

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ

Υπολογισμοί δυναμικής συμπεριφοράς πλοίων σε κυματισμούς με μη-γραμμικό κώδικα

Διπλωματική Εργασία Χρήστου Κατσίκη

Επίβλεψη : Καθηγητής Γ.Ι. Γρηγορόπουλος

> ΑΘΗΝΑ Οκτώβριος 2009

προλογος

Η παρούσα διπλωματική εργασία πραγματεύεται τις διαφορετικής προσεγγίσεις στο πρόβλημα της δυναμικής συμπεριφοράς πλοίων σε κυματισμούς όπως εκφράζεται από τη θεωρία των δυναμικών της ταχύτητας και αντιμετωπίζεται με τη μέθοδο Rankine Panel.

Η υλοποίηση της εργασία βασίζεται στην συνεργασία μου με τον Καθ. κ. Γ.Ι. Γρηγορόπουλο, τον οποίο ευχαριστώ από καρδιάς. Θερμές ευχαριστίες θα ήθελα να δώσω επίσης στους Υποψήφιους Διδάκτορες της Σχολής Ναυπηγών Δ. Δαμάλα και Δ. Χαλκιά για τις χρήσιμες συμβουλές τους και τη βοήθεια που παρείχαν στην ολοκλήρωση αυτής της διπλωματικής εργασίας.

> ΚΑΤΣΙΚΗΣ ΧΡΗΣΤΟΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2009

ΠΕΡΙΛΗΨΗ

Στην παρούσα μελέτη συγκρίναμε τρεις υπολογιστικούς τρόπους επίλυσης του προβλήματος της συμπεριφοράς ενός πλοίου σε κυματισμούς. Ο πρώτος τρόπος που εκφράζεται μέσα από την έκδοση SWAN2 του κώδικα SWAN και την πλήρως γραμμική εκδοχή του, λύνει το γραμμικό πρόβλημα. Ο δεύτερος τρόπος είναι μία επέκταση του πρώτου τρόπου και αποτελεί μία ψευδό μη-γραμμική προσέγγιση λύνοντας στην στιγμιαία βρεχόμενη επιφάνεια του πλοίου κάθε χρονική στιγμή. Ο τρίτος τρόπος αποτελεί μία έντονα μη γραμμική προσέγγιση του προβλήματος, λύνοντας πλήρως σε κάθε χρονική στιγμή και εκφράζεται μέσα από την έκδοση SWAN4.

Σύμφωνα με τα παραπάνω, αναμένουμε ο αυξημένος βαθμός πολυπλοκότητας του μη γραμμικού τρίτου τρόπου να οδηγήσει σε αποτελέσματα πιο κοντά στα πειραματικά με τους υπόλοιπους τρόπους επίλυσης του προβλήματος να υστερούν. Η απόδοση του κώδικα αξιολογήθηκε με βάση τρία πλοία με αυξανόμενο βαθμό πολυπλοκότητας γάστρας. Σε ορισμένες περιπτώσεις ήταν αναγκαίο να γίνουν μικρής έκτασης επεμβάσεις στη γεωμετρία της γάστρας προκειμένου να γίνει πιο σωστή μοντελοποίηση της γεωμετρίας. Από τη μελέτη προέκυψε ότι η μη γραμμική έκδοση του κώδικα δεν παράγει σε όλες τις περιπτώσεις λογικά αποτελέσματα και ειδικά σε πολύ μικρά μήκη κύματος μέχρι λίγο μεγαλύτερα από το πλοίο. Υπάρχουν περιπτώσεις όμως που τα αποτελέσματα είναι πολύ κοντά στα πειραματικά. Η γραμμική εκδοχή του κώδικα είναι πιο αξιόπιστή αφού δεν εμφάνισε καμία αστάθεια στους υπολογισμούς αν και δεν υπήρξε σε όλες τις περιπτώσεις επιτυχής στη πρόβλεψη της συμπεριφοράς ενός πλοίου σε κυματισμούς. Η ψευδό μη-γραμμική επέκταση της γραμμικής μεθόδου παρήγαγε ελαφρώς καλύτερα αποτελέσματα από την πλήρως γραμμική. Γενικά αποτελεί μία καλή βάση για την έναρξη μίας διαδικασίας βελτιστοποίησης μίας πατρικής γάστρας. Η απόδοση του γραμμικού κώδικα αξιολογήθηκε επίσης και με τη χρήση μίας ταχύπλοης γάστρας που φέρει καθρέπτη με μεγάλο βύθισμα. Εδώ δεν ήταν δυνατή η χρήση του μη γραμμικού κώδικα καθώς δεν υποστηρίζει τέτοιες γεωμετρίες. Τα αποτελέσματα είναι σχετικά καλά και ειδικά για την ψευδό μη-γραμμική εκδοχή, πρέπει να δοθεί προσοχή όμως όταν πραγματοποιούμε εξομοιώσεις σε μεγαλύτερο αριθμό Froude γιατί τα αποτελέσματα γάνουν τη συνάφειά τους. Τέλος έγινε μία σύγκριση των φορτίσεων που υπολογίζει η κάθε έκδοση του κώδικα σε ένα πλοίο αναφοράς.

ABSTRACT

In the present study three computational approaches of the seakeeping problem are compared. The first approach is expressed through the version SWAN2 of the code SWAN and its full linear edition which solves the lineal seakeeping problem. The second approach is an extension of the first approach which comprises the quasi nonlinear method solving at the instantaneous wetted surface in every simulation time step. The third approach comprises a strong non linear study, solving the full non linear problem at every simulation time step, expressed through the version SWAN4.

In accordance to the above, we expect the increased complexity of the non linear approach to produce results closer to the experimental measurements than the other approaches which are expected to fail short. The accuracy of the code was evaluated using three ship models with an expanding degree of geometric complexity. In some cases the need arose for some minor changes in the ship hull model in order to make the geometric modeling more efficient. The result of the study pinpointed that the non linear version of the code does not produce in all cases reasonable results, especially in short wave lengths to wave lengths close to the length of the ship. However there are some cases in which the non linear version produced results very close to the experimental. The linear version of the code provides a more robust tool as all the results were in line with what was expected from the experience. Nevertheless not in every case the solution was close to what was measured in the experiments. The quasi non-linear extension produced slightly better results from the fully linear method. In general, the linear/quasi non-linear version of the code provides a sound base for an optimization process on a parent hull. The accuracy of the linear version was also evaluated using a high speed monohull ship model which bears a transom stern. The use of the non linear code was not an option because the current version does not support such geometries. The results were relatively good, especially those of the quasi non-linear method. Caution must be exercised when conducting simulations in high Froude numbers as the results may not be so accurate. Finally a comparative study was conducted for the forcing each version computes on a reference hull.

ΠΕΡΙΕΧΟΜΕΝΑ

Σελ.
1
3
4

$KE\Phi A\Lambda AIO~2^{O}$

ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΚΔΟΣΕΩΝ ΤΟΥ ΚΩΔΙΚΑ SWAN, SWAN2 & SWAN4

2.1 Ομοιότητες στο θεωρητικό υπόβαθρο	6
2.2 Διαφορές στο θεωρητικό υπόβαθρο	7
2.3 Διαφορές στη δομή-ανάπτυξη των δύο κωδίκων	10
2.4 Οι δυνατότητες της κάθε έκδοσης του κώδικα SWAN	12
2.5 Η ψευδό μη-γραμμική εκδοχή της έκδοσης SWAN2	13

ΚΕΦΑΛΑΙΟ 3⁰

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΚΑΦΩΝ

3.1 Εισαγωγή	14
3.2 Η έννοια της γραμμικής και μη γραμμικής γάστρας	14
3.3 Η Σειρά 60	17
3.4 Το Πλοίο Ψυγείο (Reefer)	19
3.5 Το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)	21
3.6 Το Ταχύπλοο σκάφος Σειράς ΝΤUA LB55	24

$KE\Phi A\Lambda AIO~4^{O}$

Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΓΑΣΤΡΑΣ ΣΤΟΝ ΚΩΔΙΚΑ SWAN

4.1 Εισαγωγή	26
4.2 Η μοντελοποίηση της γάστρας στην έκδοση SWAN2	26
4.3 Η μοντελοποίηση της γάστρας στην έκδοση SWAN4	32

ΚΕΦΑΛΑΙΟ 5⁰

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

5.1 Εισαγωγή	35
5.2 Παρουσίαση των υπολογιστικών αποτελεσμάτων για τη Σειρά 60	36
5.2.1 Σχολιασμός των αποτελεσμάτων της Σειράς 60	44
5.2.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για τη Σειρά 60	46
5.3 Παρουσίαση των υπολογιστικών αποτελεσμάτων για το πλοίο ψυγείο	
(Reefer)	47
5.3.1 Σχολιασμός των αποτελεσμάτων του πλοίου Ψυγείου (Reefer)	51
5.3.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για το πλοίο	
ψυγείο (Reefer)	53
5.4 Παρουσίαση των υπολογιστικών αποτελεσμάτων για το Ταχύ	
Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)	54
5.4.1 Σχολιασμός των αποτελεσμάτων για το Ταχύ Επιβατηγό-	
Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)	60
5.4.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για το Ταχύ	
Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)	62

σκάφος Σειράς ΝΤΗΑ Ι Β55	63
5.5.1 Σχολιασμός των αποτελεσμάτων για το ταχύπλοο σκάφος Σειράς	
NTUA LB55 με συντελεστή $C_{DL} = 1.61$	69
5.5.2 Γενικό Συμπέρασμα υπολογισμών αποκρίσεων για το ταχύπλοο σκάφος με συντελεστή C _{DL} = 1.61	71
5.5.3 Σχολιασμός των αποτελεσμάτων για ταχύπλοο σκάφος Σειράς	77
$\frac{1}{554} \Gamma_{\text{SVIR6}} = \frac{1}{500} \Gamma_{\text{SVIR6}} = \frac{1}{5000} \Gamma_{\text{SVIR6}} = \frac{1}{500} \Gamma_{SV$	
σ κάφος με συντελεστή $C_{DL} = 3.00$	78
ΚΕΦΑΛΑΙΟ 6 ⁰	
ΣΥΓΚΡΙΣΗ ΥΠΟΛΟΓΙΣΜΩΝ SWAN ΤΩΝ ΑΣΚΟΥΜΕΝΩΝ	
ΔΥΝΑΜΕΩΝ ΣΤΟ ΠΛΟΙΟ	
6.1 <u>Εισαγωγή</u>	79
6.2 Σύγκριση υπολογισθέντων δυνάμεων στη Σειρά 60	79
6.2.1 Σχολιασμός των υπολογισθέντων δυνάμεων για τη Σειρά 60	89
ΚΕΦΑΛΑΙΟ 7°	
ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΜΕΛΛΟΝΤΙΚΗ ΔΟΥΛΕΙΑ	00
$7.1 \frac{1}{1} $	92
7.2 Μελλοντικη δουλεια	93
ΒΙΒΛΙΟΓΡΑΦΙΑ	94
\mathbf{r} + \mathbf{p} + \mathbf{p} = \mathbf{r}	
ΠΑΡΑΡΙΗΜΑΙ [*] ΕΝΑ ΠΡΟΕΡΑΜΜΑ ΣΤΟ ΜΑΤΙ ΑΡΕΙΑ ΤΟΝ ΥΠΟΛΟΕΙΣΜΟ ΤΟΝ	
ΕΝΑ ΠΡΟΙ ΡΑΜΙΜΑ ΖΤΟ ΜΑΤΙΔΙΒΤΙΑ ΤΟΝ ΥΠΟΛΟΙ ΙΖΜΟ ΙΩΝ ΣΥΝΤΕΛΕΣΤΟΝ ΑΠΟΚΙΣΕΟΝ	
$\Pi 1 1 E_{15} \alpha_{10} \alpha_{10} \dot{m}$	
	96
$\Pi 1 2 \Omega 1 \delta \eta \eta \sigma \tau \tau \sigma \tau \sigma \eta \sigma \sigma \sigma \sigma \eta \eta \sigma \sigma \sigma \sigma \sigma$	96
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα	$\frac{96}{96}$
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα	96 96 97 99
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα	96 96 97 99
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα	96 96 97 99
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 <u>Παρουσίαση του κώδικα</u> Π1.4 <u>Οδηγίες χρήσης του κώδικα</u> ΠΑΡΑΡΤΗΜΑ 2⁰ ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	96 96 97 99
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2⁰ ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2	96 96 97 99 99
$\Pi 1.2 Oi δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2O ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2 Σειρά 60 / Froude = 0.25$	96 96 97 99 99
Π1.2 Οι δυνατότητες του προγράμματος Π1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^O ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2 Σειρά 60 / Froude = 0.25 Σειρά 60 / Froude = 0.30	96 96 97 99 101 102 104
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικαΠΑΡΑΡΤΗΜΑ 2°ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝΣειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24	96 96 97 99 99 101 102 104 107
$\Pi 1.2 Oi δυνατότητες του προγράμματος \Pi 1.3 Παρουσίαση του κώδικα Π1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2O ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2 Σειρά 60 / Froude = 0.25 Σειρά 60 / Froude = 0.30 Πλοίο Ψυγείο (Reefer) / Froude = 0.24 Πλοίο Ψυγείο (Reefer) / Froude = 0.29$	96 96 97 99 101 102 104 107 109
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /	96 96 97 99 99 101 102 104 107 109
ΠΠ.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.26	96 96 97 99 101 102 104 107 109 111
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικαΠΑΡΑΡΤΗΜΑ 2 ^O ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝΣειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.26Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /	96 96 97 99 99 101 102 104 107 109 111
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33	96 96 97 99 99 101 102 104 107 109 111 113
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικαΠΑΡΑΡΤΗΜΑ 2° ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς NTUA LB55 /	96 96 97 99 99 101 102 104 107 109 111 113
Π1.2 Οι δυνατότητες του προγράμματοςΠ1.3 Παρουσίαση του κώδικαΠ1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύ πιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς ΝΤUA LB55 / Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61	96 96 97 99 99 101 102 104 107 109 111 113 116
Π1.2 Οι δυνατότητες του προγράμματοςΠ1.3 Παρουσίαση του κώδικαΠ1.4 Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.26Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 /	96 96 97 99 99 101 102 104 107 109 111 113 116
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2⁰ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς ΝΤUA LB55 / Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς ΝTUA LB55 / Αριθμός Froude = 0.68 / Συντελεστής CDL = 1.61	96 96 97 99 99 101 102 104 107 109 111 113 116 119
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2⁰ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.26Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς ΝΤUA LB55 / Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 / Αριθμός Froude = 0.68 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 / Αριθμός Froude = 0.68 / Συντελεστής CDL = 1.61	96 96 97 99 99 101 102 104 107 109 111 113 116 119
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) / Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς NTUA LB55 / Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 / Αριθμός Froude = 0.68 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 / Αριθμός Froude = 0.68 / Συντελεστής CDL = 3.00	96 96 97 99 99 101 102 104 107 109 111 113 116 119 122
Π1.2Οι δυνατότητες του προγράμματοςΠ1.3Παρουσίαση του κώδικαΠ1.4Οδηγίες χρήσης του κώδικα ΠΑΡΑΡΤΗΜΑ 2^OΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σειρά 60 / Froude = 0.2Σειρά 60 / Froude = 0.25Σειρά 60 / Froude = 0.30Πλοίο Ψυγείο (Reefer) / Froude = 0.24Πλοίο Ψυγείο (Reefer) / Froude = 0.29Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.33Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) /Αριθμός Froude = 0.33Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.34 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.68 / Συντελεστής CDL = 1.61Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.34 / Συντελεστής CDL = 3.00Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.34 / Συντελεστής CDL = 3.00Ταχύπλοο σκάφος Σειράς NTUA LB55 /Αριθμός Froude = 0.34 / Συντελεστής CDL = 3.00	96 96 97 99 99 101 102 104 107 109 111 113 116 119 122

KATAΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

		Σ	Ξελ.
Σχήμα	1-1	Απότομες αλλαγές της γεωμετρίας πάνω από την ίσαλο	2
Σχήμα	2-1	Κάτοψη ορθογωνικού πλέγματος που εφαρμόζεται στην έκδοση SWAN2	11
Σχήμα	2-2	Κάτοψη ακτινικού πλέγματος που εφαρμόζεται στην έκδοση	
<i>7</i> 0 H		SWAN4	11
Σχήμα	3-1	Γραμμικοί πρωραίοι νομείς	14
Σχήμα	3-2	Γραμμικές ίσαλοι	14
Σχήμα	3-3	Βολβοειδής πλώρη	15
Σχήμα	3-4	Μη γραμμικές ίσαλοι με εναλλαγές της καμπυλότητας στη πρύμνη	15
Σχήμα	3-5	Μη γραμμικοί πρωραίοι νομείς με βολβό και έντονη εξοχή πλευρών	15
Σχήμα	3-6	Πρύμνη με skeg και κοίλους νομείς	15
Σχήμα	3-7	Τρισδιάστατη αναπαράσταση της ταχύπλοης γάστρας NTUA LB55 Με έντονες γραμμές διακρίνονται τα δύο chines	16
Σχήμα	3-8	Σχέδιο νομέων Σειράς 60 με $C_{\rm B} = 0.7$	18
Σχήμα	3-9	Τρισδιάστατη απεικόνιση της πρύμνης του πλοίου ψυγείου	19
Σχήμα	3-10	Σχέδιο Ισάλων πλοίου ψυγείου	20
Σχήμα	3-11	Σχέδιο νομέων πλοίου ψυγείου	20
Σχήμα	3-12	Σχέδιο νομέων Επιβατηγού Οχηματαγωγού Πλοίου SUPERFAST III-IV	21
Σχήμα	3-13	Σχέδιο ισάλων Επιβατηγού Οχηματαγωγού Πλοίου SUPERFAST III-	- 22
Σχήμα	3-14	Νομείς πρύμνης πλοίου SUPERFAST με κοίλη διαμόρφωση	23
Σχήμα	3-15	Τροποποιημένοι νομείς πρύμνης πλοίου SUPERFAST με επίπεδη	
		διαμόρφωση	23
Σχήμα	3-16	Σχέδιο Νομέων Ταχυπλόου σκάφους Σειράς ΝΤUA LB55	24
Σχήμα	3-17	Σχέδιο Ισάλων Ταχυπλόου σκάφους Σειράς ΝΤUA LB55	25
Σχήμα	4-1	Τρισδιάστατη προβολή των νομέων του πλοίου SUPERFAST III-IV	
		με σημειωμένο με βέλη τον πρώτο νομέα στο οποίο θα γίνει	
		διόρθωση αρνητικής καμπυλότητας	27
Σχήμα	4-2	Τρισδιάστατη αναπαράσταση νομέα που φέρει διόρθωση αρνητικής καμπυλότητας	28
Σχήμα	4-3	Νομέας εγγύτερος στην πλώρη που φέρει αρνητική καμπυλότητα	28
Σχήμα	4-4	Πρυμναίοι νομείς με αρνητική καμπυλότητα και επίπεδο πάνω στο	
		οποίο βρίσκονται οι ευθείες που τροποποιούν την καμπυλότητα	29
Σχήμα	4-5	Επιφάνεια τροποποίησης των νομέων με αρνητική καμπυλότητα	29
Σχήμα	4-6	Προβολή στο επίπεδο x-z των πρωραίων γραμμών του πλοίου SUPERFAST III-IV	31
Σχήμα	4-7	Σημεία γεωμετρίας πλοίου SUPERFAST III-IV προφίλ πλώρης και	
		πρώτου νομέα όπως δηλώνονται στον κώδικα SWAN	32
Σχήμα	4-8	Προβολή στο επίπεδο x-z των γραμμών που χρησιμοποιήθηκαν στο SWAN2	33
Σχήμα	4-9	Προβολή στο επίπεδο x-z των γραμμών που χρησιμοποιήθηκαν στο SWAN4	33
Σχήμα	4-10	Απεικόνιση λεπτομέρειας πρύμνης της προβολής στο επίπεδο x-z των γραμμών μοντελοποίησης του πλοίου SUPERFAST III-IV στο	
		SWAN4	33

Σχήμα	5-1	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.20	37
Σχήμα	5-2	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0 20	37
Σχήμα	5-3	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.25	38
Σχήμα	5-4	Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο Σειράς 60 σε Fr 0.25	38
Σχήμα	5-5	Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο Σειράς 60 σε Fr 0.25	; 39
Σχήμα	5-6	Διάγραμμα συντελεστών RAO Acceleration LCG για το πλοίο Σειράς 60 σε Fr 0.25	39
Σχήμα	5-7	Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο Σειράς 60 σε Fr 0.25	40
Σχήμα	5-8	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.3	40
Σχήμα	5-9	Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο Σειράς 60 σε Fr 0.3	41
Σχήμα	5-10	Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο Σειράς 60 σε Fr 0 3	; 41
Σχήμα	5-11	Διάγραμμα συντελεστών RAO Acceleration LCG για το πλοίο Σειοάς 60 σε Fr 0.3	42
Σχήμα	5-12	Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο Σειοάς 60 σε Fr 0.3	42
Σχήμα	5-13	Διάγραμμα σύγκρισης συντελεστών αποκρίσεων RAO Κατακόρυφης κίνησης στην έκδοση SWAN4 σε Fr 0.2, 0.25, 0.3	43
Σχήμα	5-14	Διάγραμμα σύγκρισης συντελεστών αποκρίσεων RAO Κατακόρυφης κίνησης στην έκδοση SWAN4 σε Fr 0.2, 0.25, 0.3	43
Σχήμα	5-15	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο μανείο (Reefer) σε Fr 0.24	47
Σχήμα	5-16	Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο ψυγείο (Reefer) σε Fr 0.24	48
Σχήμα	5-17	Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο μανείο (Reefer) σε Fr 0.24	48
Σχήμα	5-18	Δ ιάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο νηνείο (Reefer) σε Fr 0.24	49
Σχήμα	5-19	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο νωνείο (Reefer) σε Fr 0 29	49
Σχήμα	5-20	Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο ψυγείο (Reefer) σε Fr 0 29	50
Σχήμα	5-21	Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο μανείο (Reefer) σε Fr 0 29	50
Σχήμα	5-22	Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο μηνείο (Reefer) σε Fr 0.29	51
Σχήμα	5-23	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26	55
Σχήμα	5-24	Διάγραμμα συντελεστών RAO Προνευτασμού για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26	55

Σχήμα	5-25	Διάγραμμα συντελεστών RAO Acceleration Bow για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26	56
Σχήμα	5-26	Διάγραμμα συντελεστών RAO Acceleration LCG για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26	56
Σχήμα	5-27	Διάγραμμα συντελεστών RAO Acceleration Stern για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26	57
Σχήμα	5-28	Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33	57
Σχήμα	5-29	Διάγραμμα συντελεστών RAO Προνευτασμού για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33	58
Σχήμα	5-30	Διάγραμμα συντελεστών RAO Acceleration Bow για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33	58
Σχήμα	5-31	Διάγραμμα συντελεστών RAO Acceleration LCG για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0 33	59
Σχήμα	5-32	Διάγραμμα συντελεστών RAO Acceleration Stern για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33	59
Σχήμα	5-33	Διάγραμμα συντελεστών RAO κατακόρυφης κίνησης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 1.61	64
Σχήμα	5-34	Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 1.61	64
Σχήμα	5-35	Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 1.61	65
Σχήμα Σχήμα	5-36	Διαγραμμα συντελεστών RAO επιταχύνσεων πρυμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 1.61	65
Σχήμα	5-38	σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 1.61 Διάγραμμα συντελεστών RAO κατακόρυφης κίνησης για το	66
 Σχήμα	5-39	ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 1.61 Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο	66
Σχήμα	5-40	σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 1.61 Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 1.61	<u>67</u>
Σχήμα	5-41	Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 1.61	68
Σχήμα	5-42	Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 1.61	68
Σχήμα	5-43	Διάγραμμα συντελεστών RAO κατακόρυφων κινήσεων για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 3.00	72
Σχήμα	5-44	Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 3.00	72
Σχήμα	5-45	Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 3.00	73

Σχήμα	5-46	Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 3.00	73
Σχήμα	5-47	Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και CDL = 3.00	74
Σχήμα	5-48	Διάγραμμα συντελεστών RAO κατακόρυφων κινήσεων για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 3.00	74
Σχήμα	5-49	Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 3.00	75
Σχήμα	5-50	Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 3.00	75
Σχήμα	5-51	Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς ΝΤUA LB55 σε Fr 0.68 και CDL = 3.00	76
		ta_{0} t	/0
Σχήμα	5-52	Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και CDL = 3.00	76
Σχήμα	6-1	Ασκούμενη δύναμη Fz στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 0.8$	80
Σχήμα	6-2	Ασκούμενη Ροπή γύρω από τον άξονα y My στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 0.8$	80
Σνήμα	6_3	Aσκούμενη δύναμη Ez στη Σειρά 60, αριθμό Froude = 0.2 και λόγο	
2չվրս 5_(0-5	According to bound if the order of the product of	81
Σχήμα	6-4	Aσκούμενη Ροπή γύρω από τον άξονα y My στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 1.2$	81
Σχήμα	6-5	Ασκούμενη δύναμη Fz στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/I = 1.8$	82
N	"	$\frac{1}{\Lambda} = \frac{1}{10} =$	02
Δχημα	0-0	Ασκουμένη Ρόπη γυρώ από τον άζονα γ Μγ στη Σειρά 60, αριθμό	0.0
		Froude = $0.2 \text{ kat } \lambda \delta \gamma \delta \lambda / L = 1.8$	82
Σχήμα	6-7	Ασκούμενη δύναμη Fz στη Σειρά 60, αριθμό Froude = 0.25 και λόγο $\lambda/L = 0.8$	83
Σγήμα	6-8	Ασκούμενη Ροπή γύρω από τον άξονα γ Μγ στη Σειρά 60, αριθμό	
<i>7</i> , 1,		Froude = 0.25 km λ óyo $\lambda/L = 0.8$	83
Σνήμα	6-9	Aσκούμενη δύναμη Ez στη Σειρά 60, αριθμό Froude = 0.25 και λόγο	00
2չվրս	0-7	$\lambda/I = 1.2$	84
N uméru ar	<u>(</u> 10	$\frac{ML}{\Lambda}$	-0-
2χημα	0-10	Account of row of the two local and the action of the second sec	01
N /	(11	$\frac{1}{12} \frac{1}{12} \frac$	04
Δχημα	6-11	Aσκουμένη ουναμή Fz στη Σειρά 60, αριθμο Froude = 0.25 και λογο $\lambda/L = 1.8$	85
Σχήμα	6-12	Ασκούμενη Ροπή γύρω από τον άξονα y My στη Σειρά 60, αριθμό Froude = 0.25 και λόγο $\lambda/L = 1.8$	85
N aming	6 13	$\frac{1}{\sqrt{2}}$	
∠չղրս	0-15	According to over a property of the second	86
Σχήμα	6-14	Ασκούμενη Ροπή γύρω από τον άξονα y My στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 0.8$	86
Σχήμα	6-15	Ασκούμενη δύναμη Fz στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 1.2$	87
Σνήμα	6-16	Ασκούμενη Ροπή νύοω από τον άξονα ν Μν στη Σειοά 60, αφιθμό	
≟չվրս	0-10	Froude = 0.3 και λόγο $\lambda/L = 1.2$	87
Σχήμα	6-17	Ασκούμενη δύναμη Fz στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 1.8$	88
Σχήμα	6-18	Ασκούμενη Ροπή γύρω από τον άξονα y My στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 1.8$	88

Σχήμα 6-19	Ανάλυση συνιστωσών δύναμης Fz γραμμικού SWAN2 στη Σειρά 60,	
	$Fr = 0.2, \lambda/L = 0.8$	90
Σχήμα 6-20	Ανάλυση συνιστωσών δύναμης Fz ψευδό μη-γραμμικού SWAN2	
	στη Σειρά 60, Fr = 0.2, λ/L = 0.8	91

ΚΕΦΑΛΑΙΟ 1⁰

1.1 ΕΙΣΑΓΩΓΗ

Το απόλυτο κριτήριο για μία επιτυχημένη σχεδίαση ενός πλοίου είναι το πόσο οικονομικά και με ασφαλή τρόπο ταξιδεύει ένα πλοίο σε ένα απρόβλεπτο, μερικές φορές και εχθρικό, θαλάσσιο περιβάλλον αφού οποιοδήποτε ατύχημα θα μπορούσε να σημαίνει απώλεια ζωής, περιουσίας και καταστροφή του περιβάλλοντος. Στην πραγματικότητα όμως η μελέτη ενός πλοίου βασίζεται ακόμα σε ημιεμπειρικούς κανόνες και στην εμπειρία του σχεδιαστή. Οι εμπειρικές μελέτες τέτοιου τύπου όμως δεν οδηγούν πάντα στις πιο αποδοτικές σχεδιάσεις. Πολύ περισσότερο μία τέτοια ημιεμπειρική προσέγγιση θα αποτύγχανε σε μία σύγχρονου τύπου σχεδίαση αφού δεν υπάρχει επαρκής εμπειρία για τέτοιου τύπου πλοία. Έτσι ένας καλός μελετητής θα πρέπει να έχει μία καλή γνώση των αποκρίσεων ενός πλοίου.

Ο William Froude και ο Alexei Nikolaevich Krylov ήταν οι πρώτοι επιστήμονες που μελέτησαν την υδροδυναμική πλευρά των κινήσεων ενός πλοίου. Η εξίσωση της κίνησης που κατέληξαν όμως εμπεριείχε μόνο τη μάζα, τις γραμμικοποιημένες δυνάμεις επαναφοράς και τη δύναμη διέγερσης Froude – Krylov. Αυτή η δύναμη διέγερσης προέκυπτε από την ολοκλήρωση της πίεσης του προσπίπτοντος κυματισμού πάνω στην μέση βρεχόμενη επιφάνεια. Η μέση βρεχόμενη επιφάνεια ισοδυναμικές διαταραχές που σχετίζονταν με την βρεχόμενη επιφάνεια του σκάφους όταν αυτό βρίσκεται σε ήρεμο νερό. Δεν μπόρεσαν όμως να αναλύσουν τις υδροδυναμικές διαταραχές που σχετίζονταν με την παρουσία της γάστρας του πολογιστικές ικανότητες που είναι διαθέσιμες σήμερα δεν υπήρχαν εκείνη την εποχή. Στην πορεία των χρόνων με την διατύπωση ανεπτυγμένων θεωριών για το γραμμικό πρόβλημα της συμπεριφοράς ενός πλοίου σε θαλάσσιο περιβάλλον με κυματισμούς και την αύξηση της υπολογιστικής ισχύος είμαστε πλέον σε θέση να διαχειριστούμε το πρόβλημα σε μη γραμμικό επίπεδο.

Το συνολικό πρόβλημα των κινήσεων ενός πλοίου είναι πλήρως μη γραμμικό και υπάρχουν ισχυρές μη γραμμικότητες σε κάθε πλευρά του προβλήματος.

Μη γραμμικότητες που σχετίζονται με την ελεύθερη επιφάνεια

- Οι συνθήκες ελεύθερης επιφάνειας είναι ισχυρά μη γραμμικές και περιέχουν ένα συνδυασμό μη γραμμικών όρων από άγνωστες ποσότητες και εφαρμόζονται σε μία άγνωστη επιφάνεια, η οποία είναι και μέρος της επιζητούμενης λύσης.
- Μπορεί να υπάρχουν μη γραμμικές αλληλεπιδράσεις ανάμεσα σε διαφορετικές συχνότητες κυματισμών με τη μορφή της ανταλλαγής ενέργειας οι οποίες μπορεί να οδηγήσουν σε μία ενίσχυση του πλάτους των υπαρχόντων κυματισμών ή/και την δημιουργία νέων κυματικών συνιστωσών.

Μη γραμμικότητες που σχετίζονται με την βρεχόμενη επιφάνεια του σώματος

- Μη ομογενείς συνοριακές συνθήκες που ορίζονται πάνω σε μία άγνωστη βρεχόμενη επιφάνεια εισάγουν σημαντικές μη γραμμικές επιδράσεις όπως οι αλληλεπιδράσεις μεταξύ των σταθερών και των ασταθών ροών που προκαλούνται από την παρουσία των κυμάτων. Οι πρωτοτάξιες επιδράσεις προσεγγίζονται στη γραμμική θεωρία με τη μορφή των αποκαλούμενων όρων m.
- 2. Μη λεπτόγραμμες μορφές γάστρας πολύ συχνά εισάγουν διαταραχές λόγω της παρουσίας τους στο νερό που δεν μπορούν να αγνοηθούν. Τα δεξαμενόπλοια είναι ένα προφανές παράδειγμα αφού έχουν μεγάλο λόγο πλάτους ως προς το μήκος πράγμα που μπορεί να οδηγήσει σε μεγάλες διαταραχές και μερικές φορές σε αποκολλήσεις της ροής.
- 3. Απότομες αλλαγές της γεωμετρίας κοντά στη ίσαλο επιφάνεια όπως μεγάλη εξοχή πλευρών (flaring) και μορφές πρύμνης που ένα μεγάλο κομμάτι όγκου στέκεται ακριβώς πάνω από την ήρεμη ελεύθερη επιφάνεια (βλ. σχήμα 1) προσθέτουν μη γραμμικά φαινόμενα τα οποία δεν μπορούν να λογαριαστούν από την γραμμική θεωρία.

Σχήμα 1-1 Απότομες αλλαγές της γεωμετρίας πάνω από την ίσαλο

Άλλες μη γραμμικότητες

- Η εξίσωση του Bernoulli που χρησιμοποιείται στον υπολογισμό της υδροδυναμικής πίεσης περιέχει τετραγωνικούς όρους παραγώγων για το δυναμικό της ταχύτητας.
- Η κίνηση ενός πλοίου στο νερό με μεγάλη ταχύτητα διέπεται από πολλά μη γραμμικά φαινόμενα όπως π.χ. της σφυρόκρουσης
- 3. Η επίδραση του ιξώδους του ρευστού στις περισσότερες ροές που προκαλούνται από τα κύματα μπορεί να αμεληθεί σε σχέση με την αδράνεια του και την βαρύτητα και έτσι στις περισσότερες υδροδυναμικές μελέτες αγνοείται. Όμως η απόσβεση λόγω των αλληλεπιδράσεων που δημιουργούνται από την ιξώδη συμπεριφορά του ρευστού μπορεί να είναι σημαντική σε περιπτώσεις των κινήσεων διατοιχισμού, ιδίως σε καταστάσεις συντονισμού σε πλευρικές θάλασσες.
- 4. Το ρηχό νερό δημιουργεί κύματα που δεν οδεύουν με την ίδια ταχύτητα και έτσι ένα απότομο κύμα μπορεί να αυξήσει το πλάτος του όσο κινείται πιο κοντά στην ακτή. Αυτό δημιουργεί ισχυρές μη γραμμικότητες.

Προκύπτει λοιπόν ότι οι μη γραμμικότητες αποτελούν ένα απαραίτητο κομμάτι της μελέτης και του σχεδιασμού των πλοίων σήμερα, τα οποία πολύ συχνά ταξιδεύουν σε ακραίες καιρικές συνθήκες και διαθέτουν μία ποικιλία από γεωμετρικές διαμορφώσεις τις οποίες η γραμμική θεωρία δεν μπορεί να διαχειριστεί.

1.2 Η Γραμμική Θεωρία

Η μελέτη της γραμμικής θεωρίας των κινήσεων ενός πλοίου θεμελιώνεται πάνω στην υπόθεση των St. Denis και Pierson, συγκεκριμένα στην αρχή της υπέρθεσης. Αξιώνουν ότι, τουλάχιστον για ένα θαλάσσιο περιβάλλον με κύματα μεγάλου μήκους, οι αποκρίσεις του πλοίου σε μία τυχαία κατάσταση θάλασσας μπορούν να αναπαρασταθούν από το άθροισμα των αποκρίσεων του πλοίου για κάθε συνιστώσα του φάσματος κυματισμών. Αυτή η θεωρία επιτρέπει στο να απλοποιηθεί το στοχαστικό πρόβλημα της κίνησης ενός πλοίου σε μία τυχαία θάλασσα σε ένα ντετερμινιστικό πρόβλημα αρμονικών κυματισμών απλοποιώντας το κατά πολύ.

Στην περίπτωση που ένα πλοίο ταξιδεύει σε ένα ήπιο θαλάσσιο περιβάλλον, η γραμμικοποίηση είναι δικαιολογούμενη και η γραμμική θεωρία παράγει εύλογα ακριβείς και πρακτικές προβλέψεις για τις κινήσεις ενός πλοίου σε κυματισμούς.

1.3 Η Μη Γραμμική Θεωρία

Παρά την επιτυχία της γραμμικής θεωρίας, η γραμμική υδροδυναμική ανάλυση είναι μόνο κατάλληλη για τη σχεδίαση και μελέτη γεωμετρικά απλών μορφών γάστρας οι οποίες ταξιδεύουν σε ένα ήπιο θαλάσσιο περιβάλλον. Εάν τα υπό μελέτη πλοία φέρουν μεγάλη εξοχή πλευρών και ιδιόμορφες μορφές πρύμνης και κινούνται σε περιβάλλοντα με ακραίες καιρικές συνθήκες με μεγάλα πλάτη κινήσεων τότε το να αγνοηθούν οι μη γραμμικότητες μπορεί να οδηγήσει σε μεγάλα λάθη, ακόμη περισσότερο και σε λανθασμένες προβλέψεις.

