

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«ΠΑΡΑΜΕΤΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΕΥΡΟΥΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΑΒΑΘΩΝ ΚΥΚΛΙΚΩΝ ΣΗΡΑΓΓΩΝ ΜΕ ΛΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ»

Της φοιτήτριας: **ΛΙΟΥΜΠΙΤΣΙΤΣ ΓΙΑΣΝΑ** Α.Μ.: **06104016**

Επιβλέπων καθηγητής: ΣΑΚΕΛΛΑΡΙΟΥ ΜΙΧΑΛΗΣ Καθηγητής Ε.Μ.Π.

ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2009

ΠΕΡΙΕΧΟΜΕΝΑ

ΕΙΣΑΓΩΓΗ	7
ABSTRACT	9
ΕΥΧΑΡΙΣΤΙΕΣ	11
ПЕРІЛНҰН	13
ΚΕΦΑΛΑΙΟ 1	
1. ΑΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚ	ΚΗΣ ΖΩΝΗΣ
ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΙΤΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ	KPITHPIO
MOHR-COULOMB	
1.1. Γενικα Στοιχεια	
1.2. Κριτηριο Monr-Coulomb	18
	22
2 ΠΡΑΚΤΙΚΉ ΕΦΑΡΜΟΓΗ ΑΥΣΗΣ ΚΑΕΙΣΤΗΣ ΜΟΡΦΗΣ ΠΟΥ ΥΠΑ	
2. ΠΙ ΑΚΤΙΚΗ ΕΦΑΙ ΜΟΙ Η ΑΤ2Π2 ΚΛΕΙ2ΤΗ2 ΜΟΙ ΦΗ2 ΠΟΥ ΤΗΑ ΚΡΙΤΗΡΙΟ ΜΟΗΡ-CΟΙΠ ΟΜΡ ΣΕ ΑΡΑΘΗ ΚΥΚΑΙΚΗ ΣΗΡΑΓΓΑ	XUIEI 210 25
21 Fisayowń	25
2.2. Αντιποοσωπευτική Γεωτεννική Τομή Σχεδιασμού 34	26
2.2.1 Γενικά στοιγεία διατομής	26
2.2.2. Υπολογισμός μέσων τιμών παραμέτρων	27
2.2.3. Εφαρμονή τιμών και χρήση υπολογιστικού φύλλου Excel	30
2.2.4. Συμπεράσματα εφαρμονής	
2.2.5. Διόρθωση δεδομένων	
2.2.6. Υπολογισμοί εύρους πλαστικών ζωνών	41
2.2.6.1. Υπολογισμός συνολικού εύρους πλαστικών ζωνών	41
2.2.6.2. Συμπεράσματα	41
2.2.6.3. Υπολογισμός εύρους πλαστικών ζωνών για κάθε πλαστική ζώνη	42
2.2.6.4. Συμπεράσματα	43
2.2.7. Μέσο εύρος πλαστικής ζώνης	48
2.2.8. Κανονικοποίηση εύρους πλαστικής ζώνης	49
2.2.9. Εκκεντρότητα Ε	53
2.2.9.1. Γενικά στοιχεία	53
2.2.9.2. Υπολογισμός εκκεντρότητας Ε	53
2.2.9.3. Συμπεράσματα	56
2.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β	57
2.3.1. Γενικά στοιχεία διατομής	57
2.3.2. Υπολογισμός μέσων τιμών παραμέτρων	58
2.3.3. Εφαρμογή τιμών και χρήση υπολογιστικού φύλλου Excel	60
2.3.4. Συμπεράσματα εφαρμογής	66
2.3.5. Διόρθωση δεδομένων	
2.3.5. Υπολογισμοί εύρους πλαστικών ζωνών	
2.3.6.1. Υπολογισμός συνολικού εύρους πλαστικής ζώνης	
2.3.6.2. Συμπερασματα	
2.3.5.5. Υπολογισμος ευρους πλαστικών ζώνων για καθε πλαστική ζώνη	/1
2.3.0.4. Συμπερασματα	

2.38. Κανονικοποίηση εύρους πλαστικής ζώνης	2.38. Κανονικοποίηση εύρους πλαστικής ζώνης	238 Κανονικοποίηση εύρους πλαστικής ζώνης	77
2.39. Εκκεντρότητα Ε 81 2.39.1. Υπολογισμός εκκεντρότητας Ε 81 2.39.2. Συμπεράσματα 84 2.4. Γενικό Συμπεράσματα 85 2.4.1. Συμπεράσματα για κάθε διατομή 85 2.4.2. Σύγκριση συνολικού εόρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση συνολικού εόρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση εύρους για κάθε πλαστικής ζώνης 86 2.4.2.2. Σύγκριση εύρους για κάθε πλαστικής ζώνης 86 2.4.3.3. Σύγκριση εύρους για κάθε πλαστικής ζωνής 86 2.4.2.4. Σύγκριση εύρους για κάθε πλαστικής ζωνής 87 2.4.2.5. Σύγκριση εκχεντρότητας Ε 96 2.4.2.6. Γενική παρατήρηση 100 ΚΕΦΑΛΑΙΟ 3 101 3. ΑΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΑΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΑΙΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΙΤΑ ΥΙΙΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ ΜΟΗR-COULOMB ΜΕ ΧΡΗΣΗ ΓΑΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLΑΒ 103.1. Εισαγογή 103 3.1. Εισαγογή 103 3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΑΛΑΙΟ 4 109 4.10 Αλαποτελέσματα εφαρμογής 111 4.2. Αντιπροσοπευτική Γεοτεχνική Τομή Σχεδιασμού 3Α 111 4.2.2.1. Προύγταυ	2.3.9. Εκκοντρότητα Ε 81 2.3.9.1. Υπολογισμός εκκοντρότητας Ε 81 2.3.9.2. Συμπεράσματα 84 2.4. Γενικά Συμπεράσματα για κάθε διατομή 85 2.4.1. Συμπεράσματα για τς δυο γεοτεχνικές διατομές 86 2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση εύρους για κάθε πλαστική ζώνη 87 2.4.2.2. Σύγκριση είχους για κάθε πλαστική ζώνη 87 2.4.2.3. Σύγκριση είχους για κάθε πλαστική ζώνης 87 2.4.2.5. Σύγκριση είχους για κάθε πλαστική ζώνη 90 2.4.2.6. Γενική παρατήρηση 100 ΚΕΦΛΛΑΙΟ 3	2.3.0. IXUVUVIKU//UIIUII GUPUUS //////////////////////////////////	78
2.3.9.1. Υπολογισμός εκκεντρότητας Ε	2.3.9.1. Υπολογισμός εκκεντρότητας Ε	2.3.9. Εκκεντρότητα Ε	81
2.3.9.2. Συμπεράσματα 84 2.4.1. Συμπεράσματα για κάθε διατομή 85 2.4.2. Συμπεράσματα για κάθε διατομή 85 2.4.2. Συμπεράσματα για τις δυο γεωτεχνικές διατομές 86 2.4.2. Σύγκριση συνολικού εύρους πλαστικής ζώνης 86 2.4.2.1. Σύγκριση μέσων τιμών πλαστικών ζώνων 90 2.4.2.3. Σύγκριση μέσων τιμών πλαστικών ζώνων 90 2.4.2.4. Σύγκριση μέσων τιμών πλαστικών ζώνων 93 2.4.2.5. Σύγκριση εκκεντρότητας Ε 96 2.4.2.6. Γενική παρατήρηση 100 ΚΕΦΑΛΑΙΟ 3 101 3. ΑΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟΙ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΓΥΡΩ ΑΠΟ ΔΒΑΘΗ ΚΥΚΑΙΚΗ ΣΗΡΑΓΤΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ ΜΟΗ-ΚΟΟULOMB ΜΕ ΧΡΗΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤΙΑΒ 3.1. Εισαγωγή 103 3.1. Εισαγωγή 103 3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΛΑΙΟ 4 109 4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΙΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ 111 4.2.1 Δεδομένα κια διάδικασία εκτέλεσης 111 4.2.1 Δεδομένα κια διάδικασία εκτέλεσης 111 4.2.1 Δεδομένα κια διάδικασία εκτέλεσης 111 4.2.2.2. Εύρος πλαστικής ζώνης 122	2.3.9.2. Συμπεράσματα 84 2.4.1. Συμπεράσματα για κάθε διατομή	2.3.9.1. Υπολογισμός εκκεντρότητας Ε	81
2.4. Γενικά Συμπεράσματα για κάθε διατομή	2.4. Γενικά Συμπεράσματα για κάθε διατομή. 85 2.4.1. Συμπεράσματα για τις δυο γεοτεχνικές διατομές 86 2.4.2. Σύγκριση συνολικού εύρους πλαστικής ζώνη. 86 2.4.2. Σύγκριση μόσον τιμόν πλαστικής ζώνη. 87 2.4.2.2. Σύγκριση μόσον τιμόν πλαστικής ζώνη. 87 2.4.2.5. Σύγκριση μόσον τιμόν πλαστικής ζώνη. 87 2.4.2.5. Σύγκριση μέσον τιμόν πλαστικής ζώνη. 87 2.4.2.5. Σύγκριση εκονυκοποιμένου εύρους. 93 2.4.2.6. Γενική παρατήρηση. 100 ΚΕΦΑΛΑΙΟ 3	2.3.9.2. Συμπεράσματα	
2.4.1. Συμπεράσματα για κάθε διατομή	2.4.1. Συμπεράσματα για κάθε διατομή	2.4. Γενικά Συμπεράσματα	85
2.4.2. Σύμκριση συνολικού εύρους πλαστικής ζώνης.	2.4.2. Σύμπεράσματα για τις δύο γεωτεχνικές διατομές	2.4.1. Συμπεράσματα για κάθε διατομή	85
2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης	2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης	2.4.2. Συμπεράσματα για τις δυο γεωτεχνικές διατομές	86
2.4.2.2. Σύγκριση εύρους για κάθε πλαστική ζώνη	2.4.2.2. Σύγκριση εύρους για κάθε πλαστική ζώνη	2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης	86
2.4.2.3. Σύγκριση μέσων τιμών πλαστικών ζωνών	2.4.2.3. Σύγκριση μέσων τιμών πλαστικών ζωνών	2.4.2.2. Σύγκριση εύρους για κάθε πλαστική ζώνη	87
2.4.2.4. Σύγκριση κανονικοποιημένου εύρους	2.4.2.4. Σύγκριση κανονικόποιημένου εύρους	2.4.2.3. Σύγκριση μέσων τιμών πλαστικών ζωνών	90
2.4.2.5. Σύγκριση εκκεντρότητας Ε	2.4.2.5. Σύγκριστι εκκεντρότητας Ε	2.4.2.4. Σύγκριση κανονικοποιημένου εύρους	93
2.4.2.6. Γενική παρατήρηση 100 ΚΕΦΑΛΑΙΟ 3	2.4.2.6. Γενική παρατήρηση 100 ΚΕΦΑΛΑΙΟ 3	2.4.2.5. Σύγκριση εκκεντρότητας Ε	96
ΚΕΦΑΛΑΙΟ 3	ΚΕΦΑΛΑΙΟ 3	2.4.2.6. Γενική παρατήρηση	100
ΚΕΦΑΛΑΙΟ 3	ΚΕΦΑΛΑΙΟ 3		
3. ΑΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ME XPHΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή. 103 3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης. 105 ΚΕΦΑΛΛΙΟ 4. 109 4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ 110 4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ 111 4.1. Εισαγωγή. 111 4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α. 111 4.2.1. Λεδομένα και διαδικασία εκτέλεσης. 111 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης. 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 122 4.2.4. Μέσο εύρους πλαστικής ζώνης. 123 4.3.4. Μέσο εύρους πλαστικής ζώνης. 124 4.3.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 126 4.3.4. Προκύπτουσες εικόνες 129 4.3.5. Γμροκύπτους τημαστικής ζώνης. 122 4.3.6. Γμοκύπτουσες εικόνες 129 4.3.7. Προκύπτουσες εικόνες 120 4.3.8. Γμροκύπτουσες εικόνες 120	3. ΑΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ME XPHEH ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή	ΚΕΦΑΛΑΙΟ 3	101
ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ME XPHΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή	ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ME XPHΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή	3. ΛΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚΗ	Σ ΖΩΝΗΣ
MOHR-COULOMB ME XPHΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή	MOHR-COULOMB ME XPHΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB103 3.1. Εισαγωγή	ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ Ι	KPITHPIO
3.1. Εισαγωγή 103 3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΑΛΑΙΟ 4. 109 4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ 1109 4. ΠΡΑΚΤΙΣΜΟΥ ΜΑΤΙΔΒ ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 111 4.1. Εισαγωγή 111 4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 4.2.1. Λεδομένα και διαδικασία εκτέλεσης 114 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3.2. Ναλέτη εικόνων 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μάσο εύρους πλαστικής ζώνης 122 4.2.4. Μέσο εύρους πλαστικής ζώνης 123 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.1. Λεδομένα και διαδικασία εκτέλεσης 127 4.3.2. Προκύπτουσες εικόνες 129 4.3.2. Εύρος πλαστικής ζώνης 129 4.3.2. Εύρος πλαστικής ζώνης 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 133 4.3.5. Γρωπεράσματα 133 4.3.6. Εκκεντρότητα Ε πλαστικής ζών	3.1. Εισαγωγή 103 3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΑΛΑΙΟ 4	ΜΟΗR-COULOMB ΜΕ ΧΡΗΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤ	LAB 103
3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΑΛΑΙΟ 4	3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης 105 ΚΕΦΑΛΑΙΟ 4	3.1. Εισαγωγή	103
ΚΕΦΑΛΑΙΟ 4	ΚΕΦΑΛΑΙΟ 4	3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης	105
ΚΕΦΑΛΑΙΟ 4	ΚΕΦΑΛΑΙΟ 4		
4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΑΤΙΣΜΟΥ ΜΑΤLAB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ	4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΑΤΙΣΜΟΥ ΜΑΤLAB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ	ΚΕΦΑΛΑΙΟ 4	109
ΗΡΟΓΡΑΜΑΤΙΣΜΟΥ ΜΑΤLAB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 111 4.1. Εισαγωγή 111 4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 4.2. Ακοτελέσματα εφαρμογής 114 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2. Εύρος πλαστικής ζώνης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.5. Μανονικοποιημένο εύρους πλαστικής ζώνης 126 4.3.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 129 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134	ΠΡΟΓΡΑΜΑΤΙΣΜΟΥ ΜΑΤLAB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 111 4.1. Εισαγωγή 111 4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 4.2. Αντοπελέσματα εφαρμογής 111 4.2.1. Δεδομένα και διαδικασία εκτέλεσης 111 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη εικόνων. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης. 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης. 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 129 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2. Εύρος πλαστικής ζώνης 133 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρους πλαστικής ζώνης 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 134 4.3.6. Κ	4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ	ΓΛΩΣΣΑΣ
41. Εισαγωγή 111 42. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 42.1. Δεδομένα και διαδικασία εκτέλεσης 111 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2. Προκύπτουσες εικόνες 114 4.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3. Μελέτη εικόνων 118 4.2.3. Μελέτη τιμών εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3. Αυτοιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρους πλαστικής ζώνης 137	4.1. Εισαγωγή	ΠΡΟΓΡΑΜΑΤΙΣΜΟΥ ΜΑΤLΑΒ ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ	111
4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 4.2.1. Δεδομένα και διαδικασία εκτέλεσης 111 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137	4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α 111 4.2.1. Δεδομένα και διαδικασία εκτέλεσης 111 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.4. Λεδομένα και διαδικασία εκτέλεσης 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2. Εύρος πλαστικής ζώνης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 133 4.3.4. Μέσο εύρος πλαστικής ζώνης 134 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 137	4.1. Εισαγωγή	111
4.2.1. Δεδομένα και διαδικασία εκτέλεσης 111 4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 133 4.3.4. Μέσο εύρος πλαστικής ζώνης 134	4.2.1. Δεδομένα και διαδικασία εκτέλεσης	4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α	111
4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρους πλαστικής ζώνης 134	4.2.2. Αποτελέσματα εφαρμογής 114 4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 133 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 133 4.3.5. Κανονικοποίησι εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίησι εύρους πλαστικής ζώνης 137	4.2.1. Δεδομένα και διαδικασία εκτέλεσης	111
4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης. 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4B 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2.1 . Προκύπτουσες εικόνες 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 134	4.2.2.1. Προκύπτουσες εικόνες 114 4.2.2.2. Εύρος πλαστικής ζώνης 117 4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 119 4.2.4. Μέσο εύρους πλαστικής ζώνης 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4B 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2.2. Εύρος πλαστικής ζώνης 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 133 4.3.3. Συμπεράσματα 133 4.3.3. Συμπεράσματα 133 4.3.4. Μέσο εύρος πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 137 4.3.4. Μέσο εύρος πλαστικής ζώνης 137	4.2.2. Αποτελέσματα εφαρμογής	114
4.2.2.2. Εύρος πλαστικής ζώνης	4.2.2.2. Εύρος πλαστικής ζώνης	4.2.2.1. Προκύπτουσες εικόνες	
4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης. 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης. 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης. 127 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες. 129 4.3.2.2. Εύρος πλαστικής ζώνης. 132 4.3.3. Συμπεράσματα. 133 4.3.4. Μέσο εύρος πλαστικής ζώνης. 137	4.2.3. Συμπεράσματα 118 4.2.3.1. Μελέτη εικόνων. 118 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης. 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης. 126 4.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης. 127 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης. 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων. 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 134 4.3.4. Μέσο εύρος πλαστικής ζώνης. 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης. 138		114
4.2.3.1. Μελέτη εικόνων	4.2.3.1. Μελέτη εικόνων	4.2.2.2. Εύρος πλαστικής ζώνης	114 117
4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης. 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης. 126 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης. 127 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2. Εύρος πλαστικής ζώνης. 132 4.3.3. Συμπεράσματα. 133 4.3.3.1. Μελέτη εικόνων. 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 134 4.3.4. Μέσο εύρος πλαστικής ζώνης. 137	4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 119 4.2.4. Μέσο εύρους πλαστικής ζώνης. 122 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης. 123 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης. 126 4.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 127 4.3.1. Δεδομένα και διαδικασία εκτέλεσης. 127 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες. 129 4.3.2. Σύρος πλαστικής ζώνης. 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων. 133 4.3.4. Μέσο εύρος πλαστικής ζώνης. 134 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης. 138	4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	114 117 118
4.2.4. Μέσο εύρους πλαστικής ζώνης.1224.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης.1234.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης.1324.3.3.1. Μελέτη εικόνων.1334.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης.1344.3.4. Μέσο εύρος πλαστικής ζώνης.137	4.2.4. Μέσο εύρους πλαστικής ζώνης.1224.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης.1234.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2. Εύρος πλαστικής ζώνης.1294.3.2. Εύρος πλαστικής ζώνης.1324.3.3. Συμπεράσματα1334.3.3. Μελέτη εικόνων.1334.3.4. Μέσο εύρους πλαστικής ζώνης.1374.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης.138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα 4.2.3.1. Μελέτη εικόνων 	114 117 118 118
4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης.1234.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4B1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2. Εύρος πλαστικής ζώνης.1324.3.3. Συμπεράσματα1334.3.3.1. Μελέτη εικόνων.1334.3.4. Μέσο εύρος πλαστικής ζώνης.137	4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης.1234.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης.1324.3.3. Συμπεράσματα1334.3.3.1. Μελέτη εικόνων.1334.3.4. Μέσο εύρος πλαστικής ζώνης.1374.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης.138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα 4.2.3.1. Μελέτη εικόνων 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 	114 117 118 118 118
4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης.1324.3.3. Συμπεράσματα1334.3.3.1. Μελέτη εικόνων.1334.3.4. Μέσο εύρος πλαστικής ζώνης.137	4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης.1264.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4B1274.3.1. Δεδομένα και διαδικασία εκτέλεσης.1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης.1324.3.3. Συμπεράσματα1334.3.3.1. Μελέτη εικόνων.1334.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης.1344.3.4. Μέσο εύρος πλαστικής ζώνης.1374.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης.138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	114 117 118 118 119 122
4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης1324.3.3.1. Μελέτη εικόνων1334.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης1344.3.4. Μέσο εύρος πλαστικής ζώνης137	4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β1274.3.1. Δεδομένα και διαδικασία εκτέλεσης1274.3.2. Αποτελέσματα εφαρμογής1294.3.2.1. Προκύπτουσες εικόνες1294.3.2.2. Εύρος πλαστικής ζώνης1324.3.3. Συμπεράσματα1334.3.3.1. Μελέτη εικόνων1334.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης1344.3.4. Μέσο εύρος πλαστικής ζώνης1374.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα 4.2.3.1. Μελέτη εικόνων 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης	114 117 118 118 118 119 122 123
4.3.1. Δεδομένα και διαδικασία εκτέλεσης127 4.3.2. Αποτελέσματα εφαρμογής129 $4.3.2.1.$ Προκύπτουσες εικόνες129 $4.3.2.2.$ Εύρος πλαστικής ζώνης132 4.3.3. Συμπεράσματα133 $4.3.3.1.$ Μελέτη εικόνων133 $4.3.3.2.$ Μελέτη τιμών εύρους πλαστικής ζώνης134 4.3.4. Μέσο εύρος πλαστικής ζώνης137	4.3.1. Δεδομένα και διαδικασία εκτέλεσης 127 4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 138 4.4. Γρημεά 138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	114 117 118 118 119 122 123 126
4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137	4.3.2. Αποτελέσματα εφαρμογής 129 4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 138 4.4. Γρημες 138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	114 117 118 118 119 122 123 126 127
4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137	4.3.2.1. Προκύπτουσες εικόνες 129 4.3.2.2. Εύρος πλαστικής ζώνης 132 4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 138 4.4. Γρημεά Συμπεράσματα 141	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	
 4.3.2.2. Εύρος πλαστικής ζώνης	4.3.2.2. Εύρος πλαστικής ζώνης	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	114 117 118 118 118 119 122 123 126 127 127 127 129
4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137	4.3.3. Συμπεράσματα 133 4.3.3.1. Μελέτη εικόνων 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 134 4.3.4. Μέσο εύρος πλαστικής ζώνης 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης 138 4.4. Γρημεί 138	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	
4.3.3.1. Μελέτη εικόνων	4.3.3.1. Μελέτη εικόνων. 133 4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης. 134 4.3.4. Μέσο εύρος πλαστικής ζώνης. 137 4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης. 138 4.4. Γρημεί 138	4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα 4.2.3.1. Μελέτη εικόνων 4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης 4.2.4. Μέσο εύρους πλαστικής ζώνης 4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης 4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης 4.3.Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β 4.3.1. Δεδομένα και διαδικασία εκτέλεσης 4.3.2. Αποτελέσματα εφαρμογής 4.3.2.1. Προκύπτουσες εικόνες 4.3.2.2. Εύρος πλαστικής ζώνης	114 117 118 118 119 122 123 126 127 127 127 127 129 129 132
4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης	4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης	 4.2.2.2. Εύρος πλαστικής ζώνης 4.2.3. Συμπεράσματα	
4.3.4. Μέσο εύρος πλαστικής ζώνης	4.3.4. Μέσο εύρος πλαστικής ζώνης	 4.2.2.2. Εύρος πλαστικής ζώνης	
	4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης	 4.2.2.2. Εύρος πλαστικής ζώνης	
4.3.5. Κανονικοποιηση ευρους πλαστικης ζωνης138	4.4 Empré Engenand	 4.2.2. Εύρος πλαστικής ζώνης	
	4.4. Ι ενικά Δυμπερασματά	4.2.2. Εύρος πλαστικής ζώνης	

4.4.1. Στοιχεία που αφορούν μεμονωμένη διατομή
4.4.2. Στοιχεία που αφορούν τις δυο διατομές
4.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης
4.4.2.2. Σύγκριση ευρών για όλες τις τιμές της πίεσης υποστήριξης143
4.4.2.3. Σύγκριση μέσου εύρους πλαστικής ζώνης των δυο διατομών
4.4.2.4. Σύγκριση κανονικοποιημένου εύρους πλαστικής ζώνης
4.4.2.5. Αξιολόγηση των μελετημένων στοιχείων
ΚΕΦΑΛΑΙΟ 5
5. ΣΥΣΧΕΤΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΦΑΡΜΟΓΗΣ ΚΡΙΤΗΡΙΟΥ ΜΟΗR-
COULOMB TOY ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΦΥΛΛΟΥ ΕΧCEL ΚΑΙ ΣΥΝΑΡΤΗΣΗΣ
ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΜΑΤLAB155
5.1. Εισαγωγή
5.2.Σύγκριση Αποτελεσμάτων Αντιπροσωπευτικής Γεωτεχνικής Τομής Σχεδιασμού 3Α156
5.2.1. Σύγκριση εύρους πλαστικής ζώνης των εφαρμογών Excel και MATLAB
5.2.2. Συμπεράσματα
5.2.2.1. Γενικό συμπέρασμα
5.2.2.2. Διαφορές υπολογισθέντων ευρών των δυο εφαρμογών
5.3.Σύγκριση Αποτελεσμάτων Αντιπροσωπευτικής Γεωτεγγικής Τομής Σγεδιασμού 4B162
5.2.2. Συμπεράσματα
5.2.2.1. Γενικό συμπέρασμα
5.2.2.2. Διαφορές υπολογισθέντων ευρών των δυο εφαρμονών
5.4. Συσγέτιση Κοίσιμης Πίεσης Per
5.4.1. Καταγοαφή κοίσιμης πίεσης Per και εξαγωνή συμπεράσματος
5.4.2. Παραστατική συσγέτιση κρίσιμης πίεσης Per. [67]
КЕФАЛАЮ 6
6. ΕΞΑΓΩΓΗ ΓΕΝΙΚΟΤΕΡΩΝ ΣΥΜΠΕΡΑΣΑΜΑΤΩΝ
6.1. Συμπεράσματα για την Λύση Κλειστής Μορφής Σγηματισμού
Πλαστικής Ζώνης Υπακούοντας στο Κοιτήσιο Mohr-Coulomb του Υπολονιστικού
Φύλλου Excel
6.2. Συμπεράσματα για την Λύση Κλειστής Μορφής Σγηματισμού Πλαστικής Ζώνης
που υπακούει στο κοιτήσιο Mohr-Coulomb με την Εφαρμονή της Συνάρτησης
Πλαστικής Ζώνης του Τεχνικού Ποογοάμματος ΜΑΤLAB
ΕΠΙΛΟΓΟΣ
ΒΙΒΛΙΟΓΡΑΦΙΑ
ПАРАРТНМА

ΕΙΣΑΓΩΓΗ

Είναι γεγονός ότι τις τελευταίες δεκαετίες έχει σημειωθεί σε παγκόσμιο επίπεδο «μεγάλη έκρηξη» στην κατασκευή τόσο των σηράγγων όσο και άλλων υπόγειων έργων και ειδικά στις Μεγαλοπόλεις όπου ο επιφανειακός ελεύθερος χώρος είναι πλέον αρκετά περιορισμένος.

Όσον αφορά στις σήραγγες, πρόκειται για οριζόντιες ή περίπου οριζόντιες εκσκαφές μέσα στο έδαφος (η κλίση τους ακολουθεί τη μηκοτομή της χάραξης), που η διατομή τους αποτελείται κυρίως από τρία μέρη: βάση ή δάπεδο, πλευρικό τμήμα και οροφή και συγκριτικά με αυτήν, η διαμήκης τους διάσταση είναι αρκετά μεγαλύτερη. Εφαρμόζονται κυρίως σε συγκοινωνιακά έργα, ως οδικές ή σιδηροδρομικές σήραγγες, καθώς και ως τμήματα υδραγωγείου σε υδραυλικά έργα. Οι τρόποι διάνοιξης σηράγγων είναι οι ακόλουθοι:

- Νέα Αυστριακή μέθοδος
- Διατρήματα εκρηκτικά
- Συρμοί ολομέτωπης κοπής (TBM) με ή χωρίς ασπίδα
- Μηχανήματα σημειακής κοπής (Roadheader)
- Εκσκαφής και επανεπίχωσης (cut and cover)

Η επιλογή της μεθόδου γίνεται ανάλογα με τις διαστάσεις, το μήκος και το βάθος της σήραγγας, ανάλογα με τη διάτρηση σε εδαφικούς και βραχώδεις σχηματισμούς, ενώ η ύπαρξη υπόγειου υδροφόρου ορίζοντα είναι καθοριστικής σημασίας στην επιλογή λόγο του υδραυλικού φορτίου αλλά και λόγο της εμφάνισης υδάτων κατά τη διάτρηση.

Έτσι, για παράδειγμα, σε βραχώδεις σχηματισμούς επιλέγονται τα εκρηκτικά, τα μηχανήματα ολομέτωπης κοπής και τα μηχανήματα σημειακής κοπής. Σε μαλακούς εδαφικούς σχηματισμούς ή ημιβράχους επιλέγονται οι ασπίδες ή οι ασπίδες με μηχανήματα ολομέτωπης κοπής ή οι ασπίδες «πολτού». Σε ετερογενείς μάζες επιλέγεται κυρίως η Νέα Αυστριακή μέθοδος διάνοιξης σηράγγων.

Ανεξάρτητα από την επιλογή της μεθόδου, η διάνοιξη της σήραγγας προκαλεί πάντοτε μετακινήσεις στο πέτρωμα που τείνουν να μειώσουν τη διατομή του ανοίγματος, ενώ οι τάσεις που επικρατούν είναι κυρίως εφελκύστηκες και εμφανίζονται καθιζήσεις στην ελεύθερη επιφάνεια, στη περίπτωση των αβαθών σηράγγων. Όταν μάλιστα, η απόκλιση ανάμεσα στην πρόβλεψη και την συμπεριφορά των πετρωμάτων είναι μη αποδεκτή τότε πρόκειται για αστοχία της βραχομάζας.

Οι επικρατούντες τρόποι αστοχίας της βραχομάζας γύρω από σήραγγα είναι οι εξής:

Ψαθυρή θραύση ισχυρού συμπαγούς βράχου σε υψηλό επίπεδα επί τόπου τάσεων.

✓ Βαρυτικές πτώσεις ή ολισθήσεις τεμαχίων ή σφηνών λόγω αλληλοτεμνόμενων δομικών συνεχειών της βραχομάζας.

Σχηματισμός πλαστικής ζώνης από διατρητική θραύση ασθενούς βραχομάζας σε
 αξιόλογο τασικό πεδίο ανάλογα με την αντοχή της βραχομάζας.

Για την αποφυγή της αστοχίας οι σήραγγες επενδύονται προκειμένου οι αναπτυσσόμενες διατρητικές τάσεις να παραλαμβάνονται από τη διατρητική αντοχή των πετρωμάτων αλλά και από την επένδυση και η χρήση της ικανής υποστήριξης μειώνει και ελαχιστοποιεί τις αναμενόμενες μετακινήσεις. Έτσι λοιπόν, η διάνοιξη σηράγγων αποτελεί μεγάλη πρόκληση για το γεωτεχνικό μηχανικό καθώς θα πρέπει να γίνει ακριβής σχεδιασμός των μέτρων υποστήριξης, ειδάλλως ελλοχεύει ο κίνδυνος μεγάλων σε έκταση αστοχιών που για να αντιμετωπιστούν χρειάζεται μεγάλο κόστος.

Όσον αφορά ειδικά στην τελευταία περίπτωση αστοχίας, θεωρείται ότι η περιβάλλουσα της σήραγγας βραχομάζα συμπεριφέρεται σαν ένα ελαστικό-απολύτως πλαστικό υλικό και η αστοχία που θα συμβεί κατά το μήκος αλληλοτεμνόμενων οικογενειών ασυνεχειών αυτής θα έχει μηδενική ογκομετρική μεταβολή.

Το ελαστικό-πλαστικό υλικό γύρω από την σήραγγα παραμορφώνεται. Η παραμόρφωση, δηλαδή, η επιμήκυνση ανά μονάδα μήκους γύρω από μια σήραγγα. μπορεί να είναι είτε ελαστική, δηλαδή, παροδική και αντιστρέψιμη, είτε πλαστική, δηλαδή, μόνιμη και μη αντιστρέψιμη. Στην περίπτωση της πλαστικής παραμόρφωσης, σχηματίζεται η πλαστική ζώνη, δηλαδή, μια ζώνη μόνιμης παραμόρφωσης και το τελευταίο, απευκταίο, στάδιο της παραμόρφωσης του εδάφους κατά την εκσκαφή είναι η θραύση του υλικού, δηλαδή η πλήρης αστοχία αυτού.

Συνεπώς, η γνώση των στοιχείων της πλαστικής ζώνης γύρω από τη σήραγγα και ιδιαίτερα της έκτασης ή του εύρους της είναι χρήσιμη για την διαστασιολόγηση άλλων επιμέρους στοιχείων όπως για παράδειγμα τη διαταραχή του περιβάλλοντος εδάφους.

Βάσει των ανωτέρω καθίσταται σαφές ότι η διερεύνηση θεμάτων που σχετίζονται με την μελέτη και τον υπολογισμό των στοιχείων της σχηματιζόμενης πλαστικής ζώνης μιας σήραγγας είναι εξέχουσας σημασίας για την διάνοιξη και την κατασκευή σηράγγων. Για αυτό και αποτελεί αντικείμενο εκπόνησης της παρούσας διπλωματικής εργασίας.

ABSTRACT

Parametric Investigation of the Plastic Zone Formation Around Shallow Circular Tunnels Using a Closed Form Solution

It is a matter of fact that in recent decades there has been a worldwide 'big bang' in the construction of both, tunnels and other underground structures, especially in Megacities where the superficial free space is quite limited.

As for the tunnels, the horizontal or nearly horizontal excavations in the ground (the slope follows the altitude of the alignment) which cross section is consisted of three parts: a base or floor, side part and roof and compared with the longitudinal dimension, the second one is much larger. They are mainly applied to transportation projects as road and rail tunnels, as well as parts of an aqueduct to hydraulic projects. The methods of tunneling are:

- New Austrian method
- Blasting
- Tunneling Boring Machine (TBM) with or without shield
- Roadheader machines
- Cut and cover method

The adoption of the method is depending on the size, the length and the depth of the tunnel, on the geological formations, while the existence of underground aquiferous horizon is of major importance in the selection of the method, due to both the hydraulic load and the flow of water during the excavation.

