ΠΡΟΛΟΓΟΣ

Η προστασία του περιβάλλοντος αποτελεί το σημαντικότερο ίσως παράγοντα που συνυπολογίζεται μεταξύ άλλων κατά την κατασκευή τεχνικών έργων. Η αξιοποίηση της υπάρχουσας γνώσης αλλά και η επέκτασή της χρησιμοποιώντας πειραματικές μεθόδους συμβάλλουν στην αποτελεσματικότερη δημιουργία και λειτουργία τους. Το αντικείμενο της περιβαλλοντικής ρευστομηχανικής είναι η μελέτη των ροών των ρευστών και κατά πόσο αυτή έχει συνέπειες σε περιβαλλοντικούς αποδέκτες.

Το αντικείμενο της διπλωματικής αυτής εργασίας είναι η μελέτη μία τυρβώδους εκτοξευόμενης ανωστικής φλέβας. Πρόκειται, δηλαδή, για τη μελέτη της ροής μίας φλέβας θερμού νερού η οποία διαχέεται σε περιβάλλον νερό διαφορετικής πυκνότητας, και η οποία εκτοξεύεται από μία πηγή, ώστε να επιτυγχάνεται η γρήγορη διάλυσή της σε αυτό. Παράλληλα, ο όρος «ανωστική» αναφέρεται στην επιρροή της άνωσης σε αυτήν, καθώς πρόκειται για μία φλέβα βυθισμένη.

Τα πειράματα της εργασίας πραγματοποιήθηκαν στο εργαστήριο Εφαρμοσμένης Υδραυλικής της Σχολής Πολιτικών Μηχανικών του Ε.Μ. Πολυτεχνείου, και θα ήταν αδύνατο να περατωθούν χωρίς τη συνεχή επίβλεψη του καθηγητή μου, κ. Παναγιώτη Παπανικολάου, Αναπλ. Καθηγητή Π.Θ., και τον οποίο ευχαριστώ για τις γνώσεις που μου προσέφερε και την υπομονή που επέδειξε στην προσπάθειά του να λύσει τις συνεχείς απορίες μου με το αντικείμενο της εργασίας. Ευχαριστώ θερμά τον κ. Σπύρο Μίχα, Δρ. Πολ. Μηχ. Π.Θ, ο οποίος είναι ο δημιουργός της πειραματικής συσκευής και ο άνθρωπος ο οποίος με «εφοδίασε» με ένα πολύτιμο υπολογιστικό φύλλο το οποίο -πραγματικά- μου έλυσε τα χέρια. Παράλληλα ευχαριστώ και τον κ. Ιωάννη Ναλμπάντη, Επίκουρο Καθηγητή Ε.Μ.Π., για την εμπιστοσύνη που επέδειξε στο πρόσωπό μου και την ανάθεση της εργασίας αυτής σε μένα, καθώς και για τη συνεχή διαθεσιμότητά του σχετικά με την καθοδήγησή μου στη συγγραφή της παρούσης εργασίας.

Σημαντικοί παράγοντες στην ολοκλήρωση της πειραματικής αυτής έρευνας ήταν η συνεχής υποστήριξη από τους γονείς μου και τους φίλους μου, καθώς και του Άρη Θανάσουλα και της Χρυσούλας Παλόγλου, φοιτητές της Σχολής Α.Τ.Μ. Ε.Μ.Π., οι οποίοι με βοήθησαν κατά την εκτέλεση των πειραμάτων.

Την πρώτη μου αυτή εργασία αφιερώνω στον παππού μου, ο οποίος πάντα πίστευε σε εμένα.

Σ. Ι. Παπαντωνίου

Περιεχόμενα

1	Εισα	γωγή	7
	1.2	Εισαγωγικά	7
	1.3	Παράμετροι που επηρεάζουν τη συμπεριφορά της φλέβας	8
	1.4	Στοιχεία προσδιορισμού ανωστικής φλέβας	9
	1.3.1 2 3 1	. Παροχή Q, Ορμή M και Άνωση B Χαρακτροιστικές κλίμακες μόκομς λ _α και λ., και ο αριθμός <i>R</i> .	9
	1 Г	O an M in M	11
	1.5	Οι αρισμοι Froude, Reynolds και κισησιου	11
	1.0	Ζυντομή περιγραφή του πειραματος	12
	1.7		12
2	Πειρ	άματα	14
	2.1	Πειραματική διάταξη	14
	2.2	Υπολογισμός παροχής Q από την ένδειξη του ροόμετρου	16
3	Συμ	19	
4	Τα π	20	
	4.1	Στοιχεία δειγματοληψίας	20
	4.2	Οι παράμετροι της φλέβας και τα βασικότερα υπολογισθέντα στοιχεία	21
	4.3	Υπολογισμός διαφοράς ΔT και $\sqrt{\left(\Delta \overline{T_c} ight)^2}$, προσδιορισμός T_c και r	22
	4.4	Υπολογισμός πλάτους θερμοκρασίας b	23
	4.5	Υπολογισμός κινηματικής ορμής M και κινηματικής άνωσης B	24
	4.6	Υπολογισμός $l_{\mathcal{Q}}$ και $l_{_M}$, αριθμού Richardson (Ri) και διάστασης z / $l_{_M}$	25
	4.7	Κατανομή της συγκέντρωσης S και υπολογισμός της διάλυσης $S^{'}$	25
5	Η επ	εξεργασία των μετρήσεων	27
	5.1	Η διάλυση S΄	27
	5.2	Το θερμοκρασιακό πλάτος $b_{_T}$	31
	5.3	Στατιστικές ιδιότητες της θερμοκρασίας στα jets και στα πλούμια	33
6	Συμ	τεράσματα	45
В	ιβλιογρα	ιφία	47

Παράρτημα Α: Φωτογραφίες των πειραματικών συσκευών	50
Παράρτημα Β: Φωτογραφίες της φλέβας	51
Παράρτημα Γ: Φωτογραφίες από το λογισμικό Labview 7	52
Παράρτημα Δ: Φωτογραφίες αρχείων με θερμοκρασιακές τιμές	53
Παράρτημα Ε: Αναλυτικά αποτελέσματα για κάθε πείραμα	55

Πίνακας σχημάτων

Σχήμα 1: Σχηματική αναπαράσταση συμπεριφοράς ανωστικής εκτοξευόμενης φλέβας	11
Σχήμα 2: Διάταξη συσκευών πειράματος	15
Σχήμα 3: Σχέση της ένδειξης του ροόμετρου και της παροχής Q	18
Σχήμα 5: Μέση ταχύτητα εκτόξευσης στον άξονα της φλέβας	28
Σχήμα 6: Η μέση διάλυση S^{\prime} στα jets για κυκλική και ελλειπτική διατομή.	29
Σχήμα 7: Η μέση διάλυση S^{\prime} στα πλούμια για κυκλική και ελλειπτική διατομή.	30
Σχήμα 8: Απεικόνιση της γραμμικής σχέσης της διάλυσης S' με το αδιαστητοποιημένο ύψος $z/l_{_M}$	30
Σχήμα 9: Σχηματική αναπαράσταση του θερμοκρασιακού πλάτους συναρτήσει του ύψους z .	32
Σχήμα 10: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα jets για ελλειπτική διατομή.	33
Σχήμα 11: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για ελλειπτική διατομή.	33
Σχήμα 12: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλική διατομή.	34
Σχήμα 13: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για κυκλική διατομή.	35
Σχήμα 14: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα jets για	
ελλειπτική διατομή.	35
Σχήμα 15: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για	
ελλειπτική διατομή.	36
Σχήμα 16: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλι	ική
διατομή.	37
Σχήμα 17: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για	
κυκλική διατομή.	37
Σχήμα 18: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα jets για	
ελλειπτική διατομή.	38
Σχήμα 19: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για	
ελλειπτική διατομή.	38
Σχήμα 20: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλικ	ïή
διατομή.	39
Σχήμα 21: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για	
κυκλική διατομή.	39
Σχήμα 22: Ιστόγραμμα σχετικών συχνοτήτων στα jets με ελλειπτική διατομή, για $z/D=50$.	40
Σχήμα 23: Ιστόγραμμα σχετικών συχνοτήτων στα πλούμια με ελλειπτική διατομή, για $z/D=20$	41
Σχήμα 24: Ιστόγραμμα σχετικών συχνοτήτων στα jets με κυκλική διατομή, για $z/D=35$.	42
Σχήμα 25: Ιστόγραμμα σχετικών συχνοτήτων στα πλούμια με κυκλική διατομή, για $z/D=40$.	42
Σχήμα 26: Ιστόγραμμα σχετικών συχνοτήτων στα jets και πλούμια με ελλειπτική διατομή στον άξονα της φλέβα	χς.
	43
Σχήμα 27: Ιστόγραμμα σχετικών συχνοτήτων στα jets και πλούμια με κυκλική διατομή στον άξονα της φλέβας.	43

Πίνακες

Πίνακας 1: Μετρήσεις για τον υπολογισμό της ογκομετρικής παροχής	17
Πίνακας 2: Οι παράμετροι της φλέβας και τα βασικότερα μετρημένα στοιχεία – ελλειπτικό ακροφύσιο	21
Πίνακας 3: Οι παράμετροι της φλέβας και τα βασικότερα μετρημένα στοιχεία – κυκλικό ακροφύσιο	22
Πίνακας 4: Συγκεντρωτικός πίνακας σχέσεων μέσης διάλυσης σε jets και πλούμια	31
Πίνακας 5: Συγκεντρωτικός πίνακας των τιμών $ b_{_T} / z$	32

Περίληψη

Η μελέτη μίας τυρβώδους ανωστικής εκτοξευόμενης φλέβας πραγματοποιήθηκε μέσα από τη διενέργεια 36 συνολικά πειραμάτων. Η ροή μίας φλέβας θερμού νερού η οποία εκβάλλει σε μία δεξαμενή με νερό σε θερμοκρασία περιβάλλοντος, μελετάται με τη χρήση θερμιστόρων ταχείας απόκρισης, οι οποίοι μετρούν θερμοκρασίες σε όλο το πλάτος της φλέβας και για διαφορετικές κατακόρυφες αποστάσεις από την έξοδο του ακροφύσιου. Τα πειράματα πραγματοποιήθηκαν με κυκλικά ακροφύσια και ελλειπτικά ακροφύσια, δηλαδή κυκλικά ακροφύσια τα οποία διατμήσαμε κατά γωνία 45°, ποικίλων διαμέτρων. Τα πειραματικά αποτελέσματα μπρούν να χρησιμοποιηθούν στον υπολογισμό της διάλυσης, αλλά και στην μελέτη των στατιστικών ιδιοτήτων της τύρβης της θερμοκρασίας, ενώ, παράλληλα, συγκρίνονται με αποτελέσματα προηγούμενων ερευνητών.

Abstract

A number of 36 experiments was performed to study a heated vertical turbulent buoyant jet. The flow of a hot jet of water, which is discharged in a tank full of cold ambient water, is studied using thermistors, which measure temperatures across the jet and at several vertical distances from the nozzle exit. The nozzles that used were round and round that were cut at an angle of 45°, with different diameters. The experimental results can be used in the calculation of the dilution and in the study of statistical properties of the temperature. Additionaly, the experimental results are compared with the results of previous investigations.

1 Εισαγωγή

1.2 Εισαγωγικά

Σύμφωνα με τους Fischer *et al.* [1], απλή εκτοξευόμενη φλέβα (jet) είναι η εκροή ενός ρευστού από ένα στόμιο ή μία οπή σε ένα μεγαλύτερου όγκου και ίδιας πυκνότητας ρευστό (περιβάλλον ρευστό). Πλούμιο είναι η φλέβα η οποία προέρχεται από μία πηγή δυνητικής ενέργειας, η οποία με τη σειρά της τροφοδοτεί το προς διάχυση ρευστό με θετική ή αρνητική κινηματική άνωση, σχετική με το περιβάλλον ρευστό. Τυρβώδης γίνεται η φλέβα όταν η πηγή εκπέμπει ένα ρευστό με αρχική ορμή ώστε να επιτευχθεί η διάλυση του ρευστού στο περιβάλλον πολύ ταχύτερα σε σχέση με τη μοριακή διάχυση. Ο Δημητρίου [2] ορίζει δύο κύριες μορφές τυρβωδών φλεβών: τις τυρβώδεις ετερογενείς ή ανωστικές φλέβες, ή φλέβες με άνωση (π.χ. όταν υπάρχουν διαφορές πυκνότητας των ρευστών), και τις εκτοξευόμενες φλέβες στις πυκνότητες ή όταν ο αποδέκτης είναι παθητικός.

Όμως, παρά των διαχωρισμό των τυρβωδών φλεβών σε jets και πλούμια, οι δύο αυτές κατηγορίες είναι άρρηκτα συνδεδεμένες μεταξύ τους. Αυτό συμβαίνει διότι, μετά από μία σημαντική απόσταση από την πηγή που εκτοξεύει ένα ρευστό σε ένα άλλο, η επίδραση της αρχικής ορμής μηδενίζεται και η ροή της φλέβας καθορίζεται από την άνωση. Έτσι, ένα jet σε σημαντική απόσταση από την πηγή μετατρέπεται σε πλούμιο.

Οι τυρβώδεις εκτοξευόμενες φλέβες βρίσκουν πολλές εφαρμογές στην περιβαλλοντική μηχανική. Η διάθεση αποβλήτων σε υδάτινους αποδέκτες (λίμνες, ποτάμια, θάλασσα), η διάθεση βιομηχανικών αποβλήτων στην ατμόσφαιρα (καμινάδες εργοστασίων), τα καυσαέρια από τα προωθητικά πυραύλων και τα καύσιμα κατά την εκτόξευσή τους, οι «ουρές» καυσαερίων από τους κινητήρες των αεροσκαφών, αποτελούν μερικές από τις εφαρμογές διάχυσης ρύπων στο περιβάλλον με μηχανισμούς που αποβλέπουν στην γρηγορότερη και αποτελεσματικότερη διάλυσή τους σε αυτό. Επίσης, τα ηφαίστεια αποτελούν ένα παράδειγμα γεωφυσικών ροών που μπορούν να προσομοιωθούν με τυρβώδεις ανωστικές φλέβες.

Στην εργασία αυτή μελετήσαμε τη συμπεριφορά μιας ανωστικής (κατακόρυφης) τυρβώδους εκτοξευόμενης φλέβας από ακροφύσια κυκλικής και ελλειπτικής διατομής 45°. Ερευνήσαμε τη διάλυση που επιτυγχάνεται σε διαφορετικές αποστάσεις από το στόμιο του κυκλικού ακροφύσιου και τη συγκρίναμε με αποτελέσματα προηγούμενων ερευνητών αλλά και με τη διάλυση που επιτυγχάνεται με τη χρήση ενός κυκλικού ακροφύσιου το οποίο διατμήσαμε σε γωνία 45°.

Στην εικόνα που ακολουθεί φαίνεται μία φλέβα, όπως αυτή καταγράφηκε από βιντεοκάμερα κατά τη διάρκεια ενός από τα πειράματα που διεξήχθησαν.

Εικόνα 1: Στιγμιότυπο πειράματος - λήψη θερμοκρασιών στην ανωστική φλέβα.

