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Abstract

The reduction of smoke emissions and improvement of load acceptance in

a turbocharged marine diesel engine, during transient operation involving

rapid load increases, were considered in the present work. Model predictive

control (MPC) was used in a system for external compressed air injection

directly in the air manifold. Concurrently, the aim was to avoid surge in the

turbocharger compressor upstream of the air manifold.

Previous work in the Laboratory of Marine Engineering/NTUA had

proved experimentally the applicability of the air injection method for smoke

reduction and had also investigated the compressor surge behavior via en-

gine performance simulations.

Compressor system surge is a self-excited limit cycle oscillation, charac-

terized by large amplitude pressure rise and mass flow fluctuations. It starts

to occur when the pressure rise and mass flow characteristics for constant

speed exceed certain values determined by characteristics of the compressor

and load. A surge avoidance method was used , where stable operation was

achieved by operating the compressor at a safe distance, defined as surge

margin, from the unstable region.

In MPC, a dynamical model of the process is used to construct and

solve an optimization problem aiming to achieve prescribed performance,

under constraints on input/output variables. MPC is widely accepted in

the process industry and recently has been considered for the control in

combustion engines, despite the high computational overhead.

Due to the difficulty of deriving a process model from first principles

for the smoke density (opacity), system identification was used in order to

derive control models relating air injection and fuel to opacity and intake

xiii



manifold pressure. Air injection was considered as manipulated variable,

and opacity as controlled variable. The fuel was considered as measured

disturbance. Intake manifold pressure was related to compressor instability.

In the MPC, the objective function was the minimization of smoke density

(opacity), with constraint not to exceed a limit in intake manifold pressure.

Experiments at the Laboratory were performed on a full scale marine

diesel engine, with two different types of predictive controllers. Results

comparing the opacity under air injection model predictive control with

the standard engine operation, i.e. without air injection, during the same

transient were presented. It can be seen that with air injection, opacity

was reduced considerably. The peak value remained the same in both cases,

about 80%. However, in the case with air injection, this peak dropped

considerably after about 0.5 sec to a steady value of about 40%, until the

end of disturbance.

The significant reduction obtained in the full scale testbed experiments

demonstrated the effectiveness of the proposed system of controlled air injec-

tion for smoke abatement during engine transients, as well as the suitability

of the control method used.
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Chapter 1

Introduction

The focus of this thesis is on the reduction of exhaust smoke density (opacity)

during load transient in a diesel engine by injecting external compressed

air directly into the intake manifold. A performance constraint related to

turbocharger compressor instability is imposed: the pressure in the engine

intake manifold should not exceed certain limits. Model-based control theory

was used, with two elements. The first is the requirement of a suitable engine

model for prediction. The second is the minimization of a cost function

related to opacity, subject to constraints.

In this chapter the stage is set up with the formulation of the problem,

presentation of information on smoke and the method of opacity measure-

ment and finally review of air injection and model-based control applications

related to diesel engines.

1.1 Problem Formulation

The main problem under consideration is the mismatch of air to fuel, when

a large load is suddenly applied to a turbocharged diesel engine. During

such a transient, the engine speed initially drops. The speed controller will

command the fuel actuator to provide more fuel, anticipating the deviation

from its set point. As this is conventionally a fast hydraulic/electric system,

it will respond promptly. On the other hand, engine air cannot be admitted

as fast. Of concern here is the turbocharger lag, which refers to the inability
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of turbocharger to respond rapidly to changes in load and engine speed

changes, due to its rotating inertia. Consequently the turbocharger lag can

be a problem during transient operation, as the compressor flow and pressure

may not be sufficient to meet engine breathing requirements during the lag

period. Marine diesel engines are used for 99% of all ships. In marine diesel

propulsion, the turbocharger, the engine, and the propeller operation are

optimized to achieve the rated power and maximum torque output. Thus,

the turbocharger size is determined for high engine torque output which

usually leads to large inertia and effective flow area and consequently slow

air flow response [SS00].

According to a recent study [LLG+08] large cargo ships emit more than

twice as much soot as previously estimated, and tugboats emit nearly twice

as much soot for the amount of fuel used than other commercial vessels.

Tugboats are typical vessels with large load transients.

During a load increase, due to poor combustion from the fuel/air mis-

match, excessive exhaust smoke may be caused, and engine has a limited re-

sponsiveness. Several methods and devices have been proposed, in an effort

to reduce such smoke emissions. One possible measure is the forced external

increase of air flow to the engine. In this work external compressed air is

injected directly into the intake manifold, downstream of the turbocharger

compressor.

One drawback is the possible cause of instability or even surge in the

compressor due to the sudden increase of its downstream pressure and sub-

sequent opposite flow.

1.2 Smoke Emissions in Diesel Engines

The need for compliance to low regulatory limits on emissions has brought

considerable advances in the understanding of the smoke and soot and par-

ticulate formation mechanism. In this section the smoke formation process

and the measurement of opacity are reviewed, as well as the applicable leg-

islation for marine transportation.
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1.2.1 Smoke Formation

The present work is concerned about the relation of smoke emissions and

diesel engines. Diesel engines have relatively low engine-out emissions in

hydrocarbons and carbon monoxide emissions. The main pollutant species

in the diesel exhaust are Nitrogen Oxides (NOx) due to the high pressures

and temperatures during combustion, smoke and Particulate Matter (PM).

As in spark ignition engines, the air/fuel ratio is one primary factor that

affects pollution formation; others are the injection timing and pressure.

Smoke and PM emissions are caused when insufficient oxygen is admitted

to the engine to fully burn the fuel. On the other hand, excess of oxygen

raises the combustion temperature and increases the NOx emissions.

Diesel particulate matter (PM) is a complex mixture of solid and car-

bonaceous material, unburned hydrocarbons and inorganic compounds. The

measured amount of absorbed and condensed matter strongly depends on

the cooling conditions: temperature, cooling rate, residence time in the con-

ditioning and sampling devices, etc.

Exhaust particulate matter (PM) composition of marine diesel operation

can be summarized by following fractions [CIM08]:

PM = Soot+ SOF + IF (1.1)

where Soluble Organic Fraction (SOF) refers to organic material and IF

(Inorganic Fraction) to volatile, semi-volatile and non-volatile compounds

like sulphates and nitrates, metals and water.

Soot is produced during incomplete combustion. Ash originates from

fuel and lube oil (additives, impurities) as well as engine wear and corrosion

products. Volatile species are accumulated on the particles as exhaust gas

cools down during the travel through the exhaust duct and any measurement

system. In addition to the change of particulate composition and mass,

the volatile matter buildup affects the physical properties of the particle

e.g. mobility diameter (drag). All liquid and gas fuel operated combustion

processes generate small size particulates - the diesel engine is not unique

in this respect.

A non-homogeneous air/fuel mixture causes the formation of soot and

PM. When the outlet layer of a fuel droplet begins to burn, its core becomes
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so hot that cracking processes begin. The shorter hydrocarbon chains are

not easily inflammable such that some escape combustion and appear at the

exhaust port as soot particles [GO04].

Soot is mostly carbon, and the emissions of soot are determined by ex-

istence of two phenomena: formation and oxidation. In the ideal case of

complete combustion of hydrocarbon fuel with stoichiometric air, the ex-

haust gas would be composed of the chemical species carbon dioxide (CO2),

water, (H2O) and molecular nitrogen (N2). However, in real combustion, as

chemical reactions never proceed completely and boundary conditions are

non-ideal, formation of new products like carbon monoxide (CO), unburned

hydrocarbons (HC), nitrogen oxides (NOx) and particulate matter (PM)

-approximated as soot- may take place.

The soot mass fraction history within a diesel engine combustion is shown

in Figure 1.1, from [Sti03]. Soot appears shortly after start of combustion,

it rises to maximum near TDC and falls rapidly as a result of oxidation.

Crank angle (deg)TDC

Soot mass fraction

Figure 1.1: Soot mass fraction .vs crank angle in diesel engine, [Sti03]

Details from experimental investigations for soot formation in diesel en-

gines can be found in [Boc94] and [Hey98]. As general reference on the

subject, physical and chemical fundamentals for soot formation in flames,

can be found in [Boc94] while in [WMD99] a coupled treatment of chemi-

cal reaction and fluid flow related to combustion, with pollutant models is

given.
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1.2.2 PM and Smoke Density (Opacity) Measurement

Particulate emissions (PM) are defined by the measurement method and the

understanding and knowledge of used methods are essential. The methods

are many and are based on measuring various physical/chemical charac-

teristics of the particle at different temperatures and pressures. Emission

regulations are based on different measurement methods (i.e. regulators

are defining particulates in different ways). By definition, smoke is visible

(white, grey, blue, black, brown and yellow).

Particulate Matter from marine engines can be measured according to

two completely different measurement methods i.e. the dilution method and

the direct measurement method (dry dust method) [CIM08].

For the dilution method, recommended is ISO 8178: Reciprocating in-

ternal combustion engines - Exhaust emission measurement.

For the measurement of smoke, the following methods can be used:

1. Filter Smoke Number, with recommended methods:

• ISO 8178-3: Reciprocating internal combustion engines exhaust emis-

sion measurement, method 2: Smoke measurement by a filter-type

smoke meter.

• ISO 10054: Internal combustion compression ignition engines mea-

surement apparatus for smoke from engines operating under steady-

state conditions filter type smoke meter.

As the above methods are not suitable for transient (dynamic) measurements

of the present work, they were not taken into consideration.

2. Smoke Density, with recommended methods:

• ISO 8178-3: Reciprocating internal combustion engines exhaust emis-

sion measurement, method 1: Smoke measurement by an opacimeter.

• ISO 11614: Reciprocating internal combustion compression ignition

engines - apparatus for measurement of the opacity and for determi-

nation of the light absorption coefficient of the exhaust gas.

Smoke opacity meters (opacimeters) measure the optical properties of

diesel exhaust and quantify the visible black smoke emissions with the use
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of physical phenomena like the extinction of a light beam by scattering and

absorption [MK06].

In opacity measurements, light extinction occurs in engine exhaust gas

charged with soot particulates. The light extinction is described according

to the Beer-Lambert Law
E

Eo
= e−KL (1.2)

where E is the light intensity of scattered light, E0 is the light intensity of

emitted light, K is the extinction coefficient, L is the light path or measuring

length, which in our case equals to 0.430 m.

Opacity is defined as

Opacity = 1− E

Eo
= 1− e−KL (1.3)

Units for opacity are usually in percentage values, where 0% is for clear

air and 100% is for black smoke.

Areas of concern in the opacity measurement, can be the insufficient

resolution of measuring devices in the very low levels of opacity close to those

of proposed legislation, insensitivity to small particles having size around 50

nm and cross-sensitivity to nitrogen dioxide, which could cause bias [MK06].

In general, the path length affects measurement; an infinite path length has

100% opacity. It is also known that there exists bad correlation of opacity

measurements with other particulate matter (PM) measurement parameters

such as mass. PM determination is mostly based on gravimetric methods

as mentioned above. In general, opacity below 2% is not visible to bare eye,

where as opacity with values higher than 5% present clearly visible plumes

of smoke.

1.2.3 Emission Legislation

For the particulate matter and smoke and specifically for large engines in-

cluding marine engines, the current legislation holds as follows, from [Kyr07].

The International Maritime Organization (IMO), has not imposed any

limits yet. However, for the future there are proposals under review, with

possible inclusion in Tier II 2010. Limits are yet unspecified.
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In Europe there are some ’local’ regulations for waterborne transport.

Two such examples are River Rhine and Bodensee (Lake Constance), regu-

lations. EU also has Stage (Tier) IIIA regulations, where the limit in PM

is 0.2 to 0.5 g/kWh, depending on engine size. ISO 8178 specifies the mea-

surement and evaluation methods for particulate exhaust emissions from

internal combustion engines under steady-state and transient conditions.

In the USA, existing Environmental Protection Agency (EPA) regula-

tions, referred to as Tier 2 standards, include standards for emissions of

PM, NOx, hydrocarbons (HC) and carbon monoxide (CO) from locomotive

and marine diesel engines. For PM, the limit is 0.2 to 0.5 g/kWh, depend-

ing on engine size. Particulates are also defined according to the ISO 8178

measurement method.

The EPA recently (2008) adopted new air emission standards aiming to

dramatically reduce emissions of diesel particulate matter (PM) and nitro-

gen oxide (NOx) from locomotives and marine diesel engines [Age08]. The

final rule consists of a three-part emission control strategy. First, it tightens

emissions standards for existing locomotives and large marine diesel engines

when they are re-manufactured. Second, it sets near-term engine-out emis-

sions standards, referred to as Tier 3 standards, for newly-built locomotives

and marine diesel engines; this starts in 2009. Third, it sets longer-term

standards, referred to as Tier 4 standards, for newly-built locomotives and

marine diesel engines. These standards are based on the application of high-

efficiency catalytic aftertreatment technology and would phase-in beginning

in 2014 for marine diesel engines. These standards are enabled by the avail-

ability of ultra-low sulfur diesel fuel with sulfur content capped at 15 parts

per million, which will be available by 2012. These marine Tier 4 engine

standards apply only to commercial marine diesel engines above 600 kW

(800 hp).

EPA estimates 90% PM reductions from Tier 4 engines meeting the

new standards, compared to current engines meeting the current Tier 2

standards. According to EPA, by 2030 this program will reduce annual

emissions of PM by 27,000 tons and those emission reductions continue to

grow beyond 2030 as fleet turnover is completed.
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1.3 Review of Previous Work

Various primary (on-engine) methods such as those affecting combustion

and secondary (exhaust gas-aftertreatment) such as scrubbers, filters and

trap methods exist for PM and smoke abatement.

The enforced independent increase of boost pressure for smoke reduction

during transient, is covered here.

1.3.1 Air Injection

The method under study in this thesis is the supply of external compressed

air to the engine intake manifold during transient load application in order

to match the required increase in fuelling.

Compressed air has been used to inject the fuel in some early diesel

engines [Moh51].

Compressed air directly injected to the cylinders is used for startup of

all large marine engines, but operates at very low rotational speeds.

Direct injection of air in the cylinder is also possible during the closed

cycle, but the required valving and timing constraints are quite significant

at high engine speeds.

In [MIO94], it was shown that with the injection of air into a modified

pre-chamber it is possible to alter the combustion characteristics and hence

the products of combustion. Experimental results showed that with opti-

mum injection timing, it is possible to have improved combustion process

and reduction of both PM and CO, with reasonably low NOx.

Compressed air injected directly onto the turbocharger compressor blades

has often been used to drive the compressor wheel like a turbine so that it

spins faster during transient load increases and the air is also added to the

air flow to the engine. Several commercial applications of this concept exist

with large marine turbocharger manufacturers such as ABB and MAN (’jet

assist’). Fatigue loading of the blades limits the application to very short

bursts of air injection [CVKA05].

In [LKK05], engine performance simulations also investigated the use

of air injection on the compressor wheel during transient and showed the

potential improvements in engine response.

10



Initial related work [PAK+07] has proved experimentally the applicabil-

ity of the air injection method on compressor and in manifold for smoke

reduction in a similar engine setup, but also highlighted the dangers of an

uncontrolled airflow.

1.3.2 Predictive Control Applications in Combustion Engines

Until today, Model Predictive Control (MPC) has been studied in several

applications with internal combustion engines. In [OdR07], MPC is applied

for the model-based control of air path in a diesel engine, using VGT 1

and EGR 2. Simulated and experimental results confirm that the proposed

strategy improves the dynamics of the air path and reduces calibration work

load. The model of the air path system was identified using prediction error

methods.