Η θεωρητική λύση του μη γραμμικού προβλήματος της συμπεριφοράς ενός πλοίου σε κυματισμούς κινείται σε δύο κατηγορίες, την αναλυτική προσέγγιση και την αριθμητική μέθοδο. Η αναλυτική προσέγγιση βασίζεται κυρίως σε μία συστηματική ανάπτυξη, με τη χρήση δυναμοσειράς, γύρω από το πλάτος του κύματος ή κάποια άλλη σχετικά μικρή ποσότητα όπως π.χ. τον λόγο του πλάτους ως προς το μήκος. Οι συνθήκες ελεύθερης επιφάνειας ομαδοποιούνται σε όρους με τάξη ε η οποία δηλώνει την μικρή ποσότητα στην ανάπτυξη. Εξισώνοντας τους όρους με της ίδιας τάξης στις δύο πλευρές των εξισώσεων παίρνουμε τις συνθήκες ελεύθερης επιφάνειας οι οποίες ισχύουν μέχρι ακριβώς την τάξη του όρου ε. Η κλασσική γραμμική θεωρία είναι η πρωτοτάξια προσέγγιση. Αυτή όμως η μεθοδολογία χρησιμοποιείται κυρίως στην διερεύνηση των αλληλεπιδράσεων ανάμεσα σε κύματα και σώματα που είτε είναι ακίνητα είτε κινούνται με πολύ μικρή ταχύτητα. Αυτό οφείλεται στο γεγονός ότι υπάρχει η δυνατότητα να μειωθεί η πολυπλοκότητα των δευτεροτάξιων συνθηκών της ελεύθερης επιφάνειας, οι οποίες αποτελούνται από τετραγωνικούς όρους του γραμμικού δυναμικού της ταχύτητας και των παραγώγων τους, μόνο στην περιοχή των χαμηλών ταχυτήτων. Εφαρμογές της παραπάνω μεθόδου έχουμε στην βιομηχανία των πλωτών εξεδρών με τη μελέτη των χαμηλής ταχύτητας κινήσεων drift και της απόσβεσής τους. Σε προβλήματα με σημαντική πρόσω ταχύτητα μία άμεση αριθμητική μέθοδος αποδεικνύεται ότι είναι ένα καταλληλότερο σχήμα για τις μελέτες της αντίστασης ενός πλοίου σε κυματισμούς και της συμπεριφοράς του σε κυματισμούς.

Στην παρούσα μελέτη ο κώδικας ακολουθεί την μέθοδο Eulerian Rankine Panel. Η συγκεκριμένη μέθοδος έχει πολύ καλή υπολογιστική απόδοση και οδηγεί σε ακριβή αποτελέσματα για τα χαρακτηριστικά των περιβαλλόντων ροών και των δυνάμεων που προκαλούνται με τον περιορισμό ότι δεν μπορεί να εξομοιώσει κάποια ακραία γεγονότα όπως την σφυρόκρουση και τη διαβροχή του καταστρώματος.

Προκειμένου να αντιμετωπιστούν οι μεγάλες κινήσεις του πλοίου σε ακραίες καταστάσεις θάλασσας εφαρμόστηκε η υπόθεση Weak Scatterer του Pawloski. Σε αυτή την υπόθεση μόνο οι διαταραχές που δημιουργεί το πλοίο με την κίνησή του στο νερό θεωρούνται μικρές και γραμμικοποιήσιμες γύρω από το μεγάλο πλάτος των κινήσεων του πλοίου και των κυματισμών που αυτό αντιμετωπίζει. Αυτή η θεωρία είναι πρακτική και χρήσιμη γιατί επιτρέπει να απομονώσουμε και να βαθμονομήσουμε τις μη γραμμικότητες που σχετίζονται με κύματα μεγάλου πλάτους και τις μεγάλες κινήσεις του πλοίου. Το πλεονέκτημα αυτής της προσέγγισης είναι ότι προσφέρει μία πιο ακριβή λύση που παρόλα αυτά διατηρεί ένα βαθμό γραμμικότητας στις συνθήκες ελεύθερης επιφάνειας. Παρόλο που δεν συμπεριλαμβάνει όλα τα μη γραμμικά φαινόμενα που έχουν αναφερθεί παραπάνω και δεν είναι μία πλήρως μη γραμμική λύση του προβλήματος της συμπεριφοράς ενός πλοίου σε κυματισμούς αυτό το μοντέλο λαμβάνει υπόψη τις πιο σημαντικές από αυτές. Επιπλέον τα περισσότερα πλοία σχεδιάζονται όσο το δυνατόν πιο λεπτόγραμμα και έτσι δεν δημιουργούν μεγάλες διαταραγές ακόμα και για μεγάλες κινήσεις. Σε αυτό το σημείο πρέπει να σημειώσουμε ότι η υπόθεση Weak Scatterer παραβιάζεται κοντά στην ίσαλο επιφάνεια του πλοίου όπου δημιουργούνται συχνά δέσμες spray εξ αιτίας της πρόσω κίνησης του πλοίου και της σφυρόκρουσης. Αυτά τα φαινόμενα όμως δεν εξετάζονται από τον κώδικα.

5

ΚΕΦΑΛΑΙΟ 2⁰

ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΚΔΟΣΕΩΝ ΤΟΥ ΚΩΔΙΚΑ SWAN, SWAN2 KAI SWAN4

2.1 Ομοιότητες στο θεωρητικό υπόβαθρο

Η πρώτη βασική ομοιότητα ανάμεσα στις δύο εκδόσεις του κώδικα είναι η υιοθέτηση ενός ρευστού το οποίο είναι ιδανικό δηλ. ατριβές και ασυμπίεστο με τη ροή να είναι αστρόβιλη. Αυτό συνεπάγεται ότι δεν υπάρχουν αποκολλήσεις της ροής καθώς και φαινόμενα δυναμικής ανώσεως. Με αυτό τον τρόπο μπορεί να οριστεί ένα δυναμικό $\Psi(\vec{x}, t)$ για το πεδίο ταχυτήτων των διαταραχών που διέπουν την κίνηση του πλοίου :

$$\vec{V}(\vec{x},t) = \nabla \Psi(\vec{x},t) = \frac{\partial \Psi}{\partial x}\vec{i} + \frac{\partial \Psi}{\partial y}\vec{j} + \frac{\partial \Psi}{\partial z}\vec{k} = V_x\vec{i} + V_y\vec{j} + V_z\vec{k}$$

Η παραδοχή ενός ιδανικού ρευστού είναι θεμιτή αφού για ρεαλιστικά μεγέθη σκαφών και ταχυτήτων μπορούμε να οδηγηθούμε στο ασφαλές συμπέρασμα ότι αδρανειακές και βαρυτικές δυνάμεις θα κυριαρχούν τη διάδοση των κυματισμών.

Και οι δύο εκδόσεις του κώδικα θεωρούν ότι το δυναμικό $\Psi(\vec{x},t)$ αποτελείται από ένα άθροισμα επιμέρους παραγόντων που διαμορφώνουν την ροή. Η σύνθεση του δυναμικού όμως είναι διαφορετική για κάθε έκδοση του κώδικα. Με δεδομένο το δυναμικό αυτό, οι δύο εκδόσεις εφαρμόζουν τις γνωστές οριακές συνθήκες του προβλήματος :

- Κινηματική συνθήκη στην ελεύθερη επιφάνεια. Η ελεύθερη επιφάνεια θεωρείται μία «υλική» επιφάνεια, με την έννοια ότι τα σωματίδια του ρευστού που βρίσκονταν αρχικά σε αυτή θα παραμείνουν σε αυτή σε όλες τις μετέπειτα χρονικά στιγμές.
- Δυναμική συνθήκη στην ελεύθερη επιφάνεια. Η πίεση σε αυτή θεωρείται ίση με την ατμοσφαιρική.
- Συνθήκη βρεχόμενης επιφάνειας σώματος. Στη βρεχόμενη επιφάνεια του σώματος το κάθετο διάνυσμα της ταχύτητας του ρευστού είναι ίσο με το αντίστοιχο της ταχύτητας του πλοίου στη συγκεκριμένη θέση.
- Σε όλο τον όγκο του ρευστού, σύμφωνα με την αρχή διατήρησης της μάζας, το δυναμικό ικανοποιεί την εξίσωση Laplace.

- Σε όλα τα όρια (ελεύθερη, βρεχόμενη επιφάνεια, πυθμένας) ισχύει η συνθήκη μη εισχώρησης.
- 6. Σε πολύ μεγάλη απόσταση από το πλοίο η ταχύτητα των διαταραχών τείνει προς το μηδέν. Αυτό έχει πολύ μεγάλη σημασία στην αντιμετώπιση του φαινομένου της ακτινοβολίας του πλοίου καθώς αυτό ταλαντώνεται γύρω από τη θέση ισορροπίας του.

Τέλος σαν αρχικές συνθήκες έχουμε ότι σε t = 0 η τιμή και η χρονική παράγωγος του δυναμικού $\Psi(\vec{x},t)$ είναι ίσες με το μηδέν.

Εφαρμόζοντας την αρχή διατήρησης της ορμής, το πεδίο πιέσεων p(x,t) μπορεί να συνδεθεί με τα κινηματικά μεγέθη της ροής. Έτσι η εξίσωση του Bernoulli παίρνει την μορφή :

$$p-p_{a}=-\rho\!\left(\frac{\partial\Psi}{\partial t}\!+\!\frac{1}{2}\nabla\Psi\cdot\nabla\Psi+gz\right)$$

όπου ρ η πυκνότητα του ρευστού, g η επιτάχυνση της βαρύτητας και p_a η ατμοσφαιρική πίεση η οποία λαμβάνεται ως μία πίεση αναφοράς.

Ολοκληρώνοντας τον παραπάνω τύπο οι κώδικες υπολογίζουν την ασκούμενη δύναμη στο πλοίο. Η ατμοσφαιρική πίεση μπορεί να ληφθεί ίση με το μηδέν αφού κάθε σταθερά θα εξαφανιστεί μετά από την ολοκλήρωση. Τέλος η συνολική πίεση και στις δύο εκδόσεις χωρίζεται σε τρία μέρη. Έχουμε δηλαδή :

$$\mathbf{p} = \mathbf{p}_1 + \mathbf{p}_m + \mathbf{p}_C$$

όπου η p_1 χρονικά μεταβαλλόμενη πίεση, p_m η πίεση μνήμης και p_C η υδροστατική πίεση για ακίνητο πλοίο.

2.2 Διαφορές στο θεωρητικό υπόβαθρο

Στην έκδοση SWAN2 το δυναμικό $\Psi(\vec{x}, t)$ αναλύεται σε τρία μέρη, το δυναμικό της βασικής ροής Φ, το δυναμικό της χρονικά μεταβαλλόμενης ροής φ και το δυναμικό της ροής μνήμης ψ. Έχουμε δηλαδή :

$$\Psi(\vec{x},t) = \Phi(\vec{x}) + \phi(\vec{x},t) + \psi(\vec{x},t)$$

Το δυναμικό της βασική ροής ορίζεται με βάση την θεωρία του Διπλού Σώματος (Double Body Theory) και όπως παρατηρούμε η τιμή του είναι ανεξάρτητη του χρόνου. Επίσης θεωρείται ότι είναι ο μεγαλύτερος συντελεστής της συνολικής ροής με τα δυναμικά της χρονικά μεταβαλλόμενης ροής και της ροής μνήμης να αποτελούν

μικρές διορθώσεις. Ουσιαστικά Φ ~ O(1), φ ~ O(ε), ψ ~ O(ε) όπου ε<<1. Το χρονικά μεταβαλλόμενο δυναμικό φ αναπαριστά την άμεση αντίδραση του ρευστού. Έχει τη μορφή του προβλήματος ανακούφισης της πίεσης που συνδέει τις χρονοεξαρτώμενες φορτίσεις στη συνοριακή συνθήκη του σώματος με την συνθήκη ελεύθερης επιφάνειας της ροής μνήμης. Αυτή η ποσότητα συνδέεται με το κομμάτι της ακτινοβολίας του προβλήματος. Το δυναμικό μνήμης ψ αναπαριστά την ροή που προκαλεί η παρουσία των κυμάτων και συνδέεται με τον προσπίπτοντα κυματισμό.

Στην έκδοση SWAN4 το δυναμικό $\Psi(\vec{x},t)$ αναλύεται σε τέσσερα μέρη, το δυναμικό της βασικής ροής Φ, το δυναμικό της χρονικά μεταβαλλόμενης ροής φ, το δυναμικό της ροής που προκαλείται από τον προσπίπτοντα κυματισμό φ₀ και το φ το οποίο αντιπροσωπεύει το δυναμικό της ροής που δημιουργεί το πλοίο ως διεγέρτης λόγω της κίνησής του στο νερό. Έχουμε δηλαδή :

$$\Psi(\vec{\mathbf{x}},t) = \Phi(\vec{\mathbf{x}},t) + \phi(\vec{\mathbf{x}},t) + \phi_0(\vec{\mathbf{x}},t) + \phi(\vec{\mathbf{x}},t)$$

Kai πάλι το δυναμικό της βασικής ροής υπολογίζεται με βάση τη θεωρία του Διπλού Σώματος και ουσιαστικά αποτελεί τη λύση του προβλήματος ενός πλοίου όταν αυτό κινείται μέσα από ένα κυματιστό στερεό σύνορο το οποίο καθορίζεται από τη μορφή του προσπίπτοντος κυματισμού (ισχύει η συνθήκη μη εισχώρησης στην επιφάνεια του πλοίου). Αν και σχετίζεται με τη σταθερή κίνηση του πλοίου παρόλα αυτά εδώ θεωρείται μία χρονοεξαρτώμενη ποσότητα. Αυτό αντιτίθεται στη γραμμική θεωρία που εφαρμόζεται στην έκδοση SWAN2. Το φ και εδώ συνδέεται με την ακτινοβολία ενώ το $φ_0$ με το δυναμικό του προσπίπτοντος κυματισμού. Σύμφωνα με την υπόθεση Weak Scatterer που εφαρμόζεται στο SWAN4 η βασική ροή Φ, η χρονικά μεταβαλλόμενη ροή φ και η ροή λόγω του προσπίπτοντος κυματισμού αποτελούν τους μεγαλύτερους συντελεστές της λύσης και το δυναμικό φ παρέχει κάποιες μικρές διορθώσεις. Εδώ λοιπόν έχουμε ότι Φ ~ O(1), φ ~ O(1), φ₀ ~ O(1), φ ~ O(ε) όπου ε<<1.

Εκτός από το δυναμικό οι δύο εκδόσεις του SWAN εφαρμόζουν με διαφορετικό τρόπο τις οριακές συνθήκες του προβλήματος. Στο SWAN2 δεδομένου ότι θεωρείται ότι το ύψος κύματος είναι μικρό η κινηματική και η δυναμική συνθήκη της ελεύθερης επιφάνειας αναπτύσσεται κατά Taylor γύρω από τη μέση βρεχόμενη επιφάνεια η οποία συμπίπτει με τη θέση ισορροπίας του πλοίου (z = 0). Στο SWAN4 όμως δεν

υπάρχει περιορισμός για το ύψος κύματος επομένως δεν μπορεί να γίνει εφαρμογή των συνθηκών ελεύθερης επιφάνειας στη μέση θέση. Οι συνθήκες εφαρμόζονται στο ακριβές ύψος του κύματος για κάθε χρονική στιγμή. Η οριακή συνθήκη πάνω στο σώμα στο SWAN2 εφαρμόζεται στην μέση θέση του σκάφους έπειτα από μία ανάπτυξη Taylor γύρω από αυτή, δεδομένου ότι έχει θεωρηθεί ότι οι κινήσεις του σκάφους είναι επαρκώς μικρού πλάτους. Από αυτή τη διαδικασία προκύπτουν οι λεγόμενοι όροι m, οι οποίοι προσφέρουν ένα σύνδεσμο ανάμεσα στην βασική ροή (ανεξάρτητη χρονικά ροή) και την χρονοεξαρτώμενη κυματική λύση (ταλαντωτική ροή). Στο SWAN4 η οριακή συνθήκη πάνω στο σώμα εφαρμόζεται στην στιγμιαία θέση του πλοίου πάνω στην ελεύθερη επιφάνεια, η οποία φέρει την μορφή ενός κυματιστού επιπέδου. Η επιφάνεια αυτή έχει διαμορφωθεί με βάση το πλάτος του κύματος που αντιστοιχεί στις περιβαλλοντικές συνθήκες που θέλουμε να μελετήσουμε το πλοίο. Εδώ οι όροι m, που κάνουν την εμφάνισή τους στη γραμμική λύση, δεν εμφανίζονται επειδή η ικανοποίηση της συνθήκης του σώματος στην στιγμιαία βρεχόμενη επιφάνεια αυτόματα συμπεριλαμβάνει τις επιδράσεις τους.

Δεδομένου του διαφορετικού ορισμού του δυναμικού ανάμεσα στις δύο εκδόσεις του κώδικα προκύπτει και διαφορετικός τρόπος υπολογισμού των πιέσεων. Στην έκδοση SWAN2 έχουμε :

$$p_{1} = -\rho \left(\frac{\partial}{\partial t}\right) - (\vec{U} - \nabla \Phi) \cdot \nabla)\phi,$$
$$p_{m} = -\rho \left(\left(\frac{\partial}{\partial t} - (\vec{U} - \nabla \Phi) \cdot \nabla\right)\psi - \left[\vec{U} \cdot \nabla \Phi - \frac{1}{2}\nabla \Phi \cdot \nabla \Phi\right]\right),$$
$$p_{c} = -\rho gz$$

Στην έκδοση SWAN4 έχουμε :

$$\begin{split} p_{1} &= -\rho \left\{ \begin{bmatrix} \frac{\partial}{\partial t} - \left(\vec{U} - \nabla \Phi - \nabla \phi - \nabla \phi_{0}\right) \cdot \nabla \right] \phi - \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\}, \\ p_{m} &= -\rho \begin{bmatrix} \frac{\partial}{\partial t} - \left(\vec{U} - \nabla \Phi - \nabla \phi - \nabla \phi_{0}\right) \cdot \nabla \end{bmatrix} \phi \\ &- \rho \left\{ \begin{bmatrix} \frac{\partial}{\partial t} - \left(\vec{U} - \nabla \Phi - \nabla \phi_{0}\right) \cdot \nabla \end{bmatrix} \phi_{0} - \frac{1}{2} \nabla \phi_{0} \cdot \nabla \phi_{0} \right\} \\ &- \rho \left\{ \begin{bmatrix} \frac{\partial}{\partial t} - \left(\vec{U} - \nabla \Phi\right) \cdot \nabla \end{bmatrix} \Phi - \frac{1}{2} \nabla \Phi \cdot \nabla \Phi \right\}, \end{split}$$

όπου \vec{U} η ταχύτητα του πλοίου, g η επιτάχυνση της βαρύτητας και z η κάθετη απόσταση από την ελεύθερη επιφάνεια

2.3 Διαφορές στην δομή-ανάπτυξη των δύο κωδίκων

Με βάση τις παραπάνω διαφορές στο θεωρητικό υπόβαθρο είναι λογικό η ανάπτυξη του κώδικα ανάμεσα στις δύο εκδοχές SWAN2 και SWAN4 να είναι διαφορετική. Ο κώδικας του SWAN2 είναι χωρισμένος σε τρία μέρη. Το πρώτο μέρος (MAKESSG) αναλαμβάνει να μοντελοποιήσει την γεωμετρία και να φτιάξει το υπολογιστικό πλέγμα. Το δεύτερο μέρος (SETUP) πάνω σε αυτό το πλέγμα εφαρμόζει την οριακή συνθήκη του σώματος και υπολογίζει την βασική ροή. Όπως έχει σημειωθεί και παραπάνω η βασική ροή στην έκδοση SWAN2 δεν είναι χρονοεξαρτώμενη και έτσι πραγματοποιείται σε ένα υπολογιστικό βήμα. Τέλος το τρίτο μέρος (SOLVE) αναλαμβάνει να εφαρμόσει τις συνθήκες ελεύθερης επιφάνειας υπολογίζοντας τη ροή που συνδέεται με τους κυματισμούς και να εξάγει τα αποτελέσματα της εξομοίωσης.

Το SWAN4 δεδομένου ότι εφαρμόζει όλες τις συνοριακές συνθήκες στην στιγμιαία ελεύθερη επιφάνεια ουσιαστικά περιλαμβάνει όλα τα μέρη του κώδικα SWAN2 σε ένα ενιαίο κομμάτι το οποίο σε κάθε χρονικό βήμα :

- 1. μοντελοποιεί την γεωμετρία και φτιάχνει το υπολογιστικό πλέγμα στη στιγμιαία θέση του σκάφους (Για t = 0 sec έχουμε απόκριση $\xi_i = 0$,με i = 1,...,6)
- εφαρμόζει όλες τις οριακές συνθήκες που διέπουν το πρόβλημα και υπολογίζει την απόκριση του σκάφους
- με βάση την απόκριση του σκάφους υπολογίζει τη νέα θέση του και φτιάχνει ξανά το πλέγμα

Η παραπάνω διαδικασία οδηγεί σε εξομοιώσεις που απαιτούν μεγαλύτερη υπολογιστική ισχύ για να γίνουν με αποτέλεσμα να έπρεπε να βρεθεί ένας τρόπος να μειωθούν οι απαιτήσεις της έκδοσης SWAN4. Σε αντίθεση με το ορθογωνικό πλέγμα που χρησιμοποιείται στο SWAN2, το SWAN4 χρησιμοποιεί ακτινικό πλέγμα. Στο σχήμα 2-1 φαίνεται μοντελοποιημένη η γάστρα του πλοίου της Σειράς 60 σε $C_B = 0.7$ ενώ στο σχήμα 2-2 φαίνεται η αντίστοιχη μοντελοποίηση που γίνεται στο SWAN4.

Η παρούσα μέθοδος μας επιτρέπει να έχουμε μεγάλο αριθμό τετραπλεύρων κοντά στο πλοίο, εκεί που χρειαζόμαστε μεγαλύτερη υπολογιστική ακρίβεια, ενώ μακριά από αυτό ο αριθμός αυτός μειώνεται, αυξάνοντας έτσι την απόδοση του κώδικα.

Σχήμα 2-2 Κάτοψη ακτινικού πλέγματος που εφαρμόζεται στην έκδοση SWAN4

2.4 Οι δυνατότητες της κάθε έκδοσης του κώδικα SWAN

Η έκδοση SWAN2 μπορεί να λύσει τόσο το μόνιμο πρόβλημα της αλληλεπίδρασης της γάστρας ενός πλοίου με το περιρρέον ρευστό για τον υπολογισμό της αντίστασης όσο και το μη μόνιμο πρόβλημα για την μελέτη της συμπεριφοράς ενός πλοίου σε κυματισμούς. Η έκδοση SWAN4 περιορίζεται στο να λύσει μόνο το μη μόνιμο πρόβλημα.

Δυνατότητες χειρισμού γεωμετριών πλοίου πολλαπλών τύπων

Η έκδοση SWAN2 μπορεί να χειριστεί πλοία πολλαπλών γεωμετριών. Εκτός από τα πλοία συμβατικού τύπου, έχει τη δυνατότητα να μοντελοποιήσει πλοία που φέρουν στην πρύμνη καθρέπτη με μεγάλο βύθισμα. Αυτό γίνεται με την επιβολή των συνθηκών Kutta. Υπάρχει ακόμα η δυνατότητα για εισαγωγή γεωμετριών καταμαράν, τριμαράν και πλοίων S.E.S. (Surface Effect Ships).

Η έκδοση SWAN4 αυτή τη στιγμή υποστηρίζει μόνο πλοία με συμβατική γεωμετρία. Δεν υποστηρίζει πλοία με καθρέπτη μεγάλου βυθίσματος, ενώ η μοντελοποίηση πλοίων με μικρό καθρέπτη (τύπου ducktail) γίνεται μόνο με τη χρήση τρισδιάστατων καμπυλών οι οποίες συνήθως δεν διατίθενται στα σχέδια γραμμών και πρέπει να δημιουργηθούν από το μελετητή (βλ. Κεφάλαιο 4).

Δυνατότητες εξομοίωσης του θαλάσσιου περιβάλλοντος

Η έκδοση SWAN2 μπορεί να εξομοιώσει σε υπέρθεση μέχρι 20 αρμονικούς κυματισμούς διαφορετικών συχνοτήτων και πλάτους. Δεν έχει τη δυνατότητα να δεχτεί φάσμα. Ο κώδικας μπορεί να κάνει εξομοιώσεις σε άπειρο και πεπερασμένο βάθος. Όμως θέλει προσοχή καθώς σε βάθη Η που ισοδυναμούν σε αριθμό Froude με βάση το βάθος $F_H = U/\sqrt{gH} = 1$ ο κώδικας δεν συμπεριφέρεται σωστά. Ο χρήστης θα πρέπει να αποφεύγει εξομοιώσεις στις περιοχές από $F_H = 0.9$ έως και $F_H = 1.1$. Κάτι τέτοιο δεν επηρέασε την δική μας μελέτη καθώς όλες οι εξομοιώσεις έγιναν σε άπειρο βάθος. Επίσης προσοχή πρέπει να δοθεί όταν γίνονται δοκιμές κοντά στην κρίσιμη περιοχή όπου $τ = \frac{1}{4}$. Στην δικιά μας μελέτη ο συνδυασμός ταχυτήτων πλοίου – συχνοτήτων κυματισμού βρισκόταν πολύ πάνω από αυτό το όριο.

Η έκδοση SWAN4 μπορεί να εξομοιώσει μόνο μία συχνότητα αρμονικών κυματισμών σε ένα πλάτος. Ούτε εδώ υπάρχει η δυνατότητα να δεχτεί ο κώδικας φάσμα. Επίσης μπορεί να εκτελέσει εξομοιώσεις μόνο σε άπειρο βάθος.

Δυνατότητες εξαγωγής των υπολογιστικών αποτελεσμάτων σε επεξεργασμένη μορφή Η έκδοση SWAN2 έχει την δυνατότητα εκτός από το να καταγράψει την χρονική ιστορία των υπολογισθέντων αποκρίσεων και δυνάμεων να υπολογίσει και τους αδιάστατους συντελεστές απόκρισης και επιταχύνσεων.

Η έκδοση SWAN4 υπολογίζει μόνο τη χρονική ιστορία των κινήσεων και των δυνάμεων. Αποτέλεσμα αυτών ήταν να δημιουργηθεί η αναγκαιότητα για ένα κώδικα που να κάνει αυτούς τους υπολογισμούς. Ο κώδικας αυτός γράφτηκε στο πρόγραμμα Matlab και παρουσιάζεται στο Παράρτημα 1.

2.5 Η ψευδό μη-γραμμική εκδοχή της έκδοσης SWAN2

Η έκδοση SWAN2 έχει τη δυνατότητα να κάνει υπολογισμούς εφαρμόζοντας ένα ψευδό μη γραμμικό μοντέλο για τους υπολογισμούς των υδροστατικών δυνάμεων και των δυνάμεων Froyde-Krylov. Όπως έχουμε ήδη αναφέρει η πλήρως γραμμική έκδοση του SWAN2 εφαρμόζει τις συνοριακές συνθήκες πάνω στη μέση ελεύθερη επιφάνεια. Αυτό θέτει την βάση για την επέκταση σε ένα ασθενώς μη γραμμικό μοντέλο. Προκειμένου να λυθεί το πρόβλημα το συνολικό δυναμικό της ροής διαταραχών Ψ και η ανύψωση της ελεύθερης επιφάνειας ορίζονται ως εξής :

$$\Psi(\vec{x},t) = \Psi(\vec{x},t-\Delta t) + \phi(\vec{x},t) + \psi(\vec{x},t)$$
$$\zeta(x,y,t) = \zeta(x,y,t-\Delta t) + \eta(x,y,t)$$

όπου η(x, y, t) συμβολίζεται η μεταβολή του πλάτους του κύματος στη συγκεκριμένη θέση x,y τη χρονική στιγμή t

Αν ορίσουμε τις ποσότητες $\Psi_p = \Psi(\vec{x}, t - \Delta t)$ και $\zeta_p = \zeta(x, y, t - \Delta t)$ τότε μπορούμε να κάνουμε ανάπτυξη των συνθηκών ελεύθερης επιφάνειας γύρω από την ανύψωση της ελεύθερης επιφάνειας του προηγούμενου βήματος υπολογισμού. Επομένως με αυτή τη μέθοδο οι συνθήκες της ελεύθερης επιφάνειας εφαρμόζονται στο $z = \zeta_p$, αντί του z = 0 που γίνεται στην πλήρως γραμμική εκδοχή. Ο υπολογισμός των ασκούμενων δυνάμεων γίνεται με βάση τις λύσεις που προκύπτουν για την άμεση βρεχόμενη επιφάνεια. Προφανώς όσο το ζ_p τείνει στο μηδέν τόσο τα αποτελέσματα της παραπάνω μεθόδου λύσης του προβλήματος θα προσεγγίζουν αυτά της γραμμικής εκδοχής.

ΚΕΦΑΛΑΙΟ 3⁰

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΚΑΦΩΝ

3.1 Εισαγωγή

Ο κώδικας SWAN αξιολογήθηκε στην παρούσα εργασία με τη χρήση 4 τύπων πλοίων για τα οποία είχαμε διαθέσιμα πειραματικά δεδομένα. Ο τύπος της γάστρας του κάθε πλοίου επιλέχθηκε ώστε να αντιπροσωπεύει ένα αυξανόμενο βαθμό πολυπλοκότητας τόσο ως προς τα γεωμετρικά χαρακτηριστικά (μη συμβατικές μορφές γάστρας) όσο για τις συνθήκες λειτουργίας (υπηρεσιακή ταχύτητα-μεγάλος αριθμός Froude). Ο Yifeng Huang στο διδακτορικό του [3] συνδέει το γεωμετρικό βαθμό πολυπλοκότητας μίας γάστρας με τον όρο «γραμμική – μη γραμμική γάστρα» ο οποίος θα εξηγηθεί παρακάτω.

3.2 Η έννοια της γραμμικής και μη γραμμικής γάστρας

Ως γραμμική γάστρα νοείται μία μορφή πλοίου η οποία δεν έχει έντονες μεταβολές

Σχήμα 3-1 Γραμμικοί πρωραίοι νομείς

στη γεωμετρία της. Η γραμμικότητα μίας γάστρας αφορά τη μορφή των εγκαρσίων τομών όπου οι γραμμές από τη βασική γραμμή αναφοράς (base line) ανοίγουν ομαλά ως προς το deck χωρίς έντονη εξοχή πλευρών. Το ίδιο ισχύει και για τη μορφή των ισάλων οι οποίες έχουν επίσης ομαλή μορφή δίχως αλλαγές στην καμπυλότητα. Η έλλειψη βολβού χαρακτηρίζει τις γραμμικής γάστρες. Αντιπροσωπευτικό παράδειγμα μίας γραμμικής γάστρας στην παρούσα εργασία είναι η Σειρά 60, η οποία και αποτελεί την βάση της αξιολόγησης του κώδικα. Περισσότερα για τα γεωμετρικά χαρακτηριστικά της

Σειράς 60 θα αναλυθούν στη παράγραφο 3.3.

Ως μη γραμμικές γάστρες θεωρούνται μορφές οι οποίες έχουν έντονες αλλαγές στα

Σχήμα 3-3 Βολβοειδής πλώρη

νομείς με βολβό και έντονη εξοχή πλευρών γεωμετρικά τους χαρακτηριστικά. Η μορφή των εγκαρσίων τομών παρουσιάζει έντονες αλλαγές όσο κινούμαστε προς το κατάστρωμα που εκφράζονται ως εξοχή πλευρών (flaring). Επίσης οι ίσαλοι έχουν σχήμα με εναλλασσόμενη καμπυλότητα στην πρύμνη. Αυτό εισάγει ένα ιδιαίτερο βαθμό πολυπλοκότητας στην αντιμετώπιση της μορφής της γάστρας από το

κώδικα. Ιδιαίτερα μη γραμμικές γάστρες θεωρούνται οι γάστρες των επιβατηγώνοχηματαγωγών σύγχρονου τύπου με την παρουσία του βολβού και το έντονη εξοχή πλευρών στη πλώρη, και την πρύμνη με skeg, μικρό καθρέπτη και duck tail.

Σχήμα 3-4 Μη γραμμικές ίσαλοι με εναλλαγές της καμπυλότητας στη πρύμνη

Στην παρούσα εργασία ως πλήρως μη γραμμική γάστρα θεωρήθηκε αυτή του επιβατηγού-οχηματαγωγού. Τα σχήματα 3-3, 3-4, 3-5, 3-6 απεικονίζουν μέρη από τη γάστρα του.

Ειδική μνεία πρέπει να γίνει στη γάστρα του ταχυπλόου σκάφους. Η γάστρα του δεν μπορεί παρά να θεωρηθεί μη γραμμική αφού οι απουσία συνέχειας στις γραμμές των εγκαρσίων τομών γύρω από τα chine δημιουργεί μεγάλες υδροδυναμικές επιδράσεις. Η παρούσα μέθοδος μοντελοποίησης με Rankine Panels δεν μας εξασφαλίζει ότι η γεωμετρία αντικατοπτρίζεται πλήρως μέσα στον κώδικα αφού δεν μπορεί να μοντελοποιήσει την παρουσία knuckles (όπως είναι τα δύο chines) στις γραμμές της γάστρας.

Σχήμα 3-7 Τρισδιάστατη αναπαράσταση της ταχύπλοης γάστρας NTUA LB55 Με έντονες γραμμές διακρίνονται τα δύο chines

3.3 Η Σειρά 60

Το μοντέλο που χρησιμοποιήθηκε στην παρούσα εργασία έχει $C_B = 0.7$. Ο κώδικας SWAN έχει αξιολογηθεί με χρήση αυτού του τύπου της γάστρας από το Yifen Huang [3]. Επαναλήφθηκε όμως η δοκιμή για να γίνει μία πρώτη γνωριμία με τον κώδικα καθώς και για την εξακρίβωση των αποτελεσμάτων.

Όλικό Μήκος	L _{OA}	103.8 m
Μήκος μεταξύ καθέτων	L _{BP}	100 m
Μέγιστο πλάτος	В	14.28 m
Κοίλο	D	8.55 m
Βύθισμα Σχεδίασης	Т	5.7 m
Εκτόπισμα	Δ	5854 tons
Ταχύτητα σχεδίασης	V_{S}	12.2 kn
Συντελεστής Γάστρας	C _B	0.7

Πίνακας 3-1 Γενικά στοιχεία πλοίου Σειράς 60

Η Σειρά 60 χαρακτηρίζεται ως μία γραμμική γάστρα. Η γεωμετρία της είναι απλή, χωρίς έντονες μεταβολές. Σε όλο το μήκος του πλοίου δεν συναντάμε εξοχή πλευρών. Το σχήμα των ισάλων είναι ομαλό, χωρίς σημαντικές αλλαγές στην καμπυλότητα. Επίσης απουσιάζουν βολβοί σε πλώρη και σε πρύμνη. Γενικά αποτελεί μια γάστρα που είναι εύκολο να μοντελοποιηθεί με την παρούσα μέθοδο και αναμένουμε τα υδροστατικά στοιχεία που υπολογίζει ο κώδικας να είναι ίδια με αυτά του υδροστατικού διαγράμματος.

$$\label{eq:sigma} \begin{split} \mathbf{\Sigma} \chi \acute{\mathbf{\eta}} \mu \alpha \; \mathbf{3}\textbf{-8} \\ \Sigma \chi \acute{\mathbf{\delta}} \mathbf{i} \mathbf{0} \; \mathrm{vom} \acute{\mathbf{k}} \mathbf{0} \mathbf{v} \Sigma \mathbf{c} \mathbf{i} \rho \acute{\mathbf{\alpha}} \mathbf{c} \; \mathbf{60} \; \mu \mathbf{c} \; \mathbf{C}_{\mathrm{B}} = 0.7 \end{split}$$

Η Σειρά 60 δοκιμάστηκε σε αριθμούς Froude 0.2, 0.25, 0.3 αδιάστατο πλάτος κύματος A/L = 0.01 και μετωπικούς κυματισμούς ($\beta = 180^{\circ}$) σε λόγους λ/L από 0.8 έως 1.8.

3.4 Το Πλοίο ψυγείο (Reefer)

Το συγκεκριμένο πλοίο έχει δοκιμαστεί με τον κώδικα SWAN έκδοση 2 (2002) στην διπλωματική εργασία του Δημήτριου Χαλκιά. Στην παρούσα εργασία τα αποτελέσματα της έκδοσης 2 (2002) συγκρίνονται με αυτά της μη γραμμικής έκδοσης 4 καθώς και με πειραματικά αποτελέσματα.

Ολικό Μήκος	L _{OA}	103 m
Μήκος μεταξύ καθέτων	L _{BP}	93.4 m
Μέγιστο πλάτος	В	17 m
Κοίλο	D	9.65 m
Βύθισμα Σχεδίασης	Т	6.5 m
Εκτόπισμα	Δ	6464 tons
Ταχύτητα σχεδίασης	V_{S}	17 kn
Συντελεστής Γάστρας	C _B	0.577

Πίνακας 3-2

Γενικά στοιχεία πλοίου ψυγείου

Η γεωμετρία της γάστρας του πλοίου ψυγείου είναι πολυπλοκότερη από αυτή της Σειράς 60. Αν και οι γραμμές που χρησιμοποιήθηκαν δεν περιλαμβάνουν πρωραίο

Σχήμα 3-9 Τρισδιάστατη απεικόνιση της πρύμνης του πλοίου ψυγείου

βολβό και οι γραμμές των νομέων είναι ομαλά μεταβαλλόμενες (απουσία εξοχής πλευρών) παρουσιάζονται προβλήματα στη μοντελοποίηση στην περιοχή της πρύμνης. Η πρύμνη χαρακτηρίζεται από την παρουσία βολβού και από ένα σημαντικό κομμάτι όγκου που βρίσκεται πάνω από την ελεύθερη επιφάνεια σε ήρεμο νερό. Αυτό όταν το πλοίο κινείται σε θάλασσα με κυματισμούς εισέρχεται στο νερό με τη βύθιση της πρύμνης και αλλάζει υδροδυναμικά χαρακτηριστικά της γάστρας πράγμα που εισάγει ισχυρά μη γραμμικά φαινόμενα που μένει να δούμε πως θα διαχειριστεί η μη γραμμική έκδοση του SWAN.

