mfence after the store of each thread in SB, one can regain SC behaviour,
since the fences would require to empty the store buffers and therefore the results of
the two stores would be visible by the following reads.

x:=1; y:i=1;
mfence; || mfence; (SBF)
ri=y; | r2i=x

Figure 2.4: Restoring SC with the use of mfence in SB.

Although TSO can produce these counter-intuitive behaviours, the performance improve-
ments substantially outweigh the difficulties that may arise for programmers, and therefore
store buffers have been adopted by every modern architecture. There are various architec-
tures that support the TSO consistency model, such as SPARC, x86, RISC-V and AMD64,
while there are architectures that support even more relaxed memory models.

2.1.3 Axiomatic versus Operational Memory Models

The formulation of SC and TSO was done in an operational manner. Operational memory
models provide abstractions of the actual underlying hardware with the use of ideal compo-
nents, such as queues, buffers and caches. They are very useful, since they present intuitive
approaches to the memory model and can be easily simulated [Algl12].

However, using operational models is not the only way to formalize memory models.
Azxiomatic or declarative models define the allowed behaviours of the memory models by
creating constraints on order relations of the various memory operations. There are three
main relations:

e po, which is the program order, i.e. the order in which events like stores and reads
appear in the program

e rf, which is called the reads-from relation and it relates each read with the write that
it obtains the value to be read (note that this value can be the initial one, i.e. there
has been no write on the variable that is being read).

° , which is called the modification or coherence order and is essentially the order in
which writes reach the memory.

Based on these basic relations one can represent concurrent programs as graphs, in which
memory events (like stores, reads, fences, etc.) form a set F and represent the nodes of the
graph and these relations define their edges. Programs executions are therefore defined as
tuples in the form G = (F, po, ,rf), where G is the graph. Axiomatic memory models
define the allowed execution graphs by providing certain axioms that these graphs should

40

abide by. Furthermore, it is possible to use relational algebra to expand upon these relations
in order to describe more complex memory models.

Example 2.3: Defining SC with the use of axiomatic models

We are going to define a new relation:

fr £ G.rf !

This relation is called from-reads and relates each read to a write, which succeeds the
write (ordered by) from which the read takes its value.

With the use of the fr relation, we can define the SC consistent executions as all the
executions G = (F, po, mo, rf) such that po U UrfU fr is acyclic. In terms of
relational algebra, the acyclicity implies that the transitive closure of the above union
of relations should be irreflexive.

2.2 Verification

Verification is the process of ensuring that a certain program meets a given specification.
Verifying a program essentially means mathematically proving that the program is correct
under a specific notion of correctness, usually linked with the specification. There are various
areas of computer science that deal with verification on both software and hardware level,
e.g. formal methods.

2.2.1 Stateless Model Checking

It is important to segregate testing from verification. Testing usually proves that a pro-
gram/system is partially correct, while verification means proving that it actually meets its
correctness requirements [Gode96]. For instance, testing a program by giving input-output
examples does not fully guarantee that the program is correct under all circumstances, since
there might be some paths and branches that are not covered by the examples or there might
me some non-determinism in the system under test, like thread interleavings.

However, there is a specific method of testing that can act as a verification procedure,
namely model checking. Model checking refers to the systematic state space exploration of a
program, while checking whether a certain property holds under each state. Model checking
tests every possible behaviour of a program and therefore can actually verify it.

In order for model checking to actually work, the number of possible states should be
finite. A naive approach to model checking would be to simulate the whole system and per-
form a search by calculating all possible states. However, this approach requires capturing
and storing each global state, which is problematic for real-word machines. A novel imple-
mentation of a state space exploration algorithm is shown in Algorithm 2. Note that the
exploration algorithm is actually a Breadth First Search (BFS) over global states.

Early model checkers were operating on abstractions of real systems and programming
languages in order to reduce the cost of each state. Such approaches were not able to deal
with realistic programs either on software or hardware level.

To deal with this problem, stateless model checking was introduced [Gode97]. Stateless
model checking or state space exploration searches over the whole state space without storing
global states of the system. In order to test real programs, a run-time scheduler is needed,
which drives the execution so that it explores all states [Flan05].

41

Algorithm 2: Classical state space exploration

Stack: S < 0;
Set: H + (;

Function Explore(sp):
/* sp is the initial state of the system */
S.add(so);
while S # () do
s « S.pop();
if s ¢ H then
H.add(s);
/* enabled(s) returns all possible events that can be executed
in state s */
E «+ enabled(s);
foreach e € E do
/* s.next(e) returns the state of the system after executing

event e in state s */
s’ + s.next(e);
S.add(s');
end
end
end
return;

2.2.2 Partial Order Reduction

The main problem of stateless model checking is that the number of states usually grows
exponentially with respect to the program length. This is called the state explosion problem.
Let’s take for example N threads, each consisting of a single event, as shown in Example 2.4.

Example 2.4: Combinatorial explosion

Consider the following program consisting of N threads:

PRy oy N P (NT)

Figure 2.5: N threads performing a write to variables x4, - - - , xy.

There are N! possible interleavings. Note, however, that since this program consists
of a single write on a different variable for each thread, there is no difference on the
outcome of each interleaving.

. J

As illustrated in Example 2.4, there might be some interleavings that can be considered
equivalent and their exploration is redundant. To determine whether interleavings are equiv-
alent, the use of partial order methods |[Gode96] or partial order reduction (POR) has led the
research on the field.

Essentially, POR methods are based on the fact that concurrent program executions can
be expressed as partial orders of their events, since concurrent events are considered un-

42

ordered. The main purpose of POR methods is to explore a reduced state space, which is,
however, provably sufficient to verify the program under test. This reduced state space con-
sists of the so called equivalence classes, i.e. a representative execution of a set of equivalent
executions (e.g. two executions that have swapped adjacent independent events), and POR
methods try to explore exactly one execution per equivalence class.

Early POR methods employed static analysis to extract potential conflicts and data races
beforehand. More sophisticated approaches have recently been introduced, namely Dynamic
Partial Order Reduction [Flan05, Abdul4, Abdul7, Aronl8|. This technique records occur-
ring conflicts and calculates a set of provably sufficient subset of enabled processes on the fly
during the exploration. One such state-of-the-art tool is NIDHUGG, which supports algorithms
for SC [Abdul4, Abdul9] and relaxed memory models such as TSO and PSO [Abdul5].

2.2.3 GENMC

Another model checking tool for C/C++ programs that was recently introduced and em-
ploys a DPOR technique is GENMC [Koko21b|. Contrary to NIDHUGG, GENMC is parametric
to the memory model under test, i.e., it employs a common internal algorithm for all memory
models, while NIDHUGG uses various algorithms depending on the memory model.

This internal algorithm is based on axiomatic semantics of the memory model. More
specifically, GENMC incrementally constructs the execution graphs of a program, by checking
for consistency violations (i.e. by checking whether the constructed relations satisfy the
memory model’s axioms) each time a new event is added to the graph. As a result, it avoids
exploring executions that are inconsistent with respect to the memory model. Simultaneously,
when GENMC encounters a read that may produce more than one consistent graph by getting
its value from different writes, it selects one path and saves the alternative to a working set in
order to be explored later. Once a complete execution of the program is produced, GENMC
picks an option from the working set and revisits the graph.

A C or C++ program with some assertions is given as input to GENMC, which compiles
it to the intermediate representation of LLVM (LLVM-IR). Afterwards, certain transforma-
tions (e.g., bounding infinite loops) take place in order to make the program more suitable
for stateless model checking. Finally, the tool employs its internal algorithm to check the
executions of the program.

GENMC has some built-in implementations of the basic relations of axiomatic memory
models, like po, rf and . A new memory model can be added to GENMC by implement-
ing the necessary relations needed apart from the built-in ones, as well as the consistency
checker based on these relations. There are certain requirements that the memory model
should satisfy in order to be suitable for GENMC, like po rf acyclicity, extensibility, prefix-
closedness and well-blocking. (Refer to the original paper [Koko19] for more details on these
requirements.)

2.2.4 KATER

In order to make the introduction of new memory models to GENMC easier, there is
an under development project named KATER, which takes as input a file written in the
kat language (which is very similar to relational algebra) and produces source code for the
consistency checker of GENMC. This tool is heavily inspired by HERD, a tool for modelling
and simulating weak memory models [Algl14].

The definition of SC in a declarative style is given in Example 2.3. It is really easy to
implement this definition of SC in the kat language. In a similar fashion, one can define TSO
in relational algebra'. The .kat files for SC and TSO are shown in Listing 2.1 and Listing 2.2

'We are going to omit the formal definition of TSO in a declarative way. For this definition we refer the
reader to HERD [Algl14] and GENMC [Koko19].

43

respectively.

I let sc = (po | rf | mo | fr)

9

3 acyclic sc

Listing 2.1: .kat file for SC

1 save [ppo] ppo = ([R]; po | po ; [F]1 | [UWIF] ; po | po ; [WI)+

3 let tso = (ppo | rfe | mo | fr)
1
5 acyclic tso

Listing 2.2: .kat file for TSO

The main advantage of KATER is that it immensely simplifies the introduction of new
memory models to GENMC. The user only has to specify the declarative version of the
memory model in the kat language. Afterwards, the produced source code can be embedded
into GENMC’s core with a minimal effort.

44

Chapter 3

Persistent Memory

3.1 Basics of Persistent Memory

Up until now the memory-storage hierarchy consisted of two parts: (1) volatile memory
with low latency and high cost at the top layers (CPU registers, caches, main memory) and
(2) non-volatile storage (also known as secondary storage) with low cost and very high latency
at the lower layers (SSDs, HDDs, etc).

While main memory is directly connected to the processor, secondary storage can only
be accessed through the I/O bus and its interface, which is the main reason behind the very
high latency associated with it.

Emerging new memory technologies [Lec09, Kawal2| have recently been used in order to
bridge the gap between memory and storage. Persistent Memory (PM) refers to memory
technologies that are directly byte-addressable, while their contents are non-volatile, which
means that they remain preserved after a power crash or failure. Therefore, the data are
accessible and can be used after the crash. Furthermore, PM can be placed on the memory bus
and offers performance comparable to regular main memory (within an order of magnitude),
while being relatively cheaper. A brief summary of the memory-storage hierarchy and where
PM is placed between them can be seen in Figure 3.1.

- Volatile Memory
- Load/Store Instructions
- Cache Line Granularity

CPU Caches
(L1, L2, L3, L4)

- Non-Volatile Storage
- Load/Store Instructions
- Cache Line Granularty - - - - -

-------------- NAND SSD
- Non-Volatile Storage

- /O Commands
- Bock Granularity

Hard Disk Drives (HDD)

Tape

r 3
b

Capacity
(*) See vendor specifications

Figure 3.1: Memory-storage hierarchy with the newly introduced Persistent Memory layer

There are various NVM implementations available in the market, like Intel’s Optane PM
module [Intel9b|, which can currently co-exist with (volatile) main memory or completely
replace it. It is widely believed, however, that PM is going to replace DRAM in the future
[Pelll4], especially since DRAM technologies are reaching their limits as we approaching the
end of Moore’s Law [Kumal5|.

It is evident that the non-volatile nature of PM opens up a lot of opportunities for pro-
grammers. In particular, it allows programmers to have direct access to data without the need

45

to rely on databases and file systems, techniques that introduce huge overheads. Additionally,
the rise of big-data applications, data analytics, blockchain storage layers and extremely large
neural networks require large in-memory databases, which can be accommodated by servers
with larger memory capacities than what traditional DRAM can provide due to physical
limitations. NVM technologies can potentially scale to these needed capacities, overcoming
the limitations [Qure09)].

Trying to write correct PM programs, however, is not easy, since PM imposes several
complications on system architecture and software. The correctness of a PM program refers
to ensuring consistency and durability in the same time. That means that programmers have
to ensure a correct recovery after a crash, while maintaining the consistency of the data.

One of the main concerns about programming PM is that caches still remain volatile
(and they most probably will remain volatile in the future). As a result, writes may not
propagate to PM at the time they are issued. Instead, programmers should use explicit
instructions that flush the contents of the caches to PM. However, this is sometimes not
enough to ensure correctness! Explicit flush instructions are also subject to reordering by
many CPUs. Furthermore, different cache lines may become persistent in a different order
than the one they were written to the cache due to various cache replacement schemes (e.g.,
LRU). As a result, writes may become persistent in a completely different order than the
program order. To deal with this, modern CPUs offer explicit synchronization fences that
restrict the order in which writes become persistent.

3.2 Memory Persistency Models

The following example illustrates that even sequential programs can have unexpected
results with respect to persistency.

Example 3.1: Minimal example of out-of-order persists

Consider the following simple sequential program. The variables x and y are both
initialized with 0.

(WW)

Figure 3.2: Simple sequential program.

Although the write to x precedes the write to y, it is possible that the cache line of y
persists before that of x. If a crash occurs after the persist of y and before the persist
of x, then it is possible that during the recovery of the program, y is going contain the
value 1, while x is still going to contain 0. It is important to note that the memory
state x = 0 Ay = 1 cannot be observed under SC or TSO.

\. J

One important remark that comes from Example 3.1 is that a crash can potentially result
in the memory reaching some states that are not reachable under any execution allowed by
the underlining consistency model. Therefore, in order to write correct PM programs, it is
necessary to first understand how the various memory states can be reached and what are
their implications on data consistency after the crash. More precisely, the order in which
writes are persisted to PM together with the program point that a crash happens define the
memory state after the crash.