For example, in rock formations, we usually select tunnel boring machines and roadheader machines. In soft soil formations or semi-rocks, it is selected shields or shields with tunnel boring machines or shields "pulp". In heterogeneous masses it is mainly chosen the New Austrian tunneling method.

Whichever the selection of method is, tunneling always causes movements in rock that tend to reduce the cross section of the opening while the strains are mostly tensile and settlements in at the free surface in case of shallow tunnels. Indeed, when the difference between the forecast and the behavior of the rocks is not acceptable, it leads to a failure of the rock mass.

The prevailing failure methods of rock mass around the tunnel are:

- \checkmark Brittle fracture of solid rocks of high strength at high levels of in-situ stresses.
- \checkmark Gravity falls or slips of pieces and wedges due to the structure of the rock mass.

 \checkmark Formation of plastic zone caused by breaking of the weak rock mass in a high stress field accordingly to the strength of the rock mass.

To avoid the failure, tunnels are reinforced in order to the developing breaking strains be received both by the punching strength of rocks and the reinforcement and the use of capable support reduces and minimizes the expected movements. Thus, tunneling is a huge challenge for the geotechnical engineer as it should be an accurate planning of support measures, otherwise there is a danger of large scale failures of enormous cost.

As for the last mean of failure, mentioned above, it is considered that the tunnel surrounding rock mass behaves as an elastic-perfectly plastic material and the failure, appeared along the intersected families of the discontinuities, has no volumetric change.

The elastic-plastic material around the tunnel deforms. The deformation or the elongations per length's unit around a tunnel can be either elastic which means transient and reversible, or plastic, permanent and irreversible. In the case of plastic deformation, a plastic zone or a zone of permanent deformation is formed and the last, undesirable, level of deformation of the ground during the excavation is the fracture of the material or its complete failure.

Therefore, the knowledge of the elements of the plastic zone around the tunnel, especially those of its extent or width is very useful in the dimensioning of other specific elements such as the disruption of the surrounding ground.

According to the above, it is clear that the examination of issues related to the study and the calculation of the elements of the plastic zone formation around a tunnel is of great importance for tunneling and tunnel construction and defines the subject of the present study.

ΕΥΧΑΡΙΣΤΙΕΣ

Θερμές ευχαριστίες εκφράζονται στον καθηγητή κ. Σακελλαρίου Μιχάλη για τις πολύτιμες υποδείζεις και τις ουσιώδεις κατευθύνσεις και επισημάνσεις σε όλη τη διάρκεια εκπόνησης της διπλωματικής μου εργασίας.

Ιδιαίτερες ευχαριστίες απευθύνονται και στη συμφοιτήτρια μου, τη Φραγκούλη Γιοβάνα, για την βοήθεια της στην εκμάθηση και την εκτέλεση του προγράμματος τεχνικού προγραμματισμού MATLAB.

ΠΕΡΙΛΗΨΗ

Τα βασικά μέρη από τα οποία αποτελείται η παρούσα εργασία είναι τα εξής: Λύση κλειστής μορφής για τον σχηματισμό πλαστικής ζώνης γύρω από αβαθή κυκλική σήραγγα υπακούοντας στο κριτήριο Mohr-Coulomb (Υπολογιστικό φύλλο Excel) (Κεφάλαιο 1-2).

Στο Κεφάλαιο 1 παρατίθενται στοιχεία του θεωρητικού υποβάθρου όσον αφορά στον σχηματισμό της πλαστικής ζώνης γύρω από κυκλική σήραγγα καθώς και στον ρόλο της εφαρμογής, που υπακούει στο κριτήριο Mohr-Coulomb και έχει αναπτυχτεί στο υπολογιστικό φύλλο Excel, στην επίλυση του σχηματισμού της πλαστικής ζώνης. Το Κεφάλαιο 2 αφορά στην πρακτική εφαρμογή της λύσης κλειστής μορφής όπου αναπτύσσονται διεξοδικά το σύνολο των αναλύσεων που διενεργήθηκαν και συντελείται εκτενής παράθεση των αριθμητικών και γραφικών αποτελεσμάτων και συμπερασμάτων.

Λύση κλειστής μορφής για τον σχηματισμό πλαστικής ζώνης γύρω από αβαθή κυκλική σήραγγα υπακούοντας στο κριτήριο Mohr-Coulomb (Γλώσσα προγραμματισμού MATLAB) (Κεφάλαιο 3-4).

Στο Κεφάλαιο 3 αναφέρονται γενικά θεωρητικά στοιχεία που αφορούν στην προγραμματιστική γλώσσα MATLAB και εν συνεχεία παρουσιάζεται συνοπτικά το πρόγραμμα υπολογισμού πλαστικής ζώνης που αναπτύχτηκε στα πλαίσια εκπόνησης διπλωματικής εργασίας της φοιτήτριας Φραγκούλη Γ., (2009). Στο κεφάλαιο 4, αντίστοιχα με το Κεφάλαιο 2, παρατίθεται το σύνολο των εφαρμογών που πραγματοποιήθηκαν όσον αφορά στην εκτέλεση του προγράμματος μαζί με την αναλυτική παρουσίαση τόσο των αριθμητικών όσο και των αντίστοιχων παραστατικών συμπερασμάτων.

Συσχέτιση και σύγκριση εφαρμογών (Κεφάλαιο 5).

Στο προκείμενο κεφάλαιο διενεργείται η συσχέτιση και η πρακτική σύγκριση των υπολογιστικών συμπερασμάτων των προηγούμενων κεφαλαίων ειδικά όσον αφορά στα στοιχεία της σχηματιζόμενης πλαστικής ζώνης γύρω από κυκλική σήραγγα.

🌶 Διεξαγωγή γενικότερων συμπερασμάτων (Κεφάλαιο 6).

Το κεφάλαιο αφορά στην συγκεντρωτική παράθεση των συμπερασμάτων που προκύπτουν στα πλαίσια εκπόνησης της παρούσας εργασίας.

> Επίλογος.

ΚΕΦΑΛΑΙΟ

1. ΛΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB

1.1. Γενικά Στοιχεία

Κατά τον σχεδιασμό της κυκλικής σήραγγας σημαντικό στοιχείο αποτελεί η κατανομή της πλαστικής ζώνης γύρω από την σήραγγα. Αν και το πρόβλημα της κατανομής έχει ήδη αναλυθεί, η ανάλυση αυτή ωστόσο αφορά έναν απέραντο χώρο, δηλαδή αναφέρεται κυρίως στην περίπτωση των βαθιών κυκλικών σηράγγων όπου η επίλυση του προβλήματος πραγματοποιείται με επιτυχία. Για τις αβαθείς κυκλικές σήραγγες το πρόβλημα γίνεται πιο σύνθετο εξαιτίας της γειτνίασης της σήραγγας με την επιφάνεια του εδάφους. Η περιπλοκότητα έγκειται στο ότι οι τάσεις και η μορφή της πλαστικής ζώνης επηρεάζονται έντονα από την θέση της εδαφικής επιφάνειας. Αποδίδεται δηλαδή στην παρουσία ενός ανωτέρου ορίου.

Έτσι, για βαθιές κυκλικές σήραγγες με βάθος 120 m και διάμετρο 10 m σε ένα ομοιογενές και ισοτροπικό ελαστικό-πλαστικό έδαφος με συντελεστή εδαφικής πίεσης $K_0=1$, η μορφή της πλαστικής ζώνης δεν επηρεάζεται από τη τιμή της εσωτερικής πίεσης και θα είναι πάντα κυκλική, ομόκεντρη με την κοιλότητα της σήραγγας. Αντίθετα, για μια σήραγγα ίδιας διαμέτρου και σε ίδιες εδαφικές συνθήκες αλλά με βάθος 10 m μόνο, είναι σίγουρο ότι η μορφή της πλαστικής ζώνης θα παρουσιάσει από μικρή έως μεγάλη εκκεντρότητα και μπορεί να απλωθεί έως την επιφάνεια του εδάφους.

Ωστόσο, ο σχεδιασμός των αβαθών σηράγγων πάντα σχετίζεται με την απαίτηση της συγκράτησης της μορφής της πλαστικής ζώνης στην κατώτερη επέκταση, τόσο για τη μείωση της ανάπτυξης των εδαφικών καθιζήσεων όσο και για την διασφάλιση της σταθερότητας της υπόγειας εκσκαφής.

Σημειώνεται επίσης ότι για τον χαρακτηρισμό μιας κυκλικής σήραγγας ως βαθιά ή αβαθής, όπως αναφέρεται στα προηγούμενα, έχει χρησιμοποιηθεί ο αδιάστατος λόγος του βάθους d_i (απόσταση από την εδαφική επιφάνεια έως το κέντρο της σήραγγας) ως προς την ακτίνα της σήραγγας r_i (Bray., 1987). Όταν ο λόγος d_i/r_i ≥25, η κυκλική σήραγγα χαρακτηρίζεται ως βαθιά. Ο λόγος d_i/r_i≤7 χαρακτηρίζει μια αβαθή σήραγγα. Τέλος, το πεδίο τιμών 7≤d_i/r_i≤25 αποτελεί μια μεταβατική περιοχή τιμών.

Στην περίπτωση λοιπόν μιας αβαθούς σήραγγας, με d_i/r_i≤7, η οποία βρίσκεται κάτω από ενιαία πίεση, ο υπολογισμός της πλαστικής τάσης και της κατανομής της πλαστικής ζώνης μπορεί να επιλυθεί με την εφαρμογή του κριτηρίου Mohr-Coulomb που αποτελεί μια αποτελεσματική μέθοδο επίλυσης του προβλήματος της κατανομής και σχηματισμού της πλαστικής ζώνης των αβαθών κυκλικών σηράγγων.

1.2. Κριτήριο Mohr-Coulomb

Πρόκειται για μια λύση κλειστής μορφής του προβλήματος της πλαστικής ζώνης και της διανομής των τάσεων γύρω από μια αβαθή κυκλική σήραγγα στον πλαστικόελαστικό ημίχωρο η οποία πρόεκυψε με την χρήση των διπολικών συντεταγμένων και αφορά ομοιογενή και ισοτροπικά εδάφη. Αυτή η κλειστής μορφής λύση που επικυρώθηκε μέσα από μαθηματικές και υπολογιστικές αναλύσεις, έχει επίσης συγκριθεί με αριθμητικά μοντέλα κάτω από την επίδραση φορτίσεων βαρύτητας και επιλύθηκε με την χρήση των πεπερασμένων διαφορικών μεθόδων.

Η σήραγγα στην μέθοδο Mohr-Coulomb θεωρείται ως μια οριζόντια και κυλινδρική κοιλότητα, ακτίνας r, με τον άξονα της παράλληλο στον z-άξονα ενός τρισορθογώνιου συστήματος συντεταγμένων: x, y, z. Το περιβάλλον έδαφος έχει μόνο ανώτερο όριο τον x-άξονα, ο οποίος παριστάνει την επιφάνεια. Έτσι, το στερεό χαρακτηρίζεται ως ένας ημι-απέραντος χώρος. Η θετική κατεύθυνση του y-άξονα (κατακόρυφη προς τα κάτω) διχοτομεί τη σήραγγα και το ημιεπίπεδο, και ο συντελεστής της εδαφικής πίεσης K_0 ισούται με τη μονάδα. Έτσι, οι κάθετες τάσεις είναι ίσες με τις οριζόντιες (Σχήμα 1).

Επιπλέον, θεωρείται ένα ομοιόμορφα εφαρμοσμένο φορτίο P_0 που δρα στο ανώτερο όριο, οπότε ολόκληρος ο ημι-απέραντος χώρος βρίσκεται κάτω από ενιαία πίεση και η επίδραση της βαρύτητας είναι ουδέτερη. Έτσι, ο σχηματισμός της πλαστικής ζώνης γύρω από την κυκλική σήραγγα είναι ελέγξιμος με την εφαρμογή της εσωτερικής υποστηρικτικής πίεσης P_i .

Αρχικά, πριν την εκσκαφή της σήραγγας, όπου η εσωτερική ενιαία πίεση δρα στην περιφέρειά της, σε ολόκληρο τον ημίχωρο υπάρχει ενιαία τάση. Όταν αρχίσει η εκσκαφή, η εσωτερική πίεση μειώνεται σε σχέση με την αρχική τιμή της, P₀, σε μια άλλη τιμή, P_i, δημιουργώντας μια ελαστική κατανομή τάσης γύρω από την κοιλότητα της σήραγγας. Καθώς η εσωτερική πίεση μειώνεται πέρα από την κρίσιμη τιμή P_{cr} (τιμή που συνδέεται με την εδαφική συνοχή και την τριβή), το αποτέλεσμα σημειώνεται αρχικά στον τοίχο της σήραγγας. Ύστερα από την αρχική επίδραση στον τοίχο της σήραγγας, η πλαστική ζώνη, άγνωστης μορφής, διαμορφώνεται γύρω από την σήραγγα και δημιουργείται μια ελαστικό-πλαστική επιφάνεια με την περαιτέρω πτώση της εσωτερικής πίεσης.

Όσον αφορά στην κρίσιμη εσωτερική πίεση P_{cr}, όπου η αρχική επίδραση συντελείται στο περίγραμμα της σήραγγας, προσήλθε μέσα από εξισώσεις που περιγράφουν την πλαστική ζώνη και την πλαστική τάση. Οι εξισώσεις αυτές είναι συναρτήσεις των παραμέτρων του εδάφους, οι οποίες είναι η συνοχή c και η γωνία τριβής φ. Η μαθηματική της έκφραση δίνεται από την ακόλουθη εξίσωση:

$$\begin{split} \mathbf{P}_{cr} &= \{ \ (2 \ \kappa^2) \ / \ \{ [2 \ (d_i^2 + r_i^2 \cos^2 \beta \] + [\kappa^2 \ (\lambda - 1 \)] \ \} \}^* \ \{ \mathbf{P}_0 \ [(d_i^2 - r_i^2 \cos^2 \beta) \ / \ \kappa^2] - \mathbf{Y} / 2 \} \ (1) \\ & (0 \pi o \upsilon): \end{split}$$

 $\mathbf{r}_i = \alpha$ κτίνα της κυκλικής σήραγγας

 $d_i = β άθος της σήραγγας$

(Μασσίνας Σ.Α., Σακελλαρίου Μ. Γ., 2009)

Ουσιαστικά, η κρίσιμη εσωτερική πίεση P_{cr} αναφέρεται στην μέγιστη τιμή της εσωτερικής πίεσης ώστε να μηδενίζεται η πλαστική ζώνη. Αποτελεί δηλαδή όριο της ελαστικό-πλαστικής διεπιφάνειας. Το Γράφημα 1 επικυρώνει την σημαντικότητα της κρίσιμης πίεσης από την τιμή της οποίας καθορίζεται η διαμόρφωση πλαστικής ή ελαστικής ζώνης.

Γράφημα 1: Σχηματισμός ελαστικής και πλαστικής ζώνης (Hoek E., Brown E.T., 1980)

Όπως διακρίνεται στο γράφημα, η ελαστική ζώνη παριστάνεται με ευθεία ενώ η πλαστική ζώνη με μια καμπύλη. Υπάρχει ένα κρίσιμο όριο ανάμεσα στην πλαστική και την ελαστική ζώνη. Ο λόγος φορτίων P_i/P_o της πλαστικής ζώνης είναι μικρότερος από τον κρίσιμο, ενώ ο λόγος φορτίων P_i/P_o της ελαστικής ζώνης είναι μεγαλύτερος.

Όσον αφορά στην ακτίνα της πλαστικής ζώνης, σύμφωνα με την αναλυτική μέθοδο, η μαθηματική της έκφραση, είναι η ακόλουθη:

$$\boldsymbol{r}_{c} = \sqrt{\left(\boldsymbol{d}_{c}^{2} - \boldsymbol{c}^{2}\right)} \tag{2}$$

Όπου:

 $d_{c}=~\beta άθος$ πλαστικής ζώνης

$$c = \sqrt{\left(d_i^2 - r_i^2\right)}$$

(Μασσίνας Σ.Α., Σακελλαρίου Μ. Γ., 2009)

Η κλειστού τύπου επίλυση σχηματισμού πλαστικής ζώνης γύρω από την κυκλική σήραγγα αποτελεί μια απλή και αποτελεσματική μέθοδο η οποία επιτρέπει την γρήγορη εκτίμηση της συμπεριφοράς των αβαθών σηράγγων καθώς δίνει, καταρχήν, την ευκαιρία του γρήγορου και ακριβούς υπολογισμού της πλαστικής ζώνης και της διανομής των τάσεων γύρω από την κυκλική σήραγγα. Με την εφαρμογή διαφορετικών τιμών της εσωτερικής υποστηρικτικής πίεσης, μπορεί να υπολογιστεί το εύρος της κάθε πλαστικής ζώνης και να ελέγχεται η επέκταση της στον περιβάλλοντα χώρο της σήραγγας. Τέλος, η μέθοδος αυτή μπορεί να εφαρμοστεί και στην περίπτωση βαθιών κυκλικών σηράγγων.

Στον Πίνακα 1 παρουσιάζεται η μορφή της αναλυτικής μεθόδου επίλυσης πλαστικής ζώνης στο υπολογιστικό φύλλο του Excel.

Πίνακας 1: Αναλυτική μέθοδος επίλυσης

CLOSED FORM SOLUTION FOR PLASTIC ZONE FORMATION AROUND A CIRCULAR TUNNEL IN HALF SPACE OBEYING MOHR-COULOMB CRITERION

ST	EP 1											STE	Р2										
Tunne	I properties									Calcul	ation of pl	astic zone /	Plastic zo	one coordin	ates								
n,	5 m			8	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		π
с	19,36496485 m			р	Ō	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
ai	2,063439475			x	0	1,287238784	2,492322848	3,545254	4,396734	5,021216	5,414857	5,590312	5,570566	5,383439	5,057506	4,619546	4,093237	3,498747	2,852863	2,169422	1,45987603	0,7339004	5,16081E-16
di	20,00004659 m			У	25,764	25,614	25,179	24,500	23,635	22,649	21,605	20,556	19,545	18,602	17,745	16,987	16,332	15,782	15,336	14,992	14,749	14,604	14,555
x _{up}	4,74498E-16 m																						
Yup	15,00004659 m			Σα	0,809689144	0,810615741	0,813315066	0,817561	0,823025	0,829328	0,83609	0,842975	0,849705	0,8560668	0,861913	0,867145	0,871707	0,875569	0,87872	0,881162	0,88289869	0,8839376	0,884283374
Xdown	0 m			Σα	1.004702688	1.003633021	1.000582921	0.995994	0.9905	0.984811	0.979607	0.975462	0.972803	0.9718877	0.972803	0.975462	0.979607	0.984811	0.9905	0.995994	1.00058292	1.003633	1.004702688
Vdown	25.00004659 m			, <u> Σ_α-Σ_α </u>	0.195013545	0.19301728	0.187267855	0.178433	0.167475	0.155483	0.143516	0.132487	0.123098	0.115821	0.11089	0.108317	0.1079	0.109242	0.11178	0.114833	0.11768423	0.1196954	0.120419314
Vcontor	20.00004659 m	1		T G pr			.,	.,		.,						.,							
2 Cultur		-			-																		
P	ressure	1		/ ×																			
Po	500 kPa			v																			
P _i	200 kPa																						
			/										Tunnel	coordinate	s								
			/	x	0	1,115245792	2,164223088	3,089512	3,849009	4,418661	4,791573	4,974622	4,984048	4,8412299	4,569318	4,190924	3,726782	3,195148	2,611712	1,98981	1,34081127	0,6745866	4,74498E-16
Soil	Properties			У	25,00004659	24,87408258	24,50738932	23,93132	23,19146	22,34001	21,42862	20,50317	19,60097	18,75005	17,96994	17,27311	16,66671	16,15414	15,73637	15,41304	15,1831778	15,045762	15,00004659
c	100 kPa	\boldsymbol{V}			075 0040000	075 0 4005 40	070 07500 4		007 0700	000 4000	000 5505	400 7005	105 1000	400 44000	405 4000	100 7005	000 5505	000 4000	007 0700	000 05 11	070 075005	075 04005	075 0040000
φ	212 0271454	+		Mo	375,0018638	375,9489548	378,675994	382,8541	387,9792	393,4333	398,5585	402,7365	405,4636	406,41066	405,4636	402,7365	398,5585	393,4333	387,9792	382,8541	378,675995	375,94895	375,0018638
1	313,9371134	-		P (kPa)	200	200	200	2 361,2518	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
^	2,463912871	-		P (KPa)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
				F _{cr} (KFa)	196	190	199	201	203	205	207	208	209	209	209	208	207	205	203	201	199	196	190
Calculation	of plastic zone a _c	Î I	0	Pi/Po						Pla	stic zone	coordinate	s for Σα-Σβ	β =0 / Lines	below mu	st be comp	oleted						
r _o *	5,604354878 m			x	0	1,743618853	3,399562347	4,877437	6,116404	7,073832	7,729788	8,083602	8,14937	7,9513826	7,520424	6,891374	6,102032	5,192328	4,201265	3,170288	2,11165306	1,0569119	7,42144E-16
ac	1,953379165			У	27,6708373	27,4762562	26,92936936	26,04615	24,89786	23,55526	22,09289	20,58174	19,08514	17,657219	16,3428	15,17782	14,18877	13,39029	12,78419	12,34023	12,0765314	11,905287	11,84870943
dc	20,1596294 m									1													
			0,02	Pi/Po						Pla	stic zone	oordinate	s for Σα-Σ	β =0 / Lines	below mu	st be comp	oleted						
				x	0	1,69332175	3,295219054	4,724973	5,925756	6,859827	7,481514	7,819289	7,878538	7,6829486	7,263089	6,653512	5,891308	5,014909	4,064255	3,061488	2,04651216	1,0247562	7,19669E-16
				У	27,46486405	27,27764373	26,73548879	25,87737	24,76691	23,47077	22,05269	20,59334	19,1503	17,775662	16,51208	15,39289	14,44162	13,67028	13,07256	12,6593	12,3711397	12,201055	12,14482757
			0.05	Pi/Po						Pla	stic zone	oordinate	s for Σα-Σβ	β =0 / Lines	below mu	st be comp	leted						
			-,	x	0	1.619176543	3.154116563	4,518958	5.662594	6.542994	7,142097	7,460163	7.5115	7.3201516	6.916334	6.333913	5.608712	4,776937	3.873571	2.922185	1.95541754	0.9797417	6.88196E-16
				v	27,15872455	26,98202329	26,47039322	25,6461	24,58257	23,34153	21,99306	20,60365	19,23217	17,928113	16,73122	15,67154	14,7692	14,03355	13,4613	13,05512	12,7711782	12,603306	12,54776548
			0,1	Pi/Po						Pla	stic zone	oordinate	s for Σα-Σί	β =0 / Lines	below mu	ist be comp	oleted						
				x	0	1,512872304	2,943675124	4,218609	5,28349	6,100465	6,653453	6,943484	6,984937	6,801422	6,422277	5,879934	5,207943	4,441846	3,606539	2,72641	1,82707457	0,9162272	6,42754E-16
				У	26,71403245	26,55208054	26,06860093	25,30215	24,30955	23,15255	21,89771	20,6075	19,33684	18,131258	17,02638	16,0481	15,21268	14,52307	13,98318	13,58952	13,3133533	13,1497	13,10769137
					-			Į.					(F F(0.0/1.0									
			0,15	Pi/Po	-	4 400700000	0 707450740	0.000004	4 00 4 0 00	Pla	stic zone (coordinate:		BI=0 / Lines		st be comp	d offered	4 455040	0.070004	0.550005	4 74504040	0.0000004	0.04445.40
				×	26 22124992	1,422720262	2,767152743	3,960634	4,961223	3,724965	6,239698	6,507097	6,541501	19 299606	6,00879	5,500877	4,875153	4,155312	3,376221	2,556895	1,71564348	0,8609931	6,04111E-16
				y	20,00104000	20,10100401	20,720-0010	20,0000.	24,01000	22,0010	21,00000	20,00000		.0,200000	,20000		10,00001		,	.4,0000	10,1000000	10,000104	10,00001040
			0,2	Pi/Po	1					Pla	stic zone	oordinate	s for Σα-Σί	β =0 / Lines	below mu	st be comp	leted						
			-,-	x	0	1,344407401	2,613284123	3,746349	4,684579	5,401689	5,884074	6,132777	6,16198	5,9941125	5,656423	5,182378	4,588046	3,913046	3,185788	2,416273	1,62016855	0,8122079	5,70946E-16
				У	25,99459563	25,8551986	25,4214702	24,74429	23,8596	22,83351	21,72445	20,58742	19,47082	18,413921	17,44644	16,58587	15,85432	15,24869	14,75831	14,39008	14,1412665	13,997931	13,94675385
			0,3	Pi/Po						Pla	stic zone	oordinate	s for Σα-Σ[β =0 / Lines	below mu	ist be comp	oleted						
				x	0	1,215027695	2,362051513	3,379919	4,224953	4,873392	5,304688	5,523739	5,54733	5,3881323	5,085546	4,653772	4,13071	3,526238	2,869188	2,177507	1,46255077	0,7352318	5,16081E-16
			<u> </u>	У	25,43742916	25,30621258	24,91520721	24,2963	23,4981	22,57496	21,57496	20,5513	19,5477	18,600266	17,73159	16,96297	16,29642	15,74709	15,3081	14,97292	14,7388384	14,593452	14,55527452
			0.4	Di/De			l	Į.	Į	Pia	stic zone -	oordinato	for IΣα-Σί	BI-0 / Lince	below mu	st be comr	leted		l		1		<u> </u>
			0,4	PI/P0		1 115245702	2 164222000	2 090542	2 940000	F1d	4 701572	4 974622	A 094049	A 9412200	4 560249	4 100024	2 726792	2 1051 49	2 611742	1 09094	1 24091407	0 6745966	4 744095-46
				Ŷ	25,00004659	24.87408258	24,50738932	23.93132	23.19146	22,34001	21,42862	20,50317	19.60097	18,75005	17.96994	17.27311	16.66671	16.15414	15,73637	15.41304	15.1831778	15.045762	15.00004659
1																							

KEΦAΛAIO 2

2. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΛΥΣΗΣ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΠΟΥ ΥΠΑΚΟΥΕΙ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2.1. Εισαγωγή

Η παρακάτω μελέτη αποτελεί μια πρακτική εφαρμογή λύσης κλειστής μορφής που υπάκουει στο κριτήριο Mohr-Coulomb για τον σχηματισμό της πλαστικής ζώνης γύρω από αβαθή κυκλική σήραγγα.

Συγκεκριμένα, με βιβλιογραφική αναφορά επιλέχτηκαν δυο χαρακτηριστικές διατομές μιας κυκλικής σήραγγας. Σημειώνεται ακόμα ότι όσον αφορά στη σήραγγα, για την εκσκαφή και την προσωρινή υποστήριξη της χρησιμοποιήθηκε το μηχάνημα εδαφικής εξισορροπητικής πιέσεις EPB (Earth Pressure Balance) και το μηχάνημα διάτμησης σήραγγας TBM (Tunnel Boring Machine) με τα οποία εξασφαλίζεται η εφαρμογή πίεσης υποστήριξης στο μέτωπο της εκσκαφής προκειμένου να διασφαλίζεται η ευστάθεια του και να ελέγχονται οι παραμορφώσεις της σήραγγας, κυρίως όσον αφορά στις οριζόντιες μετακινήσεις του μετώπου (Εικόνα 1).

Εικόνα 1: Μηχάνημα διάτμησης σήραγγας TBM (Tunnel Boring Machine)

Για την εφαρμογή του κριτήριου Mohr-Coulomb με την χρήση αρχείου Excel είναι απαραίτητο να είναι γνωστές οι γεωτεχνικές παράμετροι όπως: συνοχή εδάφους

c, γωνία τριβής φ, παράμετρος γ και ο συντελεστής εδαφικής πίεσης K_0 , ο οποίος όπως έχει αναφερθεί ισούται με τη μονάδα. Η κάθε μια από τις δυο διατομές χαρακτηρίζεται από διαφορετικές γεωτεχνικές παραμέτρους και με την εφαρμογή διαφορετικών τιμών της πίεσης υποστήριξης P_i , πραγματοποιείται η εκτίμηση του ορίου της απαιτούμενης TBM υποστηρικτικής πίεσης.

2.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α

2.2.1. Γενικά στοιχεία διατομής

Το έδαφος της αντιπροσωπευτικής γεωτεχνικής τομής σχεδιασμού 3Α διακρίνεται σε τρεις κυρίες ζώνες στρώσεων: στη ζώνη υπερκείμενων, στη ζώνη εκσκαφής και στη ζώνη υποκείμενων εδαφών της κυκλικής σήραγγας. Αυτές με τη σειρά τους διακρίνονται σε επιμέρους στρώσεις κάθε μια από τις οποίες χαρακτηρίζεται από διαφορετικές τιμές παραμέτρων. Πρόκειται για νεογενούς σχηματισμούς οι όποιοι χαρακτηρίζονται από εδαφική και βραχώδης φάση. Στον Πίνακα 1 παρουσιάζονται με τη σειρά οι σχηματισμοί του εδάφους της γεωτεχνικής διατομής καθώς και οι γεωτεχνικές παράμετροι και τα πάχη των σχηματισμών

Σχηματισμοί	$\gamma (kN/m^3)$	c (kPa)	φ (*)	Z (m)
Τεχνητές	20	5	32	2,20
επιχώσεις (τ.ε)				
Σχ. 5.1	21	40-50	30-40	1.55
Σχ. 6.1	20	40-60	28-35	0,65
Σχ.6.2/6.3/6.4	23	40-60	32-38	2,50
(εδαφική φάση)				
Σχ.6.2/.63/6.4	23	70-80	45-50	3,50
(βραχώδης φάση)				
Σχ.6.2/6.3/6.4	23	40-60	32-38	2,50
(εδαφική φάση)				
Σχ.6.2/.63/6.4	23	70-80	45-50	3,50
(βραχώδης φάση)				
Σχ.6.2/6.3/6.4	23	40-60	32-38	1,75
(εδαφική φάση)				
Σχ.6.2/.63/6.4	23	70-80	45-50	3,00
(βραχώδης φάση)				
Σχ.6.2/6.3/6.4	23	40-60	32-38	1,75
(εδαφική φάση)				
Σχ.6.2/.63/6.4	23	70-80	45-50	2,98
(βραχώδης φάση)				
Σχ.6.2/6.3/6.4	23	40-60	32-38	1,00
(εδαφική φάση)				
Σχ.6.2/.63/6.4	23	70-80	45-50	4,12
(βραχώδης φάση)				

Πίνακας 1: Σχηματισμοί και τιμές γεωτεχνικών παραμέτρων

Από τους παραπάνω σχηματισμούς, οι επτά πρώτοι ανήκουν στη ζώνη υπερκείμενων στρώσεων, οι τέσσερις επόμενοι στη ζώνη εκσκαφής και οι δυο τελευταίοι στη ζώνη υποκείμενων εδαφών. Για τους απαραίτητους υπολογισμούς χρησιμοποιούνται οι τιμές των παραμέτρων των σχηματισμών των δυο πρώτων στρώσεων, δηλαδή της ζώνης υπερκείμενων και της ζώνης εκσκαφής.

2.2.2. Υπολογισμός μέσων τιμών παραμέτρων

Παρατηρώντας τον Πίνακα 1 προκύπτει το συμπέρασμα ότι οι τιμές των γεωτεχνικών παραμέτρων διαφέρουν στους επιμέρους σχηματισμούς στους οποίους διακρίνεται η ζώνη υπερκείμενων εδαφών και η ζώνη εκσκαφής. Ειδικά οι τιμές της συνοχής και της γωνίας τριβής των διαφόρων εδαφικών σχηματισμών χαρακτηρίζονται και από ελάχιστο και μέγιστο όριο. Η εφαρμογή λοιπόν του κριτήριου Mohr-Coulomb προϋποθέτει τον υπολογισμό των μέσων τιμών των παραμέτρων για ελάχιστα και μέγιστα όρια. Τέλος, με σκοπό την διεξαγωγή επιπλέον συμπερασμάτων υπολογιστήκαν και εφαρμόστηκαν και μέσα όρια των μέσων αυτών τιμών.

Αρχικά λοιπόν υπολογίστηκε η μέση τιμή της παραμέτρου γ. Η διαδικασία που ακολουθήθηκε είναι η εξής:

Εξαιτίας του διαφορετικού πάχους των σχηματισμών, οι τιμές των παραμέτρων θεωρήθηκαν ανισοβαρείς και ως βάρη χρησιμοποιήθηκαν τα πάχη των σχηματισμών. Είναι λοιπόν:

$$\gamma_{\mu \acute{\sigma}\sigma} = \sum (\gamma_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} * \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})}) / \sum (\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})})$$
(1)

Όπου:

ο $\gamma_{(\sigma_{\chi\eta\mu\alpha\tau\iota\sigma\mu\sigma\dot{\nu}})}$: η τιμή της παραμέτρου γ του έκαστου σχηματισμού

Ζ_(σχηματισμού)): η τιμή του πάχους Ζ του έκαστου σχηματισμού

Για τον υπολογισμούς των μέσων τιμών της συνοχής του εδάφους και της γωνίας τριβής η διαδικασία είναι σχεδόν η ίδια. Η διαφορά έγκειται στο ότι δεν υπολογίζεται μια μόνο τιμή για την κάθε παράμετρο αλλά τρεις: ελάχιστη, μέση και μέγιστη καθώς, όπως έχει αναφερθεί, δεν υπάρχει μια τιμή για τις παραμέτρους αυτές αλλά ένα εύρος τιμών που χαρακτηρίζεται από ελάχιστο και μέγιστο όριο. Συνεπώς:

$$\mathbf{c}_{(\mu \acute{e}\sigma \bullet \epsilon \lambda \acute{\alpha} \chi.)} = \sum (\mathbf{c}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{\nu} \epsilon \lambda \acute{\alpha} \chi.)} * \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{\nu})}) / \sum (\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{\nu})})$$
(2)

Όπου:

ο $c_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\dot{\nu})}$ η ελάχιστη τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού

ο $Z_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\acute{\nu})}$): η τιμή του πάχους Z του έκαστου σχηματισμού

$$\mathbf{c}_{(\mu \acute{e}\sigma \acute{o}-\mu \acute{e}\sigma.)} = \sum \left(\mathbf{c}_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v} \mu \acute{e}\sigma.)}^* \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v})} \right)$$
(3)

Όπου:

ο $c_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muov)\mu\acute{e}\sigma.):}$ η μέση τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$\mathbf{c}_{(\mu \acute{e}\sigma o - \mu \acute{e}\gamma .)} = \sum \left(\mathbf{c}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v} \mu \acute{e}\gamma .)}^* \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right)$$
(4)

Όπου:

- ο c_{(σχηματισμού μέγ.):} η μέγιστη τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού
- ο Z_{(σχηματισμού}): η τιμή του πάχους Z του έκαστου σχηματισμού

Τέλος, όσον αφορά στη γωνία τριβής ισχύουν τα εξής:

$$\varphi_{(\mu\acute{c}\sigma\circ\cdot\epsilon\lambda\acute{a}\chi.)} = \sum \left(\varphi_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\circ\acute{v}\epsilon\lambda\acute{a}\chi.)} * \mathbf{Z}_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\circ\acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\circ\acute{v})} \right)$$
(5)

Όπου:

ο φ_(σχηματισμού ελάχ.): η ελάχιστη τιμή της γωνίας τριβής φ του έκαστου σχηματισμού

ο $Z_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\acute{\nu})}$): η τιμή του πάχους Z του έκαστου σχηματισμού

Όπου:

ο φ_{(σχηματισμού μέσ.):} η μέση τιμή της γωνίας τριβής φ του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$\varphi_{(\mu \acute{e}\sigma \circ - \mu \acute{e}\gamma.)} = \sum \left(\varphi_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v} \mu e \gamma.)} * \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right)$$
(7)

Όπου:

φ_(σχηματισμού μέγ.): η μέγιστη τιμή της γωνίας τριβής φ του έκαστου σχηματισμού

ο Z_(σχηματισμού)): η τιμή του πάχους Z του έκαστου σχηματισμού

Ο αναλυτικός τρόπος υπολογισμού των παραπάνω παραμέτρων παρατίθεται στο παράρτημα στο τέλος των κεφαλαίων.