1.3 Παράμετροι που επηρεάζουν τη συμπεριφορά της φλέβας

Σύμφωνα με τους Fischer *et al.* [1], η συμπεριφορά μιας εκτοξευόμενης φλέβας εξαρτάται από τριών ειδών παραμέτρους:

- Παράμετροι της φλέβας
- Περιβαλλοντικές παράμετροι
- Γεωμετρικοί παράγοντες

Στις παραμέτρους της φλέβας περιλαμβάνονται η αρχική ταχύτητα εκτόξευσης, το επίπεδο τύρβης, η αρχική ορμή και η παροχή καθώς και η ροή που οφείλεται στις ιδιότητες του ρευστού της φλέβας όπως είναι η θερμότητα και η αλατότητα.

Στις περιβαλλοντικές παραμέτρους περιλαμβάνονται ο κινητός ή ακίνητος αποδέκτης, η ένταση της τύρβης αυτού, το βάθος του αποδέκτη και τα διαφορετικά επίπεδα πυκνότητας (διαστρωμάτωση). Αυτοί οι παράγοντες επηρεάζουν συνήθως τη συμπεριφορά της φλέβας σε ορισμένη απόσταση από το στόμιο.

Οι γεωμετρικοί (ή κατασκευαστικοί) παράγοντες είναι το σχήμα, η διεύθυνσης εκροής, το υλικό κατασκευής του διαχυτήρα, η απόσταση της φλέβας από τα στερεά όρια, και εάν η φλέβα είναι βυθισμένη, η σχετική θέση με την ελεύθερη επιφάνεια του υγρού.

1.4 Στοιχεία προσδιορισμού ανωστικής φλέβας

Ανωστική είναι η φλέβα της οποίας η πυκνότητα αρχικά διαφέρει κατά μία ποσότητα $\Delta \rho_0$ από την πυκνότητα του υγρού αποδέκτη. Η διαφορά $\Delta \rho_0$ μπορεί να είναι θετική ή αρνητική, κάτι το οποίο είναι ιδιαίτερα σημαντικό προκειμένου να προσδιορίσουμε τον προσανατολισμό της φλέβας σε σχέση με την κατακόρυφο.

1.3.1 Παροχή Q, Ορμή Μ και Άνωση Β

Οι ανωστικές φλέβες προσδιορίζονται από την αρχική ογκομετρική παροχή, την ειδική ή κινηματική ορμή καθώς και από την ειδική ή κινηματική άνωση. Εάν Qείναι η ογκομετρική παροχή (όγκος ανά μονάδα χρόνου), M η κινηματική ορμή και Bη κινηματική άνωση, οι σχέσεις που συνδέουν αυτές τις παραμέτρους και οι αντίστοιχες διαστάσεις τους είναι:

$$Q = (\pi D^2 / 4) \cdot W \qquad [L^3 T^{-1}]$$
(1.1)

$$M = Q \cdot W \qquad \left[L^4 T^{-2} \right] \tag{1.2}$$

$$B = Q \cdot \frac{\left(\rho_a - \rho_j\right) \cdot g}{\rho_a} \left[L^4 T^{-3} \right]$$
(1.3)

όπου $A = (\pi D^2/4)$, το εμβαδόν κυκλικής διατομής της φλέβας, W η μέση ταχύτητα εκτόξευσης στη διεύθυνση του άξονα ροής, ρ_{α} η πυκνότητα του περιβάλλοντος ρευστού, ρ_{j} η πυκνότητα του διαχεόμενου ρευστού και D η διάμετρος της διατομής του ακροφύσιου.

Από την εξίσωση (1.3) για τον υπολογισμό της *B*, συμπεραίνουμε ότι η άνωση της φλέβας προκύπτει από τη διαφορά πυκνότητας των δύο ρευστών (εισερχόμενου και αποδέκτη). Στην περίπτωση που πρόκειται για το ίδιο ρευστό, η διαφορά της πυκνότητας επιτυγχάνεται με τη διαφορετική θερμοκρασία των ρευστών.

2.3.1 Χαρακτηριστικές κλίμακες μήκους l_O και l_M και ο αριθμός R_i

Σε μία απλή τυρβώδη εκτοξευόμενη φλέβα ορίζουμε την χαρακτηριστική κλίμακα μήκους l_Q . Η κλίμακα l_o προσδιορίζει το μέγεθος της φλέβας, και προσδιορίζεται από την εξίσωση

$$l_0 = Q/M^{1/2} = \sqrt{A}$$
 (1.4)

όπου Α η επιφάνεια ανοίγματος της πηγής (στόμιο).

Για κυκλική διατομή, το $l_{\mathcal{Q}}$ ορίζεται:

$$l_{\mathcal{Q}} = \sqrt{\pi/4} \cdot D \tag{1.5}$$

Υποθέτουμε τώρα, μία φλέβα η οποία έχει κινηματική ορμή M και κινηματική άνωση B, τότε, για κυκλική φλέβα, το χαρακτηριστικό μήκος l_M είναι

$$l_M = M^{3/4} / B^{1/2} \tag{1.6}$$

Η κλίμακα l_M προσδιορίζει πόσο μακριά από το στόμιο της ανωστικής φλέβας η επίδραση της άνωσης γίνεται σημαντική. Ο λόγος των παραπάνω χαρακτηριστικών κλιμάκων ονομάζεται αρχικός αριθμός Richardson και, για εκτοξευόμενη φλέβα κυκλικής διατομής, συμβολίζεται ως R_i :

$$R_{i} = \frac{l_{Q}}{l_{M}} = \frac{Q \cdot B^{1/2}}{M^{5/4}} = \left(\frac{\pi}{4}\right)^{1/4} \cdot \left(\frac{g_{0} \cdot D}{W^{2}}\right)^{1/2} = \left(\frac{\pi}{4}\right)^{1/4} \cdot F_{d}^{-1}$$
(1.7)

όπου F_d ο πυκνομετρικός αριθμός Froude

$$g' = \left[\left(\rho_a - \rho_j \right) / \rho_a \right] \cdot g \tag{1.8}$$

και g η επιτάχυνση της βαρύτητας.

Ο αριθμός Richardson εκφράζει το βαθμό στον οποίο μία ανωστική φλέβα συμπεριφέρεται ως πλούμιο (φλέβα χωρίς αρχική ορμή). Έτσι, εάν ο αριθμός αυτός πλησιάζει στο μηδέν, τότε η φλέβα συμπεριφέρεται περισσότερο ως jet. Αυτό επιβεβαιώνεται και από τα πειραματικά αποτελέσματα, τα οποία υπάρχουν αναλυτικά στο παράρτημα.

Συμβολίζοντας με z την κατακόρυφη απόσταση από το ακροφύσιο, και z/l_M την αδιαστητοποιημένη απόσταση από το ακροφύσιο, σύμφωνα με τους Papanicolaou and List [3], για $z/l_M < 1$, η συμπεριφορά της φλέβας επηρεάζεται από την αρχική ορμή, ενώ για $z/l_M > 5$ η φλέβα συμπεριφέρεται ως πλούμιο (χωρίς αρχική ορμή). Παρ' όλα αυτά, υπάρχει μία διαφορά στην ανάπτυξη της εκτοξευόμενης φλέβας σε πλούμιο, όπως φαίνεται από τα πειράματα που εκτέλεσαν οι παραπάνω ερευνητές.

Σχήμα 1: Σχηματική αναπαράσταση συμπεριφοράς ανωστικής εκτοξευόμενης φλέβας

1.5 Οι αριθμοί Froude, Reynolds και Richardson

Σύμφωνα με τον Δημητρίου [2], οι ανωστικές εκτοξευόμενες φλέβες διευρύνονται προς τα κατάντη της ροής τους και είναι γενικά τυρβώδεις, δηλαδή ο αρχικός (στο στόμιο) αριθμός Reynolds, $\operatorname{Re}_0 = V_0 \cdot \frac{L_0}{V}$ (v= κινηματική συνεκτικότητα – που θεωρείται προσεγγιστικά σταθερή και στο πεδίο ανάμειξης) είναι σημαντικός. Το ίδιο συμβαίνει για τους τοπικούς αριθμούς Reynolds, $\operatorname{Re} = V \cdot \frac{L}{V}$, όπου V = μέση τοπική ταχύτητα, L = κατάλληλο μήκος αναφοράς – (π.χ., πλάτος της φλέβες).

Αν οι φλέβες βρίσκονται πολύ μακριά από στερεά όρια ή την ελεύθερη επιφάνεια, τότε ονομάζονται βυθισμένες, και συνιστούν φαινόμενα μεταφοράς ελεύθερης τύρβης. Γενικά όμως, στην πράξη, οι τυρβώδεις ανωστικές φλέβες πραγματοποιούνται μέσα σε αποδέκτες με ελεύθερη επιφάνεια. Έτσι, επειδή πρόκειται ουσιαστικά για συστήματα ροής με άνωση, η κύρια παράμετρος αυτών δεν είναι ο αριθμός Reynolds, δεδομένου ότι υπερβαίνει κάποια ελάχιστη τιμή, αλλά ο πυκνομετρικός αριθμός Froude.

Ο αριθμός Froude F είναι ανάλογος προς το πηλίκο των δυνάμεων αδράνειας ανά μονάδα μάζας προς τις δυνάμεις φαινόμενης βαρύτητας (ή άνωσης). Ο αριθμός Reynolds Re είναι ανάλογος προς το πηλίκο των δυνάμεων αδράνειας προς τις δυνάμεις συνεκτικότητας. Αν ο πυκνομετρικός αριθμός Froude είναι σημαντικός, αν δηλαδή οι δυνάμεις αδράνειας είναι σημαντικές ως προς τις δυνάμεις βαρύτητας (άνωσης), τότε καθοριστική παράμετρος της ροής είναι ο αριθμός Reynolds. Αντίθετα, αν ο αριθμός Reynolds είναι σημαντικές ως προς τις δυνάμεις αδράνειας είναι σημαντικές ως προς τις δυνάμεις αδράνειας είναι σημαντικές ως προς τις δυνάμεις συνεκτικότητας, τότε, αφ' ενός μεν οι δυνάμεις αδράνειας είναι σημαντικές ως προς τις δυνάμεις συνεκτικότητας, τότε, αφ' ενός μεν οι τελευταίες μπορούν να αγνοούνται (μακριά από στερεά όρια), αφ' ετέρου δε η κύρια παράμετρος της ροής είναι ο πυκνομετρικός αριθμός Froude. Πολλές φορές, αντί του πυκνομετρικού αριθμού Froude, χρησιμοποιείται ο αντίστροφός του, $Ri \approx 1/F$, που ονομάζεται αριθμός Richardson.

1.6 Σύντομη περιγραφή του πειράματος

Σε μία δεξαμενή με γλυκό νερό που ηρεμεί εκτοξεύουμε κατακόρυφη φλέβα ζεστού γλυκού νερού, επιτυγχάνοντας θετική κινηματική άνωση. Οι μετρήσεις των θερμοκρασιών σε διαφορετικές ακτινικές αποστάσεις και σε διαφορετικά ύψη από το ακροφύσιο πραγματοποιούνται με θερμίστορες ταχείας απόκρισης οι οποίοι μετρούν θερμοκρασίες υγρού και οι οποίες επεξεργάζονται ηλεκτρονικά σε Η/Υ. Οι θερμοκρασιακές διαφορές που παρατηρούνται στη φλέβα σε σχέση με αυτές που παρατηρούνται στην πηγή εκφράζουν τη διάλυση του διαχεόμενου ρευστού στο περιβάλλον. Τα πειράματα πραγματοποιούνται με τη χρήση κυκλικού ακροφύσιου και ελλειπτικού, δηλ. κυκλικού ακροφύσιου το οποίο έχουμε διατμήσει κατά γωνία 45°. Με τα πειράματα αυτά μελετάται η κατανομή των θερμοκρασιών σε όλο το φάσμα της φλέβας (jets και πλούμια), και συγκρίνεται η διάλυση που παρατηρείται με τη χρήση ελλειπτικού ακροφύσιου με τη διάλυση που επιτυγχάνεται με κυκλικό, με τα αποτελέσματα προηγούμενων ερευνητών, αλλά και με αυτά των Papanicolaou and List [3].

1.7 Ιστορική αναδρομή

Πειραματικές εφαρμογές με αντικείμενο την ροή τυρβωδών εκτοξευόμενων φλεβών έχουν ξεκινήσει πριν από πολλές δεκαετίες. Οι Hinze and Zijnen [4] υπολόγισαν την κατανομή των ταχυτήτων, των θερμοκρασιών και της συγκέντρωσης του θερμού αέρα ο οποίος εξέβαλλε από κυκλικό ακροφύσιο, σε διαφορετικές αποστάσεις από τον άξονα της φλέβας. Ο Kiser [5] μελέτησε τη συμπεριφορά μίας αλατισμένης φλέβας νερού, όπως αυτή εκβάλει από οριζόντιο κυκλικό ακροφύσιο. Οι F. Ogino *et al.* [6] πραγματοποίησαν πειράματα για βυθισμένη ανωστική φλέβα νερού σε κυκλικό ακροφύσιο θετικής άνωσης, οι Τ. Mizushina *et al.* [7] μελέτησαν τη συμπεριφορά μία κατακόρυφης φλέβας γλυκού νερού με κατακόρυφο κυκλικό ακροφύσιο καθώς αυτή εκβάλει σε μία δεξαμενή με νερό μεγαλύτερης θερμοκρασίας, επιτυγχάνοντας αρνητική άνωση, ενώ ο Papanicolaou [8] έχει πραγματοποιήσει πειράματα σε βυθισμένες ανωστικές φλέβες θετικης άνωσης, με βαρύτερη εκτοξευόμενη φλέβα σε σχέση με το περιβάλλον νερό.

To 1985 o Kotsovinos [9] μελέτησε τη συμπεριφορά ανωστικού πλουμίου γλυκού νερού, ενώ το 1987 οι Papanicolaou and List [3] μελέτησαν την κατανομή των ταχυτήτων, των θερμοκρασιών και της διάλυσης μίας τυρβώδους εκτοξευόμενης ανωστικής φλέβας γλυκού νερού με κυκλικό ακροφύσιο, χρησιμοποιώντας θερμίστορες, και μετρώντας θερμοκρασιακές διαφορές, υπολόγισαν τις συγκεντρώσεις για διαφορετικές αποστάσεις από το ακροφύσιο και τον άξονα της φλέβας.

Ένα χρόνο αργότερα, το 1988 οι Papanicolaou and List [10] πραγματοποίησαν παρόμοια πειράματα για βυθισμένη φλέβα με κυκλικό ακροφύσιο χρησιμοποιώντας μία μέθοδο με Laser. Σύμφωνα με τη μέθοδο αυτή, εμπλούτιζαν την εκτοξευόμενη φλέβα με την ουσία ροδαμίνη GG η οποία, όταν διεγερθεί από $\lambda = 514nm$ εκπέμπει ακτινοβολία $\lambda = 570nm$ (κίτρινο φως) με ένταση ανάλογη της συγκέντρωσης της ροδαμίνησς. Η μετέπειτα επεξεργασία του φιλμ που μαγνητοσκοπούσε τη φλέβα εξήγαγε την εικόνα των ισοθερμικών περιοχών απ' όπου και με κατάλληλες μαθηματικές διαδικασίες οι ερευνητές κατέληγαν στην κατανομή των θερμοκρασιών και της συγκέντρωσης. Το 1994 ο Papanicolaou [11] χρησιμοποίησε τη ανεμομετρία laser και σε πειράματα με βυθισμένη φλέβα για τη μέτρηση του προφίλ της

ταχύτητας, η οποία εξέβαλλε, όχι από κάποιο σωλήνα, αλλά απευθείας από μία δεξαμενή η οποία συμπιεζόταν από ένα έμβολο, η πίεση του οποίου μπορούσε να ρυθμιστεί. Παρόμοια μεθοδολογία με αυτή του laser που χρησιμοποίησαν οι προηγούμενοι ερευνητές, ακολούθησε και ο Tokuhiro [12] το 1999, μετρώντας ταχύτητες με laser doppler και υπερήχους.