Similarly to memory consistency models, one can define memory persistency models [Pell14].

46

Memory persistency models describe the allowed behaviours with respect to failures. More
concretely, persistency models define the order in which the effects of loads and stores are
persisted in PM. This order is called persistency memory order. Note that this is analogous
to the memory order defined by the memory consistency models, that is the order in which
effects from memory instructions are made visible to other threads.

Strict versus Relaxed Persistency One common question that arises concerns the rela-
tion between consistency and persistency models. Does the persistency model enforce similar
constraints to the underlying consistency model? Based on that question, persistency models
fall under two categories:

Strict persistency couples the persistency order to the memory order imposed by the
underlying consistency model. That is, stores are persisted to PM in the same order that
they become visible to other threads. Examples of strict persistency models are Buffered
Strict Persistency (BSP) [Josh15]| and the recently proposed TSOPER [Ekem21| persistency
model for TSO. Although strict models ease programmers from the burdens of persistency,
they can seriously undermine performance.

As aresult, there have been proposed various relazed persistency models [Raad18, Raad19,
Raad20, Khyz21|. Relaxed persistency decouples the persistency model from the underlying
consistency model. The more the persistency order deviates from the order imposed by the
consistency model, the more relaxed the persistency model is. Obviously, the goal of relaxing
persistency models is to gain better performance.

Buffered versus Unbuffered Persistency Another way to improve performance of PM
and utilize its abilities is persist buffering [[zral6]. Persist buffering offers the ability to avoid
stalling when executing a persist instruction, i.e., persists occur asynchronously. On the
other hand, an unbuffered persistency model stalls the execution in order to execute persist
instruction synchronously.

3.2.1 Epoch Persistency

An example of a relaxed persistency model is Epoch persistency [Pell14]. There are two
main persistency primitives supported by this model: pfence and psync.

The pfence instruction is used as a persist barrier, which divides the execution of each
thread in different epochs. These persist barriers enforce an ordering between stores on the
same thread and on different epochs: no stores after the barrier can be persisted before
those prior to the barrier. Furthermore, stores to the same location are always ordered with
respect to the program order. However, there is no persist ordering between stores in different
locations within the same epoch.

Example 3.2: Using pfence under the epoch persistency model.

Let’s revisit Example 3.1. This time we are going to add a pfence instruction between
the two stores.

x = 1;
pfence; (WPW)
y =1

Figure 3.3: Extending Example 3.1 with a pfence instruction. Epoch 1 is denoted
by the [blue box and epoch 2 is denoted by the [red| box

47

The use of the pfence divides the execution into two epochs. Epoch 1 contains the
store to x, while epoch 2 contains the store to y. As such, the persist of x is ordered
before the persist of y and therefore the memory state x = 0 Ay = 1 after a crash is
not reachable.

There have been various extensions to the epoch persistency model; most importantly
the addition of persist buffering [Izral6]. As described earlier, persist buffering leads to
asynchronous persists. In order to tackle this issue, the second persistency primitive psync
was proposed, which blocks the execution until all pending persists have been committed to
PM.

The epoch persistency model offers better performance than strict persistency doest, since
all stores to different locations within the same epoch can be executed concurrently. Since
epoch persistency follows relaxed persistency semantics, it can be adapted to systems that
support different consistency models. If we consider SC as the underlining consistency model,
we can achieve strict persistency on an epoch persistency model by adding a persist barrier,
which is a sequence of pfence; psync, after every load or store instruction. However, this
method could seriously diminish performance. A downside of epoch persistency is that no
known system architecture supports the psync instruction, which is also really costly in terms
of performance, since it stalls the execution.

3.2.2 Persistent x86-TSO (Px86)

The first work that addressed the allowed memory behaviours with respect to persis-
tency of the ubiquitous Intel-x86 architecture [[nte19a| was the Px86 model [Raad20]. More
precisely, the authors of this work extended the x86-TSO consistency model [Sewel0] with
persistency semantics and introduced both an operational as well as a declarative persistency
model for NVM in the x86-TSO architecture.

Px86 is a relaxed buffered persistency model. Following Example 3.1, x86-TSO does
not allow the memory state x =0 Ay =1 under any normal execution. However, due to
the relaxed persistency semantics of Px86, this memory state can be observed after a crash.
Similarly to the epoch peristency model, stores to the same locations are expected to persist
in the program order. What differentiates Px86 from the epoch persistency model, is that
there is no notion of epochs: when two stores are on different locations, they can persist to
PM in any order.

Intel x86 follows the TSO model with store buffers, as described in subsection 2.1.2. In
order to model Px86, we need to add a persistent buffer, which sits between the thread buffers
and PM. When stores are propagated from the store buffer of each thread, they enter the
persistent buffer. At a future time (which is non-deterministic), the pending writes on the
persistent buffer are propagated to PM. The whole storage subsystem of Px86 is shown in
Figure 3.4.

Px86 offers explicit persist instructions that work on cache line width, which means that
if a persist instruction is executed on cache line x, then all pending writes on locations x € X
are going to be persisted as well. More specifically, these instructions are flush (namely
clflush) and flushgp: (namely clflushopt)'. It should be noted that these instruction
take effect asynchronously, since Px86 follows a buffered persistency model.

The main difference between flush and flush,,; has to do with the ordering with respects
to writes. While flush is ordered with respect to both earlier and later writes to any location,
flushgp is only ordered with respect to earlier writes on the same cache line. That means
that flushep, can be reordered with later writes on different cache lines. Therefore, the pro-

'There is actually a third instruction supported by Intel’s x86 ISA, which is wb. However, it has the same
semantics as flushepe and therefore we choose to focus only on the latter.

48

thread
A A T

v reads from
a persistent
= buffer
i
£
debuffered -
instructions .
> persistent buffer
= _E g § debuffered instructions
e £
£ B £ 5 .
52]l (non-volatile) memory

Figure 3.4: Px86 storage subsystem [Raad20)].

grammer should be very careful when using this instruction. However, as the name suggests,
flushyp offers greater performance than flush due to its more relaxed nature.

Intel’s x86 offers not only the memory fence (mfence), but also a store fence (sfence) in
order to enforce ordering constraints between writes and flushes. More precisely, an sfence
instruction can be reordered with respect to reads, but cannot be reordered with writes and
flushes. As such, any flushyp, before an sfence is guaranteed to be ordered before any store
after the sfence. It should be also noted that the mfence instruction is stronger than sfence,

i.e. it enforces the same orderings constraints as sfence and also constraints with respect to
reads.

Example 3.3: Difference between flush and flushgp.

Let’s consider Example 3.1, but we are going to add the explicit persist instructions
supported by Intel’s x86 architecture between the two stores. Assume that x € X and
y ¢ X.

x =1 x:=1;

flush X; (WFW) flushgp X; (WFoW)
yi=1 yi=1

(a) Use of flush. (b) Use of flushp.

Figure 3.5: Simple sequential programs showcasing the difference of the explicit per-
sist instructions of Intel’s x86.

Since flush instruction is ordered with respect to all writes on any location, the
program in Figure 3.5a guarantees that the persist of the write on x is ordered with
respect to the persist of the write to y and therefore the memory state x =0Ay =1
is not allowed after a crash.

However, since flushy,; is ordered only with respect to earlier writes on the same

49

location and because y ¢ X, it can be reordered after the store on y. Therefore, the
program in Figure 3.5b does not exclude the memory state x = 0 A y = 1 after a crash.
In order to avoid this behaviour, an sfence is needed after the flushyy:, as shown in
the following figure. Since flushgp is ordered before sfence, then it is ordered before
the store to y, too. Therefore, if y has persisted upon recovery, then flushey: has also
executed before the crash and therefore x has persisted too.

x:=1;
flushgpt X;
sfence;
yi=1

(WFoSW)

Figure 3.6: Adding an sfence; instruction after flush.,; enforces an ordering be-
tween the write on x and the write on y.

It should be noted, however, that these explicit persist instructions are really expen-
sive and should be used with frugality. Writing correct PM programs can seriously
undermine performance on various PM workloads [Wu20]. It is important, therefore,
to minimize the necessary amount of flushes and fences that the application requires.
In summary, the example in Figure 3.6 induces the constraint y =1 = x =1 upon
recovery. This notion of constraints, i.e. if we observe that a certain variable has been
persisted upon recovery then another variable must have also been persisted, is a very
common practice when writing recovery procedures for PM programs.

Finally, the work of [Raad20] introduces two formal definitions of the Px86 model using
(a) operational and (b) declarative semantics.

3.2.3 Refinements on Px86

Px86 seems to accurately model the persistency semantics of Intel-x86 architecture. How-
ever, it still fails to match the programmers’ intuition that persist instructions happen syn-
chronously. Most of previous work on PM systems [Pelll4, Izral6, Zuril9, Friel8, Frie2la,
Frie21b, Scar20] assumed the synchronous effect of flushes and sfences. For example, [[zral6]
introduces a psync instruction, which blocks the program execution until all previous flushes
have reached PM. Such an instruction cannot be implemented in Px86. Instead, Px86 asyn-
chronous nature only restricts the order in which writes and flushes’ effects have reached PM.
Consequently, under Px86 an execution, in which no writes have reached PM and the state
of PM is the same as the initial one, is always legal!

In order to bridge the gap between the formal semantics of Px86 and the programmers’
understanding of PM, [Khyz21] presents a refined model of Px86. Their operational model
PTSOgy, offers synchronous persist instructions, which block the execution until certain
writes reach PM. More precisely, the differences between Px86 and PTSOyy,, are the following:

e Per-cache-line persistence buffers. Although such an idea cannot be implemented
in real hardware for obvious reasons, it reflects better the idea that writes to the same
location have to be persisted in program order, while writes to different locations can
persist out of order.

e Synchronous flush instructions, which block the execution until the contents of the
corresponding cache-line’s persistence buffer are persisted.

50

e Synchronous sfence instruction, which blocks the execution until all flushgp, of the
same thread have taken their effect.

Note that all the effects of the synchronous instructions still take effect when they prop-
agate from the store buffer and not when they are issued.

We note two important results from the work of Khyzha and Lahav [Khyz21|. The first
one is the following theorem:

Theorem 3.1 ([Khyz21]). PTSOsy, and Px86 are observationally equivalent.

Under observational equivalence two models are considered equivalent if the set of reach-
able states, while taking into account the possible crashes, is the same for both models. This
equivalence notion actually implies that these two models can reach the same states after a
crash, but they may do so by following different sequence of steps.

The second important result is that their formalization induces a partial order on persist
events, rather than a total order, which is the case in Px86. Furthermore, they present an
equivalent axiomatic model, namely DPTSOgy,. This representation opens up the opportu-
nity of partial order reduction techniques tailored to persistency [Koko21lal.

The refinements proposed by PTSOgy,, were adopted by the authors of Px86 in the formal-
ization of PEx86, which accounted also for non-temporal writes in Intel’s x86 architecture.

3.3 Model Checking for Persistency

The declarative persistency models define a new derived relation called the persist-before
(or non-volatile-order) relation, denoted as pb. Using this relation various axioms are added
to model the persistency semantics (we refer to these as the persistency axioms of the model).
This relation gives the order in which events are persisted. This relation is a strict total order
in Px86, while in DPTSOyy,, is a partial order.

The first work that addressed model checking for persistency was done by extending
GENMC in order to verify programs that interact with the ext4 filesystem [Koko21la|. This
model checking algorithm is called PERSEVERE. In order to model the checking of the persis-
tent memory after a crash, PERSEVERE introduces the concept of a recovery observer, which
is a thread that runs in parallel with the main program. This recovery observer consists only
of reads (in the original implementation for ext4 these reads are disk reads) and using the rf
relation one can obtain the values that are going to be read during the recovery.

The verification process for PERSEVERE is extended as shown in Algorithm 3. A pro-
gram P to test, as well a recovery observer Pp is given to the verification function. The
VisiTONE(P,G,I') function calculates a full execution (G) and updates the environment I'?,
while checking that G is consistent with respect to the memory model. Afterwards, the RUN-
RECOVERY(PR,G,I") is executed and extends the calculated execution to a full execution of
P||Pr, while checking whether this execution is consistent to the memory model, as well as
to the persistency axioms of the model.

Since PERSEVERE is built upon GENMC, it is parametric to the memory model. There-
fore, the ideas presented for the ext4 filesystem can be adapted to support other declarative
memory models expanded with their respective persistency axioms, like the refined Px86
model.

In order to reduce the search space, PERSEVERE requires that all variables that are read
during the recovery routine are denoted persistent. These persistent variables should be
declared globally and this is achieved by using __VERIFIER_persistent_storage(), which
takes a variable as an argument. It also supports a malloc-like allocator for persistent
variables, namely __VERIFIER_palloc (), which takes the size of the variable as an argument.

2The environment I" contains information about alternative explorations that guide GENMC’s algorithm.

ol

Algorithm 3: PERSEVERE exploration algorithm

1: procedure VERIFY(P, PR)
2: «;,Iv — «?0,F0>

3 do

4 VisiTONE(P,G,T)

5: RUNRECOVERY(Pg,G,I")
6 while (G, T") < I".pop()

7. end procedure

Note that the variable that is storing the result of __VERIFIER_palloc() should have been
declared as persistent too.

At the time of the writing of this thesis, PERSEVERE supports three PM operations of

the Px86 model:

2. clflush, with the use of the function

1. a persist initialization barrier, with the use of the function __VERIFIER_pbarrier().

