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Abstract

In this work, we present computational results of the flow structure and forces on a cylinder

vibrating both transversely and in-line to a uniform stream. The in-line frequency is equal

to twice the transverse frequency, while the ratio of the in-line to the transverse oscillation

amplitude is equal to 0.2, 0.4 or 0.6. The cylinder thus follows an “eight”-like trajectory,

emulating the motion of real cylindrical structures undergoing vortex-induced vibrations. For

a flow from left to right, we distinguish between a “counter-clockwise” mode (if the upper

part of the trajectory is traversed counter-clockwise) and a “clockwise” mode (if the upper

part of the trajectory is traversed clockwise). Here, we use a spectral element method, and

perform simulations for a Reynolds number of 400. We focus on a value of the transverse

oscillation frequency equal to half the natural frequency of the Kármán vortex street (sub-

harmonic excitation). Results are compared against cases corresponding to resonant and near-

resonant forcing. We find that, in all cases, results are greatly influenced by the direction in

which the cylinder is traversed. In particular, the “counter-clockwise” mode is characterized

by higher values of the forces acting on the cylinder, as well as by higher values of the power

transfer from the flow to the cylinder. The case of sub-harmonic excitation is unique, in that

the power transfer remains negative for all values of the non-dimensional oscillation amplitude,

i.e. corresponds to damping. Flow visualization reveals a variety of vortex patterns in the wake,

with complex vortex streets at large oscillation amplitudes.
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Υπολογιστική μελέτη της αλληλεπίδρασης ροής με κατασκευή που εκτελεί
υπο-αρμονική ταλάντωση

Πάρις-Γεώργιος Περδικάρης

Διπλωματική Εργασία

Εθνικό Μετσόβιο Πολυτεχνείο

Τμήμα Ναυπηγών Μηχανολόγων Μηχανικών

Τομέας Ναυτικής και Θαλάσσιας Υδροδυναμικής

Περίληψη

Στην παρούσα εργασία παρουσιάζουμε υπολογιστικά αποτελέσματα της ροής και των δυνάμεων που

ασκούνται σε κύλινδρο ο οποίος εκτελεί υπο-αρμονική ταλάντωση με δύο βαθμούς ελευθερίας σε ρεύμα

σταθερής ταχύτητας. Η συχνότητα της ταλάντωσης στην παράλληλη με τη ροή κατεύθυνση είναι ίση με

το διπλάσιο της αντίστοιχης συχνότητας στην κάθετη κατεύθυνση. Ο αδιάστατος λόγος του πλάτους της

ταλάντωσης στην παράλληλη προς την εγκάρσια κατεύθυνση λαμβάνει τιμές απο μηδέν (ταλάντωση του

κυλίνδρου μόνο εγκάρσια στη ροή) εως άπειρο (ταλάντωση του κυλίνδρου μόνο παράλληλα προς τη ροή).

Για όλες τις ενδιάμεσες τιμές, ο κύλιδρος ακολουθεί τροχιά στον διδιάστατο χώρο διάγράφοντας τον αριθμό 8,

εξομοιώνοτας έτσι την κίνηση πραγματικών κυλινδρικών κατασκευών που εκτελούν ταλάντωση λόγω σχηματισμού

δινών στον ομόρρου τους. Θεωρώντας μια σταθερή ροή ρευστού απο τα αριστερά προς τα δεξιά, διαχωρίζουμε

μεταξύ μιας "αντι-ωρολογιακής" τροχιάς (όταν το άνω τμήμα της τροχιάς διαγράφεται με φορά αντίθετη των

δεικτών του ρολογίου) και μιας "ωρολογιακής" τροχιάς (όταν το άνω τμήμα της τροχιάς διαγράφεται με τη φορά

των δεικτών του ρολογιού). Η αριθμητική επίλυση των εξισώσεων Navier-Stokes επιτυγχάνεται με χρήση μιας

μεθόδου φασματικών πεπερασμένων στοιχείων. Η προσομοίωση γίνεται για διδιάστατη ροή σε αριθμό Reynolds

ίσο με 400. Η μελέτη μας επικεντρώνεται σε τιμές της συχνότητας ταλάντωσης στη διεύθυνση κάθετα στη ροή

ίσες με το μισό της φυσικής συχνότητας σχηματισμού του δρόμου δινών Von Kármán (υπο-αρμονική διέγερση).

Τα αποτελέσματα που προκύπτουν συγκρίνονται με αντίστοιχες περιπτώσεις επιβαλλόμενων ταλαντώσεων με

συχνότητα στην περιοχή γύρω απο τη φυσική συχνότητα του δρόμου δινών (συχνότητα Strouhal). Σε όλες τις

μελετηθήσες περιπτώσεις, τα χαρακτηριστικά της ροής επιρρεάζονται άμεσα απο την τροχιά που ακολουθεί η

ταλάντωση του κυλίνδρου. Συγκεκριμένα, κατά την "αντι-ωρολογιακή" τροχιά ταλάντωσης, παρατηρούμε

υψηλότερες τιμές των δυνάμεων που ασκούνται στον κύλινδρο, καθώς επίσης και υψηλότερες τιμές της

μεταφερόμενης ισχύος απο τη ροή στη κατασκευή. Η περίπτωση της υπο-αρμονικής διέγερσης ειναι μοναδική

διότι η μεταφερόμενη ενέργεια απο τη ροή στον κύλινδρο λαμβάνει συνεχώς αρνητικές τιμές για όλα τα

εξεταζόμενα πλάτη διέγερσης, γεγονός που υποδηλώνει πως η ροή δρά ως αποσβεστήρας στην ταλάντωση

του κυλίνδρου. Τέλος, η οπτικοποίηση των αποτελεσμάτων φανερώνει μια πληθώρα σχηματισμών δινών στον

ομόρρου, με χαρακτηριστικό τις συνήθεις μορφές δινών στην περίπτωση της υπο-αρμονικής διέγερσης χαμηλού

πλάτους (δρόμοι δινών τύπου 2S) και τους πλέον περίπλοκους σχηματισμούς για περιπτώσεις διέγερσης μεγάλου

πλάτους.

Εξεταστική Επιτροπή :

Επιβλέπων : Τριανταφύλλου Γεώργιος, Καθηγητής, Τομέας Ναυτικής και Θαλάσσιας Υδροδυναμικής
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Chapter 1

Introduction

1.1 Motivation and Background

It is widely known that vortex induced vibrations (VIV) are possible whenever

a bluff (not streamlined) object is exposed to a flowing fluid. In most engineering

applications, the induced vibrations of interest are those of the bluff body itself,

typically a beam or a cable exposed to a cross flow of air or water, examples

of which are bridges, stacks, transmission lines, aircraft control surfaces, offshore

structures, thermowells, engines, heat exchangers, marine cables, towed cables,

drilling and production risers in petroleum production, mooring cables, moored

structures, tethered structures, buoyancy and spar hulls, pipelines, cable-laying,

members of jacketed structures, and other hydrodynamic and hydroacoustic ap-

plications. Evidently, such structures, may be damaged or even fail by severe

oscillations of this type.

In recent years, a major aim in the oil and gas industry is to deliver fluids

from subterranean sources to the surface at the lowest costs compatible with the

constraints imposed by technology and the environment. These constraints are

often related; despite continuing developments there is a need to fully address

a number of complex problems that remain poorly understood. Such problems

affect both the design of new structures and the cost effectiveness of existing

operations. Specifically, new deep water oil and gas fields have been developed in

areas with very irregular seabed conditions, and this trend is expected to continue

in the coming years. Ocean currents will here lead to separated flow and vortex

shedding. These vortices will again induce forces on the structure that may result

in horizontal and vertical oscillations. These oscillations will give time varying

stresses in the structure, and hence lead to accumulation of fatigue damage.

One of the most important challenges is to effectively predict the dynamical

response of offshore marine risers and under-sea pipelines to fluid dynamic forces.

These can arise from the fluids being conveyed inside flexible pipelines and from

sea currents that produce oscillatory lift and drag on structures. Great savings

in cost are possible by being able to predict fatigue rates in marine-risers due to

environmental and fluid excitation.

A significant cause of fatigue is vortex induced vibrations (VIV) due to sea

currents. As the frequency of vortex shedding approaches one of the natural fre-

quencies of a structure, resonant vibrations often occur, the amplitude of which

depends on the damping in the system and the motion of the fluid relative to the

structure. Such oscillations may lead the system to a “lock-in” state that may

cause hazardous amplification and fatigue failure.

1



2 CHAPTER 1. INTRODUCTION

Despite several decades of intensive efforts to construct effective models that

can accurately account for VIV in material structures over useful parameter do-

mains most analyses rely on semi-empirical formulations that employ considerable

amounts of experimental data as input. One of the important drawbacks of the

empirical models is that they rarely treat the continuum mechanics of the struc-

tural elements that initiate vortex shedding in sufficient generality for them to

be applicable to the problem of VIV in marine risers and flexible pipelines. In

particular the existence of coupled torsional and flexural modes of vibration will

modify the vortex shedding pattern in ways not accommodated in such models.

Therefore, although some models have the virtue of simplicity, by employing a

small number of effective degrees of freedom to approximate both the continuum

nature of the structure and the fluid they are inevitably of limited applicability.

It is straightforward to realize that a failure of a submarine structure (a pipeline

for example) is considered unacceptable from an environmental perspective and

repair of deep water structures is also extremely expensive. Hence, the acceptable

probability of failure is low (typically 10−4). Due to the uncertainty in the models
for prediction of fatigue damage, high safety factors are applied on the estimated

result in order to achieve the desired safety level. Finally, increased confidence in

fatigue rate predictions would yield enormous future benefits to the oil and gas

industry. It could permit the introduction of fundamentally new concepts that

were not previously considered feasible, including the use of larger diameter risers,

steel catenary risers and large multiple arrays leading to increased production

rates.