Ο Δημητρίου [13] πραγματοποίησε πειράματα για την μέτρηση των τυρβωδών διαλείψεων σε μία ανωστική φλέβα αρνητικής άνωσης – όπου το περιβάλλον ρευστό έχει μικρότερη πυκνότητα από το διαχεόμενο. Το 2004 οι Adrian W.-K. Law *et al.* [14] ερεύνησαν την επίδραση του αλατιού σε μία οριζόντια βυθισμένη φλέβα νερού η οποία εκβάλλει σε γλυκό νερό. Το 2006 οι Papanicolaou and Kokkalis [15] πραγματοποίησαν πειράματα σε βυθισμένη ανωστική φλέβα με θερμό νερό που διαχέεται σε κρύο, και με γλυκό νερό που διαχέεται σε αλατόνερο, χρησιμοποιώντας κυκλικά, ορθογωνικά, τριγωνικά και τετράγωνα ακροφύσια.

Τα πειράματα που έχουν πραγματοποιηθεί στην εργασία αυτή αφορούν την συμπεριφορά μίας τυρβώδους εκτοξευόμενης ανωστικής φλέβας με θετική κινηματική άνωση, η οποία επιτυγχάνεται με τη διάχυση θερμού γλυκού νερού σε κρύο περιβάλλον νερό το οποίο ηρεμεί. Τα ακροφύσια που χρησιμοποιούνται είναι ποικίλων διαμέτρων και είναι κυκλικά και ελλειπτικά (κυκλικά τα οποία διατμήσαμε κατά γωνία 45°).

2 Πειράματα

2.1 Πειραματική διάταξη

Η πειραματική διάταξη αποτελείται από:

- Δεξαμενή μήκους 1m, πλάτους 0.7m και ύψους 0.8m
- Θερμοσίφωνα γλυκού νερού
- Κυκλοφορητή
- Ρυθμιστή πίεσης
- Κάρτα δειγματοληψίας 8 διαφορικών καναλιών
- Απλό δέκτης θερμοκρασίας από 1 θερμόμετρο
- 8 θερμίστορες
- Θερμοστοιχείο PT100
- Ροόμετρο / παροχόμετρο
- Μανιβέλα (για την κίνηση των θερμιστόρων)
- Θερμόμετρο
- Φορητό υπολογιστή (με λογισμικό Labview 7)

Η δεξαμενή με το περιβάλλον ρευστό είναι μία κατασκευή από ανοξείδωτο χάλυβα εσωτερικών διαστάσεων 1.0m × 0.7m × 0.8m με πάχος γυαλιού 1.25cm. Ο πυθμένας της καθώς και η μία από τις πλευρές στις οποίες υπάρχουν υποδοχές για τα ακροφύσια είναι κατασκευασμένα από Plexiglas (ή Lucite), ενώ οι υπόλοιπες πλευρές είναι από γυαλί. Στο αριστερό τμήμα της δεξαμενής υπάρχει περιμετρικός υπερχειλιστής ώστε το ύψος της ελεύθερης επιφάνειας σε σχέση με το ακροφύσιο να παραμένει σταθερό. Στο κέντρο του πυθμένα της δεξαμενής τοποθετούμε τα ακροφύσια που χρησιμοποιούμε στα πειράματά μας κατά τέτοιο τρόπο ώστε ο κατακόρυφος άξονας της φλέβας που περνά από το κέντρο της διατομής του ακροφύσιον να ταυτίζεται με τον άξονα της δεξαμενής.

Εικόνα 2: Η δεξαμενή του πειράματος

Εικόνα 3: Ρυθμιστής πίεσης στο θερμοσίφωνα

Σχήμα 2: Διάταξη συσκευών πειράματος

Όπως παρατηρούμε και στο Σχήμα 2 στο οποίο απεικονίζεται η διάταξη των πειραματικών συσκευών, τα ακροφύσια (εικόνες 3, 4) συνδέονται με έναν θερμοσίφωνα μέσω ενός σωλήνα τον οποίο έχουμε καλύψει με μονωτικό υλικό. Ο σωλήνας αυτός, ο οποίος τροφοδοτείται από έναν θερμοσίφωνα, μεταφέρει το θερμό νερό στη δεξαμενή. Λίγο πριν την έξοδο του νερού στη δεξαμενή υπάρχει ένα ροόμετρο το οποίο μετράει την παροχή του. Στο θερμοσίφωνα, πριν και μετά το ροόμετρο και πριν την έξοδο από το ακροφύσιο υπάρχουν βάνες, ενώ πριν την την την του στοίο μετράει ένα θερμοστοιχείο ΡΤ100 το οποίο χρησιμεύει στο να μετράμε τη θερμοκρασία του διαχεόμενου ρευστού.

Στον θερμοσίφωνα υπάρχει ένας κυκλοφορητής, προκειμένου να «κυκλοφορεί» το νερό που θερμαίνεται, ώστε όλο το νερό μέσα σε αυτόν να έχει ομοιόμορφη θερμοκρασία. Επιπρόσθετα, στον θερμοσίφωνα είναι συνδεδεμένος ένας σωλήνας που μεταφέρει πεπιεσμένο αέρα, δια μέσου μίας συσκευής ρύθμισης της πίεσης. Έτσι, μπορούμε να επιτύχουμε συνθήκες πίεσης ίσης με 2 Atm. Μετά τη θέρμανση του νερού, οι βάνες του κυκλοφορητή κλείνουν, προκειμένου να μην σπάσει το πλαστικό σωληνάκι που κυκλοφορεί το νερό στο θερμοσίφωνα.

Εικόνα 4: Τα κυκλικά ακροφύσια

Εικόνα 5: Τα ελλειπτικά ακροφύσια

Τέλος, πάνω από τη δεξαμενή, οι μετρήσεις της θερμοκρασίας πραγματοποιούνται με τη χρήση 8 θερμιστόρων. Πρόκειται για μία ευθεία διάταξη 8 ευαίσθητων θερμοστοιχείων που λαμβάνουν θερμοκρασιακές τιμές με ακρίβεια ±5% κατά μήκος της διαχεόμενης φλέβας θερμού νερού (σε σχέση με το περιβάλλον νερό της δεξαμενής) σε αποστάσεις πολλαπλάσιες της διαμέτρου της διατομής των χρησιμοποιούμενων ακορφύσιων (0.5, 1 και 1.5 cm). Παρ' όλα αυτά, λόγω βλάβης στον έναν θερμίστορα που βρίσκεται στο ένα άκρο της διάταξης τα ληφθέντα δεδομένα προέρχονταν μόνο από τους 7 θερμίστορες. Η κίνηση των θερμιστόρων γίνεται οριζόντια (με κύλιση πάνω σε ράγες) και κατακόρυφα (με τη χρήση μανιβέλας). Οι θερμίστορες συνδέονται με κάρτα δειγματοληψίας που τροφοδοτείται από μία τροφοδοτική συσκευή και ο οποίος «στέλνει» τις μετρήσεις στον υπολογιστή. Μέσω του λογισμικού Labview 7, οι τιμές της θερμοκρασίας αποθηκεύονται σε αρχεία κειμένου, ενώ η συχνότητα λήψης τιμών καθορίζεται από το λογισμικό.

2.2 Υπολογισμός παροχής *Q* από την ένδειξη του ροόμετρου

Προκειμένου να έχουμε μεγαλύτερη ακρίβεια κατά τη χρήση της τιμής της παροχής του νερού από το θερμοσίφωνα, υπολογίσαμε τη σχέση μεταξύ της ένδειξης του ροόμετρου και της πραγματικής παροχής Q. Για το σκοπό αυτό ακολουθήσαμε την παρακάτω διαδικασία:

Αρχικά, θέσαμε το νερό μέσα στον θερμοσίφωνα υπό πίεση 2 Atm (όμοια με αυτή που θα χρησιμοποιηθεί και στα πειράματα που θα ακολουθήσουν) και εν συνεχεία, για συγκεκριμένες ενδείξεις στο παροχόμετρο μετρούσαμε τον όγκο του νερού σε έναν ογκομετρικό σωλήνα για δεδομένες χρονικές διάρκειες. Έτσι, για μία ένδειξη του παροχόμετρου λάβαμε 3-4 διαφορετικές τιμές πραγματικής παροχής, μετρώντας τον όγκο του νερού για διαφορετικές διάρκειες. Από τις τιμές αυτές, για κάθε ένδειξη, υπολογίσαμε την μέση τιμή και τοποθετήσαμε τα δεδομένα μας σε ένα γράφημα, το οποίο παρουσιάζεται παρακάτω. Η σχέση της ένδειξης του ροόμετρου και της πραγματικής παροχής που προκύπτει είναι γραμμική και είναι η εξής

$$Q = 17.495 \cdot x + 1.6229 \tag{2.1}$$

όπου x η ένδειξη του ροόμετρου (L/min.) και Q η πραγματική παροχή (mL/s)

θέτοντας ως Fτην ένδειξη του ροόμετρου, η σχέση (2.1) γίνεται

$$Q = 17.495 \cdot F + 1.6229 \tag{2.2}$$

Στον πίνακα που ακολουθεί παρουσιάζονται αναλυτικά οι μετρήσεις που πραγματοποιήθηκαν σε ογκομετρικό σωλήνα, προκειμένου να υπολογίσουμε την σχέση που μας δίνει την ακριβή τιμή της παροχής σε σχέση με την ονομαστική τιμή που διαβάζουμε ως ένδειξη στο ροόμετρο.

Ένδειξη ροόμετρου	Όγκος νερού (ογκ. σωλ.)	Χρ. Διάρκεια	Παρογή	Παρογή	Παρογή	Μέση τιμή παροχής Q
(L/min.)	$(10^{-3}L)$	(sec.)	(L/s)	$(10^{-3} L/s)$	(L/min.)	$(10^{-3} L/s)$
	\$, č	· · · · ·			· · · ·
0.4	230	26.1	0.009	8.812	0.529	
	240	27.6	0.009	8.696	0.522	
	380	45.2	0.008	8.407	0.504	8.552
	520	62.7	0.008	8.293	0.498	
0.6	260	21	0.012	12.381	0.743	
	420	35.5	0.012	11.831	0.710	12.366
	500	38.8	0.013	12.887	0.773	
1.0	300	15.4	0.019	19.481	1.169	
	590	30.8	0.019	19.156	1.149	19.141
	960	51.1	0.019	18.787	1.127	
1.4	440	17.2	0.026	25.581	1.535	
	770	30.1	0.026	25.581	1.535	25.634
	1220	47.4	0.026	25.738	1.544	
1.7	560	17.3	0.032	32.370	1.942	
	930	30.1	0.031	30.897	1.854	31.385
	1390	45	0.031	30.889	1.853	
1.9	480	13.7	0.035	35.036	2.102	
	830	23.4	0.035	35.470	2.128	35.126
	945	27.1	0.035	34.871	2.092	

Πίνακας 1: Μετρήσεις για τον υπολογισμό της ογκομετρικής παροχής

Το διάγραμμα στο οποίο απεικονίζεται η σχέση υπολογισμού της ογκομετρικής παροχής φαίνεται στο παρακάτω σχήμα.

Σχήμα 3: Σχέση της ένδειξης του ροόμετρου και της παροχής Q

3 Συμβολισμοί χρησιμοποιούμενων μεγεθών

Τα στοιχεία και οι συμβολισμοί που χρησιμοποιήσαμε κατά την εφαρμογή και επεξεργασία των πειραμάτων παρουσιάζονται στον παρακάτω πίνακα.

Πίνακας: Οι συμβολισμοί των στοιχείων που χρησιμοποιήσαμε κατά την επεξεργασία των πειραμάτων

В	κινηματική ή ειδική άνωση	t	χρόνος
b_T	πλάτος της θερμοκρασίας	Wή U	ταχύτητα στην έξοδο της φλέβας
$b_{\scriptscriptstyle W}$	Πλάτος της ταχύτητας $\overline{w}=0,37\overline{w}_c$	$\overline{w}(r,z)$	μέση ταχύτητα της φλέβας στο σημείο (r,z)
D	διάμετρος της φλέβας στο στόμιο	Ζ	απόσταση στον άξονα από την αρχή της φλέβας
F_d	πυκνομετρικός αριθμός Froude $W/\sqrt{(g_0'D)}$	Z_0	θέση της αρχής της φλέβας
F	Ένδειξη ροόμετρου / Ονομαστική τιμή παροχής		
g	βαρυτική επιτάχυνση		
g'	$\left[\left(\rho_{a}-\rho_{j}\right)/\rho_{a}\right]\cdot g$		Ελληνικά σύμβολα
l_M	χαρακτηριστική κλίμακα μήκους $M^{3/4}$ / $B^{1/2}$	ρ	πυκνότητα
l_Q	χαρακτηριστική κλίμακα μήκους $Q/M^{1/2}$	$ ho_{j}$	αρχική πυκνότητα της φλέβας
М	ειδική ή κινηματική ορμή	$ ho_{a}$	πυκνότητα ρευστού περιβάλλοντος
Q	ογκομετρική παροχή στο στόμιο		
R_i	αιρθμός Richardson	(-)	Εκθέτες και δείκτες
r	ακτινική απόσταση από τον άξονα της φλέβας	()	μέση τιμή
T(r,z)	θερμοκρασία στο σημείο (r,z)	(')	απόκλιση από τη μέση τιμή
T_{j}	θερμοκρασία στην έξοδο της φλέβας	$\left(\right)_{c}$	κεντρική τιμή
T_c	μέση θερμοκρασία στο κέντρο της φλέβας	$\left(\begin{array}{c} \end{array}\right)_{0,j}$	αρχική χαρακτηριστική τιμή της φλέβας
T_a	ομοιόμορφη θερμοκρασία περιβάλλοντος	$()_a$	τιμή περιβάλλοντος ρευστού
T_0	$T_j - T_a$		

Στο σημείο αυτό θα πρέπει να αναφερθεί ότι κατά την επεξεργασία των μετρήσεων και στη δημιουργία των διαγραμμάτων που απεικονίζουν τις στατιστικές ιδιότητες της θερμοκρασίας (Κεφ. 5.3), θα χρησιμοποιούμε μόνο θερμοκρασιακές διαφορές. Έτσι, ισχύουν οι ισοδυναμίες

$$\Delta T = T_0 \ \text{\acute{\eta}} \ T \ , \ \Delta T_c = T_c$$

4 Τα πειραματικά αποτελέσματα και ο υπολογισμός των στοιχείων

4.1 Στοιχεία δειγματοληψίας

Τα πειράματα πραγματοποιούνται για διαφορετικές τιμές z/l_M ώστε να διερευνηθούν οι ροές στην εκτοξευόμενη φλέβα (jet), στο πλούμιο καθώς και στη μετάβαση ανωστικής φλέβας. Η συνεχής τάση του ρεύματος που τροφοδοτεί τους θερμίστορες μετρήθηκε με βολτάμετρο ψηφιακό με ακρίβεια 0.05 Volt, που μεταφράζεται σε ακρίβεια ±0.05°C. Η δειγματοληψία ξεκινά όταν η θερμοκρασία στη φλέβα σταθεροποιηθεί, ενώ η θερμοκρασία μετριέται με θερμίστορες σε 3 διαφορετικές θέσεις στην ίδια απόσταση πάνω από το ακροφύσιο.