This function ensures that all previous (in program order) operations on persistent
variables will be persisted in memory during recovery. However, it does not provide
any guarantee for variables that are after it (in program order).

__VERIFIER_clflush(), which takes as input
the address of a persistent variable x (&x) and simulates the flushing of this memory
location.

3. a recovery routine, with the use of the function __VERIFIER_recovery routine().

This is the function that act as the recovery observer of the program in order to analyze
the post crash state of the program. Inside the body of this function, one can insert
assertions in order to verify the state of the persistent memory after the crash.

PERSEVERE does not currently support clflushopt or sfence, but as we mention in

Chapter 7 this can be done as future work. However, as we already mentioned, the use of
clflush is sufficient to enforce durability and is equivalent to the sequence of instructions
clflushopt; sfence.

The corresponding kat file for the refined Px86 persistency model is shown in Listing 3.1.

Note that the acyclicity condition remains the same as in TSO, while the pb relation is
defined. The recovery keyword takes the pb relation as argument and checks its consistency
during the exploration of the recovery routine.

1 let DW
2 let DR

(wl; [D]
(R]; [D]

. save [ppo] ppo = ([R]; po | po ; [F]1 | [F] ; po | po ; [Wl)+

6 let tso = (ppo | rfe | mo | fr)+

8 acyclic (tso)

C
)

0 let eco = (rf | mo | fr)+
11 let pb = ([DW]; mo) | ([DW]; po-loc; [CLF]; po? | [CLF]; tso; [DW] | [CLFIDW]; (

12

13

52

po-loc | eco)+; [CLFI|DW])

recovery (pb)

Listing 3.1: .kat file for Px86.

Chapter 4

Data Structures

4.1 Preliminaries

In a concurrent environment various threads can perform operations on a data structure
that is shared between them. Each operation is associated with its invocation and its response
events. In order to model executions in a concurrent environment, we need to define the
history of an execution.

Definition 4.1 (History). A history is a finite sequence of the invocations and the responses
of the operations performed by various threads in a concurrent environment.

Execution histories can alternatively be seen as irreflexive partial orders <y of their
events, i.e., eg <pg e if the response of ey precedes the invocation of e; in H. This partial
order corresponds to the actual ordering between operations. When two operations are not
ordered by <y, they are considered concurrent. When every invocation (except possibly the
last one) of a history H is immediately followed by its corresponding response and the first
event in H is an invocation, then H is called sequential.

Based on the above definitions, one can define the most common correctness criterion for
concurrent data structures, which is linearizability [Herl90] :

Definition 4.2 (Linearizability). A history H is linearizable if it can be extended (by ap-
pending zero or more response events) to some history H' such that:

1. complete(H')" is equivalent to some legal sequential history S, and
2. <yC<sg (the partial order induced by H is a subset of the partial order induced by S).

Property 2 actually means that if a method call mg precedes method call m; in H, then
the same is true in the sequential history S. Essentially, linearizability means that operations
appear to take effect atomically at some point between their invocation and response events.

The traditional approach for writing correct concurrent implementations of data struc-
tures was to use locks to protect shared variables. However, when a thread tries to acquire a
lock held by another thread, then it would block until the lock is free. These implementations
are generally called blocking implementations, since threads have to wait for the thread that is
holding the lock. Obviously, this approach severely hurts performance, since only one thread
makes progress, while the others are blocked. Aside from that, lock implementations are
susceptible to deadlocks and livelocks and the whole implementation depends on the thread
that is at any time the lock-holder, because a crash of this thread would lead to a state in
which the threads waiting for the lock would not be able to ever acquire it.

This problems has led computer scientists to design non-blocking algorithms. Such algo-
rithms, guarantee that the failure or the delay of a thread cannot lead to failure or delay
of another thread. These designs abandon the use of locks and threads are not required to

lcomplete(H) is the maximal subsequence of H consisting only of invocations and matching responses

93

wait for another thread to complete. It should be noted that linearizable algorithms are also
non-blocking [Herl90] and also more robust in case of unexpected events [Mich02b].

Based on the non-blocking property, we can define two main progress conditions for
methods of concurrent data structures:

lock-freedom A method is lock-free if there is a guarantee that among some threads per-
forming operations, at least one of them is going to complete in a finite number of steps.
However, the rest of the threads might starve or loop indefinitely.

wait-freedom A method is wait-free if it guarantees that every operation is going to com-
plete in a finite number of steps. It is easy to see that a lock implementation is not
wait-free since a thread can take an unbounded number of attempts trying to acquire
a lock. A wait-free algorithm is also lock-free, but not vice-versa.

4.2 Lock-Free Data Structures

In this section we are going to present some basic lock-free data structures. These data
structures are going to be used as baselines in our experimental section.

4.2.1 Harris’ Linked-List

Linked-lists are one the most fundamental data structures in computer science. Although
their design is fairly simple, they play an important role in memory management and garbage
collection and they are also used as an underlying infrastructure for more complicated data
structures like hash tables and S-expressions. The most commonly used lock-free linked-list
implementation the Harris’s linked list [HarrO1], which was later refined[Mich02a].

Harris’ linked-list is an ordered list, containing nodes with a key field for the stored
element and a next field, which points to the next node in the list. Additionally, one can add
an extra value field in the node structure, which is useful for implementing hash tables based
linked-lists. However, this additional field does not affect the operations of the linked-list.

As per common practice in lock-free data structures, Harris’s linked-list uses the CAS
primitive, in order to atomically change the next pointer of a node. For instance, when we
want to insert a new node in the list, we set the mext field of the new node to the desired
node (the first one with a key greater than the inserting node) and we use a CAS to change
the next pointer of the previous node to the new node. Similarly, when we want delete a
node, we use CAS to swing the next field of the previous node to point to the next node.

However, this is not a linearizable implementation. For example, the linked-list pictured
in Figure 4.1, containing the head node, a node with key 1 (n;) and a node with key 3 (n3),
and two threads issue the following operations:

e Thread 1 inserts a node with key 2 (let’s say ng).

e Thread 2 deletes n;.

H .

Y

1 .

Y

3

Figure 4.1: Initial state of linked-list.

Let’s assume that thread 2 has found the next pointer of head, which is n3. Right before
it performs the CAS to swing the next pointer, thread 1 sets the next field of no to n3 and
performs the CAS to change the next field of ny to itself. As a result, if thread 1 proceeds

o4

2|7

Figure 4.2: State of linked-list after concurrent insert and delete.

to perform the CAS instruction, then no would not be accessible starting from head since it’s
predecessor (n1) is no longer in the list. The state of the linked-list is shown in Figure 4.2.

In order to tackle the above problem, Harris proposed a marking mechanism, which
uses two CAS instruction instead of one. More concretely, when we want to delete a node
from the list, we first mark the next field of the node, which equals to a logical deletion.
Logically deleted nodes can remain in the list, but they prohibit threads from inserting a
node immediately after them. After a node has been logically deleted, the CAS to swing the
next field of the previous node can safely be performed.

\ y

H| ! 1 3

Figure 4.3: Marking the next field of the deleted node.

Y

On the previous example, thread 1 would observe that n; is logically deleted and therefore
ng cannot be inserted after it. So, the question is, what happens next? If thread 1 restarts
it would fall into the same problem. The solution is to physically delete the logically deleted
node ny before restarting. That way, thread 1 would actually make progress on the state of
the linked-list before restarting.

It should be noted that the marking of a logically deleted node can be performed really
easily by setting the last bit of the next field of the node. Assuming a modern machine that
operates on words wider than 1 byte, the marking of the pointer would not affect its actual
address. However, modern programming languages implementations can support objects that
contain both an object of some type as well as a boolean mark and both fields can be updated
atomically at the same time (e.g. Java’s AtomicMarkableReference object [Herl08]).

Harris linked-list implementation is based on a search function, which given a search key
returns two nodes: (a) a node with the largest key less than the search key (pred) (b) the node
with least key greater than (or equal) the search key (curr). However, these nodes should
be unmarked. This is achieved by removing all marked nodes between pred and curr. A CAS
instruction tries to set pred’s next field to point to curr and if that check fails, it restarts the
search function. Note that later refinements on Harris linked-list [Mich02a, Herl08] utilize
a more optimized search function that does not traverse all the intermediate nodes between
pred and curr, but uses a window that traverses through the list. If the right side of the
window finds a logically deleted note, it tries to physically delete it using a CAS on the left’s
side next. If that CAS fails, which means that either the next reference has changed (the right
side has been physically remove) or it has been marked (which means that the left side has
been logically remove), it restarts the search function.

Based on that search function it is easy to implement the three main functionalities of
Harris linked-list :

e insert, which adds a node to the list. Initially, search is performed with the key that is
being inserted to find pred and curr. Then a CAS is performed to set pred’s next field

%)

to the node being inserted. If the CAS fails (for the reasons we stated earlier), then the
insert procedure starts over. This method is lock-free.

e remove, which deletes a node from the list. Initially, search is performed with the key
that is being deleted to find pred and curr. Afterwards, curr is logically deleted by
performing a CAS to mark it’s nezt field. Finally, one can attempt to physically remove
the node too, but even if that does not succeed, the node will be physically removed by
some future operation. This method is lock-free.

e contains, which searches whether a certain key exists in the list. After the search for
the given key is performed, it checks whether it is equal to curr’s key. In that case it
returns true, otherwise it returns false. This method is wait-free.

4.2.2 MS-Queue

Queues are widely used data structures, which are mainly utilized as FIFO buffers or in
BF'S algorithms. We are going to focus on the most common lock-free queue implementation,
which is the Michael-Scott(MS) queue [Mich96].

Most queue implementations consist of two pointers head and tail, which are the return
and the entry point of the queue respectively. MS-Queue is implemented as a linked-list
coupled with these head and tail pointers. The head node points to a sentinel /dummy node,
which helps to deal with the edge case of an empty list. Initially, tail also points to the
sentinel node. An example of an instance of a queue is given in Figure 4.4.

head tail

|

sentinel | ®

2| 3|e — null

\
\
A\
—_
?

Figure 4.4: Example of an MS-Queue.

MS-Queue implements the two typical queue operations, namely enqueue, which inserts
a node at the end of the queue, and dequeue which returns the head of the list. Following
we are going to explain how these operations are implemented in order to be lock-free.

The enqueue method initially creates a new node and then it loops trying to insert the
node. More precisely, it reads the tail’s next pointer. If this pointer is not NULL, it means
that some previous operation has not yet completed and therefore the tail should be fixed to
point to the actual last node. In that case, a CAS attempt is made to swing the ta:l and then
(regardless the result of the CAS) the enqueue method is restarted. If the pointer is NULL,
which means that it is currently the last node, then a CAS is issued in order to append the
inserting node as it’s successor. If the CAS fails, then the enqueue method is restarted. If it
is successfull, then the inserting node has successfully been added and another CAS is issued
in order to fix the tail to point to this node. However, the return status of this CAS does not
force a restart of the enqueue operation.

The dequeue method tries to swing the head to point to sentinel’s next node. If this CAS
succeeds, then it returns the value of the sentinel node and makes it’s next node the new
sentinel. Otherwise, the method is restarted.

There is, however, an edge case for the dequeue operation, which is delineated in Exam-
ple 4.1. In order to deal with this edge case, a check is needed to determine whether the
queue is empty. If that is the case and the sentinel node has a non NULL nezt field, it means
that tail should be moved. As before, a CAS is issued to swing the tail and in case it fails,
the dequeue operation starts over again.

56

Example 4.1: Edge case of dequeuing a node concurrently with an enqueue

Consider an instance of an empty queue, i.e. both the head and tail are pointing to
the sentinel node as shown in Figure 4.5.

head tail

sentinel | *—— null

Figure 4.5: Empty queue. Both head and tail point to the sentinel node.

Let’s assume that thread 1 attempts to enqueue a node, while threads 2 attempts to
dequeue a node. Thread 1 has successfully swinged the sentinel’s node next field (since
tail is pointing to it) to the inserting node. However, tail has not yet been fixed. In
that case, thread 2 is going to swing head to point to the newly inserted node, as it
is going to be new sentinel. The problem is that tail is still refering to initial sentinel
node, which leads to an inconsistent state as shown in Figure 4.6.

head tail

sentel

Figure 4.6: Dequeue and enqueue concurrently on an empty queue leads to an in-
consistent state.

®
Y

1| e null

Both of these operations are lock-free. Another operation that can be added to the
MS-Queue is one to return the size of the queue. It’s implementation is straight forward and
it is easy to prove that can be done in a wait-free way.

Finally, MS-Queue is prone to the ABA problem [Mich96|, which is solved by using
counting references. However, in the scope of this thesis we are not going to deal with this
issue.

4.2.3 Skiplist

Linked-lists offer O(NN) time complexity for the various operations, since in the worst case
a full traversal of the list is required. Since we are dealing with ordered linked-list it would
be really beneficial if we could use some form of binary search on the keys of the list. Such an
approach would lower the average time complexity to O(log N'). However, single linked-lists
offer only one point to access the list: the head of the list.

The data structure that tackles this issue is the skiplist. A skiplist is a collection of linked-
lists, each characterized by its level. The bottom-level (level 0) list contains all the nodes,
while the lists at a higher level are sublists of the lower level and serve as shortcuts to the
lower level. The top level of each node of the bottom list is calculated randomly. Therefore,
the skiplist is a probabilistic data structure. An example of a skiplist is shown in Figure 4.7.
There are two nodes that server as sentinels, indicating the start (head) and the end (tail) of
the skiplist. These nodes have always the maximum amount of levels allowed in the skiplist.