Το πλοίο ψυγείο δοκιμάστηκε σε αριθμούς Froude 0.24 και 0.29, αδιάστατο πλάτος κύματος A/L = 0.01 και μετωπικούς κυματισμούς (β = 180°) σε λόγους λ/L από 0.6 έως 2.2.

Σχέδιο Ισάλων πλοίου ψυγείου

Σχήμα 3-10

Σχήμα 3-11 Σχέδιο νομέων πλοίου ψυγείου

3.5 Το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)

Το πλοίο SUPERFAST IV κατασκευάστηκε το 1998 από τα ναυπηγεία Kvaerner Masa στο Turku της Φινλανδίας, για λογαριασμό της ελληνικής εταιρίας Superfast Ferries. Ο σκοπός ήταν να δρομολογηθεί στην ακτοπλοϊκή σύνδεση μεταξύ της Ελλάδας και της Ιταλίας. Το 2002 πωλήθηκε στην αυστραλιανή εταιρία TT-Line. Πλέον πραγματοποιεί δρομολόγια μεταξύ του Ντέβονπορτ και της Μελβούρνης. Το 2005 σε ένα από τα ταξίδια ήρθε αντιμέτωπο με ένα κύμα ύψους 20 μέτρων το οποίο προξένησε ζημιές στις υπερκατασκευές.

Ολικό Μήκος	L _{OA}	194 m
Μήκος μεταξύ καθέτων	L _{BP}	188.5 m
Μέγιστο πλάτος	В	25 m
Κοίλο	D	14.5 m
Βύθισμα Σχεδίασης	Т	6.5 m
Εκτόπισμα	Δ	17000 tons
Ταχύτητα σχεδίασης	V_{S}	28.5 kn
Συντελεστής Γάστρας	C _B	0.53

Πίνακας 3-3

Γενικά στοιχεία Ταχέως Επιβατηγού-Οχηματαγωγού SPERFAST III-IV

Σχήμα 3-12 Σχέδιο νομέων Επιβατηγού Οχηματαγωγού Πλοίου SUPERFAST III-IV

Σχήμα 3-13 Σχέδιο ισάλων Επιβατηγού Οχηματαγωγού Πλοίου SUPERFAST III-IV Το παραπάνω πλοίο από όλα τα συμβατικά πλοία που εξετάζονται στη παρούσα

Σχήμα 3-14 Νομείς πρύμνης πλοίου SUPERFAST με κοίλη διαμόρφωση

Σχήμα 3-15 Τροποποιημένοι νομείς πρύμνης πλοίου SUPERFAST με επίπεδη διαμόρουση

εργασία παρουσίασε τις περισσότερες δυσκολίες στη μοντελοποίηση του. Εκτός από την παρουσία βολβού στην πλώρη, η έντονη εξοχή των πλευρών στην ίδια περιοχή και την παρουσία μικρού καθρέπτη στην πρύμνη, οι γραμμές του πλοίου έφεραν πρυμναίους νομείς ιδιαίτερη σχεδίαση. Αυτοί φέρουν με χαρακτηριστική κοίλη διαμόρφωση ώστε να μπορεί να εγκατασταθεί έλικα μέγιστης διαμέτρου. Παρατηρούμε λοιπόν ότι το εμβαδό της εγκάρσιας τομής αυξάνεται απότομα όσο κινούμαστε προς το deck. Καμία έκδοση του κώδικα SWAN δεν μπόρεσε να διαγειριστεί αυτό το γεγονός. Συγκεκριμένα παρατηρούσαμε αποκλίνοντα υπολογιστικά βήματα τα οποία ισοδυναμούσαν με ακραίες τιμές κατακόρυφης κίνησης και προνευτασμού. Ως λύση στο παραπάνω πρόβλημα προτάθηκε η τροποποίηση αυτών των νομέων. Έγινε αντικατάσταση του κοίλου τμήματος με ευθείες γραμμές οι οποίες αποτελούσαν μέρος ενός τρισδιάστατου επιπέδου. Μετά από αυτή τη διαμόρφωση οι υπολογισμοί έγιναν κανονικά. Οι δε διαφορές στο εκτόπισμα είναι της τάξης του 1.5%.

SUPERFAST με επίπεδη διαμόρφωση Δεδομένου ότι η βρεχόμενη επιφάνεια αλλάζει σημαντικά με τη βύθιση της πρύμνης περιμένουμε να δούμε σημαντικές διαφορές μεταξύ της γραμμικής και μη γραμμικής έκδοσης του SWAN.

Το ταχύ επιβατηγό-οχηματαγωγό πλοίο SUPERFAST III-IV δοκιμάστηκε σε αριθμό Froude 0.26 και 0.33, αδιάστατο πλάτος κύματος A/L = 0.013 και μετωπικούς κυματισμούς ($\beta = 180^{\circ}$) σε λόγους λ/L από 0.5 έως 3.2.

3.6 Το Ταχύπλοο σκάφος Σειράς NTUA LB55

Στην παρούσα εργασία δοκιμάστηκε μία γάστρα της σειράς ταχυπλόων σκαφών του Εθνικού Μετσόβιου Πολυτεχνείου με λόγο μήκους ως προς πλάτος L/B = 0.55. Λόγω της αδυναμίας της μη γραμμικής έκδοσης του κώδικα SWAN4 να διαχειριστεί της γάστρες με πρύμνη τύπου καθρέπτη (την οποία διαθέτει το εν λόγω σκάφος) οι δοκιμές έγιναν μόνο στην έκδοση SWAN2 (2002). Αντικείμενο μελέτης ήταν η σύγκριση των αποτελεσμάτων πλήρως γραμμικής θεώρησης του προβλήματος με τα αντίστοιχα της μερικώς μη γραμμικής θεώρησης, που περιλαμβάνει τον υπολογισμό των υδροστατικών δυνάμενων και των δυνάμεων Froude-Krylov στην ακριβή βρεχόμενη επιφάνεια του σκάφους.

Ολικό Μήκος	L _{OA}	138.2 m
Μήκος μεταξύ καθέτων	L _{BP}	129.8 m
Μήκος Ισάλου	L_{WL}	128.69 m
Μέγιστο πλάτος	В	19.7 m
Βύθισμα Σχεδίασης	Т	3.622 m
Εκτόπισμα	Δ	3527.85 tons
Ταχύτητα σχεδίασης	V _S	30 kn
Συντελεστής Όγκου	Сы	1.61
Εκτοπίσματος		1.01

Γενικά στοιχεία Ταχυπλόου σκάφους Σειράς NTUA LB55

Σχήμα 3-16 Σχέδιο Νομέων Ταχυπλόου σκάφους Σειράς ΝΤUA LB55

Σχήμα 3-17 Σχέδιο Ισάλων Ταχυπλόου σκάφους Σειράς NTUA LB55

To tacúploo skápoc Seipác NTUA LB55 δοκιμάστηκε σε συντελεστή φόρτισης C_{DL} = 1.61 και 3, αριθμό Froude 0.34 και 0.68, αδιάστατα ύψη κύματος H/L = 0.25, 0.5, 0.75, 1.00 (1.2 στην περίπτωση του C_{DL} = 3) και μετωπικούς κυματισμούς (β = 180°) σε λόγους λ/L από 0.5 έως 3.8.

ΚΕΦΑΛΑΙΟ 4⁰

Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΓΑΣΤΡΑΣ ΣΤΟΝ ΚΩΔΙΚΑ SWAN

4.1 Εισαγωγή

Κάθε υπολογιστικό πακέτο απαιτεί την προσαρμογή των γραμμών του εξεταζόμενου σκάφους σε συγκεκριμένη νόρμα, οι οποία μπορεί να αναγνωριστεί από τον κώδικα. Συχνά οι ιδιαιτερότητες των κωδίκων δεν επιτρέπουν σε ορισμένα γεωμετρικά χαρακτηριστικά των πλοίων να περάσουν μέσα στην εξομοίωση. Παρακάτω αναλύεται η διαδικασία μοντελοποίησης της γάστρας των σκαφών για τις δύο εκδόσεις του κώδικα SWAN, SWAN2 και SWAN4.

4.2 Η μοντελοποίηση της γάστρας στην έκδοση SWAN2

Ο κώδικας SWAN2 είναι αρκετά ευέλικτος όσον αφορά τις γεωμετρίες που μπορεί να διαχειριστεί. Συγκεκριμένα δέχεται όλες τις μορφές των συμβατικών πλοίων καθώς και πλοία με πρύμνη τύπου καθρέπτη, οι οποίες βρίσκονται σε μεγάλο βύθισμα. Μέσα στο εγχειρίδιο του κώδικα περιγράφεται η γενική διαδικασία μοντελοποίησης ενός πλοίου. Παρόλα αυτά δεν γίνεται αναφορά στη μοντελοποίηση γαστρών που φέρουν ειδικές γεωμετρίες όπως π.χ. βολβοειδής πλώρες και νομείς με μη συμβατικό σχήμα. Όσον αφορά τους νομείς με μη συμβατικό σχήμα υπάρχουν κάποιες αδυναμίες στη διαχείριση τους. Τέτοιες αδυναμίες αφορούν τους πρυμναίους νομείς των ταχέων πλοίων, οι οποίοι φέρουν διαμόρφωση εναλλασσόμενης καμπυλότητας από τη base line μέχρι το deck ώστε να μπορούν να δεχτούν έλικες μέγιστης διαμέτρου. Η τυπική διαδικασία που ακολουθείται είναι να γίνεται παρεμβολή στις πατρικές γραμμές και να αντικαθίσταται τα καμπύλα κομμάτια με ευθείες (βλ. σχήμα 3-14 και σχήμα 3-15).

Μεθοδολογία διόρθωσης αρνητικής καμπυλότητας πρυμναίων νομέων

Στην προκειμένη περίπτωση χρησιμοποιήθηκε το πρόγραμμα Rhinoceros για την τρισδιάστατη επεξεργασία των γραμμών της γάστρας. Το πρόγραμμα αυτό έχει τη δυνατότητα να δέχεται αλλά και να εξάγει λίστες με σημεία, τα οποία και αναπαριστά στο χώρο. Έτσι η διαδικασία επεξεργασίας αλλά και εξόδου των γραμμών σε

συμβατή με τον κώδικα μορφή έγινε ευκολότερη. Κάθε αντίστοιχο σχεδιαστικό πακέτο είναι όμως κατάλληλο για την παρακάτω διαδικασία.

Το πρώτο βήμα που πρέπει να γίνει είναι να επιλεγούν οι νομείς που θα γίνει η επέμβαση. Στο σχήμα 4-1 φαίνονται οι νομείς του πλοίου SUPERFAST III-IV σε τρισδιάστατη προβολή. Ο νομέας πέραν του οποίου θα γίνει η τροποποίηση της αρνητικής καμπυλότητας σημειώνεται στο σχήμα με τα δύο βέλη. Ο συγκεκριμένος νομέας είναι ο πρώτος (καθώς κινούμαστε προς την πρύμνη) στον οποίο η καμπυλότητα αναστρέφεται.

Σχήμα 4-1 Τρισδιάστατη προβολή των νομέων του πλοίου SUPERFAST III-IV με σημειωμένο με βέλη τον πρώτο νομέα στο οποίο θα γίνει διόρθωση αρνητικής καμπυλότητας

Το επόμενο βήμα είναι να ορίσουμε την επιφάνεια η οποία θα διατρέχει το κομμάτι της πρύμνης που θα γίνει η επέμβαση. Στον πρώτο νομέα μετά το τέλος του skeg στη πρύμνη δημιουργούμε ένα ευθύγραμμο τμήμα στο ίδιο επίπεδο. Ο νομέας αυτός φαίνεται στο σχήμα 4-2 σημειωμένος με βέλος. Το σημείο έναρξης της ευθείας είναι το y = 0 και το πέρας της στο σημείο μέγιστης θετικής καμπυλότητας.

Σχήμα 4-2 Τρισδιάστατη αναπαράσταση νομέα που φέρει διόρθωση αρνητικής καμπυλότητας

Έχει μεγάλη σημασία οι διορθώσεις αρνητικής καμπυλότητας να καταλήξουν σε ομαλές water lines. Για αυτό το λόγο δεν μπορούμε να επαναλάβουμε την ίδια τροποποίηση και στους υπόλοιπους νομείς. Το επόμενο βήμα θα αφορά την τροποποίηση της καμπυλότητας του πρώτου νομέα που φέρει αρνητική καμπυλότητα (βλ. σχήμα 4-1). Το πρώτο σημείο της ευθείας (σημείο Α) βρίσκεται στο σημείο μέγιστης θετικής καμπυλότητας. Το δεύτερο σημείο της ευθείας (σημείο Β) επιλέγεται πάνω στην καμπύλη του νομέα έτσι ώστε το εμβαδόν πάνω από αυτήν να

καμπυλότητα

είναι εν δυνάμει ίσο με το εμβαδό από κάτω δίχως η ευθεία να ξεκινά πολύ κοντά στο y = 0. Στο σχήμα 4-3 φαίνεται ο νομέας προβεβλημένος στο επίπεδο y-z με την πατρική καμπύλη και την ευθεία τροποποίησης. Για να

ορίσουμε το επίπεδο θα φέρουμε μία ευθεία που θα ξεκινά από το σημείο B, η προβολή της οποίας στο x-y επίπεδο κείτεται παράλληλη στον άξονα x και τέμνει την επί y-z επιπέδου ευθεία του νομέα που δημιουργήσαμε στο προηγούμενο βήμα. Στο σχήμα 4-4 φαίνεται το επίπεδο καθώς και οι πατρικές γραμμές του πλοίου.

Σχήμα 4-4 Πρυμναίοι νομείς με αρνητική καμπυλότητα και επίπεδο πάνω στο οποίο βρίσκονται οι ευθείες που τροποποιούν την καμπυλότητα

Το τελευταίο βήμα αφορά τη δημιουργία των ευθέων τμημάτων των πρυμναίων νομέων. Σε κάθε θέση x βρίσκεται η τομή της επιφάνειας που δημιουργήσαμε με το επίπεδο y-z. Η τομή αυτή είναι μία ευθεία. Για να πάρουμε την τελική μορφή των τροποποιημένων νομέων προεκτείνουμε την ευθεία αυτή μέχρι να τμήσει την πατρική μορφή του εκάστοτε νομέα. Στο σχήμα 4-5 φαίνεται η επιφάνεια τροποποίησης, οι πατρικοί νομείς και τα ευθύγραμμα τμήματα.

Σχήμα 4-5 Επιφάνεια τροποποίησης των νομέων με αρνητική καμπυλότητα

Στη προκειμένη περίπτωση παρατηρούμε ότι δημιουργούνται σημεία απότομης αλλαγής της γεωμετρίας πάνω στη επιφάνεια της γάστρας (knuckles). Γνωρίζουμε όμως ότι ο κώδικας SWAN δεν μπορεί να μοντελοποιήσει τέτοια γεωμετρία οπότε με προσεκτική επιλογή των σημείων που θα εισάγουμε στον κώδικα μπορούμε να καταλήξουμε σε μία ομαλή μορφή. Φροντίζουμε λοιπόν να αποφύγουμε σημεία πάνω και πολύ κοντά στο knuckle.

Μεθοδολογία μοντελοποίησης πρωραίου βολβού

Σχεδόν όλα τα μοντέρνας σχεδίασης πλοία φέρουν κάποιας μορφής βολβό στην πλώρη, ο οποίος μάλιστα παίζει σημαίνοντα ρόλο στη συμπεριφορά του πλοίου σε κυματισμούς. Το παράδειγμα που βρίσκεται μέσα στο εγχειρίδιο του κώδικα αφορά πλώρη δίχως βολβό και έτσι δεν είναι σαφής ο τρόπος με τον οποίο μπορεί να μοντελοποιηθεί μία τέτοια γεωμετρία. Στην δικιά μας περίπτωση χρειάστηκε να γίνει μοντελοποίηση μίας γάστρας που φέρει βολβό μεγάλου μεγέθους. Η διαδικασία που ακολουθήθηκε περιγράφεται παρακάτω.

Στο σχήμα 4-6 φαίνεται η προβολή των γραμμών της πλώρης του πλοίου SUPERFAST III-IV στο επίπεδο x-z. Διακρίνεται το προφίλ του βολβού το οποίο κείτεται σε ορισμένα σημεία πίσω από τον πρώτο νομέα.

Σχήμα 4-6 Προβολή στο επίπεδο x-z των πρωραίων γραμμών του πλοίου SUPERFAST III-IV

Εδώ θα πρέπει να σημειώσουμε ότι στις οδηγίες του SWAN αναφέρεται ότι το κάθε σημείο πρέπει να είναι πιο μπροστά και πιο πάνω από το προηγούμενο. Στην προκειμένη περίπτωση όμως βλέπουμε ότι όσο προχωράμε από την base line προς τα πάνω τα σημεία δεν ακολουθούν τη λογική που περιγράφεται μέσα στο εγχειρίδιο. Παρόλα αυτά εμείς δηλώνουμε τα σημεία ακολουθώντας την καμπύλη του βολβού αγνοώντας το γεγονός ότι οι συντεταγμένες (x,z) δεν έχουν αύξουσα τάση όσο απομακρυνόμαστε από τη base line. Το σχήμα 4-7 δείχνει με ανάλογη αρίθμηση την σειρά δήλωσης των σημείων από την base line προς το deck.

Σχήμα 4-7 Σημεία γεωμετρίας πλοίου SUPERFAST III-IV προφίλ πλώρης και πρώτου νομέα όπως δηλώνονται στον κώδικα SWAN

Στο σχήμα 4-7 με κύκλο υποδηλώνονται τα σημεία του προφίλ της πλώρης και με τετράγωνο τα σημεία του πρώτου πλωριού νομέα. Παρατηρούμε ότι τα σημεία 7 έως 18 έχουν μικρότερη τετμημένη x από το σημείο 1. Αυτό δεν δημιουργεί πρόβλημα στην μοντελοποίηση. Μοναδικός περιορισμός της διαδικασίας είναι το σημείο A να έχει μικρότερη τετμημένη x από το σημείο 1.

4.3 Η μοντελοποίηση της γάστρας στην έκδοση SWAN4

Στην έκδοση SWAN4 μπορούν να εφαρμοστούν όλες οι τεχνικές που εφαρμόζονται στην έκδοση SWAN2. Όμως η έκδοση SWAN4 έχει ένα πολύ σημαντικό περιορισμό. Δεν δέχεται πλοία όπου ο τελευταίος νομέας έχει μορφή καθρέπτη. Με αυτόν τον περιορισμό αναγκαστικά αφήνεται έξω η κατηγορία γαστρών ολισθακάτων και ταχυπλόων ημιεκτοπίσματος. Όμως παρουσία καθρέπτη με μικρό βύθισμα εντοπίζεται και σε πλοία τα οποία δεν ολισθαίνουν όπως π.χ. τα σύγχρονης σχεδίασης ταχέα επιβατηγά-οχηματαγωγά. Δεδομένου ο κώδικας απαιτεί προφίλ πρύμνης ως τελευταίο δηλωθέν σημείο γεωμετρίας εφαρμόστηκε ένας διαφορετικός τρόπος στην μοντελοποίηση της γεωμετρίας της πρύμνης τέτοιου τύπου πλοίου.

Όπως δηλώνεται στο εγχειρίδιο χρήσης του SWAN είναι δυνατή η περιγραφή της γάστρας με τη χρήση τρισδιάστατων καμπυλών. Επιλέξαμε λοιπόν να δηλώσουμε την παρουσία της ιδιόμορφης πρύμνης με χρήση τομών σε κάποια γωνία από το επίπεδο y-z.

Στο σχήμα 4-8 φαίνεται η προβολή των γραμμών του πλοίου SUPERFAST III-IV στο επίπεδο x-y με χρήση των οποίων μοντελοποιήθηκε η γεωμετρία στην έκδοση SWAN2. Στο σχήμα 4-9 φαίνονται οι αντίστοιχες γραμμές που χρησιμοποιήθηκαν στο SWAN4. Παρατηρούμε ότι οι τομές που έχουμε επιλέξει βρίσκονται πάνω στο επίπεδο y-z εκτός από την περιοχή της πρύμνη που έχουν κάποια απόκλιση από αυτό.

Σχήμα 4-9 Προβολή στο επίπεδο x-z των γραμμών που χρησιμοποιήθηκαν στο SWAN4

Στην μοντελοποίηση ενός πλοίου στο SWAN είναι πολύ σημαντικό η κάθε καμπύλη της γεωμετρίας να μην τέμνει τις διπλανές τις. Πρέπει να δοθεί προσοχή λοιπόν ώστε το σημείο έναρξης των κεκλιμένων καμπυλών της πρύμνης να μην είναι το ίδιο. Στο σχήμα 4-10 φαίνεται μία μεγέθυνση του πρυμναίου τμήματος του σχήματος 4-9. Προκειμένου ο κώδικας να αντιληφθεί σωστά τη γεωμετρία θα πρέπει τα σημεία της καμπύλης 1 να έχουν τετμημένη x μεγαλύτερη από την αντίστοιχη της καμπύλης 2, της καμπύλης 2 μεγαλύτερης από την 3 κ.ο.κ.

Σχήμα 4-10 Απεικόνιση λεπτομέρειας πρύμνης της προβολής στο επίπεδο x-z των γραμμών μοντελοποίησης του πλοίου SUPERFAST III-IV στο SWAN4

Το επόμενο βήμα είναι η δημιουργία των κεκλιμένων καμπυλών. Κανένα σχέδιο γραμμών δεν περιέχει τέτοιες καμπύλες επομένως θα πρέπει να τις δημιουργήσουμε εμείς με βάσει της γραμμές που έχουμε από τα σχέδια του πλοίου. Εδώ πρέπει να σημειώσουμε ότι δεν είναι απαραίτητο να καταλήξουμε σε ολοκληρωμένες καμπύλες στο χώρο αλλά μας ενδιαφέρει αποκλειστικά να βρούμε ένα ικανό αριθμό σημείων ο οποίος να μπορεί να τις περιγράψει στο SWAN.

Το πρώτο στάδιο είναι να φέρουμε τις προβολές των καμπυλών στο επίπεδο x-z, οι οποίες θα έχουν τη μορφή ευθείας. Αυτές οι ευθείες είναι φαίνονται καθαρά στα σχήματα 4-9 και 4-10. Σκοπός μας είναι να βρούμε τα σημεία τομής αυτών των ευθειών αν τις προβάλουμε πάνω στις γραμμές του πλοίου. Για καλύτερη αναπαράσταση των τρισδιάστατων καμπυλών δεν θα βρούμε μόνο τομές με τους νομείς αλλά θα χρησιμοποιήσουμε και τις water lines καθώς και τα buttocks.

Στο πρόγραμμα Rhinoceros αυτό έγινε χρησιμοποιώντας το object snapping. Με ενεργοποιημένη την επιλογή Int (Intersection) στο top viewport προσπαθούμε να «πιάσουμε» τα σημεία τομής των διαγωνίων με τις γραμμές του σκάφους. Επιβεβαιώνουμε τη σωστή θέση των σημείων στο perspective viewport. Αυτό αναφέρεται γιατί υπάρχει περίπτωση το Rhinoceros να δημιουργήσει σημείο πάνω στην ευθεία που προσπαθούμε να προβάλουμε και όχι πάνω στις γραμμές στου πλοίου.

Αφού δημιουργήσουμε τα σημεία τα συντάσσουμε στη μορφή που μας υπαγορεύει το manual όπως κάνουμε και με τους νομείς.

ΚΕΦΑΛΑΙΟ 5⁰

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

5.1 Εισαγωγή

Τα υπολογιστικά αποτελέσματα για κάθε τύπο πλοίου παρουσιάζονται με βάση το πόσο μη γραμμική χαρακτηρίζεται η γεωμετρία της κάθε γάστρας. Όλα τα πλοία δοκιμάστηκαν στα προγράμματα SWAN2, SWAN4 εκτός από το ταχύπλοο της σειράς NTUA που δοκιμάστηκε μόνο στην έκδοση SWAN2. Οι συγκρίσεις γίνονται με βάση τους συντελεστές απόκρισης του κάθε τρόπου κίνησης. Εδώ θα πρέπει να σημειώσουμε ότι ο κάθε συντελεστής κίνησης δεν είναι για όλα τα πλοία ο ίδιος αφού η μορφή του εξαρτάται τη μορφή στην οποία είναι εκφρασμένα τα πειραματικά αποτελέσματα.

Σε κάθε πλοίο θα αναλύεται η μορφή των αδιάστατων συντελεστών απόκρισης καθώς και θα υπάρχει σχολιασμός των υπολογιστικών αποτελεσμάτων.

Υπόμνημα των διαγραμμάτων

Με την ένδειξη "Experiment" σημειώνονται τα αποτελέσματα των πειραματικών δοκιμών.

Με την ένδειξη "Swan4" σημειώνονται οι εξομοιώσεις που έγιναν με τη χρήση της έκδοσης 4 του κώδικα SWAN.

Με την ένδειξη "LFK – Swan2" σημειώνονται οι εξομοιώσεις που έγιναν με τη χρήση της πλήρως γραμμικής εκδοχής της έκδοσης 2 του κώδικα SWAN.

Με την ένδειξη "NLFK – Swan2" σημειώνονται οι εξομοιώσεις που έγιναν με τη χρήση της ψευδό μη-γραμμικής εκδοχής της έκδοσης 2 του κώδικα SWAN.

5.2 Παρουσίαση των υπολογιστικών αποτελεσμάτων για τη Σειρά 60

Η Σειρά 60 δοκιμάστηκε σε αριθμούς Froude 0.2, 0.25, 0.3 αδιάστατο πλάτος κύματος A/L = 0.01 και μετωπικούς κυματισμούς (β = 180°) σε λόγους λ/L από 0.8 έως 1.8. Πειραματικά αποτελέσματα είχαμε διαθέσιμα μόνο για την ταχύτητα που αντιστοιχεί σε Fr 0.2. Οι υπόλοιπες δοκιμές έγιναν για να διερευνηθεί η συμπεριφορά του κώδικα σε μεγαλύτερους αριθμούς Froude. Στην περίπτωση του Fr 0.2 υπολογίστηκαν οι συντελεστές RAO κατακόρυφης κίνησης και προνευτασμού ενώ στις περιπτώσεις 0.25, 0.3 υπολογίστηκαν και οι αντίστοιχοι συντελεστές για τις επιταχύνσεις στην πλώρη, στην πρύμνη και στο κέντρο βάρους του πλοίου.

Για τους αδιάστατους συντελεστές αποκρίσεων ισχύουν τα εξής :

Se suntelest
ήFr0.2 écoume :

$$RAO_{HEAVE} = \frac{\xi_3}{A}, RAO_{PITCH} = \frac{L \times \xi_5(rad)}{A}$$

Σε συντελεστές Fr0.25 και 0.3 έχουμε :

$$RAO_{HEAVE} = \frac{\xi_3}{A}, RAO_{PITCH} = \frac{\xi_5(deg)}{\kappa \times A}, RAO_{AC} = \frac{m/s^2}{A}$$

όπου ξ_3 η απόκριση κατακόρυφης κίνησης του πλοίου σε m, A = 1 m το πλάτος του κύματος, L = 100 m το μήκος του πλοίου, ξ_5 η απόκριση προνευτασμού του πλοίου σε deg ή rad, κ = 2πλ όπου λ το μήκος κύματος σε m. Το m/s² καταδεικνύει την τιμή της επιτάχυνσης.

Σχήμα 5-1 Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.20

RAO Pitch Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.2 - β = 180

Σχήμα 5-2 Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.20

Σχήμα 5-3 Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.25

RAO Pitch Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.25 - β = 180

Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο Σειράς 60 σε Fr 0.25

Σχήμα 5-5 Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο Σειράς 60 σε Fr 0.25

RAO Aceleration LCG Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.25 - β = 180

Σχήμα 5-6 Διάγραμμα συντελεστών RAO Acceleration LCG για το πλοίο Σειράς 60 σε Fr 0.25

Σχήμα 5-7 Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο Σειράς 60 σε Fr 0.25

RAO Heave Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.3 - β = 180

Σχήμα 5-8 Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο Σειράς 60 σε Fr 0.3

Σχήμα 5-9 Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο Σειράς 60 σε Fr0.3

RAO Aceleration Bow Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.3 - β = 180

Σχήμα 5-10 Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο Σειράς 60 σε Fr 0.3

Σχήμα 5-11 Διάγραμμα συντελεστών RAO Acceleration LCG για το πλοίο Σειράς 60 σε Fr 0.3

RAO Aceleration Stern Series 60 (C_B = 07) A/L = 0.01 - Fr = 0.3 - β = 180

Σχήμα 5-12 Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο Σειράς 60 σε Fr 0.3

Απόκριση Heave Series 60 - C_B = 0.7 - A/L = 0.01 - β = 180°

Σχήμα 5-13

Διάγραμμα σύγκρισης συντελεστών αποκρίσεων RAO Κατακόρυφης κίνησης στην έκδοση SWAN4 σε Fr 0.2, 0.25, 0.3

2 1.8 1.6 1.4 1.2 ξ_s/kA 1 0.8 0.6 0.4 0.2 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 λ/L Swan4 Fr.020 — — — Swan4 Fr0.25 - - - - Swan4 Fr.030

Απόκριση Pitch Series 60 - C_B = 0.7 - A/L = 0.01 - β = 180°

Σχήμα 5-14 Διάγραμμα σύγκρισης συντελεστών αποκρίσεων RAO Κατακόρυφης κίνησης στην έκδοση SWAN4 σε Fr 0.2, 0.25, 0.3

5.2.1 Σχολιασμός των αποτελεσμάτων της Σειράς 60

Η Σειρά 60 έχει μία αρκετά γραμμική γάστρα. Έτσι λοιπόν δεν περιμένουμε έντονες διαφορές μεταξύ των δύο εκδόσεων του κώδικα.

Σε αριθμό Fr 0.2 όπου έχουμε διαθέσιμα πειραματικά αποτελέσματα παρατηρούμε ότι στην περίπτωση της κατακόρυφης κίνησης οι εκτιμήσεις της έκδοσης SWAN4 είναι πιο κοντά στα πειράματα από ότι οι δύο εκδοχές τις έκδοσης SWAN2. Στην περίπτωση του προνευτασμού όμως οι εκτιμήσεις του SWAN2 βρίσκονται πιο κοντά στα πειράματα. Το SWAN4 υπολογίζει μεγαλύτερους συντελεστές απόκρισης σε όλο το φάσμα των συχνοτήτων.

Οι δοκιμές σε αριθμό Froude = 0.25 έδειξαν ότι στην περίπτωση της κατακόρυφης κίνησης η έκδοση SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις οι οποίες μάλιστα έχουν πιο απότομη μεταβολή από τις αντίστοιχες αποκρίσεις που υπολογίζονται από τον κώδικα SWAN2. Στην περίπτωση του προνευτασμού και πάλι το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις στα μικρότερα μήκη κύματος κάτι που ανατρέπεται σε λόγο $\lambda/L = 2.2$. Εκεί ο κώδικας SWAN2 υπολογίζει μεγαλύτερες αποκρίσεις. Στις επιταχύνσεις της πλώρης το SWAN4 υπολογίζει ελαφρώς μεγαλύτερες επιταχύνσεις μέχρι το σημείο $\lambda/L = 1.9$. Μέχρι αυτή την τιμή το SWAN2 υπολογίζει μεγαλύτερες αποκρίσεις που υπολογίζει το SWAN4. Στις επιταχύνσεις στο LCG παρατηρούμε ταύτιση των δύο εκδόσεων στα άκρα των λόγων λ/L και μεγαλύτερες αποκρίσεις για το SWAN4 στο υπόλοιπο κομμάτι. Τέλος οι επιταχύνσεις της πρύμνης μοιάζουν με τις αντίστοιχες τις πλώρης. Μέχρι τον λόγο $\lambda/L = 2$ το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις ενώ από εκεί και πέρα οι ρόλοι αντιστρέφονται.

Στον αριθμό Froude = 0.3 και στην περίπτωση της κατακόρυφης κίνησης βλέπουμε ότι το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις από την έκδοση SWAN2, ειδικά στην περιοχή λ/L 1.2 έως 2. Στην απόκριση προνευτασμού εμφανίζονται οι πρώτες ιδιομορφίες στην καμπύλη των αποκρίσεων που υπολογίζει το SWAN4. Συγκεκριμένη στην περιοχή των λ/L από 1.1 έως 1.6 η τιμή των συντελεστών απόκρισης δεν ακολουθεί ομαλό ρυθμό μεταβολής. Σε αυτή την περιοχή έγιναν πρόσθετοι υπολογισμοί όπως φαίνεται από τα πυκνά σημεία στο διάγραμμα προκειμένου να βεβαιωθεί η παρεκκλίνουσα συμπεριφορά του κώδικα που αρχικά έκανε την παρουσία της σε συχνότητες που αντιστοιχούν σε $\lambda/L = 1.4$. Όπως παρατηρούμε η καμπύλη επανακτά την κανονική της μορφή σε συγνότητες που αντιστοιχούν σε λ/L = 1.6 και πέρα. Αναμενόμενο είναι αυτή η παρεκκλίνουσα συμπεριφορά να επηρεάσει και τις τιμές των συντελεστών επιταχύνσεων. Στην επιτάχυνση της πλώρης παρατηρούμε ότι τα αποτελέσματα των δύο εκδόσεων του κώδικα SWAN μέχρι τη συχνότητα που αντιστοιχεί σε $\lambda/L = 1.4$ είναι αρκετά κοντά, μάλιστα φαίνεται ότι η παρεκκλίνουσα συμπεριφορά του προνευτασμού οδηγεί σε υπολογισμούς επιταχύνσεων από τις δύο εκδόσεις του κώδικα SWAN με πολύ μικρή απόκλιση μεταξύ τους. Σε συχνότητες που αντιστοιχούν σε μεγαλύτερους λόγους λ/L από 1.5 φαίνεται ότι οι συντελεστές απόκρισης του SWAN4 αυξάνουν την τιμή τους και αρχίζουν να κινούνται στο ίδιο μοτίβο που είδαμε στις περιπτώσεις με Fr 0.2 και 0.25. Και πάλι η καμπύλη του SWAN4 συναντά τις καμπύλες του SWAN2 στο $\lambda/L =$ 2 από όπου και φαίνεται να κινείται χαμηλότερα μέχρι το $\lambda/L = 3$. Τα αποτελέσματα των συντελεστών επιτάχυνσης στο LCG για τις δύο εκδόσεις βρίσκονται αρκετά κοντά σε μικρά και μεγάλα μήκη κύματος με το SWAN4 να υπολογίζει μεγαλύτερες αποκρίσεις από $\lambda/L = 1.2$ με 2. Οι επιταχύνσεις στην πρύμνη είναι αρκετά κοντά η μία με την άλλη στις δύο εκδόσεις εκτός από τις περιοχές $\lambda/L = 1$ με 1.4 και 2 με 3 όπου το SWAN4 υπολογίζει μεγαλύτερες και χαμηλότερες τιμές αντιστοίχως.

Τα τελευταία δύο διαγράμματα αφορούν τη σύγκριση των αποκρίσεων κατακόρυφης κίνησης και προνευτασμού στην έκδοση SWAN4 σε αριθμούς Froude 0.2, 0.25 και 0.3. Στην περίπτωση της κατακόρυφης κίνησης παρατηρούμε μία ομαλή αύξηση των αποκρίσεων από τη μία ταχύτητα στην άλλη. Φαίνεται όμως ότι όσο μεγαλώνει η ταχύτητα τόσο απαιτείται όλο και μεγαλύτερο μήκος κύματος για να συγκλίνει ο συντελεστής απόκρισης στο 1. Η περίπτωση του προνευτασμού είναι ιδιάζουσα. Οι καμπύλες για Fr 0.2 και Fr 0.25 έχουν μεταξύ τους μία ομαλή σχέση. Η καμπύλη Fr 0.3 παρουσιάζει τις ιδιομορφίες που συζητήσαμε παραπάνω. Παρατηρούμε επίσης ότι οι καμπύλες συγκλίνουν με διαφορετικό ρυθμό στο 1.

5.2.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για τη Σειρά 60

Συνολικά παρατηρούμε ότι η μη γραμμική έκδοση του κώδικα SWAN, SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις από την έκδοση SWAN2. Αυτό είναι εμφανές σε όλα τα διαγράμματα. Οι μεγαλύτερες αποκλίσεις σημειώνονται σε μήκη κύματος κοντά στο μήκος του πλοίου ενώ αντίθετα σε μικρά μήκη κύματος τα αποτελέσματα είναι πολύ κοντά. Σε μεγάλα μήκη κύματος είναι λογικό οι δύο εκδόσεις να παράγουν συναφή αποτελέσματα αφού το πρόβλημα γενικά γίνεται γραμμικό. Σε σύγκριση με τα πειραματικά αποτελέσματα παρατηρούμε μία υπεροχή της έκδοσης SWAN4 στους υπολογισμούς της κατακόρυφης κίνησης η οποία όμως δεν υπάρχει στους υπολογισμούς τις απόκρισης προνευτασμού.

Οι διαφορές μεταξύ των δύο εκδοχών του SWAN2, πλήρως γραμμική και ψευδό μηγραμμική, είναι πολύ μικρές κάτι που είναι αναμενόμενο από τη γεωμετρία της γάστρας.