Οι μετρήσεις θερμοκρασίας από τους 7 θερμίστορες πραγματοποιούνται με συχνότητα 80Hz (80 μετρήσεις ανά s.) για χρονικό διάστημα 40 δευτερολέπτων. Αυτό πρακτικά σημαίνει ότι για κάθε ακτινική απόσταση από τον άξονα της φλέβας λαμβάνουμε συνολικά 3200 θερμοκρασιακές τιμές, από τις οποίες υπολογίζουμε τη μέση τιμή και την τυπική απόκλιση, στοιχεία τα οποία χρησιμοποιούμε στη συνέχεια, κατά την επεξεργασία των μετρήσεων. Επιπρόσθετα, πριν από την εκτόξευση της φλέβας από το στόμιο, λαμβάνουμε θερμοκρασιακές τιμές με τους 7 θερμίστορες για 5 δευτερόλεπτα. Η μέση τιμή των 400 αυτών στοιχείων αποτελεί τη θερμοκρασία περιβάλλοντος T_a .

Προκειμένου να ολοκληρωθεί η έρευνα με τα καλύτερα δυνατά αποτελέσματα, πραγματοποιήθηκαν συνολικά 36 πειράματα, 20 από τα οποία αναφέρονται στην ελλειπτική διατομή ενώ τα υπόλοιπα 16 αφορούν την κυκλική διατομή. Το εύρος των παρατηρήσεων καλύπτει τις περιοχές των jet και των πλούμιων καθώς και την μεταβατική περιοχή, μιας και οι τιμές της ποσότητας z/l_M για την ελλειπτική διατομή είναι μεταξύ $0.30 \le z/l_M \le 30.34$, ενώ για την κυκλική διατομή είναι $0.41 \le z/l_M \le 24.09$. Στη συνέχεια, τα αποτελέσματα των πειραμάτων των Papanicolaou and List [3].

4.2 Οι παράμετροι της φλέβας και τα βασικότερα υπολογισθέντα στοιχεία

Στους Πίνακες 3 και 4 που ακολουθούν παρουσιάζονται οι παράμετροι της φλέβας καθώς και τα βασικότερα από τα στοιχεία που μετρήθηκαν και που θα χρησιμοποιηθούν κατά την επεξεργασία των μετρήσεων και στη δημιουργία των κατάλληλων γραφημάτων, όπως αυτά θα παρουσιαστούν στο κεφάλαιο 5. Ο Πίνακας 3 αναφέρεται στα πειράματα που πραγματοποιήθηκαν χρησιμοποιώντας ελλειπτικό ακροφύσιο. Πρόκειται για ένα σύνολο 20 πειραμάτων, εκ των οποίων 4 αναφέρονται στην περιοχή των jets, 11 στην περιοχή των πλουμίων και 5 στην περιοχή μετάβασης jet-πλούμιο. Ο Πίνακας 4 αναφέρεται στα πειράματα που πραγματοποιήθηκαν χρησιμοποιώντας κυκλικό ακροφύσιο. Πρόκειται για ένα σύνολο 16 πειραμάτων, εκ των οποίων 4 αναφέρονται στην περιοχή των jets, 9 στην περιοχή των πλουμίων και 3 στην περιοχή της μετάβασης. Αναλυτικότερα, η διαδικασία που ακολουθήσαμε προκειμένου να υπολογίσουμε όλα τα απαραίτητα στοιχεία για την εξαγωγή των τελικών γραφημάτων, παρουσιάζεται στις υποενότητες αυτού του κεφαλαίου που ακολουθούν.

Κωδ.	D	T_{jet}	T_{amb}	Re	l_{M}	Z	z/l_M	b_{T}	T_{c}	$\left(\sqrt{\overline{T}} \right)^2$
Πειράματος	(cm)	(°C)	(°C)		(m)	(cm)		(cm)	(°C)	$\sqrt{\Delta I_c}$
ΘEPM01	1.0	53.50	26.10	3753	5.872	20	3.406	2.3	5.00	1.413
ΘEPM02	1.0	44.60	26.20	4727	10.859	20	1.842	2.4	3.80	0.947
ΘEPM03	1.0	44.80	26.40	4743	10.832	30	2.769	3.35	2.40	0.709
ΘEPM04	1.0	53.00	27.10	2892	4.669	30	6.425	3.34	2.15	0.786
ΘEPM05	1.0	52.70	27.30	2048	3.355	30	8.943	3.22	1.50	0.654
ΘEPM06	1.0	52.30	26.90	3689	6.103	30	4.915	3.34	2.20	0.740
ΘEPM07	1.0	52.60	25.80	2460	3.964	30	7.568	3.34	2.00	0.915
OEPM08	1.0	52.10	26.00	3266	5.379	30	5.577	3.34	2.20	0.810
ΘEPM09	1.0	53.00	26.10	4561	7.267	30	4.128	3.34	2.70	0.891
OEPM16	1.5	53.10	22.60	1373	1.709	30	17.552	3.6	2.05	0.960
ΘEPM17	1.5	52.50	22.70	1085	1.382	31.5	22.798	3.79	1.43	0.767
OEPM18	1.5	53.00	22.80	1650	2.065	31.5	15.256	3.72	2.00	0.835
OEPM19	1.5	86.30	22.70	1693	1.038	31.5	30.337	3.95	3.32	1.374
ΘEPM20	1.5	86.50	23.00	2036	1.248	31.5	25.246	4.15	3.20	1.413
ΘEPM21	1.5	86.10	23.50	2725	1.679	31.5	18.758	3.71	4.40	1.640
ΘEPM22	1.5	86.00	23.90	3757	2.321	31.5	13.571	3.35	4.90	1.972
OEPM33	0.5	46.40	22.40	12760	35.731	25	0.700	3.4	2.15	0.472
ΘEPM34	0.5	46.15	22.60	9704	27.551	20	0.726	2.85	2.50	0.561
OEPM35	0.5	45.00	22.80	8046	24.118	10	0.415	1.37	4.65	0.823
ΘEPM36	0.5	45.00	22.90	10991	32.998	10	0.303	1.37	4.65	0.711

Πίνακας 2: Οι παράμετροι της φλέβας και τα βασικότερα μετρημένα στοιχεία – ελλειπτικό ακροφύσιο

Κωδ.	D	T_{jet}	T_{amb}	Re	l_M	Z	z/l_M	b_{T}	T_c	$\left[\left(\sqrt{T} \right)^2 \right]$
Πειράματος	(cm)	(°C)	(°C)		(m)	(cm)		(cm)	(°C)	$\sqrt{\Delta I_c}$
ΘEPM10	1.0	54.50	24.30	4658	6.880	35	5.087	4.01	2.70	0.869
ΘEPM11	1.0	53.80	24.40	2925	4.433	35	7.896	3.98	1.90	0.766
ΘEPM12	1.0	53.80	24.40	3769	5.713	35	6.127	4.6	2.18	0.778
ΘEPM13	1.0	52.80	22.80	2051	3.167	35	11.051	3.85	1.70	0.730
ΘEPM14	1.0	53.20	22.90	5830	8.884	35	3.940	3.8	2.90	0.878
ΘEPM15	1.0	52.90	23.20	4555	7.038	25	3.552	2.4	4.50	1.403
ΘEPM23	1.5	91.20	22.70	3686	2.186	30	13.722	3.56	5.20	2.173
ΘEPM24	1.5	90.10	23.50	3027	1.812	30	16.560	4.15	3.80	2.024
ΘEPM25	1.5	88.50	24.00	2364	1.432	34.5	24.085	4.7	2.60	1.208
ΘEPM26	1.5	85.60	24.60	2384	1.482	34.5	23.275	4.2	2.90	1.291
ΘEPM27	1.5	46.20	24.90	1234	2.092	34.5	16.488	4.75	1.20	0.552
ΘEPM28	0.5	50.70	22.60	10433	24.583	10	0.407	1.35	5.50	0.913
ΘEPM29	0.5	50.10	22.80	7139	17.258	10	0.579	1.32	5.16	1.022
ΘEPM30	0.5	50.05	22.90	8732	21.174	20	0.945	2.65	2.60	0.635
ΘEPM31	0.5	45.90	23.10	10411	30.109	20	0.664	2.6	2.26	0.510
ΘEPM32	0.5	45.05	23.40	5105	15.415	30	1.946	3.77	1.33	0.395

Πίνακας 3: Οι παράμετροι της φλέβας και τα βασικότερα μετρημένα στοιχεία – κυκλικό ακροφύσιο

4.3 Υπολογισμός διαφοράς ΔT και $\sqrt{(\Delta \overline{T_c})^2}$, προσδιορισμός T_c και r

Μετά το τέλος κάθε πειράματος (που πραγματοποιείται σε 3 διαφορετικές ακτινικές αποστάσεις από τον άξονα της φλέβας r), υπολογίζουμε τη διαφορά ΔT των μέσων τιμών θερμοκρασίας που μέτρησε κάθε θερμίστορας (θερμοκρασία διαχεόμενου νερού T_{jel} από τη θερμοκρασία περιβάλλοντος T_a). Έτσι, δημιουργούμε μία γραφική απεικόνιση των διαφορών αυτών (οι τιμές της οποίας ανταποκρίνονται κάθε φορά στην κατανομή Gauss), από την οποία εκτιμούμε την μέγιστη τιμή T_c της θερμοκρασίας (θερμοκρασιακή τιμή στον άξονα της κατανομής των θερμοκρασίας που άξονα της φλέβας r, τον λόγο των άξονα της φλέβας (ο οποίος βρίσκεται σε θέση ώστε η κατανομή μας να είναι συμμετρική). Συνεπώς, μπορούμε και προσδιορίζουμε την απόσταση από τον άξονα της φλέβας r, τον λόγο των διαφορών των μέσων θερμοκρασιών από τις τμές της θερμοκρασίας περιβάλλοντος προς τη μέγιστη τιμή των λόγων αυτών $\Delta T / \Delta T_c$, καθώς και τον λόγο των τυπικών αποκλίσεων των θερμοκρασιών που μέτρησε κάθε θερμίστορας σε κάθε μία από τις τρεις (κάθε φορά) θέσεις προς τη μέγιστη τιμή ΔT_c των θερμοκρασιακών διαφορών από τη θερμοκρασία περιβάλλοντος, $T' / \Delta T_c$.

Στη συνέχεια, προκειμένου να υπολογίσουμε το πλάτος της θερμοκρασίας *b* πραγματοποιούμε συνόρθωση, διαδικασία η οποία περιγράφεται παρακάτω. Σκοπός μας είναι η καλύτερη προσαρμογή της κατανομής στα δεδομένα των πειραμάτων.

4.4 Υπολογισμός πλάτους θερμοκρασίας b

Ως T_c ορίζεται η μέγιστη διαφορά της μέσης τιμής των ληφθεισών θερμοκρασιών (ανά θέση και ανά θερμίστορα) από τη θερμοκρασία περιβάλλοντος T_a , η οποία παρατηρείται στον άξονα της θερμοκρασιακής κατανομής. Αν T(r) είναι η μεταβολή της θερμοκρασίας σε απόσταση r από τον άξονα της θερμοκρασιακής κατανομής, τότε ισχύει ότι

$$\frac{T(r)}{T_c} = \exp\left(-\frac{r^2}{b^2}\right) \tag{4.1}$$

όπου rη απόσταση από τον άξονα της φλέβας και

b το θερμοκρασιακό πλάτος

Το θερμοκρασιακό πλάτος $b = b_T$ είναι η ακτινική απόσταση από τον άξονα της φλέβας στην κατανομή των θερμοκρασιών, στο σημείο $\frac{1}{e}$, όπου e είναι η βάση των Νεπέριων λογαρίθμων,

δηλαδή

$$T(b) = \frac{1}{e}T_c \tag{4.2}$$

Επειδή, όμως, η παραπάνω σχέση δεν είναι γραμμική, πρέπει να τη γραμμικοποιήσουμε. Πραγματοποιούμε, λοιπόν, συνόρθωση. Θέτουμε $\beta = \frac{r}{b}$ και $a = \frac{T(r)}{T_c}$. Έτσι, έχουμε

$$\frac{T(r)}{T_c} = \exp\left(-\frac{r^2}{b^2}\right) \Leftrightarrow a = \exp(-\beta^2)$$
(4.3)

Λογαριθμίζοντας στην παραπάνω σχέση έχουμε

$$\ln a = \ln\left(\exp\left(-\beta^{2}\right)\right) \Longrightarrow \ln a = -\beta^{2} \Leftrightarrow \ln\left(\Delta T / T_{c}\right) = -r^{2} \cdot \frac{1}{b^{2}}$$
(4.4)

Η τελευταία σχέση δηλώνει ότι η ποσότητα $\ln(\Delta T/T_c)$ συνδέεται γραμμικά με την $\frac{1}{b^2}$. Έτσι, από τη γραφική παράσταση με άξονες $\ln(\Delta T/T_c)$ και r^2 υπολογίζουμε τον συντελεστή $-\frac{1}{b^2}$ και στη συνέχεια, επιλύοντας ως προς b, υπολογίζουμε το πλάτος της θερμοκρασίας. Παρ' όλα αυτά, δε λαμβάνουμε πάντα την τιμή αυτή, αλλά την προσεγγίζουμε βάσει του τελικού διαγράμματος $(r - \Delta T)$, όπου $\Delta T = T_c \cdot \exp\left(-\frac{r^2}{b^2}\right)$, όπως αναφέρθηκε και πιο πάνω. Αυτό

γίνεται, γιατί κατά τον υπολογισμό του πλάτους b ενδέχεται να συναντήσουμε αρνητικές τιμές ΔT (γεγονός που μας απαγορεύει να υπολογίσουμε τον λογάριθμο της διαφοράς) διαστρεβλώνοντας το τελικό αποτέλεσμα, αλλά και γιατί προσέχουμε κάθε φορά η κατανομή $(r - \Delta T)$ να ανταποκρίνεται ικανοποιητικά σε όλα τα δεδομένα των πειραμάτων.