57

level head — ____________-- e e cmmmmeee tail
3 5 5 »
2 T E - = > pmmm T EEs - - -

EHE

Figure 4.7: Example of a skiplist [Herl08].

Lel 1|

The search method starts from the highest level of the head node and traverses the list
at this level. When it finds a successor node that its key is greater (or equal) to the search
key, it continues to the lower level of its current node. However, in order for the insert and
remove methods to work properly, one must save the whole path, i.e. the links that were
followed at each level, and update these links accordingly.

level A:add(12)

3 | >
|..= - P
2 5 >
1 . ,
o | -)
- 9|

Figure 4.8: Inserting a node to a skiplist [Herl08].

The design of a lock-free skiplist is similar to the one of the Harris’ linked-list. It utilizes
the marking mechanism in order to remove nodes. It should be noted that each sublist above
the bottom level might not be contained in the lower level due to marking. Similarly to Harris’
linked list, the insert and remove functions are lock-free, while the contains function is
wait-free [Mich02b, Herl0g].

The main drawback of the skiplist is that it requires O(N log N) space complexity instead
of O(N).

4.3 Durable Data Structures

4.3.1 Durable Linearizability

Linearizability cannot be directly used as a correctness criterion for the persistent domain,
since it does not take into account the effects of crashes and recovery procedures. In order to
tackle this issue, a refined correctness criterion is established, namely durable linearizability
[Izral6]. Since the formal definition of durable linearizability requires a lot of other definitions,
abstractions and extensions from the linearizability definition, we are going to use a more
informal definition of it [Friel§]:

o8

Definition 4.3 (Durable Linearizability). An object is durably linearizable if a crash and
recovery that follows linearizable history H, leaves the object in a state reflecting a consistent
cut H'?> of H such that

1. the subhistory of H' without the crashes is linearizable

2. every complete operation of H appears in H'.

Intuitively, durable linearizability requires that after a crash all previously completed
operations should have been persisted and their effects should be detectable in persistent
memory. Alternatively, one can characterize a data structure as durably linearizable if by
removing all crash events, all executions that remain are linearizable.

Based on the definition of durable linearizability, it is easy to show that the lock-free data
structures mentioned in Section 4.2 (without making any adjustment related to persistency)
are not durably linearizable. A minimal example that showcases a durable linearizability
violation on a linked-list is shown in Example 4.2 [Wangl19)].

Example 4.2: Violation of durable linearizability on a linked-list

Consider a lock-free linked-list which contains two nodes, one with key 0 (node ng)
and one with key 3 (node n3), as shown in Figure 4.9. Let us suppose that two threads
(T'1 and T2) want to insert nodes with keys 1 (node n1) and 2 (node ngy) respectively.

0] 3

Figure 4.9: Initial list containing ng and ns.

Y

Let’s say that T'1 performs a CAS and changes the next pointer of ng to point to n; and
pauses without persisting this change. Afterwards, T2 starts executing and performs
a CAS, which changes nq next pointer to point to ne. Finally, T2 flushes its changes
to persistent memory and completes the insertion of ny. The state of the linked list is
shown in Figure 4.10. Right after it finishes, a crash occurs.

0] 13

41 21

Figure 4.10: State of the linked-list right before the crash. Solid lines have persisted,
dashed line has not persisted.

Y

After the crash both n; and no are lost, since the pointer from ng to n; has not been
persisted before the crash. So, even though the operation of T2 (insertion of ny) has
completed prior to the crash, its effect cannot be detected during the recovery. This is
a violation of durable linearizability. Note, however, that if T2 had been able to flush
the next pointer of ng after it reads its value (and obviously before it performs the
actual insertion of ny), then this example would actually be durably linearizable.
Similarly, one can easily construct an example in which two concurrent deletes lead to
a durable linearizability violation.

2A consistent cut H' a history H is a subhistory of H such that, if m; is contained in it, and mo <y ma,
then mg is also in H'.

99

It is, therefore, evident that we need to use PM primitives, like flush, flushopt and
sfence, in a precise way in order to turn these lock-free data structures into durable lineariz-
able ones. We are going to focus on 2 implementations of durably linearizable data structures
that have been recently proposed.

4.3.2 Persistent Queue

It can be easily shown that the MS-Queue is not durably linearizable, by constructing
an example similar to Example 4.2. Some durable alternatives to MS-Queue have recently
been proposed, which all fall under the name of Persistent Queue [Friel8]. We are going to
analyze the Durable Queue implementation, since it is the least complicated among them and
is sufficient to ensure durable linearizability.

The enqueue method of the Durable Queue creates a node with the given value and
flushes it to PM. This is essential, because it ensures that the content of the new node has
been persisted before being added to the list. Afterwards, the enqueue methods flushes the
next pointer of the previous last node to the newly added node. If, however, another enqueue
happens simultaneously and this flush has not been completed, the second enqueuer must
take extra care by flushing this pending pointer.

For the dequeue operation, the node structure is modified. More precisely, a deqThreadlD
field is added to each node, which points to the last thread that performed a dequeue operation
in this node. Furthermore, the queue is equipped with an array, that each dequeuing thread
stores its returned value. Using a CAS the dequeuing thread tries to write its thread ID to
the deqThreadID field of the next node of head. Right after this operation, the deqThreadld
field of the node is flushed to PM. If the CAS was successful, then the value of the node is
stored to the return array, flushes the array position and updates the head pointer (without
flushing it). If it was not successful, the dequeuer starts over.

It should be noted that neither the head nor the tail pointer is ever flushed during normal
execution. This happens because they can be fixed during recovery. The head pointer is set
to the first node with a non-NULL deqThreadID value, while the tail is set to the last
reachable (non-NULL) node starting from the head.

4.3.3 NVTraverse

The Durable Queue described in the previous section was designed with manual insertion
of flushes and fences. Such an approach is not always feasible, since it requires extremely
deep understanding of the data structure. Programmers need a more automatic way to write
correct durable data structures implementations.

The first such transformation for non-blocking data structures was given in the seminal
work for durable linearizability [Izral6]. This transformation assumes the epoch persistency
model and requires that:

e after every store a write back (pwb) to persistent memory is issued
e a pfence is issued before a release store’ and a pwb right after a load acquire
e a pfence before every CAS and a sequence of pwb;pfence after the CAS

e a psync before the operation returns

This transformation is generally referred to as the Izraelevitz transformation and as we
can see requires a pwb instruction after almost every operation. Therefore, it is a very costly
transformation that can seriously undermine performance of persistent memory.

3We refer to https://en.cppreference. com/w/cpp/atomic/memory_order for release-acquire semantics.

60

https://en.cppreference.com/w/cpp/atomic/memory_order

A more sophisticated approach for an automatic transformation is NV Traverse. NVTra-
verse [Frie2la| is an automatic transformation that turns a specific family of lock-free lin-
earizable data structures into durably linearizable ones. More specifically, this transformation
works on data structures that satisfy the following conditions:

e They are linearizable and lock-free.

e Their core should be a tree-like structure. There might be additional entry points to
the tree core (e.g. the higher level of a skiplist).

e Every operation in the data structure follows the layout of Algorithm 4. The findEntry()
function has two arguments: (a) the root, which is the main entry point to the data
structure and (b) input, which is usually the key of the inserting node. The output of
this function is a selected entry point to the core of the data structure. The traverse()
function traverses the data structure from this selected entry point and returns a list
of nodes (e.g. possible predecessor and successor nodes in a linked-list) that will be
required for the critical method, which modifies the data structure.

e The traverse method should not modify shared memory and returns a suffix of the path
traverse. The nodes of this suffix are called traverse nodes.

e Logical removal of nodes (marking) before the physical deletion.

Algorithm 4: Operation in a traversal data structure

T Operation(Node root, T input):
while true do
Node entry = findEntry(root, input);
List<Node> nodes = traverse(entry, input);
bool restart, T val = critical(nodes, input);
if Irestart then

return val;
end

end

This family of data structures are referred to as traversal data structures. To turn an
operation of a traversal data structure into a durable one, one should follow the layout of
Algorithm 5. There are 2 new functions (which are shaded in the algorithm) that are executed
after the traverse method:

e ensureReachable, which flushes the current parent (predecessor) pointer of the first node
of the list that was returned with traverse. Recall from Example 4.2 that if we were
able to flush the next field ng before we inserted ng, then the implementation would be
durable linearizable. The traverse function would return 3 nodes, n1, n3 (predeccessor
and successor of ng) and ng as the head of the list of nodes and the ensureReachable
function would flush ny (and subsequently its next pointer) essentially ensuring that
the inserted node would be reachable upon insertion.

e makePersistent, which flushes all the nodes returned by the traverse method and then
executes a fence. That way all nodes read during the critical method (plus the parent
pointer) have been persisted.

61

Finally, during the critical method, the NVTraverse transformation requires that a flush
should be injected after every a read of a shared variable and after a write or CAS. Also, a fence
is required before every write or CAS on a shared variable and before the return statement of
the operation.

Algorithm 5: Operation in a NVTraverse data structure

T Operation(Node root, T input):

while true do

Node entry = findEntry(root, input);
List<Node> nodes = traverse(entry, input);

ensureReachable(nodes.head());
makePersistent(nodes);

bool restart, T val = critical(nodes, input);
if Irestart then

return val;
end

end

In conclusion, NVTraverse utilizes the structure of the traversal data structures in order to
insert far less flushes and fences than the Izraelevitz transformation. As a result, it seriously
outperforms the latter.

62

Chapter 5

Test Suite

The main contribution of this thesis is a test suite for PM programs under the Px86
model. This suite can be divided into two categories:

1. Litmus tests. Litmus tests are synthetic, small and lightweight concurrent programs,
that aim to test the tool against certain behaviours of the implemented memory model.

2. Data structure tests. Carefully designed tests on original and durable versions of
some lock-free data structures found in the literature.

One goal of this test suite is to use it try to check the correctness and scalability of the
PERSEVERE model checker. As we will soon see, through this test suite we were able to
point out an internal inability of PERSEVERE to support the Px86 memory model. A more
general goal is to use it as a basis for creating benchmarks for tools that test and verify PM
programs.

5.1 Litmus Tests

In Chapter 3, we discussed some of the problematic behaviours of the Px86 model. For
example, we showed that in the WW example it is possible to observe a post-crash state that
it is not reachable under the x86-TSO model. In order to eschew this behaviour in Px86, we
need to flush the variable x by issuing a clflush(&x) right before the write to variable y, as
shown in the WE'W example.

In order to model the WW example in PERSEVERE, we declare two persistent vari-
ables x and y with __VERIFIER_persistent_storage(), initialize them to 0, and issue a
__VERIFIER_pbarrier() to create the initial state of the PM. Afterwards, we proceed to the
two writes to variables x and y. In order to deal with the post crash states, we read the values
of interest after a possible crash in the __VERIFIER_recovery_routine() function and issue
an assertion on the conjunction of the two variables, i.e., assert (! (x == 0) && (y == 1)).
In case this assertion fails, we have reached the undesired state x = 0 A y = 1 and PERSEVERE
will produce an output with this error detected. The corresponding C++ code is shown in
Listing 5.1, while the output of this example is shown in Figure 5.1.

#include <stdio.h>
#include <stdlib.h>

3 #include <atomic>

i #include <pthread.h>

5 #include <assert.h>

6 #include <genmc.h>

3 #define relaxed std::memory_order_relaxed
9

10 __VERIFIER_persistent_storage(std::atomic_int x);
11 __VERIFIER_persistent_storage(std::atomic_int y);

1

13

)

extern °C”’{

63

14 void __VERIFIER_clflush(voidx);
5 F

7 void __VERIFIER_recovery_routine(void)

s {

19 assert (! (x.load(relaxed) == 0 && y.load(relaxed) == 1));
20 return;

o1 }

; int main ()
o1 {
25 x.store(0, relaxed);
2% y.store (0, relaxed);

28 __VERIFIER_pbarrier();

30 x.store(1l, relaxed);
31 y.store(l, relaxed);

return O;

Listing 5.1: WW litmus test

Error detected: Recovery error!
Event (1, 2) in graph:
<—1, 0> main:
(0, 1): Wrlx (x..._.a_, 0) atomic:949
(0, 2): Wrlx (y..._a_, 0) atomic:949
(0, 3): PERSISTENCY_BARRIERrel L.31
(0, 4): Wrlx (x...__a_, 1) atomic:949
(0, 5): Wrlx (y..._.a_, 1) atomic:949
(0, 6): THREAD_END
<—1, 1> __VERIFIER recovery_routine:
(1, 1): Rrlx (x..._.a_, 0) [(0, 1)] atomic:957
(1, 2): Rrlx (y..._.a_, 1) [(0, 5)] atomic:957
Coherence:
y...—a: [(0, 2) (0, 5)]
x..._a_: [(0, 1) (0, 4)]

Assertion violation: !(x.load(relaxed) == 0 && y.load(relaxed) == 1)
Number of complete executions explored: 2
Total wall—clock time: 0.04s

Figure 5.1: Output of PERSEVERE (assertion violation) for the erroneous WwW litmus test.
The output consists of the type of error, the execution trace, the error message,
the number of explored (and blocked) executions and the time that was required.

In a similar way, we can model the WEF'W example by adding a __VERIFIER_clflush(&x)
instruction between the two writes. This time the tool does not detect any errors as shown
in Figure 5.2. As we can see, the purpose of litmus tests is to test the underlying memory
model, with carefully designed tests that expose tricky behaviours.