Ακόμα και σε μία πλήρως γραμμική γάστρα όπως αυτή της Σειράς 60 παρατηρούμε ότι το SWAN4 εμφανίζει μη γραμμικά αποτελέσματα όσο ανεβαίνουν οι ταχύτητες και οι μη γραμμικοί συντελεστές του προβλήματος γίνονται πιο έντονοι. Μένει λοιπόν να δούμε πώς θα συμπεριφερθεί στις πιο πολύπλοκες γεωμετρίες του πλοίου ψυγείου και του επιβατηγού-οχηματαγωγού.

5.3 Παρουσίαση των υπολογιστικών αποτελεσμάτων για το πλοίο ψυγείο (Reefer)

Το πλοίο ψυγείο δοκιμάστηκε σε αριθμούς Froude 0.24 και 0.29, αδιάστατο πλάτος κύματος A/L = 0.01 και μετωπικούς κυματισμούς ($\beta = 180^{\circ}$) σε λόγους λ/L από 0.6 έως 2.2. Έγιναν υπολογισμοί για τις αποκρίσεις κατακόρυφης κίνησης, προνευτασμού και τις επιταχύνσεις σε πλώρη και πρύμνη.

Οι αδιάστατοι συντελεστές των αποκρίσεων έχουν ως εξής :

$$RAO_{HEAVE} = \frac{\xi_3}{A}, RAO_{PITCH} = \frac{\xi_5(deg)}{\kappa \times A}, RAO_{AC} = \frac{m/s^2}{A}$$

όπου ξ_3 η απόκριση κατακόρυφης κίνησης του πλοίου σε m, A το πλάτος του κύματος, ξ_5 η απόκριση προνευτασμού του πλοίου σε deg, $\kappa = 2\pi\lambda$ όπου λ το μήκος κύματος σε m. To m/s² καταδεικνύει την τιμή της επιτάχυνσης.

Σχήμα 5-16 Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο ψυγείο (Reefer) σε Fr0.24

RAO Aceleration Bow Reefer Original Hull A/L = 0.01 - Fr = 0.24 - β = 180°

Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο ψυγείο (Reefer) σε Fr 0.24

Σχήμα 5-18 Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο ψυγείο (Reefer) σε Fr 0.24

RAO Heave Reefer Original Hull A/L = 0.01 - Fr = 0.29 - β = 180°

Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το πλοίο ψυγείο (Reefer) σε Fr 0.29

Σχήμα 5-20 Διάγραμμα συντελεστών RAO Προνευτασμού για το πλοίο ψυγείο (Reefer) σε Fr 0.29

RAO Aceleration Bow Reefer Original Hull A/L = 0.01 - Fr = 0.29 - β = 180°

Διάγραμμα συντελεστών RAO Acceleration Bow για το πλοίο ψυγείο (Reefer) σε Fr 0.29

Διάγραμμα συντελεστών RAO Acceleration Stern για το πλοίο ψυγείο (Reefer) σε Fr 0.29

5.3.1 Σχολιασμός των αποτελεσμάτων του πλοίου ψυγείου (Reefer)

Το πλοίο ψυγείο διαθέτει μια γάστρα με σχετικά γραμμική μορφή εκτός από τη πρύμνη η οποία έχει ένα σημαντικό κομμάτι όγκου να εισέρχεται στο νερό καθώς το πλοίο ταλαντώνεται γύρω από τον άξονα ισορροπίας του.

Σε ταχύτητα που αντιστοιχεί σε αριθμό Fr = 0.24 η τιμή των συντελεστών απόκρισης κατακόρυφης κίνησης σε συχνότητες που αντιστοιχούν σε αδιάστατα μήκη κύματος λ/L κάτω του 1 παρατηρούμε ότι βρίσκονται πολύ κοντά για τις δύο εκδόσεις του κώδικα SWAN2 και SWAN4. Σε μεγαλύτερα μήκη κύματος όμως βλέπουμε ότι το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις. Σε σύγκριση με τα πειραματικά αποτελέσματα μέχρι την συχνότητα που αντιστοιχεί σε $\lambda/L = 1$ ο κώδικας υπολογίζει μεγαλύτερα μήκη κύματος όμως οι εκτιμήσεις του SWAN2 είναι πιο κοντά στις πειραματικές τιμές μέχρι το μήκος κύματος που αντιστοιχεί σε $\lambda/L = 1.4$ όπου ξεκινά να υπολογίζει χαμηλότερες τιμές. Το SWAN4 βρίσκεται κοντά στις πειραματικές τιμές μόνο σε συχνότητες που αντιστοιχούν σε λ/L

γραμμικά αποτελέσματα της έκδοσης SWAN4 σε συχνότητες που αντιστοιχούν σε $\lambda/L = 0.7$. Σε συχνότητες όπου $\lambda/L < 1.2$ φαίνεται ότι η έκδοση SWAN4 βρίσκεται πιο κοντά στις πειραματικές μετρήσεις ενώ για μεγαλύτερα μήκη κύματος και οι δύο εκδόσεις φαίνεται να υπολογίζουν μεγαλύτερες τιμές για τους συντελεστές από αυτές που προσδιορίστηκαν πειραματικά. Δεδομένης της μη γραμμικής συμπεριφοράς του προνευτασμού αναμένουμε αντίστοιγα αποτελέσματα και στους υπολογισμούς των συντελεστών επιταχύνσεων. Στην επιτάχυνση της πλώρης παρατηρούμε μη γραμμικότητα στα αποτελέσματα του SWAN4 σε συχνότητες που αντιστοιχούν σε $\lambda/L = 0.7$. Εκτός από αυτό όμως φαίνεται ότι και οι δύο εκδόσεις είναι αρκετά κοντά στις πειραματικά προσδιορισθείσες τιμές των συντελεστών επιτάχυνσης πλώρης. Στη περίπτωση της επιτάχυνσης της πρύμνης βλέπουμε ότι η ακριβής μοντελοποίηση της βρεχόμενης επιφάνειας της γάστρας του πλοίου ψυγείου οδηγεί σε σωστούς υπολογισμούς σε συχνότητες που αντιστοιχούν σε λόγους λ/L μικρότερους του 1.4. Φαίνεται πως ο κώδικας αδυνατεί να ανταποκριθεί σε κύματα μικρού μήκους σε σκάφη με αυτή τη γεωμετρία. Αυτό επαληθεύεται από τις υπολογισθείσες τιμές που κινούνται σε κανονικά επίπεδα σε συγνότητες που αντιστοιγούν σε λόγους λ/L μεγαλύτερους του 1.4. Το SWAN2 ως γραμμικός κώδικας δεν επηρεάζεται με τον ίδιο τρόπο και τουλάχιστον επαληθεύει την τάση των πειραματικών δεδομένων αν και αδυνατεί να υπολογίσει απόκριση κοντά στην πειραματική στη συχνότητα που antistoiceí se $\lambda/L = 1.2$.

Σε αριθμό Froude = 0.29 σύμφωνα με ότι είδαμε στη Σειρά 60 περιμένουμε τα εντονότερα μη γραμμικά φαινόμενα να επηρεάσουν τα αποτελέσματα σε μεγαλύτερο βαθμό. Πράγματι στην περίπτωση της κατακόρυφης κίνησης παρατηρούμε ότι η τιμή του συντελεστή σε συχνότητα που αντιστοιχεί σε λ/L ίση με 0.8 παρεκκλίνει της αναμενόμενης καμπύλης. Σε ένα φάσμα συχνοτήτων που αντιστοιχούν σε λόγους λ/L 1 με 1.4 βλέπουμε ότι το SWAN4 είναι αρκετά κοντά στα πειραματικά αποτελέσματα τη στιγμή που το SWAN2 υποεκτιμά τις αποκρίσεις. Σε μήκη κύματος με λόγους λ/L μεγαλύτερους του 1.4 όμως το SWAN2 βρίσκεται πιο κοντά στα πειραματικά αποτελέσματικά αποτελέσματα ενώ το SWAN4 υπολογίζει πολύ μεγαλύτερους συντελεστές. Η γενικά πιο ευαίσθητη απόκριση προνευτασμού επαληθεύει τις εκτιμήσεις μας για εντονότερες μη γραμμικότητες από πλευράς SWAN4. Παρατηρούμε ότι εκτός από τον υπολογισμό σε μήκος κύματος που αντιστοιχεί σε λόγο λ/L ίσο με 1 το SWAN4 αδυνατεί να καταλήξει σε λογικά αποτελέσματα. Φαίνεται ότι η αύξηση του αριθμού

Froude επηρεάζει έντονα τους υπολογισμούς του μη γραμμικού κώδικα. Το SWAN2 αντιθέτως παραμένει πιο αξιόπιστο. Από τις ακραίες τιμές του προνευτασμού αναμένουμε να οδηγηθούμε και σε αντίστοιχα ακραίες τιμές συντελεστών επιταχύνσεων. Πράγματι και στα δύο διαγράμματα (επιταχύνσεως πλώρης και πρύμνης) το SWAN4 δεν κάνει καλούς υπολογισμούς ενώ το SWAN2 παραμένει πιο αξιόπιστό. Αξιοπρόσεκτα είναι όμως τα αποτελέσματα των υπολογισμών του SWAN4 των συντελεστών επιταχύνσεων της πρύμνης σε συχνότητες που αντιστοιχούν σε λόγους λ/L 1.2 έως 1.8 που προσεγγίζουν πολύ καλά τα πειραματικά αποτελέσματα τη στιγμή που το SWAN2 υπερεκτιμά τις αποκρίσεις στο συγκεκριμένο εύρος αδιάστατων μηκών κύματος.

5.3.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για το πλοίο ψυγείο (Reefer)

Η έκδοση SWAN4 σε πολύ μικρά μήκη κύματος εμφανίζει αδυναμίες στο να υπολογίσει τιμές κοντά στις πειραματικές. Όσο τα μήκη κύματος μεγαλώνουν όμως τα αποτελέσματα είναι πιο κοντά στα πειραματικά όμως σε τιμές κοντά στο μήκος του πλοίου η έκδοση 4 υπολογίζει μεγαλύτερους συντελεστές. Σε μεγάλα μήκη κύματος οι τιμές είναι κοντά στις πειραματικές εκτός από την περίπτωση του προνευτασμού. Στο μεγαλύτερο αριθμό Froude η έκδοση SWAN4 έχει προβλήματα στους υπολογισμούς προνευτασμού πράγμα που οδηγεί σε αντίστοιχα προβληματικά αποτελέσματα επιταχύνσεων. Η έκδοση SWAN2 έχει πιο αξιόπιστα αποτελέσματα σε όλες τις πειραματικώς.

Οι δύο εκδοχές του SWAN2 παρατηρούμε ότι έχουν μικρές διαφορές. Η ψευδό μηγραμμική εκδοχή του SWAN2 λίγο βοηθά στο να προσεγγιστεί σωστά η πειραματικά προσδιορισθείσα συμπεριφορά του πλοίου.

Είναι προφανές ότι όσο μεγαλώνει η ταχύτητα τόσο η έκδοση SWAN4 αδυνατεί να κάνει σωστούς υπολογισμούς με πλοία αυτής της γεωμετρίας. Αναμένουμε να δούμε και την υπολογιστική του απόδοση στην πιο πολύπλοκή γάστρα του Ταχέως Επιβατηγού-Οχηματαγωγού (Ro-Pax Ferry SUPERFAST III-IV).

55

5.4 Παρουσίαση των υπολογιστικών αποτελεσμάτων για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)

Το ταχύ επιβατηγό-οχηματαγωγό πλοίο SUPERFAST III-IV δοκιμάστηκε σε αριθμό Froude 0.26 και 0.33, αδιάστατο πλάτος κύματος A/L = 0.013 και μετωπικούς κυματισμούς ($\beta = 180^\circ$) σε λόγους λ/L από 0.5 έως 3.2. Έγιναν υπολογισμοί για τις αποκρίσεις κατακόρυφης κίνησης, προνευτασμού, επιταχύνσεων σε πλώρη, πρύμνη και στο κέντρο βάρους του πλοίου.

Για τους αδιάστατους συντελεστές αποκρίσεως ισχύουν οι σχέσεις :

$$RAO_{HEAVE} = \frac{\xi_3}{A}, RAO_{PITCH} = \frac{\xi_5(deg)}{\kappa \times A}, RAO_{AC} = \frac{L_{WL} \times m/s^2}{A \times g}$$

όπου ξ_3 η απόκριση κατακόρυφης κίνησης του πλοίου σε m, A το πλάτος του κύματος, ξ_5 η απόκριση προνευτασμού του πλοίου σε deg, $\kappa = 2\pi\lambda$ όπου λ το μήκος κύματος σε m, $L_{WL} = 188.54$ m το μήκος της ισάλου και g = 9.81 m/s² η επιτάχυνση της βαρύτητας. Το m/s² καταδεικνύει την τιμή της επιτάχυνσης.

Σχήμα 5-23

Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26

RAO Pitch Superfast III-IV A/L = 0.013 - Fr 0.26 - β = 180°

Σχήμα 5-24 Διάγραμμα συντελεστών RAO Προνευτασμού για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26

Σχήμα 5-25 Διάγραμμα συντελεστών RAO Acceleration Bow για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26

RAO LCG Acceleration

Σχήμα 5-26 Διάγραμμα συντελεστών RAO Acceleration LCG για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26

Σχήμα 5-27

Διάγραμμα συντελεστών RAO Acceleration Stern για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.26

RAO Heave Superfast III-IV A/L = 0.013 - Fr 0.33 - β = 180°

Σχήμα 5-28 Διάγραμμα συντελεστών RAO Κατακόρυφης κίνησης για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33

Σχήμα 5-29

Διάγραμμα συντελεστών RAO Προνευτασμού για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33

RAO Bow Acceleration Superfast III-IV A/L = 0.013 - Fr 0.33 - β = 180°

Σχήμα 5-30 Διάγραμμα συντελεστών RAO Acceleration Bow για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33

Σχήμα 5-31

Διάγραμμα συντελεστών RAO Acceleration LCG για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr0.33

RAO Stern Acceleration Superfast III-IV A/L = 0.013 - Fr 0.33 - β = 180°

Σχήμα 5-32 Διάγραμμα συντελεστών RAO Acceleration Stern για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV) σε Fr 0.33

5.4.1 Σχολιασμός των αποτελεσμάτων για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)

Το συγκεκριμένο πλοίο διαθέτει μία έντονα μη γραμμική γάστρα συμβατικής σχεδίασης. Αναμένουμε να δούμε πως το SWAN4 θα αντιμετωπίσει αυτή την πολύπλοκη γεωμετρία.

Σε αριθμό Froude = 0.26 και στην απόκριση κατακόρυφης κίνησης το SWAN4 είναι αρκετά κοντά στα πειραματικά αποτελέσματα μέχρι την συχνότητα που αντιστοιχεί σε λόγο λ/L = 1. Από εκεί και πέρα βλέπουμε ότι οι αποκρίσεις είναι πολύ μεγαλύτερες μέχρι τη συχνότητα που αντιστοιχεί σε $\lambda/L = 3.2$ όπου οι συντελεστές απόκρισης συγκλίνουν σε πιο λογικές τιμές. Φαίνεται πως η πλήρης μοντελοποίηση της βρεχόμενης επιφάνειας σε κάθε στιγμή δεν βοηθά τα αποτελέσματα να συγκλίνουν σε λογικές τιμές. Η έκδοση SWAN2 φαίνεται να προσεγγίζει πολύ καλύτερα τις πειραματικές μετρήσεις και ειδικά στη πλήρως γραμμική εκδοχή της. Στην περίπτωση της απόκρισης προνευτασμού το SWAN4 υπολογίζει μεγαλύτερες τιμές από τα πειράματα μέγρι τη συγνότητα που αντιστοιγεί σε λόγο $\lambda/L = 2$. Στην συνέχεια οι τιμές μειώνονται. Η έκδοση SWAN2 δίνει ικανοποιητικές προβλέψεις μέχρι περίπου το λ/L = 1.5 όπου από εκεί και πέρα υπολογίζει χαμηλότερες αποκρίσεις. Στην περίπτωση των πρωραίων επιταχύνσεων το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις μέχρι τη συχνότητα που αντιστοιχεί σε $\lambda/L = 1.5$ από όπου και οι υπολογισμοί είναι πιο κοντά στις πειραματικές τιμές. Και πάλι οι υπολογισμοί του SWAN2 είναι πιο κοντά στα πειραματικά αποτελέσματα σε λόγους $\lambda/L < 1.5$ από το SWAN4 ενώ όσο ανεβαίνουν τα μήκη κύματος φαίνεται ότι οι δύο εκδόσεις συγκλίνουν στις ίδιες τιμές. Στις επιταχύνσεις στο κέντρο βάρους του σκάφους το SWAN4 εμφανίζει και πάλι παρεκκλίνουσα συμπεριφορά όμως τουλάχιστον για λ/L < 0.8 φαίνεται ότι κινείται στο εύρος των πειραματικών τιμών. Στη συνέχεια οι αποκρίσεις που υπολογίζει είναι μεγαλύτερες με τη διαφορά όμως να μειώνεται όσο μεγαλώνουν τα μήκη κύματος όπου και φτάνει να συγκλίνει με τα πειραματικά αποτελέσματα αλλά και τα αποτελέσματα του SWAN2. Η γραμμική εκδοχή του SWAN2 είναι πιο κοντά στις πειραματικές τιμές. Στην περίπτωση της επιτάχυνσης της πρύμνης το SWAN4 αδυνατεί να υπολογίσει λογικές τιμές παρά μόνο μέχρι ο λόγος λ/L να φτάσει το 2 όπου από εκεί και πέρα υπολογίζει τιμές κοντά στα πειραματικά αποτελέσματα. Τα αποτελέσματα του SWAN2 παρατηρούμε ότι είναι αρκετά καλά σε μεγάλα μήκη κύματος ενώ στα μικρότερα παρατηρούνται μικρές

διαφορές από τα πειραματικά. Παρόλα αυτά και οι δύο εκδόσεις σε χαμηλά μήκη κύματος $(0.5 \le \lambda/L \le 1.5)$ υπολογίζουν μεγαλύτερες αποκρίσεις από τις πειραματικές.

Σε αριθμό Froude = 0.33 και στην απόκριση κατακόρυφης κίνησης το SWAN4 υπολογίζει αποκρίσεις μεγαλύτερες από τις πειραματικές τιμές ενώ παράγει καλύτερα αποτελέσματα σε συγνότητες που αντιστοιγούν σε λ/L μεγαλύτερα του 3. Το SWAN2 κάνει πολύ καλούς υπολογισμούς μέχρι το $\lambda/L = 1.2$, σε μεγαλύτερα μήκη κύματος όμως οι αποκρίσεις που υπολογίζει είναι χαμηλότερες από τις πειραματικές. Σε συχνότητα που αντιστοιχεί σε $\lambda/L = 2$ επαναπροσεγγίζει τις πειραματικές τιμές αν και φαίνεται ότι στη συνέχεια καθυστερεί περισσότερο να συγκλίνει στο RAO_{HEAVE} = 1. Στην περίπτωση του προνευτασμού το SWAN4 όπως είδαμε και στο πλοίο ψυγείο όσο ανεβαίνει ο αριθμός Froude τόσο επηρεάζεται η συνοχή των αποτελεσμάτων. Έτσι παρατηρούμε ότι εκτός από το τις συχνότητες που αντιστοιχούν σε $\lambda/L = 1$ και 2.5 η μη γραμμική έκδοση αδυνατεί να δώσει λογικά αποτελέσματα. Αντιθέτως το SWAN2 έχει καλύτερη συμπεριφορά τουλάχιστον μέχρι το $\lambda/L = 1.6$. Από εκεί και πέρα οι υπολογισμοί οδηγούν σε μικρότερες αποκρίσεις από τα πειραματικά αποτελέσματα. Στην επιτάχυνση της πλώρης το SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις στα μικρά μήκη κύματος μέχρι την τιμή $\lambda/L = 1.6$. Από εκεί και πέρα είναι κοντά στις πειραματικές τιμές αν και στα μεγάλα μήκη κύματος υπολογίζει χαμηλότερες αποκρίσεις. Το SWAN2 είναι αρκετά κοντά στις πειραματικές μετρήσεις σε όλο το φάσμα των συχνοτήτων αν και σε συχνότητες που αντιστοιχούν σε μεγάλα μήκη κύματος φαίνεται ότι υπολογίζει χαμηλότερες τιμές από τις πειραματικές. Η ίδια συμπεριφορά παρατηρείται και στις επιταχύνσεις στο κέντρο βάρους. Το SWAN4 υπερεκτιμά μέχρι το $\lambda/L = 2$ πέρα από το οποίο τα αποτελέσματα είναι αρκετά κοντά στις πειραματικές τιμές. Οι υπολογισμοί του SWAN2 είναι πιο κοντά στις πειραματικές τιμές από ότι στις επιταχύνσεις της πλώρης. Τέλος στις επιταχύνσεις στην πρύμνη και σε μικρά μήκη κύματος $(0.5 \le \lambda/L \le 1.5)$ το SWAN4 υπολογίζει τιμές που παρεκκλίνουν σημαντικά από αυτές που έχουν προσδιοριστεί πειραματικά. Στη συνέχεια όσο μεγαλώνουν τα μήκη κύματος και οι μη γραμμικότητες εξασθενούν τα αποτελέσματα συγκλίνουν στα πειραματικά. Όπως έχουμε σχολιάσει και παραπάνω το SWAN2 φαίνεται να είναι πιο αποτελεσματικό από το SWAN4.

63

5.4.2 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για το Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)

Παρατηρούμε ότι και σε αυτή τη γεωμετρία η έκδοση SWAN4 υπολογίζει μεγαλύτερες αποκρίσεις από τις πειραματικές. Στην απόκριση προνευτασμού στο μεγάλο αριθμό Froude οι αποκρίσεις που υπολογίζονται παρεκκλίνουν της λογικής τόσο των πειραματικών αποτελεσμάτων όσο και των αποτελεσμάτων της έκδοσης SWAN2. Φαίνεται λοιπόν ότι η μη γραμμική έκδοση δεν μπορεί να αποτελέσει ένα αξιόπιστο εργαλείο μελέτης πλοίων με αυτή τη γεωμετρία. Η έκδοση SWAN2 από την άλλη πλευρά έχει αρκετά αξιόπιστα αποτελέσματα, με μικρές διαφορές από τις πειραματικές τιμές.

Όπως παρατηρήσαμε σε όλες τις περιπτώσεις στα μεγάλα μήκη κύματος τα αποτελέσματα μεταξύ των δύο εκδόσεων του κώδικα, SWAN2 και SWAN4 συγκλίνουν πράγμα που αποδεικνύει την σχέση τους στην υπολογιστική μεθοδολογία όταν οι μη γραμμικότητες δεν είναι τόσο έντονες.

Τέλος παρατηρούμε ότι η πλήρως γραμμική με την μερικώς μη γραμμική εκδοχή του SWAN2 έχουν μικρές διαφορές στους υπολογισμούς.

5.5 Παρουσίαση των υπολογιστικών αποτελεσμάτων για το ταχύπλοο σκάφος Σειράς NTUA LB55

To ταχύπλοο σκάφος Σειράς NTUA LB55 δοκιμάστηκε σε συντελεστή φόρτισης C_{DL} = 1.61 και 3, αριθμό Froude 0.34 και 0.68, αδιάστατα ύψη κύματος H/L = 0.25, 0.5, 0.75, 1.00 στο C_{DL} = 1.61 , H/L = 0.25, 0.5, 0.75, 1.20 στο C_{DL} = 3.00 και μετωπικούς κυματισμούς (β = 180°) σε λόγους λ/L από 0.5 έως 3.8.

Οι δοκιμές έγιναν μόνο στην έκδοση SWAN2 καθώς η έκδοση SWAN4 δεν υποστηρίζει πλοία με πρύμνη τύπου καθρέπτη αφού δεν μπορεί να μοντελοποιήσει την αποκόλληση της ροής σε αυτόν. Οι συντελεστές αποκρίσεων υπολογίστηκαν με τους ακόλουθους τύπους :

 $RAO_{HEAVE} = \frac{\xi_3}{A}, RAO_{PITCH} = \frac{\xi_5(deg)}{\kappa \times A}, RAO_{AC} = \frac{L_{WL} \times m / s^2}{A \times g}$

όπου ξ_3 η απόκριση κατακόρυφης κίνησης του πλοίου σε m, A το πλάτος του κύματος, ξ_5 η απόκριση προνευτασμού του πλοίου σε deg, κ = 2πλ όπου λ το μήκος κύματος σε m, L_{WL} το μήκος της ισάλου και g = 9.81 m/s² η επιτάχυνση της βαρύτητας. Το m/s² καταδεικνύει την τιμή της επιτάχυνσης.

Οι υπολογιστικές δοκιμές έγιναν σε κλίμακα μοντέλου. Έτσι για C_{DL} 1.61 έχουμε : Πειραματικό πλάτος κύματος A = 0.05 m Μήκος Ισάλου $L_{WL} = 3.497$ m Για $C_{DL} = 3.00$ έχουμε : Πειραματικό πλάτος κύματος A = 0.05 m Μήκος Ισάλου $L_{WL} = 2.145$ m

Σε κάθε συντελεστή εκτοπίσματος C_{DL} διερευνήθηκε η συμπεριφορά της μη γραμμικής εκδοχής του SWAN2 σε διάφορα ύψη κύματος. Αντικειμενικός μας σκοπός ήταν να δούμε τη δυναμική των αποτελεσμάτων όσο ο μη γραμμικός τρόπος επίλυσης τείνει προς τον γραμμικό. Αυτό έγινε με τη σταδιακή μείωση του ύψους κύματος.

Τα αποτελέσματα για τον κάθε συντελεστή C_{DL} καθώς και ο σχολιασμός τους θα γίνει ξεχωριστά για λόγους ευκολίας ανάγνωσης.

Ακολουθούν τα διαγράμματα των αποτελεσμάτων για το συντελεστή CDL = 1.61.

Σχήμα 5-33

Διάγραμμα συντελεστών RAO κατακόρυφης κίνησης για το ταχύπλο
ο σκάφος Σειράς NTUA LB55 σε Fr0.34και C_{DL} = 1.61

RAO απόκρισης PITCH LB55 - CDL 1.61 - Fr 0.34

Σχήμα 5-34 Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr0.34και $C_{\rm DL}=1.61$

RAO απόκρισης BOW ACCELERATION LB55 - CDL 1.61 - Fr 0.34

Σχήμα 5-35 Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr0.34 και C_{DL} = 1.61

RAO απόκρισης STERN ACCELERATION LB55 - CDL 1.61 - Fr 0.34

Σχήμα 5-36 Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr0.34 και C_{DL} = 1.61

RAO απόκρισης LCG ACCELERATION LB55 - CDL 1.61 - Fr 0.34

Σχήμα 5-37

Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλο
ο σκάφος Σειράς NTUA LB55 σε Fr0.34και C
DL = 1.61

RAO απόκρισης HEAVE LB55 - CDL 1.61 - Fr 0.68

Σχήμα 5-38 Διάγραμμα συντελεστών RAO κατακόρυφης κίνησης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και $C_{DL} = 1.61$

Σχήμα 5-39 Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr0.68και $C_{\rm DL}=1.61$

RAO απόκρισης BOW ACCELERATION LB55 - CDL 1.61 - Fr 0.68

Σχήμα 5-40 Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και $C_{DL} = 1.61$

RAO απόκρισης STERN ACCELERATION LB55 - CDL 1.61 - Fr 0.68

Σχήμα 5-41

Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και C_{DL} = 1.61

RAO απόκρισης LCG ACCELERATION LB55 - CDL 1.61 - Fr 0.68

Σχήμα 5-42 Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και $C_{DL} = 1.61$

<u>5.5.1 Σχολιασμός των αποτελεσμάτων για το ταχύπλο
ο σκάφος Σειράς NTUA LB55</u> με συντελεστή $C_{\rm DL}$ =1.61

Σε αριθμό Froude = 0.34 και στις αποκρίσεις κατακόρυφης κίνησης παρατηρούμε ότι τα αποτελέσματα του SWAN2 για τη γραμμική και μη-γραμμική (υδροστατικά και Froude-Krylov) εκδοχή βρίσκονται πολύ κοντά. Σε σχέση με τους πειραματικούς υπολογισμούς το SWAN2 φαίνεται ότι προσεγγίζει καλά τα πειραματικά δεδομένα μέχρι το λόγο $\lambda/L = 1$ ενώ μετά παρεκκλίνει των πειραματικών τιμών μέχρι το $\lambda/L = 2$ που επαναπροσεγγίζει τις τιμές των πειραματικών σημείων. Και στις αποκρίσεις προνευτασμού όλες οι τιμές που υπολόγισε το SWAN2 στις δύο εκδοχές του είναι πολύ κοντά. Σε σχέση με τα πειραματικά αποτελέσματα παρατηρούμε ότι προσεγγίζει καλά τις πειραματικές τιμές μέχρι περίπου τη συχνότητα που αντιστοιχεί σε $\lambda/L = 1.5$ από όπου και πέρα υπολογίζει γαμηλότερες αποκρίσεις. Στις επιταγύνσεις της πλώρης εμφανίζονται οι πρώτες σημαντικές διαφοροποιήσεις ανάμεσα στις εκδοχές του SWAN2. Παρατηρούμε λοιπόν ότι σε χαμηλά μήκη κύματος, εκεί που η άμεση βρεχόμενη επιφάνεια είναι σημαντικά διαφορετική από τη μέση βρεχόμενη επιφάνεια, οι τιμές που υπολογίζει η μη γραμμική εκδοχή του SWAN2 για ύψος κύματος ίσο με το πειραματικό (H/T = 1) απέχουν σημαντικά από τις τιμές της γραμμικής εκδοχής. Αξίζει να σημειωθεί ότι όσο το ύψος κύματος που χρησιμοποιείται στην μη γραμμική προσομοίωση ελλατώνεται, τόσο τα αποτελέσματα συγκλίνουν σε αυτά της γραμμικής έκδοσης. Σε σχέση με τα πειραματικά αποτελέσματα παρατηρούμε ότι η μη γραμμική εκδοχή είναι πιο κοντά στις πειραματικές τιμές όμως καμία εκδοχή δεν φαίνεται να είναι επιτυχής σε λόγους λ/L>1. Στις επιταχύνσεις στην πρύμνη παρατηρούμε ότι εν γένει το SWAN2 εμφανίζει μεγαλύτερες αποκρίσεις από τις πειραματικά προσδιορισθείσες εκτός από τα μεγάλα μήκη κύματος που τα αποτελέσματα των υπολογισμών είναι αρκετά κοντά. Τέλος στις επιταχύνσεις στο LCG και σε λόγους λ/L<2 το SWAN2 απέχει αρκετά από τα πειραματικά αποτελέσματα. Αξιοσημείωτες είναι οι διαφορές μεταξύ των διάφορων εκδοχών του SWAN2 σε συχνότητα που αντιστοιχεί σε λόγο $\lambda/L = 1$ όπου φαίνεται καθαρά η επίδραση της συνεκτίμησης της βρεχόμενης επιφάνειας στην ολοκλήρωση των πιέσεων στη γάστρα του σκάφους.

Σε αριθμό Froude = 0.68 οι αποκρίσεις κατακόρυφης κίνησης κινούνται στην ίδια λογική όπως και στη μικρότερη ταχύτητα. Εδώ όμως είναι πιο εμφανείς οι διαφορές ανάμεσα στην γραμμική και την μη γραμμική εκδοχή του SWAN2 τουλάχιστον σε λόγους λ/L 0.7 έως 1.6. Παρατηρούμε λοιπόν ότι η μη γραμμική εκδοχή είναι πιο κοντά στα πειραματικά αποτελέσματα ενώ και σε μεγαλύτερα μήκη κύματος είναι εμφανής η διαφορά από τη γραμμική εκδοχή. Παρόλα αυτά καμία από τις δύο εκδοχές δεν καταλήγει σε αποτελέσματα κοντά στις πειραματικά υπολογισθείσες τιμές του συντελεστή απόκρισης κατακόρυφης κίνησης πάνω από το λόγο $\lambda/L = 1.5$. Στην περίπτωση του προνευτασμού ο κώδικας έχει μεγαλύτερη επιτυχία στο να προσεγγίσει τις πειραματικές τιμές, με τη μη γραμμική εκδοχή του να βρίσκεται πιο κοντά σε αυτές σε σχέση με τη γραμμική. Και πάλι όμως σε μεγάλα μήκη κύματος ο κώδικας υποεκτιμά τις αποκρίσεις. Όπως είναι αναμενόμενο (από τις δοκιμές στην μικρότερη ταχύτητα) τα αποτελέσματα των επιταχύνσεων πλώρης κάνουν πλήρως ορατές τις διαφορές στα αποτελέσματα των υπολογισμών ανάμεσα στις δύο εκδοχές του κώδικα. Τα αποτελέσματα της μη γραμμικής εκδοχής είναι πιο κοντά στα πειραματικά όμως σε μήκη κύματος που αντιστοιχούν σε λόγους λ/L μεγαλύτερους του 1.5 οι εκτιμήσεις είναι χαμηλότερες των πειραματικών. Στις επιταχύνσεις η απόκλιση των υπολογιστικών αποτελεσμάτων από τις πειραματικές τιμές είναι μεγαλύτερη σε σχέση με τις επιταχύνσεις της πλώρης όμως βλέπουμε ότι η μη γραμμική εκδοχή έχει καλύτερη τάση στο να προσεγγίσει τις πειραματικές τιμές. Οι συντελεστές απόκρισης επιταχύνσεων στο LCG όπως υπολογίζονται από το SWAN2 προσεγγίζουν τα πειραματικά αποτελέσματα μόνο σε λόγους μηκών κύματος λ/L μέχρι 1.2. Από εκεί και πέρα υπολογίζονται μικρότερες αποκρίσεις.

$\frac{5.5.2 Γενικό Συμπέρασμα υπολογισμών αποκρίσεων για το ταχύπλοο σκάφος Σειράς NTUA LB55 με συντελεστή C_{\rm DL} = 1.61$

Συνοψίζοντας παρατηρούμε ότι η μη γραμμική εκδοχή του SWAN2 προσεγγίζει καλύτερα τα αποτελέσματα του πειράματος ενώ όσο το χρησιμοποιούμενο ύψος κύματος μειώνεται βλέπουμε ότι η λύση προσεγγίζει την πλήρως γραμμική εκδοχή. Το επόμενο βήμα θα ήταν να γίνουν και οι αντίστοιχες δοκιμές στην μη γραμμική έκδοση SWAN4.

Στη συνέχεια ακολουθεί η παρουσίαση των αποτελεσμάτων για συντελεστή εκτοπίσματος $C_{DL} = 3.00$ ο ποιος αντιστοιχεί σε μεγαλύτερο βύθισμα και αποτελεί μία κατάσταση πιο κοντά σε πραγματική κατάσταση λειτουργίας ενός σκάφους. Περιμένουμε λοιπόν να δούμε αν η γραμμική εκδοχή θα έχει μεγαλύτερη απόκλιση από την αντίστοιχη μη γραμμική.

Σχήμα 5-43

Διάγραμμα συντελεστών RAO κατακόρυφων κινήσεων για το ταχύπλο
ο σκάφος Σειράς NTUA LB55 σε Fr0.34~κα
ι $C_{\rm DL}$ = 3.00

RAO απόκρισης PITCH LB55 - CDL 3.00 - Fr 0.34

Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και $C_{DL} = 3.00$

RAO απόκρισης BOW ACCELERATION LB55 - CDL 3.00 - Fr 0.34

Σχήμα 5-45

Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και C_{DL} = 3.00

Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και $C_{DL} = 3.00$

RAO απόκρισης LCG ACCELERATION LB55 - CDL 3.00 - Fr 0.34

Σχήμα 5-47

Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.34 και C_{DL} = 3.00

RAO απόκρισης HEAVE LB55 - CDL 3.00 - Fr 0.68

Διάγραμμα συντελεστών RAO κατακόρυφων κινήσεων για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και $C_{DL} = 3.00$

RAO απόκρισης PITCH LB55 - CDL 3.00 - Fr 0.68 1.6 1.4 1.2 1 8.0 **ξ²((∀ĸ)** 0.6 0.4 0.2 0 0 1.5 2 2.5 3 3.5 0.5 λ/L Experiment H/T = 1.2 - LFK - NLFK H/T = 1 - NLFK H/T = 0.25 - NLFK H/T = 0.5 - NLFK H/T = 0.75 ٠

Σχήμα 5-49

Διάγραμμα συντελεστών RAO προνευτασμού για το ταχύπλο
ο σκάφος Σειράς NTUA LB55 σε Fr $0.68\,$ και C_{DL} = 3.00

RAO απόκρισης BOW ACCELERATION LB55 - CDL 3.00 - Fr 0.68

Διάγραμμα συντελεστών RAO επιταχύνσεων πλώρης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και C_{DL} = 3.00

RAO απόκρισης STERN ACCELERATION LB55 - CDL 3.00 - Fr 0.68

Σχήμα 5-51

Διάγραμμα συντελεστών RAO επιταχύνσεων πρύμνης για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και C_{DL} = 3.00

Διάγραμμα συντελεστών RAO επιταχύνσεων LCG για το ταχύπλοο σκάφος Σειράς NTUA LB55 σε Fr 0.68 και $C_{DL} = 3.00$

<u>5.5.3 Σχολιασμός των αποτελεσμάτων για ταχύπλοο σκάφος Σειράς NTUA LB55 με</u> συντελεστή $C_{\rm DL} = 3.00$

Σε ταχύτητα που αντιστοιχεί σε αριθμό Froude = 0.34 και στην απόκριση κατακόρυφης κίνησης είναι εμφανές ότι το μεγαλύτερο βύθισμα δημιουργεί μεγαλύτερες αποκλίσεις στα αποτελέσματα των δυο εκδοχών του SWAN2. Αναφορικά με τα πειραματικά αποτελέσματα το SWAN2 μέχρι τη συχνότητα που αντιστοιχεί σε $\lambda/L = 2$ αδυνατεί να προσεγγίσει τις πειραματικές τιμές. Αξίζει όμως να σημειώσουμε το πόσο διαφορετικές είναι οι μορφές των καμπυλών μέχρι το σημείο αυτό και πως φαίνονται να αλλάζουν τα αποτελέσματα όσο ο μη γραμμικός τρόπος επίλυσης πλησιάζει τον γραμμικό καθώς το ύψος κύματος μειώνεται. Στην περίπτωση του προνευτασμού οι αποκλίσεις μεταξύ των υπολογισμών είναι μικρότερες. Όμως φαίνεται ότι το SWAN2 αδυνατεί να προσεγγίσει επαρκώς τις πειραματικές τιμές. Στις επιταχύνσεις της πλώρης φαίνονται οι μεγάλες διαφορές ανάμεσα στις δοκιμές επίλυσης. Η μη γραμμική εκδοχή αποφέρει καλύτερα αποτελέσματα σε μερικά σημεία, απέχει όμως από το να χαρακτηρίσει τον κώδικα SWAN2 ως επαρκές υπολογιστικό εργαλείο. Οι πειραματικές μετρήσεις των επιταχύνσεων της πρύμνης προσεγγίζονται καλύτερα από το SWAN2 και ιδιαίτερα από τη μη γραμμική εκδοχή του. Είναι σαφές όμως ότι σε μήκη κύματος κοντά στο μήκος του πλοίου οι αποκρίσεις που υπολογίζονται είναι μεγαλύτερες από τις πειραματικές. Στον υπολογισμό των επιταχύνσεων στη διαμήκη θέση του κέντρου βάρους παρατηρούμε ότι ο κώδικας SWAN2 μας δίνει λογικές τιμές από το $\lambda/L = 1.8$ και μετά. Σε μικρότερα μήκη κύματος απέχει από τις πειραματικές τιμές. Ενδιαφέρον όμως έχει η μορφή των καμπυλών σε αυτή τη ζώνη. Παρατηρούμε λοιπόν ότι σε μήκη κύματος ίσα και ελαφρώς μεγαλύτερα από το μήκος του πλοίου, οι αποκλίσεις μεταξύ των δοκιμών σε διάφορα ύψη κύματος είναι μεγάλες. Παρατηρούμε λοιπόν ότι την χειρότερη απόδοση έχει η πλήρως γραμμική εκδοχή. Περνώντας όμως στη μη γραμμική εκδοχή τα πράγματα βελτιώνονται όσο το ύψος κύματος τείνει προς το πειραματικό. Φαίνεται δε ότι η κανονικού ύψους κύματος δοκιμή (H/T = 1.2) έχει το σωστό ρυθμό μεταβολής σε αντίθεση με τις υπόλοιπες που αλλάζουν καμπυλότητα.