4.5 Υπολογισμός κινηματικής ορμής Μ και κινηματικής άνωσης Β

Η κινηματική ορμή M υπολογίζεται συναρτήσει της παροχής Q από την εξίσωση (1.2), όπου W η μέση ταχύτητα εκτόξευσης, η οποία προσδιορίζεται, για την κυκλική διατομή, από τη σχέση

$$W = \frac{4Q}{\pi D^2} \tag{4.5}$$

όπου Dη διάμετρος της διατομής του ακροφύσιου

Η ανωστική ροή *B* υπολογίζεται από τη σχέση (1.3). Όπου g'_0 είναι η επιτάχυνση της βαρύτητας στην έξοδο της φλέβας, και υπολογίζεται συναρτήσει των πυκνοτήτων του περιβάλλοντος ρευστού και του ρευστού της φλέβας, από την εξίσωση 1.8. Η πυκνότητα του νερού υπολογίζεται συναρτήσει της θερμοκρασίας του αλλά και της αλατότητάς του. Για τον υπολογισμό των πυκνοτήτων, τόσο του περιβάλλοντος νερού όσο και του νερού της εκτοξευόμενης φλέβας, χρησιμοποιούμε τις σχέσεις

$$\rho_{j} = 999.9399 + 4.216485 \cdot 10^{-2} T_{j} - 7.097451 \cdot 10^{-3} T_{j}^{2} + 3.50957 \cdot 10^{-5} T_{j}^{3} - 9.9037785 \cdot 10^{-8} T_{j}^{4}$$
(4.6)

$$\rho_{\alpha} = 999.9399 + 4.216485 \cdot 10^{-2} T_{\alpha} - 7.097451 \cdot 10^{-3} T_{\alpha}^{2} + 3.50957 \cdot 10^{-5} T_{\alpha}^{3} - 9.9037785 \cdot 10^{-8} T_{\alpha}^{4}$$
(4.7)

όπου ρ_{a} και ρ_{j} η πυκνότητα του περιβάλλοντος νερού και του νερού της φλέβας αντίστοιχα.

4.6 Υπολογισμός l_o και l_M , αριθμού Richardson (*Ri*) και διάστασης z/l_M

Οι χαρακτηριστικές κλίμακες μήκους l_Q και l_M υπολογίζονται συναρτήσει της παροχής, της κινηματικής ορμής και της ειδικής άνωσης, χρησιμοποιώντας τις εξισώσεις (1.5) και (1.6) αντίστοιχα, όπως αυτές δόθηκαν στο 1° κεφάλαιο. Ο αριθμός Richardson R_i είναι ο λόγος των χαρακτηριστικών αυτών κλιμάκων μήκους, δηλαδή

$$R_i = \frac{l_Q}{l_M} \tag{4.8}$$

Εν συνεχεία, υπολογίζουμε την ποσότητα z/l_M , όπου zείναι η κατακόρυφη απόσταση από την έξοδο της φλέβας κατά τον άξονά της.

4.7 Κατανομή της συγκέντρωσης S και υπολογισμός της διάλυσης S'

Σύμφωνα με τους Fischer *et al.* [1], η συγκέντρωση C_m ενός ρευστού σε ένα περιβάλλον ρευστό εκφράζεται από τη σχέση

$$C_{m} = (9.1 \pm 0.5) \cdot Y \cdot B^{-1/3} \cdot z^{-5/3} \qquad [B \cdot M^{-3}]$$
(4.9)

όπου $Y = Q \cdot C_0$ (C_0 είναι η αρχική συγκέντρωση στην έξοδο της φλέβας)

Λαμβάνοντας υπόψη τη σχέση (1.3) διαπιστώνουμε ότι η συγκέντρωση του διαχεόμενου ρευστού είναι ανάλογη της διαφοράς πυκνότητας μεταξύ των δύο ρευστών που αναμιγνύονται. Από τις σχέσεις (4.6) και (4.7) βλέπουμε ότι οι πυκνότητες των ρευστών είναι ανάλογες της θερμοκρασίας τους. Συνεπώς, η συγκέντρωση ενός ρευστού σε ένα περιβάλλον ρευστό είναι ανάλογη των θερμοκρασιακών τους διαφορών. Έτσι, η αδιαστητοποιημένη συγκέντρωση C/C_c , όπου C_c η συγκέντρωση στον άξονα της φλέβας, μπορεί να εκφραστεί και σαν λόγος των θερμοκρασιακών διαφορών. Τη λογική αυτή ακολούθησε στα πειράματά του και ο P. N. Papanicolaou.

Η κατανομή της συγκέντρωσης εκφράζεται από τον αδιαστητοποιημένο λόγο των θερμοκρασιών. Έτσι, ορίζεται από τη διαφορά των θερμοκρασιών της φλέβας από τη θερμοκρασία περιβάλλοντος προς τη μέγιστη θερμοκρασιακή διαφορά. Δηλαδή

$$S = \frac{\left(T_j - T_a\right)}{T_c} \tag{4.10}$$

Η διάλυση εκφράζεται από την αδιάστατη ποσότητα

$$S' = SQ / z\sqrt{M} = \frac{S \cdot l_Q}{z} \tag{4.11}$$

Επιπρόσθετα, κατά την επεξεργασία των αποτελεσμάτων θα υπολογίσουμε και την διάλυση συναρτήσει της τυπικής απόκλισης της μέσης θερμοκρασιακής διαφοράς στον άξονα της φλέβας

$$S^{'*} = \frac{\left(\Delta T_0 / \sqrt{\Delta \overline{T}'_c^2}\right) \cdot Q}{z \cdot \sqrt{M}}$$
(4.12)

Στην ουσία, αυτό που ερευνούμε, είναι η συμπεριφορά της ποσότητας αυτής για διαφορετικές τιμές της διάστασης z/l_M , και η συσχέτιση αυτής για απλή κυκλική διατομή με αυτές που αντιστοιχούν σε ελλειπτική. Τα αναλυτικά επεξεργασμένα αποτελέσματα των πειραμάτων παρουσιάζονται στο επόμενο κεφάλαιο.

5 Η επεξεργασία των μετρήσεων

5.1 Η διάλυση S'

Τα πειράματα που πραγματοποιήθηκαν για κυκλική και ελλειπτική διατομή επέτρεψαν την εξαγωγή αποτελεσμάτων που ανταποκρίνονται πλήρως στη μορφή των αποτελεσμάτων προηγούμενων ερευνητών. Στο διάγραμμα που ακολουθεί παρατηρούμε ότι, για την περιοχή των jets, η διάλυση S' (εξ. 4.11) διατηρεί μία σταθερή τιμή και στις δύο διατομές ενώ, στην περιοχή των πλούμιων, ταιριάζει με μία εκθετική συνάρτηση, η οποία προκύπτει από τη διαστατική ανάλυση του List. Σύμφωνα με αυτή, η συγκέντρωση C διαλυμένης ουσίας στον άξονα της φλέβας με αρχική συγκέντρωση C_0 ως συνάρτηση των παραμέτρων

$$z \qquad [L]$$

$$C = \Delta T_{c} \qquad [\Theta]$$

$$Y = Q \cdot \Delta T_{0} \qquad [\Theta L^{3}/T]$$

$$B = g \frac{\Delta \rho}{\rho_{0}} Q \qquad [L^{4}/T^{3}]$$

προκύπτει από το εξής αδιάστατο μονώνυμο:

$$(\epsilon\xi.(4.9)) \Rightarrow \frac{C}{Y} B^{1/3} z^{5/3} = \operatorname{stabepó} \Leftrightarrow \frac{(\Delta T)_c}{Q(\Delta T_0)} B^{1/3} z^{5/3} = \operatorname{stabepó}$$

Αυτό σημαίνει ότι

$$S' = \frac{\Delta T_0}{\Delta T_c} \propto \frac{B^{1/3}}{Q} z^{5/3} \Leftrightarrow \frac{S \cdot l_Q}{z} \propto \left(\frac{B^{1/3}}{Q} z^{5/3}\right) \cdot \frac{l_Q}{z} \Leftrightarrow \frac{S \cdot Q}{z \cdot \sqrt{M}} \propto z^{2/3} \frac{B^{1/3}}{Q} \cdot \frac{Q}{\sqrt{M}} = \left(\frac{z}{l_M}\right)^{2/3}$$
(5.1)

Με βάση, δηλαδή, τη διαστατική ανάλυση του List, αποδεικνύεται ότι η διάλυση S' είναι ανάλογη του υψομέτρου z/l_M υψωμένο στη δύναμη 2/3. Η καμπύλη, λοιπόν, της διάλυσης είναι μία εκθετική καμπύλη. Στο σχήμα 4 που ακολουθεί παρουσιάζονται όλα τα αποτελέσματα των πειραμάτων: η διάλυση S' όπως αυτή υπολογίζεται από τη σχέση (4.11), καθώς και η διάλυση συναρτήσει της τυπικής απόκλισης των θερμοκρασιακών διαφορών, όπως αυτή υπολογίζεται από τη εκθετική κατανομή στο χώρο που ακολουθεί η διάλυση.

Σ. Ι. Παπαντωνίου Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα 4: Η διάλυση S' και S'^* σε όλες τις φάσεις της φλέβας για ελλειπτική και κυκλική διατομή.

Όπως πολύ εύκολα παρατηρούμε, στην περιοχή των jets, η διάλυση S^{**} (σχέση 9) δεν είναι σταθερή. Αντίθετα, μειώνεται για $0.1 \le z/l_M \le 0.7$, όπου και σταθεροποιείται για την υπόλοιπη περιοχή των jets. Αυτό δικαιολογείται από το γεγονός ότι η ταχύτητα εκτόξευσης στο άξονα της φλέβας σταθεροποιείται μετά από τις 20 περίπου διαμέτρους, όπως αυτό φαίνεται και στο παρακάτω διάγραμμα που δημιούργησαν οι Papanicolaou and Gharib [16].

Σχήμα 5: Μέση ταχύτητα εκτόξευσης στον άξονα της φλέβας

Σχήμα 6: Η μέση διάλυση S' στα jets για κυκλική και ελλειπτική διατομή.

Στα πειράματα που πραγματοποιήθηκαν με την ελλειπτική διατομή, στην περιοχή των jets, όπου δηλαδή $z/l_M < 1$, παρατηρείται ότι η μέση διάλυση S' διατηρεί μία σταθερή τιμή. Η τιμή αυτή ορίζεται στα 0.207, και είναι ελαφρώς μικρότερη από την αντίστοιχη τιμή της για πειράματα που πραγματοποιήθηκαν με κυκλική διατομή. Στα πειράματα με την κυκλική διατομή, η μέση διάλυση S' για την περιοχή των jets έχει σταθερή τιμή 0.229 και διαφέρει από την τιμή των 0.175 και 0.165 που υπολόγισαν οι Fischer *et al.* [2] και οι Papanicolaou and List [3] αντίστοιχα.

Στην περιοχή των πλουμίων, όπου δηλαδή $z/l_M > 5$, η μέση διάλυση S', σύμφωνα με τη σχέση (5.1), ακολουθεί εκθετική κατανομή και είναι ανάλογη της ποσότητας $\left(\frac{z}{l_M}\right)^{\frac{2}{3}}$. Η σχετική σχέση που συνδέει τα δύο μεγέθη είναι

 $S' = \alpha \cdot \left(\frac{z}{l_M}\right)^{\frac{2}{3}}$ (5.2)

Η τιμή της σταθεράς α κατά τα πειράματα στην ελλειπτική διατομή προκύπτει 0.0964. Η τιμή αυτή είναι -όπως και στα jets- μικρότερη από την αντίστοιχη στα πειράματα κυκλικής διατομής. Στην κυκλική διατομή, η τιμή της σταθεράς α υπολογίστηκε στο 0.1058, και είναι λίγο μεγαλύτερη από την 0.090 την οποία οι Papanicolaou and List [3] υπολόγισαν με τη διεξαγωγή πειραμάτων. Η εκθετική σχέση της διάλυσης S' απεικονίζεται στο Σχήμα 7 που ακολουθεί.

Σχήμα 7: Η μέση διάλυση S' στα πλούμια για κυκλική και ελλειπτική διατομή.

Στο Σχήμα 8 που ακολουθεί παρουσιάζεται η γραμμική σχέση της διάλυσης S' με την ποσότητα $(z/l_M)^{2/3}$. Παρατηρούμε ότι η ευθεία που αναφέρεται στα πλούμια κυκλικής διατομής σχηματίζει στην προέκτασή της μεγαλύτερη γωνία με τον οριζόντιο άξονα σε σχέση με την ευθεία που αναφέρεται στα πλούμια ελλειπτικής διατομής.

Σχήμα 8: Απεικόνιση της γραμμικής σχέσης της διάλυσης S' με το αδιαστητοποιημένο ύψος z/l_M

Μία καλύτερη σύγκριση των εξαγόμενων σχέσεων μπορεί να γίνει με τη χρήση του παρακάτω συγκεντρωτικού Πίνακα 4:

	Διάλυ		
	Ελλειπτική διατομή	Κυκλική διατομή	
$z / l_M < 1$	0.207	0.229	Jet
$z / l_M > 5$	$0.0964 \cdot \left(\frac{z}{l_M}\right)^{\frac{2}{3}}$	$0.1058 \cdot \left(\frac{z}{l_M}\right)^{2/3}$	Πλούμιο

Π'					- 1 - <i>i</i>
$1 11 Vakac 4 2 10 VkeV \tau$	$\alpha \omega \tau \kappa \alpha c \pi \nu \alpha \kappa \alpha c$	$\sigma v \epsilon \sigma \epsilon \omega v$	$\Pi \epsilon \sigma n c \alpha \alpha \alpha \eta c$	$rnc \sigma \epsilon$ lets rai	$\pi \lambda \alpha m m \alpha$
1100000 ± 200000		0100000	$\mu cong out$		mooplu
		<i>/</i> v			•

Όσο αυξάνεται η απόσταση από το ακροφύσιο, όσο δηλαδή $z/l_M > 1$, αρχίζει να αυξάνεται η επιρροή της άνωσης στη φλέβα. Έτσι, μετά από κάποιο αριθμό διαμέτρων, όπου $z/l_M > 5$, η ροή και το σχήμα της φλέβας καθορίζεται αποκλειστικά από την άνωση, αφού η αρχική ορμή έχει πάψει να την επηρεάζει.

Οι τιμές της διάλυσης S^{**} συναρτήσει της τυπικής απόκλισης της μέσης θερμοκρασιακής διαφοράς στον άξονα της φλέβας, όπως αυτή υπολογίζεται από την εξίσωση (4.12), στην περιοχή των jets, διατηρεί μία σταθερή τιμή (μετά τις 20 διαμέτρους, όπως προαναφέρθηκε), ενώ στα πλούμια η τιμή της σταθεράς α είναι περίπου 0.222. Η κατανομή της S^{**} για όλο το φάσμα z/l_{M} φαίνεται στο Σχήμα 4 παραπάνω.

5.2 Το θερμοκρασιακό πλάτος b_T

Το πλάτος b_T/z της μέσης θερμοκρασίας, όπως αυτή προσδιορίζεται στο σημείο $\frac{1}{e}$ συναρτήσει του αδιάστατου υψομέτρου z/l_M παρουσιάζεται στο Σχήμα 9. Για μικρές αλλά και μεγάλες τιμές z/l_M (jets και πλούμια), το θερμοκρασιακό πλάτος b_T/z διατηρεί μία σχετικά σταθερή τιμή. Στα πειράματα σε ελλειπτική διατομή, η τιμή αυτή υπολογίστηκε 0.138 και 0.117 για τα jets και για τα πλούμια αντίστοιχα.