Except from testing the Px86 persistency model, we were able to find out through these
litmus tests that PERSEVERE required some additional internal support in order to implement
the Px86 model. More precisely, we implemented the simple message passing example, shown

64

No errors were detected.
Number of complete executions explored: 2
Total wall—clock time: 0.04s

Figure 5.2: Output of PERSEVERE for the WFW litmus test. No errors were detected.

in Figure 5.3, which revealed that PERSEVERE was not able to correctly model the flushing
of a variable that was previously written by another thread.

x:=42; || a:=y;
=17 if(a # 0);
y ilush 2{ (2W+RFW)
z:=1;

Figure 5.3: Message passing litmus test (2W+RFW). Variable x is written by the first thread
and it is flushed by the second thread. This behaviour was initially problematic
for PERSEVERE. The C++ implementation is straightforward (see Appendix B).

The litmus test suite contains some more examples, that are more complex and utilize
other consistency primitives like CAS. One such example ([Vafe22]) is shown in Figure 5.4.

aj := CAS(14,0,1); || ap := CAS(14,0,2);
if (a1 = 1) if (a2 = 1)
x:=1; b:=y;
yi=1; if (b= 1) (CAS+CAS)
flush x; z:=1;
flushy; flush z;
1, :=0; 1y :=0;

Figure 5.4: CAS-based locking litmus test (CAS+CAS). CAS is used as a lock: the two threads
are battling to obtain the lock (1) and when they do they proceed to the body of
their if statements. The invariant that we are testingisz=1=x=1Ay = 1.
In order for z to obtain the value 1, y should also be 1. This also indicates that
thread 1 should have been executed before thread 2 and should have finished,
i.e., 1y should have been set to 0 again. Therefore, the two writes on x and y
should have taken place, as well as the flushes on both of them. As a result, x
and y must have been persisted in memory before the write and the flush on
z takes place.

As an additional observation, we model two kinds of checks for the recovery routine:

1. Assertions that should hold under every execution. We denote these test cases as safe,
meaning that PERSEVERE should detect no errors when it executes these test cases.
For example, the WFW and CAS+CAS test cases fall under this category.

2. Assertions that catch specific behaviours of the Px86 model and should fail. We denote
these test cases as unsafe, meaning that PERSEVERE should detect a bug when it
executes them. WW is an example of this category.

65

5.2 Data Structure Tests

As we already mentioned in Chapter 3, all variables that are read during the recovery
routine of PERSEVERE should be declared globally as persistent. This is problematic for the
data structures’ implementations, since they are using nodes that are created during runtime.
In order to deal with this problem, we declare a large persistent global array of nodes, and
we populate this array with the use of __VERIFIER_palloc() during the initialization of the
data structure. When a new node would be required with the use of new or malloc in the
original implementation, we return one of the nodes stored in this global array. Listing 5.2
shows the corresponding code for the node allocation procedure, which is common for all data
structures (except the implementation of the node itself).

| __VERIFIER_persistent_storage(Node* nodes [MAXNODES]) ;
; static int node_idx;
1
5 void allocateNodes ()
6 {
7 node_idx = 0;
8 for (int i = 0; i < MAXNODES; i++) {
9 nodes[i] = (Node #*)__VERIFIER_palloc(sizeof (Node));
10 new (nodes[i]) Node();
11 }
12 }
13
14+ Node* getNewNode ()
15 {
16 return nodes[node_idx++];
17 }
Listing 5.2: Code snippet for node allocation.

5.2.1 NVTraverse Tests

As far as NVTraverse is concerned, we tested the linked-list and skiplist implementations.
More specifically, we used three different versions of these data structures:

1. The original implementation of the data structure (e.g., Harris’ linked-list), which is
non-durably linearizable.

2. Izraelevitz’s transformation.
3. NVTraverse’s transformation.
Our tests were focused around two axes:

1. Prove that the original implementations are in fact not durably linearizable, while the
other two implementations pass the corresponding tests. Therefore, test cases for the
original implementations are denoted as unsafe, while those for the two transformations
are denoted as safe. Note that this, however, does not prove that the Izraelevitz’s and
NVTraverse’s transformations are durably linearizable. The quality of the test cases and
the coverage of the behaviours that these test cases achieve provide better assurances
that these implementations might actually be correct.

2. Create some complex test cases in order to stress-test PERSEVERE.

An example of the first category is given in Listing 5.3, where we spawn two threads that
perform an insertion and a deletion in the list. The recovery routine checks whether the list
still contains the last node that was inserted before the persistency barrier. Running this test

66

with the original implementation, produces an assertion violation, which means that the last
node was removed from the list, despite the fact that none of the two threads operated on it.
Therefore, the list is in an inconsistent state after the crash. However, both the Izraelevitz
and the NVTraverse implementations pass this test successfully.

#include <stdlib.h>

#include <stdio.h>

#include <pthread.h>
#include <assert.h>

#include *’../ListOriginal.h”

static pthread_t threads[2];
static int param[2] = {0, 1};

__VERIFIER_persistent_storage(static ListOriginal* list);

; void *threadl(void *param)

{
list->remove (3);
return NULL;

}

void *thread2(void *param)
{
list->insert (2, 10);
return NULL;

3}

void __VERIFIER_recovery_routine(void)
{

assert (list->contains (4));

return;

}

int main()

{
list = (ListOriginal*)__VERIFIER_palloc(sizeof(ListOriginal));
new (list) ListOriginal();

list->insert (0,10);
list->insert (3,10);
list->insert (4,10);

__VERIFIER_pbarrier();

pthread_create (&threads [0], NULL, threadl, ¶m[0]);
pthread_create (&threads[1], NULL, thread2, ¶m[1]);

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

return O;

Listing 5.3: lor-pw+u+d test.

For the second category, we constructed a test case with three threads. Ome thread
performs a deletion, while the others perform one insertion each. Again, we check whether
the list stays in an consistent state after the crash. The original implementation fails this
test, while the two transformations pass it. Although it might seem that three threads with
one operation each is not a very complex program, the combination of concurrency and the
number of post-crash observable states produce a huge amount of executions (> 40k) and

67

can be used to stress-test the tool. This test case is shown in Appendix B.
As far as the notation of the test cases is concerned, we use the following regular expres-
sion:

((s1)[1)((or)[(12)[(t)) — (((pw) (+(wla)") ") ((w]d)" (+(w[d)")"))

where
e 1 refers to linked-list, while s1 refers to a skiplist test case

e or refers to the original implementation of the data structures, iz refers to the Izraele-
vitz transformation and tr refers to the NVTraverse implementation

e pw means that there are some writes (inserts) to the data structure before the persistency
barrier.

e +(w|d)" means that an additional thread is spawned, that performs an arbitrary number
of inserts or deletions to the data structure.

For example, the program shown in Listing 5.3 is named lor-pw+w+d, because we are testing
the original implementation of the linked-list with some initial inserts to the list before the
persistency barrier and two threads are spawned, where one performs an insert, while the
other performs a deletion.

The tests for the skiplist implementations are similar to those for the linked-list. We used
three levels for the skiplist, in order to constrain the complexity of the tests.

5.2.2 Persistent Queue Tests

We followed a similar approach for the tests targeting the Durable Queue implementation.
Our notation follows the same pattern, described by the regular expression:

((msq)|(dq)) — (((pe)(+(eld)")")I((e]d)"(+(e]d)")"))

where

e msq refers to the original MS-Queue implementation, while dq refers to the Durable
Queue one.

e pe means that there are some enqueues to the data structure before the persistency
barrier.

e +(e|d)” means that an additional thread is spawned, that performs an arbitrary number
of enqueues or dequeues to the data structure.

The MS-Queue tests are not durably linearizable and are designed to fail (i.e., we denote
them as unsafe). On the other side, the Durable Queue tests are in fact durably linearizable.
The corresponding tests are denoted as safe and aim to test specific combinations of enqueues
and dequeues.

The main difference with the NVTraverse tests is that the original implementations of
the Persistent Queue (MS and Durable) did not provide any support for checking the results
of an enqueue. To deal with that problem, we introduced a getSize function (shown in
Listing 5.4) that calculates the size of the queue. This function was used by the recovery
routine to check whether the results of the enqueue operations actually affected the queue.

68

1

int getSize(bool recovery = false)

int size = 0;
NodeWithID *aux = head;

do{
if (recovery && aux->threadID != -1) {
size = 0;
recovery = false;
}
aux = aux->next;
size++;
} while(aux->next);

return size;

Listing 5.4: getSize function.

In Listing 5.5 we present the de-pe+e+e test, where we spawn two threads that perform
one enqueue each and during recovery we check whether the size of the queue has actu-
ally been increased by two if both operations have completed. Note, that we are using a
__VERIFIER_assume () statement, which is a built-in function that stops the execution if the
argument given to it is zero. The purpose of this function is to reduce the state space. The
corresponding test case for the MS-Queue fails this test.

#include <stdlib.h>
#include <stdio.h>

#include <pthread.h>
#include <assert.h>

#include ’’DurableQueue.h”

static pthread_t threads[2];
static int param[2] = {0, 13};

__VERIFIER_persistent_storage (DurableQueue* queue);
__VERIFIER_persistent_storage (bool donel);
_VERIFIER _persistent_storage (bool done2);

5 void *threadl(void *param)

{
donel = queue->enq(1l);
return NULL;

}

void *thread2(void #*param)
{
done2 = queue->enq(2);
return NULL;
}

7 void __VERIFIER_recovery_routine(void)

{
__VERIFIER_assume (donel && done2);
assert (queue->getSize() == 2);
return;

}

int main()

{
queue = (DurableQueuex*)__VERIFIER_palloc(sizeof (DurableQueue));
new (queue) DurableQueue();

69

queue ->enq (3) ;
__VERIFIER_pbarrier();

pthread_create (&threads [0] , NULL, threadl, ¶m[0]);
pthread_create (&threads[1], NULL, thread2, ¶m[1]);

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

return O;

Listing 5.5: dq-pete+e test.

The Durable Queue does not flush the head and tail pointers at any time during normal
execution. As a result, one must be very careful when trying to reason about the state of
the queue upon recovery. Although a recovery procedure is described in the original work of
the Durable Queue [Friel8], there is no official implementation of it in the code repository.
Furthermore, PERSEVERE only supports reads from persistent variables during recovery,
which would make such a procedure useless in the context of the tool.

To alleviate this issue, we added a boolean variable recovery to the getSize function,
which indicates that the recovery routine is running and therefore the head of the queue might
have changed. This is particularly helpful when some dequeue operations have taken place
and therefore the head pointer points to a node that has been dequeued during recovery. We
present such an example in Appendix B.

5.3 Flush Elimination Tests

As mentioned earlier, it is important to minimize the amount of flush instructions used
by the PM workload. Although NVTraverse reduces the number of required flushes and
sfences, it does not provide any guarantee about the optimality of its transformation. It
may be possible that specific flushes and sfences can be eliminated. Since PERSEVERE
does not currently support the c1flushq,: and the sfence instruction, we are only going to
work with the c1flush instruction (which as we have already discussed is sufficient to enforce
the desired persist ordering).

To that extent, we manually added some flags that enable or disable specific f1lushes. For
example, in the insert function of the NVTraverse linked-list implementation, we can disable
the flush of the inserting node before it is added to the list with the flag BIMF. Similarly,
with the flag BICF we can remove the flush after the CAS instruction that swings the next
field of the predecessor node from the successor to the new node.
bool insert(int k, int item) {

while (true) {
Window* window = find(head, k);

Node* pred = window->pred;
Node* curr = window->curr;
free(window) ;

if (curr && curr->key == k)

return false;

Node* node = getNewNode();
node->set(k, item, curr);
#ifndef BIMF
FLUSH (node) ;
#endif

; #ifdef BICF

70

bool res = pred->CAS_next(curr, node);

#else
bool res = pred->CAS_nextF(curr, node);
#endif
if (res)
return true;
}
}

Listing 5.6: Code snippet for manually added bugs in NVTraverse linked-list insert
function. Notice the two flags (BIMF and BICF) that remove flushes.

Similarly, we have modified the remove function of the NVTraverse linked-list. The
changes and the flags that enable the bugs can be found in Appendix B.

Another point of interest for eliminating flushes is the flushing of a node object. In
Listing 5.7, we can see the Node class, which has three fields: the key, the value and a
next pointer. PERSEVERE provides functionality for flushing a single variable by giving
its address as argument to the __VERIFIER_clflush() function. However, it is not able to
flush a whole struct or class, but rather only its first field. Instead, one should take care to
flush all the fields separately. Although this might seem restrictive, it is on par with how
real hardware works: flush instructions work on cache line width. It is common for objects
to not fit in a single cache line.
class Node{
public:

int key;
int value;
Nodex* next;

Node (int k, int val, Node* n) : key(k), value(val), next(n) {}
}

Listing 5.7: Linked-list node class.

Based on the above observation, we can use a flag (namely BMFN), which enables the
flushing of the object, instead of each of its fields. This is showcased in Listing 5.8. This
might create some cases, where the next field has not been persisted, although the key has,
which can lead to inconsistent states upon recovery.

void FLUSH(Node *n)

2 {
3 #ifdef BMFN

__VERIFIER_clflush(&n);

#else
__VERIFIER_clflush(&(n->key));
__VERIFIER_clflush(&(n->value));
__VERIFIER_clflush(&(n->next));

#endif

}

Listing 5.8: Code snippet for manually added bug to the function that flushes a node. The
bug is enabled with the flag BMFN.