Σε ταχύτητα που αντιστοιχεί σε αριθμό Froude = 0.68 και στην περίπτωση της κατακόρυφης κίνησης παρατηρούμε ότι και πάλι οι δοκιμές στο SWAN2 έχουν ικανές διαφορές μεταξύ τους στην περιοχή με μήκος κύματος ίσο και ελαφρώς

μεγαλύτερο από το μήκος του πλοίου. Παρατηρούμε δε ότι σε αυτή την περιοχή τα καλύτερα αποτελέσματα προκύπτουν από την μη γραμμική εκδοχή σε κανονικό (δηλ. ίσο με το πειραματικό Η/Τ = 1.2) ύψος κύματος. Σε μήκη κύματος μικρότερα ή μεγαλύτερα της παραπάνω περιοχής όμως ο κώδικας αδυνατεί να παράξει λογικά αποτελέσματα. Στην περίπτωση του προνευτασμού φαίνονται και πάλι διαφορές μεταξύ των δοκιμών, όμως είναι μικρότερες. Και πάλι οι μεγαλύτερες διαφορές διακρίνονται σε μήκη κύματος ίσα και ελαφρώς μεγαλύτερα από το μήκος του πλοίου. Ο κώδικας όμως δεν προσεγγίζει καλά τα πειραματικά δεδομένα. Στους υπολογισμούς των επιταχύνσεων της πλώρης οι διαφορές ανάμεσα στις δύο εκδοχές του SWAN2 είναι έντονες. Σε αυτή την περίπτωση η μη γραμμική εκδοχή του SWAN2 προσεγγίζει καλύτερα τα αποτελέσματα αν και οι διαφορές που προκύπτουν απέγουν από το να γαρακτηρίσουν την εξομοίωση απόλυτα επιτυχημένη. Στις επιταχύνσεις της πρύμνης το SWAN2 υπολογίζει μεγαλύτερες τιμές σε όλο το εύρος των μηκών κύματος εκτός από τα πολύ μικρά (κοντά στο 0.5 του μήκους του πλοίου). Η μη γραμμική εκδοχή του SWAN2 και πάλι κινείται εγγύτερα των πειραματικών αν και δεν καταφέρνει να τα προσεγγίσει επαρκώς. Τέλος στους υπολογισμούς των επιταχύνσεων στο κέντρο βάρους του σκάφους η μη γραμμική εκδοχή υπολογίζει τιμές κοντά στις πειραματικές σε μήκη κύματος ίσα και ελαφρώς μεγαλύτερα του μήκους του πλοίου όμως σε όλα τα υπόλοιπα οι υπολογισμοί οδηγούν σε μικρότερες αποκρίσεις των πειραματικών.

5.5.4 Γενικό συμπέρασμα υπολογισμών αποκρίσεων για το ταχύπλοο σκάφος Σειράς NTUA LB55 με συντελεστή $C_{\rm DL} = 3.00$

Το SWAN2 σε αυτή τη κατάσταση φόρτωσης και στον χαμηλό αριθμό Froude (Fr = 0.34) δίνει σχετικά ικανοποιητικές προβλέψεις για τη συμπεριφορά του σκάφους αν και έχει κάποιες αδυναμίες σε μήκη κύματος κοντά στο μήκος του πλοίου. Σε μεγάλο αριθμό Froude (Fr = 0.68) ο κώδικας δεν είναι το ίδιο αξιόπιστος ειδικά στους υπολογισμούς κατακόρυφης κίνησης, επιταχύνσεων στο μέσο και στη πρύμνη.

Ανάμεσα στις δύο εκδοχές του SWAN2 είναι φανερό πως υπερισχύει η ψευδό μηγραμμική εκδοχή.

ΚΕΦΑΛΑΙΟ 6⁰

ΣΥΓΚΡΙΣΗ ΥΠΟΛΟΓΙΣΜΩΝ SWAN ΤΩΝ ΑΣΚΟΥΜΕΝΩΝ ΔΥΝΑΜΕΩΝ ΣΤΟ ΠΛΟΙΟ

6.1 Εισαγωγή

Οι δύο εκδόσεις του κώδικα SWAN, SWAN2 και SWAN4 έχουν την δυνατότητα να παρέχουν τα αποτελέσματα των υπολογισμών για τις δυνάμεις οι οποίες ασκούνται στο σώμα σε κάθε χρονικό βήμα της εξομοίωσής τους. Με την έννοια δυνάμεις εννοούμε το ολοκλήρωμα των υδροδυναμικών πιέσεων που ασκούνται στην βρεχόμενη επιφάνεια. Για κάθε πλοίο θα συγκρίνουμε τις δυνάμεις σε τρεις συχνότητες, για μικρά, μεσαία και μεγάλα μήκη κύματος. Με βάση τον τρόπο με τον οποίο υπολογίζονται αυτές οι δυνάμεις περιμένουμε από τις δύο εκδόσεις του κώδικα να έχουν διαφορετικά αποτελέσματα. Ενδιαφέρον έχει να δούμε τις δυνάμεις στις περιπτώσεις που οι αποκρίσεις που υπολογίστηκαν είχαν μεγάλες διαφορές.

6.2 Σύγκριση υπολογισθέντων δυνάμεων στη Σειρά 60

Η σύγκριση θα γίνει για τις ταχύτητες που αντιστοιχούν σε αριθμούς Fr=0.2,0.25,0.3και αδιάστατους λόγους $\lambda/L=0.8,\,1.2,\,1.8$

Κατακόρυφη Dύναμη F_z Series 60 ($C_B = 0.7$)

Σχήμα 6-2 Ασκούμενη Ροπή γύρω από τον άξονα y M_y στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 0.8$

Σχήμα 6-4

Ασκούμενη Ροπή γύρω από τον άξονα
y M_y στη Σειρά 60, αριθμό Froude = 0.2 και λόγο λ/L = 1.2

Ασκούμενη δύναμη F_z στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 1.8$

Ροπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 1.8 - A/L = 0.01 - Fr = 0.20 - β = 180

Ασκούμενη Ροπή γύρω από τον άξονα y M_y στη Σειρά 60, αριθμό Froude = 0.2 και λόγο $\lambda/L = 1.8$

Σχήμα 6-7

Ασκούμενη δύναμη F_z στη Σειρά 60, αριθμό Froude = 0.25 και λόγο λ/L = 0.8

Poπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 0.8 - A/L = 0.01 - Fr = 0.25 - β = 180°

Σχήμα 6-8 Ασκούμενη Ροπή γύρω από τον άξονα y M_y στη Σειρά 60, αριθμό Froude = 0.25 και λόγο $\lambda/L = 0.8$

$$\label{eq:stability} \begin{split} & \Sigma \chi \acute{\eta} \mu \alpha \ 6-9 \\ A \sigma κούμενη δύναμη F_z \ στη Σειρά 60, αριθμό Froude = 0.25 και λόγο <math display="inline">\lambda/L = 1.2 \end{split}$$

Poπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 1.2 - A/L = 0.01 - Fr = 0.25 - β = 180°

Σχήμα 6-10

Ασκούμενη Ροπή γύρω από τον άξονα
 y M_y στη Σειρά 60, αριθμό Froude = 0.25 και λόγο λ/L = 1.2

$$\label{eq:stability} \begin{split} & \Sigma \chi \acute{\eta} \mu a \ 6{\textbf -}11 \\ A {\textbf σ} {\textbf κ} {\textbf σ} \acute{\eta} \dot{\eta} {\textbf F}_z \ {\textbf σ} {\textbf τ} {\textbf η} \ \Sigma {\textbf ε} {\textbf ρ} \acute{\alpha} {\textbf 6} {\textbf 0}, \ {\textbf α} {\textbf ρ} {\textbf μ} \acute{\theta} {\textbf F} {\textbf roude} = 0.25 \ {\textbf {kal }} \lambda \acute{\theta} {\textbf γ} {\textbf 0} \ \lambda / L = 1.8 \end{split}$$

Poπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 1.8 - A/L = 0.01 - Fr = 0.25 - β = 180°

Σχήμα 6-12

Ασκούμενη Ροπή γύρω από τον άξονα
 y M_y στη Σειρά 60, αριθμό Froude = 0.25 και λόγο λ/L = 1.8

$$\label{eq:stability} \begin{split} \Sigma \chi \acute{\eta} \mu \alpha \ 6\text{-13} \\ \text{Ασκούμενη δύναμη } F_z \ \text{στη } \Sigma ειρά \ 60, \ αριθμό \ Froude = 0.3 \ και λόγο \ \lambda/L = 0.8 \end{split}$$

Poπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 0.8 - A/L = 0.01 - Fr = 0.30 - β = 180°

Σχήμα 6-14 Ασκούμενη Ροπή γύρω από τον άξονα y M_y στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 0.8$

Κατακόρυφη Dύναμη F_z Series 60 (C_B = 0.7)

Σχήμα 6-15 Ασκούμενη δύναμη F_z στη Σειρά 60, αριθμό Froude = 0.3 και λόγο λ/L = 1.2

Ροπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) $\lambda/L = 1.2 - A/L = 0.01 - Fr = 0.30 - \beta = 180^{\circ}$

Σχήμα 6-16

Ασκούμενη Ροπή γύρω από τον άξονα
 y M_y στη Σειρά 60, αριθμό Froude = 0.3 και λόγο λ/L = 1.2

Σχήμα 6-17 Ασκούμενη δύναμη F_z στη Σειρά 60, αριθμό Froude = 0.3 και λόγο λ/L = 1.8

Poπή γύρω από τον άξονα y M_y Series 60 (C_B = 0.7) λ/L = 1.8 - A/L = 0.01 - Fr = 0.30 - β = 180°

 $\Delta \chi$ ημα 6-18 Ασκούμενη Ροπή γύρω από τον άξονα y M_y στη Σειρά 60, αριθμό Froude = 0.3 και λόγο $\lambda/L = 1.8$

6.2.1 Σχολιασμός των υπολογισθέντων δυνάμεων για τη Σειρά 60

Παρατηρούμε ότι οι υπολογισμοί που έγιναν σε συχνότητες που αντιστοιχούν σε λόγους λ/L = 0.8, 1.2 παρουσιάζουν κάποιες υψίσυχνες ταλαντώσεις πολύ μικρής διάρκειας αλλά σχετικά μεγάλου πλάτους. Προκειμένου να διερευνηθεί αυτό το φαινόμενο έγινε ανάλυση των συνιστωσών των δυνάμεων που υπολογίζει η έκδοση SWAN2 στη γραμμική και τη ψευδό μη-γραμμική εκδοχή του.

Η ανάλυση πραγματοποιήθηκε στην εξομοίωση που έγινε σε αριθμό Froude = 0.2 και σε συχνότητα που αντιστοιχεί σε λόγο $\lambda/L = 0.8$ και αφορά την κατακόρυφη δύναμη F_z. Κάθε συνιστώσα είναι εκτυπωμένη στην ίδια κλίμακα ώστε να είναι άμεσα συγκρίσιμη η συνεισφορά τους στην ολική δύναμη (βλ. σχήματα 6-19 και 6-20). Η συνιστώσα γραμμικής επαναφοράς (linear restoring) φαίνεται μηδενική, όμως από την ανάλυση προέκυψε ότι είναι 3 τάξεις μεγέθους μικρότερη από τις υπόλοιπες.

Φαίνεται καθαρά ότι η συνιστώσα που προκαλεί αυτές της ταλαντώσεις η συνιστώσα κυματικής μνήμης (wave memory).

Γενικά όπως παρατηρείται τα αποτελέσματα των δυνάμεων δεν είναι πάντα σε αναλογία με τις αποκρίσεις. Αυτό χρήζει περεταίρω διερεύνησης που αφήνεται ως μελλοντική εργασία.

 $\label{eq:stability} \begin{aligned} \Sigma \chi \acute{\eta} \mu \alpha \ 6-19 \\ \text{Ανάλυση συνιστωσών δύναμης } F_z \ γραμμικού \ SWAN2 \ στη \ \Sigma ειρά \ 60, \ Fr = 0.2, \ \lambda/L = 0.8 \end{aligned}$

 $\label{eq:stable} \Sigma \chi \acute{\eta} \mu \alpha \ 6-20$ Ανάλυση συνιστωσών δύναμης F_z ψευδό μη-γραμμικού SWAN2 στη Σειρά 60, Fr=0.2, $\lambda/L=0.8$
ΚΕΦΑΛΑΙΟ 7⁰

ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΜΕΛΛΟΝΤΙΚΗ ΔΟΥΛΕΙΑ

7.1 Γενικά Συμπεράσματα

Είναι σπάνιο το φαινόμενο μία υπολογιστική μεθοδολογία να είναι απόλυτα επιτυχής στην εξομοίωση της συμπεριφοράς ενός πλοίου σε κυματισμούς και να παράγει σταθερά και για οποιεσδήποτε συνθήκες αποτελέσματα ίδια με αυτά μίας δοκιμής ενός σκάφους στη δεξαμενή. Παρόλα αυτά μπορούμε να θεωρήσουμε ως αξιόπιστο ένα τέτοιο υπολογιστικό εργαλείο όταν τα αποτελέσματα έχουν συνάφεια μεταξύ τους και οι διαφορές από τα πειραματικά δεδομένα είναι μικρές, δηλ. κάτω του 10%.

Στην παρούσα μελέτη και σύμφωνα με τα αποτελέσματα των πλοίων για τα οποία έγιναν υπολογισμοί, η μη γραμμική έκδοση του κώδικα απέχει από το να χαρακτηριστεί μία αξιόπιστη μελετητική λύση. Παρατηρήθηκαν σε πολλές περιπτώσεις ασταθείς συμπεριφορές, με υπολογισμούς ακραίων τιμών συντελεστών αποκρίσεων, ειδικά σε υπολογισμούς που έγιναν σε μεγάλες ταχύτητες. Η παρουσία μορφών πρύμνης με καθρέπτη μικρού βυθίσματος φαίνεται ότι επηρεάζει έντονα τις αποκρίσεις σε μικρά μήκη κύματος αφού στο σύνολο των υπολογισμών ο κώδικας εμφάνισε αστάθειες και παρήγαγε αποτελέσματα αποκρίσεων με μεγάλο πλάτος. Υπήρξαν όμως περιπτώσεις που ο κώδικας έδωσε τιμές πολύ κοντά στις πειραματικές.

Οι υπολογισμοί με γραμμικό κώδικα οδήγησαν σε αποτελέσματα πιο κοντά στα πειραματικά. Σε πολλές περιπτώσεις η επιτυχία της μεθόδου ήταν αξιοσημείωτη και μπορούμε να πούμε ότι δύναται να χρησιμοποιηθεί ως μία βάση για τη βελτιστοποίηση πατρικών μορφών πλοίων. Τα αποτελέσματα των δοκιμών που έγιναν με τη ψευδό μη-γραμμική εκδοχή ήταν αρκετά κοντά στα αντίστοιχα της γραμμικής εκδοχής. Παρόλα αυτά κινήθηκαν πιο κοντά στα πειραματικά αποτελέσματα στις περιπτώσεις που τα αποτελέσματα του κώδικα δεν τα προσέγγιζαν απόλυτα.

Στην περίπτωση της ταχύπλοης γάστρας, που μπόρεσε να χρησιμοποιηθεί μόνο η έκδοση SWAN2, ο κώδικας έφερε καλά αποτελέσματα σε χαμηλές ταχύτητες. Στις

95

υψηλές αντιμετώπιζε προβλήματα. Στη συγκεκριμένη γάστρα διερευνήθηκαν οι διαφορές ανάμεσα στην γραμμική εκδοχή και τη ψευδό μη-γραμμική εκδοχή όπου φάνηκε ότι η ψευδό μη-γραμμική οδηγεί σε καλύτερα αποτελέσματα.

Συμπερασματικά η μη-γραμμική θεωρία δεν δίνει καλύτερα αποτελέσματα από τη γραμμική. Είναι πολύ πιθανό το χρησιμοποιούμενο μοντέλο να χρειάζεται βελτιώσεις οι οποίες θα βοηθήσουν να οδηγηθούμε στα αποτελέσματα που υποσχόταν η μεθοδολογία.

7.2 Μελλοντική Δουλειά

Από την παρούσα μελέτη προκύπτουν κάποια ζητήματα τα οποία θα μπορούσαν να αποτελέσουν αντικείμενο μελλοντικής εργασίας.

Ο κώδικας της μη γραμμικής έκδοσης 4 του SWAN δεν μπορεί να μοντελοποιήσει γάστρες που φέρουν πρύμνη τύπου καθρέπτη με μεγάλο βύθισμα. Σε τέτοια πλοία και σε ταχύτητες υπηρεσίας η ροή αποκολλάται σε αυτό το σημείο, πράγμα που δεν μπορεί να αντιμετωπιστεί από τη παρούσα μορφή του κώδικα. Πρέπει λοιπόν να γίνει μία επέκταση στον κώδικα ώστε να εφαρμοστούν οι συνθήκες Kutta όπως γίνεται και στη γραμμική έκδοση του κώδικα, SWAN2.

Στα πλαίσια μία διπλωματικής εργασίας μπορεί να αξιολογηθεί ένα πεπερασμένο πλήθος υπολογιστικών μεθόδων. Ως μελλοντική εργασία λοιπόν θα μπορούσαν να γίνουν υπολογισμοί αποκρίσεων και με άλλες τρισδιάστατες μεθόδους, όπως μέθοδος εσωτερικού και εξωτερικού πεδίου με εξισώσεις συνθηκών (δυναμικού) στο σύνορο που χρησιμοποιεί ο κώδικας LAMP, ή χρήση πηγών Kelvin που ικανοποιούν τη συνθήκη ελεύθερης επιφάνειας αν και μέχρι στιγμής δεν έχουν δώσει ικανοποιητικά αποτελέσματα.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] Bunnik T.H.J., Hermans A.J., (1999), "Comparison between three stady flow approximations in a linear time-domain model", Proceedings of the 14th International Workshop on Water Waves and Floating Bodies, Port Huron, MI, USA
- [2] de Jong P., van Walree F., (2009), The development and validation of a timedomain panel method for the seakeeping of high speed ships", FAST 2009, Athens, Greece
- [3] Huang Yifeng, (1997), "Non Linear Ship Motions by a Rankine Panel Method", Ph.D. Thesis, MIT
- [4] Huang Yifeng, Sclavounos P.D., (1998), "Nonlinear Ship Motions", Journal of ship research 1998, vol. 42, n°2, pp. 120-130
- [5] Kim Y., Kim S., Renick D., Sclavounos P.D., (1999), "Linear and Nonlinear Flows and Responses of Ships by a Rankine Panel Method", Numerical Ship Hydrodynamics, France
- [6] Kim Y., Kring D.C., Sclavounos P.D., (1997), "Linear and Nonlinear interactions of surface waves with bodies by a three-dimensional Rankine panel method", Applied Ocean Research, Volume 19, Number 5, October 1997, pp. 235-249(15)
- [7] Kring D.C., (1994), "Time Domain Ship Motions by a Three-Dimensional Rankine Panel Method", Ph.D. Thesis, MIT
- [8] Kring D.C., Huang Y.-F., Sclavounos P.D. et al, (1996), "Nonlinear Ship Motions and Wave Induced Loads by a Rankine Panel Method", 21st Symposioum on Naval Hydrodynamics, Trondheim
- [9] Kring D.C., Huang Y.-F., Sclavounos P.D., (1995), "Time Domain Ship Motions with a Nonlinear Extension", Proceedings of the 10th International Workshop on Water Waves and Floating Bodies, Oxford, UK
- [10] Pawloski J.S., (1991), "On the Application of the Weak Scatterer Hypothesis to the Prediction of Ship Motions in Heavy Seas", Institute for Marine Dynamics, National Research Council Canada, St. John's, Newfoundland
- [11] Sclavounos P.D., (1996), "Computation of Wave Ship Interactions", Advances in Marine Hydrodynamics, M. Ohkusu, Editor, Computational ?Mechanics Publications
- [12] Sclavounos P.D., Borgen H., (2002), "Seakeeping analysis of a high-speed monohull with a motion control bow hydrofoil", Journal of ship research 2004, vol. 48, n°2, pp. 77-117
- [13] Sclavounos P.D., Kim Y. ,(1998), "Nonlinear Ship Motions and Wave Induced Structural Loads", 25th American Towing Tank Conference, Iowa City
- [14] Sclavounos P.D., Purvin S., Ulusoy T., Kim S., (2003), "Simulation Based Resistance and Seakeeping Performance of High-Speed Monohull and Multihull Vessels Equipped with Motion Control Lifting Appendages", Keynote Lecture, FAST 2003 Conference, Ischia, Italy
- [15] Singh S.P., Sen Debabrata, (2007), "A comparative linear and nonlinear ship motion study using 3-D time domain methods", Ocean Engineering 34 pages 1863-1881
- [16] Sung Hong Gun, Grilli S.T., (2005), "Numerical Modelling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics", Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Korea

- [17] Tascon O. D., Troesch A.W., Maki K.J., (2009), "Numerical computation of the hydrodynamic forces acting on a maneuvring planning hull via slender body theory – SBT and 2-D impact theory", FAST 2009, Athens, Greece
- [18] Zraphonitis G.N., Papanikolaou A.D., (1993), "Second-order Theory and Calculations of Motions and Loads of Arbitrarily Shaped 3D Bodies in Waves", Marine Structures 6, pages 165-185
- [19] Χαλκιάς Δημήτριος, (2003), "Αναλυτική και πειραματική διερεύνηση της υδροδυναμικής συμπεριφοράς ταχυπλόων γαστρών σε ήρεμο νερό και σε κυματισμούς", Διπλωματική Εργασία, Αθήνα

ПАРАРТНМА 1⁰

ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΣΤΟ ΜΑΤLΑΒ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΑΠΟΚΡΙΣΕΩΝ ΑΠΟ ΑΡΧΕΙΑ ΕΞΟΔΟΥ ΧΡΟΝΙΚΗΣ ΙΣΤΟΡΙΑΣ ΚΙΝΗΣΕΩΝ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SWAN

Π1.1 Εισαγωγή

Σε αντίθεση με την έκδοση SWAN2, η έκδοση SWAN4 δεν έχει τη δυνατότητα να υπολογίσει αυτόματα τους συντελεστές αποκρίσεων. Δημιουργήθηκε λοιπόν η ανάγκη για έναν κώδικα ο οποίος να μπορεί να υπολογίσει αυτούς τους συντελεστές.

Η ανάπτυξη του κώδικα έγινε στο πακέτο Matlab γιατί εκτός από την ικανότητα διαχείρισης πινάκων μεγάλου μεγέθους μπορούσε να γίνει και εκτύπωση των αποτελεσμάτων κινήσεων σε γραφικές παραστάσεις προκειμένου να επαληθευτεί η συνάφειά τους με την αρμονική διέγερση.

Στο παρόν κεφάλαιο θα αναλυθεί η μορφή του κώδικα καθώς και θα δοθούν κάποιες απαραίτητες οδηγίες για την μελλοντική αξιοποίησή του.

Π1.2 Οι δυνατότητες του προγράμματος

Αν και το πρόγραμμα αρχικά αναπτύχθηκε για να κάνει αποκλειστικά τον υπολογισμό των συντελεστών απόκρισης, στη συνέχεια επεκτάθηκε ώστε να μπορεί να εκτυπώνει και να αποθηκεύει σε μορφή jpg την χρονική ιστορία των αποκρίσεων ανά λόγο λ/L ώστε να μπορούν να αξιολογηθούν και οπτικά.

Το πρόγραμμα διαβάζει τα αρχεία εξόδου αποκρίσεων κίνησης .MOT του SWAN και υπολογίζει του αδιάστατους συντελεστές απόκρισης.

Π1.3 Παρουσίαση του κώδικα

Ακολουθεί ο κώδικας όπως συντάχθηκε στο πρόγραμμα Matlab.

```
clear
%Define Lwl
Lw] = 100;
%Define Amplitude=wplatos
wplatos2 = 1;
%Define Wave Period=Tw
Tw = 10.28;
%Define bow x-coord
1bow = 50;
%Define Stern x-coord
1stern = -50;
ltoL = Tw^2*9.81/Lw1/2/pi;
x = load ('s60A1.mot');
N = length(x);
time = x((N,/2):(N),1);
heave = x((N,/2):(N),4);
pitch = x((N,/2):(N),6);
wave = wplatos2*sin(2*pi/Tw*time);
dcwave = mean(wave);
correctwave = wave - dcwave;
dcheave = mean(heave);
correctheave = heave -
                         dcheave;
dcpitch = mean(pitch);
correctpitch = pitch - dcpitch;
movstern = correctheave - lstern*tan(pi/180*correctpitch);
movbow = correctheave - lbow*tan(pi/180*correctpitch);
umid(1,1) = 0;
amid(1,1) = 0;
NMM = length(correctheave);
for i=2:1:NMM
    umid(i,1) = (correctheave(i)-correctheave(i-1))./(time(i)-
time(i-1));
end
for j=2:1:NMM
    amid(j,1) = (umid(j)-umid(j-1))./(time(j)-time(j-1));
end
ubow(1,1) = 0;
abow(1,1) = 0;
NMB = length(movbow);
for i=2:1:NMB
    ubow(i,1) = (movbow(i)-movbow(i-1))./(time(i)-time(i-1));
end
for j=2:1:NMB
    abow(j,1) = (ubow(j)-ubow(j-1))./(time(j)-time(j-1));
end
ustern(1,1) = 0;
astern(1,1) = 0;
NMS = length(movstern);
for i=2:1:NMS
    ustern(i,1) = (movstern(i)-movstern(i-1))./(time(i)-time(i-1));
end
```

```
for j=2:1:NMS
      astern(j,1) = (ustern(j)-ustern(j-1))./(time(j)-time(j-1));
end
Nf = 32768;
Ts = time(2) - time(1);
fs = 1./Ts;
wf = (2*pi*fs*(0:Nf-1)/Nf);
f1 = (fs*(0:Nf-1)/Nf);
mid = ceil(Nf/2) + 1;
wfourier = fft ( correctwave, Nf);
pfourier = fft ( correctpitch, Nf);
hfourier = fft ( correctheave, Nf);
acbowfourier = fft ( abow, Nf);
acmidfourier = fft ( amid, Nf);
acsternfourier = fft ( astern, Nf);
w=abs(2*wfourier(1:mid)/N./2);
h=abs(2*hfourier(1:mid)/N./2);
p=abs(2*pfourier(1:mid)/N./2);
acb=abs(2*acbowfourier(1:mid)/N./2);
acm=abs(2*acmidfourier(1:mid)/N./2);
acs=abs(2*acsternfourier(1:mid)/N./2);
    -----'
wplatos = max(w);
 Amplitude', wplatos;
hplatos = max(h);
 'Max Heave', hplatos;
pplatos = max(p);
'Max Pitch', pplatos;
acbplatos = max(acb);
acmplatos = max(acm)
acsplatos = max (acs);
HRAO = hplatos./wplatos;
'RAO HEAVE', HRAO
PRAO = (Tw^2*9.81*pplatos)./((360*2*pi)*wplatos);
'RAO Pitch', PRAO
PRAOSW2 = pplatos./wplatos;
ACBRAO = acbplatos./wplatos
ACMRAO = acmplatos./wplatos
ACSRAO = acsplatos./wplatos
hold
title(ltoL)
plot(time,correctwave,'g')
plot(time,correctheave)
plot(time,correctpitch,'r')
plot(x(1:N,1),x(1:N,4),'b')
%
%plot(x(1:N,1),x(1:N,4), b)
%plot(x(1:N,1),x(1:N,6),'r')
legend('heave','pitch',2)
xlabel('Time (s)')
ylabel('m and deg')
saveas(gcf,'ltoL=','jpg')
%plot(time,PRAO*wplatos2*sin(2*pi/Tw*time),'m')
bold off
hold off
```

```
101
```

Π1.4 Οδηγίες χρήσης του κώδικα

Προκειμένου ο κώδικας να διαβάσει αρχείο με τιμές είναι αναγκαίο να γίνουν κάποιες μικρές παρεμβάσεις στα αρχεία εξόδου του SWAN. Παρακάτω δίδονται οι πρώτες γραμμές ενός αρχείου εξόδου κινήσεων .MOT του SWAN4.

Με κόκκινο φόντο σημειώνονται τα σημεία του αρχείου τα οποία θα πρέπει να σβηστούν. Ο λόγος είναι ότι το Matlab δεν μπορεί να αναγνωρίσει αρχεία που περιέχουν ταυτόχρονα πίνακα με τιμές και κείμενο.

Το επόμενο βήμα είναι να δώσουμε τις ποσότητες βάσει των οποίων θα γίνουν οι υπολογισμοί. Παρακάτω δίδεται το σχετικό απόσπασμα του κώδικα και η επεξήγηση των μεταβλητών.

```
%Define Lwl
Lwl = 100;
%Define Amplitude=wplatos
wplatos2 = 1;
%Define Wave Period=Tw
Tw = 10.28;
%Define bow x-coord
lbow = 50;
%Define Stern x-coord
lstern = -50;
```

Όνομα μεταβλητής	Επεξήγηση μεταβλητής
Lwl	Μήκος ισάλου γραμμής σε m
wplatos2	Πλάτος κύματος σε m
Тw	Περίοδος κύματος σε sec
lbow	Απόσταση πλώρης από το LCG σε m
lstern	Απόσταση πρύμνης από το LCG σε m

Στη συνέχεια αλλάζοντας τον τρόπο υπολογισμού των RAO μπορούμε να πάρουμε το αποτέλεσμα σε όποια αδιάστατη μορφή θέλουμε. Τέλος με τη χρήση του χαρακτήρα %, που υποδηλώνει σχόλιο στο Matlab, μπορούμε να απενεργοποιήσουμε κάποιες εντολές προκειμένου να μην ενεργοποιούνται σε κάθε εκτέλεση του κώδικα.

ПАРАРТНМА 2⁰

ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Στις παρακάτω σελίδες δίνονται τα αποτελέσματα των υπολογισμών τα οποία χρησιμοποιήθηκαν για να γίνουν τα διαγράμματα.