Οι τιμές των παραμέτρων παρουσιάζονται στον Πίνακα 2, όπου εκτός αυτών αναγράφονται και οι τιμές της ακτίνας της σήραγγας r (η οποία ισούται με το μισό του αθροίσματος των παχών των τεσσάρων σχηματισμών της ζώνης εκσκαφής), του συνολικού βάθους $Z_{\sigma \nu \nu}$ (το όποιο προκύπτει από το άθροισμα των βαθών των επιμέρους στρώσεων από την επιφάνεια του υφιστάμενου ανάγλυφου έως το κέντρο της σήραγγας) και του μέσου ενιαίου υπερκείμενου φορτίου P_0 :

$$\mathbf{P}_{\mathbf{0}} = (\boldsymbol{\gamma}_{\boldsymbol{\mu}} * \mathbf{Z}_{\boldsymbol{\sigma}\boldsymbol{\upsilon}\boldsymbol{\upsilon}}) \tag{8}$$

Παράμετροι	Ελάχιστη τιμή	Μέση τιμή	Μέγιστη τιμή
γ (kN/m ³)	23	23	23
c (kPa)	52	58	65
φ(*)	38	41	44
r (m)	5	5	5
Z (m)	21	21	21
P ₀ (kPa)	477	477	477

Πίνακας 2: Μέσες τιμές γεωτεχνικών παραμέτρων

Λαμβάνοντας υπόψη το βάθος της σήραγγας $Z_{\text{sun}}=21$ m, την ακτίνα της r=5 m και τον λόγο $Z_{\text{sun}}/r=4,2<7$ προκύπτει ότι πρόκειται για διατομή μιας αβαθούς σήραγγας.

2.2.3. Εφαρμογή τιμών και χρήση υπολογιστικού φύλλου Excel

Με την χρήση του υπολογιστικού φύλλου Excel για αβαθείς σήραγγες, για κάθε ομάδα τιμών των παραμέτρων εφαρμόζονται 8 διαφορετικές τιμές της εσωτερικής πίεσης υποστήριξης P_i. Ύστερα από την κανονικοποίηση της πίεσης, δηλαδή την διαίρεση της με το ενιαίο υπερκείμενο φορτίο P₀ (P_i/P₀), δημιουργούνται 8 λόγοι φορτίων και για κάθε λόγο φορτίων προκύπτει μια διαφορετική πλαστική ζώνη. Η κρίσιμη ζώνη είναι αυτή που εφάπτεται στο περίγραμμα της κυκλικής σήραγγας, δηλαδή αυτή που μηδενίζει το εύρος της πλαστικής ζώνης και για την οποία το φορτίο υποστήριξης είναι το μέγιστο απαιτούμενο. Έτσι, δημιουργήθηκαν 3 αρχεία Excel στα οποία υπολογίστηκαν αναλυτικά οι διπολικές συντεταγμένες 19 σημείων της κάθε πλαστικής ζώνης για τις τρεις ομάδες τιμών των παραμέτρων.

Στον Πίνακα 3 παρουσιάζονται οι τιμές της πίεσης υποστήριξης P_i και οι λόγοι φορτίων που εφαρμόστηκαν. Οι τιμές της πίεσης υποστήριξης είναι ίδιες και για τις τρεις ομάδες τιμών καθώς το μέσο ενιαίο υπερκείμενο φορτίο δεν μεταβάλλεται σε σχέση με την συνοχή και την γωνία τριβής, οι δε λόγοι φορτίων που εφαρμόζονται είναι ίδιοι.

P ₀ (kPa)	P _i (kPa)	P _i /P ₀
477	0,00	0,00
477	9,54	0,02
477	23,85	0,05
477	47,70	0,10
477	71,55	0,15
477	95,40	0,20
477	143,10	0,30
477	190,80	0,40

Πίνακας 3: Τιμές μέσων υπερκείμενων φορτίων, πίεσης υποστήριξης και λόγων φορτίων

Με την σταδιακή εφαρμογή των τιμών της πίεσης υποστήριξης για κάθε λόγο προκύπτουν συντεταγμένες της κάθε πλαστικής ζώνης που διαμορφώνεται γύρω από την κυκλική σήραγγα για 19 διαφορετικές τιμές της γωνίας β (από 0° έως 180°). Οι αντίστοιχοι πίνακες των συντεταγμένων των ελάχιστων, μέσων και μέγιστων τιμών των γεωτεχνικών παραμέτρων παρουσιάζονται παρακάτω.

Πίνακας 4: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (ελάχιστες τιμές παραμέτρων)

	D'/D -		Plastic zone coordinates for $15n-581=0/1$ ines below must be completed																		
U	PI/PO							Pi	astic zone	coordinate	s for 2a-2	s =0 / Lines	Delow mus	st be comp	letea						
		X	0	1,575878755	3,06201943	4,389859	5,502382	6,353924	6,931684	7,237708	7,287594	7,1060693	6,72312	6,171096	5,482676	4,689338	3,819799	2,896423	1,94674112	0,977619	6,86864E-16
		У	28,06237686	27,89419856	27,38250151	26,58741	25,55812	24,35393	23,04783	21,70426	20,37913	<mark>19,118151</mark>	17,95666	16,92024	16,02547	15,28071	14,68716	14,24663	13,9293974	13,743293	13,68590186
0.02	Pi/Po							Pla	astic zone	coordinate	s for ΙΣα-Σί	3l=0 / Lines	below mus	st be comp	leted						
-,	1	v	0	1 511/06665	2 03036/112	1 212547	5 2778/1	6 00263	6 64424	6 03/80/	6 080650	6 8044636	6 442374	5 000116	5 25248	1 188701	3 656358	2 77660	1 8650/6/	0 0371310	6 58532E-16
		×	27 7000000	1,01140000	2,333304112	26 27060	25 20420	0,03203	0,04424	0,334034	0,300033	40.007564	40 44544	47 40740	46.20096	45 56207	14.000	44 50204	1,0000404	44.000007	44.000021-10
		у	21,10033003	27,02932303	27,14309123	20,37909	23,39130	24,2300	22,90004	21,09900	20,43234	19,227304	10,11311	17,12745	10,20900	15,50307	14,990	14,30304	14,2001047	14,002007	14,02030400
0,05	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ(3 =0 / Lines	below mus	st be comp	leted						
		x	0	1,431000679	2,785496672	3,992253	4,992126	5,762697	6,288636	6,558815	6,596436	6,4326925	6,087187	5,583997	4,957601	4,24732	3,465706	2,630962	1,76761073	0,8872962	6,24165E-16
		у	27,4534785	27,29478522	26,8407699	26,11763	25,17473	24,08404	22,90325	21,68782	20,49228	19,355113	18,30744	17,37563	16,57299	15,89277	15,34621	14,93954	14,6550195	14,489381	14,42844416
-																					
0,1	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σβ	3 =0 / Lines	below mus	st be comp	leted						
		Х	0	1,330368609	2,588666502	3,705822	4,639348	5,355412	5,82989	6,086085	6,119409	5,9644818	5,638305	5,175821	4,597367	3,938304	3,210942	2,442361	1,64170929	0,8247608	5,79846E-16
		у	27,01509591	26,87010564	26,44664218	25,7701	24,90009	23,88782	22,78847	21,6638	20,55646	19,504484	18,53792	17,67384	16,92897	16,2999	15,79849	15,41013	15,1429622	14,983872	14,93104867
-			-																		
0,15	Pi/Po			Plastic zone coordinates for Σα-Σβ =0 / Lines below must be completed																	
		Х	0	1,254383977	2,439149474	3,493899	4,370616	5,038644	5,491212	5,723902	5,756457	5,6072532	5,305024	4,868936	4,327156	3,705455	3,023797	2,29908	1,54697162	0,777638	5,46827E-16
		у	26,67953968	26,54468696	26,14229195	25,50786	24,68545	23,72927	22,6974	21,6384	20,59777	<u>19,610167</u>	18,70024	17,88865	17,18619	16,59629	16,12008	15,75674	15,4993279	15,345797	15,29477878
0,2	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ(3 =0 / Lines	below mus	st be comp	leted						
		X	0	1,193240004	2,319683312	3,322426	4,156575	4,792614	5,220518	5,442749	5,472893	5,3295098	5,037474	4,624222	4,111553	3,522239	2,875607	2,186751	1,47187815	0,7399036	5,20376E-16
		у	26,41026672	26,27974095	25,89592083	25,29238	24,51105	23,60245	22,62071	21,61448	20,62553	19,687465	18,82526	18,05436	17,3857	16,82356	16,36874	16,02233	15,7756776	15,629471	15,58002319
			1																		
0,3	Pi/Po		-					Pla	astic zone	coordinate	s for 2α-2	3 =0 / Lines	below mus	st be comp	leted						
		X	0	1,100583605	2,140190591	3,06427	3,832722	4,417996	4,81041	5,010704	5,039125	4,9061435	4,637884	4,257491	3,786701	3,243411	2,649679	2,016255	1,3574334	0,6825366	4,80148E-16
		у	25,99552437	25,8/280114	25,52023688	24,96224	24,24118	23,40306	22,49/81	21,5/052	20,66041	19,797214	19,00344	18,29377	1/,6//0/	17,15991	16,73819	16,415/8	16,18/1016	16,050965	16,00410931
•	D1/D		1					DI			- for 15 - 5(0/1:00			امد ما						
U,4	PI/P0					0.070000		Pli	astic zone	coordinate	s tor 2α-2	si=0 / Lines	Delow mus	st be comp	leted						
		X	0	1,032435101	2,007104188	2,873289	3,592626	4,140199	4,506906	4,696261	4,720873	4,5961578	4,343506	3,98761	3,548088	3,040426	2,483757	1,890361	1,27325581	0,6403978	4,50146E-16
		у	20,00289033	20,0091507	20,23/24849	24,/1343	24,03634	23,25021	22,4016	21,53302	20,08017	19,871469	19,12831	18,46332	17,88431	17,39/8/	17,0025	10,09924	10,482656	10,353525	10,31321038

παραμέτρων) Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 0 Pi/Po 1,443893368 2,810161151 4,026584 5,036987 5,812208 6,33606 6,607025 6,64709 6,4762677 6,122679 5,621953 4,994198 4,278948 3,491552 2,65003 1,7816616 0,8957576 6,29569E-1 27,50858737 27,34869062 26,88964855 26,15877 25,2090 24,10731 22,9145 21,68969 20,4848 19,340576 18,28862 17,34715 16,53595 15,8017 15,29935 14,891 14,5994852 14,421151 14,36595174 0,02 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 1,393305078 2,711211026 3,882388 4,862971 5,61044 6,114431 6,375359 6,413836 6,2468104 5,905435 5,424376 4,816715 4,126178 3,365105 2,558804 1,7215193 0,8644142 6,07621E-1 0 27.2900472 27.13652742 26,69287644 25,98526 25,0751 24,01168 22,86081 21,67973 20,51818 19,415903 18,40243 17,49399 16,71404 16,05431 15,52688 15,12159 14,8356374 14,672282 14,61807973 0.05 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 1,332026028 2,590816851 3,711105 4,6464 5675 5,835503 6,084487 6,122468 5,9645342 5,636529 5,172398 4,601424 3,941676 3,213606 2,444315 1,64444841 0,8261224 5,81306E-10 26,87715756 88795 22,78993 21,66371 20,55609 19,504468 18,53881 17,67628 16,92504 16,29554 15,79385 15,40534 15,1325251 14,973282 14,914763 26.45098763 25.77659 24.9056 27.02518002 0.1 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0 / \text{Lines below must be completed}$ 1,254409561 2,439330941 3,491997 4,3703 3.022487 2.300237 1.54773705 0.778019 5.47094E-1 26,68402437 26,54479724 26,142664 25,50548 24,68521 23,72878 22,69543 21,63803 20,59808 19,611147 18,70443 17,89375 17,19212 16,59836 16,12231 15,75398 15,4964839 15,342906 15,2918723 0,15 Pi/Po Plastic zone coordinates for |Σα-Σβ|=0 / Lines below must be completed 59981 22,61905 21,61344 20,62641 19,689809 18,82886 18,0589 26.40 0.2 Pi/Po Plastic zone coordinates for |Σα-Σβ|=0 / Lines below must be completed 1,144170177 2,224593636 3,184843 3,9818 4.423 90136 4.996923 5.206598 5.233831 5.0963702 4.818327 0,3 Pi/Po Plastic zone coordinates for $|\Sigma \alpha \cdot \Sigma \beta| = 0$ / Lines below must be completed 25,8506402 25,73211378 25,38979648 24,84731 24,14526 23,33105 22,4526 21,55314 20,6706 19,833713 19,06397 18,37575 17,77712 17,27308 16,86369 16,54828 16,3259326 16,1489443 16,1489445 16,1489445 16,148945 16,1489445 16,1489445 16,148945 16,148945 16,1489 0,4 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 4.4186 4.6 25,1573036 24,64191 23,97701 23,20545 22,37275 21,52104 20,68513 19,892692 19,16368 18,51161 17,94449 17,466 17,07723 16,7782 16,5658755 16,439686 16,3977046 25,59492856 Πίνακας 6: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέγιστες τιμές παραμέτρων) 0 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 1,344325529 2,613343843 3,741906 4,683757 5,398612 5,679771 6,132723 6,161823 6,0039882 5,679592 5,213107 4,632029 3,971776 3,240363 2,464158 1,65901783 0,8333639 5,85873E-27,07627477 26,92942803 26,49645706 25,81432 24,9351 23,9094 22,80142 21,66663 20,55121 19,492359 18,5173 17,6472 16,89537 16,2558 15,74714 15,3566 15,07688 14,916832 14,86369824 Plastic zone coordinates for $|\Sigma \alpha \cdot \Sigma \beta|=0$ / Lines below must be completed 0.02 Pi/Po 0 1,3055915 2,539241156 3,634368 4,54488 5,241162 5,707462 5,95022 5,98303 5,8255608 5,511389 5,056137 4,49995 3,851819 3,145504 2,393797 1,61105827 0,8095211 5,69169E-16 26,34651703 25,68218 24,82514 23,83124 22,75617 21,65499 20,57268 19,546426 18,6006 17,75856 17,02261 16,41099 15,91193 15,52862 15,2592344 15,101885 15,04962582 26,90609841 26.7644514 0,05 Pi/Po Plastic zone coordinates for $|\Sigma \alpha \cdot \Sigma \beta|=0$ / Lines below must be completed 1,257822171 2,444008536 3,500982 4,375869 5,043737 5,49459 5,728351 5,756125 5,6067504 5,30176 4,866379 4,328732 3,710339 3,027668 2,304084 1,55169488 0,779887 5,48474E-16 26,5595025 26,15225196 25,5167 24,68969 23,7316 22,6983 21,63875 20,5978 19,610311 18,7018 17,8904 17,18472 16,59016 16,11352 15,74478 15,4817689 15,327948 15,27683592 0 26,69480854 0.1 Pi/Po Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 26,41778582 26,28654965 25 90353943 25 29722 24 51128 23 60139 22 61996 21 6141 20 6263 19 689553 18 82813 18 05785 17 38785 16 82563 16 36975 16 01854 15 7692564 15 620386 15 5734513 Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed 0,15 Pi/Po 1.146 26.07555077 25.12366 24.37131 22,55658 21,59217 20,64541 19,747649 18,92197 18,18354 17,54135 17,00202 16,56324 16.22444 15.9868421 15.844474 15.7963089 26.20041037 25.70553455 0.2 Pi/Po Plastic zone coordinates for IΣα-ΣβI=0 / Lines below must be completed 25,90055

Πίνακας 5: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέσες τιμές

0,3 Pi/Po

0.4 Pi/Po

25.74573822 25.63021428

25,53494262

Plastic zone coordinates for $|\Sigma \alpha \cdot \Sigma \beta| = 0$ / Lines below must be completed

Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed

25,2931829 24,76151 24,07468 23,27866 22,41892 21,53994 20,67718 19,859294 19,10667 18,43388 17,84879 17,35459 16,95383 16,64408 16,4248344 16,293478 16,25053

23,17445 22,35282 21,51255 20,68823 19,906673 19,18767 18,54466 17,98506 17,51238 17,12854 16,83153 16,6212477 16,496557 16,45496348

Όσον αφορά στα γραφήματα, τα οποία προκύπτουν αυτόματα με την εφαρμογή των τιμών, για τις τρεις ομάδες τιμών καθώς και οι εικόνες στις οποίες φαίνονται με μεγαλύτερη ακρίβεια οι πλαστικές ζώνες, έπονται στα παρακάτω.

Γράφημα 1: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Γράφημα 2: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

Γράφημα 3: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέγιστες τιμές παραμέτρων

Εικόνα 1: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Εικόνα 2: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

2.2.4. Συμπεράσματα εφαρμογής

Τα συμπεράσματα που προκύπτουν με την μελέτη ειδικά των εικόνων για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων είναι τα εξής:

Ελάχιστες τιμές

Ο λόγος φορτίων 0,3 φαίνεται ότι εφάπτεται στο περίγραμμα της κυκλικής σήραγγας και λόγος 0,4 σχηματίζεται στο εσωτερικό της σήραγγας. Συνεπώς, με βάσει τα γραφήματα και τις εικόνες, για σήραγγα με τις συγκεκριμένες τιμές παραμέτρων αρκεί ο λόγος φορτίων έως 0,3 για τον έλεγχο του σχηματισμού των πλαστικών ζωνών γύρω από την σήραγγα, διότι η πλαστική ζώνη που προκύπτει μέσα στη σήραγγα δεν έχει νόημα. Ο κρίσιμος λόγος αντιστοιχεί σε πίεση υποστήριξης που μηδενίζει το εύρος της πλαστικής ζώνης, συνεπώς πέρα αυτού δεν δημιουργείται πλαστική ζώνη αλλά η σήραγγα έχει ελαστική συμπεριφορά. Έτσι, για την συγκεκριμένη σήραγγα επιτρέπεται εφαρμογή μικρότερων πιέσεων από αυτών που αντιστοιχούν στο λόγο 0,4 χωρίς να δημιουργείται πρόβλημα στην ασφάλεια και την αντοχή της σήραγγας.

<u>Μέσες τιμές</u>

Όπως και για τις ελάχιστες τιμές, ο λόγος φορτίων 0,4 δίνει πλαστική ζώνη στο εσωτερικό της σήραγγας, επομένως αρκούν λόγοι μικρότεροι από αυτόν για έλεγχο του σχηματισμού των πλαστικών ζωνών. Επίσης, καθώς οι τιμές των παραμέτρων είναι μεγαλύτερες από αυτές των ελάχιστων τιμών, ακόμα και ο λόγος φορτίων 0,3 που βρίσκεται στο όριο ίσως θα μπορούσε να παραληφτεί.

<u>Μέγιστες τιμές</u>

Για την ομάδα τιμών των παραμέτρων με τις μέγιστες τιμές είναι ακόμα πιο ξεκάθαρο ότι οι λόγοι φορτίων 0,3 και 0,4 βρίσκονται στο εσωτερικό της σήραγγας, ενώ ο λόγος 0,2 διαμορφώνονται πάνω από το περίγραμμα της. Συνεπώς, λόγοι φορτίων μεγαλύτεροι από 0,2 παραλείπονται.

2.2.5. Διόρθωση δεδομένων

Αφού διαπιστώθηκαν λοιπόν, οι λόγοι των φορτίων που για κάθε ομάδα τιμών αντιστοιχούν σε ζώνη στο εσωτερικό της κυκλικής σήραγγας, και καθώς έχει αναφερθεί ότι στο εσωτερικό της η σήραγγα δεν έχει πλαστική αλλά ελαστική συμπεριφορά, θεωρήθηκε σκόπιμο να αφαιρεθούν οι ζώνες αυτές.

Γενικώς, η εφαρμογή των παραπάνω δεδομένων και για τους 8 λογούς φορτίων θα μπορούσε να θεωρηθεί απλώς ως ένας έλεγχος της λειτουργίας του υπολογιστικού φύλλου Excel για τον υπολογισμό των πλαστικών ζωνών που σχηματίζονται γύρω από μια κυκλική σήραγγα. Για να έχει όμως φυσικό νόημα η εφαρμογή, δηλαδή να προκύπτουν πλαστικές και όχι ελαστικές ζώνες, η τιμή της κρίσιμης πίεσης Pcr, που υπολογίζεται στο Excel, είναι εξαιρετικής χρησιμότητας. Έτσι λοιπόν, για οποιαδήποτε ομάδα τιμών των γεωτεχνικών παραμέτρων, το υπολογιστικό φύλλο Excel υπολογίζει αυτόματα την τιμή της κρίσιμης πίεσης Pcr και για τις 19 διαφορετικές τιμές της γωνίας β. Με αυτόν τον τρόπο αποφεύγονται επιπλέον εκτελέσεις, αφού μπορούν να εφαρμοστούν μόνο για αυτούς τους λόγους που αντιστοιχούν σε μικρότερες πιέσεις υποστήριξης από την κρίσιμη.

Ακόμα, όπως φαίνεται και στον παρακάτω πίνακα, η τιμή της κρίσιμης πίεσης της γωνίας β=0° ή β=180° για τις τρεις ομάδες τιμών καταγράφηκε και συγκρίνοντας την με τις τιμές της πίεσης υποστήριξης του Πίνακα 3, μπορεί εύκολα να διαπιστωθεί για την κάθε ομάδα τιμών ποιοι ακριβώς λόγοι πρέπει να απαλείφονται.

Πίνακας 7: Τιμές της κρίσιμης πίεσης Pcr για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων.

Τιμές γεωτεχνικών παραμέτρων	Τιμή κρίσιμης πίεσης P _{cr} (kPa)
Ελάχιστες τιμές	142,35
Μέσες τιμές	120,29
Μέγιστες τιμές	98,89

Με βάση τα όσα αναφέρθηκαν, οι πίνακες συντεταγμένων και τα γραφήματα που παρουσιάστηκαν στα παραπάνω τροποποιούνται και τα διορθωμένα στοιχεία παρουσιάζονται στα επόμενα.

Αρχικά, αναφέρονται οι πίνακες των συντεταγμένων των ελάχιστων, μέσων και μέγιστων τιμών των παραμέτρων, με συντεταγμένες σημείων μόνο εκείνων των λόγων που δίνουν πλαστικές ζώνες, απαλλαγμένες δηλαδή από τις μη πλαστικές ζώνες που προέκυψαν κατά την εφαρμογή των 8 λόγων φορτίων. Στη θέση των συντεταγμένων των μη πλαστικών ζωνών αναγράφεται το σύμβολο Ν/Α.
	intrakaç ö. Zötteta/hereç skaotikilç çavilç feate/tikilç ötatopilç (esa/töteç																				
		τ	ιμές πο	ιοσμέτ	OWA)																
		•		.p a por	P (3 ())																
0	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	leted						
		X	0	1,575878755	3,06201943	4,389859	5,502382	6,353924	6,931684	7,237708	7,287594	7,1060693	6,72312	6,171096	5,482676	4,689338	3,819799	2,896423	1,94674112	0,977619	6,86864E-16
		у	28,06237686	27,89419856	27,38250151	26,58741	25,55812	24,35393	23,04783	21,70426	20,37913	19,118151	17,95666	16,92024	16,02547	15,28071	14,68716	14,24663	13,9293974	13,743293	13,68590186
0,02	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	leted						
		Х	0	1,511496665	2,939364112	4,212547	5,277841	6,09263	6,64424	6,934894	6,980659	6,8044636	6,442374	5,909116	5,25248	4,488701	3,656358	2,77669	1,8650464	0,9371319	6,58532E-16
		у	27,78899869	27,62952565	27,14389125	26,37969	25,39138	24,2368	22,98554	21,69955	20,43234	19,227564	18,11511	17,12743	16,26986	15,56307	14,996	14,56384	14,2651847	14,082687	14,02630406
0,05	0,05 Pi/Po Plastic zone coordinates for Σα-Σβ =0 / Lines below must be completed																				
		X	0 1,431000679 2,785496672 3,992253 4,992126 5,762697 6,288636 6,558815 6,596436 6,4326925 6,087167 5,583997 4,957601 4,24732 3,465706 2,630962 1,76761073 0,8872962 6,24165E							6,24165E-16											
		у	27,4534785	27,29478522	26,8407699	26,11763	25,17473	24,08404	22,90325	21,68782	20,49228	19,355113	18,30744	17,37563	16,57299	15,89277	15,34621	14,93954	14,6550195	14,489381	14,42844416
			-																		
0,1	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	leted						
		X	0	1,330368609	2,588666502	3,705822	4,639348	5,355412	5,82989	6,086085	6,119409	5,9644818	5,638305	5,175821	4,597367	3,938304	3,210942	2,442361	1,64170929	0,8247608	5,79846E-16
		у	27,01009091	20,87010564	20,44004218	20,7701	24,90009	23,88/82	22,78847	21,0038	20,33646	19,504484	18,53792	17,07384	16,92897	16,2999	15,79849	15,41013	15,1429622	14,983872	14,93104867
0.15	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σl	3I=0 / Lines	below mus	st be comp	leted						
-,		x	0	1.254383977	2.439149474	3.493899	4.370616	5.038644	5.491212	5.723902	5.756457	5.6072532	5.305024	4.868936	4.327156	3.705455	3.023797	2.29908	1.54697162	0.777638	5.46827E-16
		у	26,67953968	26,54468696	26,14229195	25,50786	24,68545	23,72927	22,6974	21,6384	20,59777	19,610167	18,70024	17,88865	17,18619	16,59629	16,12008	15,75674	15,4993279	15,345797	15,29477878
0,2	Pi/Po							Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	leted						
		X	0	1,193240004	2,319683312	3,322426	4,156575	4,792614	5,220518	5,442749	5,472893	5,3295098	5,037474	4,624222	4,111553	3,522239	2,875607	2,186751	1,47187815	0,7399036	5,20376E-16
		у	26,41026672	26,27974095	25,89592083	25,29238	24,51105	23,60245	22,62071	21,61448	20,62553	19,687465	18,82526	18,05436	17,3857	16,82356	16,36874	16,02233	15,7756776	15,629471	15,58002319

Πίνακας 8: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (ελάγιστες

0,4 Pi/Po Plastic zone coordinates for $|\Sigma\alpha\text{-}\Sigma\beta|\text{=}0$ / Lines below must be completed N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

Plastic zone coordinates for $|\Sigma \alpha - \Sigma \beta| = 0$ / Lines below must be completed

N/A

N//

N/A

Πίνακας 9: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέσες τιμές

παραμέτρων)

N/A

0,3 Pi/Po

0.010	-	Distances in Factor for IT. FOLD (Linear Language) and the																		
U Pi/I	Po						Pl	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	eted						
	X	0	1,443893368	2,810161151	4,026584	5,036987	5,812208	6,33606	6,607025	6,64709	6,4762677	6,122679	5,621953	4,994198	4,278948	3,491552	2,65003	1,7816616	0,8957576	6,29569E-16
	у	27,50858737	27,34869062	26,88964855	26,15877	25,20908	24,10731	22,91456	21,68969	20,4848	19,340576	18,28862	17,34715	16,53595	15,85017	15,29935	14,891	14,5994852	14,421151	14,36595174
0.02 Pi/	Po						Pla	astic zone	coordinate	s for ΙΣα-ΣΙ	3l=0 / Lines	below mus	st be comp	eted						
•,•=	v v	0	1 303305078	2 711211026	3 882388	4 862071	5 61044	6 114431	6 375350	6 413836	6 2468104	5 905/35	5 424376	4 816715	4 126178	3 365105	2 558804	1 7215103	0 8644142	6 07621E-16
-	*	07 2000 4724	1,0000010	2,711211020	25.002.000	25 0754	24 04469	0,114401	0,010000	20 54040	40.445002	40 40242	47 40200	46 74 40 4	46 05424	45 50000	45 40450	44 0250274	44 670090	44 64907075
	у	21,29004724	21,13032142	20,0920/044	20,90020	23,0751	24,01100	22,00001	21,0/9/3	20,31010	19,415905	10,40245	17,49599	10,71404	10,00431	13,32000	15,12159	14,0300374	14,072202	14,0100/9/0
0,05 Pi/I	Po	Plastic zone coordinates for Σα-Σβ =0 / Lines below must be completed																		
	X	0	1,332026028	2,590816851	3,711105	4,6464	5,355675	5,835503	6,084487	6,122468	5,9645342	5,636529	5,172398	4,601424	3,941676	3,213606	2,444315	1,64444841	0,8261224	5,81306E-16
	у	27,02518002	26,87715756	26,45098763	25,77659	24,90566	23,88795	22,78993	21,66371	20,55609	19,504468	18,53881	17,67628	16,92504	16,29554	15,79385	15,40534	15,1325251	14,973282	14,91476304
0,1 Pi/I	Po		Plastic zone coordinates for [Σα-Σβ]=0 / Lines below must be completed																	
	Х	0	1,254409561	2,439330941	3,491997	4,37031	5,037695	5,484103	5,719238	5,753482	5,603824	5,296202	4,861512	4,32083	3,703802	3,022487	2,300237	1,54773705	0,778019	5,47094E-16
	у	26,68402437	26,54479724	26,142664	25,50548	24,68521	23,72878	22,69543	21,63803	20,59808	19,611147	18,70443	17,89375	17,19212	16,59836	16,12231	15,75398	15,4964839	15,342906	15,29187238
0,15 Pi/I	Po						Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	eted						
	X	0	1,192342216	2,318621128	3,320674	4,152596	4,787551	5,214795	5,431466	5,463242	5,3208422	5,029627	4,617315	4,10564	3,51849	2,872629	2,185571	1,47109568	0,7398558	5,20103E-16
	у	26,407	26,27582974	25,89371734	25,29016	24,50777	23,59981	22,61905	21,61344	20,62641	19,689809	18,82886	18,05897	17,3911	16,82816	16,37368	16,0251	15,7785297	15,629827	15,58294239
		•																		
0,2 Pi/I	Po						Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	eted						
	X	0	1,144170177	2,224593636	3,184843	3,981877	4,590136	4,996923	5,206598	5,233831	5,0963702	4,818327	4,423877	3,933629	3,372266	2,753766	2,095965	1,41099694	0,7092358	4,98873E-16
	у	26,18960864	26,06506245	25,6977354	25,1173	24,36638	23,49564	22,55471	21,59153	20,64589	19,7491	18,92423	18,18646	17,54663	17,00587	16,56939	16,23325	15,9959623	15,856217	15,80812491
0,3 Pi/l	Po						Pla	astic zone	coordinate	s for Σα-Σ	3 =0 / Lines	below mus	st be comp	eted						
	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	-																			
0,4 Pi/I	fi/Po Plastic zone coordinates for Σα-Σβ =0 / Lines below must be completed																			
	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Πίνακας 10: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέγιστες τιμές παραμέτρων)

Στα παρακάτω παρουσιάζονται τα γραφήματα για τις τρεις ομάδες τιμών ύστερα από την διαγραφή εκείνων των συντεταμένων που διαμόρφωναν ζώνες στο εσωτερικό της σήραγγας.

Γράφημα 4: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Γράφημα 5: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

Γράφημα 6: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέγιστες τιμές παραμέτρων

Σύμφωνα με τα γραφήματα, και για τις τρεις ομάδες γεωτεχνικών παραμέτρων οι πλαστικές ζώνες διαμορφώνονται πάνω από το περίγραμμα της σήραγγας και δεν εφάπτονται. Έτσι λοιπόν, οι λόγοι των φορτίων που εφαρμόστηκαν είναι μικρότεροι από τον κρίσιμο λόγο.

2.2.6. Υπολογισμοί εύρους πλαστικών ζωνών

2.2.6.1. Υπολογισμός συνολικού εύρους πλαστικών ζωνών

Με σκοπό τη διαπίστωση της μεταβολής του εύρους της πλαστικής ζώνης, ανάμεσα στις τρεις ομάδες τιμών σε σχέση με την άνω και τη κάτω ζώνη της σήραγγας μετρήθηκαν τα βάθη της πλαστικής ζώνης πάνω και κάτω από την ζώνη εκσκαφής για ελάχιστες, μέσες και μέγιστες τιμές, καταγράφηκαν δηλαδή οι τεταγμένες y της εξωτερικής πλαστικής ζώνης για τιμές της γωνίας $\beta=0^{\circ}$ και $\beta=180^{\circ}$ και για πίεση υποστήριξης $P_i=0$ kPa (μηδενική υποστήριξη). Στη συνέχεια, υπολογίστηκαν τα εύρη των πλαστικών ζωνών πάνω και κάτω από την κυκλική σήραγγα με την αφαίρεση των άνω και κάτω βαθών από το άνω και κάτω βάθος της σήραγγας (Πίνακας 11).