In [HRFA06], nonlinear model predictive control (NMPC) was applied

to control a diesel engine with VGT and EGR valve. The overall control

objective was to regulate the set point of the air-to-fuel ratio and amount

of recirculated exhaust gas in order to obtain low exhaust emission values

and low fuel consumption without smoke generation. Simulation results

showed the advantages and disadvantages, while the achieved performance

was comparable to other control methods. The mean-value engine model

was based on first principles, as derived in [Jun03].

In [vEL01], MPC with constraints was applied to a laboratory gas tur-

bine installation, succeeding in real time implementation. Two models were

used: one was based on physics equations for compressible fluid flow and

the other - a lumped parameter model- in which flow was neglected and

the fluid inertia was lumped in a single volume. Steady state set-point and

transient tracking of reference trajectories performed satisfactorily.

In [FLD06], NMPC was applied in a gasoline engine having as objective

the tracking of desired torque profile without increment in emissions, with

the throttle and the EGR valve as manipulated variables. Simulated studies

showed improvements in engine control, while the average run time needed

for NMPC optimization was around 10 msec.
1VGT: Variable Geometry Turbine
2EGR: Exhaust Gas Recirculation

11



In [HOO+06], Generalized Predictive Control (GPC) was used as control

method for the air-fuel ratio system, while system identification was applied

for the derivation of the models for both the engine and the catalyst system.

Experiments in full-scale vehicle proved the validity of the proposed design

and control approach.

In [Ben04], MPC strategy was applied in an Homogeneous Charge Com-

pression Ignition (HCCI) engine for the control of combustion phasing so

that it occurs at a certain crank angle degree. Dual fuels and VVA3 were

used as actuators. The models of engine dynamics were obtained by system

identification. Experiments demonstrated that MPC was able to solve the

problem of load control and simultaneous minimization of fuel consump-

tion and emissions, satisfying four constraints on the control and output

variables, with success.

In [BBA02], the feasibility of constrained MPC is investigated for a tur-

bojet aircraft engine. It is a simulated study where the real plant was rep-

resented by a physics-based large and complicated model. The constrained

MPC used a simplified real-time model while an Extended Kalman Filter

was used to reconstruct states and reduce noise. Results showed potential

for better performance than the standard production controller; however the

average execution time was about seventy times higher than the required fuel

control loop time.

A more detailed description of MPC is given in Chapter 4.

1.4 Thesis Contributions

The issue of exhaust opacity reduction and the issue of avoidance of tur-

bocharger instabilities during engine transients have been individually con-

sidered for over thirty years in engine applications. The main contribution

of this thesis is the study of the combination of those two issues as a per-

formance index (to minimize opacity) and a constraint (to avoid certain

operating limits) in the framework of a model-based advanced control sys-

tem.

3VVA: Variable Valve Actuators
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A comprehensive framework for large engine controller design is pro-

vided, which covers both the aspect of model building from experimental

data and that of controller design. From the extensive coverage found in the

literature in these two areas, information applicable to our problem config-

uration is presented.

Models which describe the transient variations of opacity and pressure

in the engine intake manifold, with inputs the fuel and air injection supply

are derived using system identification. Different methods were used and

various model structures have been tested.

The supporting experimental work was carried out on a state-of-the-

art full size diesel engine test-bed. The rapid prototyping of a real-time

controller as part of an existing engine controller is presented.

As a whole, the point of view was towards the integration of control

engineering issues with diesel engine operation. Issues of concern were the

suitability of various engine variables for control, applicability and capac-

ity of identified plant models, the benefit of an advanced control system

and the integration of a control subsystem in the whole automation of the

powerplant.

The thesis is divided in four main chapters that describe the experimental

setup, the model identification, the controller framework and the results

of model predictive control study. Following the introduction with a brief

background on soot emissions and a review of previous work on air injection

and model predictive control presented in Chapter 1, the content of the next

chapters is summarized below.

Chapter 2 describes the test-bed with diesel engine at the Laboratory

of Marine Engineering at NTUA. An air injection pipework and associated

valving was added, in order to supply external compressed air in the intake

manifold during a transient. The systems for air injection and engine control

and also for measurement and data acquisition are detailed.

Chapter 3 describes the system identification part of the study. Methods

and model structures are established. From the experimental data, models

suitable for controller design are derived. Air injection is considered as

an input, opacity is considered as output, the fuel is taken as a measured

disturbance and air pressure in the engine manifold is also modeled, in order
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to be used as a constraint.

Chapter 4 describes the model based controller, in necessary details:

formulation, cost function, constraints, model structures, issues of stability

and finally the nonlinear model predictive control.

Chapter 5 describes the closed-loop model predictive control for opacity

reduction. A constrained optimization problem is solved and two differ-

ent controller cases are studied. Both controllers were implemented on the

testbed. Experimental results from engine loading sequences demonstrate

the opacity reduction achieved.

Chapter 6 presents conclusions and some possible future directions of

the relevant research.
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Chapter 2

Experimental Engine Setup

The experiments described in this thesis were performed on a marine diesel

engine at the Laboratory of Marine Engineering, at the National Technical

University of Athens. The test engine is based on a modified MAN B & W

Holeby 5L16/24, which was appropriately adapted to accept the air injection

system. Three computer systems were operated respectively for the engine

and brake control, the air injection control and the measurement and data

acquisition.

This chapter describes the experimental setup, the sensors, the actuators

and the computer systems.

2.1 Engine Testbed

The heart of the test-bed is the MAN B & W Holeby 5L16/24 engine,

modified for advanced research applications. It is a 5-cylinder, 4-stroke tur-

bocharged diesel engine having a maximum power of 500 kW and a nominal

speed of 1200 rpm. The cylinder bore is 160 mm and the stroke 240 mm.

The engine in its commercial form is mainly used for ship-board electric

power generation and small ship propulsion. In the experimental setup, the

engine is coupled to an electric dynamometer, AEG GC 40.22-M, with shaft

power of 488 kW, speed of 20-1200 rpm and capability for 4-quadrant oper-

ation in the load/speed plane. The connection between the engine and the

dynamometer is realized via a shaft of 2.5 m length and 145 mm diameter
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and a flexible coupling. The engine test-bed is shown in Figure 2.1.

Figure 2.1: The test-bed with engine and brake

2.2 Instrumentation

The engine testbed with sensors and actuators are shown in the instrumen-

tation diagram of Figure 2.2. Table 2.1 provides the sensor identification

number and description of operation.

In this chapter only the opacity measurement is described. Descriptions

of measurement instrumentation for pressures, temperatures, speed, shaft

torque and other engine variables can be found in Appendix .1.

Smoke Opacity Measurement

The opacity in the exhaust gas is measured with an AVL 439 opacimeter

[AVLa]. A probe of 1 m length and 10 mm in diameter is mounted in the
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Table 2.1: Sensors and actuators at testbed

Number Sensor/Actuator Description

DPT 1 Differential pressure intake air

PT 1 Pressure intake air

TT 1 Temperature intake air

DPT 2 Differential pressure intake air, compressor exit

PE 101 Compressor in pressure

TE 101 Compressor in temperature

PE 102 Compressor out pressure

TE 201 Intercooler in temperature

TE 303 Charge air temperature

PE 303 Charge air pressure

ZT 403 Rack position

PE 401 Pressure cylinder 1

ME 402 Engine torque

SE 402 Engine speed

TE 504 Turbine in temperature upper manifold

TE 503 Turbine in temperature middle manifold

PE 502 Turbine in pressure lower manifold

PT 501 Turbine in pressure lower manifold Abs

TE 501 Turbine in temperature lower manifold

PE 505 Exhaust pressure cylinder 1

PE 506 Exhaust pressure cylinder 1 Static

SE 601 Turbocharger speed

PT 701 Turbine out pressure Abs

PE 702 Turbine out pressure

TE 701 Turbine out temperature

OPA 701 Opacity

PT 901 Air injection pressure

TE 901 Air injection temperature

FT 901 Air injection mass flow

ZS 901 Air injection valve command

FY 403 Fuel actuator command

FT 901 Brake command
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engine exhaust line and draws off sample exhaust gas. The gas is routed to

the opacimeter through a conditioning tube. Heated air is supplied around

the tube up to the sensing probe, thus ensuring that the gas sample has

constant temperature as it enters the opacimeter. Inside the device, a mea-

suring chamber of defined measuring length and non-reflecting surface is

filled homogeneously with exhaust gas. Two halogen lamps at the one end

of chamber provide the light source necessary for the measurements. The

detector unit equipped with green filter is on the other side of the cham-

ber. The loss of light intensity between the light source and the detector

is measured and from it the opacity of the exhaust gas is calculated. The

calculation is based on the Beer-Lambert Law. The exhaust gas passes

through two pumps which maintain a constant measurement flow from 40

to 49 lt/min, before it exits back to the exhaust line. The continuous mea-

surement values are available as analog output signal from the opacimeter.

The output rate is 50 Hz.

A ’zeroing’ procedure is performed every half hour of measurement in

order to evaluate the ’zero intensity value’ E0, required in calculations. Dur-

ing zeroing, ambient air at 100o C is fed in the chamber and a mean value

of light intensity E0 is measured.

The opacimeter at engine testbed is shown in Figure 2.3.

2.3 Data Acquisition System

The engine data acquisition system (DAQ) acquires and stores measured

data during test runs, which after the session end are post-processed. It

comprises a PC with DAQ software and the AVL Indiset hardware [AVLb].

The total number of analog inputs reaches 48 channels. From these, 16 chan-

nels can perform fast data acquisition especially for crank angle resolution

and the remaining 32 channels sample at 0.1 sec, for cycle resolution.

The PC is equipped with the AVL IndiCom software which carries out

the channel parameterizing, the measurements and the display of data. The

PC also contains a National Instruments PCI-6071E data acquisition board

providing the input and output signals, connected to the PCI bus. This

DAQ card provides up to 32 differential analog input channels, with 12-bit
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resolution, with configurable sampling rate up to 1 MS/s per channel. The

input signal ranges are from -10V to +10V.

The AVL 620 provides dedicated channels that allow it to synchronize

with external systems for the starting of a measurement session as well as

crank angle degree mark signals. In our case, the external trigger is supplied

by the engine digital control system, type Woodward ATLAS.

The AVL system achieves high performance data acquisition due to the

circular buffer data storage. In this type of structure, a fixed-size buffer

continuously reads data as if it were connected end-to-end, like a ring. In

the case that the buffer becomes full, when new data arrives, then it starts

overwriting the oldest data.

The AVL Indiset 620 hardware is shown in Figure 2.4.

2.4 Engine Hierarchical Control System

The engine hierarchical control system is formulated in a top-down structure.

On top, there is the air injection control system. In the middle there

is the engine control system, with the local closed-loop controllers of en-

gine speed and brake torque. The respective actuators (fuel governor and

thyristors of dynamometer brake) are at the lowest level.

With a full scale experimental setup of this magnitude, safety is a pri-

mary concern. As stated in [Mac04], while considering model predictive

controller (MPC) as an advanced controller, with MPC implemented on top

of traditional local controllers, we can experiment with this (new) advanced

control technology safely; should it starts misbehaving, it is possible to dis-

able it either manually or automatically as in our case, and still hold the

engine safely at previous set-points.

In the framework of this experimental work, the existing engine control

system was modified so as to accept an additional shutdown trigger. Two

pressure sensors PT 301, PT 302, provided redundant pressure measure-

ments from the intake engine manifold. They were analog inputs to the

Woodward ATLAS engine controller. If the pressure in the intake manifold

exceed the safety limits, the engine was shutdown. This was considered a

necessary precaution, as a large increment in the manifold pressure could
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severely damage the engine. This imposed limit is related to the constraint of

the MPC controller. During the complete testing schedule, the emergency

shutdown did not come into operation a single time, as the air injection

control system behaved faultlessly. The robust engine control system thus

provided a safe environment, as it protected the engine in a lower level,

allowing room for MPC experimentations.

The complete computer architecture is shown in Figure 2.5.

The individual systems are described in the following sections.

2.4.1 The Air Injection Controller

The air injection control layer was set up for the present experiments; it

comprised two personal computers (PCs), as a host and a target, one DAQ

card and MATLAB software environment. The software environment chosen

to develop the air injection controller was the MathWorks Development

Environment. This tool-set consists of a number of components including

the following:

• MATLAB: provides high-level modeling/scripting language

• Simulink: provides visual modeling environment that uses block inter-

connections

• Real-Time Workshop: compiles Simulink models for to C language for

real-time applications

• xPC: a real-time operating system, enables use of PC hardware and

Commercial-Off-The-Shelf data acquisition cards as a real-time target.

A similar approach is common in rapid prototyping environments; for

example a comparable setup is followed in [Sou04] for the control of an HCCI

engine.

More details on the air injection controller can be found in Appendix .1

2.4.2 The Engine Controller

The engine is controlled by a digital control system, type Woodward ATLAS.

At the heart of the ATLAS PC is a Pentium processor, running VxWorks
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real time operating system (OS). This OS is designed to control the proper

timing of all application code so that the dynamic performance of the fi-

nal control system is absolutely guaranteed. Each piece of application code

is scheduled under a rate group of up to 5 milliseconds cycle time. The

hardware platform is based on the industry standard PC/104 bus structure.

The PC/104 modules are stacked onto the backplane in order to add in-

puts/outputs like analog inputs of 0-5V, 4-20mA, analog outputs of 4-20

mA, discrete inputs and relay outputs. The application software is based on

graphical (i.e. interconnected blocks) programming.

The engine control system integrates the engine speed and the brake

torque control loops. The engine speed loop maintains the speed set point

by varying the fuel quantity with the fuel actuator. It is implemented

as Proportional-Integral-Derivative (PID) controller, with scheduling of its

three parameters on engine speed. The torque loop controls the brake torque

with the thyristors phasing, following the torque setpoint. As sensor, the

actual shaft torque measurement is utilized. Also a Proportional-Integral-

Derivative controller is used, scheduling its three parameters on torque.

Figure 2.6 shows the engine controller ATLAS with its PC/104 format.

2.5 Engine Operation

The engine comprises the engine block, the turbocharger and sensors with

actuators. One camshaft drives the valves and one activates the fuel pump

in the fuel injection system. Figure 2.2 shows the principal components of

the test-bed engine to which the control strategy is applied.

The turbocharger system consists of the exhaust gas receiver, the tur-

bocharger, the charging air inter-cooler and the charging air receiver. The

turbine wheel is driven by the engine exhaust gas and the radial turbine

wheel drives the turbocharger centrifugal compressor, which is mounted on

the common shaft. The compressor draws air from ambient through a filter

and discharges via a watercooled charge air cooler to the air receiver. From

the charging air receiver the air can be admitted to each cylinder through

the inlet valves. From the exhaust valves the exhaust gas is led via the

exhaust manifold, through the turbine and further to the exhaust outlet
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silencer and exhaust stack.

With reference to Figure 2.2, a description of engine operation can be

as follows. Clean air is drawn into the compressor 100; after its exit the

compressed air is then cooled by an intercooler 200. In the inlet duct to the

compressor and nearby to a Venturi nozzle, respectively the pressure PT1,

diaphragm differential pressure DPT1, and temperature TT1 are measured.

With these three sensors, the fresh air mass flow is calculated, according to

ISO 5167 1. The intercooler cools the compressed air in order to decrease

its density. It is desirable that the charge air has a high density as this

allows a greater mass of air to be induced in the engine cylinders. The

intercooled air is admitted into the engine block via the inlet manifold 300.