Στα πειράματα με κυκλικό ακροφύσιο, η τιμή b_T / z υπολογίστηκε 0.132 και 0.125 στα jets και στα πλούμια αντίστοιχα. Η τιμή $b_T / z = 0.132$ είναι σχεδόν όμοια με την τιμή 0.13 που οι Papanicolaou and List [3] υπολόγισαν, όμοια με αυτήν που υπολόγισε ο Corrsin [17], ελαφρώς μικρότερη από την τιμή των 0.138 που υπολόγισαν οι Wilson and Danckwerts [18], και γενικότερα, η τιμή $b_T / z = 0.132$ σχεδόν ανταποκρίνεται στη μέση τιμή των 0.127 ± 0.004 που πρότειναν οι Fischer *et al.* [2].

Στην περιοχή των πλουμίων, για τα πειράματα με κυκλική διατομή, το θερμοκρασιακό πλάτος b_T / z υπολογίστηκε $b_T / z = 0.125$. Η τιμή αυτή απέχει από αυτή των 0.11 που υπολόγισαν οι Papanicolaou and List [3], ενώ, παράλληλα, ανταποκρίνεται στη μέση τιμή των 0.120 ± 0.005 που πρότειναν οι Fischer *et al.* [2] βάσει πειραμάτων προηγούμενων ερευνητών.

Στον Πίνακα 6 που ακολουθεί μπορούμε να συγκρίνουμε τις τιμές του πλάτους της μέσης θερμοκρασίας στα jets και στα πλούμια για τα πειράματα σε κυκλικό και ελλειπτικό ακροφύσιο.

	b	/ z
	Jet	Πλούμιο
Κυκλική διατομή	0.132	0.125
Ελλειπτική διατομή	0.138	0.117

Πίνακας 5: Συγκεντρωτικός πίνακας των τιμών	b_T /	Z
---	---------	---

Σχήμα 9: Σχηματική αναπαράσταση του θερμοκρασιακού πλάτους συναρτήσει του ύψους z .

5.3 Στατιστικές ιδιότητες της θερμοκρασίας στα jets και στα πλούμια

Με r να ορίζεται η ακτινική απόσταση από το κέντρο της φλέβας και z το ύψος από την άκρη του ακροφύσιου, η μέση θερμοκρασιακή διαφορά $\overline{T} = \Delta \overline{T}$ σε ένα σημείο (r,z) ως προς τη μέση θερμοκρασιακή διαφορά $\overline{T}_c = \Delta \overline{T}_c$ στον άξονα της φλέβας παρουσιάζεται σε συνάρτηση με τον λόγο r/z στα σχήματα 10 και 11 για τα jets και τα πλούμια αντίστοιχα σε ελλειπτική διατομή και στα 12 και 13 για τα jets και τα πλούμια αντίστοιχα σε κυκλική διατομή.

Σχήμα 10: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα jets για ελλειπτική διατομή.

Σχήμα 11: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για ελλειπτική διατομή.

Παρατηρώντας τα διαγράμματα 10 και 11 βλέπουμε ότι οι κατανομές των θερμοκρασιών στην ελλειπτική διατομή κατά πλάτος της φλέβας ακολουθούν την κατανομή Gauss. Στα jets η μέγιστη τιμή φθάνει την τιμή 1, έχοντας ένα εύρος από -0.040 έως +0.030 σε σχέση με τον άξονα της φλέβας. Παρόμοια εικόνα βλέπουμε και στα πλούμια, με τη μέγιστη τιμή να φθάνει κι εδώ στη μονάδα, έχοντας ένα εύρος από -0.016 έως +0.023 σε σχέση με τον άξονα της φλέβας. Επίσης, στο διάγραμμα κατανομής των θερμοκρασιών στα πλούμια, βλέπουμε ότι η καμπύλη Gauss «απλώνεται» λιγότερο σε σχέση με την αντίστοιχη στα jets. Η εικόνα αυτή μας επιβεβαιώνει και το γεγονός ότι το θερμοκρασιακός πλάτος b_T , όπως αυτό υπολογίστηκε στο κεφάλαιο 3, έχει ελαφρώς μικρότερη τιμή στα πλούμια σε σχέση με τα jets.

Όπως ειπώθηκε, στα παρακάτω διαγράμματα απεικονίζεται η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα jets και στα πλούμια της κυκλικής διατομής. Στο Σχήμα 12 παρατηρούμε ότι η κατανομή των θερμοκρασιών της φλέβας στα jet ακολουθεί την γκαουσιανή, με μέγιστη τιμή 1, και στο Σχήμα 13 η κατανομή των θερμοκρασιών στα πλούμια κυκλικής διατομής έχει κι εδώ μέγιστη τιμή 1 και κατανέμεται πιο «ομαλά», επιβεβαιώνοντας και το γεγονός ότι το θερμοκρασιακό πλάτος b_T είναι μικρότερο. Τα δύο τελευταία διαγράμματα είναι σχεδόν όμοια με αυτά που εξήγαγαν οι Papanicolaou and List [3] μετά από πειράματα σε κυκλική διατομή.

Σχήμα 12: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλική διατομή.

Σχήμα 13: Η κατανομή των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για κυκλική διατομή.

Στα διαγράμματα 14 και 15 που ακολουθούν απεικονίζεται η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών για τα jets και τα πλούμια σε ελλειπτική και κυκλική διατομή.

Σχήμα 14: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα jets για ελλειπτική διατομή.

Σχήμα 15: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για ελλειπτική διατομή.

Στο Σχήμα 14 παρουσιάζεται η κατανομή των θερμοκρασιακών τυπικών αποκλίσεων καθ' όλο το πλάτος της φλέβας. Βλέπουμε ότι δημιουργούνται 2 κορυφές στην κατανομή με όμοια μέγιστη μέση τιμή 0.20 σε απόσταση $r/z = \pm 0.115$ περίπου από τον άξονα της φλέβας. Στο διάγραμμα 15 παρατηρούμε ότι η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών είναι μία καμπύλη, με μέση μέγιστη τιμή 0.430. Παρ' όλα αυτά, η καμπύλη αυτή δεν έχει αναπτυχθεί πολύ, και πλησιάζει στην ανάπτυξη 2 κορυφών όπως στα jets. Αυτό συμβαίνει γιατί οι τιμές z/l_M από το ακροφύσιο δεν είναι πολύ μεγάλες. Αν πραγματοποιούσαμε και πειράματα για μεγαλύτερες τιμές z/l_M ($z/l_M >> 30$ που έχουμε μετρήσει), θα υπήρχε η δυνατότητα το πλούμιο να αναπτυχθεί περισσότερο, και συνεπώς, τα διαγράμματα να είχαν αναπτυχθεί καλύτερα και αποτελεσματικότερα.

Παρόμοια εικόνα παρατηρούμε και στα πειράματα με το ακροφύσιο κυκλικής διατομής. Έτσι, στο Σχήμα 16 η κατανομή των τυπικών αποκλίσεων στα jets παρουσιάζει 2 κορυφές, με μέγιστη τιμή 0.23 σε απόσταση $r/z = \pm 0.1$ από τον άξονα της φλέβας. Η τιμή των 0.23 παρουσιάζει μικρή απόκλιση από την τιμή των 0.25 που υπολόγισαν οι Papanicolaou and List [3]. Στα πλούμια (Σχήμα 17), η μέγιστη τιμή των 0.42 που υπολογίσαμε πλησιάζει κατά πολύ την τιμή των 0.40 των ίδιων ερευνητών.

Σχήμα 16: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλική διατομή.

Σχήμα 17: Η κατανομή των τυπικών αποκλίσεων των θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για κυκλική διατομή.

Στα διαγράμματα 18 και 19 που ακολουθούν απεικονίζεται η κατανομή των μέγιστων και των ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα jets και στα πλούμια, για τα πειράματα που πραγματοποιήθηκαν σε ελλειπτική και κυκλική διατομή. Τα μη πλήρη σύμβολα αντιστοιχούν στις μέγιστες θερμοκρασιακές διαφορές και τα πλήρη (μαύρα) σύμβολα αντιστοιχούν στις ελάχιστες.

Σχήμα 18: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα jets για ελλειπτική διατομή.

Σχήμα 19: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για ελλειπτική διατομή.

Σχήμα 20: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα jets για κυκλική διατομή.

Σχήμα 21: Η κατανομή των μέγιστων και ελάχιστων θερμοκρασιών κατά πλάτος της φλέβας στα πλούμια για κυκλική διατομή.

Όπως παρατηρούμε στο παραπάνω Σχήμα 20, η κατανομή των μέγιστων θερμοκρασιών στα jets παρουσιάζει μία μέση μέγιστη τιμή 1.5 και η αντίστοιχη κατανομή των ελάχιστων θερμοκρασιών μία μέγιστη τιμή 0.4. Οι τιμές αυτές είναι στα ίδια επίπεδα με αυτές που υπολόγισαν οι Papanicolaou and List [3] για την κυκλική διατομή. Η κατανομή των θερμοκρασιών στο διάγραμμα αυτό φαίνεται να αποτελεί μια πιο «ομαλοποιημένη» κανονική κατανομή, χωρίς τα σημεία της να αποκλίνουν από αυτήν. Αντίθετα, στο Σχήμα 21, το οποίο αναφέρεται στα πλούμια φλέβας για κυκλικό ακροφύσιο, τα σημεία της κατανομής των μέγιστων θερμοκρασιών παρουσιάζουν μεγάλη διασπορά από αυτήν, κάτι το οποίο συμβαίνει και στα αποτελέσματα των Papanicolaou and List [3], έχοντας όμως μία μέση μέγιστη τιμή 2.5, ενώ οι τιμές στην κατανομή των ελαχίστων θερμοκρασιακών διαφορών δεν υπερβαίνουν την τιμή 0.15.

Στα διαγράμματα 22-25 που ακολουθούν, έχουμε δημιουργήσει ένα ιστόγραμμα σχετικών συχνοτήτων, χωρίζοντας τα δεδομένα μας σε 16 κλάσεις, προκειμένου να παρατηρήσουμε την ποσοστιαία κατανομή των θερμοκρασιακών διαφορών και ποια κατανομή ακλουθούν αυτές σε διαφορετικές ακτινικές αποστάσεις από τον άξονα της φλέβας. Τα διαγράμματα αυτά αναφέρονται στο 34° πείραμα με ελλειπτική διατομή στα jets, για z/D = 50 και στο 16° πείραμα με ελλειπτική διατομή για τα πλούμια, για z/D = 20 αντίστοιχα.

Σχήμα 22: Ιστόγραμμα σχετικών συχνοτήτων στα jets με ελλειπτική διατομή, για z/D = 50.

Όπως παρατηρούμε στο διάγραμμα 22, η κατανομή των σχετικών συχνοτήτων ακολουθεί την κανονική κατανομή για μικρές ακτινικές αποστάσεις από τον άξονα της φλέβας. Όσο απομακρυνόμαστε από τον άξονα της φλέβας η κατανομή αρχίζει να διαφοροποιείται και δημιουργούνται έντονες αυξομειώσεις στο γράφημα, γεγονός που σημαίνει ότι οι θερμοκρασιακές διαφορές που παρατηρούνται περιορίζονται σε ένα μικρότερο φάσμα τιμών. Οι αυξομειώσεις, όμως, αυτές παρατηρούνται σε πολύ μεγαλύτερο βαθμό στο ιστόγραμμα 23, όπου αφενός οι θερμοκρασιακές διαφορές κατά πλάτος της φλέβας περιορίζονται σε ακόμη μικρότερο φάσμα τιμών Οι αυξομειώσεις από τον άξονα της φλέβας, αφετέρου οι αυξομειώσεις αυτές αρχίζουν να εμφανίζονται πολύ πιο κοντά στον άξονα σε σχέση με τα jets, ενώ η κατανομή των σχετικών συχνοτήτων γίνεται κανονική μόνο για μικρές ακτινικές αποστάσεις r από τον άξονα της φλέβας. Το γεγονός αυτό ενδεχομένως δικαιολογείται από τα αυξημένα επίπεδα τύρβης που παρατηρούνται στα πλούμια, ειδικότερα όταν απομακρυνόμαστε από τον κειντρικό καιολογείται από τα αυξημένα ετίνων στο μηδέν όσο απομακρυνόμαστε.

Παρόμοια εικόνα παρατηρείται και για τα πειράματα που έχουν πραγματοποιηθεί με κυκλική διατομή (πείραμα 31° στα jets και 14° στα πλούμια). Στα jets το διάγραμμα σχετικών συχνοτήτων (Σχήμα 24) των θερμοκρασιακών διαφορών είναι κανονική κατανομή για περιοχές πολύ κοντά στον άξονα της φλέβας, ενώ όσο απομακρυνόμαστε από αυτόν, η κατανομή αλλάζει παρουσιάζοντας έντονες αυξομειώσεις, οι οποίες οφείλονται στη συγκέντρωση των τιμών των θερμοκρασιακών διαφορών κοντά στο 0. Η ίδια εικόνα παρατηρείται και στα πλούμια (Σχήμα 25), με τη διαφορά ότι η κανονική κατανομή στο διάγραμμα σχετικών συχνοτήτων ισχύει για ακόμη μικρότερες αποστάσεις από τον άξονα σε σχέση με την περιοχή των jets, καθώς οι αυξομειώσεις στις κατανομές εμφανίζονται πολύ «νωρίτερα» σε σχέση με τα jets, σε περιοχές πιο κοντά στον κεντρικό άξονα.

Σχήμα 23: Ιστόγραμμα σχετικών συχνοτήτων στα πλούμια με ελλειπτική διατομή, για z/D = 20

Σχήμα 24: Ιστόγραμμα σχετικών συχνοτήτων στα jets με κυκλική διατομή, για z/D = 35.

Σχήμα 25: Ιστόγραμμα σχετικών συχνοτήτων στα πλούμια με κυκλική διατομή, για z/D = 40.

Στα διαγράμματα 26 και 27 παρουσιάζεται η κατανομή σχετικών συχνοτήτων των θερμοκρασιακών διαφορών στον άξονα της φλέβας για τα jets και πλούμια ελλειπτικής και κυκλικής διατομής στα πειράματα που αντιστοιχούν και στα διαγράμματα 22-25. Παρατηρούμε ότι οι κατανομές των σχετικών συχνοτήτων ακολουθούν την κανονική κατανομή. Αυτό, βέβαια, συμβαίνει σε περιοχές πολύ κοντά στον άξονα, και η κατανομή διαφοροποιείται όσο απομακρυνόμαστε από αυτόν, όπως αναφέρθηκε και παραπάνω.

Σχήμα 26: Ιστόγραμμα σχετικών συχνοτήτων στα jets και πλούμια με ελλειπτική διατομή στον άξονα της φλέβας.

Σχήμα 27: Ιστόγραμμα σχετικών συχνοτήτων στα jets και πλούμια με κυκλική διατομή στον άξονα της φλέβας.