Σημειώνεται επίσης ότι οι μετρήσεις αυτές αφορούν μόνο στις πλαστικές ζώνες, δηλαδή αυτές που διαμορφώνονται στο εξωτερικό της σήραγγας, αφού με βάση τα προηγούμενα οι ζώνες που εμφανιστήκαν στο εσωτερικό θεωρούνται ως μη υπάρχουσες.

Ομάδες τιμών	Βάθος πλαστικής ζώνης (στην οροφή της σήραγγας) (m)	Βάθος οροφής σήραγγας (m)	Άνω εύρος πλαστικής ζώνης (m)	Βάθος δαπέδου σήραγγας (m)	Βάθος πλαστικής ζώνης (στο δάπεδο της σήραγγας) (m)	Κάτω εύρος πλαστικής ζώνης (m)
Ελάχιστες τιμές	13,6859	16,0000	2,3141	26,0000	28,0624	2,0623
Μέσες τιμές	14,3659	16,0000	1,6341	26,0000	27,5085	1,3189
Μέγιστες τιμές	14,8636	16,0000	1,1364	26,0000	27,0762	1,0762

Πίνακας 11: Εύρος πλαστικής ζώνης για ελάχιστες, μέσες και μέγιστες τιμές

2.2.6.2. Συμπεράσματα

Με βάση τις τιμές του παραπάνω πίνακα προκύπτουν τα εξής συμπεράσματα:

Όσον αφορά σε κάθε ομάδα τιμών δηλαδή στις ελάχιστες, μέσες και μέγιστες τιμές των παραμέτρων, τα εύρη της πλαστικής ζώνης είναι διαφορετικά στις άνω και κάτω πλαστικές ζώνες. Για κάθε ομάδα μάλιστα, τα εύρη των πλαστικών ζωνών πάνω από την οροφή της σήραγγας είναι μεγαλύτερα από ότι τα εύρη κάτω από το δάπεδο της σήραγγας. Συνεπώς, με την αύξηση του βάθους το εύρος της πλαστικής ζώνης μειώνεται για όμοια ομάδα τιμών.

Συγκρίνοντας τα εύρη της πλαστικής ζώνης, τόσο στην οροφή όσο και στο δάπεδο, διαπιστώνεται ότι για ελάχιστες τιμές των γεωτεχνικών παραμέτρων, το εύρος της πλαστικής ζώνης είναι μεγαλύτερο σε σχέση με τα εύρη των μέσων και των μέγιστων τιμών το όποιο είναι το μικρότερο.

Τέλος, οι τιμές αυτές επαληθεύουν τα στοιχεία που παρατηρηθήκαν στα γραφήματα και τις εικόνες και αναφέρονται στα παραπάνω. Με την αύξηση των τιμών των γεωτεχνικών παραμέτρων αντοχής, δηλαδή, της συνοχής και της γωνίας τριβής, το εύρος της πλαστικής ζώνης γύρω από τη σήραγγα μειώνεται, κάτι που διαπιστώθηκε με τον σχηματισμό ορισμένων πλαστικών ζωνών στο εσωτερικό της σήραγγας.

2.2.6.3. Υπολογισμός εύρους πλαστικών ζωνών για κάθε πλαστική ζώνη

Εκτός από την εξέταση του συνολικού εύρους των πλαστικών ζωνών για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων, μετρηθήκαν τα βάθη της κάθε πλαστικής ζώνης για ελάχιστες, μέσες και μέγιστες τιμές και υπολογιστήκαν τα εύρη τους. Έτσι λοιπόν, για την κάθε πλαστική ζώνη, καταγράφηκαν οι τιμές της συντεταγμένης y για γωνίες β=0° και β=180°. Η συντεταγμένη y της ζώνης στην οροφή αφαιρέθηκε από την συντεταγμένη y της οροφής της σήραγγας ενώ για τη ζώνη στο δάπεδο, αφαιρέθηκε η συντεταγμένη y του δαπέδου της σήραγγας από την συντεταγμένη y της ζώνης αυτής. Οι παρακάτω πίνακες περιέχουν τα αποτελέσματα των μετρήσεων και των υπολογισμών.

Λόγοι φορτίων	Βάθος πλαστικής	Βάθος	Άνω εύρος	Βάθος	Βάθος πλαστικής	Κάτω εύρος
P_i/P_0	ζώνης (στην οροφή	οροφής	πλαστικής	δαπέδου	ζώνης (στο δάπεδο	πλαστικής
	της σήραγγας)	σήραγγας	ζώνης	σήραγγας	της σήραγγας)	ζώνης
	(m)	(m)	(m)	(m)	(m)	(m)
0,00	13,6859	16,0000	2,3141	26,0000	28,0623	2,0623
0,02	14,0263	16,0000	1,9737	26,0000	27,7890	1,7890
0,05	14,4284	16,0000	1,5716	26,0000	27,4535	1,4535
0,10	14,9310	16,0000	1,0690	26,0000	27,0150	1,0150
0,15	15,2948	16,0000	0,7052	26,0000	26,6795	0,6795
0,20	15,5800	16,0000	0,4200	26,0000	26,4102	0,4102
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

Πίνακας 12: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Βάθος πλαστικής ζώνης (στην οροφή της σήραγγας) (m)	Βάθος οροφής σήραγγας (m)	Άνω εύρος πλαστικής ζώνης (m)	Βάθος δαπέδου σήραγγας (m)	Βάθος πλαστικής ζώνης (στο δάπεδο της σήραγγας) (m)	Κάτω εύρος πλαστικής ζώνης (m)
0,00	14,3659	16,0000	1,6341	26,0000	27,5085	1,5085
0,02	14,6180	16,0000	1,3820	26,0000	27,2900	1,2900
0,05	14,9148	16,0000	1,0852	26,0000	27,0252	1,0252
0,10	15,2919	16,0000	0,7081	26,0000	26,6840	0,6840
0,15	15,5829	16,0000	0,4171	26,0000	26,4070	0,4070
0,20	15,8081	16,0000	0,1919	26,0000	26,1896	0,1896
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

Πίνακας 13: Εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 14: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Βάθος πλαστικής ζώνης (στην οροφή της σήραγγας) (m)	Βάθος οροφής σήραγγας (m)	Άνω εύρος πλαστικής ζώνης (m)	Βάθος δαπέδου σήραγγας (m)	Βάθος πλαστικής ζώνης (στο δάπεδο της σήραγγας) (m)	Κάτω εύρος πλαστικής ζώνης (m)
0,00	14,8636	16,0000	1,1364	26,0000	27,0762	1,0762
0,02	15,0496	16,0000	0,9504	26,0000	26,9060	0,9060
0,05	15,2768	16,0000	0,7232	26,0000	26,6948	0,6948
0,10	15,5735	16,0000	0,4265	26,0000	26,4178	0,4178
0,15	15,7963	16,0000	0,2037	26,0000	26,2004	0,2004
0,20	15,9770	16,0000	0,0230	26,0000	26,0241	0,0241
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

2.2.6.4. Συμπεράσματα

Σύμφωνα με τα στοιχεία των παραπάνω πινάκων προκύπτουν τα εξής:

Για κάθε ομάδα τιμών των παραμέτρων επαληθεύονται τα συμπεράσματα από τα γραφήματα και τις αντίστοιχες εικόνες και αφορούν στον εντοπισμό ζωνών που διαγράφονται στο εσωτερικό της κυκλικής σήραγγας και συνεπώς όπως έχει αναφερθεί θεωρούνται ως μη υπάρχουσες, αφού η πλαστική ζώνη διαμορφώνεται μόνο στο εξωτερικό μιας σήραγγας. Για τις ζώνες αυτές δεν μετρήθηκε το εύρος αλλά στην θέση τους αναγράφεται η ένδειξη N/A.

Το εύρος της ζώνης στην οροφή της σήραγγας της κάθε ομάδας τιμών και της κάθε πλαστικής ζώνης είναι μεγαλύτερο από το αντίστοιχο εύρος της ζώνης στο δάπεδο, με εξαίρεση το άνω και κάτω εύρος της μεγίστης εφαρμοζόμενης πίεσης υποστήριξης από την ομάδα των μέγιστων τιμών των παραμέτρων. Έτσι και προέκυψαν τα Γραφήματα 7, 8, 9.

Γράφημα 7: Σύγκριση εύρους πλαστικής ζώνης στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Γράφημα 8: Σύγκριση εύρους πλαστικής ζώνης στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (μέσες τιμές παραμέτρων)

Γράφημα 9: Σύγκριση εύρους πλαστικής ζώνης στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (μέγιστες τιμές παραμέτρων)

Η αύξηση του λόγου των φορτίων, δηλαδή η αύξηση της εφαρμοζόμενης πίεσης υποστήριξης μειώνει τη διαφορά του άνω και κάτω εύρους της πλαστικής ζώνης και το Γράφημα 10 παριστάνει γραφικά την διαπίστωση αυτή και συγκεκριμένα για τις ελάχιστες τιμές των παραμέτρων. Οι άλλες δυο ομάδες υπάγονται επίσης στην ισχύ αυτή.

Γράφημα 10: Συσχέτιση λόγου φορτίων P_i/P₀ και διαφοράς άνω και κάτω εύρους πλαστικών ζωνών της κυκλικής σήραγγας (ελάχιστες τιμές παραμέτρων)

Συγκρίνοντας τους τρεις πίνακες που αντιστοιχούν σε ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων προκύπτει ότι το μεγαλύτερο εύρος αλλά και η μεγαλύτερη διάφορα του άνω και κάτω εύρους (άνω-κατω εύρος, δηλαδή) της κάθε πλαστικής ζώνης, πάντα και σε σχέση με την αύξηση του λόγου των φορτίων, δίνουν οι ελάχιστες τιμές, ενώ οι μέγιστες τιμές τα μικρότερα εύρη και τις μικρότερες διαφορές. Έτσι προκύπτουν τα Γραφήματα 11, 12 και 13 καθώς και ο πίνακας των διαφορών που αναφέρθηκαν.

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά εύρους (ελάχιστες τιμές) (m)	Διαφορά εύρους (μέσες τιμές) (m)	Διαφορά εύρους (μέγιστες τιμές) (m)
0,00	0,2518	0,1256	0,0602
0,02	0,1847	0,0920	0,0444
0,05	0,1181	0,0600	0,0284
0,10	0,0540	0,0241	0,0087
0,15	0,0257	0,0101	0,0033
0,20	0,0098	0,0023	-0,0011
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Π/		. ,	,	,	,	<u>^</u>	,	\$ F
Πινακας	<u>۰</u> /	100000	avm	και κατω	ED000	πλαστικ	cnc	(mync
IIIIunus		μαφυρα	u , m	Nut nut w	copous	1110000111	<u> </u>	500115

Γράφημα 11: Συσχέτιση λόγου φορτίων P_i/P₀ και διαφοράς εύρους πλαστικών ζωνών άνω και κάτω της κυκλικής σήραγγας για τις τρεις ομάδες γεωτεχνικών παραμέτρων

Γράφημα 12: Σύγκριση άνω εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Γράφημα 13: Σύγκριση κάτω εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Τέλος, με την αύξηση των τιμών των γεωτεχνικών παραμέτρων μειώνεται επίσης και η απόσταση ανάμεσα στις πλαστικές ζώνες. Έτσι κατά την εφαρμογή των ελάχιστων τιμών η απόσταση μεταξύ των πλαστικών ζωνών είναι πολύ μεγαλύτερη από αυτήν των μέγιστων τιμών, όπου οι πλαστικές ζώνες σχηματίζονται πολύ κοντά η μια με την άλλη.

2.2.7. Μέσο εύρος πλαστικής ζώνης

Με σκοπό την εξαγωγή γενικού συμπεράσματος, υπολογίστηκαν οι μέσες τιμές του άνω και κάτω εύρους για τις πλαστικές ζώνες των ελάχιστων, μέσων και μέγιστων τιμών των γεωτεχνικών παραμέτρων (Πίνακας 16) και το αποτέλεσμα παρουσιάζεται παραστατικά στο Γράφημα 14.

Πίνακας 16: Μέση τιμή εύρος πλαστικής ζώνης για κάθε P_i/P₀ και για κάθε ομάδα παραμέτρων

Λόγοι φορτίων	Μέσο εύρος πλαστικής ζώνης	Μέσο εύρος πλαστικής ζώνης	Μέσο εύρος πλαστικής ζώνης
$\mathbf{P}_{i}/\mathbf{P}_{0}$	(m)	(m)	(m)
	(ελάχιστες τιμές)	(μέσες τιμές)	(μέγιστες τιμές)
0,00	2,1882	1,5713	1,1063
0,02	1,8814	1,3360	0,9282
0,05	1,5126	1,0552	0,7090
0,10	1,0420	0,6961	0,4222
0,15	0,6924	0,4121	0,2171
0,20	0,4151	0,3034	0,0236
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Γράφημα 14: Σύγκριση μέσων τιμών εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

2.2.8. Κανονικοποίηση εύρους πλαστικής ζώνης

Οι τιμές του εύρους που αναφέρονται στους παραπάνω πίνακες και με βάσει τα οποία προκύπτουν τα συμπεράσματα αφορούν στην απόλυτη τιμή αυτού. Ωστόσο, ακόμα πιο σημαντικό στοιχείο αποτελεί η συσχέτιση του εύρους με την ακτίνα της σήραγγας. Με την ανάγωγη του εύρους ως προς την ακτίνα της σήραγγας γίνεται ακόμα πιο κατανοητό το πεδίο επίδρασης των γεωτεχνικών παραμέτρων αντοχής, του λόγου των φορτίων και του βάθους της σήραγγας στην διαμόρφωση των πλαστικών ζωνών γύρω από την σήραγγα. Χαρακτηριστικό είναι το παράδειγμα του άνω εύρους της πλαστικής ζώνης για λόγο φορτίων $P_i/P_0=0,00$ και για ελάχιστες τιμές παραμέτρων, όπου το εύρος της πλαστικής ζώνης ισούται με 2,3141 m ενώ η ακτίνα της σήραγγας είναι 5,0000 m. Παρατηρούμε ότι το εύρος ισούται με το μισό περίπου της ακτίνας. Έτσι ενώ ως απόλυτη τιμή η πλαστική αυτή ζώνη δεν είναι μεγάλη, ύστερα από την σύγκριση της με την ακτίνα της σήραγγας συμπεραίνουμε ότι αποτελεί ένα σημαντικό μέρος αυτής.

Με σκοπό λοιπόν, την απόκτηση αντίληψης του πραγματικού πεδίου διαμόρφωσης των πλαστικών ζωνών θεωρείται σκόπιμη η κανονικοποίηση του εύρους των πλαστικών ζωνών ως προς την ακτίνα της σήραγγας. Για τον λόγο αυτό διαιρείται το εύρος με την ακτίνα για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων και τα αποτελέσματα παρατίθενται στους παρακάτω πίνακες, όπου υπολογίζονται επιπλέον και οι μέσες τιμές του κανονικοποιημένου εύρους

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,4628	46,28	0,4125	41,25
0,02	0,3947	39,47	0,3578	35,78
0,05	0,3143	31,43	0,2907	29,07
0,10	0,2138	21,38	0,2030	20,30
0,15	0,1410	14,10	0,1359	13,59
0,20	0,0840	8,40	0,0820	8,20
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Πίνακας 17: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,3268	32,68	0,3017	30,17
0,02	0,2764	27,64	0,2580	25,80
0,05	0,2170	21,70	0,2050	20,50
0,10	0,1416	14,16	0,1368	13,68
0,15	0,0834	8,34	0,0814	8,14
0,20	0,0383	3,83	0,0379	3,79
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Πίνακας 18: Κανονικοποιημένο εύρος της πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 19: Κανονικοποιημένο εύρος της πλαστικής ζώνης για κάθε P_i/P_0 (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,2273	22,73	0,2152	21,52
0,02	0,1901	19,01	0,1812	18,12
0,05	0,1446	14,46	0,1390	13,90
0,10	0,0853	8,53	0,0836	8,36
0,15	0,0407	4,07	0,0401	4,01
0,20	0,0046	0,46	0,0048	0,48
0,30	N/A	N/A	N/A	N/A

N/A

N/A

N/A

0,40

N/A

Πίνακας 20: Μέσο κανονικοποιημένο εύρος της πλαστικής ζώνης για κάθε P_i/P_0 και για κάθε ομάδα παραμέτρων

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (ελάχιστες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (μέσες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (μέγιστες τιμές)
0,00	0,4376	0,3143	0,3143
0,02	0,3763	0,2672	0,2672
0,05	0,3025	0,2110	0,2110
0,10	0,2084	0,1392	0,1392
0,15	0,1385	0,0824	0,0824
0,20	0,0830	0,0382	0,0382
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Με βάση λοιπόν τους παραπάνω πίνακες κανονικοποιημένου εύρους της πλαστικής ζώνης προκύπτουν και τα αντίστοιχα γραφήματα.

Γράφημα 15: Σύγκριση κανονικοποιημένου άνω εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0

Γράφημα 16: Σύγκριση κανονικοποιημένου κάτω εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Γράφημα 17: Σύγκριση μέσου κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Η συσχέτιση του εύρους των πλαστικών ζωνών και της ακτίνας της σήραγγας διαλευκάνει το τι μέρος ή ποσοστό της ακτίνας αντιστοιχεί στις πλαστικές ζώνες.

Αξιοσημείωτο δε, είναι το γεγονός ότι για τις ελάχιστες τιμές των παραμέτρων, τα ποσοστά των πλαστικών ζωνών για όλους τους λόγους των φορτίων είναι διπλάσια από αυτά των μέγιστων τιμών.

2.2.9. Εκκεντρότητα Ε

2.2.9.1. Γενικά στοιχεία

Όπως έχει αναφερθεί, ο υπολογισμός των άνω και κάτω ευρών της πλαστικής ζώνης που σχηματίζεται γύρω από την κυκλική σήραγγα πραγματοποιήθηκε με την αφαίρεση της συντεταγμένης y της πλαστικής ζώνης από την συντεταγμένη y της οροφής της σήραγγας για γωνία β=180° και την αφαίρεση της συντεταγμένης y του δαπέδου της σήραγγας από την συντεταγμένη y της πλαστικής ζώνης για γωνία β=0°.

Είναι αξιοσημείωτο το γεγονός ότι για τις παραπάνω συντεταγμένες της πλαστικής ζώνης, όπως και για τις υπόλοιπες 17, στο υπολογιστικό φύλλο Excel, υπολογίζεται η τιμή της ακτίνας της πλαστικής ζώνης r_c . Ωστόσο, η απλή αφαίρεση της ακτίνας της σήραγγας από την ακτίνα της πλαστικής ζώνης r_c , για τον υπολογισμό του εύρους δεν θα έφερνε σωστά αποτελέσματα και αυτό οφείλεται στην ύπαρξη εκκεντρότητας Ε.

Έτσι λοιπόν, ενώ το σχήμα των σχηματιζόμενων πλαστικών ζωνών φαίνεται να είναι κυκλικό, στη πραγματικότητα πρόκειται για ελλειπτικό σχήμα. Το μέτρο που δηλώνει το πόσο το κέντρο της έλλειψης απέχει από το να ταυτίζεται με κέντρο της κυκλικής σήραγγας αναφέρεται ως εκκεντρότητα Ε.

Το κέντρο της έλλειψης, για τιμές της πίεσης υποστήριξης μικρότερες από την τιμή της κρίσιμης πίεσης, βρίσκεται χαμηλότερα από το κέντρο την κυκλικής σήραγγας, για τιμή της πίεσης υποστήριξης ίση με την κρίσιμη, τα κέντρα τους συμπίπτουν (συνεπώς η έλλειψη μετασχηματίζεται σε κύκλο), ενώ για τιμές της πίεσης υποστήριξης μεγαλύτερες από την κρίσιμη τιμή το κέντρο της έλλειψης βρίσκεται πάνω από το κέντρο της σήραγγας.

Όσον αφορά στην πρώτη περίπτωση, που εξετάστηκε αναλυτικά στα προηγούμενα, η διαφορά της ακτίνας της πλαστικής ζώνης r_c και της ακτίνας της σήραγγας r ισούται με το άθροισμα του εύρους της πλαστικής ζώνης και της εκκεντρότητας E, για τη ζώνη στην οροφή, ενώ για τη ζώνη στο δάπεδο, η διαφορά της ακτίνας της πλαστικής ζώνης r_c και της ακτίνας της σήραγγας r ισούται με την διαφορά του εύρους και της εκκεντρότητας E.

2.2.9.2. Υπολογισμός εκκεντρότητας Ε

Με σκοπό την διαπίστωση της μεταβολής της εκκεντρότητας Ε σε σχέση με την αύξηση της τιμής της πίεσης υποστήριξης, η εκκεντρότητα υπολογίστηκε εκτενώς για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων και για εκείνες τιμές της πίεσης υποστήριξης που εφαρμόστηκαν στα παραπάνω. Έτσι λοιπόν, καθώς στο υπολογιστικό φύλλο Excel, υπολογίζεται αυτόματα το βάθος της πλαστικής ζώνης και το αντίστοιχο βάθος της κυκλικής σήραγγας είναι σταθερό, αφαιρείται κάθε φορά το βάθος της σήραγγας από το βάθος της πλαστικής ζώνης για γωνίες β=0° (**βάθος δαπέδου**) και β=180° (**βάθος οροφής**). Οι ακόλουθοι πίνακες περιέχουν τα αποτελέσματα των καταγραφών και των υπολογισμών. Τέλος, για τον κάθε πίνακα σχεδιαστήκαν και παρατίθενται τα αντίστοιχα γραφήματα.

Πίνακας 21: Εκκεντρότητα πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Βάθος κέντρου πλαστικής ζώνης για γωνία β=0°	Βάθος κέντρου σήραγγας	Τιμή εκκεντρότητας για γωνία β=0°	Βάθος κέντρου πλαστικής ζώνης για γωνία β=180°	Βάθος κέντρου σήραγγας	Τιμή εκκεντρότητας για γωνία
	(m)	(m)	(m)	(m)	(m)	$\beta=180^{\circ}(m)$
0,00	21,4446	21,0000	0,4446	22,0378	21,0000	1,0378
0,02	21,3808	21,0000	0,3808	21,8421	21,0000	0,8421
0,05	21,3036	21,0000	0,3036	21,6308	21,0000	0,6308
0,10	21,2072	21,0000	0,2072	21,3984	21,0000	0,3984
0,15	21,1364	21,0000	0,1364	21,2461	21,0000	0,2461
0,20	21,0809	21,0000	0,0809	21,1405	21,0000	0,1405

Γράφημα 18: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Πίνακας 22: Εκκεντρότητα πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές

παραμέτρων)

Λόγοι	Βάθος κέντρου	Βάθος	Τιμή	Βάθος κέντρου	Βάθος	Τιμή
φορτίων	πλαστικής ζώνης για	κέντρου	εκκεντρότητας	πλαστικής ζώνης	κέντρου	εκκεντρότητας
$\mathbf{P}_{i}/\mathbf{P}_{0}$	γωνία β=0°	σήραγγας	για γωνία β=0°	για γωνία β=180°	σήραγγας	για γωνία
	(m)	(m)	(m)	(m)	(m)	$\beta=180^{\circ}(m)$
0,00	21,3161	21,0000	0,3161	21,6633	21,0000	0,6633
0,02	21,2677	21,0000	0,2677	21,5416	21,0000	0,5416
0,05	21,2091	21,0000	0,2091	21,4010	21,0000	0,4010
0,10	21,1362	21,0000	0,1362	21,2453	21,0000	0,2453
0,15	21,0806	21,0000	0,0806	21,1398	21,0000	0,1398
0,20	21,0367	21,0000	0,0367	21,0617	21,0000	0,0617

Γράφημα 19: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 23: Εκκεντρότητα πλαστικής ζώνης για κάθε P_i/P_0 (μέγιστες τιμές

παραμέτρων)

Λόγοι	Βάθος κέντρου	Βάθος	Τιμή	Βάθος κέντρου	Βάθος	Τιμή
φορτίων	πλαστικής ζώνης για	κέντρου	εκκεντρότητας	πλαστικής ζώνης	κέντρου	εκκεντρότητας
P_i/P_0	γωνία β=0°	σήραγγας	για γωνία β=0°	για γωνία β=180°	σήραγγας	για γωνία
	(m)	(m)	(m)	(m)	(m)	β =180° (m)
0,00	21,2208	21,0000	0,2208	21,4268	21,0000	0,4268
0,02	21,1835	21,0000	0,1835	21,3455	21,0000	0,3455
0,05	21,1392	21,0000	0,1392	21,2533	21,0000	0,2533
0,10	21,0824	21,0000	0,0824	21,1435	21,0000	0,1435
0,15	21,0388	21,0000	0,0388	21,0658	21,0000	0,0658
0,20	21,0046	21,0000	0,0046	21,0077	21,0000	0,0077

Γράφημα 20: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0 (μέγιστες τιμές παραμέτρων)

2.2.9.3. Συμπεράσματα

Οι τιμές των εκκεντροτήτων των τριών ομάδων γεωτεχνικών παραμέτρων που υπολογίστηκαν για γωνίες β=0° και β=180° και η οπτική τους παρουσίαση στα αντίστοιχα γραφήματα οδηγούν στα εξής συμπεράσματα:

Η αύξηση των λόγων φορτίων P_i/P₀, δηλαδή, η αύξηση της εφαρμοζόμενης πίεσης υποστήριξης, συνεπάγεται τη μείωση της εκκεντρότητας τόσο για γωνία β=0° όσο και για γωνία β=180°. Όσο η εφαρμοζόμενη πίεση υποστήριξης αυξάνει, τόσο η διαφορά των κέντρων της σήραγγας και της πλαστικής ζώνης μειώνεται έως ότου γίνουν ίσες, στην περίπτωση εφαρμογής της κρίσιμης πίεσης.

Η εκκεντρότητα Ε είναι μεγαλύτερη για γωνία β=180° από ότι για γωνία β=0°.
 Δηλαδή, το βάθος της πλαστικής ζώνης πάνω από την οροφή της κυκλικής σήραγγας είναι μεγαλύτερο από το αντίστοιχο βάθος κάτω από το δάπεδο της σήραγγας.

 Η διαφορά αυτών όσο αυξάνει η πίεση υποστήριξης μειώνεται και τα βάθη γίνονται ίσα μεταξύ τους και με το βάθος της σήραγγας κατά την εφαρμογή της κρίσιμης πίεσης, όπως έχει αναφερθεί, που σημαίνει ότι η εκκεντρότητα υπάρχει, μόνο όταν υπάρχει η πλαστική ζώνη.

Όσο μεγαλύτερες είναι οι τιμές των γεωτεχνικών παραμέτρων τόσο μικρότερες
 είναι οι εκκεντρότητες Ε της πλαστικής ζώνης και για τις δυο τιμές της γωνίας β. Στα
 Γραφήματα 21 και 22 επικυρώνεται οπτικά το συμπέρασμα αυτό.

Γράφημα 21: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης στην οροφή μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων και σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

▲ Μέγιστες τιμές παραμέτρων
 Γράφημα 22: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης στο δάπεδο μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων και σε σχέση με την αύξηση των λόγων

 $φορτίων P_i/P_0$

2.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β

2.3.1. Γενικά στοιχεία διατομής

Όσον αφορά στην αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 4B, το έδαφος, όπως και στην γεωτεχνική τομή σχεδιασμού 3A, διακρίνεται σε τρεις ζώνες: ζώνη υπερκείμενων, ζώνη εκσκαφής και ζώνη υποκείμενων εδαφών κάθε μια από τις οποίες χωρίζεται σε επιμέρους σχηματισμούς. Οι εδαφικοί σχηματισμοί, τα πάχη τους και οι τιμές των γεωτεχνικών παραμέτρων των σχηματισμών παρουσιάζονται στον Πίνακα 1.

Σχηματισμοί	γ (kN/m ³)	c (kPa)	φ(•)	Z (m)
Τεχνητές επιχώσεις	20	5	32	1,10
(τ.ε)				
Σχ. 5.1	21	40-50	30-40	6,20
Σχ. 9.1	20	20-30	30-35	0,90
Σχ. 9.2β	23	55-70	40-50	1,60
Σχ .9.2α	23	100-150	50-60	2,40
Σχ. 9.2β	23	55-70	40-50	1,60
Σχ .9.2α	23	100-150	50-60	2,40
Σχ. 9.2β	23	55-70	40-50	2,38
Σχ .9.2α	23	100-150	50-60	2,37
Σχ. 9.2β	23	55-70	40-50	2,38
Σχ .9.2α	23	100-150	50-60	2,35
Σχ. 9.2β	23	55-70	40-50	2,16
Σχ .9.2α	23	100-150	50-60	2,16

Πίνακας 1: Σχηματισμοί και τιμές γεωτεχνικών παραμέτρων

Οι επτά πρώτοι σχηματισμοί ανήκουν στην ζώνη υπερκείμενων εδαφών, οι επόμενοι τέσσερις στην ζώνη εκσκαφής και οι δυο τελευταίοι στην ζώνη υποκείμενων εδαφών. Όπως και στα προηγούμενα, για τους υπολογισμούς χρησιμοποιούνται οι τιμές των γεωτεχνικών παραμέτρων των δυο πρώτων ζωνών.

2.3.2. Υπολογισμός μέσων τιμών παραμέτρων

Για τις παραμέτρους που έχουν σταθερή τιμή υπολογίζεται μια μέση τιμή στα διάφορα πάχη των σχηματισμών, ενώ για παραμέτρους που χαρακτηρίζονται από ένα εύρος τιμών υπολογίζονται μέσες-ελάχιστες, μέσες-μέσες και μέσες-μέγιστες τιμές.

Ο τρόπος υπολογισμού είναι παρόμοιος με αυτόν των παραμέτρων της γεωτεχνικής διατομής 3A, όπου οι τιμές των παραμέτρων θεωρούνται ανισοβαρείς και ως βάρη τα πάχη των σχηματισμών. Έτσι προκύπτουν οι παρακάτω σχέσεις:

$$\gamma_{\mu \acute{e}\sigma o} = \sum \left(\gamma_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})}^* \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right)$$
(1)

Όπου:

γ_{(σχηματισμού}): η τιμή της παραμέτρου γ του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$\mathbf{c}_{(\mu \acute{\mathbf{s}} \mathbf{s} \mathbf{0} - \mathbf{\epsilon} \lambda \acute{\mathbf{a}} \chi.)} = \sum \left(\mathbf{c}_{(\mathbf{s} \chi \eta \mu \alpha \tau \mathbf{1} \mathbf{s} \mu \mathbf{0} \acute{\mathbf{v}} \cdot \mathbf{\epsilon} \lambda \acute{\mathbf{a}} \chi.)}^* \mathbf{Z}_{(\mathbf{s} \chi \eta \mu \alpha \tau \mathbf{1} \mathbf{s} \mu \mathbf{0} \acute{\mathbf{v}})} \right) / \sum \left(\mathbf{Z}_{(\mathbf{s} \chi \eta \mu \alpha \tau \mathbf{1} \mathbf{s} \mu \mathbf{0} \acute{\mathbf{v}})} \right)$$
(2)

Όπου:

ο $c_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muov)}$ ελάχ.): η ελάχιστη τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού

ο $Z_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\acute{\nu})}$): η τιμή του πάχους Z του έκαστου σχηματισμού

$$\mathbf{c}_{(\mu \acute{e}\sigma \acute{o}-\mu \acute{e}\sigma.)} = \sum \left(\mathbf{c}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v} \mu \acute{e}\sigma.)} * \mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right) / \sum \left(\mathbf{Z}_{(\sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o \acute{v})} \right)$$
(3)

Όπου:

c_(σχηματισμού μέσ.): η μέση τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$\mathbf{c}_{(\mu\acute{\mathbf{s}}\boldsymbol{\sigma}\boldsymbol{o}-\mu\acute{\mathbf{s}}\boldsymbol{\gamma}.)} = \sum \left(\mathbf{c}_{(\mathbf{s}\boldsymbol{\chi}\boldsymbol{\eta}\mu\boldsymbol{\alpha}\boldsymbol{\tau}\boldsymbol{\iota}\boldsymbol{\sigma}\mu\boldsymbol{\omega}\boldsymbol{\upsilon})} \ast \mathbf{Z}_{(\mathbf{s}\boldsymbol{\chi}\boldsymbol{\eta}\mu\boldsymbol{\alpha}\boldsymbol{\tau}\boldsymbol{\iota}\boldsymbol{\sigma}\mu\boldsymbol{\omega}\boldsymbol{\upsilon})} \right) / \sum \left(\mathbf{Z}_{(\mathbf{s}\boldsymbol{\chi}\boldsymbol{\eta}\mu\boldsymbol{\alpha}\boldsymbol{\tau}\boldsymbol{\iota}\boldsymbol{\sigma}\mu\boldsymbol{\omega}\boldsymbol{\upsilon})} \right)$$
(4)

Όπου:

ο $c_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muov\mu\epsilon\gamma.):}$ η μέγιστη τιμή της εδαφικής συνοχής c του έκαστου σχηματισμού

ο $Z_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\acute{\nu})}$): η τιμή του πάχους Z του έκαστου σχηματισμού

Τέλος, όσον αφορά στη γωνία τριβής φισχύουν τα εξής:

$$\varphi_{(\mu\acute{c}\sigma\sigma-\epsilon\lambda\acute{a}\chi.)} = \sum \left(\varphi_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\sigma\acute{v})}\epsilon\lambda\acute{a}\chi. \right)^* \mathbf{Z}_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\sigma\acute{v})} / \sum (\mathbf{Z}_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\mu\sigma\acute{v})})$$
(5)

Όπου:

ο φ_(σχηματισμού ελάχ.): η ελάχιστη τιμή της γωνίας τριβής φ του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$φ_{(μέσο-μέσ.)} = \sum (φ_{(σχηματισμού μέσ.)} * Z_{(σχηματισμού)}) / \sum (Z_{(σχηματισμού)})$$
(6)

Όπου:

ο φ_{(σχηματισμού μέσ.):} η μέση τιμή της γωνίας τριβής φ του έκαστου σχηματισμού

ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

$$\varphi_{(\mu \acute{e}\sigma o - \mu \acute{e}\gamma.)} = \sum \left(\varphi_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v})} \star Z_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v})} \right) / \sum \left(Z_{(\sigma \chi \eta \mu \alpha \tau i \sigma \mu o \acute{v})} \right)$$
(7)

Όπου:

- ο $\phi_{(\sigma\chi\eta\mu\alpha\tau\iota\sigma\muo\acute{u}\mu\acute{e}\gamma.):}$ η μέγιστη τιμή της γωνίας τριβής φ του έκαστου σχηματισμού
- ο $Z_{(σχηματισμού)}$: η τιμή του πάχους Z του έκαστου σχηματισμού

Όπως και για την πρώτη διατομή, ο αναλυτικός τρόπος υπολογισμού των τιμών των παραμέτρων παρατίθεται στο παράρτημα στο τέλος των κεφαλαίων.