The pressure of the inlet manifold air as it enters the inlet manifold is

measured by a pressure sensor PE102 which produces signal MAP indicative

of the manifold air pressure. The temperature of the inlet manifold air as

it enters the inlet manifold is measured by a temperature sensor TT303

which produces a signal MAT indicative of the manifold air temperature.

The engine block 200 comprises the cylinder block with five cylinders, with

pistons, valve train and crankshaft. The engine speed is measured by a twin-

laser arrangement system SE402, which reads successive black and white

markings on the engine flywheel, with a resolution of 0.5 degrees.

The fuel injection system supplies the required fuel to the engine for

burning. Each cylinder is provided with a respective fuel injector pump

unit, high pressure pipe and injection valve. The fuel that is injected in

each cylinder is adjusted by continuous movement of the fuel pump rack.

The angular position of the fuel rack is measured with an encoder of 13-bit

gray scale, ZT403. The rack movement is actuated by the fuel actuator

FY403. This is a Woodward UG-Actuator, which takes a given electrical

input signal and converts it to a proportional hydraulic output-shaft position

to control engine fuel flow. It produces 42 degrees of rotary output. In the

test engine, the control action is on the fuel rate and not on the injection

timing. The injection timing cannot be modified, as it depends on the cam

profile.

1ISO 5167: Measurement of fluid flow in circular cross-section conduits running full

using pressure differential devices-Part 3: Nozzles and Venturi nozzles.
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The exhaust manifold is of the semi-pulse type and is split in three

streams out of the five cylinders and enters a triple-entry turbine, ABB

prototype turbo, type TPS-48X. Two butterfly valves, type Woodward Glo-

Tech, driven by Woodward ProAct rotary actuators segment the exhaust

pipes, forming the pulse-exhaust system. This system utilizes the exhaust

pressure pulse energy and at higher loads and lower engine speeds leads to

improved overall turbocharger efficiency.

The speed of the turbocharger shaft is measured with a Hall-effect type

speed sensor SE601. The exhaust gas after its passage through the turbine

exits via the stack to the atmosphere. A small part of the exhaust gas

from the engine is sampled by the opacimeter OPA701, which measures the

exhaust gas opacity. The installation of the opacimeter is showed in Figure

2.3.

The engine is connected to an electric dynamometer (brake), type AEG

GC 40.22-M, with shaft power of 488 kW, and speed of 20-1200 rpm. The

brake 800 is a DC 2 machine, connected to the power system of the Lab-

oratory, with three phase dual converter. The dual converter-DC machine

system allows brake operation in four quadrants of the torque-speed plane.

This means, that the machine can drive and be driven bidirectionally. Ad-

ditionally, field control enables the machine to be operated with speeds two

to three times above its nominal no-load speed. The brake is capable of

applying any time series of dynamic load to the MAN B&W L16/24 engine.

The shaft torque measurement ME402 provides the actual torque applied

to the engine. More details for the torque measurement can be found in

Appendix .1. The electric dynamometer is controlled by the respective con-

troller MY801 in closed-loop.

In a compression-ignition engine, only air is inducted in the cylinders.

Just before combustion, the fuel is injected in the cylinder. Load control

is achieved by varying the amount of fuel in each cycle. A/F ratio is the

ratio of air mass flow rate to fuel mass flow rate admitted to the engine.

Consequently, the A/F ratio varies depending on the engine load. A/F

typical values range from 18 to 70 while the stoichiometric (A/F )s value for

2Direct Current
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light diesel is 14.5. Also relevant is the fuel/air equivalence ratio φ, defined

as (F/A)actual

(F/A)s
. When the AF ratio is less than 20 then, particulate matter

(soot) is evident is exhaust gas [Hey98].

2.6 Air Injection

In the air injection operation external compressed air is supplied to the en-

gine intake manifold. With this action, the required quantity of air that

matches the supplied fuel is provided, during transient operation, indepen-

dent of the turbocharger response and the respective boost pressure and

related airflow. In this way the air charging of the engine is improved,

reducing the smoke emissions during the transient.

In the testbed, air injection is accomplished with a dedicated air injection

line, 1 inch in diameter, which receives compressed air from a 350 lt reservoir

(air bottle), stored at 30 bar pressure supplied from air compressors. This

30 bar pressure is reduced to a suitable level; for our runs it was set at 9

bar. The actuator for the air supply is a solenoid valve, ZS901, type Burkert

281. The valve commands are coming from the air injection controller. The

air line is equipped with pressure (PT901), temperature (TE901) and mass

flow (FT901) measurements, which are logged by the DAQ system.

The engine testbed with air injection line is shown in Figure 2.7.

2.7 Compressor

The engine testbed is equipped with ABB TPS-48X prototype experimental

turbocharger. It is shown in Figure 2.9.

When air is independently injected the intake manifold pressure will in-

crease so that the engine air flow is expected to increase. However, the tur-

bocharger compressor which also feeds the intake manifold will be suddenly

subjected to an increased pressure. If the compressor cannot withstand the

higher pressure field downstream then the compressor may experience par-

tial or even total flow reversal. This instability phenomenon is known as

compressor surge. A more detailed description of this instability is given in

Appendix .2.
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The unsteady fluid-dynamic excitation of the compressor results in addi-

tional periodic load on the blades causing vibration and fatigue. Further due

to the rapid changes of compressor demand torque during surge, the severe

reversals of torsional loading could eventually lead to failure of turbocharger

shaft [LTK03], [TK02].

It is therefore important in the proposed control arrangement to avoid

the occurrence of compressor surge by appropriately controlling the air in-

jection so as to restrict the pressure rise in the manifold in a way that the

compressor operates safely away from surge.

2.8 Setting Up the Experiments

The existing engine testbed required several modifications and adaptions

prior to setting up the arrangements for the needs of the present research

study. The related work is summarised below.

• Set-up of the closed-loop dynamometer imposed torque control and

its scheduling and tuning on-site the parameters of the PID controller

using the Ziegler-Nichols methods. Details of the tuning can be found

in [Pap06c]. The shaft torque measurement system is described in

[Ale06].

• Set-up of the data acquisition environment by parameterizing the AVL

platform and post processing the experimental data. In several cases

the data acquired in crank-angle resolution were ’aligned’ with data

in time resolution. For this purpose routines in MATLAB and Perl

language were written.

• Design of the re-wiring of the field signals and reconstruction of the

electrical cabinets that hosted the acquisition hardware. Commission-

ing of the signal lines for sensors and actuators.

• Set-up of the real-time air injection controller in the MATLAB plat-

form. Modified the existing engine controller application in order to

interconnect to the ’higher lever’ control layer of the air injection con-

troller.
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The new cabinet in the Control room with the field wiring and signal

conditioning and isolation modules is shown in Figure 2.10.

2.9 Summary

In this chapter, the testbed with experimental diesel engine 5L16/24 was de-

scribed. A modification allowed compressed air to be injected in the intake

manifold through a solenoid valve. Information on smoke opacity measure-

ment was provided, as it is the basic feedback signal. The data acquisition

system that performed the logging of experimental data for further process-

ing was also presented. Next the engine control system was described. It

comprised the air injection controller and the engine controllers for speed

and brake torque. The first controller was designed and set up to implement

the model-based control theory used. The engine controllers were used dur-

ing the engine operation under load transients, holding the speed constant

at 1200 rpm and applying the desired torque load. A description of engine

operation was given introducing the various sensors and actuators available

in the testbed. Finally the behaviour of a compressor under instability was

introduced. Later we shall use the idea of avoiding instability by means

of keeping manifold air pressure under certain limits, at specific operating

conditions.

With this setup, experiments were designed and run in order to pro-

vide experimental data suitable for system identification. Identification and

derivation of control models are the subjects of the next chapter.
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Figure 2.2: The instrumentation diagram of the engine testbed. Sensors are

shown in circles and actuators in rectangles
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Figure 2.3: The opacimeter as connected to the engine exhaust line

Figure 2.4: The AVL Indiset 620
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Figure 2.7: The air injection supply line as it enters the intake manifold at

the right side
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Pressure sensor

Temperature sensor

Figure 2.8: The air injection supply line with sensors and actuator

30



Figure 2.9: The turbocharger compressor side at engine testbed

Isolators

F ield Wiring
Torque
Measurement

Figure 2.10: The cabinet in the Control room
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Chapter 3

Identification of Engine

Model

The requirement of an engine model that will predict the plant behaviour

and can be used inside the controller has been declared. In this thesis, the

derivation of such an engine model is based on system identification.

Chapter 3 is divided in two parts. In the first part, the framework

for the identification methods (parametric, subspace and nonlinear) and

the structure of models (transfer functions, state-space and Hammerstein-

Wiener) is established in a broad sense. In the second part, the identified

models that relate selected inputs to outputs, as required by the controller,

are presented. Opacity is considered a controlled variable as the aim is to

minimize it, while the control action is the air injection supply. As the fuel

is not directly controlled, the fuel rack position is measured and considered

as a measured disturbance. The engine model will be an important part of

the model predictive controller, as it will be shown in Chapter 4.

3.1 System Identification

In model predictive control (MPC), an explicit linear model is required to

predict future plant outputs. A linearized model can be obtained either with

first-principles modelling or with system identification.

Sometimes a first-principles nonlinear model of the plant is available.
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That is, a model in which the equations are obtained from a knowledge of the

underlying physical, chemical and thermodynamic processes. Such a model

consists of a (large) collection of differential- algebraic equations, containing

non-smooth elements such as switches (case statements) and look-up tables

[Mac04].

Typically such models are developed for the purposes of detailed simu-

lation, operator training or even safety certification. Linearized models can

then be obtained from a first-principles nonlinear model. In simple cases,

this can be done analytically, but in complex cases it has to be done with

the aid of computer software. Perturbations are applied to the nonlinear

model, and the Jacobian matrices are estimated numerically. Alternatively,

the nonlinear model can be used to generate simulation data for particular

operating conditions, and then to apply system identification techniques to

this data, as if it had been obtained from the actual plant.

Often for control purposes this framework is too complicated to be useful.

The quality of a model is dictated by the ultimate goal it serves; there is a

trade-off between model complexity and accuracy [vOdM96].

System identification can be defined as the process of obtaining a model

for the behavior of a plant, based on input and output plant data. Most

commonly, it is obtained by performing tests on the plant which involve

injecting known signals, such as steps, multi-sines, pseudo-random or others,

at the plant inputs, and recording the resulting plant outputs.

In transient response testing the system is excited with known impulse

and step function and the output is recorded. Often the noise will distort

the measured system output. In this case the transient test signal is applied

repeatedly and the resulting responses are averaged to obtain a smoothed

estimate [Wel93].

Linearized models can then be obtained by using the techniques of system

identification, in which first a certain parametrized model class is predefined

by the user. Then using methods which range from simple curve-fitting to

sophisticated statistically based, suitable numerical values are assigned to

the parameters so as to fit as closely as possible to recorded data. Finally

there is a validation step in which the model is tried out on experimental

data that were not used in the system identification experiment.

34



Compared to models obtained from physics, system identification models

have a limited validity and working range; in some cases they have no direct

physical meaning, or represent only the input-output behavior of the plant,

carrying no information about its internal structure. Models obtained in

this way are often called black box models [Mac04]. As an advantage, they

are relatively easy to obtain and more importantly are simple enough to

make model-based control system design mathematically and practically

tractable. Typical problems can be the choice of model structure, the time-

varying nature of many systems and underestimated measurement features

like sensors, sampling times or filters.

The literature on system identification is enormous. In particular, most

aspects of identification theory and algorithms are covered respectively in

[Lju99] and [Lju07]. The subspace method with industrial applications is

covered in [vOdM96] and [KCM02], while identification using Markov pa-

rameters is covered in [Jua94] and [Mos95]. Some material on system iden-

tification specifically for the process industries can be found in [HS97] and

[ZB93]. Finally, identification specifically for generalised predictive control

(GPC) is covered in [HB85] and [WZ91].

3.2 Identification Methods

Most methods of system identification rely on iterative, nonlinear optimiza-

tion to fit parameters in a pre-selected model structure, so as to best fit

the observed data [Lju99]; these are known as parametric methods. An

alternative class of identification methods is the subspace methods, which

are ’one-shot’ rather than iterative and rely on linear algebra rather on op-

timization. They are particularly effective for multivariable systems and

can be used with arbitrary input-output-data and not just with step or

pulse responses [KM99]. For the case that a nonlinear model is required,

Hammerstein-Wiener models are commonly used.

The above methods were used in the present work and are a particular

choice from a wide collection, as one can use also Instrumental Variables,

Maximum Likelihood, Impulse response analysis (Markov parameters) or

others.
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3.2.1 Parametric Identification

The method for estimating the vector of θ parameters has the general term

prediction error method, PEM. Prediction error ε is defined as

ε(t, θ∗) = y(t)− ŷ(t|θ∗) (3.1)

between the measured output and the predicted output of the model. Norm

VN is used

VN (θ, zN ) =
1
N

N∑
t=1

l(εF (t, θ)) (3.2)

Then the estimate θ̂N is defined as the minimization of function VN (θ, zN ).

Typical solution method is least squares.

With parametric estimation, process models were derived for inputs and

outputs. This model type is chosen for its advantages: the model coefficients

have a physical interpretation and it provides delay estimation.

Different model structures were created by the selection of the number of

poles, and zeros and the addition of time delay. Thus first-, or second-order

model were straightforward to estimate.

3.2.2 Subspace Identification

The term subspace identification refers to a class of algorithms with main

characteristic the approximation of subspaces generated by the rows or

columns of some block matrices of the input and output data.

Popular subspace identification method [vOdM96] is Numerical algo-

rithm for Subspace System IDentification (N4SID), implemented in the Iden-

tification toolbox of MATLAB [Lju07].

3.2.3 Nonlinear Identification

A nonlinear relationship between input and output provides richer possibil-

ities to describe nonlinear systems.

In the case that a nonlinear model is required, nonlinear identification

methods can be used. Two possible choices can be the Nonlinear ARMAX

model (NARMAX) and the Hammerstein-Wiener models. In this thesis the

second option was considered, as the initial attempts with the former did
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not give workable models. In the Hammerstein-Wiener theory, the nonlinear

model is represented with three terms, a nonlinear term for input, a linear

model and a nonlinear term representing the output. For the input term a

piecewise nonlinearity was considered , which relates to the linear and ramp-

like limit of the actual fuel command. For the output term, a saturation

nonlinearity was considered , which is similar to the upper high limit of the

opacity measurement, which is 100%. Finally for the linear model a relation

with two zeros as numerator and three poles as denominator was considered.

With the availability of a nonlinear model, nonlinear model predictive

control can be an alternative to (linear) model predictive control, in cases

that an improved quality of forecasting is required.

3.3 Model Structures

In this section, the two basic forms of model structures that are the out-

come of the identification methods are presented. In general it is feasible to

obtain from the structure of one model the structure of the other, success-

fully. For example in the case of availability of a model in transfer function

form representing a step response, then a state-space model can be easily

obtained. However that model would be of large dimension in states in order

to incorporate all the responses and possible delays.