1.2 Approach of the Present Work

The work presented in this thesis integrates the previous studies of L.Kaiktsis

and G.S.Triantafyllou [1], [2] on computational simulations of the flow structure

and forces acting on a vibrating cylinder in a steady stream. Particularly, in this

work we examine the case of excitation at a frequency lower than the natural

frequency of the von Kármán vortex street (sub-harmonic forcing).

As can be seen in Fig.1.2.1(b), taken from Blevins [3], a cylinder may exhibit

excitation at frequencies different than the natural frequency of the Kármán vortex

street. It is legitimate to notice that sub-harmonic excitation may be important

for flow-induced vibrations, especially if it leads to the formation of a ”locked-in”

wake.
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(a)

(b)

Figure 1.2.1: Lock-in bands for synchronization of vortex shedding with

transverse cylinder vibration.  is the amplitude of the transverse oscillation

and  the cylinder diameter. Experimental data: Koopman (1967), ¤ for
 = 100, • for  = 200 and 4 for  = 300; Stansby (1976), ¥ for  = 3600,

° for  = 9200; Olinger and Sreenivasan (1988) for sub-harmonic bands.

Vortex induced vibration of structures has been the subject of extensive re-

search for several decades. However, the response in the in-line direction has often

been neglected in earlier VIV studies mainly because the transverse (cross flow)

response amplitudes are larger. Yet, studies have shown that fatigue damage due

to in-line response may become significant and even more critical than the cross

flow (transverse) response. Two reasons exist for this:

1. The in-line response is initiated at lower current velocity than the transverse

response, and will hence take place more often.

2. The in-line response will take place at two times the frequency of the trans-

verse response, which practically means that number of stress cycles due to

in-line vibrations will become two times the number of transverse cycles.



4 CHAPTER 1. INTRODUCTION

Moreover, it is well known that vortex-induced vibrations of cylinder are of-

ten characterized by an ”eight”-like trajectory and that in-line oscillations of the

cylinder can significantly alter the fluid forces on the cylinder. Hence, in order to

perform meaningful simulations of the phenomena, one should take into consider-

ation both the in-line and transverse oscillation directions.

Driven by the above and extending the previous studies of Kaiktsis and Tri-

antafyllou [1], [2] (resonant forcing simulations), this work presents a computa-

tional study of the flow structure and forces on a cylinder vibrating both trans-

versely and in-line to a uniform stream for the case of forcing at below the natural

frequency of the von Kármán vortex street. The main question is whether this case

can lead to ”lock-in” regions, self-excited vibrations of the cylinder and positive

energy transfer from the fluid flow to the vibrating structure.



Chapter 2

Theoretical Background

The theoretical background of the present work is formed by the basic concepts

of fluid mechanics. The reader is assumed to be familiar with these concepts, so

only some basic definitions and results are summarized in this chapter mainly

for establishing a consistent system of notation and later reference. We briefly

cover the topics of the Navier-Stokes and Bernoulli equations, boundary layers

and vortex formation, vortex shedding and vortex shedding modes as well as flow

regimes.

Moreover, another intention of this chapter is to give a brief introduction to

the phenomenology of VIV, including the main characteristics of vortex induced

vibrations and a summary of the most significant scientific methods used for the

investigation and prediction of VIV.

For further information and details regarding to the prescribed topics, the

reader is referred to the corresponding bibliography ([3]-[9]).

2.1 Vortex Shedding

2.1.1 The Navier-Stokes Equation

Incompressible viscous fluid flows are described by the Navier-Stokes equation:

−→


+−→ ·∇−→ = −1

∇+ ∇2−→ + 1



−→
 (2.1.1)

where −→ is the fluid velocity vector [  ]

, ∇ is the differential operator,  is

the density of the fluid,  is the pressure,  is the kinematic viscosity and
−→
 is

the body force term. Ignoring the effects of viscosity, the Navier-Stokes equation

reduces to the well known Bernoulli equation:





+ +

1

2
2

∞ +  = constant (2.1.2)

2.1.2 Boundary Layer and Vortex Formation

In an ideal fluid the flow lines around a cylinder in uniform current can be

drawn as indicated in Fig.2.1.1. For such flow conditions, also referred to as

potential flow, the water particles will have the same velocity in the region of the

downstream stagnation point as in the upstream. Hence, the water particles are

accelerated upstream, reaching a maximum velocity at  = 90◦, and decelerated

5



6 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1.1: Potential flow streamlines and pressure distribution (Tsagaris 1995).

downstream. For this ideal fluid case the Bernoulli equation is valid (see Eq.2.1.2),

and we readily see that velocity variation causes a pressure drop upstream and a

pressure increase downstream. The diagram presented in Fig.2.1.1 presents the

pressure distribution over the cylinder for an ideal fluid. The pressure distribution

is symmetric, leading to zero drag, which is known as d’Alembert’s paradox. In

a viscous flow the particles close to the cylinder will loose energy due to friction.

The particles may then not have enough kinetic energy to meet the increased

pressure field downstream. In the case of viscous flows, the pressure distribution

is asymmetric. This leads to a drag force on the cylinder.

When the Reynolds number is large one might think that the viscosity could

be ignored altogether, in which case we return to nonviscous fluid mechanics.

However, we once again encounter d’Alembert’s paradox—that a nonviscous fluid

exerts no drag on a solid body—so we are at a loss when it comes to explaining

aerodynamic drag. The important insight in resolving this paradox is due to

L. Prandtl, who in 1904 suggested that the viscosity could be ignored everywhere

except in a thin layer close to the surface of a body. Understanding the behavior of

this boundary layer has been crucial to the development of modern fluid mechanics

and aerodynamics.

The boundary layer is the layer in which the flow velocity is increased from

zero at the body surface to the free stream velocity at some distance away from

the surface, see Fig.2.1.2. The fluid field can then be divided into two parts:

1. Near the body surface where the velocity gradient normal to the body surface

is large, and the shear stress can not be neglected.

2. Outside the boundary layer where the viscosity can be neglected and the

flow can be determined by potential theory, i.e. the Bernoulli equation is

valid (Eq.2.1.2).

Several ways of defining the thickness, , of the boundary layer have been

proposed. One is to define the thickness as the distance between the surface

and where the flow velocity is 99% of the free flow velocity. The boundary layer



2.1. VORTEX SHEDDING 7

Figure 2.1.2: Boundary layer sketch.

thickness increases with increasing viscosity. When the kinetic energy of the water

particles in the boundary layer is not high enough to overcome the downstream

pressure field, the flow will separate from the cylinder. The point on the cylinder

where this happens is referred to as the separation point. Upstream the separation

point is the boundary layer region. Downstream the separation point is the wake

region. The continuation of the boundary layer, downstream the separation point,

is referred to as the shear layer.

In general, the point of separation on a cylinder depends not only on the

pressure gradient but also on the type of unsteadiness of the ambient flow (e.g.,

sinusoidal), turbulence upstream of the separation points, roughness of the surface

or other excrescences, symmetry or the asymmetry of the cylinder, taper along the

rod, presence of salient edges, and the mode of vortex (or vorticity) shedding.

In most situations it is inevitable that the boundary layer becomes detached

from a solid body, as in Fig.2.1.3. This boundary layer separation results in a large

increase in the drag on the body. We can understand this by returning to the flow

of a nonviscous fluid around a cylinder. The pressure distribution is the same on

the downstream side of the cylinder as on the upstream side; thus, there were no

unbalanced forces on the cylinder and therefore no drag (d’Alembert’s paradox

again!). If the flow of a viscous fluid about a body is such that the boundary

layer remains attached, then we have almost the same result—we’ll just have a

small drag due to the skin friction. However, if the boundary layer separates

from the cylinder, then the pressure on the downstream side of the cylinder is

essentially constant, and equal to the low pressure on the top and bottom points

of the cylinder. This pressure is much lower than the large pressure which occurs

at the stagnation point on the upstream side of the cylinder, leading to a pressure

imbalance and a large pressure drag on the cylinder. For instance, for a cylinder in

a flow with a Reynolds number in the range 103 ≺  ≺ 105 , the boundary layer
separates and the coefficient of drag is  ∼ 12 , much larger that the coefficient
of drag due to skin friction, which is estimated to be about 10−2(see Fig.2.1.4).
Back flow from behind the cylinder meets with the flow from ahead in the

separation point and subsequently advances outwards, separating the shear layer

from the cylinder. The vortex formed behind the cylinder feeds on the circulation

from the separated shear layer. As it grows, it attracts the shear layer from

the other side of the wake. The approaching shear layer with oppositely signed

circulation eventually cuts off the supply of vorticity to the growing vortex. The

vortex is then shed and moves downstream with the local velocity and together

with other vortices form the von Kármán vortex street (see Fig. 2.1.5).
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Figure 2.1.3: Airflow separating from a wing which is at a high angle of attack.

Figure 2.1.4: Drag coefficients of blunt and streamlined bodies and  as a func-

tion of Reynolds number for smooth circular cylinders and smooth spheres (Mun-

son 2002).

Figure 2.1.5: Von Kármán vortex street behind a circular cylinder. The flow is

from the left to the right. Part of the cylinder can be seen at the left edge of the

image (Techet 2005).
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2.1.3 Flow Regimes

The Reynolds number is a qualitative measure of the importance of viscous

forces in the boundary layer compared to inertia forces and is defined as:

 =
∞


=
 

 
(2.1.3)

where ∞ denotes the fluid flow velocity far upstream. For many marine hydrody-
namics problems the characteristic lengths and velocities are  º 1 and  º 1



respectively. The kinematic viscosity in water is  =10
−6

2


leading thus to

typical Reynolds numbers with respect to ∞ and  in the order of 106.