Οι τελικές μέσες τιμές των γεωτεχνικών παραμέτρων όσον αφορά στην αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 4B παρουσιάζονται στον Πίνακα 2.

Παράμετροι	Ελάχιστη τιμή	Μέση τιμή	Μέγιστη τιμή
γ (kN / m ³)	22	22	22
c (kPa)	65	78	91
φ(*)	41	45	50
r (m)	5	5	5
Z (m)	21	21	21
P ₀ (kPa)	467	467	467

Πίνακας 2: Μέσες τιμές γεωτεχνικών παραμέτρων

Η αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 4B έχει ίδιο βάθος, $Z_{\sigma \nu \nu}=21$ m, με την αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 3A, την ίδια ακτίνα, r=5 m, και τον ίδιο λόγο $Z_{\sigma \nu \nu}/r=4,1$. Συνεπώς, και η συγκεκριμένη διατομή αντιστοιχεί σε μια αβαθή κυκλική σήραγγα.

2.3.3. Εφαρμογή τιμών και χρήση υπολογιστικού φύλλου Excel

Με τη χρήση των στοιχείων του πίνακα προέκυψαν 3 αρχεία Excel στα οποία όπως και στην πρώτη διατομή, έχουν εφαρμοστεί 8 διαφορετικές τιμές της εσωτερικής πίεσης υποστήριξης P_i των τοιχωμάτων της σήραγγας. Συνεπώς, στα αρχεία αυτά υπολογίζονται αναλυτικά οι διπολικές συντεταγμένες των σημείων των πλαστικών ζωνών για 8 διαφορετικούς λόγους φορτίων. Οι τιμές των πιέσεων υποστήριξης είναι όμοιες και για τις τρεις ομάδες τιμών (Πίνακας 3).

P ₀ (kPa)	P _i (kPa)	P _i /P ₀
467	0,00	0,00
467	9,34	0,02
467	23,35	0,05
467	46,70	0,10
467	70,05	0,15
467	93,40	0,20
467	140,10	0,30
467	186,80	0,40

Πίνακας 3: Τιμές μέσου ενιαίου υπερκείμενου φορτίου, πίεσης υποστήριξης και λόγων φορτίων

Με την εφαρμογή των τιμών της πίεσης υποστήριξης για κάθε λόγο φορτίων προκύπτουν οι διπολικές συντεταγμένες των 19 διαφορετικών τιμών της γωνίας β από τις οποίες σχηματίζεται η κάθε πλαστική ζώνη. Οι πίνακες με τις συντεταγμένες αυτές για ελάχιστες, μέσες και μέγιστες τιμές παραμέτρων έπονται.

Πίνακας 4: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (ελάχιστες τιμές παραμέτρων)

6,10536E-16 14,58484813 5,91975E-16 14,79519683 5,68383E-16 15,05832343
14,58484813 5,91975E-16 14,79519683 5,68383E-16 15,05832343
5,91975E-16 14,79519683 5,68383E-16 15,05832343
5,91975E-16 14,79519683 5,68383E-16 15,05832343
5,91975E-16 14,79519683 5,68383E-16 15,05832343
14,79519683 5,68383E-16 15,05832343
5,68383E-16 15,05832343
5,68383E-16 15,05832343
5,68383E-16 15,05832343
15,05832343
l
5,3763E-16
15,39455541
5,13535E-16
15,65295716
4,93621E-16
15,86333169
4.62846E-16
16,18308303
4,39634E-16

		1	παραμέτ	τρων)																	
	0 Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mu	st be comp	leted						
		X	0	1,278319829	2,484347054	3,556666	4,447374	5,127403	5,585743	5,820932	5,849272	5,7007942	5,388254	4,947032	4,401464	3,768613	3,079592	2,34268	1,57724387	0,7927017	5,57383E-16
		у	26,78566614	26,64764894	26,23475634	25,58599	24,74725	23,77423	22,72336	21,6458	20,58782	19,583179	18,66039	17,83473	17,11627	16,51674	16,02511	15,65222	15,3864165	15,231052	15,17943728
0,0	2 Pi/Po		Plastic zone coordinates for [Σσ-Σβ]=0 / Lines below must be completed																		
		X	0	1,248366489	2,427048369	3,476295	4,346313	5,010047	5,451121	5,682569	5,711269	5,5643365	5,261596	4,831834	4,295938	3,679602	3,006162	2,288096	1,53970123	0,7740193	5,44291E-16
		у	26,65715276	26,51873597	26,11746689	25,48587	24,66581	23,71469	22,68626	21,63511	20,60245	19,622388	18,72085	17,91409	17,21539	16,62867	16,14995	15,78294	15,5263145	15,373232	15,32235952
0,0	05 Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mu	st be comp	leted						
		X	0	1,210815726	2,354030373	3,368598	4,211727	4,854072	5,285089	5,506183	5,535454	5,39115	5,097624	4,681491	4,162055	3,567006	2,913958	2,217382	1,49286639	0,7507002	5,27945E-16
		у	26,48955712	26,35618648	25,96704935	25,35069	24,55628	23,63443	22,63932	21,6202	20,61974	19,670675	18,79756	18,01602	17,33941	16,7685	16,30488	15,95043	15,6989652	15,548844	15,49893532
	4 81/8			Disctic zono coordinates for $[\Sigma n, \Sigma k] = 0$ / Lines below much be completed																	
υ,	1 Pi/Po			4 4 500 70004	0.054007500	Plastic zone coordinates for 2a-28 =0 / Lines below must be completed								5 057405 40							
		<u>X</u>	0	1,159879831	2,254607502	3,226364	4,034306	4,648373	5,061525	5,273214	5,298057	5,1609595	4,877963	4,479853	3,983692	3,415561	2,789433	2,12358	1,42999246	0,7190367	5,05746E-16
		у	20,23909005	20,13333343	23,10043214	23,17034	24,41002	20,02000	22,31403	21,00021	20,04003	13,132313	10,0370	10,14307	17,30100	10,33330	10,51035	10,10344	13,3213033	13,704113	13,73330011
0,1	5 Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mu	st be comp	leted						
		X	0	1,11943007	2,175242949	3,1132	3,892462	4,484821	4,882294	5,086059	5,111656	4,9766887	4,704509	4,321024	3,842745	3,295023	2,692128	2,048982	1,37982115	0,6939968	4,88186E-16
		у	26,07742745	25,95611705	25,59413479	25,02535	24,29151	23,43919	22,51994	21,57882	20,65521	19,779598	18,97443	18,25305	17,62757	17,09849	16,66964	16,34113	16,1075094	15,967669	15,92027576
0) D:/De		-					וח		oo o rdin oto	ه (مد الآم ک	0 0 / 1 in aa	halaw mu		امدما						
υ,	Z PI/P0		0	4 005524400	0 440500054	2 020050	2 774000	PI	A 724450	4 02466	S 101 ZU-Z	A 0250745	A ECACOE		2 706706	2 40454	0 640447	4 007600	4 22070200	0.670006	4 70545 46
		<u>x</u>	25,92679452	25.80606941	25.4574858	24,90616	24,19203	23.36605	4,734459	21.56153	20.66609	4,0250745	4,501005	4,100904	3,720700	17.21776	2,010147	1,907002	1,33070200	16,118	4,7351E-16
	L	,	20,02010402	20,00000041	20,4014000	24,00010	24,10200	20,00000		21,00100	20,00000	10,011120	10,00020	10,00100	11,12004	11,21110	10,00100	10,40000	10,200001	10,110	10,0100001
0,	3 Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mu	st be comp	leted						
		X	0	1,032817467	2,007837873	2,873257	3,59001	4,135848	4,50054	4,689096	4,710505	4,5871633	4,336852	3,981393	3,542555	3,037201	2,482345	1,890498	1,27332277	0,6405059	4,50441E-16
		у	25,68465455	25,57086498	25,23881919	24,71339	24,03408	23,24778	22,39953	21,53211	20,68073	19,873547	19,13107	18,46717	17,88905	17,40161	17,00473	16,69894	16,4824232	16,352756	16,31019383
_	4 51/5											0.0/11	1								
 ,	4 PI/Po			0.000000501	4 000 44 474	0.750074	0.440000	PI	astic zone	coordinate	S TOT Σα-Σ	pi=u / Lines	Delow mu	st be comp	leted	0.040000	0.004000	4.045500	4 00045045	0.0450074	4 00700E 40
		X	25 49747554	25 38808611	25 06808542	2,759371	3,448288 23 91110	23 1 5561	4,322409 22 34080	4,5019/2	4,5229	4,4035993	4,103062	3,822009	3,401231	2,910093	2,384203	1,815523	1,22315915	16 53156	4,32708E-16

Πίνακας 5: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέσες τιμές παραμέτρων)

Πίνακας 6: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέγιστες

τιμές παραμέτρων)

0	Pi/Po	Plastic zone coordinates for $ z\alpha$ - $\Sigma\beta =0$ / Lines below must be completed									
	X	0 1,190954395 2,315093899 3,312724 4,13971 4,771246 5,192285 5,407045 5,433478 5,2908627 5,002591 4,595664 4,088771 3,503983 2,86375 2,181027 1,46876961 0,738697 5,1953E-16									
	у	26,40051216 26,26978249 25,88639847 25,2801 24,49717 23,59128 22,61251 21,61118 20,62908 19,697886 18,84122 18,07339 17,40649 16,84593 16,3844 16,03573 15,7870053 15,58905971									
0.02	Pi/Po	Plastic zone coordinates for [Σο-Σθ=0 / Lines below must be completed									
-,	¥	0 1170412011 2 2724318024 3 254707 4 068516 4 685740 5 100006 5 310011 5 33000 15 1072454 4 014004 4 513154 4 015130 3 443305 2 91304 2 443137 4 4430738 0 736578 5 40300 4 5									
	N N										
	у										
0.05											
0,05	Pi/Po	Plastic zone coordinates for [2d-2β]=0 / Lines below must be completed									
	X	0 1,143485226 2,222056022 3,180116 3,975047 4,577724 4,982566 5,189943 5,213782 5,0765833 4,800107 4,408275 3,922188 3,362759 2,74877 2,092777 1,40955498 0,7091649 4,9872E-16									
	у	26,18851187 26,06205265 25,05242075 25,11125 24,36068 23,48902 22,55039 21,58982 20,64747 19,754195 18,93232 18,19662 17,55687 17,01731 16,57754 16,2406 16,0011401 15,856591 15,80973381									
0,1	Pi/Po	Plastic zone coordinates for [Σα-Σβ]=0 / Lines below must be completed									
	X	0 1,107346513 2,15234474 3,079183 3,848584 4,432945 4,822905 5,02407 5,047359 4,9138209 4,646162 4,267127 3,796987 3,255299 2,66049 2,02578 1,3650769 0,6866747 4,82935E-16									
	у	26,024411 25,90273081 25,5458901 24,9815 24,25457 23,41117 22,50168 21,57201 20,65983 19,79531 18,99985 18,28762 17,66801 17,1458 16,72077 16,39182 16,1599752 16,020939 15,97508481									
0.45	P'/P	Distingues a section for IV a TAL A / Lines below much be second and									
0,10	PI/P0										
	X	U 1/1/26492/14 2/05/55878 [2993944] 3/46249 4/3/3532 [4/95946] 3/46249 4/3/3532 [4/95946] 4/459565 [4/252053 4/154243 3/6597] 3/159875 [2/950395 1/3/378] 1/2542650 [1/254265] [2/950394] 3/1575 [2/950395 1/3/378] 3/1575 [2/95050000000000000000000000000000000000									
	у	23,03040000 23,11003000 24,0110 24,10100 23,34109 22,40111 21,33010 20,00013 13,021102 13,03213 16,3333 11,13611 11,24011 16,5134 16,200441 16,131033 16,10005204									
02	Pi/Po	Plastic zone coordinates for [5r, 5RI-0 /] ines below must be completed									
0,1	v v										
	X										
	,										
0,3	Pi/Po	Plastic zone coordinates for $ \Sigma q - \Sigma \beta = 0$ / Lines below must be completed									
.,.	x	0 1.015729564 1.973928889 2.824361 3.528342 4.063486 4.421196 4.604197 4.625197 4.5032325 4.258201 3.909997 3.479451 2.984473 2.439723 1.858672 1.252084851 0.6299088 4.43008E-16									
	у	25,6065936 25,49413581 25,1661011 24,64905 23,98079 23,20724 22,3736 21,52116 20,68515 19,892733 19,16349 18,51107 17,9429 17,46248 17,07169 16,76969 16,5560913 16,427953 16,38589301									
0,4	Pi/Po	Plastic zone coordinates for $ \Sigma \alpha \cdot \Sigma \beta = 0$ / Lines below must be completed									
	X	0 0,985827721 1,915948921 2,741279 3,424503 3,943814 4,289858 4,467166 4,488371 4,3694247 4,131175 3,793875 3,376632 2,895887 2,367547 1,803609 1,21520635 0,6113387 4,29998E-16									
	у	25,46893396 25,35928243 25,041167 24,53911 23,89042 23,13953 22,33 21,50277 20,6915 19,922552 19,21507 18,58167 18,02981 17,56392 17,18424 16,89126 16,6831749 16,558889 16,51753781									

Στα παρακάτω παριστάνονται γραφικά οι αντίστοιχες πλαστικές ζώνες για κάθε ομάδα τιμών των παραμέτρων.

Γράφημα 1: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Γράφημα 2: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

Γράφημα 3: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέγιστες τιμές παραμέτρων

Επιπλέον, για μεγαλύτερη ευκρίνεια και εντοπισμό διαφορών, όπως άλλωστε και για την πρώτη διατομή, στα παρακάτω παρουσιάζονται πιο λεπτομερείς εικόνες των γραφημάτων.

Εικόνα 1: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Εικόνα 2: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

Εικόνα 3: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέγιστες τιμές παραμέτρων

2.3.4. Συμπεράσματα εφαρμογής

Με βάση τα γραφήματα και τις εικόνες προκύπτουν τα εξής συμπεράσματα:

Ελάχιστες τιμές

Για λόγους φορτίων 0,3 και 0,4 οι ζώνες εμφανίζονται στο εσωτερικό της σήραγγας, οπότε και παραλείπονται και ο έλεγχος των πλαστικών ζωνών σταματά για λόγο φορτίων 0,2.

• Μέσες τιμές

Οι λόγοι φορτίων 0,2, 0,3 και 0,4 διαγράφονται στο εσωτερικό της σήραγγας ενώ ο λόγος 0,15 προκύπτει πάνω από το περίγραμμά της. Έτσι, οι ζώνες των τριών λόγων που βρίσκονται μέσα στη σήραγγα δεν έχουν πρακτικό νόημα αφού στο εσωτερικό της η σήραγγα έχει ελαστική συμπεριφορά. Αρκεί λοιπόν η εφαρμογή μικρότερων πιέσεων έως αυτών που δίνουν λόγο 0,15.

• Μέγιστες τιμές

Αυτό που παρατηρείται στην εικόνα των μέγιστων τιμών είναι ότι οι πλαστικές ζώνες είναι κοντά η μια με την άλλη δημιουργώντας την αίσθηση μιας ενιαίας επιφάνειας. Πιο προσεκτική μελέτη οδηγεί στο συμπέρασμα ότι οι μισές ζώνες βρίσκονται στο εσωτερικό της σήραγγας, όποτε για αυτού του είδους σήραγγα αρκούν πιέσεις που αντιστοιχούν σε λόγους πιέσεων μικρότερους από 0,1 ώστε να είναι ασφαλής η κατασκευή της. Τέλος, σύμφωνα με τα όσο διακρίνονται από τις εικόνες, ο λόγος φορτίων 0,1 διαμορφώνει εφαπτόμενη πλαστική ζώνη στο περίγραμμα της σήραγγας που δηλώνει ότι είναι και ο κρίσιμος λόγος ο οποίος μηδενίζει το εύρος της πλαστικής ζώνης.

2.3.5. Διόρθωση δεδομένων

Όπως και για την αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 3A, έτσι και για την προκείμενη, απαλείφονται οι συντεταγμένες των ζωνών που οι λόγοι τους έχουν τιμές ώστε τελικά να μην είναι πλαστικές αλλά ελαστικές ζώνες. Αλλάζει ο πίνακας των συντεταγμένων για κάθε ομάδα τιμών γεωτεχνικών παραμέτρων καθώς και τα αντίστοιχα γραφήματα. Το σύμβολο N/A, που αναγράφεται στους πίνακες, δηλώνει τις τιμές των συντεταγμένων για τις οποίες δεν σχηματίζεται πλαστική ζώνη. Τα στοιχεία αυτά παρουσιάζονται στα ακόλουθα, αφού προηγουμένως εισάγεται ο πίνακας της τιμής της κρίσιμης πίεσης Pcr της γωνίας β=0° ή β=180° για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων, όπως προέκυψαν κατά την εφαρμογή των γεωμετρικών παραμέτρων στο υπολογιστικό φύλλο Excel.

Πίνακας	7:	Τιμές	της	κρίσιμης	πίεσης	για	τις	τρεις	ομάδες	τιμών	των
γεωτεχνικ	τών	παραμ	έτρω	v.							

Τιμές γεωτεχνικών παραμέτρων	Τιμή κρίσιμης πίεσης P _{cr} (kPa)
Ελάχιστες τιμές	111,56
Μέσες τιμές	81,63
Μέγιστες τιμές	50,76

Πίνακας 8: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (ελάχιστες

τιμές παραμέτρων)

			παραμέτ	τρων)																	
0	Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	leted						
		X	0	1,278319829	2,484347054	3,556666	4,447374	5,127403	5,585743	5,820932	5,849272	5,7007942	5,388254	4,947032	4,401464	3,768613	3,079592	2,34268	1,57724387	0,7927017	5,57383E-16
		у	26,78566614	26,64764894	26,23475634	25,58599	24,74725	23,77423	22,72336	21,6458	20,58782	19,583179	18,66039	17,83473	17,11627	16,51674	16,02511	15,65222	15,3864165	15,231052	15,17943728
0,02	Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	leted						
		X	0	1,248366489	2,427048369	3,476295	4,346313	5,010047	5,451121	5,682569	5,711269	5,5643365	5,261596	4,831834	4,295938	3,679602	3,006162	2,288096	1,53970123	0,7740193	5,44291E-16
		у	26,65715276	26,51873597	26,11746689	25,48587	24,66581	23,71469	22,68626	21,63511	20,60245	19,622388	18,72085	17,91409	17,21539	16,62867	16,14995	15,78294	15,5263145	15,373232	15,32235952
0,05	Pi/Po		Plastic zone coordinates for $ \Sigma \alpha - \Sigma \beta = 0$ / Lines below must be completed																		
		Х	0	1,210815726	2,354030373	3,368598	4,211727	4,854072	5,285089	5,506183	5,535454	5,39115	5,097624	4,681491	4,162055	3,567006	2,913958	2,217382	1,49286639	0,7507002	5,27945E-16
		у	26,48955712	26,35618648	25,96704935	25,35069	24,55628	23,63443	22,63932	21,6202	20,61974	19,670675	18,79756	18,01602	17,33941	16,7685	16,30488	15,95043	15,6989652	15,548844	15,49893532
0.1	Di/Do		1					DI	actic zono	coordinate	e for Σα-Σί	RI-0/Lines	holow mu	et ha comn	latad						
0,1	r wr v	¥	0	1,159879831	2,254607502	3,226364	4.034306	4.648373	5.061525	5.273214	5.298057	5.1609595	4.877963	4.479853	3.983692	3.415561	2,789433	2,12358	1,42999246	0.7190367	5.05746E-16
		y	26,25969089	26,13399349	25,76049274	25,17034	24,41002	23,52659	22,57403	21,59827	20,64069	19,732319	18,8976	18,14987	17,50168	16,95358	16,51099	16,16944	15,9275833	15,784113	15,73558011
	-																				
0,15	Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	leted						
		<u>x</u>	0	1,11943007	2,175242949	3,1132	3,892462	4,484821	4,882294	5,086059	5,111656	4,9766887	4,704509	4,321024	3,842745	3,295023	2,692128	2,048982	1,37982115	0,6939968	4,88186E-16
	<u> </u>	у	20,0//42/45	20,90011700	20,09410479	23,02333	24,29131	23,43919	22,31994	21,3/002	20,00021	19,779090	10,9/443	10,2000	17,02757	17,09049	10,00904	10,34113	10,1070094	10,907009	10,9202/070
0,2	Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	leted						
		X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.0	D'/D :							DI			- for 15 - 51	0 0/1	h e le		امد ما						
0,3	PI/P0		NI/A	N1/A	NI/A	NI/A	NI/A	PI N/A	astic zone		S TOF 20-2	p=0/Lines		st be comp		NI/A	NI/A	NI/A	NI/A	NI/A	NI/A
		X V	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	<u> </u>	,																			
0,4	Pi/Po							PI	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	leted						
		X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Πίνακας 10: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέγιστες τιμές παραμέτρων)																				
0	Pi/Po		_					PI	lastic zone	coordinate	es for Σα-Σ	β =0 / Lines	below mu	st be comp	leted	_					
	L	X	0	1,190954395	2,315093899	3,312724	4,13971	4,771246	5,192285	5,407045	5,433478	5,2908627	5,002591	4,595664	4,088771	3,503983	2,86375	2,181027	1,46876961	0,738697	5,1953E-16
		у	26,40051216	26,26978249	25,88639847	25,2801	24,49717	23,59128	22,61251	21,61118	20,62908	19,697886	18,84122	18,07339	17,40649	16,84593	16,38841	16,03573	15,7870053	15,638456	15,58905971
0.00	m1/#											0 0 / · ·	1.1.		1.4.1						
0,02	PI/Po		1					1	iastic zone	coordinate	es tor 2α-2	pi=0 / rines	s delow mu	st be comp	ietea						

Πίνακας 9: Συντεταγμένες πλαστικής ζώνης γεωτεχνικής διατομής (μέσες τιμές

0 1,170412911 2,274318924 3,254707 4,068516 4,685742 5,100006 5,312031 5,339092 5,1973454 4,914994 4,512154 4,015139 3,443395 2,81294 2,142127 1,44297238 0,7256735 5,10399E-16 X

	у	26,30810602	26,18010377	25,8016062	25,20645	24,43839	23,54635	22,58544	21,6021	20,63727	19,722767	18,88095	18,12865	17,47331	16,91981	16,47235	16,12641	15,8806765	15,735097	15,68626931
0,05	Pi/Po	Plastic zone coordinates for [Σα-Σβ]=0 / Lines below must be completed																		
	X	0	1,143485226	2,222056022	3,180116	3,975047	4,577724	4,982566	5,189943	5,213782	5,0765833	4,800107	4,408275	3,922188	3,362759	2,74877	2,092777	1,40955498	0,7091849	4,9872E-16
	у	26,18851187	26,06205265	25,69242075	25,11125	24,36068	23,48902	22,55039	21,58982	20,64747	19,754195	18,93232	18,19662	17,55687	17,01731	16,57754	16,2406	16,0011401	15,856591	15,80973381
0,1	Pi/Po						Pl	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be compl	eted						
	X	0	1,107346513	2,15234474	3,079183	3,848584	4,432945	4,822905	5,02407	5,047359	4,9138209	4,646162	4,267127	3,796987	3,255299	2,66049	2,02678	1,3650769	0,6866747	4,82935E-16
	у	26,024411	25,90273081	25,5458901	24,9815	24,25457	23,41117	22,50168	21,57201	20,65983	19,79531	18,99985	18,28762	17,66801	17,1458	16,72077	16,39182	16,1599752	16,020939	15,97508481
0,15	Pi/Po																			
	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		1																		
0,2	Pi/Po						Pl	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	eted						
	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0,3	Pi/Po						Pl	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be compl	eted						
	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0,4	Pi/Po			-	-		Pl	astic zone	coordinate	s for Σα-Σ	β =0 / Lines	below mus	st be comp	eted						
	x	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	у	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Τα αντίστοιχα γραφήματα έχουν ως εξής:

Γράφημα 4: Πλαστική ζώνη γύρω από κυκλική σήραγγα για ελάχιστες τιμές παραμέτρων

Γράφημα 5: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέσες τιμές παραμέτρων

Γράφημα 6: Πλαστική ζώνη γύρω από κυκλική σήραγγα για μέγιστες τιμές παραμέτρων

2.3.6. Υπολογισμοί εύρους πλαστικών ζωνών

2.3.6.1. Υπολογισμός συνολικού εύρους πλαστικής ζώνης

Όσον αφορά στο συνολικό εύρος των πλαστικών ζωνών της γεωτεχνικής διατομής 4B που υπολογίστηκε όπως και το εύρος της γεωτεχνικής διατομής 3A, προκύπτει ο Πίνακας 11:

Ομάδες	Βάθος πλαστικής ζώνης (στην οροφή	Βάθος οροφής	Άνω εύρος πλαστικής	Βάθος δαπέδου	Βάθος πλαστικής ζώνης (στο δάπεδο της	Κάτω εύρος πλαστικής	
τιμων	της σήραγγας)	σήραγγας	ζώνης	σήραγγας	σήραγγας)	ζώνης	
	(m)	(m)	(m)	(m)	(m)	(m)	
Ελάχιστες							
τιμές	14,5848	16,0000	1,4152	26,0000	27,3191	1,3191	
Μέσες							
τιμές	15,1794	16,0000	0,8206	26,0000	26,7856	0,7856	
Μέγιστες							
τιμές	15,5890	16,0000	0,4110	26,0000	26,4005	0,4005	

Πίνακας 11: Εύρος πλαστικής ζώνης για ελάχιστες, μέσες και μέγιστες τιμές

2.3.6.2. Συμπεράσματα

Τα στοιχεία του πίνακα οδηγούν στο συμπέρασμα ότι:

Η πλαστική ζώνη στην οροφή έχει μεγαλύτερο εύρος από ότι η πλαστική ζώνη
 στο δάπεδο και στις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων.

✓ Το εύρος της πλαστική ζώνη μειώνεται με την αύξηση των τιμών των γεωτεχνικών παραμέτρων, αφού με βάση τις τιμές έχει πολύ μεγαλύτερο εύρος για ελάχιστες τιμές και το εύρος της για μέγιστες τιμές τις ίδιας γεωτεχνικής διατομής είναι κατά πολύ μικρότερο.

2.3.6.3. Υπολογισμός εύρους πλαστικών ζωνών για κάθε πλαστική ζώνη

Όπως και για την αντιπροσωπευτική τομή σχεδιασμού 3A έτσι και για αυτήν τη διατομή, πραγματοποιήθηκε η μέτρηση των βαθών των πλαστικών ζωνών στην οροφή και στο δάπεδο της σήραγγας για γωνίες β=180° και β=0° και υπολογίστηκαν τα εύρη που σχηματίζουν σε σχέση με την κυκλική σήραγγα και πάντα αγνοούνται οι τιμές εκείνων των λόγων φορτίων που δίνουν ελαστικές και όχι πλαστικές ζώνες.

Στους παρακάτω πίνακες παρατίθενται τα αποτελέσματα.

Λόγοι φορτίων	Βάθος πλαστικής	Βάθος	Άνω εύρος	Βάθος	Βάθος πλαστικής	Κάτω εύρος
P_i/P_0	ζώνης (στην οροφή	οροφής	πλαστικής	δαπέδου	ζώνης (στο δάπεδο	πλαστικής
	της σήραγγας)	σήραγγας	ζώνης	σήραγγας	της σήραγγας)	ζώνης
	(m)	(m)	(m)	(m)	(m)	(m)
0,00	14,5848	16,0000	1,4152	26,0000	27,3191	1,3191
0,02	14,7952	16,0000	1,2048	26,0000	27,1335	1,1335
0,05	15,0583	16,0000	0,9417	26,0000	26,8981	0,8981
0,10	15,3946	16,0000	0,6054	26,0000	26,5881	0,5881
0,15	15,6530	16,0000	0,3470	26,0000	26,3404	0,3404
0,20	15,8633	16,0000	0,1367	26,0000	26,1371	0,1371
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

Πίνακας 12: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Βάθος πλαστικής ζώνης (στην οροφή της σήραγγας) (m)	Βάθος οροφής σήραγγας (m)	Άνω εύρος πλαστικής ζώνης (m)	Βάθος δαπέδου σήραγγας (m)	Βάθος πλαστικής ζώνης (στο δάπεδο της σήραγγας) (m)	Κάτω εύρος πλαστικής ζώνης (m)
0,00	15,1794	16,0000	0,8206	26,0000	26,7856	0,7856
0,02	15,3224	16,0000	0,6776	26,0000	26,6572	0,6572
0,05	15,4989	16,0000	0,5011	26,0000	26,4896	0,4896
0,10	15,7356	16,0000	0,2644	26,0000	26,2597	0,2597
0,15	15,9203	16,0000	0,0797	26,0000	26,0774	0,0774
0,20	N/A	16,0000	N/A	26,0000	N/A	N/A
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

Πίνακας 13: Εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 14: Εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Βάθος πλαστικής ζώνης (στην οροφή της σήραγγας) (m)	Βάθος οροφής σήραγγας (m)	Άνω εύρος πλαστικής ζώνης (m)	Βάθος δαπέδου σήραγγας (m)	Βάθος πλαστικής ζώνης (στο δάπεδο της σήραγγας) (m)	Κάτω εύρος πλαστικής ζώνης (m)
0,00	15,5890	16,0000	0,4110	26,0000	26,4005	0,4005
0,02	15,6863	16,0000	0,3137	26,0000	26,3081	0,3081
0,05	15,8097	16,0000	0,1903	26,0000	26,1885	0,1885
0,10	15,9751	16,0000	0,0249	26,0000	26,0244	0,0244
0,15	N/A	16,0000	N/A	26,0000	N/A	N/A
0,20	N/A	16,0000	N/A	26,0000	N/A	N/A
0,30	N/A	16,0000	N/A	26,0000	N/A	N/A
0,40	N/A	16,0000	N/A	26,0000	N/A	N/A

2.3.6.4. Συμπεράσματα

Από τα παραπάνω προκύπτει ότι:

Τα άνω εύρη της κάθε πλαστικής ζώνης είναι μεγαλύτερα από τα κάτω εύρη και για τις τρεις ομάδες τιμών με εξαίρεση της μέγιστη εφαρμοζόμενη πίεση υποστήριξης των ελάχιστων τιμών των γεωτεχνικών παραμέτρων, όπως επικυρώνουν και τα Γραφήματα 7, 8, και 9.

Γράφημα 7: Σύγκριση εύρους πλαστικών ζωνών στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Γράφημα 8: Σύγκριση εύρους πλαστικών ζωνών στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (μέσες τιμές παραμέτρων)

Γράφημα 9: Σύγκριση εύρους πλαστικών ζωνών στην οροφή και στο δάπεδο-συσχέτιση αυτών με λόγους φορτίων P_i/P₀ (μέγιστες τιμές παραμέτρων)

Η αύξηση του λόγου των φορτίων, δηλαδή η αύξηση της εφαρμοζόμενης πίεσης υποστήριξης, μειώνει τη διαφορά του άνω και κάτω εύρους της πλαστικής ζώνης. Στο Γράφημα 10 παρατίθεται η γραφική παράσταση του συμπεράσματος αυτού και αφορά μόνο στις ελάχιστες τιμές παραμέτρων καθώς το ίδιο συμπέρασμα ισχύει και για τις άλλες δυο ομάδες.

Γράφημα 10: Συσχέτιση λόγου φορτίων P_i/P₀ και διαφοράς άνω και κάτω εύρους πλαστικών ζωνών της κυκλικής σήραγγας (ελάχιστες τιμές παραμέτρων)

Η διαφορά του άνω και κάτω εύρους (άνω εύρος-κάτω εύρος, δηλαδή) της κάθε πλαστικής ζώνης, πάντα και σε σχέση με την αύξηση του λόγου των φορτίων, είναι μεγαλύτερη για τις ελάχιστες τιμές ενώ οι μέγιστες τιμές τις μικρότερες διαφορές. Έτσι προκύπτουν ο ακόλουθος πίνακας και η γραφική παράσταση.

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά εύρους (ελάχιστες τιμές) (m)	Διαφορά εύρους (μέσες τιμές) (m)	Διαφορά εύρους (μέγιστες τιμές) (m)
0,00	0,0961	0,0350	0,0105
0,02	0,0713	0,0204	0,0056
0,05	0,0436	0,0115	0,0018
0,10	0,0173	0,0047	0,0005
0,15	0,0066	0,0023	N/A
0,20	-0,0004	N/A	N/A
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Πίνακας 15: Διαφορά άνω και κάτω εύρους πλαστικής ζώνης

Γράφημα 11: Συσχέτιση λόγου φορτίων P_i/P₀ και διαφοράς εύρους πλαστικών ζωνών άνω και κάτω της κυκλικής σήραγγας για τις τρεις ομάδες γεωτεχνικών παραμέτρων

Το εύρος της πλαστικής ζώνης μειώνεται με την αύξηση των τιμών των γεωτεχνικών παραμέτρων, αφού στον πίνακα με τις ελάχιστες τιμές των παραμέτρων το εύρος κάθε ζώνης είναι κατά πολύ μεγαλύτερο από το εύρος της ίδιας πλαστικής ζώνης που σχηματίζεται με την εφαρμογή των μέγιστων τιμών. Τα Γραφήματα 12 και 13 αφορούν στην μείωση του άνω και κάτω εύρους των πλαστικών ζωνών για κάθε ομάδα παραμέτρων καθώς αυξάνει ο λόγος των φορτίων.

Γράφημα 12: Σύγκριση άνω εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Γράφημα 13: Σύγκριση κάτω εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

2.3.7. Μέσο εύρος πλαστικής ζώνης

Ύστερα από τον υπολογισμό των μέσων τιμών του άνω και κάτω εύρους πλαστικής ζώνης (Πίνακας 16), η συσχέτιση τους με τους λόγους των φορτίων παραστήθηκε γραφικά (Γράφημα 14), στοχεύοντας με αυτόν τον τρόπο στην ευκολότερη εξαγωγή γενικού συμπεράσματος.