3.3.1 Transfer Function and Polynomial Models

A process model in continuous time is

G(s) = e−sTd
Kp

1 + sTp
(3.3)

where Kp is the static gain, Tp is the time constant, Td is the time delay,

in the case of a first-order system. In the case of a second order system, the

transfer function becomes

G(s) = e−sTd
Kp

1 + 2sζTw + s2T 2
w

(3.4)

where ζ is the damping and TW is the time constant.
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To acquire a polynomial representation of a transfer function, a linear,

time invariant model can be described as

y(k) = G(q)u(t) +H(q)e(t) (3.5)

where

G(q) =
∞∑

k=1

g(k)q−k (3.6)

H(q) = 1 +
∞∑

k=1

h(k)q−k (3.7)

Then G(q), H(q) is parametrized as rational functions, with parameters

the coefficients of numerators and denominators. A simple way is to use the

linear difference equation known as equation error model

y(t)+a1y(t−1)+...+anay(t−na) = b1u(t−1)+...+bnb
u(t−nb)+e(t) (3.8)

The parameter vector is

θ = [a1 a2 ... ana b1 bnb
]T (3.9)

With the introduction of

A(q) = 1 + a1q
−1 + ...+ anaq

−na (3.10)

B(q) = b1q
−1 + ...+ bnb

q−nb (3.11)

finally G(q) and H(q) have the form

G(q, θ) =
B(q)
A(q)

(3.12)

H(q, θ) =
1

A(q)
(3.13)

In the case that a delay of nk samples from u to y exists, then the above

becomes

A(q)y(t) = q−nkB(q)u(t) + e(t) (3.14)

PEM has the following structure

A(z−1)y(k) = z−dB(z−1)
F (z−1)

u(k) +
C(z−1)
F (z−1)

e(k) (3.15)
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where similarly d is the time delay, and A, B, C, D, F are polynomials.

The above form is also known as ARX model, where AR is for the

autoregressive part A(q)y(t) and X for the extra input B(q)u(t).

The structure in AutoRegressive Moving Average with eXogenous input

(ARMAX) is

A(z−1)y(k) = z−dB(z−1)u(k) + C(z−1)e(k) (3.16)

where d is the time delay, and A, B, C are polynomials. u(k) and y(k)

are the control and output sequence of the plant respectively.

The poles of a linear system are the roots of the denominator of the

transfer function G. The poles have a direct influence on the dynamic prop-

erties of the system. The zeros are the roots of the denominator of G. Poles

and zeros are equivalent ways to describe the coefficients of a linear differ-

ence equation, like the ARX model. Poles are associated with the output

side and zeros are associated with the input side.

The general equation of a linear dynamic system is given by

y(t) = G(z)u(t) + v(t) (3.17)

In this equation, G is an operator that takes the input to the output

and captures the system dynamics, and v is the additive noise term. The

poles of a linear system are the roots of the denominator of the transfer

command G. The poles have a direct influence on the dynamic properties

of the system. The zeros are the roots of the numerator of G. Zeros and

poles are equivalent ways of describing the coefficients of a linear difference

equation, such as the ARX model. Poles are associated with the output side

of the difference equation, and zeros are associated with the input side of the

equation. The number of poles is equal to the number of sampling intervals

between the most-delayed and least-delayed output. The number of zeros

is equal to the number of sampling intervals between the most-delayed and

least-delayed input.

3.3.2 State Space Models

In state-space (SS) model form the relation between input, noise and output

signals is written as a system of first-order differential or difference equations,
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using the auxiliary state vector x(t) or x(k) in discrete time [Lju99].

The SS models in discrete time, have the structure

x(k + 1) = Ax(k) +Bu(k) (3.18)

y(k) = Cx(k) +Du(k) (3.19)

SS models usually come from Subspace Identification methods.

In discrete time, the models have the form

x(k + 1) = Φx(k) + Γuu(k) + Γdd(k) + Γww(k) (3.20)

y(k) = y(k) + z(k) = Cx(k) +Duu(k) +Ddd(k) +Dww(k) + z(k) (3.21)

where x is a vector of n state variables, u represents the nu manipulated

variables, d represents nd measured but freely-varying inputs (i.e., measured

disturbances), w represents nw unmeasured disturbances, y is a vector of ny

plant outputs, z is measurement noise, and Φ,Γu , etc., are constant matrices

of appropriate size. The variable y(k) represents the plant output before the

addition of measurement noise.

3.3.3 Performance quality criteria

The following two criteria can be considered in order to assess the model

performance quality.

1. Loss Function: value of the identification criterion at the estimate.

Normally equal to the determinant of the covariance matrix of the

prediction errors, that is, the determinant of Noise Variance.

2. Akaike’s Final Prediction Error (FPE): defined as (1+d/N)
(1−d/N) , where d is

the number of estimated parameters and N is the length of the data

record.

3.4 System Identification for Engine Model

As output variables are considered those plant variables by which one obtains

information about the internal state of the process. As input variables, the

variables that independently can induce change in the internal conditions
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of the system are considered. Finally, measured disturbance variables are

those over which one does not have control, but are measurable [OR94].

In this context, ’opacity’ is considered as an output (controlled) variable

as the aim is to minimize it, while as input (and control action) the ’air

injection supply’ is used. As the fuel is not directly controlled, but the ’fuel

rack position’ can be measured, it is considered as a measured disturbance.

With a small modification of the above, for identification purposes, fuel

rack position is considered as input. This is done often: there may be sig-

nals associated with the process that rightly are considered as inputs, in

the sense that they affect the system, even though it is not possible to ma-

nipulate them [Lju99]. If they are measurable, it is then highly desirable

to include them among the measured input signals and treat them as such

when building models, even though from an operational point of view they

should rather be considered as (measurable) disturbances.

Thus, the model has as inputs the fuel and the air injection and as

outputs the opacity and the manifold pressure. Figure 3.1 shows the model

with inputs-outputs. Also, shapes of the test signals are shown, as explained

subsequently.

Engine

OpacityFuel

Manifold

Injection Pressure

Air

Figure 3.1: Block diagram of the engine model, as used in system identifi-

cation

3.4.1 Data Scaling

Scaling is very important in practical applications as it makes the model

analysis simpler and helps to avoid numerical errors [SP96]. The idea is

to make input and output data of similar order, usually less than one in

magnitude. A judgement must be made from the start of the design process
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about the required performance of the control system. The references and

disturbances were divided by their maximum expected values and the out-

puts by the maximum allowed change. These values were, for rack=0.6%,

for air injection pressure=400 kPa, for opacity=60% and for intake manifold

pressure=2 bar.

3.4.2 Measurement Schedule

During the identification procedure, the input variables excited the engine

and the outputs together with the inputs were recorded. Unit steps and

Pseudo-Random-Binary-Signal (PRBS) were used as test signals for the in-

puts. PRBS had appropriate frequency so as to provide sufficient time for

the actuator and the engine to respond and focused on the low- to mid-

frequency range identification. The air injection input was actuated with

the test signal while the fuel command was given by the engine speed closed

loop controller.

Base test: In the base test, air injection was not used. A load step was

applied to the engine, which run at constant speed of 1200 rpm. The load

was increased from 0 to 47.5% (1890 Nm), and was kept high for 10 sec. All

the engine parameters were recorded, so as to allow comparison later on,

when the air injection was applied in various ways.

Test A1: In the A1 test, air injection was applied for 4 sec, with a pres-

sure of 9 bar. A load step was applied to the engine, which run at constant

speed of 1200 rpm. The load was increased from 0 to 47.5% (1890 Nm),

and was kept high for 10 sec. All the engine parameters were recorded, with

main focus on opacity and intake manifold pressure. In this test, compressor

instability did not occur.

Test A2: In the A2 test, air injection was applied for 8 sec, with a

pressure of 9 bar. A load step was applied to the engine, which run at

constant speed of 1200 rpm. The load was increased from 0 to 47.5% (1890

Nm), and was kept high for 10 sec. All the engine parameters were recorded,

with main focus on opacity and intake manifold pressure. The objective was

to disturb the engine, with the supply of compressed air for double duration

than the previous test. In this test, compressor instability occurred, as
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Figure 3.2: Measured engine responses during the Base test. Air injection

is not applied.

was observed in the affected engine variables (mainly in pressures). When

compressor surge occurs, it is also externally evident in the experimental

installation by load noise (banging) due to the flow reversals.

Test B1: In B1 test, air injection was applied for 8 sec, with a pressure

of 9 bar. The load was kept constant at 20% (800 Nm). The engine run

at constant speed of 1200 rpm. The air injection command was a pseudo-

random binary signal in appropriate frequency, in order to excite the engine.

All the engine parameters were recorded, with main focus to see the response

of intake manifold pressure.

Measurements from the four tests are shown in Figures 3.2,3.3,3.4,3.5

respectively. In all cases data are scaled (normalised). In these Figures, the

jet pressure shows the behavior of the step command in tests Base, A1, A2
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Figure 3.3: Measured engine responses during the A1 test. Air injection is

applied for 4 sec

and the behavior of the binary signal (PRBS) in test B1. Engine variables of

interest for identification are (apart from the air injection) the fuel,labeled as

rack, opacity and pressure in intake manifold, labeled as pengin. For the fuel

trace, a pattern that is a result of the fuel limiter operation can be observed.

Although the load is applied rapidly, the action of the fuel actuator follows

an inclined response and at about 0.8 it diverts and supplies considerable

less fuel. Torque describes the step loading that is applied to the engine and

eventually is responsible for the shape of the fuel (rack) variable.

3.4.3 Transfer Function Results

The transfer function from each input to output is as follows.
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Figure 3.4: Measured engine responses during the A2 test. Air injection is

applied for 8 sec

[
opacity

pressureintake manifold

]
=

[
G11 G12

G21 G22

] [
fuel

air injection

]
(3.22)

or equivalently

opacity = G11 fuel +G12 air injection (3.23)

pressureintake manifold = G22 air injection (3.24)

with G21 = 0.

The transfer function from air injection to pressureintake manifold is

modelled as a first order lag with delay

G22(s) = e−sTd
Kp

1 + Tp s
(3.25)
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Figure 3.5: Measured engine responses during the B1 test. Air injection is

applied in pulses.

where Tp is the time constant and Td is the delay.

The transfer function from rack and air injection to opacity is modelled

as second-order transfer functions with delay and zero

G11(s), G12(s) = e−sTd Kp
1 + Tzs

(1 + Tp1s)(1 + Tp2s)
(3.26)

whereTd is the delay, Tz is the zero and Tp1, Tp1 are the poles. Table

3.1 shows the transfer functions.

Regarding the statistics of the identified transfer functions, these are as

follows.

For G22(s), Kp = 4.35 ± 0.567, T1p=10.957 ± 4.779.
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Table 3.1: Transfer functions from control and disturbance inputs to outputs

u1 (air injection) u2 (fuel)

y1 (pressure) e−0.0487 s 4.35
1+10.957s 0

y2 (opacity) e−0.600 s 0.0754(1−25.747s)
(1+15.288s)(1+5.3397s) e−0.340 s 0.021955(1+193.18s)

(1+2.4374s)(1+0.4901s)

For G11(s), Kp = 0.0219 ± 0.683, T1p=2.437 ± 0.45, T2p=0.4901 ± 0.954,

Td=0.340 ± 0.308, Tz=193.18 ± 18.036.

For G12(s), Kp = 0.0754 ± 0.683, T1p=15.288 ± 4.4245, T2p=5.3397 ±
0.954, Td=0.600 ± 0.0308, Tz=-25.989 ± 0.36.

The open loop poles are all stable. The open loop zero for the transfer

function of opacity to pressure is non-minimum-phase, while for the transfer

function of opacity to fuel it is left-hand-plane zero.

The uncertainty of the identified models in transfer function form can

be considered from the statistics. For some model parameters, the estimate

was not precise. This is due to the extend that the particular identification

data for that combination of input-output did not provide adequate or rich

information, so that the errors were significant. For the cases that the fuel is

involved as variable in identification the problem in identification becomes

ill-conditioned, as the respective fuel data come from closed-loop control

operation.

Figures 3.6 and 3.7 show the nominal unit step responses of the iden-

tified transfer function for opacity, input 1 (fuel) and input 2 (pressure)

respectively. Both Figures show that the engine model is asymptotically

stable. It can be seen, for the input 2 (pressure) the effect of the non-

minimum-phase zero, which causes inverse response.

The Bode frequency response for opacity with input fuel, is shown
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Figure 3.6: Open loop step input for opacity, input 1 (fuel)

in Figure 3.8, while for opacity with input air injection the respective Figure

is 3.9.

It can be seen that for input fuel, the magnitude is a little higher that 0

db, which indicates that, for the scaled magnitudes, 1% of fuel will increase

opacity more than 1%, for a range of frequencies from 0.5 to 5 rad/s.

In the residual analysis for this identified model, residuals are differ-

ences between the one-step-predicted output from the model and the mea-

sured output from the validation data set. Thus, residuals represent the

portion of the validation data not explained by the model. Figure 3.10 shows

the autocorrelation function and the 99% confidence bounds for validation

data for opacity. It can be seen that in general the model is acceptable, as

the correlation curves lie between the confidence level.

Figure 3.11 shows the identified and measured opacity data.

It can be seen that the fit in general is good. The model succeeds in

capturing the dynamics, though it does not capture the initial high peak of

opacity signal.

Figure 3.12 shows the nominal unit step responses of the identified

transfer function for pressure. It can be seen that the engine model is
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Figure 3.7: Open loop step input for opacity, input 2 (pressure)

asymptotically stable.

The Bode frequency response for pressure with input air injection, is

shown in Figure 3.13. The input is the air injection pressure and the output

is the manifold pressure.

It can be seen that in the low frequency range (below 0.08 rad/s) the

amplification from input to output is about 12 dB. For frequencies higher

than 0.08 rad/s, output is attenuated.

Figure 3.14 shows the autocorrelation function and the 99% confidence

bounds for validation data for pressure.

It can be seen that in general the model is almost acceptable, as only

the cross-correlation lies between the confidence level.

Figure 3.15 shows the identified and measured pressure data.

It can be seen that the model captured the average dynamics of the

pressure variation, during air injection action, with success. With this type

of model structure, the dominant dynamics in the upper part of response

were captured, though in the lower part, the model failed to follow the initial

rapid rise. Also it can be seen that the high frequency oscillations due to

instability were not captured. However this was not a problem during the

49



−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (d

B)

10−4 10−3 10−2 10−1 100 101 102
−2160

−1800

−1440

−1080

−720

−360

0

360

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/sec)

Figure 3.8: Bode frequency response for opacity, with input fuel

experiments, as the pressure signal was filtered and the oscillations were

removed.

3.4.4 Subspace Results

Subspace identification method n4sid, from MATLAB, was used for the

identification of engine model with this method. The identified model was

used as internal model of controller MPC I, in Chapter 5.

3.4.5 Nonlinear Identification Results

The identified nonlinear Hammerstein-Wiener models are shown in Figure

3.16. Data from step responses were used in order to identify these models.

The models presented a nonlinear relation between opacity and fuel and be-

tween air injection and intake manifold pressure. As a next step, a nonlinear

model predictive controller (NMPC) was simulated for performance with the
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Figure 3.9: Bode frequency response for opacity, with input air injection

identified models. More information can be found in [PK08]. Information

about NMPC is presented in Chapter 4.

3.5 Summary

System identification was the subject of this chapter. Three model structures

were identified and results were presented. The models were in the linear

forms of transfer function and state-space and also in nonlinear form, that

of Hammerstein-Wiener. Statistics of the models were also provided, which

show the quality of the various models. In some cases, large variances were

observed. As these are linear models, their validity is only for a region close

to the operating point around which process data was collected and system

identification was performed.

The aim was to capture the dominant dynamic relations between the

inputs like air injected air and fuel and the outputs such as exhaust opacity
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Figure 3.10: Residuals for opacity

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

Opacity: Measured and simulated (−−) model output

Figure 3.11: Open-loop identified and measured opacity

and pressure in intake manifold.