Finally, we define the flag BITF, which disables the flushing of the traverse nodes during
the traversal of the list. This should lead to the behaviour illustrated in Example 4.2.

71

Chapter 6

Results

We ran all tests on a system equipped with an Intel Xeon E5-4650 CPU and 128GB of
RAM, running Debian 11.4. GENMC is compiled with and uses LLVM-11. All reported times
are in seconds. We provide the expected result for every test case, i.e., what we would expect
PERSEVERE to give as output based on the refined Px86 semantics. A timeout of 24 hours
is set for running each test case.

6.1 Results of Litmus Tests

The results for the litmus tests are shown in Table 6.1. As we can see, litmus tests require
only a small number of executions and very little time. Obviously, one can create more
complex litmus tests with more than two threads and more events. However, as we already
pointed out, our litmus test suite aims to test the sanity of the Px86 model implementation
on PERSEVERE (and possibly other tools), not to stress-test their implementations.

Executions

Expected Explored Blocked Time

2W+2W unsafe 3 0.04
2W+RFW safe 3 0.04
2WRW+WFW unsafe 1 0.04
6W safe 4 0.04
CAS+CAS safe) 0.04
WFW safe 2 0.04
WEW+RW safe 3 0.04
WMW+WEW unsafe 2 0.04
WW unsafe 2 0.04
WW+RMFW safe 3 0.04

Table 6.1: Results for litmus tests.

All litmus tests returned the expected results. This indicates that PERSEVERE models
successfully some basics behaviours of the refined Px86 model that our litmus tests check. It
should be noted that this does not indicate that PERSEVERE models the whole refined Px86
model correctly.

6.2 Results of Data Structure Tests

6.2.1 Results of NVTraverse Tests

The results for the NVTraverse tests are shown in Table 6.2.

73

Executions

Expected Explored Blocked Time
lor-ww unsafe 5 0.10
lor-pw+d+d unsafe 9 0.28
lor-pw+w+d unsafe 3 0.15
lor-pw+w+w unsafe 2 0.15
lor-pw+ww unsafe 6 0.17
lor-pwtw+w+d unsafe 3 0.18
lor-pw+w+ww unsafe 6 0.26
liz-ww safe 3 0.13
liz-pw+d+d safe L 1! L
liz-pw+w+d safe 116 3.59
liz-pw+w+w safe 35 1.37
liz-pw+ww safe 3 0.16
liz-pw+w+w+d safe 42293 1981.83
liz-pw+w+ww safe 123 7.7
ltr-ww safe 3 0.17
ltr-pw+d+d safe 118 2 10.41
ltr-pw+w+d safe 76 3.11
ltr-pw+w+w safe 25 1.38
ltr-pw+ww safe 3 0.20
ltr-pw+w+w+d safe 13902 1019.78
ltr-pwtwtww safe 108 10.04
slor-pw+d+d unsafe 4 0.14
slor-pw+w+w unsafe 2 0.16
slor-pw+w+w+d unsafe) 0.32
sliz-pw+d+d safe 7119 16 2869.06
sliz-pw+w+w safe 15 7.39
sliz-pw+w+w+d safe ® ® ®
sltr-pw+d+d safe 26732 14 12247.60
sltr-pw+w+w sede B2 + 460-08
sltr-pw+w+w+d safe ® ® ®

Table 6.2: Results for the NVTraverse tests. ®: timed out (>24h), !!: internal crash of

PERSEVERE, struek-eut: wrong result (compared to the expected result).

All test cases from the original implementations of the Harris’ linked-list and the lock-free
skiplist were designed to be unsafe, since these implementations are not durably linearizable.
As can be seen, our test cases exposed the problematic behaviours of these implementations
and detected the corresponding bugs.

Almost all test cases for both the linked-list and the skiplist produced the expected results.
All the test cases, for the two transformations are denoted as safe, since we do not expect a
durable linearizability violation from these transformations.

Looking more carefully into these results, one might observe that the NVTraverse trans-
formation requires on average less explored executions than the Izraelevitz one. This might
be counter-intuitive, since the Izraelevitz transformation uses more flushes and therefore it
is expected to constrain the possible post-crash states. However, the two implementations
are not directly comparable, since the NVTraverse one employs a slightly different approach

74

during the search function. Therefore, it is not safe to compare the number of explored
executions between these two models.
We also encountered some test cases that did not behave as expected:

e liz-pw+d+d produced an internal error in PERSEVERE. This error was produced be-
cause PERSEVERE was not able to create a consistent rf relation for the various events.
At the time of the writing of this thesis, it is still unknown whether this is a bug in the
implementation of the linked-list or if it is an inherent problem of PERSEVERE.

e sltr-pw+w+w resulted in an assertion violation, although it was considered safe. We
postulate that this comes from a mistake in the test (possibly a missing flush) and does
not indicate that the data structure is not durably linearizable or that PERSEVERE fails
to model the Px86 semantics correctly.

Finally, as stated in Chapter 5, we designed a test case that produces a lot of explored
executions. For the linked-lists, we can observe that the Izraelevitz transformation explores
more than 40k executions. The corresponding test cases for the skiplist implementations
produced a timeout (of 24 hours). This demonstrates that even small concurrent programs
for data structures (in our case three threads each performing a single operation) require
significant time to be model checked.

6.2.2 Results of Persistent Queue Tests

The results for the Persistent Queue tests are shown in Table 6.3. The test cases are
limited in comparison with the NVTraverse tests, since the Persistent Queue data structure
is simpler in nature than NVTraverse and does not showcase a lot of tricky behaviours with
respect to persistency.

Executions

Expected Explored Blocked Time

ms-e unsafe 3 0.08
ms-petete unsafe 2 0.10
dg-e safe 1 0.10
dg-pe+e+d safe 6 0.18
dg-pete+e safe 28 24 0.53
dg-pe+d+d safe 28 2 083

Table 6.3: Results for Persistent Queue tests.

It was easy to show that MS-Queue is not durably linearizable, since in both test cases an
assertion violation was detected during recovery. These test cases checked whether the size
of the queue was increased accordingly to the number of inserts that were completed before
a crash.

On the other side, all of our tests for the Durable Queue, which were denoted as safe,
returned the expected result. This indicates that the implementation of the queue successfully
follows its (theoretically proven) durably linearizable design.

6.3 Results of Flush Elimination Tests

The results for the various tests of eliminating flushes are shown in Table 6.4.
As can be seen, most of the flags produce an error in at least one test case. This indi-
cates that all flushes are necessary to ensure durable linearizability. The only exemption

()

Executions

Result Explored Blocked Time

ltr-pw+w+w-mfn unsafe 2 0.55
ltr-pw+w+d-mfn unsafe 3 0.29
ltr-pwt+w+w-imf unsafe 2 0.59
ltr-pw+w+d-imf unsafe 3 0.19
ltr-pw+w+w-icf unsafe 2 0.21
ltr-pw+w+d-icf safe 76 3.37
ltr-pw+d+d-tmf safe 119 2 5.7
ltr-pw+w+w-tmf unsafe 2 0.23
ltr-pwt+w+d-tmf safe 7 1.63
ltr-pw+d+d-rmf safe 118 2 11.30
ltr-pw+w+d-rmf safe 76 3.43
ltr-pwt+d+d-rcf unsafe 71 7.29
ltr-pw+w+d-rcf safe 76 3.41

Table 6.4: Results for NVTraverse tests with selectively removed flushes.

is removing the flush right after the node that is going to be removed is accessed. This,
however, does not imply that this f1lush can be removed. It is possible that it requires more
detailed and complex test cases to discover a potential bug.

As stated in Chapter 5, the BTMF flag removes the flush instructions performed on the
traverse nodes. By enabling this flag with the 1tr-pw+w+w test case, we should observe the
durable linearizability violation illustrated in Example 4.2. Indeed, PERSEVERE detects the
bug. However, this bug cannot be detected under the other two combinations that were
tested (1tr-pw+d+d and ltr-pw+w+d).

Another interesting observation from these tests is that by removing some flushes, the
number of executions explored might increase (in the absence of bugs). For instance, for the
original 1tr-pw+w+d test case PERSEVERE explores 76 executions, while for 1tr-pw+w+d-tmf
(removal of the flush instructions of the traverse nodes) it explores one extra execution.
This is in fact the expected behaviour. flush instructions impose specific restrictions for the
ordering of persists and therefore might decrease the total number of post-crash observable
executions. Therefore, by removing those flushes, one may observe more post-crash states.

6.4 Comparison with Consistency Checking

Model checking for persistency should theoretically be more expensive in terms of exe-
cutions explored and time than checking for consistency. In order to demonstrate this, and
to put these numbers into perspective, we also ran some tests with GENMC and compared
its results with those of PERSEVERE. For the test cases that are dealing with data struc-
tures, GENMC used the original implementations of the data structures (since it does not
support persistency primitives), while PERSEVERE with the Traverse implementations (since
the original implementations produce errors). The assertion inside the recovery routine in
PERSEVERE was moved to end of the program when ran in the GENMC normal setting.

We ran both the SC and the TSO consistency model for GENMC. However, we are going
to show only the results for TSO, since in most cases GENMC explored the same number of
executions under both models. (With one exception that we are going to discuss later on.)
The results are shown in Table 6.5.

76

GENMC TSO PERSEVERE
Expected Explored Blocked Time Explored Blocked Time

CAS+CAS safe 4 0.04 5(44) 0.04
1-pw+w+d safe 14 0.09 126 2 5.60
1-pw+w+w+d safe 1543 2 549 13902 1019.78
sl-pw+d+d safe 50 1 026 26732 14 12247.60
sl-pw+w+w+d safe 1400 9.20 C} C} C}

Table 6.5: Comparison between consistency and persistency verification. The number in
parenthesis indicates the total number of executions that PERSEVERE might
explore if all persistent variables are read during recovery.

The CAS+CAS litmus test produces 4 executions with GENMC for the consistency checking
and 5 executions for the persistency checking at the recovery routine. This is expected, since
persistency checking requires not only exploring the various interleaving caused by concur-
rency, but also takes into account the various crash points that would affect the observed
values during recovery.

Another interesting test that we conducted was to measure the total number of executions
that PERSEVERE might explore if we let it observe all the persistent variables during recovery.
Recall that PERSEVERE only explores executions that are affected by the variables that are
being read during recovery. If a variable is not read during recovery, PERSEVERE will consider
executions with different values of this variable as equivalent. So, if we read all the persistent
variables during recovery, the number of executions explored by PERSEVERE rises to 44,
which is an order of magnitude more than the executions required for consistency checking.

In a similar fashion, we can observe that the same pattern is repeated for the various data
structures tests. For instance, 1-pw+w+w+d requires 1543 explored executions for the normal
GENMC setting, while PERSEVERE explores 13902 executions.

In general, persistency checking is a lot more expensive in terms of executions explored
and, as a result, time. We observed differences up to four orders of magnitude (s1-pw+d+d).
It should be noted, however, that this is just an empirical observation: there might be
even bigger differences for other PM workloads. The workaround that was required to fix
PERSEVERE’s support for modelling flushes by a thread different than the one that made
the write to the variable being flushed, induced a time overhead per execution, which further
increased the total time needed for persistency checking.

7

Chapter 7

Epilogue

7.1 Related Work

As far as testing tools are concerned, there is a wide range of work for testing persistent
memory programs (e.g., [Liul9, Neal20, Fu2l]) and fuzzing them [Liu21]. However, model
checking has not been actively studied for this domain. There are only two other known model
checkers for real persistent memory programs, namely YAT [Lant14] and JAARU [Gorj21].
The former enumerates all possible crash states, which leads to even greater exponential
complexity than concurrent programs. This exhaustive search, however, cannot scale and,
therefore, it is not suitable for real world programs. On the other hand, JAARU performs
a form of DPOR, by inferring constraints on the last time that a cache line was flushed to
persistent memory. The main difference between JAARU and PERSEVERE is that it uses
operational instead of axiomatic semantics for modelling Px86.

There are numerous PM libraries publicly available, like PMDK [Intel5|. Furthermore,
there is a wide variety of data structures implementations aimed for PM [Leel9, Izad21,
Cai2l, Kim21], like key-value stores, trees, etc. In a similar fashion to NVTraverse, more
transformations of linearizable data structures to durable ones have been proposed [Frie21b],
as well as some libraries that offer great abstractions and require minimal user interven-
tion [Wei22]. However, most of them are not formally verified. Instead, they mainly employ
unit testing, which is not enough to prove (or disprove) their correctness.

7.2 Conclusion and Future Work

Through this thesis, we presented an overview of the basics of persistent memory. We
discussed the notion of persistency models and how they are related with consistency models.
Afterwards, we experimented with a state-of-the-art stateless model checker (GENMC) and,
more precisely, the under development extension of PERSEVERE, which supports the Px86
model. We introduced a test suite for PM programs, which consists of both litmus and
lock-free data structure tests.

Through litmus testing we managed to find an internal problem of PERSEVERE, which
was leading to incorrect results. This lead the developers to add extra support in GENMC’s
core to fix this issue. Finally, we tried to verify some implementations of lock-free data
structures. We proved through model checking that the original implementations of these
data structures were not durably linearizable and we also tested the Izraelevitz and the
NVTraverse transformation. Our test suite can be used as a guideline for creating tests for
PM programs and potentially be included in a more complete benchmark suite in the future.