Αξίζει να σημειωθεί ότι τα διαγράμματα 26 και 27 προέκυψαν πραγματοποιώντας γραμμική παρεμβολή στις θερμοκρασιακές διαφορές μεταξύ δύο πολύ μικρών αποστάσεων από τον ορισμένο άξονα της φλέβας, καθώς κατά τη διάρκεια των πειραμάτων δεν έτυχε η θέση κάποιου από τους 7 θερμίστορες να είναι στον κεντρικό άξονα. Παρά όλα αυτά, οιαδήποτε απόκλιση στις εξαγόμενες θερμοκρασιακές τιμές είναι μικρή, αφού οι αποστάσεις r από τον άξονα της φλέβας κατά της τάξης των ± 5mm εκατέρωθεν του άξονα. Τέλος, πρέπει να επισημανθεί ότι η μορφή των εξαγόμενων κατανομών των σχετικών συχνοτήτων ανταποκρίνεται σε αυτές των αντίστοιχων διαγραμμάτων των Papanicolaou and List [3].

6 Συμπεράσματα

Αρχικός στόχος της εργασίας μας ήταν η έρευνα συμπεριφοράς της εκτοξευόμενης φλέβας από ελλειπτικό ακροφύσιο στην περιοχή των jets και των πλουμίων και η σύγκρισή της με την εκτοξευόμενη φλέβα από κυκλικό ακροφύσιο. Ο βασικός σκοπός ήταν υπολογισμός της διάλυσης σε διαφορετικές κατακόρυφες αποστάσεις από το ελλειπτικό ακροφύσιο καθώς και η σύγκρισή της με τη διάλυση που επιτυγχάνεται σε διαφορετικές κατακόρυφες αποστάσεις από το ελλειπτικό ακροφύσιο καθώς και η σύγκρισή της με τη διάλυση συ επιτυγχάνεται σε διαφορετικές κατακόρυφες αποστάσεις από το ελλειπτικό ακροφύσιο καθώς και η σύγκρισή της με τη διάλυση που επιτυγχάνεται σε διαφορετικές κατακόρυφες αποστάσεις από το κυκλικό ακροφύσιο. Η πεποίθηση ότι η διάτμηση ενός κυκλικού ακροφύσιου κατά 45° θα αύξανε τα επίπεδα της διάλυσης για συγκεκριμένες κατακόρυφες αποστάσεις από το στόμιο, όχι μόνο δεν επιβεβαιώθηκε, αλλά τα αποτελέσματα που προέκυψαν μας απέδειξαν ακριβώς το αντίθετο: ότι η διάτμηση ενός κυκλικού διαχυτήρα κατά 45° θα επιφέρει μείωση, έστω και μικρή, της μέσης διάλυσης του διαχεόμενου ρευστού.

Οι λόγοι για τους οποίους συμβαίνει αυτό δεν έχουν αποδειχθεί και μόνο εκτιμήσεις μπορούν να γίνουν πάνω στο Ενδεχομένως συγκεκριμένο θέμα. η διάλυση του διαχεόμενου ρευστού να επηρεάζεται από το μήκος του αγωγού, το οποίο στην περίπτωση του ελλειπτικού ακροφύσιου μειώθηκε κατά a. Η «αποκόλληση» του διαχεόμενου ρευστού από το ακροφύσιο στο σημείο 1 και η «συγκράτησή» του από το απέναντι τοίγωμά του μέγρι την «αποκόλλησή» του και από το σημείο 2 (απόσταση +2a), ενδεχομένως να επηρεάζει αρνητικά την τελική διάλυση του διαχεόμενου ρευστού στο περιβάλλον ρευστό σε υψόμετρο z. Παρ' όλα αυτά, σε τέτοια περίπτωση, θα πρέπει να επαναληφθούν τα πειράματα με διαφορετικό σημείο αναφοράς του υψομέτρου z, αφού τα δεδομένα που θα

λαμβάνουν οι θερμίστορες για ύψος z + a θα είναι διαφορετικά.

Επιπρόσθετα, παρατηρώντας τη συμπεριφορά της φλέβας, όπως αυτή καταγράφεται από τα τελικά επίπεδα διάλυσης, τις θερμοκρασιακές κατανομές και τις τυπικές τους αποκλίσεις, για όλο το φάσμα των τιμών z/l_M , βλέπουμε ότι η μετάβαση από τα jets στα πλούμια δεν ακολουθεί κάποια συγκεκριμένη κατανομή, ενώ οι λόγοι για τους οποίους συμβαίνει η ακανόνιστη αυτή ροή παραμένουν ακόμη αδιευκρίνιστοι. Παρ' όλα αυτά, στις περιοχές των jets και των πλουμίων, η διάλυση παραμένει σταθερή ή ακολουθεί εκθετική κατανομή αντίστοιχα.

Η εφαρμογή των πειραματικών αποτελεσμάτων στα πραγματικά περιβαλλοντικά προβλήματα που συνδέονται με τη διάχυση ρευστών σε περιβάλλοντα ρευστά δεν είναι φυσικά τόσο απλή. Αν θεωρήσουμε ότι η θερμή διαχεόμενη φλέβα ρευστού είναι διάφοροι ρύποι ή βιομηχανικά απόβλητα συγκεκριμένης πυκνότητας που διαχέονται σε κάποιο ποτάμι, λίμνη ή θάλασσα μεγαλύτερης πυκνότητας, και η διάχυσή τους γίνει με τρόπο όμοιο με αυτό των πειραμάτων (κυκλικός αγωγός, πίεση 2 Atm, περιβάλλον ρευστό που ηρεμεί με μεγάλο υψόμετρο ελεύθερης επιφάνειας σε σχέση με το μέγεθος του αγωγού), τότε μπορούμε να εκτιμήσουμε τα αποτελέσματα, δηλαδή την ταχύτητα που οι ρύποι θα αραιωθούν στον υδάτινο αποδέκτη και την πιθανότητα η συγκέντρωσή τους στην επιφάνεια να είναι σημαντική. Όμως, κατά τη μελέτη αυτή δε θα έχουμε λάβει υπόψη μας περιβαλλοντικούς παράγοντες, όπως είναι τα υποθαλάσσια ρεύματα, τα διαφορετικής πυκνότητας στρώματα του υδατικού αποδέκτη, τη χλωρίδα και την πανίδα και κατά πόσο αυτές επηρεάζουν τα τελικά αποτελέσματα, καθώς και διάφορα καιρικά και περιβαλλοντικά φαινόμενα, όπως είναι η παλίρροια ή η βροχή, που επηρεάζουν σε κάποιο βαθμό το υψόμετρο της ελεύθερης επιφάνειας σε σχέση με τον αγωγό από τον οποίο εκβάλλουν οι ρύποι.

Αν θέλουμε, όμως, να εξάγουμε μία διαπίστωση σε σχέση με την εφαρμογή των πειραματικών αποτελεσμάτων στο περιβάλλον, αυτή θα μπορούσε να περιοριστεί στο γεγονός ότι, εάν διατμήσουμε έναν κυκλικό αγωγό που εκβάλλει σε έναν υδάτινο αποδέκτη μικρότερης πυκνότητας διαχεόμενο ρευστό, τότε τα επίπεδα της διάλυσης του διαχεόμενου ρευστού θα είναι ελαφρώς μικρότερα σε σχέση με αυτά που επιτυγχάναμε πριν την διάτμηση.

Βιβλιογραφία

- 1. H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger and N. H. Brooks, *Mixing in Inland and Coastal Waters*, Academic Press, New York (1979).
- 2.Ι. Δ. Δημητρίου, Περιβαλλοντική υδραυλική, Εκδόσεις Συμεών (1989).
- **3.**P. N. Papanicolaou and E. J. List, *Statistical and spectral properties of tracer concentration in round buoyant jets*, Pergamont Journals Ltd. (1987).
- **4.** J. O. Hinze and B. G. Van der Hegge Zijnen, *Transfer of heat and matter int the turbulent mixing zone of an axially symmetric jet*, Appl. Scient. Res. A1, 435-461 (1949).
- **5.**K. M. Kiser, *Material and momentum transport in axisymmetric turbulent jet of water*, A.I.Ch.E. J19, 386-390 (1963).
- **6.**F. Ogino, H. Takeuchi, I. Kudo and T. Mizushina, *Heated jet discharged vertically into ambient of uniform and linear temperature profiles*, Int. J. Heat M ass T ransfer vol 23 p p. 1581-1588 (1980).
- 7.T. Mizushina, F. Ogino, H. Takeuchi, and H. Ikawa, *An experimental study of vertical turbulent jet with negative buoyancy*, Warrne und Stoffubertragung 16, 15-21 (1982)
- **8.**P. N. Papanicolaou, *Mass and momentum transport in a turbulent buoyant vertical axisymmetric jet*, National Science Foundation Report No. KH-R-46 (1984).
- **9.**N. E. Kotsonivos, *Temperature measurements in a turbulent round plume*, Int. J. Heat Mass Transfer 28, 771-777 (1985).
- P. N. Papanicolaou and E. J. List, Investigations of round vertical turbulent buoyant jets, J. Fluid Mech. vol 195 pp. 341-391 (1988).
- **11.** P. N. Papanicolaou, A piston driven jet for the study of the zone of flow establishment, Expts. in Fluids 17, 287 (1994)
- **12.** A. T. Tokuhiro, *Experimental investigation of a vertical planar jet by ultrasound and laser doppler velocimetry*, J. Nuclear Science and Technology vol. 36 No. 6 p. 540-548 (1999).
- 13. Ι. Δ. Δημητρίου, Διαλείψεις τύρβης σε ροή ανάμιξης, Ροή 2002 Ερευνητικές δραστηριότητες στα φαινόμενα ροής ρευστών στην Ελλάδα, Πάτρα 2-3 Οκτωβρίου 2002, σ. 273-280 (2002)
- 14. A. W.-K. Law, M.ASCE1, W. F. Ho and S. G. Monismith, *Double diffusive effect on disalitation discharges*, Journal of Hydraulic Engineering, Vol. 130, No. 5 pp. 450-457 (2004).
- **15.** P. N. Papanicolaou and T. J. Kokkalis, *Vertical buoyancy preserving and non-preserving fountains, in a homogeneous calm ambient*, Int. J. Heat and Mass Transfer 51 pp. 4109-4120 (2008).
- 16. Papanicolaou, P.N., and Gharib, M. Growth of a round jet, under local Reynolds number gradients. NATO Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes, P.A. Davies and M.J. Valente Neves Editors, Kluwer Academic Publishers, Dordrecht, 1994, pp. 177-190.

- 17. Corrsin, S., *Investigation of Flow in an Axially Symmetric Heated Jet of Air*, NACA Wartime Rep. W-94 (1943).
- **18.** Wilson, R. A. M., and Danckwerts, P.V., *Studies in turbulent mixing, II. A hot jet air*, Chem. Eng. Sci. Eng. 102, 885-895 (1964).

Παράρτημα Α: Φωτογραφίες των πειραματικών συσκευών

Εικόνα Α1: Η δεξαμενή περιβάλλοντος ρευστού

Εικόνα Α2: Ο θερμοσίφωνας με το «προς διάχυση»

Εικόνα Α3: Ρυθμιστής τάσης

Εικόνα Α5: Ροόμετρα

Εικόνα Α4: Δέκτης τιμών θερμοκρασίας από τους 8 θερμίστορες

Εικόνα Α5: Ρυθμιστής πίεσης

Παράρτημα Β: Φωτογραφίες της φλέβας

Εικόνα B1: Στιγμιότυπο πειράματος όπου φαίνεται η $\label{eq:big} \phi \lambda \hat{\epsilon} \beta \alpha.$

Εικόνα B3: Καθαρό πλούμιο, όπου F = 0.

Εικόνα B2: Η ανάδευση του διαχεόμενου νερού με το περιβάλλον, μετά το τέλος των πειραμάτων.

Εικόνα B4: Στιγμιότυπο πειράματος όπου φαίνεται η $\label{eq:basic} \phi \lambda \epsilon \beta \alpha.$

Παράρτημα Γ: Φωτογραφίες από το λογισμικό Labview 7

E thermistors.VI Front Panel	
Ele Edit Operate Iools Browse Window Help	1
🚯 🛑 🚺 13pt Application Font 🔍 🚛 🖓 🎰	21
Low Voltage (-V)	
High Voltage (+V)	
22.600	
Confirm Changes 22.400	
22.200	
Write to File	
name of Log file exp1 21.800	
21.600	
START ON / OFF 0 21.400	
START A START A START	
20.400	
Open File 20.200	
Calibration 19,800	
19.600	
Temperature 19.400	
(a)) Degree C 19.200	
(mv) Degree C JET 19.000 =	
1 130 18.36 18.800 -	
2 130 18.32 OK 18.600 -	
18.200	
4 131 18.45 18.000	
5 132 18.37 17.800	
6 130 18.46 17.600 I	
7 132 18.44 17.000 Standard Dev Range	
500 12.602 0.0050 0.017	
0 0K €10 Range (sec)	7658
🛃 start 🗾 🔤 🥔 🗊 🎽 💽 LabVIEW 💽 thermistors. VI Front 🛛 🗈	S S S S S S S S S S S S S S S S S S S

Εικόνα Γ1: Στιγμιότυπο πειράματος όταν οι θερμίστορες μετρούν τη θερμοκρασία περιβάλλοντος T_a .

Εικόνα Γ2: Στιγμιότυπο πειράματος όπου οι θερμίστορες μετρούν τις θερμοκρασίες στη φλέβα T_i .

Παράρτημα Δ: Φωτογραφίες αρχείων με θερμοκρασιακές τιμές

Στο Παράρτημα αυτό υπάρχουν εικόνες από τα αρχεία που το λογισμικό Labview 7 εξήγαγε για κάθε πείραμα, σε κάθε μία από τις τρεις κάθε φορά ακτινικές αποστάσεις από τον άξονα της φλέβας. Κάθε γραμμή περιέχει τιμές θερμοκρασίας για κάθε θερμίστορα, ενώ κάθε στήλη έχει 3200 τιμές (80 Hz για 40 sec.).