These models are required for operation of the model predictive con-

troller, as this is formulated in the next chapter and is further implemented

in Chapter 5.
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Figure 3.13: Bode frequency response for pressure, with input air injection
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Figure 3.14: Residuals for pressure, Pengin
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Figure 3.15: Open-loop identified and measured pressure
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Figure 3.16: The identified nonlinear Hammerstein-Wiener model

55



56



Chapter 4

Model Predictive Controller

The purpose of this chapter is to present a self-contained brief coverage on

Model Predictive Control (MPC). The basic concepts are introduced and

the formulation of problem as constrained optimal control over a receding

horizon is provided.

The Chapter outline is as follows. The formulation with unconstrained

and constrained MPC and optimization issues is given in the beginning, fol-

lowed by model structures and state estimation. Further on, the significant

issues of stability and robustness are presented. The important approach of

nonlinear MPC is presented next. Various applications are reviewed in order

to give a feel of the diverse coverage of the control method. The theory and

methods presented in Chapter 4 will be used in Chapter 5, for the design

and implementation on the experimental engine of the predictive controllers

for opacity reduction in the testbed engine.

4.1 Formulation of Model Predictive Control

Model Predictive Control is based on minimization of a performance index

of the predicted response of a system, over a future horizon. The main idea

is to use a model of the plant to predict the future evolution of the system.

The model used, often called internal model, is a linearized model of the

nonlinear plant. MPC computes the optimal current and future control

inputs by minimizing the difference between set-points and future outputs
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predicted from the given plant model [LYM06].

An important reason for the success of MPC is the handling of process

constraints. In the design of control systems, the most common way to deal

with constraints, is to consider linear systems and fix things up in an ad-

hoc way, after the design. On the contrary, with MPC methodology, the

constraints are part of the problem formulation, and are considered during

control system design [Mac04].

4.1.1 Application Fields

The first-generation MPC systems were developed by industrial practitioners

in 1970s for petrochemicals and quickly found wide success, as MPC tackled

constraints and multivariable cases efficiently. An adaptive MPC theory

known as Generalized Predictive Control (GPC) appeared in 1987. The

total number of MPC industrial applications exceeded 4600 by end of 1999,

according to a 2003 survey paper [QB03]. This number had grown more

than twice since a previous survey back in 1997 by the same authors.

Representative applications that have utilized MPC are aircraft flight

control, steam generators and utility boilers, catalytic cracking petrochem-

ical units, batch and hydrocracker reactors, pulp and paper industry, distil-

lation columns. [OR94]. A literature review on applications of MPC and

nonlinear NMPC in combustion engines was given in paragraph 1.3.2.

In [VSP04] MPC was used for air flow management in a fuel cell system

study, where it found an optimum balance between the use of fuel cell and

capacitor during fast transients.

MPC was used for the regulation of the temperature of the super-conducting

magnets of Large Hadron Collider accelerator at CERN [VCM99].

MPC can also be found in vibration suppression applications, with voice

coil as actuator, as in [BO03].

Generalized Predictive Control (GPC) was studied in aeroelastic control

of tilt rotor aircrafts, as in [KJB00].

Implementation of MPC in reconfigurable embedded hardware (Field

Programmable Gate Array-FPGA) is studied in [LYM06] .

Informative reviews of MPC theory and practices can be found in text-
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books such as [Mac04], and also in [CB00], [SEM04], [BMR07], [Mos95].

A related tutorial is presented in [Raw00] and a related review in [QB03],

[BM99] and [ML99]. Information on NLMPC can be found in textbooks

[KC01], [HS97] and in the review paper [AFN04]. GPC is covered in [CMT87a]

and [CMT87b].

4.1.2 The Basic Elements

The basic concept of predictive control is presented below, from [Mac04].

Figure 4.1 shows the basic elements. The time is discrete, with the current

sampling instant labeled as integer k. Then at current time k, the plant

output is y(k) (also is the latest measurement available), with y(k − 1),

y(k−2), ... , the previous history of the output trajectory. Also shown is the

set-point trajectory, which is the trajectory that the output should follow;

the values of which are marked as s(t).

Optionally, there is the reference trajectory, marked as r(t|k). This starts

at current output y(k) and is defined as an ideal trajectory along which the

plant should return to the set-point trajectory, in the case for example that

a disturbance occurs. It is frequently assumed that the reference trajectory

approaches the set-point exponentially from the current output value, where

the time constant of the exponential defines speed of the response.

A predictive controller utilizes an internal model to predict the behaviour

of the plant, starting at the current time, over the prediction horizon, Hp.

This predicted behaviour depends on the assumed input trajectory û(k+i|k),

with i = 0, 1, ...,Hp − 1. It is assumed that the internal model is linear.

The notation û is used instead of u to denote that at time k there is only

prediction of what the input at time k+ i shall be; the actual input at that

time, u(k + i), shall probably be different from û(k + i|k).

The input trajectory is chosen so as to bring the plant output at the

end of prediction horizon k+Hp to the required value r(k+Hp). There are

several input trajectories û(k|k), û(k+ 1|k), ...û(k+Hp− 1|k) which achieve

this and we could choose one of them. In Figure 4.1 it is shown that the input

can vary over the first three steps of the prediction horizon and to remain

constant thereafter: û(k + 2|k) = û(k + 3|k) = ..., û(k + Hp − 1|k), so that
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there are three parameters to choose, namely û(k|k), û(k + 1|k), û(k + 2|k).

These parameters are chosen so as to minimize some cost function.

Input

Hp

s(t) r(t|k)

k

k

k+Hp

k+Hp

Figure 4.1: Predictive control: the basic idea

Once the future input trajectory has been chosen, only the first element

of that trajectory is applied as input signal to the plant. Then the complete

cycle of the output measurement, prediction, and input trajectory determi-

nation is repeated, one sampling interval later. Since the prediction horizon

maintains the same length as before, but slides along by one sampling in-

terval at each step, the receding horizon control strategy applies.

Constraints are the other major remaining characteristic of MPC. This

affects the choice of future input trajectory û(k+i|k), with i = 0, 1, ...,Hp−1,

in such a way that the input signals and their rates remain within allowed

constraints and such that the outputs, and possibly inferred variables in

the case that these are not measured directly, also remain within allowed

constraints.

Proper choice of prediction and control horizons can be beneficial for the

system performance. A common choice of parameters is first to choose the

control interval about 20-30 sampling periods, and then choose prediction
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horizon Hp equal to that number. The control horizon Hu equals a small

number, e.g. 3-5. In the case of constraints, a long prediction horizon

allows the controller to anticipate the constraint and avoid it or minimize

its effects. In the case of non-minimum phase plants (those with zero at right

half plane and exhibit in the beginning response to the opposite direction)

a long prediction horizon would allow the controller to move in longer-term

direction.

The output variables are referred to as controlled variables (CV), while

the input variables are called manipulated variables (MV). Measured dis-

turbances are called disturbance variables (DV).

In the present work, unconstrained MPC was implemented in the engine

testbed with controller type MPC I.

4.1.3 Unconstrained MPC

It is standard to assume a linear and time-invariant plant, which after dis-

cretisation of time at a single sampling rate, gives the following state-space

system

x(k + 1) = Ax(k) +Bu(k) + Ew(k) (4.1)

y(k) = Cyx(k) + v(k) (4.2)

z(k) = Czx(k) (4.3)

where x is the state vector, u is the control input vector, y is the measured

output vector, z is the vector of outputs to be controlled and w, v are the

vectors of unknown state disturbances and measurements errors respectively.

A,B,Cy, Cz and E are constant matrices.

The future input trajectory is chosen as one that minimises a cost func-

tion V . The cost function V penalizes deviations of the predicted controlled

outputs ẑ(k + i|k) from a reference trajectory r(k + i|k). The cost function

is defined as

V (k) =
Hp∑

i=Hw

‖z(k + i|k)− r(k + i|k)‖2Q(i) +
Hu−1∑
i=0

‖∆u(k + i|k)‖2R(i) (4.4)

where Hp and Hu are the prediction and control horizons respectively,

Hw is the window parameter, Q and R are weights.
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If the plant has a linear model and a quadratic cost function like above,

then the problem that has to be solved is a standard finite-horizon linear

quadratic (LQ) problem1.

If the cost function is changed from quadratic to ’1-norm’ or ’∞-norm’

then one penalizes absolute values of errors, or the peak error respectively,

then finding the optimal solution becomes a linear programming, (LP), prob-

lem [MGK07].

Common choices of stage cost can be

l(y, r, u) = ‖Q1/2(y − r)‖22 + ‖R1/2(u− ū)‖22 (4.5)

l(y, r, u) = ‖Q(y − r)‖1 + ‖R(u− ū)‖1 (4.6)

l(y, r, u) = ‖Q(y − r)‖∞ + ‖R(u− ū)‖∞ (4.7)

where Q = QT ≥ 0 and R = RT > 0 typically, and ū is an equilibrium

value of u that is compatible with set point r.

The optimal value of the cost is

J0 = xT
k Pxk (4.8)

where P is symmetric positive semi-definite solution of the algebraic

Riccati equation

P = ATPA−ATPB(BTPB +R)−1BTPA+Q (4.9)

The cost equation is rewritten in

V (k) = ‖Z(k + i|k)− T (k + i|k)‖2Q + ‖∆U(k + i|k)‖2R (4.10)

Recall that Z has the form

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) (4.11)

for suitable matrices Ψ,Υ and Θ.

1The idea is to pose control problems as problems of constrained optimization. The

’classical’ theory of Optimal Control mainly developed between 1955 and 1970, was driven

by problems coming from the needs of aerospace industry, namely by the problems of

launching, guiding and landing space vehicles and also of needs in flight and missile control

[Mac04]
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Then the error E can be defined as

E(k) = T (k)−Ψx(k) + Υu(k − 1) (4.12)

A block diagram of a model predictive controller is presented in Figure

4.2, from [Mac04].

KMPC

z−1

Ψ

z
z−1

Y

P lant
T (k)

z(k)

Controller

u(k)∆ u(k)

u(k − 1)

Figure 4.2: Block diagram of a MPC with state feedback without constraints

Following a successful initial controller setup with unconstrained MPC,

the remaining tests in the engine with the two different controllers (MPC

I and MPC II), incorporated constrained MPC. These controllers are pre-

sented in Section 5.4.

4.1.4 Constrained MPC

Inequality constraints on input and output variables are important charac-

teristics for MPC applications; being a motivation for the early developments

of MPC. Input constraints (on manipulated variables) can be considered as

a result of physical limitations of plant equipment, like control valve travel

limits or rate-of-change in variables like actuator movement or flow rates.

Output constraints are related to the plant operational strategy.

In constrained MPC, the control action can be computed subject to hard

constraints on the manipulated variables and/or the outputs.

Manipulated variable constraints:

umin(l) ≤ u(k + l) ≤ umax(l) (4.13)
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Manipulated variable rate constraints:

|∆u(k + l)| ≤ ∆umax(l) (4.14)

Output variable constraints:

ymin(l) ≤ y(k + 1|k) ≤ ymax(l) (4.15)

The cost function is defined as

V (k) =
∑

z(k + i|k)− r(k + i|k)2Q(i) +
∑

∆u(k + i|k)2R(i) (4.16)

with the form

min
1
2
θT Φθ + φT θ (4.17)

subject to Ωθ ≤ ω.

which is a standard optimization problem known as the Quadratic Pro-

gramming (QP) problem 2.

Two methods for solving QP problems can be Active Set and Interior

Point [Mac04]. More information about linear and quadratic programming

can be found in [Fle96].

A major problem that may occur with constraint optimization is that

the problem may be infeasible; in which case the solver stops. Various

approaches are used in practice, such as avoiding hard constraints on z,

actively manage constraint definition in every step k or actively manage

horizons in every step k.

A block diagram of a model predictive controller with constraints is

presented in Figure 4.3, from [Mac04].

Several types of future behaviour of controlled variables (CV) exist [QB03].

Usually the CV are set to a fixed set point, and the deviations on both sides

are penalized by the cost function. A drawback of this type is that the

control action can be very aggressive, with large input adjustments; with a
2Expressions like xT Qx and uT Ru, where x, u are vectors and Q, R are symmetric

matrices are called quadratic forms, If xT Qx ≥ 0 for every x, except x = 0, then this

quadratic form is called positive definite.
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Figure 4.3: Block diagram of a MPC with constraints and state feedback

possible remedy to detune the controller. Another option is the zone control,

where upper and lower boundaries are defined and are usually implemented

as upper and lower soft constraints. This is the case when the objective is to

keep CVs within boundaries, neglecting their exact values. A third option

is to define the CV as a reference trajectory. From the current CV to the

setpoint, a curve of first or second order is specified and a quadratic cost

function penalizes deviations. Finally objectives are represented as funnels,

which are similar to zones but become narrower over the prediction horizon.

4.1.5 State Estimation

In order to compute the solution to the optimal control problem, the knowl-

edge of the state of the system is required. In practice, the states are not

directly measured and a state estimator is used to reconstruct the state

from the available measurements. Disturbances affect both the states and

the measurements. Kalman Filter is capable of recursively estimating the

state of a linear system, as follows.

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1) (4.18)

x̂k+1|k = Ax̂k|k +Buk (4.19)

where x̂k|k is the state estimate at sample time k given k. Lk is the filter

gain matrix, and multiplies the difference between the measured output yk

output, and predicted output Cx̂k|k−1 to produce a filtered state estimate

by correcting the predicted state estimate at previous sample time. When
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disturbances are normally distributed random variables, Kalman Filter pro-

duces the optimal estimate of state [Mac04].

Kalman Filter is used for the state estimation of controllers MPC I and

MPC II, which are presented in Chapter 5.

4.1.6 Tuning Parameters

The parameters that can be tuned in MPC are the sampling time, the control

horizon Hu, the prediction horizon, Hp, and the output and input matrices

Q and R respectively.

For stable, minimum phase systems, the sampling time does not affect

stability; however for good performance of the closed loop system, the sam-

pling time must be small enough to capture process dynamics, and large

enough to allow for on-line computations [HS97].

The control and prediction horizon affect the performance of the con-

trolled system and influence robustness. A long prediction horizon results

in better performance, is essential for systems with slow dynamics, but will

result in long computation time for the control input. The control horizon

when short, provides robustness to uncertainties due to parameter varia-

tions.

The output matrix Q penalizes tracking errors and ensures that output

constraints are not violated. The input matrix R penalizes control incre-

ments and helps to keep control inputs within bounds, ensuring that smooth

control actions are provided [KM99]. Increment in R will reduce the control

activity. These parameters are usually tuned by iterations and simulation,

although theories exist that provide choices which guarantee stability and

robustness characteristics.

Tuning of parameters that affect the performance of the controllers were

used in the simulation study, as shown in Section 5.2.

4.1.7 Advantages, Drawbacks, Limitations

Two important factors determine the success of an MPC application. First

the availability of a suitable plant model and second the ability to solve the

quadratic programming problem within the prescribed sampling period (on
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line). The latter becomes an issue when it is required to solve QP problem

online for complex systems with fast response times, where computational

resources may be limited. But as modern computer power is increasing,

MPC can be considered for high-bandwidth applications like aerospace, au-

tomotive and robotics [MGK07].

Most MPC applications are in refineries and petrochemical applications,

and some in food, pulp and paper industries.