Σειρά 60											
Αριθμός Froude = 0.2											
Μήκος	Ισάλου	WL	100	m							
Ταχύτητα	α Δοκιμής	V	r s	6.26	m/s						
	Αποτελέσματα RAO Heave										
	$RAO_{HEAVE} = \frac{\xi_3}{A}$										
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158	0.08	0.0469	0.046	0.045						
1	8.003	0.7033	0.6513	0.656	0.64						
1.2	8.767	1.3733	1.4622	1.28	1.266						
1.4	9.469	1.2	1.1702	1.083	1.066						
1.6	10.123	1.08	1.0784	0.961	0.935						
1.8	10.737	1	1.0421	0.914	0.919						
3	10.737		1.02								
		Αποτελέσματ	α RAO Pitch								
		RAO =	$L \times \xi_5(rad)$								
	-	на то рисн	А								
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158	1.3	1.4675	1.2444	1.1624						
1	8.003	3.9	4.4405	3.8293	3.6059						
1.2	8.767	5.8	6.9115	6.0301	5.7683						
1.4	9.469	6.3	7.1372	6.0039	5.6269						
1.6	10.123	5	5.3697	4.6530	4.4366						
1.8	10.737	4	4.467	4.1382	4.1626						
3	10.737		3								

Σειρά 60											
Αριθμός Froude = 0.25											
Μήκος	Ισάλου	L	VL	100	m						
Ταχύτητα	α Δοκιμής	V	r S	7.83	m/s						
	Αποτελέσματα RAO Heave										
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		0.0201	0.008	0.01						
1	8.003		0.4464	0.443	0.429						
1.2	8.767		1.3719	1.248	1.241						
1.4	9.469		1.9427	1.518	1.494						
1.6	10.123		1.432	1.159	1.154						
1.8	10.737		1.269	1.023	1.023						
2	11.318		1.1923								
2.4	12.398		1.1032								
3	10.737		1.0667	0.977	0.978						
		Αποτελέσματ	α RAO Pitch ξ_5 (deg)								
	I	RAO _{pitch}	$=\frac{\kappa \times A}{\kappa \times A}$								
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		0.1456	0.106	0.104						
1	8.003		0.5791	0.493	0.482						
1.2	8.767		1.132	0.975	0.995						
1.4	9.469		1.5834	1.420	1.438						
1.6	10.123		1.6748	1.428	1.432						
1.8	10.737		1.422	1.318	1.323						
2	11.318		1.3307								
2.4	12.398		1.1821								
3	13.862		1.0874	1.113	1.115						
	Απο	τελέσματα RAC RAO _{AC}	$= \frac{m/s^2}{A}$	Bow							
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		1.3301	0.95	0.936						
1	8.003		3.0403	2.718	2.666						
1.2	8.767		4.4665	4.053	4.14						
1.4	9.469		5.1705	4.393	4.409						
1.6	10.123		3.6445	3.029	3.027						
1.8	10.737		2.2816	2.057	2.063						
2	11.318		1.685								
2.4	12.398		1.0284								
3	13.862		0.6524	0.586	0.587						

Σειρά 60												
	Αριθμός Froude = 0.25											
Μήκος	Ισάλου	L	VL	100	m							
Ταχύτητα	α Δοκιμής	V	r S	7.83	m/s							
	Απο	τελέσματα RAC	Acceleration	LCG								
$RAO_{AC} = \frac{m/s^2}{A}$												
2 /I	Т	Experiment	SWANA	LFK –	NLFK –							
N/L	1	Experiment	SWAIN4	SWAN2	SWAN2							
0.8	7.158		0.0456	0.018	0.021							
1	8.003		0.7438	0.723	0.7							
1.2	8.767		1.7716	1.585	1.577							
1.4	9.469		2.0119	1.565	1.541							
1.6	10.123		1.2124	0.999	0.995							
1.8	10.737		0.9107	0.754	0.754							
2	11.318		0.7618									
2.4	12.398		0.5765									
3	10.737		0.3993	0.373	0.373							
	Αποτ	τελέσματα RAC	Acceleration	Stern								
		RAO _{AC}	$=\frac{m/s^2}{A}$									
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2							
0.8	7.158		1.28	0.917	0.894							
1	8.003		2.9262	2.536	2.464							
1.2	8.767		3.7702	3.099	3.119							
1.4	9.469		3.0435	2.679	2.728							
1.6	10.123		2.5594	2.124	2.138							
1.8	10.737		1.8377	1.63	1.638							
2	11.318		1.3616									
2.4	12.398		0.8693									
3	13.862		0.5339	0.573	0.587							

Σειρά 60											
Αριθμός Froude = 0.30											
Μήκος	Ισάλου	Lw	VL	100	m						
Ταχύτητα	ι Δοκιμής	V	S	9.5	m/s						
Αποτελέσματα RAO Heave											
$RAO_{HEAVE} = \frac{\xi_3}{A}$											
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		0.0507	0.012	0.012						
1	8.003		0.3016	0.278	0.268						
1.2	8.767		1.15	1.017	0.998						
1.3	9.125		1.6729								
1.35	9.299		1.8842								
1.4	9.469		2.0486	1.66	1.659						
1.45	9.637		2.1704								
1.5	9.802		2.2477								
1.55	9.964		2.2859								
1.6	10.123		2.2346	1.561	1.543						
1.65	10.280		2.1106								
1.8	10.737		1.5937	1.206	1.206						
2	11.318		1.3364								
2.4	12.398		1.2081								
3	13.862		1.1307	1.003	1.004						
		Αποτελέσματ RAO _{PITCH} =	$\frac{\alpha \text{ RAO Pitch}}{\xi_5(\text{deg})} = \frac{\xi_5(\text{deg})}{\kappa \times A}$								
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		0.1032	0.071	0.070						
1	8.003		0.4437	0.371	0.360						
1.2	8.767		0.9772	0.920	0.912						
1.3	9.125		1.1457								
1.35	9.299		1.1848								
1.4	9.469		1.2265	1.275	1.320						
1.45	9.637		1.2648								
1.5	9.802		1.3587								
1.55	9.964		1.4959								
1.6	10.123		1.63287	1.513	1.531						
1.65	10.280		1.741								
1.8	10.737		1.7439	1.447	1.455						
2	11.318		1.5004								
2.4	12.398		1.2673								
3	13.862		1.1123	1.112	1.123						

Σειρά 60											
Αριθμός Froude = 0.30											
Μήκος	Ισάλου	100	m								
Ταχύτητα	α Δοκιμής	V	r S	9.5	m/s						
Αποτελέσματα RAO Acceleration Bow											
$RAO_{AC} = \frac{m/s^2}{A}$											
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		1.1414	0.737	0.727						
1	8.003		2.7067	2.301	2.243						
1.2	8.767		4.1754	3.977	3.973						
1.3	9.125		4.4571								
1.35	9.299		4.4855								
1.4	9.469		4.5086	4.443	4.582						
1.45	9.637		4.5443								
1.5	9.802		4.6482								
1.55	9.964		4.7587								
1.6	10.123		4.7489	3.943	3.951						
1.65	10.280		4.5717								
1.8	10.737		3.3912	2.673	2.679						
2	11.318		2.2235								
2.4	12.398		1.3178								
3	13.862		0.7546	0.659	0.66						
	Απο	τελέσματα RAC RAO _{AC}	D Acceleration $=\frac{m/s^2}{A}$	LCG							
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		0.1338	0.03	0.031						
1	8.003		0.589	0.531	0.512						
1.2	8.767		1.6766	1.5	1.472						
1.3	9.125		2.1542								
1.35	9.299		2.2966								
1.4	9.469		2.3695	1.974	1.973						
1.45	9.637		2.3921								
1.5	9.802		2.3684								
1.55	9.964		2.3115								
1.6	10.123		2.1683	1.542	1.525						
1.65	10.280		1.9719								
1.8	10.737		1.3414	1.015	1.015						
2	11.318		0.9982								
2.4	12.398		0.679								
3	13.862		0.4798	0.427	0.427						

Σειρά 60											
Αριθμός Froude = 0.30											
Μήκος	Ισάλου	Lw	VL	100	m						
Ταχύτητα	α Δοκιμής	V	S	9.5	m/s						
	Απο	τελέσματα RAC	Acceleration	Stern							
	$RAO_{AC} = \frac{m/s^2}{A}$										
λ/L	Т	Experiment	SWAN4	LFK – SWAN2	NLFK – SWAN2						
0.8	7.158		1.0454	0.745	0.728						
1	8.003		2.6054	2.278	2.201						
1.2	8.767		4.1463	3.731	3.656						
1.3	9.125		4.1626								
1.35	9.299		3.9309								
1.4	9.469		3.6385	3.345	3.406						
1.45	9.637		3.2521								
1.5	9.802		2.9307								
1.55	9.964		2.7137								
1.6	10.123		2.5613	2.542	2.585						
1.65	10.280		2.4624								
1.8	10.737		2.1607	1.984	2.001						
2	11.318		1.6298								
2.4	12.398		1.0264								
3	13.862		0.6143	0.655	0.656						

Πλοίο Ψυγείο (Reefer)									
Αριθμός Froude = 0.24									
Μήκο	ος Ισάλου		L _{WI}		95.0	m			
Ταχύτη	ιτα Δοκιμής		Vs		7.2	m/s			
Αποτελέσματα RAO Heave									
		I	RAO _{HEAVE}	$=\frac{\xi_3}{A}$					
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2			
0.762	0.122	0.6	5.9911	0.2275	0.068	0.066			
0.938	0.36	0.8	6.9179	0.1558	0.06	0.06			
1.032	0.672	1	7.7344	0.3839	0.365	0.355			
1.149	1.208	1.2	8.4727	1.0389	0.945	0.925			
1.217	1.26	1.4	9.1515	1.6082	1.219	1.223			
1.337	1.217	1.6	9.7834	1.5146	1.081	1.098			
1.377	1.267	1.8	10.3768	1.2327	0.968	0.978			
1.499	1.181	2	10.9381	1.0956	0.934	0.936			
1.614	1.108	2.2	11.4720	1.0172	0.92	0.92			
1.725	1.099								
1.883	1.065								
1.996	1.045								
		Αποτε	λέσματα R	AO Pitch					
		RΔ	$\Omega - \frac{\xi}{2}$	$_{5}(deg)$					
		IX I	O _{PITCH} –	κ×A					
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2			
0.762	0.12	0.6	5.9911	0.1523	0.017	0.014			
0.938	0.37	0.8	6.9179	0.3916	0.116	0.115			
1.032	0.61	1	7.7344	0.4244	0.429	0.416			
1.149	0.99	1.2	8.4727	0.7417	0.871	0.840			
1.217	0.99	1.4	9.1515	1.2506	1.290	1.248			
1.337	1.03	1.6	9.7834	1.6106	1.415	1.393			
1.377	1.16	1.8	10.3768	1.6419	1.415	1.405			
1.499	1.22	2	10.9381	1.6427	1.396	1.392			
1.614	1.21	2.2	11.4720	1.6066	1.380	1.377			
1.725	1.29								
1.883	1.23								
1.996	1.20								

Πλοίο Ψυγείο (Reefer)							
	1	Αριθμ	ιός Frou	de = 0.24			
Μήκο	ος Ισάλου		L _{WI}	1	95.0	m	
Ταχύτη	ιτα Δοκιμής		Vs		7.2	m/s	
	Αποτε	ελέσμα	τα RAO A	cceleration B	OW		
		R	$AO_{AC} = \frac{n}{2}$	$\frac{n/s^2}{\Lambda}$			
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2	
0.762	1.14	0.6	5.9911	1.0377	0.322	0.306	
0.938	2.157	0.8	6.9179	2.414	0.974	0.966	
1.032	2.935	1	7.7344	2.0201	2.183	2.116	
1.149	3.846	1.2	8.4727	3.0379	3.27	3.145	
1.217	3.583	1.4	9.1515	3.793	3.485	3.391	
1.337	2.983	1.6	9.7834	3.3414	2.699	2.678	
1.377	3.095	1.8	10.3768	2.4307	1.985	1.986	
1.499	2.597	2	10.9381	1.841	1.516	1.519	
1.614	2.181	2.2	11.4720	1.4205	1.198	1.201	
1.725	1.967						
1.883	1.55						
1.996	1.326						
	Αποτε	λέσμαι	τα RAO A	cceleration St	ern		
		R	$AO_{AC} = \frac{n}{2}$	$\frac{n/s^2}{A}$			
λ/L	Experiment	λ/L	Т	SWAN4	LFK – Swan2	NLFK – SWAN2	
0.762	0.814	0.6	5 9911	2 8004	0 384	0.338	
0.938	1 711	0.0	6 9179	3 5916	0.875	0.550	
1.032	2 296	1	7 7344	2 1016	1 963	1 905	
1 1 1 4 9	2.924	12	8 4727	1 9607	2 401	2.347	
1 217	2.432	1.2	9 1 5 1 5	1 943	2 307	2.257	
1 337	2.054	1.1	9 7834	1 9391	1 938	1 906	
1 377	2.105	1.8	10 3768	1 6509	1 593	1.503	
1 499	1 796	2	10.9381	1 39	1 316	1 304	
1.614	1.565	22	11.4720	1.1565	1,103	1.095	
1.725	1.493						
1.883	1.216						
1.996	1.047						

Πλοίο Ψυγείο (Reefer)									
Aριθμός Froude = 0.29									
Μήκ	ος Ισάλου		L _{WI}	,	95.0	m			
Ταχύτη	ιτα Δοκιμής		Vs		8.7448	m/s			
	Αποτελέσματα RAO Heave								
		L	240	_ξ ₃					
		I	HEAVE	Ā					
λ/Ι	Experiment	λ/Ι	Т	SWAN4	LFK –	NLFK –			
N/L	Laperiment	NL	1	5 1 2 1 4	SWAN2	SWAN2			
0.759	0.105	0.6	5.9911	0.2235	0.055	0.054			
0.939	0.279	0.8	6.9179	0.3626	0.043	0.042			
1.034	0.544	1	7.7344	0.4302	0.254	0.247			
1.155	0.942	1.2	8.4727	0.9403	0.806	0.782			
1.215	1.055	1.4	9.1515	1.4884	1.345	1.321			
1.339	1.251	1.5	9.4727	1.7384					
1.379	1.399	1.55	9.6293	1.7553					
1.497	1.375	1.6	9.7834	1.7903	1.354	1.359			
1.602	1.349	1.65	9.9351	1.794					
1.725	1.255	1.7	10.0845	1.8381					
1.881	1.188	1.8	10.3768	1.6926	1.141	1.155			
2	1.111	2	10.9381	1.3575	1.03	1.036			
		2.2	11.4720	1.1829	0.986	0.988			
		Αποτε	λέσματα R	AO Pitch					
		DA	ο ^ξ	$_{5}(deg)$					
		KA	$O_{\text{PITCH}} = -$	κ×Α					
۵ /I	Evenories ant	<u>م / ا</u>	т	CIVA NIA	LFK –	NLFK –			
∧/L	Experiment	∧/L	1	SWAN4	SWAN2	SWAN2			
0.759	0.103	0.6	5.9911	0.144	0.016	0.014			
0.939	0.298	0.8	6.9179	0.5324	0.086	0.084			
1.034	0.514	1	7.7344	0.4533	0.361	0.348			
1.155	0.794	1.2	8.4727	0.606	0.799	0.772			
1.215	0.874	1.4	9.1515	0.8535	1.250	1.200			
1.339	1.023	1.5	9.4727	0.9453					
1.379	1.107	1.55	9.6293	0.8064					
1.497	1.187	1.6	9.7834	0.874	1.484	1.439			
1.602	1.262	1.65	9.9351	1.091					
1.725	1.267	1.7	10.0845	1.4342					
1.881	1.274	1.8	10.3768	1.704	1.471	1.452			
2	1.198	2	10.9381	1.7201	1.405	1.398			
		2.2	11.4720	1.7093	1.351	1.348			

Πλοίο Ψυγείο (Reefer)									
	1	Αριθμ	ιός Frou	de = 0.29					
Μήκ	Μήκος Ισάλου L _{WL} 95.0 m								
Ταχύτη	ιτα Δοκιμής		Vs		8.7448	m/s			
Αποτελέσματα RAO Acceleration Bow									
			n n	n/s^2					
		K	$AO_{AC} = -$	A					
A 17		A (7	-		LFK –	NLFK –			
λ/L	Experiment	λ/L	Т	SWAN4	SWAN2	SWAN2			
0.759	1.172	0.6	5.9911	1.7113	0.331	0.314			
0.939	1.945	0.8	6.9179	3.602	0.82	0.815			
1.034	2.742	1	7.7344	2.3035	2.031	1.964			
1.155	3.391	1.2	8.4727	2.4021	3.19	3.08			
1.215	3.437	1.4	9.1515	3.1755	3.86	3.705			
1.339	3.332	1.5	9.4727	3.3272					
1.379	3.398	1.55	9.6293	2.9553					
1.497	3.06	1.6	9.7834	2.9894	3.367	3.287			
1.602	2.758	1.65	9.9351	3.1418					
1.725	2.341	1.7	10.0845	3.6033					
1.881	1.878	1.8	10.3768	3.4898	2.436	2.423			
2	1.561	2	10.9381	2.5607	1.777	1.777			
		2.2	11.4720	1.9243	1.364	1.366			
	Αποτε	λέσμαι	τα RAO A	cceleration St	tern				
		г	n n	n/s^2					
		k	$AO_{AC} = -$	A					
<u> </u>	D	0 /T	T		LFK –	NLFK –			
λ/L	Experiment	λ/L	Т	SWAN4	SWAN2	SWAN2			
0.759	0.86	0.6	5.9911	3.9884	0.427	0.385			
0.939	1.652	0.8	6.9179	6.4591	0.788	0.772			
1.034	2.341	1	7.7344	2.9674	2.003	1.928			
1.155	2.812	1.2	8.4727	2.7323	2.862	2.777			
1.215	2.745	1.4	9.1515	2.1161	2.854	2.789			
1.339	2.438	1.5	9.4727	1.9059					
1.379	2.49	1.55	9.6293	1.6623					
1.497	2.159	1.6	9.7834	1.5586	2.366	2.316			
1.602	1.865	1.65	9.9351	1.543					
1.725	1.635	1.7	10.0845	1.5523					
1.881	1.413	1.8	10.3768	1.6181	1.872	1.847			
2	1.157	2	10.9381	1.4665	1.5	1.489			
		2.2	11.4720	1 3033	1.226	1.219			

Ταχύ Επιβατηγό-Οχηματαγωγό (Ro-Pax Ferry SUPERFAST III-IV)									
Αριθμός Froude = 0.26									
Μήκ	ος Ισάλου	T .	Lwi		188.54	m			
Τανύτη	τα Λοκιμής		V.		11 3168	m/s			
10,001			V S	ž	11.5100	111/ 5			
	А	ποτελέ	σματα RA	$O_{\text{HEAVE}} = \frac{\varsigma_3}{A}$					
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2			
0.500	0.151	0.5	7.770	0.1246	0.069	0.065			
0.625	0.190	0.8	9.829	0.2389	0.335	0.302			
0.750	0.236	1	10.989	0.8799	0.618	0.574			
0.875	0.355	1.2	12.038	0.9454	0.653	0.62			
1.000	0.660	1.4	13.002	0.8943	0.677	0.64			
1.125	0.678	1.6	13.900	0.9424	0.722	0.689			
1.250	0.699	2	15.541	0.9946	0.805	0.788			
1.375	0.702	2.4	17.024	0.9351	0.856	0.847			
1.500	0.732	2.8	18.388	0.9647	0.89	0.885			
1.750	0.789	3.2	19.658	0.9747	0.914	0.909			
1.998	0.845								
2.250	0.836								
2.500	0.820								
2.750	0.921								
2.999	0.916								
3.253	0.981								
3.500	0.939								
	Απο	τελέσμ	ατα RAO _F	$P_{\text{TTCH}} = \frac{\xi_5(\text{deg})}{\kappa \times A}$	<u>)</u>				
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2			
0.500	0.037	0.5	7.770	0.0763	0.0246	0.0186			
0.625	0.082	0.8	9.829	0.3811	0.2392	0.2258			
0.750	0.124	1	10.989	0.7131	0.5923	0.5578			
0.875	0.246	1.2	12.038	1.1183	0.8107	0.7824			
1.000	0.532	1.4	13.002	1.217	0.9092	0.8887			
1.125	0.638	1.6	13.900	1.2422	0.9569	0.9385			
1.250	0.777	2	15.541	1.1202	0.9961	0.9856			
1.375	0.892	2.4	17.024	1.1215	1.0055	0.9955			
1.500	0.980	2.8	18.388	1.0891	1.0133	1.0074			
1.750	1.095	3.2	19.658	1.1545	1.0257	1.0190			
1.998	1.176								
2.250	1.135								
2.500	1.150								
2.750	1.232								
2.999	1.243								
3.253	1.322	//////							
3.500	1.241	//////							

Ταχ	ύ Επιβατη SI	γó-O UPE	χηματο RFAS]	αγωγό (Ι Γ ΙΙΙ-ΙV)	Ro-Pax F	erry
		Αριθμ	ιός Frou	de = 0.26		
Μήκ	ος Ισάλου		L _{WI}		188.54	m
Ταχύτη	ητα Λοκιμής		V.		11 3168	m/s
10,201	Αποτελέσματο	Accel	eration Bo	w RAO $=$	$L_{WL} \times m/s^2$	111, 5
				AC AC	A×g	
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	9.586	0.5	7.770	19.646	8.283	5.900
0.625	13.971	0.8	9.829	35.092	28.733	26.792
0.750	15.149	1	10.989	51.415	40.437	37.746
0.875	24.433	1.2	12.038	47.025	34.345	32.922
1.000	35.207	1.4	13.002	33.705	26.157	25.292
1.125	36.654	1.6	13.900	25.561	20.046	19.431
1.250	34.874	2	15.541	14.614	12.665	12.435
1.375	30.773	2.4	17.024	9.346	8.745	8.629
1.500	27.248	2.8	18.388	6.978	6.496	6.438
1.750	21.172	3.2	19.658	5.141	5.074	5.055
1.998	16.850					
2.250	12.795					
2.500	9.664					
2.750	9.004					
2.999	8.805					
3.253	7.279					
3.500	6.261					
	Αποτελέσματα	Accele	eration LC	$G RAO_{AC} = -$	$\frac{L_{WL} \times m / s^2}{A \times g}$	
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	4.042	0.5	7.770	5.777	3.133	3.056
0.625	6.095	0.8	9.829	5.725	6.650	5.939
0.750	5.071	1	10.989	15.402	8.937	8.303
0.875	6.786	1.2	12.038	12.423	7.438	7.073
1.000	9.520	1.4	13.002	9.886	6.611	6.246
1.125	9.426	1.6	13.900	8.727	6.131	5.862
1.250	8.685	2	15.541	6.563	5.285	5.170
1.375	7.474	2.4	17.024	5.108	4.497	4.440
1.500	6.887	2.8	18.388	4.338	3.844	3.825
1.750	6.460	3.2	19.658	3.556	3.344	3.325
1.998	4.888	//////				
2.250	4.232					
2.500	3.779					
2.750	3.757	V//////				
2.999	3.719	V//////				
3.253	3.227	V//////				
3.500	3.312	//////				

Ταχ	ύ Επιβατη S	γó-O UPE	χηματ RFAS	αγωγό (Ι Γ ΙΙΙ-ΙV)	Ro-Pax F	erry
		Αριθμ	ιός Frou	de = 0.33		
Μήκ	ος Ισάλου		L _{WI}		188.54	m
Ταχύτη	ητα Λοκιμής		V.		14 4032	m/s
	A	ποτελέ	σματα RA	$O_{\text{HEAVE}} = \frac{\xi_3}{A}$		
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	0.088	0.5	7.770	0.1002	0.048	0.047
0.625	0.086	0.8	9.829	0.3584	0.212	0.178
0.750	0.168	1	10.989	0.7335	0.656	0.557
0.875	0.221	1.2	12.038	1.6305	0.846	0.827
1.000	0.593	1.4	13.002	1.4068	0.781	0.795
1.250	0.843	1.6	13.900	1.089	0.767	0.771
1.375	0.869	2	15.541	1.0202	0.823	0.825
1.500	0.868	2.4	17.024	0.9765	0.869	0.874
1.750	0.900	2.8	18.388	1.0296	0.899	0.904
2.000	0.820	3.2	19.658	1.0374	0.922	0.926
2.250	0.844					
2.500	0.913					
2.750	0.934					
3.000	0.959					
3.250	1.010					
3.500	1.011				<u> </u>	
	Απο	στελέσμ	ατα RAO	$PITCH = \frac{\xi_5(\text{deg})}{\kappa \times A}$	<u>(;)</u>	I
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	0.025	0.5	7.770	0.1753	0.0178	0.0141
0.625	0.018	0.8	9.829	0.8577	0.1596	0.1504
0.750	0.083	1	10.989	0.5111	0.5201	0.4640
0.875	0.156	1.2	12.038	1.0976	0.8711	0.8126
1.000	0.442	1.4	13.002	1.5067	0.9986	0.9840
1.250	0.694	1.6	13.900	1.2499	1.0231	1.0231
1.375	0.838	2	15.541	1.4257	1.0254	1.0286
1.500	0.950	2.4	17.024	1.3158	1.0143	1.0156
1.750	1.010	2.8	18.388	1.174	1.0060	1.0045
2.000	1.100	3.2	19.658	1.0631	1.0022	1.0039
2.250	1.112					
2.500	1.157				<u>X////////////////////////////////////</u>	
2.750	1.249				X/////////////////////////////////////	
3.000	1.255				X/////////////////////////////////////	X/////////////////////////////////////
3.250	1.311					X/////////////////////////////////////
3.500	1.357				X/////////////////////////////////////	X/////////////////////////////////////

Ταχ	νύ Επιβατη S	γó-O UPE	χηματ RFAS	αγωγό (Ι Γ ΙΙΙ-ΙV)	Ro-Pax F	erry
		Αριθμ	ιός Frou	de = 0.33		
Μήκ	ος Ισάλου	T	L _{WI}		188.54	m
Ταγύτι	ητα Δοκιμής		V.	-	14.4032	m/s
	Αποτελέσματο	a Accel	eration Bo	w $RAO_{AC} = -$	$\frac{L_{WL} \times m / s^2}{A \times g}$	
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	5.740	0.5	7.770	0.8924	7.476	5.689
0.625	5.746	0.8	9.829	4.1402	23.447	21.410
0.750	15.758	1	10.989	5.6458	45.473	39.380
0.875	20.665	1.2	12.038	3.4918	47.394	44.070
1.000	44.403	1.4	13.002	2.9174	35.671	35.210
1.250	41.667	1.6	13.900	1.6863	25.927	25.888
1.375	37.665	2	15.541	1.0591	15.375	15.395
1.500	34.683	2.4	17.024	0.5943	10.282	10.301
1.750	24.973	2.8	18.388	0.4098	7.476	7.476
2.000	18.959	3.2	19.658	0.307	5.766	5.785
2.250	14.562					
2.500	11.676					
2.750	11.733					
3.000	9.753					
3.250	9.304					
3.500	10.634					
	Αποτελέσματα	a Accele	eration LC	$G RAO_{AC} = -$	$\frac{L_{WL} \times m / s^2}{A \times g}$	
λ/L	Experiment	λ/L	Т	SWAN4	LFK –	NLFK –
	I				SWAN2	SWAN2
0.500	2.353	0.5	7.770	5.403	2.825	2.864
0.625	2.873	0.8	9.829	24.831	5.189	4.286
0.750	4.655	1	10.989	28.008	12.166	10.398
0.875	4.969	1.2	12.038	26.140	11.974	11.954
1.000	13.074	1.4	13.002	18.260	9.071	9.321
1.250	13.474	1.6	13.900	12.112	7.726	7.784
1.375	11.250	2	15.541	7.980	6.381	6.400
1.500	10.616	2.4	17.024	6.225	5.343	5.362
1.750	7.850	2.8	18.388	5.153	4.517	4.536
2.000	6.919	3.2	19.658	4.269	3.901	3.921
2.250	5.412	<i>\//////</i>			X/////////////////////////////////////	
2.500	5.130				X/////////////////////////////////////	
2.750	5.049					
3.000	4.246			X/////////////////////////////////////	X/////////////////////////////////////	
3.250	4.466			<i>\////////////////////////////////////</i>	X/////////////////////////////////////	
3.500	4.330	V//////	V/////////////////////////////////////	X/////////////////////////////////////	X/////////////////////////////////////	X/////////////////////////////////////

Ταχ	ύ Επιβατηγ Sl	γ <mark>ό-Ο</mark> J PE]	χηματο RFAS	αγωγό (F Γ III-IV)	Ro-Pax F	erry
	1	Αριθμ	ός Frou	de = 0.33		
Μήκ	ος Ισάλου		L _{WI}		188.54	m
Ταχύτη	Ταχύτητα Δοκιμής				14.4032	m/s
	Αποτελέσματα	Accele	eration Ster	rn $RAO_{AC} = -$	$\frac{L_{WL} \times m / s^2}{A \times g}$	
λ/L	Experiment	λ/L	Т	SWAN4	LFK – SWAN2	NLFK – SWAN2
0.500	8.451	0.5	7.770	20.797	6.265	5.843
0.625	3.944	0.8	9.829	96.278	11.186	11.320
0.750	6.112	1	10.989	57.813	20.699	20.122
0.875	8.292	1.2	12.038	27.603	23.659	23.101
1.000	16.737	1.4	13.002	28.658	21.103	21.007
1.250	15.180	1.6	13.900	20.217	17.316	17.393
1.375	14.967	2	15.541	16.880	11.762	11.820
1.500	15.180	2.4	17.024	11.633	8.495	8.514
1.750	13.759	2.8	18.388	8.247	6.535	6.535
2.000	10.483	3.2	19.658	6.092	5.266	5.266
2.250	7.586					
2.500	8.104					
2.750	7.466					
3.000	6.479					
3.250	6.291					
3.500	6.120					

	Τ	αχύτ	τλοο (σκάφ	ος Σειρά	ις NTUA	LB55	
	Α	ριθμό	ός Froi	ıde = 0	.34 / Συντε	λεστής C _D	_L = 1.61	
	Μήκος Ισ	άλου	2		L _{WL}		3.497	m
r	Γαγύτητα Δ	οκιμή	ς		Vs		1.974	m/s
		• •	A	τοτελέσ	ματα RAO _{HEA}	$AVE = \frac{\xi_3}{A}$		
λ/L	Experim.	λ/L	Т	LFK	NLFK $H/T = 0.25$	$\frac{NLFK}{H/T} = 0.5$	NLFK H/T = 0.75	NLFK $H/T = 1.0$
0.500	0.0621	0.5	1.058	0.036	0.036	0.037	0.035	0.033
0.626	0.0821	0.8	1.339	0.309	0.325	0.306	0.277	0.24
0.750	0.1592	1	1.497	0.42	0.428	0.428	0.421	0.401
0.874	0.2362	1.2	1.639	0.321	0.308	0.316	0.328	0.344
1.001	0.4103	1.4	1.771	0.403	0.377	0.379	0.382	0.386
1.125	0.5895	1.6	1.893	0.523	0.5	0.499	0.498	0.497
1.249	0.6104	1.8	2.008	0.617	0.598	0.596	0.595	0.593
1.375	0.5809	2	2.116	0.687	0.672	0.671	0.67	0.669
1.498	0.6215	2.2	2.220	0.74	0.729	0.728	0.728	0.727
1.752	0.6438	2.6	2.413	0.811	0.804	0.804	0.803	0.802
1.997	0.7253	3	2.592	0.857	0.852	0.852	0.851	0.85
2.246	0.7567	3.4	2.760	0.889	0.886	0.886	0.885	0.883
2.497	0.8118	3.8	2.917	0.912	0.91	0.91	0.909	0.908
2.750	0.8627	//////						
2.998	0.9151							
3.245	0.9128							
3.505	0.8672							
								,,,,,,,,,,,,,,,,,,,,,,
3.753	0.8941							
3.753	0.8941		Алот	τελέσμα	τα RAO _{PITCH}	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$		
3.753 λ/L	0.8941 Experim.	λ/L	Αποτ Τ	τελέσμα LFK	τα RAO _{PITCH} NLFK H/T = 0.25	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5	NLFK H/T = 0.75	NLFK H/T = 1.0
3.753 λ/L 0.500	0.8941 Experim. 0.0230	λ/L 0.5	Αποτ Τ 1.058	τελέσμα LFK 0.014	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014	NLFK H/T = 0.75 0.013	NLFK H/T = 1.0 0.011
3.753 λ/L 0.500 0.626	0.8941 Experim. 0.0230 0.0394	λ/L 0.5 0.8	Αποτ Τ 1.058 1.339	τελέσμα LFK 0.014 0.241	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$ $\frac{\text{NLFK}}{\text{H/T} = 0.5}$ 0.014 0.234	NLFK H/T = 0.75 0.013 0.220	NLFK H/T = 1.0 0.011 0.202
3.753 λ/L 0.500 0.626 0.750	0.8941 Experim. 0.0230 0.0394 0.1172	$\frac{\lambda/L}{0.5}$	Αποτ Τ 1.058 1.339 1.497	τελέσμα LFK 0.014 0.241 0.566	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555	NLFK H/T = 0.75 0.013 0.220 0.540	NLFK H/T = 1.0 0.011 0.202 0.508
3.753 λ/L 0.500 0.626 0.750 0.874	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041	λ/L 0.5 0.8 1 1.2	Aποτ T 1.058 1.339 1.497 1.639	τελέσμα LFK 0.014 0.241 0.566 0.764	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753	NLFK H/T = 0.75 0.013 0.220 0.540 0.747	NLFK H/T = 1.0 0.011 0.202 0.508 0.735
3.753 λ/L 0.500 0.626 0.750 0.874 1.001	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677	λ/L 0.5 0.8 1 1.2 1.4	Aποτ T 1.058 1.339 1.497 1.639 1.771	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845	$NLFK \\ H/T = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643	λ/L 0.5 0.8 1 1.2 1.4 1.6	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895	NLFK H/T = 0.75 0.013 0.220 0.540 0.747 0.838 0.887	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125	$\frac{\lambda/L}{0.5} \\ \frac{0.8}{1.2} \\ \frac{1.4}{1.6} \\ 1.8 $	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.013 \\ \hline 0.220 \\ \hline 0.540 \\ \hline 0.747 \\ \hline 0.838 \\ \hline 0.887 \\ \hline 0.920 \\ \hline 0.945 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072	$\frac{\lambda/L}{0.5} \\ \frac{0.5}{0.8} \\ \frac{1}{1.2} \\ \frac{1.4}{1.6} \\ \frac{1.8}{2} \\ 2.2 \\ \end{array}$	Aπ07 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.013 \\ 0.220 \\ \hline 0.540 \\ 0.747 \\ \hline 0.838 \\ \hline 0.887 \\ \hline 0.920 \\ \hline 0.945 \\ \hline 0.961 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \\ \hline \\ 1.249 \\ \hline \\ 1.375 \\ \hline \\ 1.498 \\ \hline \\ 1.752 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694	$\frac{\lambda/L}{0.5} \\ \frac{0.5}{0.8} \\ \frac{1}{1.2} \\ \frac{1.4}{1.6} \\ \frac{1.8}{2} \\ \frac{2.2}{2.6} \\ \frac{2.6}{1.8} \\ \frac{1}{1.8} \\ \frac{1}{1$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982	$\begin{array}{c} NLFK \\ H/T = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \\ 0.945 \\ 0.961 \\ 0.979 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \\ \hline \\ 1.249 \\ \hline \\ 1.375 \\ \hline \\ 1.498 \\ \hline \\ 1.752 \\ \hline \\ 1.997 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992	$\begin{array}{c} NLFK \\ H/T = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \\ 0.945 \\ 0.961 \\ 0.979 \\ 0.990 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \\ \hline \\ 1.249 \\ \hline \\ 1.375 \\ \hline \\ 1.498 \\ \hline \\ 1.752 \\ \hline \\ 1.997 \\ \hline \\ 2.246 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.989	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992 0.998	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \\ 0.945 \\ 0.961 \\ 0.979 \\ 0.990 \\ 0.997 \\ \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714 1.1386	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.989 0.992	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999 1.002	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992 0.998 1.002	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \\ 0.945 \\ 0.961 \\ 0.979 \\ 0.990 \\ 0.997 \\ 1.000 \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995 0.998
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714 1.1386 1.1616	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Aπ07 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.992	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999 1.002	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992 0.998 1.002	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.013 \\ 0.220 \\ \hline 0.540 \\ 0.747 \\ \hline 0.838 \\ \hline 0.920 \\ \hline 0.920 \\ \hline 0.945 \\ \hline 0.961 \\ \hline 0.979 \\ \hline 0.990 \\ \hline 0.997 \\ \hline 1.000 \\ \hline \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995 0.998
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714 1.1386 1.1616 1.2538	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Aπ01 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.992	τα RAO _{PITCH} NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999 1.002	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.965 0.982 0.992 0.998 1.002	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.013 \\ \hline 0.220 \\ \hline 0.540 \\ \hline 0.747 \\ \hline 0.838 \\ \hline 0.838 \\ \hline 0.920 \\ \hline 0.920 \\ \hline 0.945 \\ \hline 0.961 \\ \hline 0.979 \\ \hline 0.990 \\ \hline 0.997 \\ \hline 1.000 \\ \hline \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995 0.998
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \\ \hline \\ 1.249 \\ \hline \\ 1.375 \\ \hline \\ 1.498 \\ \hline \\ 1.752 \\ \hline \\ 1.997 \\ \hline \\ 2.246 \\ \hline \\ 2.497 \\ \hline \\ 2.750 \\ \hline \\ 2.998 \\ \hline \\ 3.245 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714 1.1386 1.1616 1.2538 1.1742	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.989 0.992	$ τα RAO_{PITCH} $ NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999 1.002 0.999 0.002	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992 0.998 1.002	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.013 \\ \hline 0.220 \\ \hline 0.540 \\ \hline 0.747 \\ \hline 0.838 \\ \hline 0.887 \\ \hline 0.920 \\ \hline 0.945 \\ \hline 0.945 \\ \hline 0.961 \\ \hline 0.979 \\ \hline 0.990 \\ \hline 0.997 \\ \hline 1.000 \\ \hline \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995 0.998
$\begin{array}{c} 3.753 \\ \hline \\ \lambda/L \\ \hline \\ 0.500 \\ \hline \\ 0.626 \\ \hline \\ 0.750 \\ \hline \\ 0.874 \\ \hline \\ 1.001 \\ \hline \\ 1.125 \\ \hline \\ 1.249 \\ \hline \\ 1.375 \\ \hline \\ 1.498 \\ \hline \\ 1.752 \\ \hline \\ 1.997 \\ \hline \\ 2.246 \\ \hline \\ 2.497 \\ \hline \\ 2.750 \\ \hline \\ 2.998 \\ \hline \\ 3.245 \\ \hline \\ 3.505 \end{array}$	0.8941 Experim. 0.0230 0.0394 0.1172 0.2041 0.3677 0.5643 0.7125 0.8285 0.9072 0.9694 1.0642 1.0714 1.1386 1.1616 1.2538 1.1742 1.1309	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8 ////////////////////////////////////	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.014 0.241 0.566 0.764 0.853 0.900 0.928 0.948 0.960 0.976 0.984 0.989 0.992	τα RAO _{PITCH} NLFK H/T = 0.25 0.014 0.242 0.559 0.755 0.849 0.900 0.931 0.953 0.968 0.984 0.993 0.999 1.002	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.014 0.234 0.555 0.753 0.845 0.895 0.927 0.950 0.965 0.982 0.992 0.998 1.002	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.013 \\ 0.220 \\ 0.540 \\ 0.747 \\ 0.838 \\ 0.887 \\ 0.920 \\ 0.945 \\ 0.961 \\ 0.979 \\ 0.990 \\ 0.997 \\ 1.000 \\ \end{array}$	NLFK H/T = 1.0 0.011 0.202 0.508 0.735 0.827 0.876 0.909 0.936 0.953 0.974 0.986 0.995 0.995 0.998