📕 exp1 - Σημειω	ματάριο						
Αρχείο Επεξεργασία	Μορφή Προβολή	Βοήθεια					
Apxia EndEptypadia 26.756653 27.091047 27.557926 28.034588 28.452549 28.817654 29.065901 29.221842 29.283566 29.350222 29.297834 29.212362 29.141378 29.051779 29.014158 29.051779 29.014158 29.051779 29.014158 29.051779 29.165014 29.231329 29.146103 28.911018 28.618204 28.618204 28.256245 28.397596 29.526245 28.397596 29.52761 30.974964 31.103230 31.149578	Μορφή Προβολή 28.311701 28.535486 28.535486 28.57229 28.330852 28.393652 28.330852 28.330852 28.316244 28.153185 28.000248 27.870605 27.442266 27.442266 27.207260 27.23253 27.155367 26.966093 26.799607 26.799637 26.893833 26.897655 26.83681 27.069136 27.928633 28.896296 29.799725 30.533907 30.533907 31.091312	Boήθεα 28. 34 3100 28. 132784 27. 937637 27. 792370 27. 796757 27. 977419 28. 253365 26. 555370 28. 783381 28. 925898 28. 999805 28. 930511 28. 787966 28. 628088 28. 510042 28. 455763 28. 415140 28. 275766 28. 003979 27. 704777 27. 418095 27. 143515 26. 931290 26. 737783 26. 595814 26. 467144 26. 467144 26. 467144 26. 467144 26. 363907 26. 257040 26. 142515 26. 199705	25.722155 25.754156 25.754156 25.738150 25.726152 25.718157 25.734150 25.758160 25.987532 26.412148 26.937517 27.432209 27.841146 28.097187 28.186150 28.070566 27.867500 27.592297 27.587955 27.592297 27.587955 27.592297 27.505623 27.579273 27.518604 27.574936 27.574936 27.570597 27.488327 27.488327 27.488327 27.380531	26.161404 26.275616 26.365765 26.423315 26.497530 26.559563 26.634226 26.709139 26.763395 26.826162 26.901714 26.977518 27.057810 27.104424 27.155384 27.155384 27.168144 27.155384 27.168144 27.121397 27.011290 26.868105 26.755041 26.675814 26.675814 26.675814 26.625919 26.588572 26.567848 26.580278 26.567848 26.580278 26.567216 26.621767 26.69170 26.709139	25.856119 25.864227 25.860172 25.860172 25.860172 25.860172 25.848015 25.848015 25.843964 25.843964 25.843964 25.843964 25.843964 25.864227 25.864227 25.864227 25.860172 25.852068 25.852068 25.852068 25.852058 25.855058 25.8550577 25.855057777 25.85505777777777777777777777777777777777	25.814238 25.806263 25.814238 25.794306 25.794306 25.782351 25.782351 25.782351 25.782351 25.782351 25.784306 25.74306 25.784306 25.784306 25.786335 25.786335 25.806263 25.806263 25.806263 25.790319 25.778368 25.790319 25.778288 25.790319 25.782351 25.782351 25.782351 25.782351 25.782351	
31.149578 30.781351 30.249699 29.861288 29.749428	31.091312 31.594236 31.773130 31.699301 31.847197	26.199705 26.783907 27.770441 28.774218 29.771423	27.380531 27.294661 27.196310 27.119637 27.060181	26.709139 26.729992 26.721647 26.688305 26.634226	25.835863 25.864227 25.876394 25.856119 25.888571 25.888571	25.782351 25.782351 25.806263 25.810251 25.814238	
29.05/429 29.551363 29.460152 29.326393	31.683512 31.531422 31.199272	30.019467 31.223051 31.381573 31.243444	26.883905 26.886953 26.832300 26.815512	26.343005 26.452148 26.337040 26.259264	25.917002 25.990280 26.096546 26.240391	25.806263 25.798288 25.806263 25.790319	>

Εικόνα Δ1: Απόσπασμα του αρχείου exp1.txt των 3200 θερμοκρασιακών τιμών του 1^{ου} πειράματος για ελλειπτική διατομή.

📕 amb3 - Σημειω	ματάριο						
Αρχείο Επεξεργασία	Μορφή Προβολή	Βοήθεια					
Αρχείο Επεξεργασίο 22. 684147 22. 691248 22. 701900 22. 684147 22. 673502 22. 716114 22. 698349 22. 705454 22. 698349 22. 705454 22. 698349 22. 705454 22. 691248 22. 705454 22. 691248 22. 705454 22. 691248 22. 705454 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 694796 22. 698349 22. 698349	Μορφή Προβολή 22.63792 636199 22.63798 22.63798 22.63798 22.63792 22.637922 22.655592 22.637922 22.655592 22.637922 22.655592 22.637922 22.655592 22.637922 22.644987 22.637922 22.644987 22.637922 22.644987 22.637922 22.644987 22.620268 22.63798 22.644987 22.644987 22.644987 22.644987 22.655126 22.63798 22.644987 22.644987 22.65126 22.6559126 22.65126 22.657922 22.65126 22.65792 22.644987 22.644987 22.65126 22.657922 22.644987 22.644987 22.65126 22.657922 22.644157 22.644157	Βοήθεια 22.713987 22.713987 22.6926495 22.724489 22.692997 22.692997 22.720987 22.692997 22.717485 22.706987 22.706987 22.72489 22.692997 22.73987 22.692997 22.73987 22.692997 22.73987 22.706987 22.710489 22.706987 22.710487 22.710487 22.710487 22.717485 22.706987 22.71987 22.692997 22.710487 22.710487 22.71485 22.706987 22.69499 22.717485 22.706987 22.69495 22.717485 22.703489	22.771494 22.774996 22.753986 22.767990 22.778500 22.774996 22.750486 22.750486 22.75484 22.757484 22.757484 22.757484 22.757484 22.760986 22.771494 22.771494 22.771494 22.760986 22.771494 22.760986 22.760986 22.760986 22.760986 22.760986 22.760986 22.760986 22.760986 22.760986 22.760986 22.7760986 22.760986 22.7760986 22.789013 22.78509 22.78509 22.771494	22.682268 22.685751 22.689232 22.692717 22.678785 22.696201 22.689232 22.675303 22.696201 22.689232 22.678753 22.696201 22.685751 22.692688 22.682268 22.685751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.695751 22.692717 22.692717	22.845139 22.834511 22.834511 22.834511 22.834511 22.845139 22.834511 22.845139 22.845139 22.845139 22.845139 22.845139 22.845139 22.84511 22.83451397 22.827431	22.792717 22.914997 22.768343 22.743994 22.726618 22.754427 22.799688 22.845041 22.845041 22.845041 22.845041 22.845041 22.845041 22.925510 22.866003 22.81076 22.757904 22.75427 22.754427 22.754427 22.750948 22.796202 22.872997 22.761383 22.716200 22.733568 22.716200 22.735904 22.73550 22.855520 23.855520 23.855560 23.855570	
22.691248 22.680597 22.709007 22.684147 22.691248 22.701900 22.680597 22.701900 22.691248	22.641457 22.637922 22.634390 22.652056 22.652056 22.630859 22.637922 22.627327 22.637922	22.713987 22.713987 22.699991 22.720987 22.713987 22.689499 22.720987 22.713987 22.692997	22.729498 22.767990 22.767990 22.739990 22.767990 22.774996 22.7743488 22.782003 22.743488	22.678785 22.689232 22.689232 22.682268 22.703171 22.699688 22.682268 22.682268 22.678785 22.699688	22.855770 22.838053 22.845139 22.845139 22.8345139 22.834511 22.852224 22.834511 22.852224	22.827587 22.775303 22.737043 22.817122 22.900988 22.757904 22.726618 22.743994 22.737043	
<	Ult						>

Εικόνα Δ2: Απόσπασμα από το αρχείο amb3.txt των 400 τιμών θερμοκρασίας περιβάλλοντος ρευστού του 30^{ου} πειράματος για κυκλική διατομή.

Παράρτημα Ε: Αναλυτικά αποτελέσματα για κάθε πείραμα

Στις επόμενες σελίδες ακολουθούν τα αναλυτικά αποτελέσματα, όπως αυτά προέκυψαν για κάθε ένα από τα 36 πειράματα που πραγματοποιήθηκαν ξεχωριστά. Σε κάθε σελίδα υπάρχει ο αντίστοιχος πίνακας (Πίνακα Δ1 - Πίνακα Δ36) και το αντίστοιχο διάγραμμα της κατανομής των θερμοκρασιακών διαφορών κατά πλάτος της φλέβας (Σχήμα Δ1 - Σχήμα Δ36), για κάθε ένα από τα πειράματα.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε1: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε2: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Αθήνα, Ιανουάριος 2009, Ε.Μ.Π.

D

1.0

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε3: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Αθήνα, Ιανουάριος 2009, Ε.Μ.Π.

D

(cm)

1.0

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε4: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Αθήνα, Ιανουάριος 2009, Ε.Μ.Π.

D

(cm)

1.0

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε5: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε6: Πειραματικά αποτελέσματα 6^{ου} πειράματος: exp06 – Ελλειπτική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	Τ _j (°C)	<i>T_a</i> (°C)	g'_0 (m/s^2)	$M_{(\mathrm{cm}^4/\mathrm{s}^2)}$	$B \left(\mathrm{cm}^{4} / \mathrm{s}^{3} \right)$	Re	<i>l</i> _Q (m)	l_M (m)	Ri	Z (cm)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta \bar{T}^2}$	S'	$S^{'*}$
1.0	0.80	15.62	19.89	52.30	26.90	9.41	310.61	146.96	3689	0.886	6.103	0.145	30	4.915	3.34	2.20	0.740	0.341	1.014

Σχήμα Ε6: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε7: Πειραματικά αποτελέσματα 7^{ου} πειράματος: exp07 – Ελλειπτική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	<i>T</i> _{<i>j</i>} (°C)	<i>T_a</i> (°C)	g'_{0} (m/s ²)	$M \left(\mathrm{cm}^{4} \mathrm{/s}^{2} ight)$	$B \left(\mathrm{cm}^{4}/\mathrm{s}^{3} \right)$	Re	<i>l</i> _Q (m)	<i>l_M</i> (m)	Ri	<i>z</i> (cm)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta ar{T}^2}$	S'	$S^{'*}$
1.0	0.50	10.37	13.20	52.60	25.80	9.83	136.93	3 101.97	2460	0.886	3.964	0.224	30	7.568	3.34	2.00	0.915	0.396	0.865
								2.500											
								2,000											
							•	1.500	•	•		▲ _ ■	ΔT rmsΔ	T.					
						•	-	1.000		•	•								
								0.500				-							
				-8.000 -7.	.000 -6.000	-5.000 -4.000	-3.000 -2.00	0.000 -1.000 0.000 -0.500	1.000 2.0	00 3.000	4.000 5.0	00 6.000	7.000 8	3.000 9.00	00				

Σχήμα Ε7: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε9: Πειραματικά αποτελέσματα 9°υ πειράματος: exp09 – Ελλειπτική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	Т _j (°С)	<i>T_a</i> (°C)	g_0' (m/s^2)	$M_{(\mathrm{cm}^4/\mathrm{s}^2)}$	$B \ (\mathrm{cm}^4/\mathrm{s}^3)$	Re	<i>l</i> _Q (m)	<i>l_M</i> (m)	Ri	z (cm)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta \overline{T}^2}$	<i>S</i> '	$S^{'*}$
1.0	1.00	19.12	24.34	53.00	26.10	9.94	465.36	190.07	4561	0.886	7.267	0.122	30	4.128	3.34	2.70	0.891	0.294	0.892
								3.000											
								2.500					ΔT						
								2.000				•	rms∆	T					
								1.500											
							1.1.	1.000	• •	• •					-				
					•	×		0.500							-				
				-8.000 -7.0	100 -6.000 -5	.000 -4.000 -3	3.000 -2.000 -1	0.000 .000 0.000 1.00	00 2.000 3	3.000 4.0	00 5.000 6.	000 7.000	0 8.000	9.000 10.	000				
								-0.500											

Σχήμα Ε9: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε10: Πειραματικά αποτελέσματα 10^{ου} πειράματος: exp10 – Κυκλική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	<i>T_j</i> (°C)	<i>T_a</i> (°C)	g'_0 (m/s^2)	$M \ (\mathrm{cm}^4/\mathrm{s}^2)$	B (cm ⁴ /s ³))	Re	l _ç (m	? 1)	<i>l</i> _M (m)	F	Ri	z (cm)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta \overline{T}^2}$	<i>S</i> '	$S^{'*}$
1.0	1.00	19.12	24.34	54.50	24.30	11.09	465.36	5 212.	11	4658	0.8	886	6.880	0.	.129	35	5.087	4.01	2.70	0.869	0.283	0.880
								3.000 -														
								2,500		X												
								×														
								2.000							•	ΔΤ						
											×					rms /	Т					
								1.500							-							
							<u>/</u>															
							•	1.000			. •											
						-	•	0.500	•													
					•			0.500							•							
				-8.000	-7.000 -6.00	0 -5.000 -4.0	00 -3.000 -2.0	0.000 - 000 -1.000 0.0	000 1.0	000 2.0	00 3.0	000 4.0	000 5.00	00 6.00)0 7.0	000 8.00	0 9.000					

Σχήμα Ε10: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε11: Πειραματικά αποτελέσματα 11^{ου} πειράματος: exp11 – Κυκλική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	<i>T_j</i> (°C)	<i>T_a</i> (°C)	g'_0 (m/s^2)	$M m (cm^4/s^2)$	(cm	B^{4/s^3}	Re		<i>l</i> _Q (m)	<i>l_M</i> (m)	Ri	<i>z</i> (cn	n)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta ar{T}^2}$	<i>S</i> '	$S^{'*}$
1.0	0.60	12.12	15.43	53.80) 24.40	10.74	187.03	3 1	30.16	292	25	0.886	4.4	33	0.200		35	7.896	3.98	1.90	0.766	0.392	0.971
									1 1			1	1	1					_				
								1.800															
								1.600									-		-				
								1.400								•	ΔT						
											•						rms /	١T					
								1.200			7												
							×	1.000											-				
								0.800					•						-				
								0.600															
								0.400						•					-				
					1			0.200							*		•						
								0.000									-						
			-8	.000 -7.	000 -6.000 -5.	000 -4.000 -3	3.000 -2.000	-1.000 0.0	000 1.0	00 2.0	00 3.	000 4.0	000 5.0	000 6.	000 7.0	000 8.	000	9.000 1	0.000				

Σχήμα Ε11: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε12: Κατανομή των θερμοκρασιακών διαφορών $(T_{jet} - T_{amb})$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε13: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε14: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Πίνακας Ε15: Πειραματικά αποτελέσματα 15^{ου} πειράματος: exp15 – Κυκλική διατομή

D (cm)	F (L/min)	Q (cc/s)	U (cm/s)	<i>T_j</i> (°C)	<i>T_a</i> (°C)	g'_0 (m/s^2)	$M_{(\mathrm{cm}^4/\mathrm{s}^2)}$	$B \left(\mathrm{cm}^{4} \mathrm{/s}^{3} \right)$	Re	<i>l</i> _Q (m)	l_M (m)	Ri	z (cm)	z/l_M	b (cm)	<i>T_c</i> (°C)	$\sqrt{\Delta \overline{T}^2}$	<i>S</i> '	$S^{'*}$
1.0	1.00	19.12	24.34	52.90	23.20	10.60	465.36	202.66	4555	5 0.886	7.038	0.126	25	3.552	2.4	4.50	1.403	0.234	0.750
								<u>5 000 -</u>							٦				
								4.500	1										
								4.000							-				
								3.500						 	-				
								2 000					 ΔT 						
							•	\$.000					rms	ΔT					
								2.500		\mathbf{A}					-				
								2.000		\ •_					-				
								1.500							_				
								141	• •	╵┇╹∖									
						•	• /	1.000											
							*	0.500							-				
								0.000											

Σχήμα Ε15: Κατανομή των θερμοκρασιακών διαφορών $(T_{jet} - T_{amb})$ συναρτήσει της απόστασης από τον άζονα της φλέβας r. Αθήνα, Ιανουάριος 2009, Ε.Μ.Π.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε16: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε17: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.
Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε18: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet}-T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε19: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε20: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε21: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet}-T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε22: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε23: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε24: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε25: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε26: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε27: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet}-T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r .

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε28: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε29: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{_{jet}}-T_{_{amb}}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r .

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε30: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε31: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε32: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε33: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}\right)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε34: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet}-T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα E35: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet} - T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα

Σχήμα Ε36: Κατανομή των θερμοκρασιακών διαφορών $\left(T_{jet}-T_{amb}
ight)$ συναρτήσει της απόστασης από τον άζονα της φλέβας r.

Πειραματική εφαρμογή σε τυρβώδη ανωστική εκτοζευόμενη φλέβα