Some factors for success are:

1. The process model captures the static and dynamic interactions be-

tween input, output and disturbance variables

2. Constraints on inputs/outputs are handled in a systematic manner

3. The basic ideas are easy to explain and understand

4. Accurate model predictions can provide early warning of potential

problem

The drawback is the large on-line computational load required to perform

the optimization.

Current industrial algorithms suffer from limitations [QB03].

1. Limited model choices

2. Sub-optimal feedback

3. Lack of nominal stability

4. Inefficient solution of dynamic optimization

4.2 Models for MPC

The relation between the linear model and the real plant needs careful con-

sideration in predictive control. In most control methodologies the linear

model is used off-line, for analysis and controller design purposes. In pre-

dictive control it is used as part of the control algorithm, and the resulting

signals are applied directly to the plant [Mac04]. It is considered the most
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critical and time consuming step; the view in a commissioning project is

that it can take up to 90% of cost and time [ML99].

Phenomenological modeling can be expensive and may lead to unneces-

sarily complicated system descriptions; on the other hand empirical input-

output descriptions require appropriate selection of model structures, test

signals and validation procedures [KC01].

Typically models are derived from step tests or Pseudo Random Bi-

nary Signals (PRBS), and impulse response coefficients are fitted with least

squares. Input channels are excited one at a time but this practice may not

give a multivariable model of the required accuracy. There were cases where

although SISO models were very accurate, when combined, they represented

a very poor MIMO model.

In the following the various types of models used in MPC shall be out-

lined. In the first applications, step and pulse response models were used;

later GPC introduced the transfer functions and difference equations. Today

most of the formulations utilize models in state space formats.

4.2.1 Step and Pulse Response

Although manufacturing processes are inherently nonlinear, the vast major-

ity of MPC applications to date are based on linear dynamic models, the

most common being step and impulse response derived from the convolution

sum in discrete time. There are potential reasons for this. Linear empirical

models can be identified in a straightforward manner from process test data.

In addition, in refinery processing the goal is mainly to maintain process at

a desired steady state (regulator problem) rather than moving rapidly from

one operating point to another (as in a servo problem). For such applications

a carefully identified linear model is sufficiently accurate [KC01].

In practice it is difficult to perform pulse tests, as large pulse amplitudes

are required to excite the plant sufficiently [Mac04].

If a step or pulse response model exists, then it is possible to assemble

a block-Hankel matrix to derive a state-space model, that can match the

step responses exactly. This model will be of large state dimension, but it is

possible with the use of Singular Value Decomposition (SVD) to obtain a still
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accurate model of lower state dimension. Subspace identification methods

[vOdM96] are preferable to the above path ’step test-step response-state

space model’ as one can use arbitrary input-output data.

4.3 Stability and Robustness

4.3.1 Stability in Predictive Control

There is well-developed theory that leads to the formulation of MPC problem

in such a way that closed-loop stability is guaranteed. Two popular choices

are to impose terminal constraints at the end of prediction horizon and to

use an infinite prediction horizon [MGK07].

In the first approach, if a terminal constraint of the form x̂k+Hp|k = 0

is imposed, it always gives closed loop stability, but proves to be a strong

constraint and it can be relaxed to x̂k+Hp|k ∈ XF , on the assumption that

XF has suitable properties. In the latter approach, when using infinite pre-

diction horizon, closed-loop stability is guaranteed. The drawback in this

case is that there are infinite decision variables, ûk+i|k, with i = 0, 1, ....

The quadratic program for an infinite open-loop horizon is an infinite-

dimensional optimization problem. To overcome this, a horizon length N

is selected, such that constraints are inactive for i > N . Then ûk+i|k, with

i = 0, 1, ..., N−1 is choosen and fixed feedback law uk+i = µ(xk+i) for i > N

is assumed .

4.3.2 Robustness in Predictive Control

A control system is robust when the stability is maintained and performance

specifications are met for a specified range of model variations (uncertainty

range). Although robust control theory is rich for linear systems, little is

known for linear systems with constraints [ML99].

Various approaches exist that check robustness of the designed predictive

controller. These can be norm-bounded uncertainty, polytope uncertainty,

the tuning procedure of Lee and Lu, the LQG/LTR tuning procedure and

LMI approach [Mac04] and [ML99].

The main interest is in norm-bounded uncertainty method. P0(z) is the
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nominal model of the plant and ∆ is the uncertainty, as a stable bounded

operator. Then the real plant P (z) is given by

P (z) = P0(z) + ∆ (4.20)

for additive uncertainty.

The feedback combination of the system with uncertainty block ∆ will

remain stable if the following holds

σ̄[K(ejωTs)S(ejωTs)]‖∆‖∞ < 1 (4.21)

where σ̄[.] denotes the largest singular value. This inequality will be used

in a controller tuning procedure, so that the frequency response is affected.

4.4 Nonlinear Model Predictive Control

In case that the plant exhibits nonlinearities, the linear model used in MPC

is no longer useful; one has to use a nonlinear model and techniques from

Nonlinear Model Predictive Control (NMPC) [Mac04]. Main active research

is towards this area.

The main disadvantage is that the convexity of the optimization is lost

which is a serious drawback for on-line applications.

One approach is to replace the linear model with a nonlinear one, and

then use suitable optimization methods to overcome the loss of convexity. It

is usually very difficult to analyze the applications. A popular optimization

algorithm is Sequential Quadratic Programming (SQP). An other method is

Multiple Shooting, which is suitable for first principle models, consisting of

large sets of differential or differential-algebraic equations. More details can

be found in [FAD+01], [ML99] and [AFN04].

As an alternative, the nonlinear model can re-linearized (or perform suc-

cessive linearizations [vEL01]), as the plant moves from one operating point

to another, and use the latest linear model as the internal model at each

step. This results in solving a QP problem at each step. Re-linearization

or adaptation of the linear internal model is the most common way to deal
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with plant nonlinearities in practice. This is not always adequate if the

nonlinearities are severe.

Nonlinear models used in NMPC can be obtained from first principles

modeling or can be based on Hammerstein-Wiener, neural nets or Volterra

models. Hammerstein-Wiener models describe dynamic systems using one

or two static nonlinear blocks in series with a linear block. Only the linear

block contains dynamic elements. The linear block is a discrete-time transfer

function and the nonlinear blocks are implemented using nonlinearity esti-

mators, such as saturation, wavenet, and dead zone. Hammerstein-Wiener

models were used in [PK08], as presented briefly in Section 3.4.5.

4.5 Summary

The basic structure of a model predictive controller was introduced in this

chapter: the necessary models, the cost function and the constraints. Also

introduced were the issues of stability and the theoretical and computational

difficulties of nonlinear MPC. MPC with these elements was implemented

for the opacity control problem; this is the subject of Chapter 5.
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Chapter 5

Control of Smoke Density

(Opacity)

Once a mathematical model of the engine that incorporates the dominant

process features is identified, then this model can be used in model predic-

tive control (MPC). Optimal control theory provides the tools to determine

suitable control commands, subject to constraints on outputs.

The objective in the present work is the reduction of opacity in the ex-

haust gas of a marine diesel engine, during transient loading. Chapter 5

describes the achievement of this objective, through the application of opti-

mal air injection profiles. Reduction in opacity was verified by comparison

of opacity values achieved when optimizing the supply of air injection to

those corresponding without any air injection operation.

Two controllers were designed and implemented in the engine testbed.

With the first controller (MPC I), control of pressure in the intake manifold

was achieved, while the second controller (MPC II) was used for the control

and reduction of opacity. Both schemes used constraint on the intake pres-

sure, with the aim to avoid compressor instability that may appear with the

supply of compressed air in the manifold downstream the compressor.
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5.1 Control Systems in Marine Diesel Engines

Manufacturers of internal combustion engines often use maps to represent

the relation between some measured values (e.g. speed and torque) and

the required actions (e.g. the injection timing values). Using this example,

at any speed and load condition, the corresponding injection timing is cal-

culated using an interpolation algorithm. Furthermore, the control system

may depend on a series of look-up tables, and is then referred as scheduled.

Modern engine control systems have a large number of tables and demand

substantial effort to fill-in those tables (i.e. calibrate them).

Engine control and calibration is a costly task of the engine development

program. Traditional solutions rely largely on heuristics and the determina-

tion of complex maps with feed-forward strategies to compensate for a wide

range of operating conditions. Control and calibration has evolved into this

process partly because of the inherent drawbacks of conventional control and

optimization techniques. The main problem with the traditional approach

is an inability to handle system constraints and large system delays. This

means that controller gains have to be limited to avoid oscillatory control

which in turn leads to compromised engine performance.

In the last two decades more advanced control solutions have been devel-

oped in the process industry which avoid these problems. The new direction

in control systems is to follow a model-based approach, where the design of

the control algorithms would be based on the modeling of the principal

elements in the control loop.

Along these lines, and as a prelude to the present work, the author has

applied Hinfinity robust control method to a Wartsila marine diesel engine

[PK06], [Pap06a], [Pap07], and [Pap06b] and nonlinear plant linearization

and PID control in [LPKC07].

5.2 Controller Design

5.2.1 Control Objectives

The control objective in the present work is to minimize exhaust opacity

during engine transients, with the supply of external air, subject to the
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constraint of keeping pressure in the intake manifold below a certain value,

in order to avoid compressor instability.

The application is considered as a possible retrofit to an existing engine,

under the assumption that the fuel control system in place and operating

will not be altered. The air injection is considered as input variable (or

manipulated variable), the fuel as measured disturbance and the opacity and

pressure in intake manifold (Pengin) in as outputs (or controlled variables).

The design cycle for the controller was as follows, in accordance with

[QB03]. First the MPC controller was configured and initial tuning parame-

ters were selected. Second, the controller was tested off-line using closed-loop

simulation to verify the controller performance. This was a repetitive task,

until the performance was acceptable. Third, the controller with filters and

additional elements was downloaded to the destination machine and was

tested on-line. The tuning of the controller parameters was repeated, as

needed.

5.2.2 Tuning

The choices of controller parameters like prediction horizons, weight matri-

ces and sampling times, have a considerable effect on the performance and

stability of the model predictive controller. References [HS97] and [HM97]

provide information regarding the tuning of MPC parameters.

In the present work, the parameters which were tuned were the sampling

time, the control horizon M, the prediction horizon, P, and the output and

input matrices Q and R respectively.

Simulations provided information about the system responses, and in-

volved the linear models.

The constrained Model Predictive Controller was designed with function

mpc from MATLAB MPC Toolbox, v.2. Sampling time was 0.1 sec. A

Prediction horizon smaller than the maximum delay of 6 samples must be

avoided. Final choice was 20 samples. The control horizon M was 2 samples.

The input weights were set to 0 while the output weights were 1 and 0. For

constraints on the manipulated variables, maximum one and minimum zero

were used. The constraint for the output variable pengin was set to 0.7. All
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the above parameters required a scaled plan, as defined in Section 3.4.1.The

system model was in the format of discrete transfer functions. For state

estimation, a standard Kalman Filter was used.

The simulation setup presents a controller similar with the one that was

implemented in the test engine. The internal model of the controller was

the same with the plant model. The closed-loop simulation with the plant

and the predictive controller is shown in the block diagram of Figure 5.1.

pengin .SP

0.0

opacity .SP

0.0

Step

MPCC31

MPCmv

mo

ref

md

Engine Model

MV CV

MV

Fuel

pengin

opacity

Figure 5.1: The simulated MPC in closed-loop configuration

The responses and the input of the MPC controller are shown in Figure

5.2. Prediction horizon was P = 20, control horizon M = 2 and sampling

time Ts = 0.1 sec. Input weights Q were set to zero, and output weights

were equal to one and zero. A constraint was applied in output 2, i.e. the

pressure in intake manifold, pengin = 0.7.

A disturbance is applied in the fuel and the responses in opacity and

intake manifold pressure are observed. The opacity decays back to its initial

zero value, and the intake manifold pressure acquires its steady state value

of 0.7 in less than a second. The respective constraint of 0.7 in pressure

is not violated during the transient. The delay in the response of opacity

is also evident. For the manipulated variable, i.e. the actuator command

for the the air injection, the action takes place for a duration of less than a

second.

Various tuning parameters were used in simulation studies, with the

same models for controller and plant as before. In the first case, the effect

of the prediction horizon is studied. The responses and the input of the
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Figure 5.2: Simulated MPC, standard

MPC controller with P = 10, P = 20 and P = 50 are shown in Figure 5.3.

The remaining controller parameters are the same. No effect can be seen for

the controlled variable opacity. For pressure, the response for the horizon

of 50 samples is the fastest, while for all the three cases the steady state

value remains the same. It can be seen that for the manipulated variable,

i.e. the air injection, and for the largest horizon, the control action is very

aggressive and short in duration; behavior not very favourable for actuators.

The chosen value of 20 samples, seems an adequate compromise, between

the response time for pressure and the actuator command.

In the second case, the effects of the output weight are shown. The

response and the input of the MPC controller with weights R = 10, R = 100

are shown in Figure 5.4. No effect can be seen for the controlled variable

opacity. For pressure, the response for the penalty of 1 shows the slowest

response, while for the cases of the larger penalties, the response is the

same. For the manipulated variable, i.e. the air injection, for the smallest

penalty the control action is very smooth in comparison with the aggressive
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Figure 5.3: Simulated MPC, with P = 10, 20, 50

responses of the higher penalties. The chosen value of R = 1 eventually will

supply less air, while the opacity is not affected by the choice of penalty

values.

Finally, the effects of the sampling time are simulated. The response and

the input of the MPC controller with Ts = 0.05, 0.1, 0.2 sec are shown in

Figure 5.5. Significant differences in the controlled variables can be observed.

The fastest sampling time of 0.05 sec causes a sluggish response, with delay

in opacity increase and longer settling time. Respectively, the actuator for

air injection, remains active about double and three-times more for the cases

of 0.1 and 0.2 sec. The chosen value of 0.1 sec exhibits a performance almost

in-between the fastest and the slowest sampling times.

5.3 Implementation of Control Algorithms

MPC requires the process model that will forecast the future values of out-

puts like opacity and pressure, when inputs like the air injection and the

fuel will be altered. MPC uses this forecast to calculate the adjustment in

the manipulated variable that is needed to keep ’opacity’ at its set point.
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Figure 5.4: Simulated MPC, R = 1, 10, 100

The control calculation considers the effect of any known constraints on this

adjustment (pressure has an upper bound that cannot be exceeded).

The controller receives a measured disturbance signal (position of fuel

rack) directly, which allows to compensate for this disturbance’s impact on

opacity, rather than wait until the effect appears on the opacity measure-

ment. This is feed-forward control. It effectively anticipates the delay of 0.6

sec observed in the opacity measurement response.

The MPC controller is shown in Figure 5.6.

Relay Element

The actuator for the air injection is a solenoid valve, which switches either

on or off. In order to respond to the analog command of the controller, a

relay element interfaces the analog and switching part. The relay element

allows its output to switch between two specified values. When the relay

is on, it remains on until the input drops below the value of the Switch

off point parameter. When the relay is off, it remains off until the input

exceeds the value of the Switch on point parameter. The thresholds were
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Figure 5.5: Simulated MPC, Ts = 0.05, 0.1, 0.2 sec

selected after trial-and-error. Thus the valve switches on when the analog

command is larger than 1.5 Volt and switches off when the analog command

is lower than 0.8 Volt. These settings are specific to the application and

affect directly the operation of the air injection system, as the thresholds

can start the supply of air to the engine earlier or later.

The relay element is shown in Figure 5.7.