Πίνακας 16: Μέση τιμή εύρος πλαστικής ζώνης για κάθε P_i/P₀ και για κάθε ομάδα παραμέτρων

Λόγοι φορτίων	Μέσο εύρος πλαστικής ζώνης	Μέσο εύρος πλαστικής ζώνης	Μέσο εύρος πλαστικής ζώνης
P_i/P_0	(m)	(m)	(m)
	(ελάχιστες τιμές)	(μέσες τιμές)	(μέγιστες τιμές)
0,00	1,3672	0,8031	0,4058
0,02	1,1692	0,6674	0,3109
0,05	0,9199	0,4954	0,1894
0,10	0,5968	0,2621	0,0247
0,15	0,3437	0,0786	N/A
0,20	0,1369	N/A	N/A
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Γράφημα 14: Σύγκριση μέσων τιμών εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Η αύξηση των τιμών των παραμέτρων οδηγεί στη μείωση της απόστασης ανάμεσα στις πλαστικές ζώνες. Στο γράφημα και στις εικόνες της διατομής φαίνεται ότι, ειδικά για τις μέγιστες τιμές, οι πλαστικές ζώνες είναι πολύ κοντά μεταξύ τους ώστε να δίνουν την εντύπωση μιας ενιαίας επιφάνειας.

2.3.8. Κανονικοποίηση εύρους πλαστικής ζώνης

Στην συνέχεια πραγματοποιείται η κανονικοποίηση του εύρους της πλαστικής ζώνης για τις ελάχιστες, μέσες και μέγιστες τιμές των γεωτεχνικών παραμέτρων τα αποτελέσματα της οποίας παρουσιάζονται στους ακόλουθους πίνακες μαζί με τα αντίστοιχα γραφήματα. Ακόμα, παρατίθεται και ο πίνακας και το γράφημα των μέσων τιμών του εύρους της πλαστικής ζώνης προς την ακτίνα της κυκλικής σήραγγας για τις τρείς ομάδες τιμών των γεωτεχνικών παραμέτρων.

Πίνακας 17: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος	Κάτω εύρος πλαστικής	Κάτω εύρος
P_i/P_0	ζώνης/ακτίνα της	πλαστικής	ζώνης/ακτίνα της	πλαστικής
	σήραγγας	ζώνης/ακτίνα της	σήραγγας	ζώνης/ακτίνα της
		σήραγγας (%)		σήραγγας (%)
0,00	0,2830	28,30	0,2638	26,38
0,02	0,2410	24,10	0,2267	22,67
0,05	0,1883	18,83	0,1796	17,96
0,10	0,1211	12,11	0,1176	11,76
0,15	0,0694	6,94	0,0681	6,81
0,20	0,0273	2,73	0,0274	2,74
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Ανω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,1641	16,41	0,1571	15,71
0,02	0,1355	13,55	0,1314	13,14
0,05	0,1002	10,02	0,0979	9,79
0,10	0,0529	5,29	0,0519	5,19
0,15	0,0159	1,59	0,0155	1,55
0,20	N/A	N/A	N/A	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Πίνακας 18: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 19: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε Pi/Po (μέγιστες

τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,0822	8,22	0,0801	8,01
0,02	0,0627	6,27	0,0616	6,16
0,05	0,0381	3,81	0,0377	3,77
0,10	0,0050	0,50	0,0049	0,49
0,15	N/A	N/A	N/A	N/A
0,20	N/A	N/A	N/A	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Πίνακας 20: Μέσο κανονικοποιημένο εύρος της πλαστικής ζώνης	για κάθε P_i/P_0
και για κάθε ομάδα των γεωτεχνικών παραμέτρων	

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (ελάχιστες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (μέσες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (μέγιστες τιμές)
0,00	0,2734	0,1606	0,0812
0,02	0,2338	0,1335	0,0622
0,05	0,1840	0,0991	0,0379
0,10	0,1194	0,0524	0,0049
0,15	0,0687	0,0157	N/A
0,20	0,0274	N/A	N/A
0,30	N/A	N/A	N/A
0,40	N/A	N/A	N/A

Γράφημα 15: Σύγκριση κανονικοποιημένου άνω εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0

Γράφημα 16: Σύγκριση κανονικοποιημένου άνω εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Γράφημα 17: Σύγκριση μέσου κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

2.3.9. Εκκεντρότητα Ε

2.3.9.1. Υπολογισμός εκκεντρότητας Ε

Στο παρόν χωρίο διενεργείται ο υπολογισμός της εκκεντρότητας Ε της πλαστικής ζώνης στην οροφή και στο δάπεδο της σήραγγας των τριών ομάδων των γεωτεχνικών παραμέτρων που χαρακτηρίζουν την γεωτεχνική τομή σχεδιασμού 4B. Ο τρόπος υπολογισμού της είναι όμοιος με αυτόν που πραγματοποιήθηκε για την γεωτεχνική τομή σχεδιασμού 3Α. Έτσι λοιπόν, αφού καταγραφήκαν τα βάθη του κέντρου της πλαστικής ζώνης που αντιστοιχούν σε γωνίες β=0° (δάπεδο σήραγγας) και β==180° (οροφή σήραγγας), στη συνέχεια, από αυτά αφαιρέθηκε το σταθερό βάθος του κέντρου της κυκλικής σήραγγας.

Τα αποτελέσματα των υπολογισμών και τα αντίστοιχα γραφήματα που σχεδιαστήκαν έπονται στα επόμενα.

Πίνακας 21: Εκκεντρότητα πλαστικής ζώνης για κάθε P _i /P ₀ (ελάχιστες τιμές								
παραμέτ	τρων)							
	D/0 /	70.0	T (T 10 1	T (0			

Λόγοι φορτίων	Βάθος κέντρου πλαστικής ζώνης για	Βάθος κέντρου	Τιμή εκκεντοότητας	Βάθος κέντρου πλαστικής ζώνης	Βάθος κέντρου	Τιμή εκκεντοότητας
P _i /P ₀	γωνία β=0°	σήραγγας	για γωνία β=0°	για γωνία β=180°	σήραγγας	για γωνία
	(m)	(m)	(m)	(m)	(m)	$\beta=180^{\circ}$ (m)
0,00	21,2724	21,0000	0,2724	21,5549	21,0000	0,5549
0,02	21,2327	21,0000	0,2327	21,4573	21,0000	0,4573
0,05	21,1821	21,0000	0,1821	21,3435	21,0000	0,3435
0,10	21,1168	21,0000	0,1168	21,2081	21,0000	0,2081
0,15	21,0663	21,0000	0,0663	21,1141	21,0000	0,1141
0,20	21,0261	21,0000	0,0261	21,0440	21,0000	0,0440

Γράφημα 18: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Πίνακας 22: Εκκεντρότητα πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές

παραμέτρων)

Λόγοι	Βάθος κέντρου	Βάθος	Τιμή	Βάθος κέντρου	Βάθος	Τιμή
φορτίων	πλαστικής ζώνης για	κέντρου	εκκεντρότητας	πλαστικής ζώνης	κέντρου	εκκεντρότητας
$\mathbf{P}_{i}/\mathbf{P}_{0}$	γωνία β=0°	σήραγγας	για γωνία β=0°	για γωνία β=180°	σήραγγας	για γωνία
	(m)	(m)	(m)	(m)	(m)	$\beta=180^{\circ}(m)$
0,00	21,1590	21,0000	0,1590	21,2929	21,0000	0,2929
0,02	21,1214	21,0000	0,1214	21,2375	21,0000	0,2375
0,05	21,0967	21,0000	0,0967	21,1697	21,0000	0,1697
0,10	21,0508	21,0000	0,0508	21,0866	21,0000	0,0866
0,15	21,0153	21,0000	0,0153	21,0252	21,0000	0,0252
0,20	N/A	21,0000	N/A	N/A	21,0000	N/A

Γράφημα 19: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0 (μέσες τιμές παραμέτρων)

Πίνακας 23: Εκκεντρότητα πλαστικής ζώνης για κάθε P_i/P_0 (μέγιστες τιμές

παραμέτρων)

Λόγοι	Βάθος κέντρου	Βάθος	Τιμή	Βάθος κέντρου	Βάθος	Τιμή
φορτίων	πλαστικής ζώνης για	κέντρου	εκκεντρότητας	πλαστικής ζώνης	κέντρου	εκκεντρότητας
P_i/P_0	γωνία β=0°	σήραγγας	για γωνία β=0°	για γωνία β=180°	σήραγγας	για γωνία
	(m)	(m)	(m)	(m)	(m)	β =180° (m)
0,00	21,0790	21,0000	0,0790	21,1317	21,0000	0,1317
0,02	21,0604	21,0000	0,0604	21,1029	21,0000	0,1029
0,05	21,0367	21,0000	0,0367	21,0695	21,0000	0,0695
0,10	21,0049	21,0000	0,0049	21,0078	21,0000	0,0078
0,15	N/A	21,0000	N/A	N/A	21,0000	N/A
0,20	N/A	21,0000	N/A	N/A	21,0000	N/A

Γράφημα 20: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀ (μέγιστες τιμές παραμέτρων)

2.3.9.2. Συμπεράσματα

Σύμφωνα με τις τιμές των πινάκων και τα γραφήματα εξάγονται τα εξής συμπεράσματα:

 Οι εκκεντρότητες της πλαστικής ζώνης των γωνιών β=0° (δάπεδο σήραγγας) και β=180° (οροφή σήραγγας) μειώνονται με την αύξηση των λόγων φορτίων, δηλαδή το κέντρο της πλαστικής ζώνης πλησιάζει το κέντρο της σήραγγας με την αύξηση της εφαρμοζόμενης πίεσης υποστήριξης.

 Η εκκεντρότητα της ζώνης στην οροφή είναι μεγαλύτερη από την εκκεντρότητα της ζώνης στο δάπεδο για σταθερή τιμή της πίεσης υποστήριξης και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων.

 Η απόκλιση μεταξύ της τιμής της εκκεντρότητας της ζώνης της οροφής και του δαπέδου μειώνεται με την αύξηση της τιμής της εφαρμοζόμενης πίεσης υποστήριξης και οι τιμές μηδενίζονται κατά την εφαρμογή της τιμής της κρίσιμης πίεσης, όταν δεν υπάρχει πλαστική ζώνη.

 Η εκκεντρότητα είναι αντιστρόφως ανάλογη με τις τιμές των γεωτεχνικών παραμέτρων. Όσο αυξάνουν οι τιμές, η εκκεντρότητα μειώνεται, όπως φαίνεται και στα ακόλουθα γραφήματα.

Γράφημα 21: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης στην οροφή μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων και σε σχέση με την αύξηση των λόγων φορτίων Ρ_i/P₀

Γράφημα 22: Σύγκριση τιμών εκκεντρότητας πλαστικής ζώνης στο δάπεδο μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων και σε σχέση με την αύξηση των λόγων φορτίων Pi/P0

2.4. Γενικά Συμπεράσματα

2.4.1. Συμπεράσματα για κάθε διατομή

Μελετώντας την κάθε διατομή ξεχωριστά, προκύπτει ότι με την αύξηση των τιμών των γεωτεχνικών παραμέτρων και κυρίως αυτών της αντοχής δηλαδή της συνοχής c και της γωνίας τριβής φ από ελαχίστη σε μέση και σε μεγίστη τιμή, το εύρος των πλαστικών ζωνών μειώνεται. Οι αντίστοιχοι πίνακες του εύρους των πλαστικών ζωνών των δυο γεωτεχνικών διατομών επικυρώνουν με τιμές την διαπίστωση αυτή ενώ τα αντίστοιχα διαγράμματα και παραστατικά. Συνεπώς, ανάμεσα σε τιμές των παραμέτρων μιας διατομής, οι μέγιστες επιφέρουν πιο θετικά αποτελέσματα.

Επιπλέον, από τους ίδιους πίνακες παρατηρείται ότι το εύρος των πλαστικών ζωνών μειώνεται και με την αύξηση του βάθους καθώς σε κάθε ομάδα τιμών το εύρος πάνω από την κυκλική σήραγγα είναι μεγαλύτερο από το εύρος κάτω από την σήραγγα. Τέλος, και η αύξηση του λόγου των φορτίων οδηγεί στη μείωση του εύρους των πλαστικών ζωνών

2.4.2. Συμπεράσματα για τις δυο γεωτεχνικές διατομές

2.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης

Όσον αφορά στις δυο γεωτεχνικές διατομές 3Α και 4Β παρατηρείται μεγάλη διαφορά ως προς το σχηματισμό των πλαστικών ζωνών. Στην πρώτη διατομή, η ομάδα των ελάχιστων τιμών των παραμέτρων δίνει μια ζώνη στο εσωτερικό της σήραγγας (δηλαδή μια ελαστική ζώνη) και δυο για τις μέγιστες τιμές τους. Αντίθετα, στη δεύτερη διατομή, οι ζώνες που διαμορφώνονται με την εφαρμογή των ελάχιστων τιμών είναι δυο, ενώ για τις μέγιστες τιμές, οι μισές ζώνες είναι στο εσωτερικό της σήραγγας. Η μεγάλη διαφορά στο σχηματισμό των ζωνών διαπιστώνεται και από τους αντίστοιχους πίνακες του εύρους τους. Ο Πίνακας 1 εμπεριέχει συνοπτικά τις τιμές των ευρών των δυο γεωτεχνικών διατομών για τις τρεις ομάδες τιμών των παραμέτρων.

Γεωτεχνική	Ομάδες τιμών	Άνω εύρος πλαστικής	Κάτω εύρος
διατομή		ζώνης (m)	πλαστικής ζώνης (m)
Γεωτεχνική	Ελάχιστες τιμές	2,3141	2,0623
διατομή 3Α	Μέσες τιμές	1,6341	1,3189
	Μέγιστες τιμές	1,1364	1,0762
Γεωτεχνική	Ελάχιστες τιμές	1,4152	1,3191
διατομή 4Β	Μέσες τιμές	0,8206	0,7856
	Μέγιστες τιμές	0,4110	0,4005

Πίνακας 1: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για ελάχιστες, μέσες και μέγιστες τιμές

Συγκρίνοντας τις τιμές του άνω και κάτω εύρους της πλαστικής ζώνης για τις αντίστοιχες ομάδες τιμών των δυο γεωτεχνικών διατομών, οι διαφορές είναι σημαντικές και μπορεί να εξηγηθεί η διαμόρφωση διαφορετικού αριθμού πλαστικών ζωνών ανάμεσα στις δυο διατομές.

2.4.2.2. Σύγκριση εύρους για κάθε πλαστική ζώνη

Όπως και το συνολικό εύρος, έτσι και το εύρος της κάθε πλαστικής ζώνης, στην διατομή 4B είναι πολύ μικρότερο από αυτό της διατομής 3A. Στους παρακάτω πίνακες και τα αντίστοιχα γραφήματα παρατίθενται τα άνω και κάτω εύρη των πλαστικών ζωνών των δυο γεωτεχνικών διατομών ελάχιστες, μέσες και μέγιστες τιμές παραμέτρων.

Πίνακας 2: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
P_i/P_0	Г.А. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.А. 4В
0,00	2,3141	1,4152	2,0623	1,3191
0,02	1,9737	1,2048	1,7890	1,1335
0,05	1,5716	0,9417	1,4535	0,8981
0,10	1,0690	0,6054	1,0150	0,5881
0,15	0,7052	0,3470	0,6795	0,3404
0,20	0,4200	0,1367	0,4102	0,1371
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 1: Σύγκριση άνω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για ελάχιστες τιμές γεωτεχνικών παραμέτρων

Γράφημα 2: Σύγκριση κάτω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για ελάχιστες τιμές γεωτεχνικών παραμέτρων

Πίνακας 3: Εύρος πλαστικής	ζώνης των δυο	γεωτεχνικών	διατομών για	κάθε P _i /I	20
(μέσες τιμές παραμέτρων)					

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
$\mathbf{P}_{i}/\mathbf{P}_{0}$	Г.Д. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.Δ. 4В
0,00	1,6341	0,8206	1,5085	0,7856
0,02	1,3820	0,6776	1,2900	0,6572
0,05	1,0852	0,5011	1,0252	0,4896
0,10	0,7081	0,2644	0,6840	0,2597
0,15	0,4171	0,0797	0,4070	0,0774
0,20	0,1919	N/A	0,1896	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 3: Σύγκριση άνω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Γράφημα 4: Σύγκριση κάτω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Πίνακας 4: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
$\mathbf{P}_{i}/\mathbf{P}_{0}$	Г.Δ. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.А. 4В
0,00	1,1364	0,4110	1,0762	0,4005
0,02	0,9504	0,3137	0,9060	0,3081
0,05	0,7232	0,1903	0,6948	0,1885
0,10	0,4265	0,0249	0,4178	0,0244
0,15	0,2337	N/A	0,2004	N/A
0,20	0,0230	N/A	0,0241	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 5: Σύγκριση άνω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

Γράφημα 6: Σύγκριση κάτω εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

2.4.2.3. Σύγκριση μέσων τιμών πλαστικών ζωνών

Επιπλέον, αφού υπολογίστηκαν οι μέσες τιμές του εύρους για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων, τα αποτελέσματα των οποίων παρουσιάζονται στους παρακάτω πίνακες, σχεδιαστήκαν στη συνέχεια τρία γραφήματα με σκοπό την γραφική απεικόνιση του συμπεράσματος πως το εύρη της πλαστικής ζώνης της γεωτεχνικής διατομής 3A είναι μεγαλύτερα από τα αντίστοιχα εύρη της γεωτεχνικής διατομής 4B.

Πίνακας 5: Μέση τιμή εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομώ	V
για κάθε P _i / P ₀ (ελάχιστες τιμές παραμέτρων)	

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέση τιμή εύρους πλαστικής ζώνης για ελάχιστες τιμές παραμέτρων (m) Γ.Δ. 3Α	Μέση τιμή εύρους πλαστικής ζώνης για ελάχιστες τιμές παραμέτρων (m) Γ.Δ. 4Β
0,00	2,1882	1,3672
0,02	1,8814	1,1692
0,05	1,5126	0,9199
0,10	1,0420	0,5968
0,15	0,6924	0,3437
0,20	0,4151	0,1369
0,30	N/A	N/A
0,40	N/A	N/A

Γράφημα 7: Σύγκριση μέσης τιμής εύρους πλαστικών ζωνών για ελάχιστες τιμές γεωτεχνικών παραμέτρων των δυο γεωτεχνικών διατομών

Πίνακας 6: Μέση τιμή εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων	Μέση τιμή εύρους πλαστικής	Μέση τιμή εύρους πλαστικής
P_i/P_0	ζώνης για μέσες τιμές	ζώνης για μέσες τιμές
	παραμέτρων (m)	παραμέτρων (m)
	Г.Δ. ЗА	Г.Δ. 4В
0,00	1,5713	0,8031
0,02	1,3360	0,6674
0,05	1,0552	0,4954
0,10	0,6961	0,2621
0,15	0,4121	0,0786
0,20	0,3034	N/A
0,30	N/A	N/A
0,40	N/A	N/A

Γράφημα 8: Σύγκριση μέσης τιμής εύρους πλαστικών ζωνών για μέσες τιμές γεωτεχνικών παραμέτρων των δυο γεωτεχνικών διατομών

Πίνακας ΄	7: Μέση	τιμή	εύρος	πλαστικής	ζώνης το	ων δυο	γεωτεχνικών	διατομών
για κάθε]	P _i /P ₀ (μέ	γιστες	; τιμές	παραμέτρω	v)			

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέση τιμή εύρους πλαστικής ζώνης για μέγιστες τιμές παραμέτρων (m) Γ.Δ. 3Α	Μέση τιμή εύρους πλαστικής ζώνης για μέγιστες τιμές παραμέτρων (m) Γ.Δ. 4Β
0,00	1,1063	0,4058
0,02	0,9282	0,3109
0,05	0,7090	0,1894
0,10	0,4222	0,0247
0,15	0,2171	N/A
0,20	0,0236	N/A
0,30	N/A	N/A
0,40	N/A	N/A

Γράφημα 9: Σύγκριση μέσης τιμής εύρους πλαστικών ζωνών για μέγιστες τιμές γεωτεχνικών παραμέτρων των δυο γεωτεχνικών διατομών

2.4.2.4. Σύγκριση κανονικοποιημένου εύρους

Οι αντίστοιχοι πίνακες κανονικοποιημένου άνω και κάτω εύρους επί τις εκατό των δυο γεωτεχνικών διατομών παρουσιάζονται στα επόμενα.

Πίνακας	8:	Κανονικοποιημένο	εύρος	πλαστικής	ζώνης	των	δυο	γεωτεχνικών
διατομών	γι	α κάθε Ρ _i /Ρ ₀ (ελάχισ	τες τιμ	ές παραμέτρ	owv)			

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα
$\mathbf{P}_{i}/\mathbf{P}_{0}$	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας
	(%)	(%)	(%)	(%)
	Г.А. ЗА	Г.Д. 4В	Г.А. ЗА	Г.А. 4В
0,00	46,28	28,30	41,25	26,38
0,02	39,47	24,10	35,78	22,67
0,05	31,43	18,83	29,07	17,96
0,10	21,38	12,11	20,30	11,76
0,15	14,10	6,94	13,59	6,81
0,20	8,40	2,73	8,20	2,74
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 10: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για ελάχιστες τιμές γεωτεχνικών παραμέτρων

Πίνακας 9: Κανονικοποιημένο εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)
	Г.А. ЗА	Г.А. 4В	Г.Δ. ЗА	Г.Δ. 4В
0,00	32,68	16,41	30,17	15,71
0,02	27,64	13,55	25,80	13,14
0,05	21,70	10,02	20,50	9,79
0,10	14,16	5,29	13,68	5,19
0,15	08,34	1,59	8,14	1,55
0,20	3,83	N/A	3,79	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 12: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Γράφημα 13: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Πίνακας 10: Κανονικοποιημένο εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα
$\mathbf{P}_{i}/\mathbf{P}_{0}$	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας
	(%)	(%)	(%)	(%)
	Г.Д. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.Δ. 4В
0,00	22,73	8,22	21,52	8,01
0,02	19,01	6,27	18,12	6,16
0,05	14,46	3,81	13,90	3,77
0,10	8,53	0,50	8,36	0,49
0,15	4,07	N/A	4,01	N/A
0,20	0,46	N/A	0,48	N/A
0,30	N/A	N/A	N/A	N/A
0,40	N/A	N/A	N/A	N/A

Γράφημα 14: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

Γράφημα 15: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

Είναι γεγονός ότι οι παραπάνω κανονικοποιημένοι πίνακες του εύρους επί τις εκατό δίνουν ακόμα πιο ξεκάθαρη εικόνα της διαφοράς ανάμεσα στις δυο γεωτεχνικές διατομές σε συνδυασμό με την συσχέτιση αυτών ως προς την ακτίνα της σήραγγας, δηλαδή την αναγωγή τους στο μέγεθος της ακτίνας. Τα ποσοστά των άνω και κάτω ευρών των διατομών μαρτυρούν ότι το μικρότερο εύρος της πλαστικής ζώνης, άρα και η καλύτερη περίπτωση ανήκει στην γεωτεχνική διατομής.

2.4.2.5. Σύγκριση εκκεντρότητας Ε

Στοχεύοντας στην ολοκληρωμένη σύγκριση μεταξύ των δυο γεωτεχνικών διατομών σχεδιασμού, στα επόμενα συσχετίζονται και οι τιμές της εκκεντρότητας των πλαστικών ζωνών στην οροφή και στο δάπεδο της κυκλικής σήραγγας.

Λόγοι φορτίων Ρ _i /Ρ ₀	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας (m)	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας (m)	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας (m)	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας (m)
	Г.Δ. ЗА	Г.Д. 4В	Г.Д. ЗА	Г.Д. 4В
0,00	1,0378	0,5549	0,4446	0,2724
0,02	0,8421	0,4573	0,3808	0,2327
0,05	0,6308	0,3435	0,3036	0,1821
0,10	0,3984	0,2081	0,2072	0,1168
0,15	0,2461	0,1141	0,1364	0,0663
0,20	0,1405	0,0440	0,0809	0,0261

Πίνακας 11: Εκκεντρότητα πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Γράφημα 16: Σύγκριση εκκεντρότητας πλαστικής ζώνης στην οροφή των δυο γεωτεχνικών διατομών (ελάχιστες τιμές παραμέτρων)

Γράφημα 17: Σύγκριση εκκεντρότητας πλαστικής ζώνης στο δάπεδο των δυο γεωτεχνικών διατομών (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας
	(m)	(m)	(m)	(m)
	Г.Д. ЗА	Г.Δ. 4В	Г.Δ. ЗА	Г.Д. 4В
0,00	0,6633	0,2929	0,3161	0,1590
0,02	0,5416	0,2375	0,2677	0,1214
0,05	0,4010	0,1697	0,2091	0,0967
0,10	0,2453	0,0866	0,1362	0,0508
0,15	0,1398	0,0252	0,0806	0,0153
0,20	0,0617	N/A	0,0367	N/A

Πίνακας 12: Εκκεντρότητα πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Γράφημα 18: Σύγκριση εκκεντρότητας πλαστικής ζώνης στην οροφή των δυο γεωτεχνικών διατομών (μέσες τιμές παραμέτρων)

Γράφημα 19: Σύγκριση εκκεντρότητας πλαστικής ζώνης στο δάπεδο των δυο γεωτεχνικών διατομών (μέσες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στην οροφή της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας	Εκκεντρότητα πλαστικής ζώνης στο δάπεδο της σήραγγας
	(m)	(m)	(m)	(m)
	Г.Δ. ЗА	Г.А. 4В	Г.А. ЗА	Г.А. 4В
0,00	0,4268	0,1317	0,2208	0,0790
0,02	0,3455	0,1029	0,1835	0,0604
0,05	0,2533	0,0695	0,1392	0,0367
0,10	0,1435	0,0078	0,0824	0,0049
0,15	0,0658	N/A	0,0388	N/A
0,20	0,0077	N/A	0,0046	N/A

Πίνακας 13: Εκκεντρότητα πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Γράφημα 20: Σύγκριση εκκεντρότητας πλαστικής ζώνης στην οροφή των δυο γεωτεχνικών διατομών (μέγιστες τιμές παραμέτρων)

Γράφημα 21: Σύγκριση εκκεντρότητας πλαστικής ζώνης στο δάπεδο των δυο γεωτεχνικών διατομών (μέγιστες τιμές παραμέτρων)

Από την σύγκριση των δυο διατομών προκύπτει ότι οι εκκεντρότητες των ζωνών στην οροφή και στο δάπεδο είναι μεγαλύτερες κατά την εφαρμογή και των τριών ομάδων των χαρακτηριστικών τιμών της γεωτεχνικής τομής σχεδιασμού 3Α. Όσο μικρότερες είναι οι τιμές των γεωτεχνικών παραμέτρων δηλαδή, τόσο τα κέντρα της σήραγγας και της σχηματιζόμενης πλαστικής ζώνης είναι πιο μακριά.

2.4.2.6. Γενική παρατήρηση

Λαμβάνοντας υπόψη τις παραμέτρους που χαρακτηρίζουν τις διατομές παρατηρείται ότι αυτές έχουν κοινή ακτίνα r=5 m και κοινό βάθος Z=21 m. Επίσης, τα εφαρμοζόμενα υπερκείμενα φορτία δεν διαφέρουν κατά πολύ: P₀=477 kPa, στη πρώτη διατομή, και P₀=467 kPa στη δεύτερη όπως και η τιμή της παραμέτρου γ=23 kN/m³ και γ=22 kN/m³, αντίστοιχα.

Οι τιμές των παραμέτρων που διαφέρουν σημαντικά από την μια διατομή στην άλλη είναι αυτή της συνοχής και της γωνίας τριβής, δηλαδή των παραμέτρων της αντοχής. Είναι λοιπόν c_1 =52-65 (kPa) και c_2 =65-91 (kPa) και φ_1 =38-44 (*) και φ_2 =41-50 (*).

Από τα παραπάνω συμπεραίνουμε ότι με την αύξηση της συνοχής και της γωνίας τριβής μιας κυκλικής σήραγγας μειώνεται το εύρος και η εκκεντρότητα της πλαστικής ζώνης γύρω από την σήραγγα και κατά συνέπεια και το όριο απαιτουμένης εσωτερικής πίεσης P_i για την αντοχή και ασφάλεια στην κατασκευή της κυκλικής σήραγγας, συμπέρασμα απόλυτα αναμενόμενο και ρεαλιστικό. Συνεπώς, με την παραπάνω πρακτική εφαρμογή επικυρώνεται και η ορθότητα της σχεδιασμένης μεθόδου.

KEΦAΛAIO 3_

3. ΛΥΣΗ ΚΛΕΙΣΤΗΣ ΜΟΡΦΗΣ ΓΙΑ ΤΟΝ ΣΧΗΜΑΤΙΣΜΟ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΥΡΩ ΑΠΟ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΥΠΑΚΟΥΟΝΤΑΣ ΣΤΟ ΚΡΙΤΗΡΙΟ MOHR-COULOMB ΜΕ ΧΡΗΣΗ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΑΤLAB

3.1. Εισαγωγή

Η γλώσσα προγραμματισμού MATLAB είναι μια υψηλού επίπεδου γλώσσα τεχνικών υπολογισμών. Περιλαμβάνει υπολογισμούς, νοερές απεικονίσεις και προγραμματισμό σε ένα εύχρηστο περιβάλλον όπου τα προβλήματα και οι λύσεις τους είναι εκφρασμένα με οικείο μαθηματικό τρόπο. Οι τυπικές χρήσεις της περιλαμβάνουν:

- Μαθηματικά και υπολογισμούς
- Ανάπτυξη αλγορίθμου
- Ανάκτηση δεδομένων
- Μοντελοποίηση, εξομοίωση και πρωτοτυπία
- Ανάλυση δεδομένων, εξερεύνηση και νοερή απεικόνιση
- Επιστημονικά και μηχανικά γραφήματα
- Ανάπτυξη εφαρμογής συμπεριλαμβάνοντας την κατασκευή γραφικής διασύνδεσης
 του χρήστη

Η προγραμματιστική γλώσσα MATLAB είναι ένα σύστημα αλληλεπίδρασης του οποίου το βασικό στοιχείο των δεδομένων είναι μια παράταξη που δεν απαιτεί διαστασιολόγηση. Το στοιχείο αυτό επιτρέπει στον χρήστη την επίλυση προβλημάτων τεχνικού υπολογισμού, ειδικά εκείνων με μητρικούς και διανυσματικούς σχηματισμούς.

Η ονομασία της γλώσσας MATLAB προέρχεται από την έννοια «εργαστήριο μητρώου» (MATrix LABoratory). Αρχικά, η γλώσσα προγραμματισμού MATLAB είχε σχεδιαστεί με σκοπό την εύκολη πρόσβαση σε λογισμικό μητρώου ανεπτυγμένο από τα σχέδια LINPACK και EISPACK. Σήμερα, η MATLAB έχει τη δυνατότητα να ενσωματώνει τις LAPACK και BLAS βιβλιοθήκες, εισάγωντας τη τεχνολογία αιχμής στο λογισμικό για μητρικό υπολογισμό.

Στους πανεπιστημιακούς χώρους, η γλώσσα προγραμματισμού MATLAB είναι πλέον ένα δεδομένο διδακτικό εργαλείο για εισαγωγικά και ανωτέρα μαθήματα, όσον αφορά στα μαθηματικά, τη μηχανική και την επιστήμη. Στην βιομηχανία, η γλώσσα

προγραμματισμού MATLAB είναι το εργαλείο για την έρευνα υψηλής αποδοτικότητας, την ανάπτυξη και την ανάλυση.

Η προγραμματιστική γλώσσα MATLAB χαρακτηρίζει μια οικογένεια πρόσθετων εφαρμογών-ειδικων λύσεων που ονομάζεται κιβώτιο εργαλείων (toolboxes), που επιτρέπουν την εκμάθηση και την εφαρμογή εξειδικευμένης τεχνολογίας. Τα κιβώτια εργαλείων αποτελούν περιεκτικές συλλογές των συναρτήσεων MATLAB (M-αρχεία) που επεκτείνουν το περιβάλλον του MATLAB στην επίλυση ιδιαίτερων κλάσεων των προβλημάτων. Πεδία στα οποία είναι διαθέσιμα τα κιβώτια εργαλείων περιλαμβάνουν ροή σήματος, συστήματα έλεγχου, νευρωνικά δίκτυα, ασαφής λογική, κυματισμούς, εξομοίωση και πολλά ακόμα.

Το σύστημα της προγραμματιστικής γλώσσας MATLAB αποτελείται από πέντε μέρη. Αυτά είναι:

Αναπτυξιακό περιβάλλον. Είναι ένα σύνολο εργαλείων και δυνατοτήτων που βοηθούν στη χρήση των συναρτήσεων και των αρχείων MATLAB. Πολλά από τα εργαλεία είναι γραφικές διασυνδέσεις του χρήστη. Περιλαμβάνει την επιφάνεια εργασίας MATLAB και το παράθυρο εντολών, το ιστορικό των εντολών, τον συντάκτη και τους φυλλομετρητές για αναζήτηση βοήθειας, τον χώρο εργασίας, τα αρχεία, και την διαδρομή αναζήτησης.

Βιβλιοθήκη μαθηματικών συναρτήσεων του MATLAB. Πρόκειται για μια μεγάλη συλλογή των υπολογιστικών αλγορίθμων ξεκινώντας από τις στοιχειώδεις συναρτήσεις όπως το άθροισμα, ημίτονο, συνημίτονο και πολύπλοκα αριθμητικά έως τις πιο εξεζητημένες συναρτήσεις όπως τα αντίστροφα μητρώα, τις συναρτήσεις Bessel και τις γρήγορες μεταμορφώσεις του Fourier.

✓ Γλώσσα MATLAB. Είναι μια υψηλού επίπεδου γλώσσα μητρώου/παράταξης, με εκθέσεις έλεγχου ροής, συναρτήσεις, κατασκευές δεδομένων, εισαγωγή/εξαγωγή και αντικειμενοστραφή προγραμματιστικά χαρακτηριστικά. Επιτρέπει εξίσου τον "σύντομο προγραμματισμό" με σκοπό την δημιουργία γρήγορων και μιας χρήσης προγραμμάτων αλλά και τον "εκτεταμένο προγραμματισμό" δημιουργώντας μεγάλα και σύνθετα προγράμματα εφαρμογών.