The flow past a circular cylinder is associated with various instabilities. These

instabilities involve the wake, separated shear layer and boundary layer. Williamson

[9] has given a comprehensive description of the flow phenomena at different 

numbers. Up to  = 47, the flow is steady with two symmetric vortices on each

side of the wake center line. The first wake instability, manifestation of a Hopf bi-

furcation (Williamson [9], Strogatz [10]), occurs at  = 47. For  Â 47, although
it remains laminar, the flow becomes unsteady and asymmetric. Von Kármán vor-

tex shedding is observed for slightly larger . At  = 190, three-dimensional

instabilities, such as formation of vortex loops, deformation of primary vortices

and streamwise/spanwise vortices appear in wake. The wake undergoes a series of

complex three-dimensional instabilities and, eventually, becomes turbulent. The

study of Karniadakis & Triantafyllou [11] suggested that the wake becomes three

dimensional as a result of a secondary instability of the 2-D vortex street, which is

confirmed by Barkley & Henderson [12]. Karniadakis & Triantafyllou state that,

as  is increased, the wake velocity fluctuations indicate a cascade of period-

doubling bifurcations, which create a chaotic state in the flow at around  = 500.

Beyond a certain critical , the shear layers separating from the upper and

lower surface of the cylinder, start becoming unstable via the Kelvin-Helmholtz

mode of instability (Williamson [9]). The transition point, beyond which the sepa-

rated layer becomes unstable, moves upstream with increase in. At ∼ 2×105,
the boundary layer on the cylinder surface undergoes a transition from laminar to

turbulent. This transition leads to a displacement of the boundary layer separation

point on the aft part of the cylinder surface, causing a substantial reduction in

the drag force that the cylinder experiences. The prescribed phenomenon is often

referred to as drag crisis.

A crude division of the flow regimes is given by Blevins [3] (also see Fig2.1.6 ):

• 300 ≺  ≺ 15× 105 Subcritical regime
• 15× 105 ≺  ≺ 35× 105Transitional regime
•  Â 35× 105 Supercritical regime

2.1.4 Vortex Shedding Frequency

The frequency at which vortex shedding takes place for a cylinder can be

derived using the following equation (Eq.2.1.4), defining the Strouhal number.

Vincenc Strouhal was the first to discover that for varying current velocity ∞,
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Figure 2.1.6: Regimes of fluid flow across smooth circular cylinders.(Wiggins, 2005)

the vortex shedding frequency behind a stationary cylinder  is proportional to
∞

. The Strouhal number depends on the body shape and on the  number (see

Fig.2.1.7).

 =


∞
(2.1.4)

As show in Fig.2.1.7, the Strouhal number remains nearly equal to 0.2 for

300 ≤  ≤ 100000. Hence, in this range of Reynolds numbers, the vortices are
shed from a cylinder at a frequency directly proportional to 02

∞

.

2.2 Vortex Induced Vibrations

2.2.1 Bluff Bodies

An all inclusive definition of a self-exciting “bluff body” does not exist. Ac-

cording to Sarpkaya [5] “a bluff body can be described only in general terms by

relying on the readers’ “imagination””. Trying to give an implicit definition one

can claim that it is an elastic or elastically mounted fore-and-aft body of proper

mass, material damping, and shape whose cross-section facing the ambient flow

at high-enough Reynolds numbers gives rise to separated flow and hence to two

shear layers, which interact with each other and bound an unsteady wake. A more

generic approach is to refer to the so called “VIV-Body”, a term used to describe

a body capable of giving rise to VIV.
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Figure 2.1.7: The Strouhal number as a function of the Reynolds number for a

stationary circular cylinder. (Lienhard 1966; Rosko 1955;Techet 2005)

As stated by Sarpkaya [5], a VIV-body (e.g., a circular- or square-section cylin-

der) may be excited by the vortices it sheds if it is mounted on springs and exposed

to a steady uniform flow. When the prevailing vortex shedding frequency  (not

always close to ) and the excitation frequency  of the body approach a com-

mon frequency , the body begins to experience relatively small vortex induced

oscillations. These are controlled by the spring constant, body mass, structural

damping, the density and the motion of the fluid surrounding the body, plus a

number of difficult-to-quantify influencing parameters.

2.2.2 Oscillating Lift Force

The shedding of vortices generates time varying pressure over the cylinder.

Integrated over the cylinder surface this can give rise to time varying forces both

in-line with the flow and transverse to the flow. The frequency of the oscillating

force transverse in the flow direction is given by the vortex shedding frequency,

while the oscillating frequency in the in-line direction has a frequency twice the

vortex shedding frequency.

The time varying transverse force  is referred to as the lift force. The lift

coefficient  is defined as:

 =


1

2
2∞

(2.2.1)

2.2.3 Characteristics of VIV

The origin of the phenomenon is the separated flow, as described in the pre-

vious section, where the two shear layers interact with each other and cause an

unsteady wake. When the shedding frequency and the natural frequency of the

“bluff body” approach a common frequency, the body starts to experience small

oscillations (due to dynamic amplification). These small oscillations will help to

increase the correlation length of the vortices, which is one of the characteristic

properties of VIV. If a cylinder is free to oscillate in both the transverse and in-
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line directions, the common frequencies of the body and the driving forces in their

respective directions may lead to lock-in and the axis of the body traces the path

of figure eight (Moe and Wu, 1990 [13]; Moe et. al., 1994 [14]; Sarpkaya, 1995

[15]). The figure-eight loop is caused by the considerable variation of drag force

during large amplitude oscillation. For a fixed cylinder the vortex shedding pro-

cess is correlated only a few diameters along the length of the cylinder, typically

3-6 diameters for the subcritical flow regime (see Blevins [3]). Hence, the force

acting on the cylinder has different phase over the length of the cylinder and the

resulting force is small. When the correlation increases, the resulting force on the

cylinder increases and the oscillation amplitude will also increase. When the oscil-

lation amplitude in the cross flow direction reaches approximately 01 (or 002

in the in-line direction), increased vortex strength is seen (Sarpkaya [5]). This

will further contribute to increasing the oscillation amplitude. If the flow velocity

and thus the oscillation amplitude is further increased, the spacing between the

shear layers defining the virtual body increases. This apparent increase in  is

compensated by the increased flow velocity, thus keeping the shedding frequency

nearly constant (see Eqn.2.1.4). This represents a change from the linear increase

in shedding frequency for increasing flow velocity, i.e. the shedding frequency is

lower than predicted by the Strouhal relation. This represents the start of the

self-excitation region, or more commonly known as the lock-in region. The vortex

shedding frequency matches the oscillation frequency of the body at a frequency

apparently dominated by the still water natural frequency of body. However, the

frequency is changed somewhat due to a change in virtual mass (i.e. added mass

or hydrodynamic mass) caused by the vortex shedding process. The effect of the

change in hydrodynamic mass is influenced by the mass ratio of the body. The

oscillation frequency is more influenced by this change in for low mass ratio bod-

ies than for heavier bodies. For increasing flow velocity the oscillation amplitude

will increase until some maximum value is reached. This value is typically 10

for purely transverse oscillations at subcritical flow conditions and  ≺ 15000,
12 for  Â 15000, and up to 15 (see Jauvtis and Williamson [8]) for a body

free to oscillate both in-line with and transverse to the flow. As the oscillation fre-

quency to a large degree is controlled by the natural frequency of the body and the

oscillation amplitudes reach a maximum value, VIV is considered a self-limiting

resonance phenomenon.

Regarding vortex shedding modes in the wake of a circular cylinder, Williamson

and Roshko ([16], 1988) described, in the range 300 ≺  ≺ 1000, the emergence
of various regimes (see Fig.2.2.1) in a map (often referred to as the ”Williamson-

Roshko” map) of



versus




(as well as




=

∞


), where  is the wavelength.

This map is based on experiments in which the cylinder was forced to oscillate

transversely to a steady flow.

2.3 Methods for Investigation of VIV

A detailed listing of the methods applied for investigating VIV is beyond the

purpose of the present work. Sarpkaya [5], Bearman [17] and Williamson and

Govardhan [18] provide an integrated approach on the intrinsic nature of VIV,

reviewing the research carried out during the past few decades. However, preserv-

ing consistency, this section summarizes the basic experimental and computational
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Figure 2.2.1: Map of vortex patterns of a vertical cylinder forced to move along a

sinusoidal path in the Re range of 300≺  ≺1000. The critical curve marks
the transition from one mode of vortex shedding to another (Williamson and

Roshko[16], 1988).

approaches for the investigation and prediction of VIV.

2.3.1 Free Vibration Experiments

A large number of free vibration or self-excitation VIV experiments have been

carried out since the pioneers started in the 1960s. Sarpkaya [5] gives references

to the publications on the topic. In the discussion given therein the free vibration

experiments have been divided into two groups based on how the eigenfrequency

of the system is generated. These are:

• Rigid cylinder tests, in which the test cylinder is supported by springs in
the oscillation direction, and the eigenfrequency is controlled by the spring

stiffness and mass of the oscillating parts.

• Flexible beam tests where the eigenfrequencies are controlled by the mass,

bending stiffness, axial tension and length of the beam. In the first group,

oscillations can be restrained in either cross-flow or in-line direction, or the

cylinder may be free to oscillate in both degrees of freedom.