Filtering

A digital filter was incorporated in the feedback loop of pressure in the

intake manifold. Figure 5.8 shows the effect of filter on the signal of inlet

manifold pressure, for two different engine loading cases. The filter succeeds

in removing the higher frequency signal distortion, before this signal is fed-

back to the controller.

The choice and effect of filter is system dependent. After some trial-end-

error, a forth-order, low pass filter, with cut-off frequency at 1 rad/s was

selected. The frequency response of the filter is shown in the Bode diagram

of Figure 5.9.
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Figure 5.6: MPC block diagram

The filter type was Butterworth, which is an Infinite Impulse Response

(IIR) filter [OS75]. The basic advantage of IIR filters over other types like

the Finite Impulse Response (FIR) is the much lower filter order with which

one can achieve the required specifications. For the design of the filter, the

MATLAB Signal Processing Toolbox was used [Mat07].

For the other measured signals in the control loop, i.e. opacity, air

injection pressure and fuel, filtering was not required, as the signals had

suitable characteristics for interfacing with the controller.

5.4 Performance of Predictive Controllers

In the present work, two different predictive control controllers were designed

and tested. The first controller, MPC I, was simpler as it had a model

which related injected air to intake manifold pressure. This is a Single-

Input-Single-Output (SISO) model. The second controller, MPC II, used a

model that related injected air and fuel to opacity and pressure in intake
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Figure 5.7: Relay element in controller for air injection

manifold. The fuel was considered a measured disturbance. Table 5.1 shows

the characteristics of the two controllers that were implemented in the test

engine.

Table 5.1: Parameters of the experimental controllers

Controller Controlled Manipulated Disturbance Constraints Model

Type Variable Variable Variable

MPC I pressure air injection – pressure Sub

MPC II opacity air injection fuel pressure TF

Samples of results are shown from the multitude of the test made. The

total number of tests was 60. During the tests, the different configurations

in the two predictive controllers were tested.

In general the engine was loaded in a single step. The engine operated

in its nominal speed of 1200 rpm. The dynamometer applied a torque load

from 0% to 47.5% (1890 Nm), with a maximum duration of 30 to 40 sec.

With this load, the engine speed was decreased by about 10%.

During a test session, after the warm up of the testbed and opacime-

ter, the different settings in the air injection control system, engine control

system, data acquisition system were entered in the respective computers

through application interfaces. The data capture from the data acquisition
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Figure 5.8: The digital filter for Pengin channel in action, compared with

the raw signal, in two different cases

system was triggered by the start command for the load application from

the engine control system. The air injection control system was in stand-

by mode: during the transient, the set points of pressure or opacity were

followed with appropriate control action through the air injection action.

After the end of the test session, data from 36 channels with the engine

parameters were stored for further processing.

5.4.1 Results from Pressure Control

The first controller, MPC I, had a model which related injected air to pres-

sure in intake manifold. This is a Single-Input-Single-Output (SISO) model.

The configuration of model predictive controller MPC I is shown in Figure

5.10.

The reason for using this type of controller was twofold. As it was based

on a SISO model, it was simpler than MPC II, allowed quick shakedown of

the experimental arrangement, and familiarization with the engine testbed

under air injection control and provided valuable experience for the control of

pressure in the engine intake manifold. It must again be stressed that safety

and testbed integrity was a primary concern in the experiments. Apart from

the cost of any possible breakdown, the cost of the testbed operation is also
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Figure 5.9: Bode plot of the digital filter for pressure

substantial and the run times had to be minimized.

Another reason was that MPC I provided the opportunity to use a dif-

ferent model structure, coming from subspace identification method, as was

presented in Section 3.2.2.

Here the pressure was used indirectly to manipulate the exhaust opacity.

As the opacity measurement was not part of the control loop, the associated

delay was not present and therefore the measurement of fuel as feedforward

contribution in the controller was not necessary. As explained earlier, the

elements of relay in the output and the Butterworth filter in pressure signal

were also present.

For this type of controller, two different pressure set points were chosen.

In the first case the set point in pressure in the intake manifold was 1.7 bar,

while in the second case the set point was 2.0 bar.

With the first set point, pressure set at 1.7 bar, the engine operation was

normal, without any significant signs of compressor instability.

The responses of the controlled and manipulated variables are shown

in Figure 5.11. Presented in the figure is the pressure signal, the filtered

pressure signal which enters the controller and the set point of pressure

during the transient. Time is shown in samples, where each sample equals

to 0.1 sec.

A step load from 0 to 47.5 % was applied to the engine, with the speed

set at 1200 rpm. The set point of the pressure in intake manifold is applied
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during the start of the transient, and starts from almost 1.1 bar up to

set point value which is 1.7 bar. During the engine transient, the aim is

to maintain the pressure in the intake manifold around this value. The

air injection controller will provide the necessary command to the solenoid

actuator for the air admission.

The set point of 1.7 bar was chosen after some testing, and was used

to show the behavior of the control system to a step point that will not

bring the compressor close to instability. The set point of 1.7 bar was set

as a constraint, whose value was not allowed to be exceeded during the

transient.

It can be seen from Figure 5.11 that the control can be considered satis-

factory. The set point is followed quite closely, and at the points where the

actual value of pressure violates the constraint of 1.7 bar, the command is

stopped. The effect of the solenoid valve is present, with its on-off switch

pattern, distinguished in the bottom graph, which shows the actual air pres-

sure in the air injection line.

The responses of fuel rack position and opacity are shown in Figure 5.12.

Opacity reached immediately its highest value of 80% but quickly the

effect of the air injection brought a reduction in opacity to a value of almost

50%. The delay in the response of opacity measurement is evident.

For the fuel rack position, the effect of the fuel limiter operation can
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Figure 5.11: Controlled and manipulated variables, MPC I, set point 1

be observed. Although the load was applied rapidly, the action of the fuel

actuator followed an inclined response at about 0.5 (equal to 50% actuation)

and supplied considerable less fuel.

The control output and the relay switching are shown in Figure 5.13.

The particular responses were taken with the relay switching set to open

and close the solenoid valve when the threshold of 3, in the command, was

exceeded. The control output, labeled as xmpc, remained within operating

limits from the start of the disturbance during the transient, and only at

the end, at time 420, during the stop of the command took momentarily a

negative value.

As mentioned in Chapter 4, constrained model predictive control ef-

fectively keeps the controlled variable, in this case the pressure in intake

manifold, to its set value.

With the second set point, with pressure set at 2.0 bar, the engine oper-
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Figure 5.12: Opacity and fuel rack variables, MPC I, set point 1

ation was affected by compressor instability. The instability was manifested

both in the measurement of pressure, speed, and mass flow, but also as loud

’banging’ and vibrations of the testbed intake system. The responses of the

controlled and manipulated variables are shown in Figure 5.14.

The same load scenario was applied in this case. The set point of the

pressure in intake manifold is applied during the start of the transient, and

starts from almost 1.1 bar up to set point value which is now 2.0 bar. With

this set point, the compressor is clearly brought to instability. The set point

of 2.0 bar was set as a constraint, whose value was not allowed to be exceeded

during the transient.

It can be seen from Figure 5.14 that the control can be considered rather

satisfactory. The set point was followed in an average, and as in the previous

test with the lower set point, at the points where the actual value of pressure

violated the constraint of 2.0 bar, the command was stopped. The effect of
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Figure 5.13: Control output and the relay switching, MPC I, set point 1

the solenoid valve was present, with its on-off switch pattern, displayed in

the bottom graph, which shows the actual air pressure in the air injection

line. When pressure in the intake manifold exceeded 1.5 bar, oscillations

could be observed. The oscillations were present in the whole manifold

volume, reaching even the area close to the solenoid valve, as one can notice

in the oscillations in the air injection pressure.

The responses of fuel rack position and opacity are shown in Figure 5.15.

It can be seen that opacity reached immediately its highest value of 70%

but quickly the effect of the air injection brought a reduction to a value

of almost 40%. The delay in the response of opacity measurement was

evident, as in the previous test. In the current test though, the air in the

first moments of transient, from samples 70 to 120, was not adequate and

the opacity reached a higher value of about 55% within the next 50 time

units or 5 seconds.
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Figure 5.14: Controlled and manipulated variables, MPC I, set point 2

For the fuel rack position, the effect of the fuel limiter operation can

be observed as in the previous test. Small oscillations were present, due to

pulsations of supplied air for combustion, resulted from the instability in

the compressor as described earlier.

The control output and the relay switching are shown in Figure 5.16.

The particular responses were taken with the relay switching set to open

and close the solenoid valve when the threshold of 3, in the command, was

exceeded. The control output, labeled as xmpc, momentarily exceeded limits

in the beginning, in an effort to provide more action in the start of the

disturbance. The controller showed proper corrective action in an effort to

reach fast the pressure set point; but the outcome in the actual pressure and

further in opacity was not very satisfactory. This results from the setting

of the relay switching. The particular value of threshold allowed efficient

modulation of air from time 100 until the end of transient, but had the
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Figure 5.15: Opacity and fuel rack variables, MPC I, set point 2

drawback of early closure in the beginning, at time 70 until about 80.

5.4.2 Results from Opacity Control

The second controller, MPC II, used a model that related injected air and

fuel to opacity and pressure in intake manifold. The fuel was considered a

measured disturbance.

The configuration of model predictive controller II (MPC II) is shown in

Figure 5.17.

In this setup, the measurement of opacity was taken into consideration

from the feedback control system. In addition, the signal from fuel rack

position, also taken into consideration from the feedback control system,

will be used for feedforward control action: the controller will respond to

changes in fuel, before it gets the (delayed by 0.6 sec) signal from opacity.

The model structure which is used by the predictive controller comes
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Figure 5.16: Control output and the relay switching, MPC I, set point 2

from prediction error method, in the form of transfer functions, discretized

at 0.1 sec. Results from the prediction error method were presented in

Section 3.4.3.

As explained earlier, the elements of relay in the output and the Butter-

worth filter in pressure signal were also present.

For this type of controller, two different settings for the relay switching

were chosen. These settings affect the on/off sequence in the air injection

actuator; practically affect the modulation of air the intake manifold. In

the first case, setting a, the solenoid valve opens in the threshold of 0.6 of

command signal and closes in the threshold of 0.3. In the second case, setting

b, the solenoid valve opens in the threshold of 1.5 of command signal and

closes in the threshold of 0.8. In both cases the intake manifold pressure

constraint is set to 0.7 of a scaled value, which corresponds to 1.7 bar in

actual pressure.
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Figure 5.17: Predictive controller for opacity (MPC II)

For the first type of settings, setting a, the responses of the controlled

and manipulated variables are shown in Figure 5.18.

A step load from 0 to 47.5 % was applied to the engine, with the speed set

at 1200 rpm. The set point of opacity was set to zero, as it is a disturbance

rejection case. The air injection controller provided the necessary command

to the solenoid actuator for the air admission. The set point of 1.7 bar for

intake manifold pressure was set as a constraint, whose value was not allowed

to be exceeded during the transient. With this set point, the compressor

was brought to a intermediate instability.

It can be seen from Figure 5.18 that the control can be considered rather

satisfactory.

Opacity reached immediately its highest value of 75% but quickly the

effect of the air injection brought a reduction. After the peak value, the

opacity dropped to about 30% for a very short time and then increased to a

final value of almost 55%. The delay in the response of opacity measurement

is evident. It is obvious that that some improvement in order to avoid the

increase to a higher value from 30% to 50% must be provided.

The responses of intake manifold pressure and fuel rack position are
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Figure 5.18: Controlled and manipulated variables, MPC II, setting a

shown in Figure 5.22.

During the disturbance, the air injection increased pressure in intake

manifold, and the constraint of 0.7 (about 1.7 bar in actual pressure) was

violated only for a short period, between time unit 120 and 130. For the

rest of the disturbance, the pressure was kept below the constraint. The

control can be considered satisfactory, for two reasons. First, it can be seen

that the filtered signal does not overcome the constraint value of 0.7. This

means that the controller is aware of the actual constraint violation. Sec-

ond, although the oscillation in pressure is significant, the internal controller

model forecasts the pressure behavior satisfactorily.

For the fuel rack position, the effect of the fuel limiter operation can be

observed as in previous cases.

The control output and the relay switching are shown in Figure 5.23.

It can be seen that the solenoid valve opens in the threshold of 0.6 of
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Figure 5.19: Constraint and fuel rack variables, setting a

command signal and closes in the threshold of 0.3. The command does not

reach the maximum allowed level of 10 (equal to 100%).

For the second type of settings, setting b, the responses of the controlled

and manipulated variables are shown in Figure 5.21.

A step load from 0 to 47.5 % was applied to the engine, with the speed set

at 1200 rpm. The set point of opacity was set to zero, as it is a disturbance

rejection case. The air injection controller provided the necessary command

to the solenoid actuator for the air admission. The set point of 1.7 bar for

intake manifold pressure was set as a constraint, whose value was not allowed

to be exceeded during the transient. With this set point, the compressor

was brought to a intermediate instability.

It can be seen from Figure 5.21 that the control can be considered rather

satisfactory.

Opacity reached immediately its highest value of 85% but quickly the
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Figure 5.20: Control output and the relay switching a

effect of the air injection brought a reduction. After the peak value, the

opacity dropped to about 40% after by the end of disturbance. The delay

in the response of opacity measurement is evident.

The responses of intake manifold pressure and fuel rack position are

shown in Figure 5.22.

During the disturbance, the air injection increased pressure in intake

manifold, and the constraint of 0.7 (about 1.7 bar in actual pressure) was

not violated during the transient. The control can be considered satisfactory,

as the internal controller model forecasts the pressure behavior satisfactorily.

Oscillation in pressure was present also in this test. However, the magnitude

was lower than the in the previous case.

For the fuel rack position, the effect of the fuel limiter operation can be

observed as in previous cases.

The control output and the relay switching are shown in Figure 5.23.
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Figure 5.21: Controlled and manipulated variables, MPC II, setting b

It can be seen that the solenoid valve opens in the threshold of 0.6 of

command signal and closes in the threshold of 0.3. The command does not

reach the maximum allowed level of 10 (equal to 100%). In comparison with

the case of setting a, with current setting b, the actuator provides less air.

The comparison in performance for achieved opacity is shown in Figure

5.24.

It can be seen that controller MPC II, with setting a, achieved bigger

reduction in opacity. Controller with setting b, had a higher peak, at 85%

and dicreased up to 40%, while controller with setting a, had a high peak,

at 70% and dicreased for most of the time under 40%.

The comparison in performance for intake manifold pressure is shown in

Figure 5.25.

It can be seen that controller MPC II, with setting b, caused less in-

stability in the intake manifold pressure. Controller with setting a, caused
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Figure 5.22: Constraint and fuel rack variables, setting b

more instability, but increased the pressure higher. Since the controller with

the constraint feature achieves in not violating the pressure limit, controller

MPC II is a better choice.

A comparison of opacity under MPC control is shown in Figure 5.26.

It can bee seen that in the case with air injection, the opacity was reduced

considerably. The initial peak value in both cases remained the same, around

80% for this type of loading 0% up to 47.5%. However when the air was

injected in the manifold, after about 5 time samples (0.5 sec) the peak

dropped at about 40% and remained in this lower level until the end of the

disturbance.
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Figure 5.23: Control output and the relay switching b

5.5 Summary

In this chapter the main results of this work were presented. Based on the

identified models for the inputs-outputs, the model predictive controller was

implemented on the engine. Simulations with the model inputs and outputs

in closed loop, allowed for appropriate choices of the tuning parameters of

the controller. The most important parameters that were selected were the

prediction horizon, controller weights and sampling times. This practice

contributed to minimize the required testbed operation. At the same time,

instabilities or poor closed-loop system performance were avoided.