	Т	αχύτ	τλοο	σκάφ	ος Σειρό	ις NTUA	LB55	
	Α	ριθμό	ός Fro	ude = ().34 / Συντε	λεστής CD	L = 1.61	
	Μήκος Ισά	άλου			L_{WL}		3.497	m
]	Γαχύτητα Δο	οκιμής	-		V_s		1.974	m/s
			_			L _w	$\times m/s^2$	
	A	Αποτελ	ιέσματα	Accelei	ation Bow R	$AO_{AC} = \frac{WL}{A}$	×g	
λ/Ι	Evnerim	λ/Ι	т	I FK	NLFK	NLFK	NLFK	NLFK
N/L	Experim.	N/L	1	LIK	H/T = 0.25	H/T = 0.5	H/T = 0.75	H/T = 1.0
0.500	6.1629	0.5	1.058	6.477	6.777	6.649	6.261	5.500
0.626	8.3102	0.8	1.339	38.452	39.092	37.480	34.879	31.196
0.750	24.1760	1	1.497	48.788	48.508	48.103	46.808	43.820
0.874	33.8869	1.2	1.639	38.684	38.322	38.270	38.082	37.613
1.001	43.7660	1.4	1.771	28.509	28.303	28.182	27.976	27.635
1.125	53.6941	1.6	1.893	21.574	21.452	21.325	21.139	20.849
1.249	45.2034	1.8	2.008	16.842	16.766	16.670	16.535	16.327
1.375	40.0529	2	2.116	13.552	13.517	13.466	13.388	13.264
1.498	36.9191	2.2	2.220	11.139	11.121	11.094	11.049	10.977
1.752	25.8676	2.6	2.413	7.989	7.976	7.966	7.948	7.919
1.997	20.7428	3	2.592	6.076	6.068	6.063	6.054	6.040
2.246	15.9833	3.4	2.760	4.831	4.827	4.825	4.820	4.812
2.497	14.8589	3.8	2.917	3.982	3.979	3.978	3.974	3.969
2.750	11.3069	/////						
2.998	10.8582							
3.245	9.1206							
2 505	7 1 1 2 1	///////	/////////////////////////////////////	/////////////////////////////////////	*************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************	
5.505	/.1121	//////						
3.753	6.6213							
3.753	6.6213		έσματα	Acceler	ration LCG R	$AO_{AC} = \frac{L_{WL}}{A}$	$\frac{\times m/s^2}{x \times g}$	
3.753	7.1121 6.6213	Αποτελ	έσματα	Acceler	ation LCG R	$AO_{AC} = \frac{L_{WL}}{A}$ NLFK	$\frac{\times m/s^2}{x\times g}$	NLFK
<u>3.505</u> <u>3.753</u>	6.6213 Experim.	λ/L	τ έσματα Τ	Acceler LFK	ation LCG R NLFK H/T = 0.25	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$	$\frac{\times m / s^{2}}{x \times g}$ NLFK H/T = 0.75	NLFK H/T = 1.0
3.303 3.753 λ/L 0.500	7.1121 6.6213 A Experim. 1.9604	λ/L 0.5	τέσματα Τ 1.058	Acceler LFK 2.204	ation LCG R NLFK H/T = 0.25 2.204	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75 2.138	NLFK H/T = 1.0 1.952
3.303 3.753 λ/L 0.500 0.626	7.1121 6.6213 A Experim. 1.9604 2.5206	λ/L 0.5 0.8	τ <u> τ</u> <u> 1.058</u> 1.339	Acceler LFK 2.204 2.641	ration LCG R NLFK H/T = 0.25 2.204 2.873	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75 2.138 2.574	NLFK H/T = 1.0 1.952 2.579
3.303 3.753 λ/L 0.500 0.626 0.750	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169	λ/L 0.5 0.8 1	τ	Acceler LFK 2.204 2.641 1.542	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094	$AO_{AC} = \frac{L_{WL}}{A}$ NLFK H/T = 0.5 2.230 2.705 1.551	$\frac{\times m / s^{2}}{x \times g}$ NLFK H/T = 0.75 2.138 2.574 2.362	NLFK H/T = 1.0 1.952 2.579 3.378
3.303 3.753 λ/L 0.500 0.626 0.750 0.874	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296	λ/L 0.5 0.8 1 1.2	τ	Acceler LFK 2.204 2.641 1.542 5.624	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254	$\frac{\times m / s^{2}}{NLFK}$ H/T = 0.75 2.138 2.574 2.362 5.295	NLFK H/T = 1.0 1.952 2.579 3.378 5.407
3.303 3.753 λ/L 0.500 0.626 0.750 0.874 1.001	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972	λ/L 0.5 0.8 1 1.2 1.4	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847	$ \frac{\times m / s^{2}}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812
3.303 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831	λ/L 0.5 0.8 1 1.2 1.4 1.6	τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010
3.303 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8	τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873	ration LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764	$ \frac{\times m / s^2}{x \times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726
λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{2.138}{2.574} $ $ \frac{2.362}{5.295} $ $ \frac{6.835}{7.039} $ $ \frac{6.751}{6.315} $	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296
λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830
λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844 4.975	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830 4.963
$\begin{array}{c} 3.303\\ \hline 3.753\\ \hline \\ 3.753\\ \hline \\ 0.500\\ \hline 0.626\\ \hline 0.750\\ \hline 0.874\\ \hline 1.001\\ \hline 1.125\\ \hline 1.249\\ \hline 1.375\\ \hline 1.498\\ \hline 1.752\\ \hline 1.997\\ \hline \end{array}$	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844 4.975 4.271	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ \hline 1.952 \\ 2.579 \\ \hline 3.378 \\ \hline 5.407 \\ \hline 6.812 \\ \hline 7.010 \\ \hline 6.726 \\ \hline 6.296 \\ \hline 5.830 \\ \hline 4.963 \\ \hline 4.262 \end{array}$
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4	Εσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844 4.975 4.271 3.714	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 1.952 \\ 2.579 \\ 3.378 \\ 5.407 \\ 6.812 \\ 7.010 \\ 6.726 \\ 6.296 \\ 5.830 \\ 4.963 \\ 4.262 \\ 3.707 \end{array}$
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579 5.6043	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.6 3 3.4 3.8	Εσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721 3.276	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720 3.277	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718 3.276	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844 4.975 4.271 3.714 3.273	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 1.952 \\ 2.579 \\ 3.378 \\ 5.407 \\ 6.812 \\ 7.010 \\ 6.726 \\ 6.296 \\ 5.830 \\ 4.963 \\ 4.262 \\ 3.707 \\ 3.267 \end{array}$
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579 5.6043 5.1484	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Εξοματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721 3.276	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720 3.277	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718 3.276	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 2.138 2.574 2.362 5.295 6.835 7.039 6.751 6.315 5.844 4.975 4.271 3.714 3.273	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830 4.963 4.262 3.707 3.267
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579 5.6043 5.1484 4.9731	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.6 3 3.4 3.8	.έσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721 3.276	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720 3.277	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718 3.276	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{2.138}{2.574} $ $ \frac{2.362}{5.295} $ $ \frac{6.835}{7.039} $ $ \frac{6.751}{6.315} $ $ \frac{6.315}{5.844} $ $ \frac{4.975}{4.271} $ $ \frac{3.714}{3.273} $	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830 4.963 4.262 3.707 3.267
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998 3.245	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579 5.6043 5.1484 4.9731 4.4795	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	.έσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721 3.276	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720 3.277	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718 3.276	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{2.138}{2.574} $ $ \frac{2.362}{5.295} $ $ \frac{6.835}{6.835} $ $ \frac{7.039}{6.751} $ $ \frac{6.315}{5.844} $ $ \frac{4.975}{4.271} $ $ \frac{3.714}{3.273} $	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830 4.963 4.262 3.707 3.267
3.303 3.753 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998 3.245 3.505	7.1121 6.6213 A Experim. 1.9604 2.5206 5.8169 8.3296 11.2972 14.3831 11.5769 9.5120 9.0801 7.3622 6.7614 5.8579 5.6043 5.1484 4.9731 4.4795 3.9122	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	.έσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 2.204 2.641 1.542 5.624 7.106 7.224 6.873 6.395 5.896 5.000 4.285 3.721 3.276	ation LCG R NLFK H/T = 0.25 2.204 2.873 1.094 5.236 6.852 7.069 6.778 6.336 5.860 4.986 4.279 3.720 3.277	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 2.230 2.705 1.551 5.254 6.847 7.055 6.764 6.326 5.854 4.983 4.277 3.718 3.276	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{2.138}{2.574} $ $ \frac{2.362}{5.295} $ $ \frac{6.835}{6.835} $ $ \frac{7.039}{6.751} $ $ \frac{6.315}{5.844} $ $ \frac{4.975}{4.271} $ $ \frac{3.714}{3.273} $	NLFK H/T = 1.0 1.952 2.579 3.378 5.407 6.812 7.010 6.726 6.296 5.830 4.963 4.262 3.707 3.267

	Т	αχύτ	τλοο	σκάφ	ος Σειρά	ς Ν΄	ГUA	LB55	
	A	ριθμο	ός Fro	ude = ().34 / Συντε	λεστι	ίς C _D	L = 1.61	
	Μήκος Ισά	ίλου			L_{WL}			3.497	m
]	Γαχύτητα Δα	οκιμής			Vs			1.974	m/s
	A	ποτελ	έσματα	Acceler	ation Stern R	AO _{AC}	$=\frac{L_{WL}}{A}$	$\frac{\times m / s^2}{\Lambda \times g}$	
λ/L	Experim.	λ/L	Т	LFK	NLFK H/T = 0.25	NL H/T	FK = 0.5	NLFK H/T = 0.75	NLFK H/T = 1.0
0.500	2.7738	0.5	1.058	5.202	5.378	5.2	254	4.924	4.301
0.626	2.8160	0.8	1.339	20.007	19.631	19.	269	18.575	17.416
0.750	8.7356	1	1.497	30.211	29.519	29.	281	28.652	27.325
0.874	11.8330	1.2	1.639	29.963	29.463	29.	308	28.992	28.472
1.001	15.0095	1.4	1.771	24.892	24.720	24.	601	24.398	24.073
1.125	18.4926	1.6	1.893	20.107	20.095	20.	001	19.862	19.641
1.249	16.3281	1.8	2.008	16.377	16.432	16.	370	16.279	16.131
1.375	16.1647	2	2.116	13.583	13.662	13.	624	13.563	13.464
1.498	15.7876	2.2	2.220	11.432	11.513	11.	489	11.447	11.377
1.752	12.7870	2.6	2.413	8.487	8.551	8.5	539	8.515	8.477
1.997	11.2886	3	2.592	6.622	6.673	6.6	667	6.654	6.632
2.246	9.4504	3.4	2.760	5.366	5.407	5.4	404	5.398	5.385
2.497	8.5878	3.8	2.917	4.482	4.515	4.5	513	4.508	4.499
2.750	7.3039								
2.998	7.1010								
3.245	5.8880								
3.505	4.9095								
3.753	4.6454						//////		

	Т	αχύτ	τλοο (σκάφ	ος Σειρά	ις NTUA	LB55	
	Α	ριθμά	ός Frou	ıde = 0	.68 / Συντε	λεστής C _D	_L = 1.61	
	Μήκος Ισ	άλου			L_{WL}		3.497	m
, ,	Γαχύτητα Δ	οκιμή	-		Vs		3.972	m/s
		• •	Aז	τοτελέσ	ματα RAO _{HEA}	$AVE = \frac{\xi_3}{A}$		
λ/L	Experim.	λ/L	Т	LFK	NLFK H/T = 0.25	$\frac{\text{NLFK}}{\text{H/T} = 0.5}$	NLFK H/T = 0.75	NLFK H/T = 1.0
0.500	0.044	0.5	1.058	0.012	0.012	0.012	0.012	0.011
0.626	0.128	0.8	1.339	0.067	0.069	0.067	0.064	0.062
0.750	0.063	1	1.497	0.33	0.329	0.311	0.287	0.255
0.874	0.081	1.2	1.639	0.722	0.715	0.669	0.606	0.527
1.001	0.168	1.4	1.771	0.929	0.922	0.902	0.86	0.789
1.125	0.368	1.6	1.893	0.883	0.871	0.874	0.874	0.865
1.249	0.476	1.8	2.008	0.764	0.747	0.75	0.753	0.757
1.375	0.774	2	2.116	0.685	0.667	0.667	0.667	0.667
1.498	0.915	2.2	2.220	0.671	0.652	0.651	0.65	0.647
1.752	1.237	2.6	2.413	0.733	0.719	0.718	0.717	0.715
1.997	1.124	3	2.592	0.799	0.789	0.788	0.787	0.786
2.246	1.128	3.4	2.760	0.845	0.838	0.837	0.837	0.836
2.497	1.069	3.8	2.917	0.876	0.871	0.87	0.869	0.868
2.750	1.075	//////						
2.998	0.971							
3.245	0.972							
		///////						,,,,,,,,,,,,,,,,,,,,,
3.505	0.976							
3.505	0.976 0.966							
3.505 3.753	0.976 0.966		<u>А</u> лот	τελέσμα	τα RAO _{PITCH}	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$		
3.505 3.753	0.976 0.966 Experim.	λ/L	Алот Т	τελέσμα LFK	$τα RAO_{PITCH}$ NLFK H/T = 0.25	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5	NLFK H/T = 0 75	NLFK H/T = 1 0
$\frac{3.505}{3.753}$	0.976 0.966 Experim.	λ/L	Αποτ Τ	τελέσμα LFK	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.005	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ $\frac{\text{NLFK}}{\text{H/T} = 0.5}$ 0.005	NLFK H/T = 0.75 0.005	NLFK H/T = 1.0 0.004
3.505 3.753 λ/L 0.500 0.626	0.976 0.966 Experim. 0.014 0.048	λ/L 0.5 0.8	Αποτ Τ <u>1.058</u> 1.339	τελέσμα LFK 0.005 0.066	$\tau \alpha \text{ RAO}_{PITCH}$ $NLFK$ $H/T = 0.25$ 0.005 0.067	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065	NLFK H/T = 0.75 0.005 0.063	NLFK H/T = 1.0 0.004 0.060
3.505 3.753 λ/L 0.500 0.626 0.750	0.976 0.966 Experim. 0.014 0.048 0.025	λ/L 0.5 0.8	Αποτ Τ 1.058 1.339 1.497	τελέσμα LFK 0.005 0.066 0.259	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248	NLFK H/T = 0.75 0.005 0.063 0.231	NLFK H/T = 1.0 0.004 0.060 0.208
3.505 3.753 λ/L 0.500 0.626 0.750 0.874	0.976 0.966 Experim. 0.014 0.048 0.025 0.064	λ/L 0.5 0.8 1 1.2	Αποτ Τ 1.058 1.339 1.497 1.639	τελέσμα LFK 0.005 0.066 0.259 0.569	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259 0.570	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538	NLFK H/T = 0.75 0.005 0.063 0.231 0.493	NLFK H/T = 1.0 0.004 0.060 0.208 0.436
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123	λ/L 0.5 0.8 1 1.2 1.4	Αποτ Τ 1.058 1.339 1.497 1.639 1.771	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259 0.570 0.826	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805	NLFK H/T = 0.75 0.005 0.063 0.231 0.493 0.767	NLFK H/T = 1.0 0.004 0.208 0.436 0.709
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229	λ/L 0.5 0.8 1 1.2 1.4 1.6	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821 0.952	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259 0.570 0.826 0.955	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949	$NLFK \\ H/T = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 0.936 \\ 0.005 \\ $	NLFK H/T = 1.0 0.004 0.208 0.436 0.709 0.913
$\begin{array}{c} 3.505\\ \hline 3.753\\ \hline \\ \hline \\ \lambda/L\\ \hline \\ 0.500\\ \hline \\ 0.626\\ \hline \\ 0.750\\ \hline \\ 0.874\\ \hline \\ 1.001\\ \hline \\ 1.125\\ \hline \\ 1.249\\ \end{array}$	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025	$\tau \alpha \text{ RAO}_{PITCH}$ $NLFK$ $H/T = 0.25$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020	NLFK H/T = 0.75 0.005 0.231 0.493 0.767 0.936 1.014	NLFK H/T = 1.0 0.004 0.208 0.436 0.709 0.913 1.004
$\begin{array}{c} 3.505\\ \hline 3.753\\ \hline \\ \hline \\ \lambda/L\\ \hline \\ 0.500\\ \hline \\ 0.626\\ \hline \\ 0.750\\ \hline \\ 0.874\\ \hline \\ 1.001\\ \hline \\ 1.125\\ \hline \\ 1.249\\ \hline \\ 1.375\\ \hline \end{array}$	0.976 0.966 Experim. 0.014 0.025 0.064 0.123 0.229 0.324 0.514	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063	$τα RAO_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060	$\begin{array}{c} NLFK \\ H/T = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \end{array}$	NLFK H/T = 1.0 0.004 0.208 0.436 0.709 0.913 1.004 1.047
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375	0.976 0.966 Experim. 0.014 0.025 0.064 0.123 0.229 0.324 0.514 0.621	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075	$\tau \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075	NLFK H/T = 0.75 0.005 0.063 0.231 0.493 0.767 0.936 1.014 1.055 1.071	NLFK H/T = 1.0 0.004 0.208 0.436 0.709 0.913 1.004 1.047 1.064
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074	$\begin{array}{c} NLFK \\ H/T = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \\ 1.071 \\ 1.071 \\ \end{array}$	NLFK H/T = 1.0 0.004 0.060 0.208 0.436 0.709 0.913 1.004 1.047 1.064 1.067
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ \hline 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ \hline 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.063 1.075 1.066 1.052	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.005 \\ \hline 0.063 \\ \hline 0.231 \\ \hline 0.493 \\ \hline 0.767 \\ \hline 0.936 \\ \hline 1.014 \\ \hline 1.055 \\ \hline 1.071 \\ \hline 1.071 \\ \hline 1.061 \\ \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 0.004 \\ 0.060 \\ 0.208 \\ 0.436 \\ 0.709 \\ 0.913 \\ 1.004 \\ 1.047 \\ 1.064 \\ 1.067 \\ 1.058 \end{array}$
$\begin{array}{c} 3.505\\ \hline 3.753\\ \hline \\ \hline \\ \lambda/L\\ \hline \\ 0.500\\ \hline \\ 0.626\\ \hline \\ 0.750\\ \hline \\ 0.874\\ \hline \\ 1.001\\ \hline \\ 1.125\\ \hline \\ 1.249\\ \hline \\ 1.375\\ \hline \\ 1.498\\ \hline \\ 1.752\\ \hline \\ 1.997\\ \hline \\ 2.246\\ \end{array}$	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \end{array}$	Aπ01 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066 1.052 1.043	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.005 \\ \hline 0.063 \\ \hline 0.231 \\ \hline 0.493 \\ \hline 0.767 \\ \hline 0.936 \\ \hline 1.014 \\ \hline 1.055 \\ \hline 1.071 \\ \hline 1.071 \\ \hline 1.061 \\ \hline 1.054 \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 0.004 \\ 0.060 \\ 0.208 \\ 0.436 \\ 0.709 \\ 0.913 \\ 1.004 \\ 1.047 \\ 1.064 \\ 1.067 \\ 1.058 \\ 1.051 \end{array}$
$\begin{array}{c} 3.505\\ \hline 3.753\\ \hline \\ \hline \\ \lambda/L\\ \hline \\ 0.500\\ \hline \\ 0.626\\ \hline \\ 0.750\\ \hline \\ 0.874\\ \hline \\ 1.001\\ \hline \\ 1.125\\ \hline \\ 1.249\\ \hline \\ 1.375\\ \hline \\ 1.498\\ \hline \\ 1.752\\ \hline \\ 1.997\\ \hline \\ 2.246\\ \hline \\ 2.497\\ \hline \end{array}$	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159	$\frac{\lambda/L}{0.5}$ 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066 1.052 1.043	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057 1.057	$=\frac{\xi_{5}(deg)}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.005 \\ \hline 0.063 \\ \hline 0.231 \\ \hline 0.493 \\ \hline 0.767 \\ \hline 0.936 \\ \hline 1.014 \\ \hline 1.055 \\ \hline 1.071 \\ \hline 1.071 \\ \hline 1.061 \\ \hline 1.054 \\ \hline 1.054 \\ \hline \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 0.004 \\ 0.060 \\ 0.208 \\ 0.436 \\ 0.709 \\ 0.913 \\ 1.004 \\ 1.047 \\ 1.064 \\ 1.067 \\ 1.058 \\ 1.051 \\ 1.052 \end{array}$
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Aποτ T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066 1.052 1.043	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057 1.057	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \\ 1.071 \\ 1.071 \\ 1.061 \\ 1.054 \\ 1.054 \\ 1.054 \end{array}$	NLFK H/T = 1.0 0.004 0.060 0.208 0.436 0.709 0.913 1.004 1.047 1.064 1.067 1.058 1.051 1.052
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Αποτ Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066 1.052 1.043	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057 1.057	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \\ 1.071 \\ 1.071 \\ 1.071 \\ 1.061 \\ 1.054 \\ 1.054 \\ \end{array}$	NLFK H/T = 1.0 0.004 0.060 0.208 0.436 0.709 0.913 1.004 1.047 1.064 1.067 1.058 1.051 1.052
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998 3.245	0.976 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127 1.150	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ \hline 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ \hline 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ \hline 3 \\ 3.4 \\ \hline 3.8 \\ \hline \end{array}$	Aπ01 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.025 1.063 1.075 1.066 1.043	$\tau \alpha \text{ RAO}_{\text{PITCH}}$ $\frac{\text{NLFK}}{\text{H/T} = 0.25}$ 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057 1.057	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \\ 1.071 \\ 1.071 \\ 1.071 \\ 1.061 \\ 1.054 \\ 1.054 \\ \end{array}$	NLFK H/T = 1.0 0.004 0.060 0.208 0.436 0.709 0.913 1.004 1.047 1.064 1.067 1.058 1.051 1.052
3.505 3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998 3.245 3.505	0.976 0.966 0.966 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127 1.150 1.101	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Aπ01 T 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	τελέσμα LFK 0.005 0.066 0.259 0.569 0.821 0.952 1.063 1.075 1.066 1.052 1.043 1.043	$ τα RAO_{PITCH} $ NLFK H/T = 0.25 0.005 0.067 0.259 0.570 0.826 0.955 1.024 1.063 1.078 1.076 1.064 1.057 1.057 	$=\frac{\xi_{5}(\text{deg})}{\kappa \times A}$ NLFK H/T = 0.5 0.005 0.065 0.248 0.538 0.805 0.949 1.020 1.060 1.075 1.074 1.063 1.056 1.056	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ 0.005 \\ 0.063 \\ 0.231 \\ 0.493 \\ 0.767 \\ 0.936 \\ 1.014 \\ 1.055 \\ 1.071 \\ 1.071 \\ 1.061 \\ 1.054 \\ 1.054 \\ 1.054 \\ \end{array}$	NLFK H/T = 1.0 0.004 0.060 0.208 0.436 0.709 0.913 1.004 1.047 1.064 1.067 1.058 1.051 1.052

	Τ	αχύτ	τλοο	σκάφ	ος Σειρά	ις NTUA	LB55	
	Α	ριθμό	ός Frou	ude = 0	.68 / Συντε	λεστής CD	L = 1.61	
	Μήκος Ισα	άλου			L_{WL}		3.497	m
]	Γαχύτητα Δ	οκιμής	-		V_s		3.972	m/s
			,	A 1	, D D		$\times m/s^2$	
		Αποτε/	ιεσματα	Accelei	ation Bow R	$AO_{AC} = \frac{WE}{A}$	×g	
λ/L	Experim	λ/L	Т	LFK	NLFK	NLFK	NLFK	NLFK
<i>N</i> # <u>E</u>	Enperim	<i>N</i> # <u>D</u>	-	2111	H/T = 0.25	H/T = 0.5	H/T = 0.75	H/T = 1.0
0.500	0.014	0.5	1.058	5.242	5.375	5.292	5.068	4.582
0.626	0.048	0.8	1.339	20.690	21.174	20.697	19.930	18.955
0.750	0.025	1	1.497	48.379	48.777	46.392	43.036	38.404
0.874	0.064	1.2	1.639	70.151	70.392	65.851	59.635	51.996
1.001	0.123	1.4	1.771	69.612	69.993	67.774	63.889	58.148
1.125	0.229	1.6	1.893	56.315	56.424	56.017	55.130	53.405
1.249	0.324	1.8	2.008	42.844	42.754	42.605	42.344	41.883
1.375	0.514	2	2.116	32.280	32.231	32.138	31.990	31.746
1.498	0.621	2.2	2.220	24.525	24.535	24.461	24.355	24.186
1.752	0.930	2.6	2.413	15.392	15.455	15.425	15.380	15.308
1.997	0.982	3	2.592	10.742	10.790	10.777	10.759	10.727
2.246	1.085	3.4	2.760	8.097	8.128	8.122	8.112	8.098
2.497	1.159	3.8	2.917	6.446	6.464	6.458	6.449	6.438
2.750	1.197							
2.998	1.127							
3.245	1.150							
3.505	1.101							
		//////						
3.753	1.169							
3.753	1.169 A	Αποτελ	.έσματα	Acceler	ration LCG R	$AO_{AC} = \frac{L_{WL}}{A}$	$\frac{\times m / s^2}{\times g}$	
3.753	1.169 A	Αποτελ	έσματα	Acceler	ation LCG R	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$	$\frac{\times m/s^2}{x\times g}$ NLFK	NLFK
3.753 λ/L	1.169 A Experim.	Αποτελ λ/L	τ	Acceler LFK	ation LCG R NLFK H/T = 0.25	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75	NLFK H/T = 1.0
3.753 λ/L 0.500	1.169 A Experim. 0.014	λ/L 0.5	ιέσματα Τ 1.058	Acceler LFK 1.822	ration LCG R NLFK H/T = 0.25 1.823	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75 1.784	NLFK H/T = 1.0 1.654
3.753 λ/L 0.500 0.626	1.169 A Experim. 0.014 0.048	λ/L 0.5 0.8	τ Σέσματα Τ 1.058 1.339	Acceler LFK 1.822 4.051	ration LCG R NLFK H/T = 0.25 1.823 3.817	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75 1.784 3.532	NLFK H/T = 1.0 1.654 3.392
3.753 λ/L 0.500 0.626 0.750	1.169 A Experim. 0.014 0.048 0.025	λ/L 0.5 0.8 1	τ	Acceler LFK 1.822 4.051 12.742	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830	$ \frac{\times m / s^2}{x \times g} $ NLFK H/T = 0.75 1.784 3.532 11.057	NLFK H/T = 1.0 1.654 3.392 10.000
3.753 λ/L 0.500 0.626 0.750 0.874	1.169 A Experim. 0.014 0.048 0.025 0.064	λ/L 0.5 0.8 1 1.2	τ τ <u>1.058</u> <u>1.339</u> <u>1.497</u> <u>1.639</u>	Acceler LFK 1.822 4.051 12.742 19.700	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374	$\frac{\times m / s^{2}}{x \times g}$ NLFK H/T = 0.75 1.784 3.532 11.057 17.094	NLFK H/T = 1.0 1.654 3.392 10.000 15.287
3.753 λ/L 0.500 0.626 0.750 0.874 1.001	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123	λ/L 0.5 0.8 1 1.2 1.4	τ	Acceler LFK 1.822 4.051 12.742 19.700 18.901	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537	$\frac{\times m / s^2}{NLFK}$ H/T = 0.75 1.784 3.532 11.057 17.094 18.288	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125	1.169 Experim. 0.014 0.025 0.064 0.123 0.229	λ/L 0.5 0.8 1 1.2 1.4 1.6	τ	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 1.784 3.532 11.057 17.094 18.288 14.505	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249	1.169 A Experim. 0.014 0.025 0.064 0.123 0.229 0.324	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8	τ τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669	$ \frac{\times m / s^2}{x \times g} $ NLFK H/T = 0.75 1.784 3.532 11.057 17.094 18.288 14.505 10.827	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863 11.046
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2	τ τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ 9.333 $	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863 11.046 9.367
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 1.654 \\ 3.392 \\ 10.000 \\ 15.287 \\ 17.453 \\ 14.863 \\ 11.046 \\ 9.367 \\ 8.821 \end{array}$
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752	1.169 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{3.000} $	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863 11.046 9.367 8.821 8.083
$\begin{array}{c} 3.753\\ \hline \\ \lambda/L\\ \hline 0.500\\ \hline 0.626\\ \hline 0.750\\ \hline 0.874\\ \hline 1.001\\ \hline 1.125\\ \hline 1.249\\ \hline 1.375\\ \hline 1.498\\ \hline 1.752\\ \hline 1.997\\ \end{array}$	1.169 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \end{array}$	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{7.138} $	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863 11.046 9.367 8.821 8.083 7.127
$\begin{array}{c} 3.753\\ \hline \\ \lambda/L\\ \hline 0.500\\ \hline 0.626\\ \hline 0.750\\ \hline 0.874\\ \hline 1.001\\ \hline 1.125\\ \hline 1.249\\ \hline 1.375\\ \hline 1.498\\ \hline 1.752\\ \hline 1.997\\ \hline 2.246\\ \end{array}$	1.169 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \end{array}$	τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225	$ \frac{\times m / s^2}{x \times g} $ NLFK H/T = 0.75 1.784 3.532 11.057 17.094 18.288 14.505 10.827 9.333 8.836 8.097 7.138 6.218	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ \hline 1.654 \\ \hline 3.392 \\ \hline 10.000 \\ \hline 15.287 \\ \hline 17.453 \\ \hline 14.863 \\ \hline 11.046 \\ \hline 9.367 \\ \hline 8.821 \\ \hline 8.083 \\ \hline 7.127 \\ \hline 6.209 \end{array}$
$\begin{array}{c} 3.753\\ \hline \\ \lambda/L\\ \hline \\ 0.500\\ \hline \\ 0.626\\ \hline \\ 0.750\\ \hline \\ 0.874\\ \hline \\ 1.001\\ \hline \\ 1.125\\ \hline \\ 1.249\\ \hline \\ 1.375\\ \hline \\ 1.498\\ \hline \\ 1.752\\ \hline \\ 1.997\\ \hline \\ 2.246\\ \hline \\ 2.497\\ \end{array}$	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Σέσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265 5.469	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227 5.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225 5.444	$ \frac{\times m / s^2}{x \times g} $ NLFK H/T = 0.75 1.784 3.532 11.057 17.094 18.288 14.505 10.827 9.333 8.836 8.097 7.138 6.218 5.439	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ \hline 1.654 \\ \hline 3.392 \\ \hline 10.000 \\ \hline 15.287 \\ \hline 17.453 \\ \hline 14.863 \\ \hline 11.046 \\ \hline 9.367 \\ \hline 8.821 \\ \hline 8.083 \\ \hline 7.127 \\ \hline 6.209 \\ \hline 5.429 \end{array}$
$\begin{array}{c} 3.753\\ \hline \lambda/L\\ 0.500\\ 0.626\\ 0.750\\ 0.874\\ 1.001\\ 1.125\\ 1.249\\ 1.375\\ 1.498\\ 1.752\\ 1.997\\ 2.246\\ 2.497\\ 2.750\\ \end{array}$	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Σέσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265 5.469	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227 5.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225 5.444	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{7.138} $ $ \frac{6.218}{5.439} $	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 1.654 \\ 3.392 \\ 10.000 \\ 15.287 \\ 17.453 \\ 14.863 \\ 11.046 \\ 9.367 \\ 8.821 \\ 8.083 \\ 7.127 \\ 6.209 \\ 5.429 \end{array}$
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Σέσματα Τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265 5.469	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227 5.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225 5.444	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{7.138} $ $ \frac{6.218}{5.439} $	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ \hline 1.654 \\ \hline 3.392 \\ \hline 10.000 \\ \hline 15.287 \\ \hline 17.453 \\ \hline 14.863 \\ \hline 11.046 \\ \hline 9.367 \\ \hline 8.821 \\ \hline 8.083 \\ \hline 7.127 \\ \hline 6.209 \\ \hline 5.429 \\ \hline \end{array}$
3.753 λ/L 0.500 0.626 0.750 0.874 1.001 1.125 1.249 1.375 1.498 1.752 1.997 2.246 2.497 2.750 2.998 3.245	1.169 A Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127 1.150	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265 5.469	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227 5.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225 5.444	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{7.138} $ $ \frac{6.218}{5.439} $	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.0 \\ 1.654 \\ 3.392 \\ 10.000 \\ 15.287 \\ 17.453 \\ 14.863 \\ 11.046 \\ 9.367 \\ 8.821 \\ 8.083 \\ 7.127 \\ 6.209 \\ 5.429 \\ \hline \end{array}$
$\begin{array}{c} 3.753\\ \hline \lambda/L\\ \hline 0.500\\ \hline 0.626\\ \hline 0.750\\ \hline 0.874\\ \hline 1.001\\ \hline 1.125\\ \hline 1.249\\ \hline 1.375\\ \hline 1.498\\ \hline 1.752\\ \hline 1.997\\ \hline 2.246\\ \hline 2.497\\ \hline 2.750\\ \hline 2.998\\ \hline 3.245\\ \hline 3.505\\ \end{array}$	1.169 Experim. 0.014 0.048 0.025 0.064 0.123 0.229 0.324 0.514 0.621 0.930 0.982 1.085 1.159 1.197 1.127 1.150 1.101	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.6 3 3.4 3.8	τ 1.058 1.339 1.497 1.639 1.771 1.893 2.008 2.116 2.220 2.413 2.592 2.760 2.917	Acceler LFK 1.822 4.051 12.742 19.700 18.901 14.286 10.972 9.620 9.108 8.245 7.220 6.265 5.469	ration LCG R NLFK H/T = 0.25 1.823 3.817 12.383 19.226 18.521 13.874 10.572 9.294 8.856 8.114 7.151 6.227 5.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.843 3.681 11.830 18.374 18.537 14.138 10.669 9.308 8.844 8.108 7.148 6.225 5.444	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.784}{3.532} $ $ \frac{11.057}{17.094} $ $ \frac{18.288}{14.505} $ $ \frac{14.505}{10.827} $ $ \frac{9.333}{8.836} $ $ \frac{8.097}{7.138} $ $ \frac{6.218}{5.439} $	NLFK H/T = 1.0 1.654 3.392 10.000 15.287 17.453 14.863 11.046 9.367 8.821 8.083 7.127 6.209 5.429

	Т	αχύτ	τλοο	σκάφ	ος Σειρά	ς Ν΄	ΓUA	LB55	
	Α	ριθμο	ός Fro	ude = (.68 / Συντε	λεστι	ίς Ου	_L = 1.61	
	Μήκος Ισά	ίλου			L_{WL}			3.497	m
]	Γαχύτητα Δα	οκιμής			Vs			3.972	m/s
	A		έσματα	Acceler	ation Stern R	AO _{AC}	$=\frac{L_{WL}}{A}$	$\frac{\times m / s^2}{\Lambda \times g}$	
۵/I	Exporim	۵/T	т	IEV	NLFK	NL	FK	NLFK	NLFK
N/L	Experim.	∧/L	1	LFK	H/T = 0.25	H/T	= 0.5	H/T = 0.75	H/T = 1.0
0.500	0.014	0.5	1.058	4.428	4.531	4.4	46	4.239	3.812
0.626	0.048	0.8	1.339	15.417	15.162	14.	829	14.266	13.503
0.750	0.025	1	1.497	32.421	32.005	30.	805	28.994	26.293
0.874	0.064	1.2	1.639	42.100	41.708	40.	083	37.623	34.095
1.001	0.123	1.4	1.771	38.738	38.615	38.	385	37.743	36.236
1.125	0.229	1.6	1.893	31.842	31.670	31.	764	31.891	31.951
1.249	0.324	1.8	2.008	26.989	26.772	26.	745	26.726	26.690
1.375	0.514	2	2.116	23.490	23.318	23.	268	23.205	23.104
1.498	0.621	2.2	2.220	20.441	20.346	20.	308	20.256	20.174
1.752	0.930	2.6	2.413	15.494	15.503	15.	488	15.462	15.417
1.997	0.982	3	2.592	11.997	12.034	12.	025	12.006	11.976
2.246	1.085	3.4	2.760	9.581	9.620	9.6	513	9.599	9.577
2.497	1.159	3.8	2.917	7.898	7.932	7.9	927	7.917	7.901
2.750	1.197								
2.998	1.127								
3.245	1.150								
3.505	1.101								
3.753	1.169								