The second type of free vibration experiments (flexible beam tests) is often

performed as scaled models of real slender marine structures. The eigenfrequen-

cies of these structures are associated with eigenmodes or modeshapes. Hence,

when the structure oscillates the oscillation amplitude varies over the length of

the structure. Stationary response for experiments with uniform flow along the

beam is reached when there is a balance between excitation from forces in zones

with low and moderate oscillation amplitudes, damping in zones with high oscilla-

tion amplitudes and structural damping. Maximum response amplitudes seen for

flexible beams are expected to be higher than seen for rigid cylinder experiments.
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2.3.2 Forced Oscillations Experiments

In a forced oscillation experiment the test cylinder is given a prescribed mo-

tion. The wake behind the cylinder responds to this motion, and the force from the

wake acting on the cylinder can be measured. If this method should give relevant

data for real VIV, the prescribed motions must be identical to the response in free

vibrations. Free vibration experiments of short rigid cylinders indicate that the

response is harmonic. Hence, forced oscillation experiments have been performed

using prescribed harmonic motions. The result from a forced oscillation exper-

iment is knowledge of the hydrodynamic force acting on the cylinder under the

tested conditions.

Forced oscillation experiments can be performed both in a towing tank and in

a water tunnel. A motion generation system is required, in order to generate the

desired oscillations, in addition to force sensors. It is important that the apparatus

has a high stiffness so that structural eigenfrequencies in the apparatus do not

interact with the oscillation frequencies. Measuring the correct phase between the

force and the motion is essential in this type of experiment. Hence, motion sensors,

in addition to those used by the control system, are mandatory. A data acquisition

system capable of recording data at all channels simultaneously, or with a known

delay, is also required.

2.3.3 Numerical Simulations

The numerical simulation of flow past a circular cylinder undergoing VIV at

relatively small Reynolds numbers (particularly in the range  = 100-1 000) is

complicated by some of the most difficult problems of fluid mechanics such as

separation excursions, incomplete transition in the shear layers, and the coherence

length based on a yet unexplained coupling mechanism between the dynamics

of the near-wake and that of the structure. Most of the disparity between the

experiments and numerical simulations is attributable to the fact the mean position

of the line of transition to turbulence does not reach upstream enough for Re less

than about 15 000 to 20 000, even though VIV with two degrees of freedom (2-

DOF) may precipitate the instability somewhat sooner. At present, none of the

methods available ensures sufficient generality in a large parameter space as far as

VIV is concerned.

The approach to the bluff body wake problem from direct numerical simulations

(DNS) has received a great deal of attention recently. Not only are the mean

parameters such as the Strouhal number, drag force and stresses in the wake well

predicted, but the simulations provide a tool to understand the physics of the flow,

as has been indicated by numerous examples of studies. The agreement among

the computations and with the experiments is now remarkably good.

Many models of turbulence, for every occasion, are described in numerous pa-

pers. However, DNS does not require ‘modeling’. It deals only and purely with the

numerical problem of solving the time-dependent Navier—Stokes equations, albeit

at relatively small Reynolds numbers. Large eddy simulations (LESs) appeared

to be a compromise. As Grinstein and Karniadakis [19] noted: “After more than

30 years of intense research on LESs of turbulent flows based on eddy-viscosity

subfilter models, there is now consensus that such an approach is subject to fun-

damental limitations. It has been demonstrated for a number of different flows that

the shear stress and strain tensors involved in subfilter eddy-viscosity models have
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different topological features rendering scalar eddy-viscosity models inaccurate.”.

Other computational methods include the discrete-vortex method (DVM), the use

of Reynolds Averaged Navier-Stokes (RANS) simulations, or the combination of a

number of them.

2.3.4 Models for Prediction of VIV

The complexity of VIV phenomena introduce considerable uncertainties when

dealing with cases of industrial use. The most sufficient way to overcome these real

life uncertainties is to incorporate integrated models and empirical formulations

(such as strip theory) for the excitation and the response prediction of engineer-

ing structures. Parametric response models the most used models for predicting

response due to VIV, especially for free spanning pipelines. This method uti-

lizes data obtained from free vibration experiments in order to estimate, based on

tabulated data and mathematical formulations, response characteristics such as

oscillation amplitudes and frequencies. However, the imposed high safety factors

lead to rather conservative modeling and design approaches. One other method is

the empirical force coefficient method (this method is used in the computer pro-

gram VIVANA) , which is primarily used for estimating VIV of marine risers. The

fundamental difference from the parametric response model method is that here

the hydrodynamic forces caused by the vortex shedding process are modeled and

the response is estimated by applying the forces on a finite element model. The

main limitation of the method is that it is valid only for pure cross-flow VIV.
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Chapter 3

Formulation and Numerical

Method

In the present work we investigate the forces acting on a cylinder subject

to both transverse (y-direction) and in-line (x-direction) excitation to a uniform

stream. The cylinder is tracing a ”figure 8” path in the two-dimensional space,

emulating the motion of real cylindrical structures undergoing vortex-induced vi-

brations. The frequency of the in-line oscillation is considered to be equal with

the resonant vortex shedding frequency of the cylinder  while the frequency of

the transverse oscillation equals half this frequency (subharmonic forcing). The

Reynolds number is held constant to a value of 400, falling into the regime where

shear layer instabilities introduce a three dimensional flow character. This three

dimensional behavior over a two dimensional setup enhances the complexity of the

phenomena and leads to a time-dependent wake that illustrates very rich dynamics.

3.1 Formulation

3.1.1 Dimensional Analysis

Dimensional analysis is a conceptual mathematical tool often applied in sci-

ence and engineering, to understand physical situations involving a mix of different

kinds of physical quantities. It is routinely used to check the plausibility of de-

rived equations and computations. It is also used to form reasonable hypotheses

about complex physical situations that can be tested by experiment or by more

developed theories of the phenomena.

In the present work, a set of non-dimensional control parameters is used in

order to establish a consistent framework of notation so that the results obtained

can be easily compared to outcomes of previous studies. Therefore, we introduce

the following non-dimensional parameters:

• The Reynolds number (see Section 2.1.3):  =
∞

.

• The non-dimensional excitation amplitude-over-diameter ratio  =



(re-

duced amplitude), where  is the excitation amplitude and  the cylinder

diameter. In each case, we distinguish between the in-line and transverse

17
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Figure 3.1.1: Resulting three dimensional dynamical behaviour from a two dimen-

sional problem setup.

oscillation directions by using the ratios



and




, where  is the excita-

tion amplitude in the transverse to the flow direction (y-direction), while 

is the excitation amplitude corresponding to in-line oscillation (x-direction).

• The reduced oscillation frequency  =



, where  is the excitation fre-

quency and  ≡ , the Strouhal number (see Sec.2.1.4). Note that de-

creasing the reduced frequency  corresponds to increasing the wavelength

parameter  of the Williamson-Roshko map (see Fig.2.2.1).

• The excitation amplitudes ratio  = 



.

Dimensional analysis shows that we can express the system dynamics as a

function of the following parameters:

 = (









       )

(3.1.1)

3.1.2 Problem Setup

A smooth circular cylinder is forced to oscillate both transversely and in-

line to a uniform stream. Spatial description of the flow and the cylinder motion

is derived from a Cartesian coordinate system formed by the x-axis (parallel to

the incoming flow) and the y-axis (normal to the incoming flow). The velocity

of the fluid far upstream is ∞, the density of the fluid is  and the kinematic
viscosity . The cylinder has diameter  and is oscillating transversely and in-

line with amplitudes  and  respectively. The excitation frequency frequency
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is denoted by  and is defined as the oscillation frequency in the transverse

direction. The in-line frequency is equal to twice the transverse frequency. In the

present work,  is equal to half the vortex shedding frequency  of a flow past

a stationary cylinder, i.e corresponds to sub-harmonic forcing. The corresponding

circular frequency is denoted by  = 2 . The cylinder is traversing the fluid

domain tracing a ”figure-8” path with instantaneous displacement from the mean

position described by:

 = ± sin(4)

 =  sin(2)
(3.1.2)

where the ± sign of  indicates whether the cylinder is being traversed in a

”clockwise” (− sign) or ”counter-clockwise” (+ sign) direction (in the upper x-y
plane).

3.2 Force decomposition

3.2.1 Lift Force

Integrating the pressure and the viscous stresses around the cylinder we ob-

tain the total fluid force acting on the cylinder. Analyzing this force into its two

components we take  and  as the drag and the lift force respectively (per cylin-

der unit length). For a locked-in wake (see Sec.2.1.4),  is a harmonic function of

time with frequency equal to  and thus can be decomposed into the excitation

force and the inertia or added mass components:

 =  cos(2) +  sin(2) (3.2.1)

where  and  are the amplitudes of the excitation and added mass forces,

respectively. We must note that according to this decomposition,  is a force in

phase with the cylinder’s velocity while the added mass force  is 180 degrees

out of phase with the cylinder’s acceleration.

Following the assumption that  is a harmonic function of time, we can cal-

culate its corresponding components,  and  using the relation:

 +  =
2



Z 

0


 (3.2.2)

where  =
√−1,  = 2


the period of the cylinder’s oscillation and  = 2 the

oscillation’s circular frequency.

Introducing the non-dimensional parameters  and  we can scale  and

 as follows:

 =
1

2
2

∞ (3.2.3)

 =


4
2

2 (3.2.4)

Interpreting this scaling,  is a force proportional to the dynamic pressure
1

2
2

∞ while  is proportional to the cylinder’s acceleration. However, a consis-

tency issue arises and we should be cautious with this scaling since  and  are
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components of the same force (). Thus, we will consider scaling  with the

dynamic pressure as well :

 =
1

2
2

∞ (3.2.5)

where  is a new non-dimensional parameter.