Two different controllers were implemented in the testbed, MPC I and

MPC II. Both controllers had as manipulated variable the air injection sup-

ply. Controller MPC II had the fuel as measured disturbance. Controller

MPC I had as controlled variable the pressure in intake manifold. Con-
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Figure 5.24: Comparison for opacity, MPC II

troller MPC II, respectively had as controlled variable the opacity. The

control strategy was successful in the opacity reduction and the achieve-

ment of the desired pressure in intake manifold, which was formulated in

the controller as a constraint. Based on the responses of opacity and intake

manifold pressure during the transient, controller MPC II showed better

performance.

Results comparing the opacity under air injection model predictive con-

trol with the standard engine operation, i.e. without air injection, during

the same transient were presented.

Based on the above results, it can be seen that with air injection, opacity

was reduced considerably. The peak value remained the same in both cases,

about 80%. However, in the case with air injection, this peak dropped

considerably after about 0.5 sec to a steady value of about 40%, until the

end of disturbance.
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Figure 5.25: Comparison for intake manifold pressure, MPC II
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Chapter 6

Conclusions and Future

Work

Two main ideas were followed in this research work: system identification

and predictive control. The model construction from experimental data,

based on system identification, provided successful models for the predictive

control operation. It can be noted from the results of the controlled vari-

ables, that the identified models did not provide perfect forecasts, and in

several cases a better model could improve the performance of the closed-

loop control system. However, the models captured the dominant dynamics

of the process under control, and have led to a satisfactory overall control

performance.

From the three types of identified models, parametric methods in the

form of transfer function models and subspace identification methods in the

form of state-space models, were finally implemented on the experimental

engine. The third nonlinear model of Hammerstein-Wiener type, was used

only in simulations, but provided promising results for a possible direction

towards nonlinear model predictive control in the future.

The uncertainty of the identified models in transfer function form was

provided and evaluated. It showed for some model parameters that their

estimate was not precise. This is due to the extend that the particular

identification data for that combination of input-output did not provide

adequate or rich information, so that the errors were significant. For the
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cases that the fuel is involved as variable in identification1, the problem in

identification becomes ill-conditioned, as the respective fuel data come from

closed-loop control operation.

Having identified parameters that relate opacity and pressure in mani-

fold to air injection and fuel, model predictive control was used for opacity

control, under the constraint of high pressure in manifold.

Simulations with the model inputs and outputs in closed loop, allowed

for appropriate choices of the tuning parameters of the controller. The most

important parameters that were selected were the prediction horizon, con-

troller weights and sampling times. The simulation phase was an import and

contribution towards the decrease of testbed operation time and avoidance

of instabilities or poor closed-loop system performance.

Based on the identified models for the inputs-outputs, the model predic-

tive controller was implemented on the engine.

Two different controllers were implemented in the testbed, MPC I and

MPC II. Both controllers had as manipulated variable the air injection sup-

ply. Controller MPC I had as controlled variable the pressure in intake

manifold. Controller MPC II had the fuel as measured disturbance and the

opacity as controlled variable.

The use of MPC I allowed quick shakedown of the experimental arrange-

ment, provided familiarization with the engine testbed under air injection

control as well as valuable experience for the control of pressure in the engine

intake manifold. The model used based on subspace identification method.

Two different pressure set points were chosen, 1.7 bar and 2.0 bar.

With controller MPC II, the measurements of opacity and fuel rack po-

sition were taken into consideration from the feedback control system. The

model structure which was used by the predictive controller comes from

prediction error method, in the form of transfer functions, discretized at 0.1

sec. For this type of controller, two different settings for the relay switching

were tested.

Based on the responses of opacity and intake manifold pressure during

1From a control point of view, fuel was used as disturbance variable, air injection was

used as manipulated variable, opacity was the controlled variable and intake manifold

pressure was used as constraint
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the transient, controller MPC II showed better performance.

Results comparing the opacity under air injection model predictive con-

trol with the standard engine operation, i.e. without air injection, during

the same transient were presented.

Based on the above results, it can be seen that with air injection, opacity

was reduced considerably. The peak value remained the same in both cases,

about 80%. However, in the case with air injection, this peak dropped

considerably after about 0.5 sec to a steady value of about 40%, until the

end of disturbance. This significant reduction obtained in the full scale

testbed experiments demonstrated the effectiveness of the proposed system

of controlled air injection for smoke abatement during engine transients, as

well as the suitability of the control method used.

Future Work

• During the air injection operation, the engine boost pressure is rapidly

increased and oxygen is admitted to the engine for combustion. This

could cause a considerable increase in NOx formation. In this work,

the role of NOx formation was not taken into consideration, as this

could cause complexity in the control approach. It remains of interest

to incorporate NOx, with measurements and respective modelling, in

an approach similar to the opacity, to the control problem of emissions

for a diesel engine.

• In the particular setup of the present work, envisioned as a possible

retrofit application for smoke reduction, fuel was considered as an

independent control variable. In a possible integrated scheme, the

fuel/engine speed control could be incorporated in the model predictive

control. In practice, the fuel control receives the highest attention

for engine operation, as it affects both the engine performance and

emissions.

• In this work only one control objective at a time was used, that of

minimising the opacity or the pressure in the manifold. Relevant with

the earlier point on fuel/speed problem, a possible extension could be
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to use multiple control objectives, depending on the operating point.

In this case the objective function is no longer a quadratic function

and quadratic programming algorithms cannot be used.

• Another area of potential study is to incorporate robustness in the

engine model through uncertainties. Analysis of robust stability is of

great importance and analytical tools are not available to guarantee

stability for constrained model predictive control. Therefore, there is

considerable related work that could be applied to the control study

of diesel engines.

• In this work, the state estimation part in the predictive controller

was performed with a standard Kalman Filter, for the linear models

which were used in the two types of controllers. In the case that a

nonlinear model is used in order to describe the air dynamics in the

intake manifold and opacity, then relevant work can be carried out

with an extended Kalman filter, applicable to nonlinear models.

• Approaches involving active surge control may be of interest but sys-

tem reliability issues must be carefully considered in any approach,

since in large engines turbocharger compressor surge cannot be toler-

ated.

• The plant type in this work, contains many elements that are discrete

in nature: the control of air injection was through the solenoid valve,

the fuel command had considerable limiting action, etc. These types

of problems today are considered as ’hybrid’ [Bem04], and it would

be challenging to provide a solution for the various controls of the

experimental engine under this point of view with the implementation

of predictive control.
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.1 Instrumentation and Controllers

Pressure sensors

The testbed engine is equipped with four types of pressure sensors, depend-

ing on the accuracy and response requirements of the measured pressure

channel.

One type is KISTLER 4075A10, where pressure acts via a thin steel

diaphragm on a silicon measuring element. The latter contains diffused

piezo-resistive elements connected in the form of a Wheatstone measuring

bridge. The effects of pressure unbalance the bridge and produce an out-

put signal of 0-500 mV. These sensors are suitable for inlet/outlet pressure

measurements of combustion engines, like the sensor PE 303 for charge-air

pressure. Range is 0-10 bar abs (refereed to vacuum and not to atmospheric

pressure), with natural frequency of 45 kHz, for rapid changes in pressure.

It is mounted on the engine with suitable cooling adapter.

For in-cylinder pressure AVL GU21D uncooled transducer was used, with

M7 thread. The natural frequency is 85 kHz, with measurement range of 0-

250 bar. Sensing element is AVL GaP04 (gallium orthophosphate) crystal,

whose compactness and thermal stability allows it to be mounted to the

combustion chamber and makes capable to give high precision measurements

without interference from pipe oscillations.

There is also pressure transducer from GE DRUCK PTX1400, absolute

pressure, range 0-10 bar, 0.15 % accuracy, with silicon pressure diaphragm.

The various sensors are shown in 1.

The AVL amplifiers: rack and individual 2 units are shown in 2.

Shaft torque measurement

Mechanical torque is measured by strain-gauge bridges placed on the inner

surface of the hub which connects the brake shaft with the rubber coupling.

In order to convert the shaft deformation in an instant torque signal, it is

required to convert the principal surface strains into an electrical voltage.

Telemetry is used in order to transfer the signal from the rotating shaft to

the inductive pick-up and further on with cables to the signal electronics
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Figure 1: The various sensors at engine

that produce the final analog torque signal.

The torque signal passes through an isolator with 30 Hz bandwidth and a

first-order filter with time constant of 0.8 sec before is fed to the closed-loop

torque controller in the ATLAS system. The relative uncertainty coefficient

is 0.35%. Details of the torque measurement configuration can be found in

[Ale06].

The brake torque controller was tuned experimentally as described in

[Pap06c].

Temperature

Temperatures are measured at various points at the engine. Sensors are

thermocouples and RTDs. A thermocouple consists of two different types

of metals, joined together at one end. When the junction of the two metals

is heated or cooled, a voltage is created that can be correlated back to the
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Figure 2: The AVL amplifier rack

temperature. Resistance Temperature Detectors (RTD) are sensors that

contain a resistor that changes resistance value as its temperature changes,

usually made of platinum.

TDC sensor

In the thermodynamic evaluation of pressure curves measured in internal

combustion engines, the exact determination of the top dead centre (TDC)

is required. As the rigid construction of an engine is not ideal, a statically

determined TDC can involve uncertainties. Therefore a TDC determination

with the engine motored in the speed of 1200 rpm is determined, with a TDC

sensor, model TDC-428 from AVL List [AVLc]. The sensor evaluates the

variation in capacitance between the piston and the sensor probe head, and

with an electronic circuit, an analog signal corresponding to the piston lift

is sent to the DAQ system.
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The air injection controller

The host computer is equipped with an ASUS P5V-VM-DH motherboard

with a Pentium 4 processor and 448 KB RAM2 , while the target computer

is equipped with an ASUS CUV-4X-E motherboard with a Pentium 3 pro-

cessor and 640 KB RAM. Both computers have Compaq NC3120 network

interface cards. The two computers are connected point to point through

an ethernet TCP/IP 3 network at 100 Mbps with a crossover cable. The

host PC runs Windows XP, MATLAB/Simulink and Real Time Workshop.

The target PC runs only the xPC Target kernel and the control application.

It also contains a National Instruments PCI-6024E data acquisition board

providing the input and output signals, connected to the PCI bus. The

board provides up to eight differential analog input channels, with 12-bit

resolution, with configurable sampling rate up to 200 kS/s for all channels,

up to two analog outputs, also with 12-bit resolution, at rates of up to 10

kS/s for both channels. The analog signal ranges are from -10V to +10V.

In addition eight input/output digital lines, at 5 volts TTL are available.

The xPC toolbox forms the core of the air injection controller. The

toolbox provides analog-to-digital (A/D), digital-to-analog (D/A), Digital

Input (DIN) and Digital Output (DOUT) device drivers for the selected

hardware. The language is C and S-functions. The host PC compiles the

Simulink models and downloads them to the target PC. The host computer

controls the model execution and allows change of parameters on the fly.

The compilation from Simulink to xPC code is performed with RealTime

Workshop and uses OpenWatcom C compiler.

The BIOS 4 is the only software component required by the xPC kernel.

After BIOS is loaded it searches for a bootable image (executable) which

starts the kernel. After the kernel is loaded, the target PC does not many

make any other calls to BIOS; the resources on the CPU motherboard are

addressed entirely through I/O addresses. The kernel activates the appli-

cation loader and waits to download the target application from the host

PC. The loader receives the code, copies the different code sections to their

2Random Access Memory
3Transmission Communication Protocol/Internet Protocol
4Basic Input Output System: system software loaded by PC at boot time.

118



designated addresses and sets the target application ready to start. The

executable target application provides full 32-bit power. The choice of the

PC components and the 32-bit Intel or AMD processor, ensure compatibility

with the xPC OS.
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.2 Compressor Instability

Description of instability

Surge and rotating stall are flow instabilities which occur in turbomachin-

ery. Surge is a self-excited cyclic phenomenon, affecting the compression

system as a whole, characterized by large amplitude pressure rise and mass

flow fluctuations. Even flow reversal is possible. This type of behavior is

a large amplitude limit cycle oscillation. It starts to occur in a region of

the compressor map where the pressure rise and mass flow characteristics

for constant speed have a positive slope that exceeds a certain value deter-

mined by characteristics of the compressor and slope of the load line. The

slope of instantaneous mass flow/pressure rise characteristic is important.

As a consequence, the onset of surge not only depends on the compressor

characteristics, but also on the flow/pressure characteristic of the system it

discharges into [dJ95].

Surge has a more complex topology than rotating stall. At least four

different categories of surge, with respect to flow and pressure fluctuations,

can be distinguished: mild, classic, modified and deep surge.

As shown in Figure 3, the cycle starts at 1 where the flow becomes

unstable. It then goes very fast to the negative flow characteristic at 2 and

descends until approximately zero flow 3. Then it proceeds very fast to the

normal characteristic at 4 where it starts to climb to point 1. Arriving at

point 1 the cycle repeats unless measures are taken to stop it.

Rotating surge and stall phenomena restrict the performance (pressure

rise) and efficiency (specific power consumption) of the compressor. This

may lead to rapid blade heating and to an increase in the exit temperature

of the compressor.

Blade vibration and shaft torque reversals may lead to compressor fail-

ure.

On the compressor map the line/barrier that separates regions of stable

and unstable operations is called surge line and it is characterized by three

variables: compressor rotating speed, n, mass flow, φ, non-dimensional flow

coefficient or mass flow divided by the choked mass flow and pressure ratio,

Ψ, the non-dimensional pressure coefficient or the pressure ratio between
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exit and inlet of the compressor.

Anti-Surge Measures

Measures that have been suggested to cope with surge are as follows [dJ95].

• Surge control, surge avoidance, where the machine is prevented to

operate in a region near and beyond the surge line. It is an open loop

strategy.

• Surge detection and avoidance, where the surge avoidance starts acting

when the onset of surge is detected. It is a closed loop strategy.

• Active surge control, where the flow instabilities are stabilized by one

or more actuators who under closed loop control take input from a

controller that receives relevant information from suitable sensors.

The accuracy of the detection of surge depends on the instrumentation

that should measure quantities that eventually could lead to surge. Due to

the small time scales involved, the sensors and actuators should have small

time constants and delays. Also the instrumentation should not be intrusive,

with low maintenance cost, easily repaired and the reliability of the machine

must be ensured.

A surge-avoidance line (or surge control line) which the compressor is

not allowed to cross in the compressor map is introduced some distance, e.g.

10% of flow rate, from the actual surge line, although this margin can be

altered dynamically. This margin does not follow from a detailed analysis

of the influence of disturbances and uncertainties on the surge behavior, but

is fixed by empirical rules on an ad-hoc basis. The aim is to achieve under

no circumstances, that the turbomachine does not go into surge, despite

all uncertainties. On the other hand, this restriction of the feasible operat-

ing region unduly restricts the capabilities of the machine. The surge line

constraint is a nonlinear inequality constraint; it is approximated by one or

more linear constraints [Mac04]. Control systems currently used in industry

are based on this control strategy.
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Surge avoidance is adopted in the present work, according to which the

compressor is allowed to operate at an appropriate pressure and flow so as

to avoid the instability. This is shown in Figure 3.

Pressure
ratio

Mass flow

Surge margin

Surge line Surge

control line
12

3
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Figure 3: Surge avoidance
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