	Τ	αχύτ	τλοο (σκάφ	ος Σειρά	ις NTUA	LB55	
	Α	ριθμά	ός Frou	$\mathbf{Ide} = 0$.34 / Συντε	λεστής CD	L = 3.00	
	Μήκος Ισ	άλου			L _{WL}		2.145	m
r	Γαχύτητα Δ	οκιμή	-		V_s		1.56	m/s
			Ατ	τοτελέσι	ματα RAO _{HEA}	$A_{\rm VE} = \frac{\xi_3}{A}$		
λ/L	Experim.	λ/L	Т	LFK	NLFK H/T = 0.25	NLFK $H/T = 0.5$	NLFK H/T = 0.75	NLFK H/T = 1.2
3.796	0.968	0.5	0.829	0.023	0.021	0.023	0.023	0.022
3.549	0.925	0.8	1.048	0.179	0.162	0.15	0.139	0.114
3.297	0.966	1	1.172	0.483	0.468	0.438	0.4	0.323
3.046	0.943	1.2	1.284	0.399	0.462	0.471	0.484	0.428
2.789	0.922	1.4	1.387	0.352	0.413	0.422	0.437	0.465
2.535	0.883	1.6	1.483	0.501	0.531	0.532	0.535	0.538
2.281	0.850	1.8	1.573	0.625	0.644	0.643	0.642	0.638
2.023	0.765	2	1.658	0.712	0.727	0.725	0.723	0.718
1.772	0.698	2.2	1.739	0.772	0.785	0.783	0.781	0.776
1.521	0.868	2.6	1.890	0.846	0.856	0.855	0.853	0.849
1.393	0.854	3	2.030	0.891	0.899	0.898	0.897	0.893
1.267	0.713	3.4	2.161	0.92	0.927	0.926	0.925	0.922
1.138	0.523	3.8	2.285	0.94	0.946	0.946	0.945	0.941
1.015	0.413							
0.876	0.385							
0.760	0.322							
0.634	0.256							
0.506	0.126			<u> </u>				
					D 4 O	ξ _ε (deg)		
			Αποτ	τελέσμα	τα RAO _{PITCH}	$=\frac{35 \times 25}{\kappa \times A}$		
λ/L	Experim.	λ/L	Απο1 Τ	τελέσμα LFK	$\frac{\text{RAO}_{\text{PITCH}}}{\text{NLFK}}$ $H/T = 0.25$	$=\frac{35(-6)^{2}}{\kappa \times A}$ NLFK H/T = 0.5	NLFK H/T = 0.75	NLFK H/T = 1.2
λ/L 3.796	Experim.	λ/L 0.5	Αποτ Τ 0.829	τελέσμα LFK 0.011	$\frac{\text{RAO}_{\text{PITCH}}}{\text{NLFK}}$ $\frac{\text{H/T} = 0.25}{0.010}$	$=\frac{0.5 \times A}{K \times A}$ $\frac{M}{M}$ $\frac{M}{M}$ $\frac{M}{M}$ $\frac{M}{M}$	NLFK H/T = 0.75 0.010	NLFK H/T = 1.2 0.009
λ/L 3.796 3.549	Experim. 1.163 1.106	λ/L 0.5 0.8	Αποτ Τ 0.829 1.048	τελέσμα LFK 0.011 0.164	$\pi \alpha \text{ RAO}_{PITCH}$ NLFK H/T = 0.25 0.010 0.152	$=\frac{35(-0.5)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148	NLFK H/T = 0.75 0.010 0.141	NLFK H/T = 1.2 0.009 0.126
λ/L 3.796 3.549 3.297	Experim. 1.163 1.106 1.191	λ/L 0.5 0.8 1	Αποτ Τ 0.829 1.048 1.172	τελέσμα LFK 0.011 0.164 0.531	$\begin{array}{c} \text{RAO}_{\text{PITCH}} \\ \text{NLFK} \\ \text{H/T} = 0.25 \\ \hline 0.010 \\ \hline 0.152 \\ \hline 0.501 \end{array}$	$= \frac{-35(-0.5)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483	NLFK H/T = 0.75 0.010 0.141 0.449	NLFK H/T = 1.2 0.009 0.126 0.380
λ/L 3.796 3.549 3.297 3.046	Experim. 1.163 1.106 1.191 1.208	λ/L 0.5 0.8 1 1.2	Aποτ T 0.829 1.048 1.172 1.284	τελέσμα LFK 0.011 0.164 0.531 0.885	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.25 \\ \hline 0.010 \\ \hline 0.152 \\ \hline 0.501 \\ \hline 0.883 \end{array}$	$= \frac{55(-25)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875	$NLFK \\ H/T = 0.75 \\ 0.010 \\ 0.141 \\ 0.449 \\ 0.846$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757
λ/L 3.796 3.549 3.297 3.046 2.789	Experim. 1.163 1.106 1.191 1.208 1.192	λ/L 0.5 0.8 1 1.2 1.4	Aπο1 T 0.829 1.048 1.172 1.284 1.387	τελέσμα LFK 0.011 0.164 0.531 0.885 1.028	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.25 \\ \hline 0.010 \\ \hline 0.152 \\ \hline 0.501 \\ \hline 0.883 \\ \hline 1.046 \end{array}$	$= \frac{53(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ \hline 0.141 \\ \hline 0.449 \\ \hline 0.846 \\ \hline 1.034 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999
λ/L 3.796 3.549 3.297 3.046 2.789 2.535	Experim. 1.163 1.106 1.191 1.208 1.192 1.212	λ/L 0.5 0.8 1 1.2 1.4 1.6	Aπο1 T 0.829 1.048 1.172 1.284 1.387 1.483	τελέσμα LFK 0.011 0.164 0.531 0.885 1.028 1.057	$\begin{array}{c} \text{RAO}_{\text{PITCH}} \\ \text{NLFK} \\ \text{H/T} = 0.25 \\ 0.010 \\ 0.152 \\ 0.501 \\ 0.883 \\ 1.046 \\ 1.077 \end{array}$	$= \frac{53(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072	$\begin{array}{c} NLFK\\ H/T = 0.75\\ \hline 0.010\\ \hline 0.141\\ \hline 0.449\\ \hline 0.846\\ \hline 1.034\\ \hline 1.062\\ \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \end{array}$	Aπο1 T 0.829 1.048 1.172 1.284 1.387 1.483 1.573	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.057	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \end{aligned}$	$= \frac{55(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071	$\begin{array}{c} NLFK\\ H/T = 0.75\\ \hline 0.010\\ \hline 0.141\\ \hline 0.449\\ \hline 0.846\\ \hline 1.034\\ \hline 1.062\\ \hline 1.061\\ \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2	Aποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.057 1.051	$\begin{array}{c} \text{RAO}_{\text{PITCH}} \\ \text{NLFK} \\ \text{H/T} = 0.25 \\ \hline 0.010 \\ 0.152 \\ \hline 0.501 \\ 0.883 \\ \hline 1.046 \\ \hline 1.077 \\ \hline 1.075 \\ \hline 1.067 \end{array}$	$= \frac{53}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064	$\begin{array}{c} NLFK\\ H/T = 0.75\\ \hline 0.010\\ 0.141\\ 0.449\\ \hline 0.846\\ 1.034\\ \hline 1.062\\ \hline 1.061\\ \hline 1.056\\ \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ \hline 0.009 \\ \hline 0.126 \\ \hline 0.380 \\ \hline 0.757 \\ \hline 0.999 \\ \hline 1.033 \\ \hline 1.035 \\ \hline 1.034 \end{array}$
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2	Aποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.067 \\ & 1.058 \end{aligned}$	$= \frac{35(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ \hline 1.034 \\ 1.062 \\ \hline 1.061 \\ \hline 1.056 \\ \hline 1.049 \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ \hline 0.009 \\ \hline 0.126 \\ \hline 0.380 \\ \hline 0.757 \\ \hline 0.999 \\ \hline 1.033 \\ \hline 1.035 \\ \hline 1.034 \\ \hline 1.030 \end{array}$
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.032	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.067 \\ & 1.058 \\ & 1.041 \end{aligned}$	$= \frac{55(-55)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ \hline 1.034 \\ \hline 1.062 \\ \hline 1.061 \\ \hline 1.056 \\ \hline 1.049 \\ \hline 1.034 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.057 1.044 1.032 1.023	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.046 \\ & 1.075 \\ & 1.067 \\ & 1.058 \\ & 1.041 \\ & 1.030 \end{aligned}$	$= \frac{55(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ 1.034 \\ 1.062 \\ 1.061 \\ 1.056 \\ 1.049 \\ 1.034 \\ 1.025 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018 1.015
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989 0.705	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \end{array}$	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.032 1.023	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.046 \\ & 1.075 \\ & 1.067 \\ & 1.058 \\ & 1.041 \\ & 1.030 \\ & 1.021 \end{aligned}$	$= \frac{55(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028	$\begin{array}{c} NLFK\\ H/T = 0.75\\ \hline 0.010\\ \hline 0.141\\ \hline 0.449\\ \hline 0.846\\ \hline 1.034\\ \hline 1.062\\ \hline 1.061\\ \hline 1.056\\ \hline 1.049\\ \hline 1.034\\ \hline 1.025\\ \hline 1.019\\ \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ 0.009 \\ 0.126 \\ 0.380 \\ 0.757 \\ 0.999 \\ 1.033 \\ 1.035 \\ 1.034 \\ 1.030 \\ 1.018 \\ 1.015 \\ 1.014 \end{array}$
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989 0.705 0.486	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.023 1.015 1.007	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.046 \\ & 1.077 \\ & 1.067 \\ & 1.058 \\ & 1.041 \\ & 1.030 \\ & 1.021 \\ & 1.011 \end{aligned}$	$= \frac{53(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028 1.020 1.011	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ 1.034 \\ 1.062 \\ 1.061 \\ 1.056 \\ 1.049 \\ 1.034 \\ 1.025 \\ 1.019 \\ 1.010 \end{array}$	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ 0.009 \\ 0.126 \\ 0.380 \\ 0.757 \\ 0.999 \\ 1.033 \\ 1.035 \\ 1.034 \\ 1.030 \\ 1.018 \\ 1.015 \\ 1.014 \\ 1.007 \end{array}$
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138 1.015	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.212 1.270 1.212 1.231 1.157 0.989 0.705 0.486 0.361	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.032 1.015 1.007	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.067 \\ & 1.058 \\ & 1.041 \\ & 1.030 \\ & 1.021 \\ & 1.011 \end{aligned}$	$= \frac{55(-25)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028 1.020 1.011	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ \hline 1.034 \\ \hline 1.062 \\ \hline 1.061 \\ \hline 1.056 \\ \hline 1.049 \\ \hline 1.034 \\ \hline 1.025 \\ \hline 1.019 \\ \hline 1.010 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018 1.015 1.014 1.007
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138 1.015 0.876	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989 0.705 0.486 0.361 0.300	$\begin{array}{c} \lambda/L \\ 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \\ \end{array}$	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.032 1.023 1.015	$\begin{aligned} & \text{RAO}_{\text{PITCH}} \\ & \text{NLFK} \\ & \text{H/T} = 0.25 \\ & 0.010 \\ & 0.152 \\ & 0.501 \\ & 0.883 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.046 \\ & 1.077 \\ & 1.075 \\ & 1.067 \\ & 1.058 \\ & 1.041 \\ & 1.030 \\ & 1.021 \\ & 1.011 \end{aligned}$	$= \frac{-55}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028 1.020 1.011	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ \hline 1.034 \\ 1.062 \\ \hline 1.061 \\ \hline 1.056 \\ \hline 1.049 \\ \hline 1.034 \\ \hline 1.025 \\ \hline 1.019 \\ \hline 1.010 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018 1.015 1.014 1.007
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138 1.015 0.876 0.760	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989 0.705 0.486 0.361 0.300 0.219	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.057 1.044 1.032 1.023 1.015 1.007	τα RAO _{PITCH} NLFK H/T = 0.25 0.010 0.152 0.501 0.883 1.046 1.077 1.075 1.067 1.058 1.041 1.030 1.021 1.011	$= \frac{55(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028 1.020 1.011	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ \hline 0.449 \\ 0.846 \\ \hline 1.034 \\ \hline 1.062 \\ \hline 1.061 \\ \hline 1.056 \\ \hline 1.049 \\ \hline 1.034 \\ \hline 1.025 \\ \hline 1.019 \\ \hline 1.010 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018 1.015 1.014 1.007
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138 1.015 0.876 0.634	Experim. 1.163 1.106 1.191 1.208 1.192 1.212 1.270 1.212 1.231 1.157 0.989 0.705 0.486 0.361 0.300 0.219 0.158	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Αποτ T 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	LFK 0.011 0.164 0.531 0.885 1.028 1.057 1.051 1.044 1.032 1.023 1.015 1.007	τα RAO _{PITCH} NLFK H/T = 0.25 0.010 0.152 0.501 0.883 1.046 1.077 1.075 1.067 1.058 1.041 1.030 1.021 1.011	$= \frac{-35(-6)}{\kappa \times A}$ NLFK H/T = 0.5 0.010 0.148 0.483 0.875 1.044 1.072 1.071 1.064 1.055 1.038 1.028 1.028 1.020 1.011	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 0.75 \\ \hline 0.010 \\ 0.141 \\ 0.449 \\ 0.846 \\ 1.034 \\ 1.062 \\ 1.061 \\ 1.056 \\ 1.049 \\ 1.034 \\ 1.025 \\ 1.019 \\ 1.010 \end{array}$	NLFK H/T = 1.2 0.009 0.126 0.380 0.757 0.999 1.033 1.035 1.034 1.030 1.018 1.015 1.014 1.007

	Τ	αχύτ	τλοο	σκάφ	ος Σειρό	ις NTUA	LB55	
	Α	ριθμο	ός Fro	ude = ().34 / Συντε	λεστής CD	L = 3.00	
	Μήκος Ισα	άλου			L_{WL}		2.145	m
]	Γαχύτητα Δ	οκιμής	-		V_s		1.56	m/s
				A 1	('DD	L _{wi}	$\times m/s^2$	
		Αποτε/	ιεσματα	Accelei	ation Bow R	$AO_{AC} = \frac{WE}{A}$	×g	
λ/L	Experim.	λ/L	Т	LFK	NLFK $H/T = 0.25$	NLFK H/T = 0.5	NLFK H/T = 0.75	NLFK H/T = 1.2
3 796	6 1 5 3	0.5	0.829	5 3 2 2	$\frac{11}{1} = 0.23$	$\frac{11}{1} = 0.3$	$\frac{11}{1} = 0.75$	$\frac{11}{1} = 1.2$
3 549	6 205	0.5	1 048	26 106	23 926	23 142	21 972	19 182
3 297	7 541	1	1.040	49 593	46 689	44 487	40.825	33 484
3.046	8 776	12	1.172	48 273	48.825	48 332	46 696	41 225
2 789	9.669	1.2	1.204	35 540	36 878	36 768	36 452	35 184
2.705	12 037	1.4	1.307	25 457	26.420	26 267	25 986	25 204
2.333	15 979	1.0	1.403	18 989	19.623	19.635	19 302	18 765
2.201	19.869	2	1.575	14 774	15 213	15.035	15.015	14 662
1 772	28 230	$\frac{2}{22}$	1.030	11 878	12 186	12 140	12.058	11 819
1.521	43 933	2.2	1.757	8 282	8 442	8 417	8 377	8 262
1 393	48 223	2.0	2 030	6 205	6 300	6 290	6 274	6.202
1.373	45 123	3.4	2.050	4 894	4 956	4 954	4 949	4 929
1.138	39.449	3.4	2.101	4 005	4.046	4.045	4.041	4.028
1.156	32 689	 //////						<i>4.028</i>
0.876	28 578							
0.870	26.578							
0.700	23.828							
	22.420		(//////////////////////////////////////			///////////////////////////////////////		
0.004	13 132							
0.506	13.132							
0.506	13.132 A	Αποτελ	έσματα	Acceler	ation LCG R	$AO_{AC} = \frac{L_{WL}}{A}$	$\frac{\times m/s^2}{\times g}$	
0.506	13.132 A	Αποτελ	τέσματα	Acceler	ation LCG R	$AO_{AC} = \frac{L_{WL}}{A}$	$\frac{\times m/s^2}{\times g}$	NLFK
0.506 λ/L	13.132 A Experim.	λ/L	τέσματα Τ	Acceler LFK	ration LCG R NLFK H/T = 0.25	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$	$\frac{\times m / s^2}{x \times g}$ NLFK H/T = 0.75	NLFK H/T = 1.2
0.506 0.506 λ/L 3.796	13.132 A Experim. 3.779	λ/L 0.5	τ έσματα Τ	Acceler LFK	ration LCG R NLFK H/T = 0.25 1.227	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352	$\frac{\times m/s^2}{NLFK}$ H/T = 0.75 1.353	NLFK H/T = 1.2 1.316
0.506 λ/L 3.796 3.549	13.132 A Experim. <u>3.779</u> 3.874	λ/L 0.5 0.8	τ τ <u>0.829</u> 1.048	Acceler LFK 1.351 2.344	ration LCG R NLFK H/T = 0.25 1.227 2.447	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239	$\frac{\times m / s^2}{\times g}$ NLFK H/T = 0.75 1.353 2.162	NLFK H/T = 1.2 1.316 2.067
0.506 λ/L 3.796 3.549 3.297	13.132 A Experim. 3.779 3.874 4.464	λ/L 0.5 0.8	τ	Acceler LFK 1.351 2.344 3.367	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441	$\frac{\times m / s^{2}}{N \times g}$ NLFK H/T = 0.75 1.353 2.162 4.786	NLFK H/T = 1.2 1.316 2.067 5.175
λ/L 3.796 3.549 3.297 3.046	13.132 A Experim. 3.779 3.874 4.464 4.794	λ/L 0.5 0.8 1 1.2	τ	Acceler LFK 1.351 2.344 3.367 3.965	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156
0.506 λ/L 3.796 3.549 3.297 3.046 2.789	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125	λ/L 0.5 0.8 1 1.2 1.4	τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ 7.424 $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735
0.506 λ/L 3.796 3.549 3.297 3.046 2.789 2.535	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616	λ/L 0.5 0.8 1 1.2 1.4 1.6	τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904	$\frac{\times m / s^2}{\times g}$ NLFK H/T = 0.75 1.353 2.162 4.786 5.764 7.424 7.929	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8	τ τ <u>0.829</u> <u>1.048</u> <u>1.172</u> <u>1.284</u> <u>1.387</u> <u>1.483</u> <u>1.573</u>	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 1.353 2.162 4.786 5.764 7.424 7.929 7.600	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2	τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{5.764}{7.424} $ $ \frac{7.929}{7.600} $ $ \frac{7.033}{7.033} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2	τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{6.434} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6	τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{5.374} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344
$\begin{array}{c} 0.334\\ \hline 0.506\\ \hline \\ \hline \\ 3.796\\ \hline \\ 3.549\\ \hline \\ 3.297\\ \hline \\ 3.046\\ \hline \\ 2.789\\ \hline \\ 2.535\\ \hline \\ 2.281\\ \hline \\ 2.023\\ \hline \\ 1.772\\ \hline \\ 1.521\\ \hline \\ 1.393\\ \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3	τ τ 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{5.374} $ $ \frac{5.374}{4.554} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344 4.532
$\begin{array}{c} 0.334\\\hline 0.506\\\hline \\ 3.796\\\hline 3.549\\\hline 3.297\\\hline 3.046\\\hline 2.789\\\hline 2.535\\\hline 2.281\\\hline 2.023\\\hline 1.772\\\hline 1.521\\\hline 1.393\\\hline 1.267\\\hline \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \end{array}$	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 1.353 2.162 4.786 5.764 7.424 7.929 7.600 7.033 6.434 5.374 4.554 3.922	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344 4.532 3.906
$\begin{array}{c} \lambda \\ \hline 0.506 \\ \hline \\ \hline \\ \lambda \\ \hline \\ \hline \\ 3.796 \\ \hline \\ 3.549 \\ \hline \\ 3.297 \\ \hline \\ 3.046 \\ \hline \\ 2.789 \\ \hline \\ 2.535 \\ \hline \\ 2.281 \\ \hline \\ 2.023 \\ \hline \\ 1.772 \\ \hline \\ 1.521 \\ \hline \\ 1.393 \\ \hline \\ 1.267 \\ \hline \\ 1.138 \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501 10.455	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912 3.414	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932 3.430	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928 3.428	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 1.353 2.162 4.786 5.764 7.424 7.929 7.600 7.033 6.434 5.374 4.554 3.922 3.424	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ 1.316 \\ 2.067 \\ 5.175 \\ 7.156 \\ 7.735 \\ 7.929 \\ 7.555 \\ 6.983 \\ 6.390 \\ 5.344 \\ 4.532 \\ 3.906 \\ 3.412 \end{array}$
$\begin{array}{c} \lambda/L\\ \hline \lambda/L\\ \hline 3.796\\ \hline 3.549\\ \hline 3.297\\ \hline 3.046\\ \hline 2.789\\ \hline 2.535\\ \hline 2.281\\ \hline 2.023\\ \hline 1.772\\ \hline 1.521\\ \hline 1.393\\ \hline 1.267\\ \hline 1.138\\ \hline 1.015\\ \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501 10.455 8.494	$\begin{array}{c} \lambda/L \\ \hline 0.5 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ 3.8 \end{array}$	τ τ 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912 3.414	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932 3.430	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928 3.428	$ \frac{\times m / s^2}{\times g} $ NLFK H/T = 0.75 1.353 2.162 4.786 5.764 7.424 7.929 7.600 7.033 6.434 5.374 4.554 3.922 3.424	$\begin{array}{c} \text{NLFK} \\ \text{H/T} = 1.2 \\ 1.316 \\ 2.067 \\ 5.175 \\ 7.156 \\ 7.735 \\ 7.929 \\ 7.555 \\ 6.983 \\ 6.390 \\ 5.344 \\ 4.532 \\ 3.906 \\ 3.412 \end{array}$
$\begin{array}{c} \lambda/L\\ \hline \lambda/L\\ \hline 3.796\\ \hline 3.549\\ \hline 3.297\\ \hline 3.046\\ \hline 2.789\\ \hline 2.535\\ \hline 2.281\\ \hline 2.023\\ \hline 1.772\\ \hline 1.521\\ \hline 1.393\\ \hline 1.267\\ \hline 1.138\\ \hline 1.015\\ \hline 0.876\\ \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501 10.455 8.494 7.287	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	Σέσματα Τ 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912 3.414	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932 3.430	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928 3.428	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{5.374} $ $ \frac{4.554}{3.922} $ $ \frac{3.424}{7.000} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344 4.532 3.906 3.412
λ/L 3.796 3.549 3.297 3.046 2.789 2.535 2.281 2.023 1.772 1.521 1.393 1.267 1.138 1.015 0.876 0.760	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501 10.455 8.494 7.287 6.139	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.6 3 3.4 3.8	Σέσματα Τ 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912 3.414	ration LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932 3.430	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928 3.428	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{5.374} $ $ \frac{4.554}{3.922} $ $ \frac{3.424}{7.000} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344 4.532 3.906 3.412
$\begin{array}{c} \lambda/L\\ \hline \lambda/L\\ \hline 3.796\\ \hline 3.549\\ \hline 3.297\\ \hline 3.046\\ \hline 2.789\\ \hline 2.535\\ \hline 2.281\\ \hline 2.023\\ \hline 1.772\\ \hline 1.521\\ \hline 1.393\\ \hline 1.267\\ \hline 1.138\\ \hline 1.015\\ \hline 0.876\\ \hline 0.760\\ \hline 0.634\\ \end{array}$	13.132 A Experim. 3.779 3.874 4.464 4.794 5.125 5.616 6.386 6.581 7.310 11.540 13.057 12.501 10.455 8.494 7.287 6.139 5.195	λ/L 0.5 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8 ////////////////////////////////////	Σέσματα Τ 0.829 1.048 1.172 1.284 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	Acceler LFK 1.351 2.344 3.367 3.965 7.140 7.861 7.576 7.015 6.415 5.357 4.541 3.912 3.414	ation LCG R NLFK H/T = 0.25 1.227 2.447 4.291 4.467 7.143 7.873 7.609 7.056 6.457 5.391 4.567 3.932 3.430	$AO_{AC} = \frac{L_{WL}}{A}$ $NLFK$ $H/T = 0.5$ 1.352 2.239 4.441 4.986 7.271 7.904 7.609 7.047 6.446 5.383 4.434 3.928 3.428	$ \frac{\times m / s^2}{NLFK} $ $ \frac{NLFK}{H/T = 0.75} $ $ \frac{1.353}{2.162} $ $ \frac{4.786}{5.764} $ $ \frac{7.424}{7.929} $ $ \frac{7.600}{7.033} $ $ \frac{6.434}{5.374} $ $ \frac{4.554}{3.922} $ $ \frac{3.922}{3.424} $	NLFK H/T = 1.2 1.316 2.067 5.175 7.156 7.735 7.929 7.555 6.983 6.390 5.344 4.532 3.906 3.412

Ταχύπλοο σκάφος Σειράς ΝΤUA LB55										
Αριθμός Froude = 0.34 / Συντελεστής C _{DL} = 3.00										
Μήκος Ισάλου L _{WL} 2.145 m										
T αχύτητα Δοκιμής V_s 1.56 m/s										
Αποτελέσματα Acceleration Stern RAO _{AC} = $\frac{L_{WL} \times m/s^2}{m/s^2}$										
	•				•		F	A×g		
۵/T	Experim.	λ/L	Т	LFK	NLFK	NLFK H/T = 0.5		NLFK	NLFK	
N/L					H/T = 0.25			H/T = 0.75	H/T = 1.2	
3.796	4.963	0.5	0.829	3.852	3.500	3.599		3.538	3.298	
3.549	5.184	0.8	1.048	14.991	14.217	14.024		13.603	12.458	
3.297	6.207	1	1.172	26.946	25.807	25.386		24.317	21.999	
3.046	7.171	1.2	1.284	33.149	32.595	32.496		31.707	29.500	
2.789	7.961	1.4	1.387	29.938	29.943	29.	946	29.743	28.961	
2.535	9.505	1.6	1.483	24.104	24.198	24.	149	23.993	23.483	
2.281	11.781	1.8	1.573	19.249	19.342	19.	297	19.183	18.843	
2.023	13.348	2	1.658	15.621	15.696	15.664		15.589	15.356	
1.772	16.337	2.2	1.739	12.924	12.980	12.955		12.907	12.742	
1.521	21.511	2.6	1.890	9.353	9.380	9.360		9.333	9.238	
1.393	20.431	3	2.030	7.178	7.194	7.113		7.168	7.113	
1.267	18.703	3.4	2.161	5.745	5.758	5.754		5.746	5.718	
1.138	16.309	3.8	2.285	4.741	4.750	4.748		4.743	4.726	
1.015	13.874									
0.876	12.147									
0.760	10.592									
0.634	9.450									
0.506	5.535	/////			X/////////////////////////////////////					

Ταχύπλοο σκάφος Σειράς NTUA LB55										
Aριθμός Froude = $0.68 / Συντελεστής C_{DL} = 3.00$										
	Μήκος Ισ	άλου			L_{WL}		2.145	m		
,	Γαχύτητα Δ	οκιμή	-		Vs		3.12	m/s		
Αποτελέσματα RAO _{HEAVE} = $\frac{\xi_3}{\Delta}$										
λ/L	Experim.	λ/L	Т	LFK	NLFK H/T = 0.25	$\frac{\text{NLFK}}{\text{H/T} = 0.5}$	NLFK H/T = 0.75	NLFK H/T = 1.2		
0.506	0.110	0.5	0.829	0.009	0.009	0.01	0.01	0.009		
0.634	0.095	0.8	1.048	0.032	0.034	0.032	0.03	0.027		
0.760	0.138	1	1.172	0.179	0.184	0.177	0.169	0.147		
0.887	0.206	1.2	1.284	0.494	0.505	0.478	0.441	0.358		
1.015	0.202	1.4	1.387	0.914	0.923	0.869	0.789	0.628		
1.138	0.205	1.6	1.483	1.11	1.103	1.086	1.045	0.905		
1.267	0.328	1.8	1.573	1.032	1.002	1.008	1.013	0.998		
1.393	0.471	2	1.658	0.886	0.845	0.847	0.852	0.859		
1.521	0.702	2.2	1.739	0.711	0.736	0.735	0.733	0.73		
1.772	1.032	2.6	1.890	0.761	0.736	0.735	0.734	0.729		
2.023	1.332	3	2.030	0.838	0.824	0.824	0.823	0.82		
2.281	1.369	3.4	2.161	0.894	0.887	0.886	0.886	0.884		
2.535	1.268	3.8	2.285	0.928	0.925	0.923	0.923	0.92		
2.789	1.163	//////								
3.046	1.220									
3.297	1.104									
3.549	1.070									
3.796	1.151									
			Алот	τελέσμα	τα RAO _{pitch}	$=\frac{\xi_5(\text{deg})}{\kappa \times A}$				
λ/L	Experim.	λ/L	Т	LFK	NLFK H/T = 0.25	NLFK H/T = 0.5	NLFK H/T = 0.75	NLFK H/T = 1.2		
0.506	0.038	0.5	0.829	0.004	0.004	0.004	0.004	0.004		
0.634	0.045	0.8	1.048	0.041	0.042	0.041 0.040		0.037		
0.760	0.079	1	1.172	0.167	0.173	0.169	0.163	0.146		
0.887	0.117	1.2	1.284	0.433	0.448	0.430	0.400	0.336		
1.015	0.142	1.4	1.387	0.829	0.853	0.806	0.737	0.607		
1.138	0.177	1.6	1.483	1.118	1.139	1.115	1.067	0.938		
1.267	0.262	1.8	1.573	1.224	1.234	1.229	1.218	1.173		
1.393	0.373	2	1.658	1.275	1.281	1.278	1.273	1.252		
1.521	0.534	2.2	1.739	1.278	1.312	1.310	1.304	1.288		
1.772	0.776	2.6	1.890	1.288	1.305	1.303	1.298	1.286		
2.023	1.058	3	2.030	1.228	1.250	1.248	1.243	1.232		
2.281	1.195	3.4	2.161	1.178	1.202	1.200 1.196		1.185		
2.535	1.220	3.8	2.285	1.148	1.171	1.169	1.166	1.157		
2.789	1.239	/////	///////////////////////////////////////							
3.046	1.368	(/////		X///////			X/////////////////////////////////////			
3.297		V//////	///////////////////////////////////////	<i>\///////</i>	///////////////////////////////////////	\/////////////////////////////////////	X/////////////////////////////////////			
	1.366		///////////////////////////////////////	X////////	(//////////////////////////////////////		X/////////////////////////////////////	<i>\////////////////////////////////////</i>		
3.549	1.366 1.354									

Ταχύπλοο σκάφος Σειράς ΝΤUA LB55											
Aριθμός Froude = $0.68 / Συντελεστής C_{DL} = 3.00$											
	Μήκος Ισα	άλου			L_{WL}		2.145	m			
]	Γαχύτητα Δ	οκιμής	-	Vs			3.12	m/s			
	$I_{m} \times m/s^2$										
	Αποτελέσματα Acceleration Bow $RAO_{AC} = \frac{D_{WL} \times III + S}{A \times g}$										
λ/L	Experim.	λ/L	Т	LFK	NLFK $H/T = 0.25$	NLFK $H/T = 0.5$	NLFK H/T = 0.75	NLFK $H/T = 1.2$			
0.506	13 901	0.5	0.829	4 584	5 019	5.096	5.031	4 700			
0.634	13.536	0.8	1.048	13.163	13.641	13.381	12,978	12.049			
0.760	18.125	1	1.172	30.999	32.287	31.475	30.148	26.694			
0.887	21.340	1.2	1.284	52,478	54.634	51.930	47.863	39.341			
1.015	24.630	1.4	1.387	70.181	72.331	67.657	60.929	48.754			
1.138	28.338	1.6	1.483	68.234	69.611	67.655	63.888	54.413			
1.267	33.838	1.8	1.573	54.652	55.024	54.684	53.918	51.032			
1.393	40.436	2	1.658	41.873	41.877	41.749	41.496	40.656			
1.521	46.571	2.2	1.739	30.572	31.777	31.672	31.476	30.965			
1.772	49.213	2.6	1.890	18.717	18.793	18.736	18.624	18.374			
2.023	47.607	3	2.030	12.040	12.133	12.101	12.033	11.893			
2.281	38.926	3.4	2.161	8.608	8.027	8.665	8.632	8.556			
2.535	30.238	3.8	2.285	6.639	6.691	6.676	6.657	6.609			
2.789	23.291										
3.046	21.886										
3.297	17.182										
3.549	14.888										
3.796	13.239										
	A	Αποτελ	έσματα	Acceler	ation LCG R	$AO_{AC} = \frac{L_{WL}}{A}$	$\frac{\times m / s^2}{\times g}$				
	<u>م /ت</u>	T	LEV	NLFK	NLFK	NLFK	NLFK				
λ/L	Experim.	∧/L	1	LFK	H/T = 0.25	H/T = 0.5	H/T = 0.75	H/T = 1.2			
0.506	3.657	0.5	0.829	1.168	1.168	1.262	1.257	1.218			
0.634	3.550	0.8	1.048	1.994	1.883	1.782	1.717	1.564			
0.760	4.952	1	1.172	7.695	7.680	7.496	7.232	6.477			
0.887	6.405	1.2	1 284	15 115	15 146	14 500	12 722	11 622			
1.015			1.201	10.110	15.140	14.399	13.732	11.022			
	6.972	1.4	1.387	21.155	20.991	20.227	18.927	15.813			
1.138	6.972 8.286	1.4 1.6	1.387 1.483	21.155 20.239	20.991 19.691	20.227 19.848	18.927 19.760	15.813 18.172			
1.138 1.267	6.972 8.286 11.183	1.4 1.6 1.8	1.387 1.483 1.573	21.155 20.239 15.542	20.991 19.691 14.714	14.399 20.227 19.848 15.010	13.732 18.927 19.760 15.451	15.813 18.172 16.084			
1.138 1.267 1.393	6.972 8.286 11.183 14.664	1.4 1.6 1.8 2	1.387 1.483 1.573 1.658	21.155 20.239 15.542 11.847	20.991 19.691 14.714 11.094	14.399 20.227 19.848 15.010 11.193	13.732 18.927 19.760 15.451 11.380	15.813 18.172 16.084 11.773			
1.138 1.267 1.393 1.521	6.972 8.286 11.183 14.664 18.390	1.4 1.6 1.8 2 2.2	1.387 1.483 1.573 1.658 1.739	21.155 20.239 15.542 11.847 9.415	20.991 19.691 14.714 11.094 9.479	14.399 20.227 19.848 15.010 11.193 9.499	13.732 18.927 19.760 15.451 11.380 9.535	15.813 18.172 16.084 11.773 9.593			
1.138 1.267 1.393 1.521 1.772	6.972 8.286 11.183 14.664 18.390 21.161	1.4 1.6 1.8 2 2.2 2.6	$\begin{array}{r} 1.201\\ 1.387\\ 1.483\\ 1.573\\ 1.658\\ 1.739\\ 1.890\\ \end{array}$	21.155 20.239 15.542 11.847 9.415 8.861	20.991 19.691 14.714 11.094 9.479 8.670	14.399 20.227 19.848 15.010 11.193 9.499 8.674	13.732 18.927 19.760 15.451 11.380 9.535 8.684	15.813 15.813 18.172 16.084 11.773 9.593 8.659			
1.138 1.267 1.393 1.521 1.772 2.023	6.972 8.286 11.183 14.664 18.390 21.161 22.241	$ \begin{array}{r} 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ \end{array} $	$\begin{array}{r} 1.201\\ \hline 1.387\\ \hline 1.483\\ \hline 1.573\\ \hline 1.658\\ \hline 1.739\\ \hline 1.890\\ \hline 2.030\\ \end{array}$	21.155 20.239 15.542 11.847 9.415 8.861 7.910	20.991 19.691 14.714 11.094 9.479 8.670 7.842	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816			
1.138 1.267 1.393 1.521 1.772 2.023 2.281	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161	$ \begin{array}{r} 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.6 \\ 3 \\ 3.4 \\ \end{array} $	$\begin{array}{r} 1.261\\ 1.387\\ 1.483\\ 1.573\\ 1.658\\ 1.739\\ 1.890\\ 2.030\\ 2.161 \end{array}$	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877	20.991 19.691 14.714 11.094 9.479 8.670 7.842 6.856	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828			
1.138 1.267 1.393 1.521 1.772 2.023 2.281 2.535	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161 14.903	$ \begin{array}{r} 1.4\\ 1.6\\ 1.8\\ 2\\ 2.2\\ 2.6\\ 3\\ 3.4\\ 3.8\\ \end{array} $	1.281 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877 5.963	$\begin{array}{r} 13.140\\ \hline 20.991\\ \hline 19.691\\ \hline 14.714\\ \hline 11.094\\ \hline 9.479\\ \hline 8.670\\ \hline 7.842\\ \hline 6.856\\ \hline 5.960\\ \hline \end{array}$	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851 5.954	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848 5.949	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828 5.930			
1.138 1.267 1.393 1.521 1.772 2.023 2.281 2.535 2.789	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161 14.903 11.741	1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	1.281 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877 5.963	$\begin{array}{r} 13.140\\ \hline 20.991\\ \hline 19.691\\ \hline 14.714\\ \hline 11.094\\ \hline 9.479\\ \hline 8.670\\ \hline 7.842\\ \hline 6.856\\ \hline 5.960\\ \hline \end{array}$	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851 5.954	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848 5.949	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828 5.930			
1.138 1.267 1.393 1.521 1.772 2.023 2.281 2.535 2.789 3.046	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161 14.903 11.741 10.957	1.4 1.6 1.8 2 2.6 3 3.4 3.8	1.281 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877 5.963	$\begin{array}{r} 13.140\\ \hline 20.991\\ \hline 19.691\\ \hline 14.714\\ \hline 11.094\\ \hline 9.479\\ \hline 8.670\\ \hline 7.842\\ \hline 6.856\\ \hline 5.960\\ \hline \end{array}$	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851 5.954	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848 5.949	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828 5.930			
1.138 1.267 1.393 1.521 1.772 2.023 2.281 2.535 2.789 3.046 3.297	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161 14.903 11.741 10.957 8.981	1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	1.201 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877 5.963	$\begin{array}{r} 13.140\\ \hline 20.991\\ \hline 19.691\\ \hline 14.714\\ \hline 11.094\\ \hline 9.479\\ \hline 8.670\\ \hline 7.842\\ \hline 6.856\\ \hline 5.960\\ \hline \end{array}$	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851 5.954	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848 5.949	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828 5.930			
1.138 1.267 1.393 1.521 1.772 2.023 2.281 2.535 2.789 3.046 3.297 3.549	6.972 8.286 11.183 14.664 18.390 21.161 22.241 19.161 14.903 11.741 10.957 8.981 8.002	1.4 1.6 1.8 2 2.2 2.6 3 3.4 3.8	1.201 1.387 1.483 1.573 1.658 1.739 1.890 2.030 2.161 2.285	21.155 20.239 15.542 11.847 9.415 8.861 7.910 6.877 5.963	$\begin{array}{r} 13.140\\ \hline 20.991\\ \hline 19.691\\ \hline 14.714\\ \hline 11.094\\ \hline 9.479\\ \hline 8.670\\ \hline 7.842\\ \hline 6.856\\ \hline 5.960\\ \hline \end{array}$	14.399 20.227 19.848 15.010 11.193 9.499 8.674 7.839 6.851 5.954	13.732 18.927 19.760 15.451 11.380 9.535 8.684 7.840 6.848 5.949	15.813 15.813 18.172 16.084 11.773 9.593 8.659 7.816 6.828 5.930			

Ταχύπλοο σκάφος Σειράς ΝΤUA LB55											
Aριθμός Froude = $0.68 / Συντελεστής C_{DL} = 3.00$											
Μήκος Ισάλου L _{WL} 2.145 m											
Ταχύτητα Δοκιμής V _s 3.12 m/s											
	$L_{wi} \times m/s^2$										
	A ποτελεσματά Acceleration Stern $RAO_{AC} = \frac{mE}{A \times g}$										
۵ /T	Experim.	λ/L	Т	LFK	NLFK	NLFK		NLFK	NLFK		
N/L					H/T = 0.25	H/T = 0.5		H/T = 0.75	H/T = 1.2		
0.506	7.659	0.5	0.829	3.102	3.502	3.557		3.486	3.241		
0.634	7.474	0.8	1.048	9.647	9.657	9.549		9.305	8.652		
0.760	10.099	1	1.172	22.247	22.671	22.365		21.656	19.604		
0.887	11.595	1.2	1.284	35.223	35.940	34.844		32.920	28.417		
1.015	13.250	1.4	1.387	43.938	44.454	42.	955	40.396	34.674		
1.138	15.685	1.6	1.483	40.737	40.723	40.	804	40.399	37.681		
1.267	18.119	1.8	1.573	32.861	32.499	32.	757	33.132	33.639		
1.393	21.434	2	1.658	27.330	27.097	27.154		27.242	27.348		
1.521	23.896	2.2	1.739	23.516	23.722	23.742		23.743	23.638		
1.772	24.610	2.6	1.890	18.419	18.532	18.540		18.534	18.447		
2.023	23.813	3	2.030	14.169	14.303	14.296		14.277	14.203		
2.281	19.682	3.4	2.161	11.124	11.237	11.227		11.208	11.148		
2.535	15.195	3.8	2.285	8.998	9.087	9.079		9.067	9.019		
2.789	11.804										
3.046	11.533										
3.297	9.624										
3.549	8.728										
3.796	8.320										