Γραφήματα. Η MATLAB έχει εκτεταμένες δυνατότητες για την έκθεση των διανυσμάτων και μητρώων ως γραφήματα όπως και για σχολιασμό και εκτύπωση αυτών των γραφημάτων. Περιλαμβάνουν υψηλού επίπεδου συναρτήσεις για δισδιάστατες και τρισδιάστατες νοερές απεικονίσεις δεδομένων, ανάπτυξη εικόνας, απεικόνιση και παρουσίαση των γραφημάτων. Συμπεριλαμβάνουν ακόμα και τις χαμηλού επιπέδου συναρτήσεις που επιτρέπουν την πλήρη προσαρμογή των γραφικών στις ειδικές κάθε φορά ανάγκες όπως και την κατασκευή ολοκληρωμένων γραφικών διασυνδέσεων του χρήστη στις εφαρμογές της MATLAB.

Το πρόγραμμα διασύνδεσης της εφαρμογής MATLAB. Είναι μια βιβλιοθήκη που επιτρέπει την γραφή στις γλώσσες προγραμματισμού C και Fortran που αλληλεπιδρούν με την MATLAB. Παρέχουν τις δυνατότητες για κλήση τρέχουσας χρήσης από την MATLAB (δυναμική σύνδεση), ονομάζοντας την MATLAB ως υπολογιστική μηχανή και για την ανάγνωση και την γραφή των MAT-αρχείων.

Όσον αφορά στον προγραμματισμό στην γλώσσα MATLAB, η ύπαρξη ενός περιβάλλοντος, όπου υπάρχει η δυνατότητα για ανάπτυξη συναρτήσεων και εγγράφων καθώς και για εισαγωγή και εξαγωγή πολλών ειδών αρχείων δεδομένων, παρέχει στους χρήστες της γλώσσας τον εύκολο προγραμματισμό των ειδικών, για την κάθε περίσταση, συναρτήσεων με την μελέτη των χαρακτηριστικών και των τεχνικών προγραμματισμού.

Έτσι λοιπόν, με σκοπό την μελέτη και την εύρεση στοιχείων της πλαστικής ζώνης που σχηματίζεται κατά την κατασκευή μιας κυκλικής σήραγγας δημιουργήθηκε το πρόγραμμα υπολογισμού και κατανομής πλαστικής ζώνης τα χαρακτηριστικά του οποίου παρουσιάζονται στα ακόλουθα.

3.2. Πρόγραμμα Υπολογισμού Πλαστικής Ζώνης

Στα πλαίσια εκπόνησης πτυχιακής διπλωματικής εργασίας (Φραγκούλη Γ., 2009), αναπτύχτηκε στον προγραμματιστικό περιβάλλον της γλώσσας MATLAB το πρόγραμμα υπολογισμού πλαστικής ζώνης που σχηματίζεται γύρω από μια κυκλική σήραγγα. Σκοπός της ανάπτυξης του είναι ο εύκολος και γρήγορος υπολογισμός χαρακτηριστικών παραμέτρων της πλαστικής ζώνης της κυκλικής σήραγγας. Γενικότερα, πρόκειται για τον προγραμματισμό της διαδικασίας εύρεσης τη λύσης κλειστής μορφής για τον σχηματισμό πλαστικής ζώνης γύρω από αβαθή κυκλική σήραγγα υπακούοντας στο κριτήριο Mohr-Coulomb, που έχει αναπτυχτεί στο υπολογιστικό φύλλο Excel, με την χρήση της προγραμματιστικής γλώσσας MATLAB.

Η κατασκευή του προγράμματος πραγματοποιήθηκε με την κλήση των κατάλληλων εντολών και την χρήση των κατάλληλων εξισώσεων, ίδιων με αυτών

που χρησιμοποιήθηκαν και κατά την ανάπτυξη της μεθόδου στο υπολογιστικό φύλλο Excel. Σημειώνεται ότι η διαφορά των μεθόδων έγκειται στο γεγονός ότι ενώ στο υπολογιστικό φύλλο Excel για την κάθε γωνία β βρίσκεται ο κύκλος στον οποίο ανήκει το σημείο που επιλύει την εξίσωση, στην προκείμενη περίπτωση αναζητείται σε μια κατεύθυνση το σημείο που επιλύει την εξίσωση.

Αρχικά λοιπόν, δημιουργήθηκε στο Editor του MATLAB η συνάρτηση πλαστικής ζώνης η οποία και βοηθά στον προγραμματισμό. Η μορφή της συνάρτησης είναι η ακόλουθη:

function CCC=plastic_zone(r, d_i, P₀, P_i, c₁, f, r_{clow}, r_{cupper}, N)

Όπου:

r : ακτίνα της σήραγγας

- \blacktriangleright d_i : απόσταση του κέντρου της σήραγγας από την επιφάνεια
- P₀ : σταθερή πίεση επιφανείας
- P_i : εσωτερική πίεση στην περιφέρεια της σήραγγας
- c₁: συνοχή του εδάφους

f : γωνία τριβής εδάφους

 \mathbf{r}_{clow} : κάτω όριο για τον υπολογισμό του r_c

 r_{cupper} : άνω όριο για τον υπολογισμό του r_c

> N : αριθμός διαμερίσεων μεταξύ r_{clow} και r_{cupper} για την εύρεση του r_c (ακτίνα πλαστικής ζώνης).

Οι παράμετροι της συνάρτησης της πλαστικής ζώνης είναι όμοιες με αυτές που έχουν χρησιμοποιηθεί στο κριτήριο Mohr-Coulomb. Όμως, λόγο του ότι κατά τον προγραμματισμό στη γλώσσα MATLAB χρησιμοποιούνται αποκλειστικά οι λατινικοί χαρακτήρες, στο πρόγραμμα που δημιουργήθηκε, τα σύμβολα των παραμέτρων του κριτηρίου αντικαταστάθηκαν. Πρόκειται για τις εξής παραμέτρους:

- $c_1 \equiv c (sunstyle constants)$
- $f \equiv \phi (\gamma \omega \nu i \alpha \tau \rho \iota \beta \eta \varsigma \tau \sigma \upsilon \epsilon \delta \dot{\alpha} \phi \sigma \upsilon \varsigma)$

Όσον αφορά ειδικά στις τρεις τελευταίες παραμέτρους της συνάρτησης σημειώνεται:

 \checkmark το κάτω όριο
 r_{clow} τίθεται ίσο με την ακτίνα της έκαστης κυκλικής σήραγγ
ας r

 \checkmark το άνω όριο r
cupper τίθεται ένας αριθμός μεταξύ της ακτίνας της σήραγγας και του βάθους της, Z

✓ Ο αριθμός διαμερίσεων Ν είναι ένας αριθμός της δύναμης του 10

Η συνάρτηση πλαστική ζώνης είναι προγραμματισμένη με την εφαρμογή των παραμέτρων να δίνει ως αποτελέσματα ένα σύνολο στοιχείων της πλαστικής ζώνης και της κυκλικής σήραγγας για 73 τιμές των συντεταγμένων. Αυτές είναι:

- gwnia = $\gamma \omega v i \alpha \beta$
- revector = ακτίνα πλαστικής ζώνης για κάθε τιμή της γωνίας β
- sfalma = σφάλμα σύγκλισης διαφοράς για τις 73 τιμές της γωνίας β
- Xplastzone = τετμημένη της πλαστικής ζώνης για τις 73 τιμές της γωνίας β
- Yplastzone = τεταγμένη της πλαστικής ζώνης για τις 73 τιμές της γωνίας β και
- kritical_pressure = κρίσιμη πίεση για τις 73 τιμές της γωνίας β

Στην οθόνη εμφανίζεται αυτόματα η εικόνα της πλαστικής ζώνης γύρω από την κυκλική σήραγγα, ενώ παρουσιάζονται επίσης και οι αριθμητικές τιμές των παραμέτρων τις συνάρτησης που έχουν εφαρμοστεί. Ακόμα, ειδικά για τις τιμές της ακτίνας της πλαστικής ζώνης που αντιστοιχούν στις τιμές της γωνίας β=0 rad και β=3,1416 rad, δηλαδή οι ακτίνες της οροφής και του δαπέδου, έχει προγραμματιστεί να εμφανίζονται ξεχωριστά για πιο εύκολο εντοπισμό. Οι τιμές αυτές συμβολίζονται ως Rroof (ακτίνα οροφής) και Rfloor (ακτίνα δαπέδου) αντίστοιχα. Τέλος, για τον ίδιο λόγο εμφανίζονται και τα εύρη της οροφής (euros_roof) και του δαπέδου (euros_floor) για τιμές της γωνίας β=3,1416 rad και β=0 rad, που υπολογίζονται αυτόματα από το πρόγραμμα.

κεφαλαίο 4
4. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΗΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΑΤΙΣΜΟΥ MATLAB ΣΕ ΑΒΑΘΗ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

4.1. Εισαγωγή

Η ακόλουθη εφαρμογή έχει σκοπό τη χρήση της συνάρτησης πλαστικής ζώνης που έχει σχεδιαστεί στη προγραμματιστική γλώσσα MATLAB για τη μελέτη του σχηματισμού πλαστικής ζώνης δυο αντιπροσωπευτικών γεωτεχνικών τομών σχεδιασμού.

Πρόκειται για τις γεωτεχνικές τομές σχεδιασμού 3A και 4B με δεδομένες τιμές των γεωτεχνικών παραμέτρων οι οποίες έχουν χρησιμοποιηθεί κατά την εφαρμογή του κριτηρίου Mohr-Coulomb στο υπολογιστικό φύλλο Excel (Κεφάλαιο 2).

Ειδικά για τη συνάρτηση πλαστικής ζώνης, από το σύνολο των αποτελεσμάτων που προκύπτουν με τη εκτέλεση της συνάρτησης, στη προκείμενη μελέτη χρησιμοποιείται ο παράγοντας 'εύρος' της πλαστικής ζώνης που σχηματίζεται γύρω από την κυκλική σήραγγα. Άλλωστε, το εύρος είναι το κοινό στοιχείο που συνδέει τη μελέτη σχηματισμού της πλαστικής ζώνης ανάμεσα στις δυο εφαρμογές με απώτερο σκοπό την δυνατότητα σύγκρισής τους.

Έτσι λοιπόν, για τις δυο αντιπροσωπευτικές γεωτεχνικές τομές σχεδιασμού πραγματοποιείται η εκτέλεση της συνάρτησης της πλαστικής ζώνης. Στα ακόλουθα αναφέρονται αρχικά, για την κάθε τομή, τα δεδομένα που πρόκειται να χρησιμοποιηθούν και η διαδικασία εκτέλεσης της συνάρτησης, στη συνέχεια παρουσιάζονται τα αποτελέσματα, οπτικά και μετρικά, και στο τέλος καταγράφονται τα συμπεράσματα.

4.2. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α

4.2.1. Δεδομένα και διαδικασία εκτέλεσης

Το χαρακτηριστικό της αντιπροσωπευτικής γεωτεχνικής τομής σχεδιασμού 3Α είναι ότι το έδαφός της χαρακτηρίζεται από μια σειρά τιμών των γεωτεχνικών παραμέτρων, οι οποίες μάλιστα ύστερα από υπολογισμούς ομαδοποιήθηκαν σε τρία σύνολα και αναφέρονται ως ελάχιστες, μέσες και μέγιστες τιμές (Κεφάλαιο 2).

Ακόμα, η γεωτεχνική διατομή αφορά μια αβαθή κυκλική σήραγγα ακτίνας r, βάθους Z=d (όπως αναφέρεται στη συνάρτηση) και υπερκείμενου φορτίου P_0 (Πίνακας 1).

Παράμετροι	Ελάχιστη τιμή	Μέση τιμή	Μέγιστη τιμή
c (kPa)	52	58	65
φ(*)	38	41	44
r (m)	5	5	5
Z (m)	21	21	21
P ₀ (kPa)	477	477	477

Πίνακας 1: Μέσες τιμές γεωτεχνικών παραμέτρων

Επιπλέον, όπως έχει αναφερθεί, κατά την εφαρμογή της συνάρτησης της πλαστικής ζώνης απαραίτητο στοιχείο αποτελεί η τιμή της πίεσης υποστήριξης P_i. Μάλιστα, στη προκείμενη μελέτη εφαρμόζεται ένα σύνολο τιμών της πίεσης υποστήριξης P_i, όμοιες για τις τρείς ομάδες τιμών. Είναι οι τιμές που δίνουν τους απαραίτητους λόγους φορτίων P_i/P₀ που εφαρμόστηκαν κατά την χρήση του κριτηρίου Mohr-Coulomb στο υπολογιστικό φύλλο Excel. Η εφαρμογή τους έχει ως σκοπό την πληρέστερη μελέτη της πλαστικής ζώνης γύρω από την κυκλική σήραγγα και παρουσιάζονται στον Πίνακα 2.

$P_i(kPa)$
0,00
9,54
23,85
47,70
71,55
95,40
143,10
190,80

Πίνακας 2: Τιμές εσωτερικής πίεσης υποστήριξης P_i

Οι τιμές που αναφέρθηκαν, λειτουργώντας ως αναγκαία και ικανά στοιχεία εισαγωγής, επιτρέπουν την εκτέλεση της συνάρτησης πλαστικής ζώνης της προγραμματιστικής γλώσσας MATLAB.

Η διαδικασία εκτέλεσης της συνάρτησης πλαστικής ζώνης για τις ελάχιστες τιμές των γεωτεχνικών παραμέτρων έχει ως εξής:

Υστερα από το άνοιγμα της δημιουργηθείσας συνάρτησης, στο παράθυρο των εντολών (Command Window) αναγράφεται η ονομασία της συνάρτησης (plastic_zone, στη προκειμένη περίπτωση). Ωστόσο στη παρένθεση δεν σημειώνονται οι ονομασίες των παραμέτρων δηλαδή οι r, d, P₀, P_i, c1 και f, rclow, rcupper, και N αλλά οι τιμές τους.

Στη συνέχεια λοιπόν, από τα στοιχεία του Πίνακα 1 χρησιμοποιούνται οι τιμές των γεωτεχνικών παραμέτρων, του ελάχιστου συνόλου αρχικά. Εισάγεται η τιμή r=5 m, d=21 m, P₀=477 kPa, c1=52 kPa και f=38°. Όσον αφορά στις τιμές των υπόλοιπων στοιχείων της συνάρτησης ισχύει: rclow=5 m, rcupper=20 m και N=1000 και παραμένουν σταθερές καθόλη την διάρκεια εκτέλεσής της.

Η τιμή της πίεσης υποστήριξης P_i αρχικά παίρνει την τιμή 0 kPa σύμφωνα με τα στοιχεία του Πίνακα 2 και πραγματοποιείται η πρώτη εκτέλεση της συνάρτησης της πλαστικής ζώνης.

Καταγράφονται οι τιμές του εύρους οροφής (euros_roof) και του εύρους του δαπέδου (euros_floor) για γωνίες β=3,1416 rad και β=0 rad αντίστοιχα, που υπολογίζονται αυτόματα, και αποθηκεύεται η εικόνα της πλαστικής ζώνης.

Επαναλαμβάνεται η εκτέλεση της συνάρτησης για τις διάφορες τιμές της πίεσης υποστήριξης του Πίνακα 2 με σταθερές τις υπόλοιπες τιμές. Ακόμα, αξίζει να αναφερθεί ότι καθώς με την εφαρμογή της συνάρτησης πλαστικής ζώνης ένα από τα αποτελέσματα είναι και η τιμή της κρίσιμης πίεσης Pcr, στην προκείμενη εφαρμογή χρησιμοποιούνται μόνο εκείνες οι τιμές της πίεσης υποστήριξης, που είναι μικρότερες από τις κρίσιμες. Άλλωστε, όταν συμβαίνει το αντίθετο στη συνάρτηση πλαστικής ζώνης, το εύρος της προκύπτει ίσο με το μηδέν για κάθε γωνία β και το σφάλμα της σύγκλισης των διαφορών είναι πολύ μεγάλο. Στη περίπτωση αυτή, η σχηματιζόμενη ζώνη, οπότε και δεν έχει φυσική σημασία. Υπολογίζονται συνολικά 73 διαφορετικές τιμές της κρίσιμης πίεσης Ρcr που αντιστοιχούν στις 73 τιμές της γωνίας β και καταγράφεται σε ένα αρχείο η τιμή για γωνία β=0 rad ή για γωνία β=3,1416 rad. Και για τις δυο γωνίες η τιμή της πίεσης είναι ίδια και αντιστοιχεί στις τιμές της ακτίνας της οροφής και του δαπέδου.

Η παραπάνω διαδικασία είναι όμοια και για τις άλλες δυο ομάδες τιμών των γεωτεχνικών παραμέτρων με βασική προϋπόθεση την εισαγωγή των αντίστοιχων τιμών στη συνάρτηση της πλαστικής ζώνης.

4.2.2. Αποτελέσματα εφαρμογής

4.2.2.1. Προκύπτουσες εικόνες

Με την εφαρμογή λοιπόν, των τιμών της πίεσης υποστήριξης P_i προέκυψαν μια σειρά από εικόνες καθώς για κάθε τιμή της πίεσης διαμορφώνεται η αντίστοιχη εικόνα της πλαστικής ζώνης γύρω από την κυκλική σήραγγα. Οι εικόνες αυτές παρουσιάζονται στα ακόλουθα και μάλιστα ομαδοποιημένες σε ελάχιστα, μέσα και μέγιστα σύνολα.

Ελάχιστες τιμές γεωτεχνικών παραμέτρων

Εικόνα 1: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=0,00 kPa

Εικόνα 3: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,85 kPa

Εικόνα 2: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=9,54 kPa

Εικόνα 4: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=47,70 kPa

Εικόνα 5: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=71,55 kPa

Εικόνα 6: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=95,40 kPa

Μέσες τιμές γεωτεχνικών παραμέτρων

Εικόνα 7: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριζης Pi=0,00 kPa

Εικόνα 9: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,85 kPa

Εικόνα 8: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=9,54 kPa

Εικόνα 10: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=47,70 kPa

Εικόνα 11: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=71,55 kPa

Εικόνα 12: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=95,40 kPa

Εικόνα 13: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=0,00 kPa

Εικόνα 15: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,85 kPa

Εικόνα 14: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριζης Pi=9,54 kPa

Εικόνα 16: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=47,70 kPa

<u>Μέγιστες τιμές γεωτεχνικών παραμέτρων</u>

Εικόνα 17: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=71,55 kPa

Εικόνα 18: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=95,40 kPa

4.2.2.2. Εύρος πλαστικής ζώνης

Τα εύρη της οροφής και του δαπέδου της πλαστικής ζώνης, που καταγράφηκαν με την εφαρμογή στη συνάρτηση της πλαστικής ζώνης των τιμών της πίεσης υποστήριξης P_i για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων παρουσιάζονται στους Πίνακες 3, 4, και 5.

Ακόμα, αν και στη συνάρτηση πλαστικής ζώνης χρησιμοποιούνται οι τιμές της πίεσης υποστήριξης και όχι οι λόγοι των υπερκείμενων φορτίων και των φορτίων υποστήριξης που αντιστοιχούν σε αυτές, θεωρήθηκε σκόπιμο σε όλους τους πίνακες αποτελεσμάτων και τα αντίστοιχα γραφήματα να αναγράφονται οι τιμές των λόγων φορτίων. Με την δημιουργία αδιάστατων νομογραφημάτων οδηγούμαστε σε εξαγωγή συμπερασμάτων γενικότερης ισχύος και όχι μόνο για μεμονωμένες τιμές. Επιπλέον, η αναγραφή των λόγων φορτίων προσφέρει και καλύτερη παρουσίαση των στοιχείων από αισθητική άποψη. Όσον αφορά στον σχολιασμό των αποτελεσμάτων συσχετίζεται κανονικά η τιμή της πίεσης υποστήριξης P_i με τις άλλες παραμέτρους.

Λόγοι φορτίων	Άνω εύρος	Κάτω εύρος
$\mathbf{P}_{i}/\mathbf{P}_{0}$	πλαστικής ζώνης	πλαστικής ζώνης
	(m)	(m)
0,00	2,3171	2,0635
0,02	1,9762	1,7896
0,05	1,5737	1,4596
0,10	1,0723	1,0175
0,15	0,7002	0,6751
0,20	0,4160	0,4110

Πίνακας 3: Εύρος πλαστικής ζώνης για κάθε P_i/P_0 (ελάχιστες τιμές παραμέτρων)

Πίνακας 4: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης	Κάτω εύρος πλαστικής ζώνης
	(m)	(m)
0,00	1,6336	1,4982
0,02	1,3820	1,2859
0,05	1,0828	1,0175
0,10	0,7002	0,6751
0,15	0,4160	0,4110
0,20	0,1928	0,1862

Πίνακας 5: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος	Κάτω εύρος
P_i/P_0	πλαστικής ζώνης	πλαστικής ζώνης
	(m)	(m)
0,00	1,1349	1,0748
0,02	0,9566	0,9030
0,05	0,7218	0,6940
0,10	0,4270	0,4110
0,15	0,2041	0,2049
0,20	0,0228	0,0186

4.2.3. Συμπεράσματα

4.2.3.1. Μελέτη εικόνων

Η μελέτη των παραπάνω εικόνων οδηγεί στο γενικό συμπέρασμα ότι:

Το εύρος της πλαστικής ζώνης μειώνεται με την αύξηση της τιμής της πίεσης υποστήριξης P_i ή της τιμής του λόγου φορτίων P_i/P₀.

4.2.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης

Σύμφωνα με τα στοιχεία των παραπάνω πινάκων τα συμπεράσματα όσον αφορά στο εύρος της πλαστικής ζώνης και την τιμή της πίεσης υποστήριξης έχουν ως εξής:

Η αύξηση της τιμής της πίεσης υποστήριξης P_i οδηγεί στη μείωση του άνω και κάτω εύρους της πλαστικής ζώνης και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων (Γράφημα 1, 2, 3).

Γράφημα 1: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (ελάχιστες τιμές παραμέτρων)

Γράφημα 2: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (μέσες τιμές παραμέτρων

Γράφημα 3: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (μέγιστες τιμές παραμέτρων)

Το άνω εύρος της πλαστικής ζώνης είναι μεγαλύτερο από το κάτω εύρος της πλαστικής ζώνης και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων για όλες τις τιμές της πίεσης υποστήριξης με μόνη εξαίρεση τα άνω και κάτω εύρη των μέγιστων τιμών των παραμέτρων και για λόγο φορτίων P_i/P₀=0,15. Το συμπέρασμα αυτό φαίνεται καθαρά στα παραπάνω γραφήματα και δηλώνει ότι το βάθος Z επηρεάζει το σχηματισμό των πλαστικών ζωνών, αφού με την αύξηση του μειώνεται το εύρος της πλαστικής ζώνης.

Η αύξηση της τιμής της πίεσης υποστήριξης προκαλεί μείωση της διαφοράς του άνω και κάτω εύρους για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων. Στα παρακάτω παρουσιάζεται ο πίνακας της διαφοράς του άνω και κάτω εύρους της πλαστικής ζώνης (που προκύπτει από την αφαίρεση του κάτω εύρους από το άνω) για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων και στη συνέχεια το αντίστοιχο γράφημα. Η εξαίρεση του κανόνα του παραπάνω συμπεράσματος εντοπίζεται εύκολα στον πίνακα αφού εμφανίζεται ως αρνητική τιμή.

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά εύρους (ελάχιστες τιμές) (m)	Διαφορά εύρους (μέσες τιμές) (m)	Διαφορά εύρους (μέγιστες τιμές) (m)
0,00	0,2536	0,1354	0,0601
0,02	0,1866	0,0961	0,0536
0,05	0,1141	0,0653	0,0278
0,10	0,0548	0,0251	0,0160
0,15	0,0251	0,0050	-0,0008
0,20	0,0050	0,0066	0,0042

Πίνακας 6: Διαφορά άνω και κάτω εύρους πλαστικής ζώνης

Γράφημα 4: Συσχέτιση διαφοράς άνω και κάτω εύρους-λόγων φορτίων Ρι/Ρο

Το εύρος της πλαστικής ζώνης (άνω και κάτω) μειώνεται με την αύξηση των τιμών των γεωτεχνικών παραμέτρων, αφού το εύρος της πλαστικής ζώνης των ελάχιστων τιμών είναι κατά πολύ μεγαλύτερο από αυτό των μέσων και των μέγιστων τιμών για σταθερή τιμή της πίεσης υποστήριξης (Γράφημα 5, 6).

Γράφημα 5: Συσχέτιση άνω εύρους πλαστικής ζώνης μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων για διάφορες τιμές του λόγου φορτίων P_i/P₀

Γράφημα 6: Συσχέτιση κάτω εύρους πλαστικής ζώνης μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων για διάφορες τιμές του λόγου φορτίων P_i/P₀

4.2.4. Μέσο εύρους πλαστικής ζώνης

Με σκοπό την εξαγωγή γενικού συμπεράσματος για την σχέση του εύρους της πλαστικής ζώνης και της τιμής της πίεσης υποστήριξης, θεωρήθηκε σκόπιμος ο υπολογισμός της μέσης τιμής του εύρους της σχηματιζόμενης πλαστικής ζώνης για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων. Έτσι προκύπτει ο ακόλουθος πίνακας και το αντίστοιχο γράφημα.

Πίνακας 7: Μέση τιμή εύρος πλαστικής ζώνης για κάθε P_i/P_0 και για κάθε ομά	δα
παραμέτρων	

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέσο εύρος πλαστικής ζώνης (m) (ελάγιστες τιμές)	Μέσο εύρος πλαστικής ζώνης (m) (μέσες τιμές)	Μέσο εύρος πλαστικής ζώνης (m) (μένιστες τιμές)
0,00	2,1903	1,5659	1,1049
0,02	1,8829	1,3340	0,9298
0,05	1,5167	1,0502	0,7079
0,10	1,0449	0,6877	0,4190
0,15	0,6877	0,4135	0,2045
0,20	0,4135	0,1895	0,0207

Γράφημα 7: Σύγκριση μέσων τιμών εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση της τιμής του λόγου φορτίων P_i/P₀

Συνεπώς, ισχύει γενικά ότι το εύρος της πλαστικής ζώνης μειώνεται με την αύξηση της τιμής της πίεσης υποστήριξης και ότι το εύρος της πλαστικής ζώνης μειώνεται με την αύξηση των τιμών των γεωτεχνικών παραμέτρων.

4.2.5. Κανονικοποιημένο εύρος πλαστικής ζώνης

Η κανονικοποίηση του εύρους της πλαστικής ζώνης, δηλαδή η διαίρεση του άνω και κάτω εύρους της πλαστικής ζώνης με την ακτίνα της σήραγγας, δημιουργεί μια πιο ξεκάθαρη εικόνα της κλίμακας επίδρασης των στοιχείων που χαρακτηρίζουν μια κυκλική σήραγγα στην διαμόρφωση των πλαστικών ζωνών. Με αυτό τον τρόπο το εύρος δεν αποτελεί απλώς ένα ανεξάρτητο στοιχείο που έχει μετρηθεί, αλλά δηλώνει ακριβώς το τι μέρος της ακτίνας είναι και έτσι δίνεται η δυνατότητα εξαγωγής πρακτικών συμπερασμάτων για το μέγεθος επιρροής των παραμέτρων κατά την διάνοιξη μιας σήραγγας.

Για κάθε ομάδα τιμών των γεωμετρικών παραμέτρων και για όλες τις εφαρμοζόμενες τιμές της πίεσης υποστήριξης, πραγματοποιείται η κανονικοποίηση των άνω και κάτω ευρών αλλά και των μεσών τιμών των ευρών. Τα αποτελέσματα των πράξεων και η ανάγωγη τους σε ποσοστό τις εκατό (%) παρατίθενται στους επομένους πίνακες, ενώ για ακόμα πιο εύκολη εξαγωγή συμπερασμάτων για τα κανονικοποιημένα εύρη των τριών ομάδων σχεδιάστηκαν και τα Γραφήματα 8, 9, 10.

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,4634	46,34	0,3240	32,40
0,02	0,3952	39,52	0,2820	28,20
0,05	0,3147	31,47	0,2310	23,10
0,10	0,2145	21,45	0,1620	16,20
0,15	0,1400	14,00	0,1080	10,80
0,20	0,0832	8,32	0,0660	6,60

Πίνακας 8: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Πίνακας 9: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος	Κάτω εύρος πλαστικής	Κάτω εύρος
P_i/P_0	ζώνης/ακτίνα της	πλαστικής	ζώνης/ακτίνα της	πλαστικής
	σήραγγας	ζώνης/ακτίνα της	σήραγγας	ζώνης/ακτίνα της
		σήραγγας (%)		σήραγγας (%)
0,00	0,3267	32,67	0,2996	29,96
0,02	0,2764	27,64	0,2572	25,72
0,05	0,2166	21,66	0,2035	20,35
0,10	0,1400	14,00	0,1350	13,50
0,15	0,0832	8,32	0,0822	8,22
0,20	0,0386	3,86	0,0372	3,72

Πίνακας 10: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος	Κάτω εύρος πλαστικής	Κάτω εύρος
P_i/P_0	ζώνης/ακτίνα της	πλαστικής	ζώνης/ακτίνα της	πλαστικής
	σήραγγας	ζώνης/ακτίνα της	σήραγγας	ζώνης/ακτίνα της
		σήραγγας (%)		σήραγγας (%)
0,00	0,2270	22,70	0,2150	21,50
0,02	0,1913	19,13	0,1806	18,60
0,05	0,1444	14,44	0,1388	14,16
0,10	0,0854	8,54	0,0822	8,38
0,15	0,0408	4,08	0,0410	4,09
0,20	0,0046	0,46	0,0037	0,41

Γράφημα 8: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση

twn lógwn fortíwn $P_i\!/P_0$

Γράφημα 9: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Πίνακας 11: Μέσο κανονικοποιημένο εύρος της πλαστικής ζώνης για κάθε P_i/P_0

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας(ελάχιστες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας(μέσες τιμές)	Μέσο εύρος πλαστικής ζώνης/ακτίνα της σήραγγας(μέγιστες τιμές)
0,00	0,3937	0,3132	0,2210
0,02	0,3386	0,2668	0,1860
0,05	0,2729	0,2100	0,1416
0,10	0,1882	0,1375	0,0838
0,15	0,1240	0,0827	0,0409
0,20	0,0746	0,0379	0,0041

και για κάθε ομάδα παραμέτρων

Γράφημα 10: Σύγκριση μέσου κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Μελετώντας λοιπόν τα κανονικοποιημένα εύρη και ειδικά τα κανονικοποιημένα εύρη επί τις εκατό (%) για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων διαπιστώνεται ότι για τις ελάχιστες τιμές και για άνω εύρη της πλαστικής ζώνης τα ποσοστά είναι σημαντικά. Για τιμή της πίεσης υποστήριξης $P_i=0$ kPa, δηλαδή όταν δεν υπάρχει καθόλου υποστήριξη, το ποσοστό του εύρους ανέρχεται στο 46% του εύρους της ακτίνας, αποτελεί δηλαδή ένα σημαντικό μέρος αυτής. Επίσης, ακόμα και με υποστήριξη με $P_i=9,54$ kPa το ποσοστό είναι 39%. Τα κάτω εύρη αντιστοιχούν για όλες τις τιμές της πίεσης υποστήριξης σε μικρότερα ποσοστά σε σχέση με τα άνω, εκτός της μιας εξαιρέσεως. Τέλος, όσον αφορά τις τρεις ομάδες τιμών μεταξύ του η διαφορά των ποσοστών είναι μεγάλη και μάλιστα τις τάξεως του 50% και άνω ανάμεσα στις ελάχιστες και στις μέγιστες τιμές των γεωτεχνικών παραμέτρων των άνω ευρών και μικρότερης τάξεως για τα κάτω εύρη πλαστικής ζώνης. (Πίνακες 8 και 10).

4.2.6. Εκκεντρότητα Ε πλαστικής ζώνης

Στα προηγούμενα κεφάλαια έχει τονιστεί το γεγονός της ύπαρξης της εκκεντρότητας Ε της πλαστικής ζώνης, δηλαδή της μη σύμπτωσης των κέντρων της σήραγγας και της πλαστικής ζώνης εξαιτίας του ελλειπτικού της σχήματος. Μάλιστα, με σκοπό την διαπίστωση της μεταβολής της εκκεντρότητας των ζωνών στην οροφή και στο δάπεδο σε σχέση με την αύξηση της τιμής της πίεσης υποστήριξης ή των λόγων φορτίων, υπολογίστηκαν εκτενώς οι τιμές αυτής για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων των δυο γεωτεχνικών τομών σχεδιασμού. Στα πλαίσια της παρούσας ανάλυσης, θεωρείται σκόπιμη απλώς η παρουσίαση του τρόπου υπολογισμού της εκκεντρότητας κατά την χρήση της συνάρτησης πλαστικής ζώνης του προγράμματος MATLAB.

Όπως έχει αναφερθεί, με την εφαρμογή των τιμών στη συνάρτηση πλαστικής ζώνης, αυτομάτως υπολογίζεται η ακτίνα της πλαστικής ζώνης στην οροφή και στο δάπεδο της σήραγγας (Rroof και Rfloor) καθώς και τα αντίστοιχα εύρη της πλαστικής ζώνης.

Ακόμα, για την ζώνη στην οροφή και στο δάπεδο, η διαφορά των κέντρων της σήραγγας και της πλαστικής ζώνης ισούται με την διαφορά της ακτίνας της πλαστικής ζώνης και του αθροίσματος του αντίστοιχου εύρους και της ακτίνας της σήραγγας.

Έτσι λοιπόν, για τη ζώνη στην οροφή μιας συγκεκριμένης πίεσης υποστήριξης, η εκκεντρότητα υπολογίζεται με την αφαίρεση του αναφερθέντος αθροίσματος από την ακτίνα της κυκλικής σήραγγας, ενώ για τη ζώνη στο δάπεδο της ίδιας πίεσης υποστήριξης, η εκκεντρότητα υπολογίζεται με την αφαίρεση της ακτίνας της πλαστικής ζώνης από το άθροισμα της ακτίνας της σήραγγας και του εύρους της πλαστικής ζώνης.

4.3. Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β

4.3.1. Δεδομένα και διαδικασία εκτέλεσης

Η αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 4B ανήκει στη κυκλική σήραγγα TBM με έντονη εναλλαγή των εδαφικών σχηματισμών που χαρακτηρίζονται από διαφορετικές τιμές των γεωτεχνικών παραμέτρων. Στον Πίνακα 1 αναφέρονται οι γεωτεχνικές αυτές παράμετροι ύστερα από την κατηγοριοποίησή τους σε ελάχιστες, μέσες και μέγιστες τιμές καθώς και η τιμή της ακτίνας r της κυκλικής σήραγγας, του βάθους Z και του υπερκείμενου φορτίου P₀.