Using the definitions presented above in combination with Eq.3.2.4 and Eq.3.2.5,

it is straightforward to show the relation between  and  :

 = 2
3(



)(



∞
)2 (3.2.6)

Moreover, utilizing Eq.3.2.2, we can calculate  ,  and  as follows:

 =
2



Z 

0

 cos() (3.2.7)

 =
2



Z 

0

 sin() (3.2.8)

 =
2



Z 

0

1

23
 sin()

1

(



)

1

(


∞
)2
 (3.2.9)

Having scaled both  and  with the dynamic pressure, is reasonable to

scale the same way the lift force :

 =
1

2
2

∞ (3.2.10)

where  is the non-dimensional lift coefficient. This last term is a function

of time and can also be decomposed into the time averaged value hi and its
instantaneous fluctuations  0

. Consequently, we can characterize the fluctuations

of the lift force by calculating the root mean square (r.m.s) value of  0
, denoted

here by . Specifically, when the force on the cylinder is harmonic in time

(lock-in region) the value of  is:

 =
1√
2

q
2

+ 2


(3.2.11)

However, in the present study, in order to quantify the r.m.s values of the

hydrodynamic forces, we use the following definition for the r.m.s values of a

signal’s fluctuations:

 =

q
[( − hi)2] (3.2.12)

, where the over-line signify mean value.

Notice that dimensional analysis assures that  ,  ,  and  are all func-

tions of the reduced amplitude  =



, the non-dimensional excitation frequency

 =


2∞
and the Reynolds number.
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3.2.2 Drag Force

Additionally, the incoming fluid flow generates a force parallel to the stream

(drag force) on the cylinder. Let  denote this drag force (per cylinder unit

length). As above, we can define the drag force coefficient :

 =
1

2
2

∞ (3.2.13)

Following the methodology presented above, we can decompose the drag force

into its excitation and inertia components. The resulting normalized coefficients

are denoted by 
(excitation force coefficient), 

(inertia force coefficient scaled

with the cylinder acceleration) and 
(inertia force coefficient scaled with the

dynamic pressure).

Similarly, the drag coefficient can be decomposed into its time averaged com-

ponent hi and its fluctuating component  0
:

 = hi+  0
 (3.2.14)

where the time-averaged component hi is calculated by:

hi = 1



Z 

0

 (3.2.15)

Finally, the root mean square value of  will be denoted by .

3.2.3 Power Transfer

Here, we consider the power transfer, i.e. the energy per cylinder unit length,

between the flow and the cylinder. By definition, the power transfer is given by:

 () = () · 

() (3.2.16)

where () is the instantaneous displacement of the cylinder from its mean position,

hence its time derivative describes the instantaneous cylinder velocity.

In the presence of both in-line and transverse cylinder oscillation, the total

power transfer parameter, P, consists as the sum of the corresponding contribu-

tions:

 =  +  (3.2.17)

where  and  denote the power transfer in the in-line and the transverse direc-

tion respectively. In general, these two components can be calculated by taking

their time averaged values:

 = lim
→∞

1



Z +



[() · 

() + () · 


()] (3.2.18)

Finally, the computed time-averaged power transfer can be normalized by
1
2
3

∞ to yield the non-dimensional ”power transfer parameter”.
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3.3 Mathematical Modeling

3.3.1 Governing Equations

The governing equations are the two-dimensional Navier-Stokes equations and

the incompressibility equations. All lenghts have been non-dimensionalized with

respect to the cylinder’s diameter , all velocities with respect to the free stream

velocity ∞, time with respect to


∞
and pressure with respect to 2

∞.Therefore

the system of partial differential equations that describe the flow in our fluid

domain is comprised by:

∇ ·−→ = 0 (3.3.1)

−→


+−→ ·∇−→ = −∇+ 1



∇2−→ (3.3.2)

where  is the Reynolds number of the flow.

3.3.2 Boundary Conditions

In order to obtain a solution from the above system of equations, the appro-

priate boundary conditions must be introduced. Thus we have the following (also

see Fig.3.3.1):

• On the instantaneous position of the cylinder the velocity of the fluid is equal
to that of the cylinder:

−→ = 


−→
 +





−→
 (3.3.3)

where  is the instantaneous displacement of the cylinder from its mean

position, and
−→
 and

−→
 is the corresponding unit vectors.

• Far upstream and at the sides of the fluid domain we assume uniform flow

(the dimensional velocity is equal to ∞) :

−→ = ∞ = 1
−→
 (3.3.4)

where
−→
 is the unit vector in the x-direction.

• Far downstream a Neuman-type condition for the velocity is imposed:

−→

≈ 0 (3.3.5)
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Figure 3.3.1: Boundary conditions sketch.

3.4 Numerical Method

3.4.1 Spectral Element Methods

Traditional boundary and finite element methods employ low-order polyno-

mial expansions that rely on mesh refinement to achieve high accuracy. In contrast,

spectral element methods employ high-order expansions with spectral accuracy

with large element size.

The spectral element method is an elegant formulation of the finite element

method with a high degree piecewise polynomial basis. The method is capa-

ble to numerically solve certain partial differential equation (PDE) configura-

tions, demonstrating high efficiency especially on elliptic boundary value problems.

Where applicable, spectral element methods have excellent error properties, with

the so called ”exponential convergence” being the fastest possible.

Introduced in a 1984 paper by A. T. Patera [20], the abstract begins: ”A spec-

tral element method that combines the generality of the finite element method with

the accuracy of spectral techniques...”. Generally speaking, the spectral element

method is a high-order finite element technique that combines the geometric flex-

ibility of finite elements with the high accuracy of spectral methods. This method

was pioneered in the mid 1980’s by Anthony Patera at MIT and Yvon Maday at

Pierre and Marie Curie University (Paris, France). It exhibits several favorable

computational properties, such as the use of tensor products, naturally diagonal

mass matrices and adequacy to implementations in a parallel computer system.

Due to these advantages, the spectral element method is a viable alternative to

currently popular methods such as finite volumes and finite elements, if accurate

solutions of regular problems are sought.

The spectral element method expands the solution in high degree piecewise

polynomial basis functions, therefore a chief advantage is that the resulting method

is of very high order and, in other words, is achieving a very high order of accuracy.

The main technical features of this method are the following:

• Lagrange interpolants shape functions: The method is implemented by using
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tensor-product Lagrange interpolants within each element, where the nodes

of these shape functions are placed at the zeros of Legendre polynomials

(Gauss-Lobatto points). For smooth functions it can be shown that the

resulting interpolants converge exponentially fast as the order of the inter-

polant is increased.

• Gauss-Lobatto quadrature: Efficiency is achieved by using Gauss-Lobatto
quadrature for evaluating elemental integrals. The quadrature points reside

at the nodal points, which enables fast tensor-product techniques to be used

for iterative matrix solution methods. Gauss-Lobatto quadrature results

naturally in diagonal mass matrices.

A main issue in the implementation of the spectral element methodology is the

identification of a complete set of proper element nodes that allows for uniform

and fast convergence of the nodal expansion.

Further details and foundations of this method can be found in the books of

Karniadakis & Sherwin [21] and Pozrikidis [22], [23].

3.4.2 Computational Setup

The model we implement in this study uses a moving-grid technique to solve

the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian kine-

matics. The discretization in space is based on the spectral element method. The

coupling of the fluid equations and the moving-grid equations is essentially done

through the conditions on the moving boundaries.

Utilizing this moving-grid technique implies that we must modify accordingly

the corresponding equations and boundary conditions. Therefore, while the incom-

pressibility equation (Eq.3.3.1) remains unchanged, the Navier-Stokes equations

(Eq.3.3.2) become:

−→


+−→ ·∇−→ = −∇+ 1



∇2−→ − 2
2
−→
 − 2

2
−→
 (3.4.1)

where we have the appearance of a D’Alambert acceleration term at the right-

hand side (by  we denote the instantaneous cylinder displacement from the mean

position). Hence, in order to calculate the actual total force acting on the cylinder’s

surface, we have to subtract from the computed force a “dynamic Archimedes”

force equal to −
4
2(

2
2
−→
 +

2

2
−→
 ).

Moreover, the boundary conditions are modified as follows:

• On the cylinder’s surface the velocity is reduced to:

−→ = 0 (3.4.2)

• At the inflow and the lateral boundaries:

−→ = (∞ − 


−→
 )− 



−→
 (3.4.3)
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Figure 3.4.1: Spectral element computational grid and grid details close to the

cylinder.

• The Newmman condition is maintained at the ouflow boundary (y-direction
velocity component equals to zero):

−→


= 0 (3.4.4)

The above PDE boundary value problem comprising of the partial differential

equations 3.3.1 and 3.4.1, and the boundary conditions 3.4.2, 3.4.3 and 3.4.4, is

solved using a Legendre spectral element method (see Karniadakis [22]), with the

time discretization based on a second order accurate mixed stiffly stable scheme

(Karniadakis et. al. [23]). The same numerical methodology has been successfully

implemented in numerous previous studies (Kaiktsis et. al. [1]; Delaunay and

Kaiktsis [26]; Kaiktsis and Monkewitz [27]).

The spectral element computational grid used is demonstrated in Fig.3.4.1,

with the inflow boundary located at



= −20, the lateral boundaries at 


= ±17,

while the outflow boundary is at



= 60. The discretization consists of 464 macro-

elements, with 9×9 elemental resolution. The values of the chosen numerical time
step were of the order of 0.0015. Experience from previous numerical studies

(Evangelinos and Karniadakis [28]; Blackburn and Henderson [29]) offers valuable

guidance in selecting the domain size and resolution parameters. Resolution tests,

illustrating the adequacy and efficacy of the present discretization, can be found

from Kaiktsis et. al. [1].
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Chapter 4

Results

In this chapter we present detailed results of our two dimensional simulations.

We have considered five different cases in which we vary the amplitude ratio 

for a number of reduced oscillation amplitudes  (see Table.4.0.1). As described

in Chapter 3, we adopt a direct numerical simulation (DNS) approach by using

a spectral element scheme that solves the corresponding 2-dimensional Navier-

Stokes equations on a coordinate system fixed on the cylinder. When steady-state

behavior is reached, lift and drag forces are computed. Finally, through force

decomposition analysis and flow visualization we are able to quantify the impact

of our non dimensional control parameters and reach a conclusion about whether

this problem setup can lead to self excited vortex induced vibrations of the cylinder.