An obvious direction for future work is to add flushe: and sfence instructions to
PERSEVERE. By using flushgp, one can achieve better performance than flush. How-
ever, it should be used together with sfence in order to ensure the desired persist ordering.
It would be interesting to test the various data structures with these two instructions and
try to find the minimal numbers of fences that are required for correct recovery.

79

Another conspicuous extension of our work would be to try to adapt other implementa-
tions of data structures for PM, in order to be used with PERSEVERE. Our test suite can be
used as a guideline for the design of the test cases. Afterwards, it would be interesting to
compare the complexity and the reduction achieved among these data structures. It would
also be intriguing to couple these data structure implementations with allocators and garbage
collectors designed for PM [Cai20]| and try to verify them together.

As far as the litmus test suite is concerned, it would be interesting to use the Alloy”
constraint solver [Milil5] to automatically produce litmus tests for Px86.

Various persistency models for both experimental and real architectures have been pro-
posed in recent literature; these range from strict persistency models for TSO such as
TSOPER [Ekem?21] to relaxed ones such as PARMv8 [Raad19] and PSC [Khyz21]. In addi-
tion, language level persistency models have been recently discussed [Koll19]. These models
can easily be embedded in PERSEVERE by using KATER in the same way as Px86. It would
be really interesting to also check for robustness violations between strict and relaxed persis-
tency models, for the data structures included in our suite. (An implementation is considered
robust iff it showcases the same behaviour between the two memory models under test.) A
similar work has been done for JAARU [Gorj22].

Finally, it would be really useful to modify PERSEVERE in order to support proper recov-
ery procedures, like the one described in the Durable Queue. These procedures would be the
first during the recovery routine of PERSEVERE. Most recent designs of durably linearizable
data structures rely on such recovery procedures in order to ensure consistency after a crash.
We postulate that such an addition would not be particularly hard.

80

Appendix A

Test Suite Interface

The test suite is available at https://github.com/spyrospav/pm-benchmarks'. In or-
der to run it, a driver shell script (pmdriver.sh) is provided, which accepts the following

(optional) arguments:

-h | --help, which is a help flag and prints the instructions of how to run the script, as
well as explanation for the various command-line arguments.

-m | --mode, which takes another (required) argument, in order to select which mode to
run. One mode is default, which runs the normal test suite, and the other is missing,
which runs the buggy test cases. There is also an option to run both modes (all).

-d | --debug, which is a debug flag, that produces debug information like execution traces
and error graphs. For the production of the error graphs, we utilize the built-in func-
tionality of GENMC to produce .dot files, which we turn into .png files. An example of
an error graph is given in Figure A.1.

main() _ VERIFIER_recovery_routine()
Wi (x... a_, 0) R (x..._a ,0)
L~
Wi (y..._a_, 0) | R (y.._a_. 1)

l

PERSISTENCY_BARRIER'!

l

Wik (x . a_ 1)

l

Wi (y.._a 1)

Figure A.1: Error graph for WW litmus test. — denotes coherence order between events,
denotes the reads-from relation.

The test suite contains a dictionary (in catalog.sh), which relates the various tests with
their expected results. One can easily add more tests to the suite by inserting new entries to
this file and follow the design of the driver script to run their tests.

LAt the time of the writing of this thesis, the version of GENMC that we used had not been publicly released.

81

https://github.com/spyrospav/pm-benchmarks

Appendix B

Source Code

In this appendix, we include the source code for some of the tests that were mentioned in

the main text of this thesis.

B.1 Litmus Tests

#include <stdio.h>
#include <stdlib.h>
#include <atomic>
#include <pthread.h>
#include <assert.h>
#include <genmc.h>

#define relaxed std::memory_order_relaxed

__VERIFIER_persistent_storage(std::atomic_int x);
__VERIFIER_persistent_storage(std::atomic_int y);

; extern *°C°{

void __VERIFIER_clflush(voidx*);

5}

void __VERIFIER_recovery_routine(void)
{

assert (! (x.load(relaxed) == 0) && (y.load(relaxed)
return;

}

3 int main ()

{
x.store(0, relaxed);
y.store (0, relaxed);
__VERIFIER_pbarrier();
x.store(1, relaxed);
__VERIFIER_clflush (&x);
y.store(l, relaxed);
return O;

}

Listing B.1: WFW litmus test

#include <stdio.h>
#include <stdlib.h>
#include <atomic>
#include <pthread.h>
#include <assert.h>
#include <genmc.h>

83

#define relaxed std::memory_order_relaxed

static pthread_t threads[2];
static int param[2]

{0, 1};

_VERIFIER_persistent_storage(std::atomic_int x);

__VERIFIER_persistent_storage(std::atomic_int y);
__VERIFIER_persistent_storage(std::atomic_int z);

int a =

0;

extern *°C’’{

void

}

_VERIFIER_clflush(voidx);

void *threadl(void *param)

{

x.store (42,
y.store(7, relaxed);

return NULL;

}

relaxed);

void *thread2(void *param)

{
a =
if (a

y.load () ;

0 {

__VERIFIER_clflush (&x);

z.store (1,

}

return NULL;

7}

void

{

if (z.load(relaxed)
assert(x.load(relaxed
return;

}

int

x.store (0,
.store (0,
z.store (0,

<

main ()

relaxed) ;
relaxed) ;
relaxed) ;

relaxed) ;

__VERIFIER_recovery_routine(void)

—= 1)
)

42)

__VERIFIER_pbarrier ();

pthread_create (&threads [0],
pthread_create (&threads[1],

NULL, threadl, ¶ml[0]);
NULL, thread2, ¶m[1]);

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

return

#include
#include
#include
#include
#include
#include

84

0;

<stdio.h>
<stdlib.h>
<atomic>
<pthread.h>
<assert.h>
<genmc .h>

Listing B.2: 2W+RFW litmus test

#

define relaxed std::memory_order_relaxed

static pthread_t threads[2];
static int param([2] = {0, 1};

_VERIFIER_persistent_storage(std::atomic_int x);
_VERIFIER_persistent_storage(std::atomic_int y);
_VERIFIER_persistent_storage(std::atomic_int z);

__VERIFIER_persistent_storage(std::atomic_int 1x);

int zero = 0;

e

}

v

5 {

TV

{

xtern ’°C’{
void __VERIFIER_clflush(voidx) ;

oid *threadl(void *param)

bool al = 1x.compare_exchange_strong(zero, 1, relaxed);
if (a1) {
x.store(l, relaxed);
y.store(l, relaxed);
__VERIFIER_clflush (&x);
__VERIFIER_clflush(&y);
1x.store (0, relaxed);
}
return NULL;

0id *thread2(void *param)

bool a2 = 1lx.compare_exchange_strong(zero, 2, relaxed);
if (a2) {
int a3 = y.load(relaxed);
if (a3 == 1) {
z.store(1l, relaxed);
__VERIFIER_clflush (&z);
¥
1x.store (0, relaxed);
}
return NULL;

void __VERIFIER_recovery_routine(void)

{

if (z.load(relaxed) == 1)
assert(x.load(relaxed) == 1 && y.load(relaxed) == 1);
return;

nt main ()
x.store(0, relaxed);
y.store (0, relaxed);
z.store (0, relaxed);
1x.store(0, relaxed);

__VERIFIER_pbarrier();

pthread_create (&threads [0], NULL, threadl, ¶m[0]);
pthread_create (&threads[1], NULL, thread2, ¶m[1]);

85

70

71
7

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

return O;

}
Listing B.3: CAS+CAS litmus test

B.2 Data Structure Tests

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <assert.h>

#include *’../ListOriginal.h”

static pthread_t threads[3];
static int param[3] = {0, 1, 2};

__VERIFIER_persistent_storage(static ListOriginal* list);

; void *threadl(void *param)

{
list->remove (3);
return NULL;

7}

void *thread2(void *param)
{
list->insert (2, 10);
return NULL;
}

5 void *thread3(void *param)

{
list->insert (1, 10);
return NULL;

}

void __VERIFIER_recovery_routine(void)
{

assert (list->contains (4));

return;

}

7 int main ()

{
list = (ListOriginal#) __VERIFIER_palloc(sizeof (ListOriginal));
new (list) ListOriginal();

list->insert (0,10);

list->insert (3,10);

list->insert (4,10);

__VERIFIER_pbarrier();

pthread_create (&threads[0], NULL, threadl, ¶m[0]);
pthread_create (&threads[1], NULL, thread2, ¶m[1]);
pthread_create (&threads[2], NULL, thread2, ¶m[2]);

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

86

pthread_join(threads[2], NULL);

return O;

Listing B.4: lor-pw+w+w+d test

#include <stdlib.h>
#include <stdio.h>

; #include <pthread.h>
#include <assert.h>

#include ’’DurableQueue.h”

static pthread_t threads[3];
static int param([3] = {0, 1, 2};

__VERIFIER_persistent_storage (DurableQueue* queue);
__VERIFIER_persistent_storage(bool donel = false);
__VERIFIER_persistent_storage(bool done2 = false);

5 void *threadl(void *param)

{
queue->enq (2) ;
donel = true;
return NULL;

}

22 void *thread2(void *param)
2
queue ->deq (2) ;
done2 = true;
return NULL;

7}

void __VERIFIER_recovery_routine(void)
{
__VERIFIER_assume (donel && done2);
assert (queue->removedValues [2] == 1);
int x = queue->getSize(true);
assert(x == 1);
return;

int main()

{
queue = (DurableQueuex*)__VERIFIER_palloc(sizeof (DurableQueue));
new (queue) DurableQueue();
queue->enq (1) ;

__VERIFIER_pbarrier();

pthread_create (&threads [0], NULL, threadl, ¶m[0]);
pthread_create (&threads[1], NULL, thread2, ¶m[1]);

pthread_join(threads [0], NULL);
pthread_join(threads[1], NULL);

assert (queue->getSize() == 1);

return O;

56

33

34

Listing B.5: dg-pe+e+d test

B.3 Flush Elimination Tests

bool remove(int key) {
bool snip = false;
while (true) {
Window* window = find(head, key);

Node* pred = window->pred;
Node* curr = window->curr;
free(window) ;
if (Ycurr || curr->key != key) {
return false;
}
else {
o #ifdef BRMF
Node* succ = curr->getNext();
#else
Node* succ = curr->getNextF();
#endif
Node* succAndMark = mark(succ);
if (succ == succAndMark) {
continue;
}
#ifdef BRCF
snip = curr->CAS_next (succ, succAndMark);
#else
snip = curr->CAS_nextF(succ, succAndMark);
#endif
if (!snip)
continue;
if (pred->CAS_nextF(curr, succ)){
free(curr) ;
}
return true;
}
}
}

Listing B.6: Code snippet for manually added bugs in NVTraverse linked-list remove
function. There are 2 flags, namely BRMF and BRCF, that remove flushes.

88

Bibliography

[Abduld]

[Abdul5|

[Abdul7]

[Abdul9]

[Adve96]

[Algl12]

[Algl14]

[Aronl§]

[Cai20]

[Cai21]

[Ekem21]|

Parosh Abdulla, Stavros Aronis, Bengt Jonsson and Konstantinos Sagonas, “Opti-
mal Dynamic Partial Order Reduction”, in Symposium on Principles of Program-
ming Languages, POPL 2014, pp. 373-384, January 2014. < p. 19, 35, and 43

Parosh Abdulla, Stavros Aronis, Mohammed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson and Konstantinos Sagonas, “Stateless Model Checking for TSO and
PSO”, in Tools and Algorithms for the Construction and Analysis of Systems, vol.
9035 of LNCS, pp. 353-367, Berlin, Heidelberg, April 2015, Springer. < p. 43

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson and Konstantinos Sagonas,
“Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction”, Jour-
nal of the ACM, vol. 64, no. 4, pp. 25:1-25:49, September 2017. — p. 43

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Léng,
Tuan Phong Ngo and Konstantinos Sagonas, “Optimal Stateless Model Checking
for Reads-From Equivalence Under Sequential Consistency”, Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, pp. 150:1-150:29, October 2019. < p. 43

Sarita V. Adve and Kourosh Gharachorloo, “Shared memory consistency models:
a tutorial”’, Computer, vol. 29, no. 12, pp. 66-76, 1996. < p. 18 and 37

Jade Alglave, “A formal hierarchy of weak memory models”, Form Methods Syst
Des, vol. 41, no. 2, pp. 178-210, October 2012. < p. 18 and 40

Jade Alglave, Luc Maranget and Michael Tautschnig, “Herding cats: modelling,
simulation, testing, and data-mining for weak memory”, in ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI '14, p. 40,
ACM, June 2014. < p. 43

Stavros Aronis, Bengt Jonsson, Magnus Lang and Konstantinos Sagonas, “Optimal
Dynamic Partial Order Reduction with Observers”, in Tools and Algorithms for
the Construction and Analysis of Systems - 24th International Conference, vol.
10806 of LNCS, pp. 229-248, Cham, April 2018, Springer. < p. 43

Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati
and Michael L. Scott, “Understanding and optimizing persistent memory alloca-
tion”, in Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management, pp. 60-73, London UK, June 2020, ACM. — p. 80

Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du, Rafaello Sanna,
Shreif Abdallah and Michael L. Scott, “Fast Nonblocking Persistence for Concur-
rent Data Structures”, arXiv:2105.09508 [cs], August 2021. arXiv: 2105.09508.
— p. 31 and 79

Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas and Stefanos Kaxi-
ras, “TSOPER: Efficient Coherence-Based Strict Persistency”, in IEEE Interna-
tional Symposium on High-Performance Computer Architecture, HPCA 2021, pp.
137-150, IEEE Computer Society, March 2021. < p. 31, 47, and 80

89

[Flan05|

[Friel8|

[Frie21a]

[Frie21b|

[Fu21]

[Gode96]

[Gode97]

[Gorj21]

[Gorj22]

[Harr01]

[Her190]

[Herl08)

[Intel5]

90

Cormac Flanagan and Patrice Godefroid, “Dynamic partial-order reduction for
model checking software”, in Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’05, pp. 110-121, New
York, NY, USA, January 2005, ACM. < p. 19, 35, 41, and 43

Michal Friedman, Maurice Herlihy, Virendra Marathe and Erez Petrank, “A per-
sistent lock-free queue for non-volatile memory”, in Proceedings of the 23rd ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
28-40, Vienna Austria, February 2018, ACM. < p. 20, 35, 50, 58, 60, and 70

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch and Erez
Petrank, “NVTraverse: In NVRAM Data Structures, the Destination is More
Important than the Journey”, arXiw:2004.02841 [cs], November 2021. arXiv:
2004.02841. < p. 20, 23, 35, 50, and 61

Michal Friedman, Erez Petrank and Pedro Ramalhete, “Mirror: making lock-free
data structures persistent”, in Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, pp.
1218-1232, Virtual Canada, June 2021, ACM. < p. 31, 50, and 79

Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail, Sunny
Wadkar, Dongyoon Lee and Changwoo Min, “Witcher: Systematic Crash Consis-
tency Testing for Non-Volatile Memory Key-Value Stores”, in Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM, pp.
100-115, ACM, October 2021. < p. 79

Patrice Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos and Pierre Wolper,
Partial-Order Methods for the Verification of Concurrent Systems: An Approach
to the State- Explosion Problem, Springer-Verlag, Berlin, Heidelberg, 1996. < p. 41
and 42

Patrice Godefroid, “Model checking for programming languages using VeriSoft”,
in Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL 97, pp. 174-186, Paris, France, 1997, ACM
Press. <— p. 41

Hamed Gorjiara, Guoqing Harry Xu and Brian Demsky, “Jaaru: efficiently model
checking persistent memory programs”, in Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 415-428, Virtual USA, April 2021, ACM. — p. 79

Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu and Brian Demsky,
“Checking Robustness to Weak Persistency Models”, 2022. < p. 80

Tim Harris, “A Pragmatic Implementation of Non-Blocking Linked Lists”, in
Proceedings of the 15th International Symposium on Distributed Computing, vol.
2180 of LNCS, pp. 300-314, Springer-Verlag, October 2001. < p. 22 and 54

Maurice P. Herlihy and Jeannette M. Wing, “Linearizability: a correctness con-
dition for concurrent objects”, ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp- 463492, July 1990. — p. 21, 53, and 54

Maurice Herlihy and Nir Shavit, The Art of Multiprocessor Programming, Else-
vier/Morgan Kaufmann, Amsterdam/Boston, 2008. < p. 22, 55, and 58

Intel, “PMem.io”, https://pmem.io/, 2015. < p. 31 and 79

https://pmem.io/

[Inte19a]

[Inte19b]

[Izad21]

[Izral6]

[Josh15]

[Kawal2]

[Khyz21]

[Kim21]

[Koko19|

|[Koko21al

[Koko21b]

[Koll19]

[Kumal5|

Intel, “Intel® 64 and TA-32 Architectures Software Developer Man-
uals”, https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html, 2019. < p. 48

Intel, “Intel®) Optane™ Persistent Memory”, https://www.intel.com/content/
www/us/en/architecture-and-technology/optane-dc-persistent-memory.
html, 2019. < p. 19 and 45

Ramin Izadpanah, Christina Peterson, Yan Solihin and Damian Dechev, “PETRA:
Persistent Transactional Non-blocking Linked Data Structures”, ACM Trans. Ar-
chit. Code Optim., vol. 18, no. 2, pp. 1-26, June 2021. < p. 31 and 79

Joseph Izraelevitz, Hammurabi Mendes and Michael L. Scott, “Linearizability of
Persistent Memory Objects Under a Full-System-Crash Failure Model”, in Dis-
tributed Computing, vol. 9888 of LNCS, pp. 313-327, Springer, Berlin, Heidelberg,
2016. — p. 20, 22, 23, 47, 48, 50, 58, and 60

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra and Stratis Viglas, “Efficient Per-
sist Barriers for Multicores”, in Proceedings of the 48th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 2015, pp. 660-671, ACM,
December 2015. < p. 47

Takayuki Kawahara, Kenchi Ito, Riichiro Takemura and Hideo Ohno, “Spin-
transfer torque RAM technology: Review and prospect”, Microelectronics Relia-
bility, vol. 52, no. 4, pp. 613627, 2012. < p. 19 and 45

Artem Khyzha and Ori Lahav, “Taming x86-TSO persistency”, Proc. ACM Pro-
gram. Lang., vol. 5, no. POPL, pp. 1-29, January 2021. <> p. 20, 47, 50, 51,
and 80

Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap and Chang-
woo Min, “PACTree: A High Performance Persistent Range Index Using PAC
Guidelines”, in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pp. 424-439, ACM, October 2021. < p. 31 and 79

Michalis Kokologiannakis, Azalea Raad and Viktor Vafeiadis, “Model Checking
for Weakly Consistent Libraries”, in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 96-110,
ACM, June 2019. < p. 43

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad and Viktor Vafeiadis,
“PerSeVerE: persistency semantics for verification under ext4”, Proc. ACM Pro-
gram. Lang., vol. 5, no. POPL, pp. 1-29, January 2021. < p. 21, 35, and 51

Michalis Kokologiannakis and Viktor Vafeiadis, “GenMC: A Model Checker for
Weak Memory Models”, in Computer Aided Verification, vol. 12759 of LNCS, pp.
427-440, Springer International Publishing, Cham, 2021. < p. 19 and 43

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, William Wang,
Peter M. Chen, Satish Narayanasamy and Thomas F. Wenisch, “Language Support
for Memory Persistency”, IFEEE Micro, vol. 39, no. 3, pp. 94-102, May 2019.
— p. 80

Suhas Kumar, “Fundamental Limits to Moore’s Law”, 2015. < p. 45

91

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

[Lamp79]

[Lant14]

[Lee09]

[Leel9]

[Liul9]

[Liu21]

[Mich96]

[Mich02a|

[Mich02b]

[Mili15]

[Neal20]

92

Leslie Lamport, “How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs”, IEEE Transactions on Computers C-28, vol. 9,
pp- 690-691, September 1979. < p. 18 and 37

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran and Jeff
Jackson, “Yat: A Validation Framework for Persistent Memory Software”, in
Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC’14,
pp- 433-438, USA, 2014, USENIX Association. < p. 79

Benjamin C. Lee, Engin Ipek, Onur Mutlu and Doug Burger, “Architecting Phase
Change Memory as a Scalable Dram Alternative”, in Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA 09, pp. 2-13,
New York, NY, USA, 2009, ACM. — p. 19 and 45

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim and Vijay Chi-
dambaram, “Recipe: converting concurrent DRAM indexes to persistent-memory
indexes”, in Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, pp. 462-477, ACM, October 2019. < p. 31 and 79

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli and Samira Khan, “PMTest:
A Fast and Flexible Testing Framework for Persistent Memory Programs”, in
Proceedings of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 411-425, ACM, April 2019.
— p. 79

Sihang Liu, Suyash Mahar, Baishakhi Ray and Samira Khan, “PMFuzz: test case
generation for persistent memory programs”, in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 487-502, Virtual USA, April 2021, ACM. — p. 79

Maged M. Michael and Michael L. Scott, “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms”, in Proceedings of the Fif-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC
'96, pp. 267275, New York, NY, USA, 1996, ACM. < p. 22, 56, and 57

Maged M. Michael, “High Performance Dynamic Lock-Free Hash Tables and List-
Based Sets”, in Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’02, pp. 73-82, New York, NY, USA, 2002,
ACM. < p. 54 and 55

Maged M. Michael, “Safe Memory Reclamation for Dynamic Lock-Free Objects
Using Atomic Reads and Writes”, in Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing, PODC ’02, pp. 21-30, New
York, NY, USA, 2002, ACM. < p. 22, 54, and 58

Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang and Daniel Jackson, “Alloy: A
General-Purpose Higher-Order Relational Constraint Solver”, in 2015 IEEE/ACM
37th IEEFE International Conference on Software Engineering, vol. 1, pp. 609-619,
2015. < p. 80

Tan Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter
and Baris Kasikci, “AGAMOTTO: How Persistent is Your Persistent Memory Ap-
plication?”, in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, USENIX Association, USA, 2020. < p. 79

[Pell14]

[Qure09]

[Raad1§]

|[Raad19]

[Raad20)|

[Scar20]

[Sewel0]

[Sori11]

[Vafe22]

[Wang19|

[Wei22]

[Wu20|

[Zuril9]

Steven Pelley, Peter M. Chen and Thomas F. Wenisch, “Memory persistency”,
SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 265-276, October 2014.
— p. 20, 45, 46, 47, and 50

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan and Jude A. Rivers, “Scalable
High Performance Main Memory System Using Phase-Change Memory Technol-
ogy”, in Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pp. 24-33, New York, NY, USA, 2009, ACM. — p. 46

Azalea Raad and Viktor Vafeiadis, “Persistence semantics for weak memory: in-
tegrating epoch persistency with the TSO memory model”, Proc. ACM Program.
Lang., vol. 2, no. OOPSLA, pp. 1-27, October 2018. < p. 31 and 47

Azalea Raad, John Wickerson and Viktor Vafeiadis, “Weak persistency semantics
from the ground up: formalising the persistency semantics of ARMv8 and trans-
actional models”, Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 1-27,
October 2019. < p. 47 and 80

Azalea Raad, John Wickerson, Gil Neiger and Viktor Vafeiadis, “Persistency
semantics of the Intel-x86 architecture”, Proc. ACM Program. Lang., vol. 4, no.
POPL, pp. 1-31, January 2020. < p. 20, 47, 48, 49, and 50

Steve Scargall, Programming Persistent Memory: A Comprehensive Guide for
Dewvelopers, Apress, Berkeley, CA, 2020. < p. 20 and 50

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli and Mag-
nus O. Myreen, “x86-TSO: a rigorous and usable programmer’s model for x86
multiprocessors”, Commun. ACM, vol. 53, no. 7, pp. 89-97, July 2010. < p. 48

Daniel J. Sorin, Mark D. Hill and David A. Wood, “A Primer on Memory Consis-
tency and Cache Coherence”, Synthesis Lectures on Computer Architecture, vol. 6,
no. 3, pp. 1-212, November 2011. — p. 38 and 39

Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad and John Wickerson,
“View-Based Owicki-Gries Reasoning for Persistent x86-TSO”, in Programming
Languages and Systems, vol. 13240 of LNCS, pp. 234-261, Springer International
Publishing, Cham, March 2022. < p. 65

William Wang and Stephan Diestelhorst, “Persistent Atomics for Implementing
Durable Lock-Free Data Structures for Non-Volatile Memory (Brief Announce-
ment)”, in The 31st ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 19, pp. 309-311, New York, NY, USA, June 2019, ACM. < p. 59

Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch and Erez
Petrank, “F1iT: a library for simple and efficient persistent algorithms”, in Pro-
ceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 309-321, ACM, April 2022. < p. 31 and 79

Kai Wu, Ivy Peng, Jie Ren and Dong Li, “Ribbon: High Performance Cache
Line Flushing for Persistent Memory”, in Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, pp. 427-439,
ACM, September 2020. < p. 50

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen and Erez Petrank, “Ef-
ficient Lock-Free Durable Sets”, Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
October 2019. < p. 50

93

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος πινάκων
	Κατάλογος σχημάτων
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Συνέπεια Μνήμης
	Έλεγχος Μοντέλου
	Επίμονη Μνήμη
	Δομές Δεδομένων
	Σουίτα Ελέγχου για Επίμονη Μνήμη
	Αποτελέσματα
	Επίλογος

	Κείμενο στα αγγλικά
	Introduction
	Overview
	Contributions
	Organization

	Memory Consistency and Model Checking
	Memory Consistency
	Sequential Consistency (SC)
	Total Store Order (TSO)
	Axiomatic versus Operational Memory Models

	Verification
	Stateless Model Checking
	Partial Order Reduction
	GenMC
	kater

	Persistent Memory
	Basics of Persistent Memory
	Memory Persistency Models
	Epoch Persistency
	Persistent x86-TSO (Px86)
	Refinements on Px86

	Model Checking for Persistency

	Data Structures
	Preliminaries
	Lock-Free Data Structures
	Harris' Linked-List
	MS-Queue
	Skiplist

	Durable Data Structures
	Durable Linearizability
	Persistent Queue
	NVTraverse

	Test Suite
	Litmus Tests
	Data Structure Tests
	NVTraverse Tests
	Persistent Queue Tests

	Flush Elimination Tests

	Results
	Results of Litmus Tests
	Results of Data Structure Tests
	Results of NVTraverse Tests
	Results of Persistent Queue Tests

	Results of Flush Elimination Tests
	Comparison with Consistency Checking

	Epilogue
	Related Work
	Conclusion and Future Work

	Test Suite Interface
	Source Code
	Litmus Tests
	Data Structure Tests
	Flush Elimination Tests

	Bibliography