Table 4.0.1 summarizes the parameter values used in our simulations:

  =



  =





-   

400 00÷ 030 05 0 02 04 06∞ ””  ”-”

(4.0.1)

Parameter values used in our simulations.

Simulations for a stationary cylinder in a uniform flow were performed to de-

termine the drag coefficient and the Strouhal number. The values obtained are

 = 022017 for the Strouhal frequency and  = 14169 for the time-averaged

drag coefficient.

Figure 4.0.1: Instantaneous vorticity iso-contours illustrating the formation of the

Kármán vortex street in the wake of a stationary cylinder.

27
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Figure 4.1.1: Excitation force coefficient  versus nondimensional excitation

amplitude, for  = 0.

4.1 Variation of the Hydrodynamic Coefficients

For each combination of { } and when the flow has reached a statistical
steady state we compute both the lift and drag forces. Then, it is meaningful to

decompose the computed forces into their excitation and inertia force components

as described in Chapter 3. Following the methodology presented in Chapter 3, the

excitation forces are always scaled with the dynamic pressure while for the inertia

components we examine scaling not only with the acceleration of the cylinder

but with the dynamic pressure as well (see Sec.3.2.1). Finally, we calculate the

statistical character of the resulting lift and drag forces as depicted by their mean

and fluctuating parts.

4.1.1 One degree of freedom excitation

Our first simulations include two cases of unique interest. In both cases the

cylinder is forced to oscillate in only one direction, transversely or in-line. The first

case examines a cylinder vibrating transversely to a steady flow at a frequency that

equals half the vortex shedding frequency of the stationary cylinder ( = 0  =

05). For the second case we consider a cylinder forced to vibrate in-line to a steady

stream at a frequency equal to the natural frequency of vortex shedding ( →
∞  = 10). The variation of the coefficients   

   
   

and the

time-averaged values and fluctuations of  and  are presented in Figs.4.1.1-

12. Note that for the first case the variation of the hydrodynamic coefficients is

a function of the reduced amplitude , while for the second case the reduced

amplitude is .

We observe that, in each case, the corresponding excitation force coefficient,

 or 
, is decreasing smoothly and almost linearly while we increase the re-

duced oscillation amplitude. Moreover, it takes always negative values, indicating
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Figure 4.1.2: Excitation force coefficient 
versus nondimensional excitation

amplitude, for →∞.

that energy flows from the cylinder to the flow and, as of that, the fluid force has

damping effects on the structure. Note that for the transverse (y-direction) oscil-

lation case, the excitation force coefficient  takes values between 0 and -0.25

in contrast with 
which falls to negative values up to -0.7.

In Figs.4.1.3-4 we can see that the added mass coefficient initially takes negative

values for small reduced amplitudes and then increases to reach positive values as

we increase .  increases continuously and reaches a maximum value close to

0.5 for  = 030, while 
has a local maximum close to 0.7 for  ≈ 004

and afterwards decreases slightly for larger reduced amplitudes. Interestingly, we

note a divergence as → 0 for both cases of excitation. This kind of behavior

was also observed for resonant forcing simulations for the  = 0 case (see Kaiktsis

et. al. [1]). This results suggests, as stated by Kaiktsis et. al. [1], that the

term ”added mass” or ”inertia” force does not seem the most appropriate from a

physical point of view, since the corresponding component of the force is not 180

degrees out of phase with the acceleration. Consequently, we consider scaling the

inertia force component with the dynamic pressure (see Sec.3.2.1), introducing the

coefficients  and 
for each case. As we can see in Figs.4.1.5-6, scaling the

inertia force with the dynamic pressure is overall preferable since it gives more

meaningful values for the coefficients  and 
, especially for low amplitudes.

In Figs.4.1.7-8 we can see the variation of the lift force fluctuations for each case

of forcing. For  = 0, the r.m.s fluctuations seem to be constant, equal to 0.765 with

no dependence on the increasing amplitude. However, for →∞ the fluctuations

exhibit an increasing trend for reduced amplitudes greater than  = 015. This

behavior can be associated with the appearance and development of a consistent

vortex structure in the wake of the cylinder (see Fig. ) and the large increase of

the drag force acting upon the structure (see Fig.4.1.10 ). Also, note that in the

x-oscillation case (→∞) the excitation frequency is equal to the natural vortex
shedding frequency of the stationary cylinder.
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Figure 4.1.3: Inertia force coefficient  versus nondimensional excitation ampli-

tude, for  = 0.
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Figure 4.1.4: Inertia force coefficient 
versus nondimensional excitation ampli-

tude, for →∞.
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Figure 4.1.5: Inertia force coefficient  versus nondimensional excitation ampli-

tude, for  = 0.
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Figure 4.1.6: Inertia force coefficient 
versus nondimensional excitation ampli-

tude, for →∞.
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Figure 4.1.7: R.m.s fluctuation intensity of the lift coefficient versus nondimen-

sional excitation amplitude for  = 0.
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Figure 4.1.8: R.m.s fluctuation intensity of the lift coefficient versus nondimes-

nional excitation amplitude for →∞.
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Figure 4.1.9: Time-averaged drag coefficient versus non-dimensional excitation

amplitude for  = 0.
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Figure 4.1.10: Time-averaged drag coefficient versus non-dimensional excitation

amplitude for →∞.
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Figure 4.1.11: R.m.s fluctuation intensity of the drag coefficient versus nondimen-

sional excitation amplitude for  = 0.
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Figure 4.1.12: R.m.s fluctuation intensity of the drag coefficient versus nondimen-

sional excitation amplitude for →∞.
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Figure 4.1.13: Lift force frequency spectra for sub-harmonic forcing and purely

transverse cylinder oscillation ( = 05,  = 05).

We observe that the time-averaged drag coefficient remains constant and close

to a value of 1.42 for  = 0, but demonstrates a large increase up to a value of

1.62 for  → ∞ and amplitudes greater than  ≥ 015. In the other hand,
the r.m.s drag fluctuations exhibit a similar behavior for both cases, increasing

smoothly with the reduced amplitude, but with the fluctuation intensity being

much stronger for the →∞ case.

Moreover, by examing the power content of the lift and drag forces in each case

we can see that lock-in does not occur in neither case for every reduced oscillation

amplitude imposed (ranging from 0˜0.30). Specifically, in Fig.4.1.13 we present

the lift force power spectra for the purely transverse cylinder motion case ( = 0),

while in Fig.4.1.14 a drag force spectra plot is provided for the pure in-line motion

case (→∞).

4.1.2 Two degrees of freedom excitation

In this section we present detailed results that quantify the variation of the

hydrodynamic forces acting upon a cylinder forced to vibrate both transversely

and in-line to a steady stream. The cylinder traces a ”figure 8” path in the x-

y plane, emulating the trajectory of a cylinder undergoing free vortex induced

vibrations. We have performed numerical simulations for a constant value of 

equal to 400. The transverse vibration frequency equals half the natural vortex

shedding frequency  (sub-harmonic excitation) while the in-line frequency is

equal to twice the transverse frequency and thus equal to . The ratio of the

in-line to the transverse oscillation amplitude  is equal to 0.2, 0.4 or 0.6.

Previous studies (see Kaiktsis and Triantafyllou [2]) have shown that the os-

cillation mode (”clockwise” or ”counter-clockwise”) defines a different physical
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Figure 4.1.14: Drag force frequency spectra for harmonic forcing and purely in-line

cylinder oscillation ( = 1, →∞).

problem, with the ”counter-clockwise” mode being characterized by higher values

of the forces acting on the cylinder, as well as by higher values of the power transfer

from the flow to the cylinder. Therefore our simulations were primarily focused on

the ”counter-clockwise” vibration mode, with ”clockwise” mode simulations being

performed only for  = 02 , mainly for comparison purposes. Following this setup,

we examined four different cases of oscillation depending on the ratio of the in-line

to the transverse oscillation amplitude  and the oscillation mode.

In Figs.4.1.15-23 we present the variation of the hydrodynamic coefficients (as

in 4.1.1) as well as the time-averaged values and fluctuations of the lift and the

drag force coefficients ( and ).

Note that the lift force excitation coefficient  jumps to real values for  = 06

and  º 024. Although that positive values of  usually indicate positive

power transfer i.e. positive energy flow from the fluid to the cylinder and thus

self-excitation, in our case this transition does not affect the overall behavior of

the structure. As we can see in Fig.4.2.3, the total power transfer remains negative

for all cases of excitation and the positive values of  are only related with the

y-direction power transfer component for  = 06. In all the other cases, we observe

that the excitation force coefficients consistently take negative values. Moreover,

Figs.4.2.1-2 give a qualitative picture of the contribution of each of the excitation

force components acting upon the cylinder in the transverse or in-line direction.

We also note the higher values of both  and 
for  = 02 and ”counter-

clockwise” cylinder motion in comparison with the ”clockwise” oscillation mode.

As seen in Sec.4.1.1, we scale the inertia force components both with the cylin-

der acceleration and the dynamic pressure. The second method provides more

meaningful results and overcomes the divergence issue that arises when scaling

with the acceleration as  → 0. In Figs.4.1.17-18 we can observe distinct
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Figure 4.1.15: Y-direction excitation force coefficient  versus nondimensional

excitation y-amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).

behaviors of  and 
between the ”clockwise” and ”counter-clockwise” oscil-

lation modes for  = 02. However, looking at Figs.4.1.19-20 we can draw a clearer

and more consistent picture of the inertia force variations. Interestingly, the varia-

tions of  and 
seem to appear in reverse order. For the ”counter-clockwise”

cases,the y-direction added mass coefficient takes its maximum values for  = 02

and ”clockwise” motion and gradually decreases as we increase  , while for the

x-direction added mass coefficient happens exact the opposite; 
is maximized

for  = 06 and ”counter-clockwise” oscillation mode, it decreases evenly as we

decrease  and it obtains its minimum values for  = 02 and ”clockwise” motion.

Figures 4.1.21-23 illustrate the time-averaged values and the r.m.s fluctuations

of the lift and drag coefficients. Note that the time-averaged lift coefficient takes

values very close to zero for all cases, indicating the presence of a symmetric lift

force signal. For  = 02 and ”clockwise” mode we observe larger fluctuation

intensities for both the lift and drag coefficients in comparison with the ”counter-

clockwise” simulations in which the r.m.s fluctuations vary proportionally with the

reduced amplitudes ratio . Moreover, the time-averaged drag coefficient seems

insensitive to  and constantly takes values close to 1.42 except the case of

 = 06 and ”counter-clockwise” mode where it rapidly increases for  º 022
probably due to the large oscillation amplitudes and the formation of a complex

and unstructured wake behind the cylinder see (Figs.4.3.5 (c)-(e)). Finally, note

that these values are very close to the computed drag coefficient of the stationary

cylinder (see beginning of Chapter 4).
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Figure 4.1.16: X-direction excitation force coefficient 
versus nondimensional

excitation y-amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).
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Figure 4.1.17: Y-direction inertia force coefficient  versus nondimensional ex-

citation y-amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).
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Figure 4.1.18: X-direction inertia force coefficient 
versus nondimensional ex-

citation y-amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).

Finally, it is meaningful to analyze the calculated forces in the frequency do-

main. In Figs.4.1.24-25 we can see the frequency spectra of the lift force acting

on the cylinder for sub-harmonic forcing,  = 02 and ”counter-clockwise” oscilla-

tion mode. These figures reveal the power content of measured lift force (values

on the logarithmic scaled axis) over a range of reduced amplitudes. For all the

examined values of  we note that the prevailing dynamics are dominated by

the Strouhal frequency , while the imposed excitation frequency  corresponds

to lower power densities, therefore suggesting that no lock-in phenomena appear

(see Triantafyllou and Karniadakis [30]). Interestingly, this behavior was repeated

consistently for all the other cases examined ( = 0,  = 02 (”clockwise” and

”counter-clockwise” mode),  = 04,  = 06 (”counter-clockwise”) and →∞).
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Figure 4.1.19: Y-direction inertia force coefficient  versus nondimensional

excitation amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).
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Figure 4.1.20: X-direction inertia force coefficient 
versus nondimensional

excitation amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder

motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).
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Figure 4.1.21: R.m.s fluctuation intensity of the lift coefficient versus nondimes-

nional excitation amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylin-

der motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).

4.2 Power Transfer

The most important outcome of our simulations is the calculation of the en-

ergy transfer between the vibrating cylinder and the fluid stream. Integrating the

hydrodynamic forces acting on the cylinder’s surface we can calculate the power

transfer (see Sec.3.2.3) and have a valuable input about whether energy flows from

the cylinder to the fluid or vice versa. By examining the variation of the power

transfer parameter over a range of reduced amplitudes  we can also get a

qualitative perspective on vortex induced vibrations occurrence. Specifically, pos-

itive values of the power transfer parameter indicate that energy flows from the

fluid stream to the vibrating cylinder, thus leading to self-excitation and vortex in-

duced vibrations, while negative values assure that energy flows from the cylinder

to the fluid, with the fluid having damping effects on the structure.

In Figs.4.2.1-3 we present the variation of the total power transfer parameter

 over a range of reduced amplitudes, as well as, its x and y-direction compo-

nents, denoted by  and . All cases correspond to sub-harmonic excitation

simulations, except the →∞ case which occurs at resonant forcing.

We observe that  falls to smaller values on the negative axis in comparison

with , keeping their sum  always negative, in contrast with the results for

resonant forcing where regions of positive power transfer existed (see Kaiktsis et.

al. [1],[2]). Moreover, we note that in all cases  ≤  ≤ , except for  = 06,



4.2. POWER TRANSFER 43

0 0.05 0.1 0.15 0.2 0.25 0.3
1.4

1.42

1.44

1.46

1.48

1.5

1.52

Ay/D

<
C

D
>

ε=0.2, clockwise

ε=0.2, counter-clockwise

ε=0.4, counter-clockwise

ε=0.6, counter-clockwise

Figure 4.1.22: Time-averaged drag coefficient versus non-dimensional excitation

amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylinder motion)  =

04 and  = 06(”counter-clockwise” cylinder motion).

where, for  ≥ 024,  becomes positive and  ≤  ≤ . Comparison of

our results with cases of resonant forcing can be found in the Appendix.

As we can see in Fig.4.2.3, the total power transfer remains always negative

for every combination of { oscillation mode}, leading us to the conclusion that
our problem setup cannot lead to vortex induced vibrations of the cylinder, as the

surrounding fluid acts like damping on the motion of the structure.
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Figure 4.1.23: R.m.s fluctuation intensity of the drag coefficient versus nondimes-

nional excitation amplitude, for  = 02(”clockwise” and ”counter-clockwise” cylin-

der motion)  = 04 and  = 06(”counter-clockwise” cylinder motion).

Figure 4.1.24: Lift frequency spectra for sub-harmonic forcing ( = 02, ”counter-

clockwise” cylinder motion).
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Figure 4.1.25: Lift frequency spectra for sub-harmonic forcing ( = 02, ”counter-

clockwise” cylinder motion).
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Figure 4.2.1: X-direction power transfer parameter values versus nondimensional

excitation y-amplitude for  = 02(”clockwise” and ”counter-clockwise” mode),

 = 04,  = 06(”counter-clockwise”) and →∞.
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mode),  = 04 and  = 06(”counter-clockwise”) .
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Figure 4.2.3: Total power transfer parameter values versus nondimensional exci-

tation y-amplitude for  = 0,  = 02(”clockwise” and ”counter-clockwise” mode),

 = 04,  = 06(”counter-clockwise”) and →∞.
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4.3 Visualization of the Flow

In this section we present several instantaneous visualizations of the flow in

the wake behind the vibrating cylinder. For each case, we have included a number

of visualizations over a range of reduced amplitudes in order to demonstrate the

evolution of the wake dynamics and its dependence on .

Flow visualization can help us relate the variations of the computed hydrody-

namic forces to changes noticed in the flow patterns and vortex formation in the

wake. Of course, one should be very cautious making such relations because of

the fact that these relations are not by any means obvious and straightforward.

Particularly, we must notice that changes observed in the flow state (especially if

they occur at a distance behind the cylinder) do not necessarily cause changes in

the forces acting on the cylinder and vice versa.

Finally, visualizing the flow gives us the ability to make compare the pat-

terns we observe here and the three basic patterns observed experimentally by

Williamson and Roshko [16] (see the ”Williamson-Roshko map” in 2.2.1), which

can be summarized here for easy reference:

• the 2S type of vortex street, in which single vortices are formed on both sides
of the cylinder.

• the S+P type of vortex street, in which a single vortex is formed on the one
side of the cylinder and a pair of vortices of opposite sign are formed on the

other side.

• the 2P type of vortex street, in which pairs of vortices of opposite sign are
formed on both sides of the cylinder.

At this point we should also refer to another type of vortex street observed in

the previous studies of Kaiktsis et. al. [1], the ”partial S+P” mode. This type of

vortex street describes the case in which on the one side of the cylinder we see the

appearance of vortex pairs, whereas on the other side we see only single vortices.

4.3.1  = 0

In Figs.4.3.1 (a)-(e) we can see five different visualizations for the case of

sub-harmonic y-excitation, which correspond to values of the reduced amplitude

 equal to 0.10, 0.15, 0.20, 0.25 and 0.30, respectively. In all cases we observe

the formation of a typical 2S vortex street behind the cylinder. All snapshots are

qualitatively similar to each other, indicating that the wake state is rather insen-

sitive to the increasing amplitudes. Eventually, the vortices break up and move

away from the center of the wake far downstream, with this transition happening

closer to the cylinder as we increase the oscillation amplitude.
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(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.1: Instantaneous vorticity iso-contours for different values of

nondimensional excitation amplitude, for  = 0.

4.3.2  = 02, ”clockwise” oscillation mode

Figs.4.3.2 (a)-(e) demonstrate the wake structure behind a cylinder oscillating

both transversely and in-line to a steady stream, tracing an ”8-figure” path the

follows the clockwise direction. A regular 2S type vortex street is observed in

consistency with the hydrodynamic force variations presented above. Note that in

snapshots (d) and (e) the vortices far downstream move away from the center of

the wake, indicating a non-symmetric vortex street which causes the appearance
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of a non-zero lift force acting on the cylinder (time-averaged lift coefficient values

of the order of 0.01).

(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.2: Instantaneous vorticity iso-contours for different values of

nondimensional excitation y-amplitude, for  = 02 and ”clockwise”

oscillation mode.

4.3.3  = 02, ”counter-clockwise” oscillation mode

Fig.4.3.3 (a)-(e) show characteristic vortex streets for the case of  = 02 and

”counter-clockwise” oscillation mode. The vortex street appears consistently as an

orderly 2S type which ends up disordered in the far wake. Note that this break up
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of vortices occurs closer to the cylinder as we increase the oscillation amplitude.

(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.3: Instantaneous vorticity iso-contours for different values of

nondimensional excitation y-amplitude, for  = 02 and ”counter-

clockwise” oscillation mode.

4.3.4  = 04, ”counter-clockwise” oscillation mode

In Fig.4.3.4 (a)-(e) we have five representative flow visualizations for  =

04 and ”counter-clockwise” oscillation mode. Again the typical 2S vortex street

behavior dominates the flow structure in the wake behind the cylinder. Due to

increased oscillation amplitudes, vortices break up and move away from the center
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of the wake, forming a non-symmetric unstructured flow pattern.

(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.4: Instantaneous vorticity iso-contours for different values of

nondimensional excitation y-amplitude, for  = 04 and ”counter-

clockwise” oscillation mode.

4.3.5  = 06, ”counter-clockwise” oscillation mode

Fig.4.3.5 (a)-(e) show vorticity iso-contour snapshots for the case of  = 06

and ”counter-clockwise” oscillation mode. It is straightforward to see that the

increased oscillation amplitudes lead to the formation of random and unstructured

vortex patterns in the cylinder’s wake (snapshots (d),(e)). For lower amplitudes
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we can clearly observe the 2S mode for a number of diameters behind the cylinder

and a non-symmetric vortex brake up far downstream (snapshots (a)-(c)). It is

also reasonable to relate the flow structures observed with the hydrodynamic force

variations presented in Sec.4.1.2.

(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.5: Instantaneous vorticity iso-contours for different values of

nondimensional excitation y-amplitude, for  = 06 and ”counter-

clockwise” oscillation mode.
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4.3.6 →∞
Finally we examine the unique case of in-line only vibrations at resonant

forcing. As we can see in Fig.4.3.6 (a), low amplitude oscillations lead to the

typical 2S type of vortex street. However, as we gradually increase the oscillation

amplitude, the wake becomes considerably more complicated. Interestingly, we

note that for  ≥ 015 the transition in the wake structure is accompanied
with a notable transition in the hydrodynamic forces acting upon the cylinder (see

Sec.4.1.1). Consequently, one can relate these unstructured flow states with the

significant increase of the time-averaged drag coefficient (from 1.42 for  =

0050 to 1.62 for  = 030).

(a)  = 010

(b)  = 015

(c)  = 020

(d)  = 025

(e)  = 030

Figure 4.3.6: Instantaneous vorticity iso-contours for different values of

nondimensional excitation y-amplitude, for →∞.



Conclusions

We have presented numerical results for the variation of the forces acting on

an oscillating cylinder. We have considered a range of amplitude-over-diameter

ratios from 0 to 0.30 for several different cases of cylinder excitation. Our simula-

tions were performed for a relatively low Reynolds number equal to 400, however,

conclusions drawn are of interest in the development of models for the dynamics

of typical real applications and structures.

A total of three fundamentally different cases was examined in detail. Firstly,

we considered the case of purely transverse cylinder oscillation at half the natural

frequency of vortex shedding (sub-harmonic forcing). This case is of unique interest

not only in terms of modeling flow induced vibrations but also as a non-linear flow

dynamics problem. Interestingly, we found that for the range of amplitudes studied

here, lock-in does not occur. This conclusion contradicts the literature results of

Olinger & Sreenivasan [31] and Stansby [32] in which is stated that vortex shedding

can lock on at various submultiples of the natural vortex shedding frequency of the

cylinder and for a wide range of excitation amplitudes, including small amplitudes.

Secondly, we performed simulations for the case of purely in-line cylinder os-

cillation at a frequency equal to the vortex shedding frequency of the stationary

cylinder (Strouhal frequency). While pure in-line oscillations are not observed in

real structures, this case illustrates some very interesting aspects from the non-

linear flow dynamics point of view. Specifically, we observed large variations of

the drag force acting on the cylinder, as well as unique complex vortex patterns

in the cylinder’s wake.

Finally, the case of combined in-line and crossflow excitation was concerned. In

this case, the in-line frequency is equal to twice the transverse frequency, while the

ratio of the in-line to the transverse oscillation amplitude takes values of 0.2, 0.4

and 0.6. For a flow from left to right, we have distinguished between a “counter-

clockwise” mode (if the upper part of the trajectory is traversed counter-clockwise)

and a “clockwise” mode (if the upper part of the trajectory is traversed clockwise).

The cylinder’s transverse excitation is imposed at half the natural vortex shedding

frequency while the structure follows an “eight”-like of trajectory, emulating the

motion of real cylindrical structures undergoing vortex-induced vibrations. Our

primary conclusion is that hydro-elastic resonance is not possible for all cases

studied. In particular, the computed power transfer from the fluid to the structure

is negative, implying that the presence of the external flow acts as a damper. Even

the purely in-line oscillation at the Strouhal frequency is characterized by negative

power transfer.

The present results are in accordance to Kaiktsis et. al. [1] in that the value

of the power transfer for the “counter-clockwise” mode is less negative than the

“clockwise” mode with the same amplitudes, indicating that, in general, the worse

scenario for a real structure undergoing VIV is the ”counter-clockwise” mode. Fur-
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thermore, we found that scaling the excitation component of the lift force with the

cylinder acceleration is not always justified, and that, in general, both the excita-

tion and the inertia forces should be scaled with the dynamic pressure. Following

the methodology first put forth by Kaiktsis et. al. [1] based on this observation,

we deal with the low-amplitudes divergence of the added mass coefficient  by

scaling both components of the lift force with the dynamic pressure, in other words

using coefficient  instead of  .

Regarding vortex shedding, all cases exhibited vortex streets resembling the

2-S type. We did not observe any sharp transitions as those reported for the case

of transverse oscillation at a frequency near the Strouhal frequency. This behavior

was anticipated since the variation of forces with the amplitudes of oscillation

is much smoother than in the case of transverse oscillation at a frequency near

the Strouhal frequency. The only exception occurred for the case of purely in-

line oscillations were we noted a large increase in the drag force with increasing

oscillation amplitudes, coupled with very complex vortex patterns in the wake,

illustrating the presence of vortex splitting and pairing phenomena.



Subjects for Future Research

Based on the experience gained from the present work the following recom-

mendations are privided for further work on the topic of flow past an oscillating

cylinder:

• Implementation of a numerical method dealing with the simulation of a cylin-
der undergoing free vortex induced vibrations. The method should be capa-

ble of solving for each time step both the system of the differential equations

governing the motion of the cylinder as a rigid body and the corresponding

Navier-Stokes equations governing the fluid flow.

• Computational study of a cylinder vibrating both transversly and in-line to
a steady flow, focusing on the effects of super-harmonic excitation.

• Direct numerical two dimensional flow simulations at higher Reynolds num-
bers. Such simulations should aim at validating and extending our present

knowledge in a regime closer to engineering applications.

• Three dimensional direct numerical simulations of a vibrating cylinder in a
steady stream.

• Developent of a consistent systematic approach towards the prediction of vor-
tex induced vibrations of engineering structures, combining all tools available

(numerical simulations, experimental data, field tests and empirical formu-

lations).
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Appendix

Comparison of Results with Resonant Forcing Sim-

ulations

In this section we compare the main results of the present simulations (cor-

responding to sub-harmonic excitation) against those of previous studies ([1], [2])

dealing with the case of resonant excitation. Thus, we examine the cases of

sub-harmonic forcing i.e. at a transverse frequency equal to half the natural

vortex shedding frequency ( = 05), and resonant forcing (excitation at a fre-

quency equal with the natural vortex shedding frequency of the stationary cylinder,

 = 1). For each of those two cases we present results for  = 0 02 (”clockwise”

and ”counter-clockwise”) and 04 (”counter-clockwise”). Figures 0.1-12 illustrate

the qualitative difference of the cases examined, as depicted by the total power

transfer parameter  , the excitation force coefficient  and the inertia force

coefficients  and .
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Figure .0.1: Total power transfer parameter values versus nondimensional excita-

tion y-amplitude for  = 0:  = 05 (sub-harmonic excitation),  = 1 (resonant

excitation).
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Figure .0.2: Total power transfer parameter values versus nondimensional excita-

tion y-amplitude for  = 02 (”clockwise and ”counter-clockwise” mode):  = 05

(sub-harmonic excitation),  = 1 (resonant excitation).
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Figure .0.3: Total power transfer parameter values versus nondimensional excita-

tion y-amplitude for  = 04 (”counter-clockwise” mode):  = 05 (sub-harmonic

excitation),  = 1 (resonant excitation).
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Figure .0.4: Excitation force coefficient  versus nondimensional excitation y-

amplitude for  = 0:  = 05 (sub-harmonic excitation),  = 1 (resonant excita-

tion).
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Figure .0.5: Excitation force coefficient  versus nondimensional excitation y-

amplitude for  = 02 (”clockwise and ”counter-clockwise” mode):  = 05 (sub-

harmonic excitation),  = 1 (resonant excitation).
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Figure .0.6: Excitation force coefficient  versus nondimensional excitation y-

amplitude for  = 04 (”counter-clockwise” mode):  = 05 (sub-harmonic excita-

tion),  = 1 (resonant excitation).
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Figure .0.7: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 0:  = 05 (sub-harmonic excitation),  = 1 (resonant ex-

citation).
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Figure .0.8: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 02 (”clockwise and ”counter-clockwise” mode):  = 05 (sub-

harmonic excitation),  = 1 (resonant excitation).
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Figure .0.9: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 04 (”counter-clockwise” mode):  = 05 (sub-harmonic ex-

citation),  = 1 (resonant excitation).
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Figure .0.10: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 0:  = 05 (sub-harmonic excitation),  = 1 (resonant ex-

citation).
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Figure .0.11: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 02 (”clockwise and ”counter-clockwise” mode):  = 05 (sub-

harmonic excitation),  = 1 (resonant excitation).

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ay/D

C
L

a

F=0.5, ε=0.4, counter-clockwise

F=1, ε=0.4, counter-clockwise

Figure .0.12: Inertia force coefficient  versus nondimensional excitation y-

amplitude for  = 04 (”counter-clockwise” mode):  = 05 (sub-harmonic ex-

citation),  = 1 (resonant excitation).
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