Παράμετροι	Ελάχιστη τιμή	Μέση τιμή	Μέγιστη τιμή
c (kPa)	65	78	91
φ(*)	41	45	50
r (m)	5	5	5
Z (m)	21	21	21
P ₀ (kPa)	467	467	467

Πίνακας	1:	Μέσες	τιμές	νεωτεγνικών	παραμέτρων
IIIIunus	••	TILOUS	rupus	/ CONTEXTING	nupuputput

Όσον αφορά στη τιμή της πίεσης υποστήριξης P_i, που είναι απαραίτητο στοιχείο για την εκτέλεση της συνάρτησης της πλαστικής ζώνης, αυτή εμπεριέχεται στον Πίνακα 2. Μάλιστα, όπως και στην περίπτωση της αντιπροσωπευτικής γεωτεχνικής τομής σχεδιασμού 3A, χρησιμοποιείται ένα σύνολο τιμών που έχουν προκύψει από τους λόγους των φορτίων κατά την εφαρμογή του κριτηρίου Mohr-Coulomb στο υπολογιστικό φύλλο Excel.

P _i (kPa)
0,00
9,34
23,35
46,70
70,05
93,40
140,10
186,80

Πίνακας 2:	Τιμές	πίεσης	υποστήρι	ιξης Ρι
			· · · · · · ·	

Η διαδικασία εκτέλεσης της συνάρτησης πλαστικής ζώνης της γλώσσας προγραμματισμού MATLAB είναι ίδια με αυτήν που ακολουθήθηκε κατά την χρήση των στοιχείων της γεωτεχνικής διατομής 3Α. Συνοπτικά, για τις ελάχιστες τιμές των γεωτεχνικών παραμέτρων, ισχύει:

 Με το άνοιγμα της συνάρτησης, στο παράθυρο των εντολών (Command Window) αναγράφεται η ονομασία της συνάρτησης (plastic_zone) και στη παρένθεση δεν σημειώνονται οι ονομασίες των παραμέτρων δηλαδή οι r, d, P₀, P_i, c1, f, rclow, rcupper και N αλλά οι τιμές τους.

• Από τα στοιχεία του Πίνακα 1 χρησιμοποιούνται οι τιμές των γεωτεχνικών παραμέτρων του ελάχιστου συνόλου αρχικά. Εισάγεται η τιμή r=5 m, d=21 m, P_0 =467 kPa, c1=65 kPa και f=41°. Όσον αφορά στις τιμές των υπόλοιπων στοιχείων της συνάρτησης ισχύει: rclow=5 m, rcupper=20 m και N=1000 και παραμένουν σταθερές καθόλη την διάρκεια εκτέλεσής της.

Η τιμή της πίεσης υποστήριξης P_i αρχικά παίρνει τη τιμή 0 kPa σύμφωνα με τα στοιχεία του Πίνακα 2 και πραγματοποιείται η πρώτη εκτέλεση της συνάρτησης της πλαστικής ζώνης.

Καταγράφεται το εύρος της οροφής (euros_roof) και του δαπέδου (euros_floor)
της πλαστικής ζώνης δηλαδή τα εύρη για γωνίες β=3,1416 rad και β=0 rad,
αντίστοιχα, και αποθηκεύεται η εικόνα της σήραγγας και της πλαστικής ζώνης.

Επαναλαμβάνεται η εκτέλεση της συνάρτησης για τις διάφορες τιμές της πίεσης υποστήριξης του Πίνακα 2 με σταθερές τις υπόλοιπες τιμές. Όπως και προηγουμένως, στη συνάρτηση πλαστικής ζώνης χρησιμοποιούνται μόνο εκείνες οι τιμές για τις οποίες ο λόγος των φορτίων είναι μικρότερος από τον κρίσιμο λόγο, αφού η αντίθετη περίπτωση δεν έχει φυσικό νόημα και απορρίπτεται. Για τον λόγο αυτό, ο αριθμός των εικόνων ανάμεσα στις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων είναι και διαφορετικός όπως και διαπιστώνεται στα ακόλουθα. Ακόμα, καταγράφεται σε ένα αρχείο η τιμή της κρίσιμης πίεσης Pcr για γωνία β=0 rad ή για γωνία β=3,1416 rad, δηλαδή για γωνίες που αντιστοιχούν στις ακτίνες της οροφής και του δαπέδου.

Η παραπάνω διαδικασία είναι όμοια και για τις άλλες δυο ομάδες τιμών των γεωτεχνικών παραμέτρων με βασική προϋπόθεση την εισαγωγή των αντίστοιχων τιμών στη συνάρτηση της πλαστικής ζώνης.

4.3.2. Αποτελέσματα εφαρμογής

4.3.2.1. Προκύπτουσες εικόνες

Η εκτέλεση της συνάρτησης της πλαστικής ζώνης ως αποτέλεσμα έχει καταρχήν ένα σύνολο εικόνων για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων οι οποίες και παρουσιάζονται στα επόμενα.

<u>Ελάχιστες τιμές γεωτεχνικών παραμέτρων</u>

Εικόνα 2: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=9,34 kPa

Εικόνα 3: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,35 kPa

Εικόνα 5: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=70,05 kPa

Εικόνα 4: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=46,70 kPa

Εικόνα 6: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=93,40 kPa

Εικόνα 7: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριζης Pi=0,00 kPa

Εικόνα 8: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=9,34 kPa

✓ <u>Μέσες τιμές γεωτεχνικών παραμέτρων</u>

Εικόνα 9: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,35 kPa

Εικόνα 11: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=70,05 kPa

<u>Μέγιστες τιμές γεωτεχνικών παραμέτρων</u>

Εικόνα 12: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=0,00 kPa

Εικόνα 10:Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=46,70 kPa

Εικόνα 13: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=9,34 kPa

Εικόνα 14: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=23,35 kPa

Εικόνα 15: Σχηματιζόμενη πλαστική ζώνη πίεσης υποστήριξης Pi=46,70 kPa

4.3.2.2. Εύρος πλαστικής ζώνης

Στη προκείμενη μελέτη, εκτός από τις εικόνες, σημαντικό στοιχείο αποτελεί το άνω και κάτω εύρος της σχηματιζόμενης πλαστικής ζώνης γύρω από την κυκλική σήραγγα το οποίο, όπως έχει αναφερθεί, καταγράφηκε κατά την διαρκεί εκτέλεσης της συνάρτησης πλαστικής ζώνης. Τα αποτελέσματα και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων παρουσιάζονται στους Πίνακες 3, 4 και 5.

Ακόμα, καθώς για τις μέσες και μέγιστες τιμές των γεωτεχνικών παραμέτρων μειώνεται ο αριθμός των εφαρμοζόμενων πιέσεων υποστήριξης που δίνουν πλαστικές ζώνες γύρω από την κυκλική σήραγγα, στις αντίστοιχες θέσεις αναγράφεται η ένδειξη N/A.

Τέλος, διευκρινίζεται ότι η στήλη με τις τιμές των πιέσεων υποστήριξης που έχουν εφαρμοστεί στη συνάρτηση της πλαστικής ζώνης, έχει αντικατασταθεί από τους λόγους των φορτίων υποστήριξης και των υπερκείμενων φορτίων P_i/P_0 με σκοπό την γενίκευση των συμπερασμάτων και την αισθητικά καλύτερη παρουσίαση των αποτελεσμάτων.

Λόγοι φορτίων	Άνω εύρος	Κάτω εύρος
P_i/P_0	πλαστικής ζώνης	πλαστικής ζώνης
	(m)	(m)
0,00	1,4125	1,3245
0,02	1,2075	1,1323
0,05	0,9461	0,9030
0,10	0,6025	0,5805
0,15	0,3495	0,3359
0,20	0,1364	0,1302

Πίνακας 3: Εύρος πλαστικής ζώνης για κάθε P_i/P_0 (ελάχιστες τιμές παραμέτρων)

Πίνακας 4: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος	Κάτω εύρος
P_i/P_0	πλαστικής ζώνης	πλαστικής ζώνης
	(m)	(m)
0,00	0,8184	0,7888
0,02	0,6785	0,6562
0,05	0,5041	0,4863
0,10	0,2602	0,2610
0,15	0,0798	0,0744
0,20	N/A	N/A

Πίνακας 5: Εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Β/Β	Άνω εύρος	Κάτω εύρος
Γ _i /Γ ₀	πλαστικής ζωνής	πλαστικής ςωνής
	(m)	(m)
0,00	0,4049	0,4110
0,02	0,3061	0,3172
0,05	0,1928	0,1862
0,10	0,0228	0,0186
0,15	N/A	N/A
0,20	N/A	N/A

4.3.3. Συμπεράσματα

4.3.3.1. Μελέτη εικόνων

Η μελέτη των παραπάνω εικόνων οδηγεί στο γενικό συμπέρασμα ότι:

Το εύρος της πλαστικής ζώνης μειώνεται με την αύξηση της τιμής της πίεσης υποστήριξης P_i.

4.3.3.2. Μελέτη τιμών εύρους πλαστικής ζώνης

Από τα στοιχεία των παραπάνω πινάκων προκύπτουν τα εξής:

Η αύξηση της τιμής της πίεσης υποστήριξης οδηγεί στη μείωση του άνω και κάτω εύρους της πλαστικής ζώνης και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων. Έτσι προκύπτουν τα Γραφήματα 1, 2, και 3.

Γράφημα 1: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (ελάχιστες τιμές παραμέτρων)

Γράφημα 2: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (μέσες τιμές παραμέτρων)

Γράφημα 3: Συσχέτιση λόγων φορτίων P_i/P₀ με το άνω και κάτω εύρος της πλαστικής ζώνης (μέγιστες τιμές παραμέτρων)

Η τιμή του άνω εύρους της πλαστικής ζώνης που σχηματίζεται γύρω από την κυκλική σήραγγα είναι μεγαλύτερη από την αντίστοιχη τιμή του κάτω εύρους της πλαστικής ζώνης. Εξαίρεση αποτελούν οι άνω και κάτω τιμές του εύρους των μέσων τιμών των γεωτεχνικών παραμέτρων για λόγο φορτίων P_i/P₀=0,10 και των μέγιστων τιμών των γεωτεχνικών παραμέτρων για δυο εφαρμοζόμενες τιμές της πίεσης υποστήριξης. Τα συμπεράσματα αυτά διακρίνονται σαφώς στα παραπάνω γραφήματα.

Τόσο το άνω όσο και το κάτω εύρος της πλαστικής ζώνης μειώνεται με την αύξηση των τιμών των γεωτεχνικών παραμέτρων, αφού το εύρος της πλαστικής ζώνης των ελάχιστων τιμών είναι κατά πολύ μεγαλύτερο από αυτό των μέσων και των μέγιστων τιμών για σταθερή τιμή της πίεσης υποστήριξης (Γράφημα 4, 5).

Γράφημα 4: Συσχέτιση άνω εύρους πλαστικής ζώνης μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων για διάφορες τιμές λόγων φορτίων P_i/P₀

Γράφημα 5: Συσχέτιση κάτω εύρους πλαστικής ζώνης μεταξύ των τριών ομάδων γεωτεχνικών παραμέτρων για διάφορες τιμές λόγων φορτίων P_i/P₀

Η αύξηση της τιμής της πίεσης υποστήριξης έχει ως συνέπεια τη μείωση της διαφοράς του άνω και κάτω εύρους ανάμεσα στις τρεις ομάδες τιμών. Ο κανόνας αυτός ισχύει για την διαφορά του εύρους των ελάχιστων τιμών των γεωτεχνικών παραμέτρων. Για τις άλλες δυο ομάδες, η διαφορά του εύρους αυξομειώνεται με την αύξηση των λόγων των φορτίων P_i/P₀. Για το σκοπό αυτό στα επόμενα παρουσιάζεται ο πίνακας της διαφοράς του εύρους και στη συνέχεια το αντίστοιχο γράφημα, ενώ διευκρινίζεται ότι η διαφορά των ευρών υπολογίζεται κάθε φορά με την αφαίρεση του κάτω εύρους από το άνω, εξ'ου και οι αρνητικές τιμές ορισμένων στοιχείων.

Λόγοι φορτίων	Διαφορά εύρους	Διαφορά εύρους	Διαφορά εύρους
$\mathbf{P}_{i}/\mathbf{P}_{0}$	(ελάχιστες τιμές) (m)	(μέσες τιμές) (m)	(μέγιστες τιμές) (m)
0,00	0,0880	0,0296	-0,0061
0,02	0,0752	0,0223	-0,0111
0,05	0,0431	0,0178	0,0066
0,10	0,0220	-0,0008	0,0042
0,15	0,0136	0,0054	N/A
0,20	0,0062	N/A	N/A

TT /	1			,		,	,	1	,		, , , , , , , , , , , , , , , , , , ,	
Πινακας	6:	Λιαωοί)a (av@	και	κατω	200003	πλ	αστικηα	2(₋∞vn	C
	•••						00000					

Γράφημα 6: Συσχέτιση διαφοράς άνω και κάτω εύρους-λόγων φορτίων Ρ_i/P₀

4.3.4. Μέσο εύρος πλαστικής ζώνης

Όπως και για την προηγούμενη διατομή, πραγματοποιείται ο υπολογισμός του μέσου εύρους για τις τρεις ομάδες των γεωτεχνικών παραμέτρων το οποίο βοηθά στην εξαγωγή γενικών συμπερασμάτων όσον αφορά το σχηματιζόμενο εύρος της πλαστικής ζώνης και την τιμή της πίεσης υποστήριξης. Για το σκοπό αυτό έχει δημιουργηθεί ο Πίνακας 7 και το Γράφημα 7.

Πίνακας 7: Μέση τιμή εύρος πλαστικής ζώνης για κάθε P_i/P₀ και για κάθε ομάδα παραμέτρων

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέσο εύρος πλαστικής ζώνης (m) (ελάχιστες τιμές)	Μέσο εύρος πλαστικής ζώνης (m) (μέσες τιμές)	Μέσο εύρος πλαστικής ζώνης (m) (μέγιστες τιμές)
0,00	1,3685	0,8036	0,4080
0,02	1,1699	0,6674	0,3117
0,05	0,9246	0,4952	0,1895
0,10	0,5915	0,2606	0,0207
0,15	0,3427	0,0771	N/A
0,20	0,1333	N/A	N/A

Γράφημα 7: Σύγκριση μέσων τιμών εύρους πλαστικών ζωνών για ελάχιστες, μέσες και μέγιστες τιμές γεωτεχνικών παραμέτρων σε σχέση με την αύξηση των λόγων φορτίων P_i/Po

Συμπεραίνεται λοιπόν, ότι το εύρος της πλαστικής ζώνης που σχηματίζεται γύρω από μια κυκλική σήραγγα με την εφαρμογή της πίεσης υποστήριξης μειώνεται τόσο με την αύξηση της τιμής του φορτίου όσο και με την αύξηση των τιμών των γεωτεχνικών παραμέτρων.

4.3.5. Κανονικοποίηση εύρους πλαστικής ζώνης

Όπως για την γεωτεχνική τομή σχεδιασμού 3Α έτσι και για την προκείμενη τομή σχεδιασμού πραγματοποιείται η κανονικοποίηση του εύρους της πλαστικής ζώνης. Το εύρος λοιπόν, διαιρείται με την ακτίνα της σήραγγας r και προκύπτει μια πιο αντικειμενική εικόνα της διαμόρφωσης του εύρους της πλαστικής ζώνης μιας κυκλικής σήραγγας με δεδομένη ακτίνα εκσκαφής.

Οι επόμενοι πίνακες αφορούν στις κανονικοποιημένες τιμές του εύρους για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων καθώς και οι κανονικοποιημένες τιμές επί τις εκατό. Ακόμα, παρουσιάζεται και ο μέσος κανονικοποιημένος πίνακας, ενώ στη συνέχεια για όλους τους πίνακες διαμορφώνονται τα αντίστοιχα γραφήματα.

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,2825	28,25	0,2649	26,49
0,02	0,2415	24,15	0,2265	22,65
0,05	0,1892	18,92	0,1806	18,06
0,10	0,1205	12,05	0,1161	11,61
0,15	0,0699	6,99	0,0672	6,72
0,20	0,0273	2,73	0,0260	2,60

Πίνακας 8: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Πίνακας 9: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Λόγοι φορτίων Ρί/Ρο	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας (%)
0,00	0,1637	16,37	0,1578	15,78
0,02	0,1357	13,57	0,1312	13,12
0,05	0,1008	10,08	0,0973	9,73
0,10	0,0520	5,20	0,0522	5,22
0,15	0,0160	1,60	0,0149	1,49
0,20	N/A	N/A	N/A	N/A

Πίνακας 10: Κανονικοποιημένο εύρος πλαστικής ζώνης για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρι/Ρο	Άνω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα της	Κάτω εύρος πλαστικής ζώνης/ακτίνα της σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα της
		σήραγγας (%)		σήραγγας (%)
0,00	0,0810	8,10	0,0822	8,22
0,02	0,0612	6,12	0,0634	6,34
0,05	0,0386	3,86	0,0372	3,72
0,10	0,0046	0,46	0,0037	0,37
0,15	N/A	N/A	N/A	N/A
0,20	N/A	N/A	N/A	N/A

Γράφημα 8: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P_0

Γράφημα 9: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P

Πίνακας 11: Μέσο κανονικοποιημένο εύρος της πλαστικής ζώνης για κάθε P_i/P_0

και για κάθε ομάδα παραμέτρων

Λόγοι φορτίων	Μέσο εύρος πλαστικής	Μέσο εύρος πλαστικής	Μέσο εύρος πλαστικής
P_i/P_0	ζώνης/ακτίνα της	ζώνης/ακτίνα της	ζώνης/ακτίνα της
	σήραγγας(ελάχιστες τιμές)	σήραγγας(μέσες τιμές)	σήραγγας(μέγιστες τιμές)
0,00	0,2737	0,1607	0,0816
0,02	0,2340	0,1335	0,0623
0,05	0,1849	0,0990	0,0379
0,10	0,1183	0,0521	0,0041
0,15	0,0685	0,0154	N/A
0,20	0,0267	N/A	N/A

Γράφημα 10: Σύγκριση μέσου κανονικοποιημένου εύρους πλαστικής ζώνης σε σχέση με την αύξηση των λόγων φορτίων P_i/P₀

Μελετώντας παραπάνω ειδικά ποσοστιαία τους πίνακες και τα κανονικοποιημένα εύρη προκύπτει ότι για τις ελάχιστες τιμές των γεωτεχνικών παραμέτρων το εύρος τις πλαστικής ζώνης αντιστοιχεί περίπου στο 28% του εύρους της ακτίνας της σήραγγας για τιμή της πίεση υποστήριξης P_i=0 kPa, δηλαδή χωρίς υποστήριξη. Το ποσοστό με υποστήριξη $P_i=9,34$ kPa είναι 24%, αποτελώντας δηλαδή το ¼ της ακτίνας της σήραγγας.. Η διαφορά ανάμεσα στα άνω και κάτω εύρη είναι μικρή. Τέλος, τα κανονικοποιημένα εύρη των ελάχιστων τιμών των γεωτεχνικών παραμέτρων είναι περισσότερο από τρεις φορές μεγαλύτερα από αυτά των μέγιστων τιμών, με αποτέλεσμα τα τελευταία να αντιστοιχούν σε μικρό ποσοστό του εύρους τις ακτίνας. Έτσι λοιπόν, για τις μέγιστες τιμές η πλαστική ζώνη γύρω από την σήραγγα, η παραμόρφωση του εδάφους δηλαδή είναι μικρή.

4.4. Γενικά Συμπεράσματα

4.4.1. Στοιχεία που αφορούν μεμονωμένη διατομή

Σύμφωνα με τα παραπάνω, η εκτέλεση της συνάρτησης πλαστικής ζώνης στη γλώσσα προγραμματισμού MATLAB είχε ως αποτέλεσμα την αποθήκευση των εικόνων που δημιουργήθηκαν με την εφαρμογή τιμών της πίεσης υποστήριξης για την κάθε αντιπροσωπευτική γεωτεχνική διατομή. Επιπλέον, καταγράφηκαν οι τιμές των άνω και κάτω ευρών της πλαστικής ζώνης και με βάση τις οποίες εξήχθησαν ορισμένα συμπεράσματα τα οποία και παρουσιάζονται συνοπτικά στα παρακάτω.

Προκύπτει λοιπόν, ότι η τιμή της πίεσης υποστήριξης παίζει σημαντικό ρόλο στην κατασκευή μιας κυκλικής σήραγγας, αφού με την αύξησή της μειώνεται το εύρος της πλαστικής ζώνης γύρω από την σήραγγα, ενώ η μέγιστη εφαρμοζόμενη πίεση που μηδενίζει την πλαστική ζώνη ταυτίζεται με την κρίσιμη. Το συμπέρασμα αυτό ισχύει και για τις δυο διατομές για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων.

Ακόμα, συμπεραίνεται ότι οι τιμές των γεωτεχνικών παραμέτρων δηλαδή η συνοχή (c) και η γωνία τριβής (φ) επηρεάζουν το εύρος της πλαστικής ζώνης. Τα μικρότερα εύρη της πλαστικής ζώνης προκύπτουν όταν εφαρμόζονται οι μέγιστες τιμές των γεωτεχνικών παραμέτρων.

Τέλος, εκτός ορισμένων εξαιρέσεων, και για τις δυο διατομές το άνω εύρος της πλαστικής ζώνης είναι μεγαλύτερο από το κάτω εύρος για την κάθε ομάδα των παραμέτρων.

4.4.2. Στοιχεία που αφορούν τις δυο διατομές

4.4.2.1. Σύγκριση συνολικού εύρους πλαστικής ζώνης

Όσον αφορά στις διαφορές που παρατηρούνται από μια γεωτεχνική τομή σχεδιασμού στην άλλη, κρίνεται σκόπιμη η παράταση των τιμών του συνολικού εύρους, αρχικά, ώστε να διαπιστωθεί το πώς οι τιμές των γεωτεχνικών παραμέτρων επηρεάζουν το σχηματιζόμενο εύρος της πλαστικής ζώνης και το ποιά σύνολα επιφέρουν μικρότερα εύρη, δηλαδή καλύτερα αποτελέσματα. Με τον όρο συνολικό εύρος νοείται το μέγιστο εύρος που έχει καταγραφεί και αντιστοιχεί στην μηδενική τιμή της πίεσης υποστήριξης ή σε μηδενικό λόγο φορτίων P_i/P₀.

Τα αναφερθέντα στοιχεία παρουσιάζονται στους Πίνακες 1 και 2.

Πίνακας 1: Συνολικό άνω εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για τις ελάχιστες, μέσες και μέγιστες τιμές των γεωτεχνικών παραμέτρων

Τιμές γεωτεχνικών παραμέτρων	Άνω εύρος πλαστικής ζώνης (m)	Ανω εύρος πλαστικής ζώνης (m)	
	Г.Д. ЗА	Г.Δ. 4В	
Ελάχιστες τιμές	2,3171	1,4125	
Μέσες τιμές	1,6336	0,8184	
Μέγιστες τιμές	1,1349	0,4049	

Τιμές γεωτεχνικών παραμέτρων	Κάτω εύρος πλαστικής ζώνης (m)	Κάτω εύρος πλαστικής ζώνης (m)	
	Г.Δ. ЗА	Г.Δ. 4В	
Ελάχιστες τιμές	2,0635	1,3245	
Μέσες τιμές	1,4982	0,7888	
Μέγιστες τιμές	1,0748	0,4110	

Πίνακας 2: Συνολικό κάτω εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για τις ελάχιστες, μέσες και μέγιστες τιμές των γεωτεχνικών παραμέτρων

Παρατηρείται λοιπόν, ότι τόσο τα άνω όσο και τα κάτω εύρη πλαστικής ζώνης είναι μεγαλύτερα για την γεωτεχνική διατομή 3Α. Η μεγαλύτερη μάλιστα διαφορά σημειώνεται για το άνω εύρος της πλαστικής ζώνης των ελάχιστων τιμών των γεωτεχνικών παραμέτρων. Γενικά, είναι γεγονός ότι η διαφορά των ευρών ανάμεσα στις δυο διατομές είναι μεγαλύτερη για τα άνω σχηματιζόμενα εύρη.

4.4.2.2. Σύγκριση ευρών για όλες τις τιμές της πίεσης υποστήριξης

Με σκοπό την απόκτηση της συνολικής εικόνας των διαφορών ανάμεσα στις δυο διατομές συγκρίνονται, εκτός από το συνολικό εύρος, και όλα τα σχηματιζόμενα εύρη για τις διάφορες τιμές της πίεσης υποστήριξης. Σημειώνεται ότι οι τιμές αυτές είναι διαφορετικές για τις δυο διατομές. Ωστόσο επιφέρουν τα ίδια αποτελέσματα αφού αντιστοιχούν σε ίδιους λόγους φορτίων υποστήριξης και υπερκείμενων φορτίων των δυο διατομών. Για το σκοπό αυτό, στους ακόλουθους πίνακες δεν αναφέρονται οι τιμές τους, αλλά όπως και στα προηγούμενα, αυτές έχουν αντικατασταθεί από τις τιμές των αντίστοιχων λόγων P_i/P₀. Τέλος, κάτω από τον κάθε πίνακα έχουν σχεδιαστεί τα αντίστοιχα γραφήματα των άνω και κάτω ευρών ώστε η σύγκριση ανάμεσα στις δυο διατομές να είναι ακόμα πιο ολοκληρωμένη. Για λόγους σαφήνειας και γενίκευσης αντί των τιμών της πίεσης υποστήριξης, και στα γραφήματα έχουν χρησιμοποιηθεί οι αντίστοιχοι λόγοι φορτίων P_i/P₀.

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
$\mathbf{P}_{i}/\mathbf{P}_{0}$	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Г.А. ЗА	Г.Δ. 4В	Г.Δ. ЗА	Г.А. 4В
0,00	2,3171	1,4125	2,0635	1,3245
0,02	1,9762	1,2075	1,7896	1,1323
0,05	1,5737	0,9461	1,4596	0,9030
0,10	1,0723	0,6025	1,0175	0,5805
0,15	0,7002	0,3495	0,6751	0,3359
0,20	0,4160	0,1364	0,4110	0,1302

Πίνακας 3: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P_0 (ελάχιστες τιμές παραμέτρων)

Γράφημα 1: Σύγκριση άνω εύρους των δυο διατομών (ελάχιστες τιμές παραμέτρων)

Γράφημα 2: Σύγκριση κάτω εύρους των δυο διατομών (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
$\mathbf{P}_{i}/\mathbf{P}_{0}$	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Г.А. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.А. 4В
0,00	1,6336	0,8184	1,4982	0,7888
0,02	1,3820	0,6785	1,2859	0,6562
0,05	1,0828	0,5041	1,0175	0,4863
0,10	0,7002	0,2602	0,6751	0,2610
0,15	0,4160	0,0798	0,4110	0,0744
0,20	0,1928	N/A	0,1862	N/A

Πίνακας 4: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Γράφημα 3: Σύγκριση άνω εύρους των δυο διατομών (μέσες τιμές παραμέτρων)

Γράφημα 4: Σύγκριση κάτω εύρους των δυο διατομών (μέσες τιμές παραμέτρων)
Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
$\mathbf{P}_{i}/\mathbf{P}_{0}$	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Г.А. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.А. 4В
0,00	1,1349	0,4049	1,0748	0,4110
0,02	0,9566	0,3061	0,9030	0,3172
0,05	0,7218	0,1928	0,6940	0,1862
0,10	0,4270	0,0228	0,4110	0,0186
0,15	0,2041	N/A	0,2049	N/A
0,20	0,0228	N/A	0,0186	N/A

Πίνακας 5: Εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P_0 (μέγιστες τιμές παραμέτρων)

Γράφημα 5: Σύγκριση άνω εύρους των δυο διατομών (μέγιστες τιμές παραμέτρων)

Γράφημα 6: Σύγκριση κάτω εύρους των δυο διατομών (μέγιστες τιμές παραμέτρων)

Με βάση λοιπόν τα στοιχεία των πινάκων και των γραφημάτων γίνεται φανερό ότι τα άνω και κάτω εύρη της πλαστικής ζώνης είναι μεγαλύτερα για την γεωτεχνική τομή σχεδιασμού 3Α από ότι για την γεωτεχνική τομή σχεδιασμού 4Β για κάθε λόγο φορτίων, δηλαδή για κάθε εφαρμοζόμενη τιμή της πίεση υποστήριξης. Μάλιστα, οι καμπύλες του άνω και κάτω εύρους των δυο διατομών έχουν παρόμοιο σχήμα.

Ακόμα, και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων είναι διαφορετικός ο αριθμός των σχηματιζόμενων πλαστικών ζωνών ανάμεσα στις δυο διατομές. Έτσι λοιπόν, για τις ελάχιστες τιμές για την διατομή 4B σχηματίζεται μια πλαστική ζώνη λιγότερο από ότι για την γεωτεχνική διατομή 3A, για τις μέσες τιμές επίσης μια λιγότερο ενώ για τις μέγιστες τιμές δυο πλαστικές ζώνες λιγότερο. Συνεπώς, το κρίσιμο φορτίο και για τις τρεις ομάδες είναι μικρότερο κατά την εφαρμογή γεωτεχνικών παραμέτρων της διατομής 4B.

4.4.2.3. Σύγκριση μέσου εύρους πλαστικής ζώνης των δυο διατομών

Αφού λοιπόν συγκρίθηκαν τα άνω και κάτω εύρη των δυο διατομών θεωρείται σκόπιμη και η σύγκριση των μέσων ευρών για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων με την οποία είναι δυνατή η εξαγωγή γενικότερων συμπερασμάτων. Για τον λόγο αυτό δημιουργήθηκε ο παρακάτω πίνακας που περιέχει τις μέσες τιμές ευρών για τις τρεις ομάδες των γεωτεχνικών παραμέτρων ενώ τα αντίστοιχα γραφήματα έπονται του πίνακα.

Πίνακας 6:	Μέση	τιμή	εύρους	πλαστικής	ζώνης	των	δυο	διατομών	για	τις	τρεις
ομάδες τιμά	όν των	γεωτ	εχνικών	, παραμέτρ	ων						

Λόγοι φορτίων Ρ _i /Ρ ₀	Μέση τιμή εύρους για ελάχιστες τιμές παραμέτρων (m)	Μέση τιμή εύρους για ελάχιστες τιμές παραμέτρων (m)	Μέση τιμή εύρους για μέσες τιμές παραμέτρων (m)	Μέση τιμή εύρους για μέσες τιμές παραμέτρων (m)	Μέση τιμή εύρους για μέγιστες τιμές παραμέτρων (m)	Μέση τιμή εύρους για μέγιστες τιμές παραμέτρων (m)
	Г.А. ЗА	Г.А. 4В	Г.А. ЗА	Г.А. 4В	Г.Д. ЗА	Г.А. 4В
0,00	2,1903	1,3685	1,5659	0,8036	1,1049	0,4080
0,02	1,8829	1,1699	1,3340	0,6674	0,9298	0,3117
0,05	1,5167	0,9246	1,0502	0,4952	0,7079	0,1895
0,10	1,0449	0,5915	0,6877	0,2606	0,4190	0,0207
0,15	0,6877	0,3427	0,4135	0,0771	0,2045	N/A
0,20	0,4135	0,1333	0,1895	N/A	0,0207	N/A

Γράφημα 7: Σύγκριση μέσου εύρους των δυο διατομών (ελάχιστες τιμές παραμέτρων)

Γράφημα 8: Σύγκριση μέσου εύρους των δυο διατομών (μέσες τιμές παραμέτρων)

Γράφημα 9: Σύγκριση μέσου εύρους των δυο διατομών (μέγιστες τιμές παραμέτρων)

Είναι γεγονός λοιπόν ότι τα μέσα εύρη της πλαστικής ζώνης των τριών ομάδων των γεωτεχνικών παραμέτρων είναι μικρότερα για την γεωτεχνική διατομή 4B. 4.4.2.4. Σύγκριση κανονικοποιημένου εύρους πλαστικής ζώνης

Η τελευταία σύγκριση ανάμεσα στις δυο διατομές αφορά την σύγκριση του κανονικοποιημένου εύρους. Με την κανονικοποίηση προκύπτουν τιμές του εύρους απόλυτα συνδεδεμένες με τα χαρακτηριστικά μιας συγκεκριμένης κυκλικής σήραγγας. Οι δυο τομές σχεδιασμού αντιστοιχούν σε σήραγγες με ίδια ακτίνα r και βάθος εκσκαφής Ζ. Τα εύρη της πλαστικής ζώνης διαιρούνται με το ίδιο μέγεθος, συνεπώς, τα αποτελέσματα έχουν κοινή κλίμακα μεγέθους και παρουσιάζονται αριθμητικά στους παρακάτω πίνακες και παραστατικά στα αντίστοιχα γραφήματα.

Πίνακας 7: Κανονικοποιημένο εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας (%)
	Г.А. ЗА	Г.А. 4В	Г.А. ЗА	Г.А. 4В
0,00	46,34	28,25	32,40	26,49
0,02	39,52	24,15	28,20	22,65
0,05	31,47	18,92	23,10	18,06
0,10	21,45	12,05	16,20	11,61
0,15	14,00	6,99	10,80	6,72
0,20	8,32	2,73	6,60	2,60

Γράφημα 10: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για ελάχιστες τιμές γεωτεχνικών παραμέτρων

Γράφημα 11: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για ελάχιστες τιμές γεωτεχνικών παραμέτρων

Πίνακας 8: Κανονικοποιημένο εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων Ρ;/Ρο	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας	Άνω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας	Κάτω εύρος πλαστικής ζώνης/ακτίνα κυκλικής σήραγγας
	(%)	(%)	(%)	(%)
	Г.А. ЗА	Г.А. 4В	Г.Д. ЗА	Г.Δ. 4В
0,00	32,67	16,37	29,96	15,78
0,02	27,64	13,57	25,72	13,12
0,05	21,66	10,08	20,35	9,73
0,10	14,00	5,20	13,50	5,22
0,15	8,32	1,60	8,22	1,49
0,20	3,86	N/A	3,72	N/A

Γράφημα 12: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Γράφημα 13: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέσες τιμές γεωτεχνικών παραμέτρων

Πίνακας 9: Κανονικοποιημένο εύρος πλαστικής ζώνης των δυο γεωτεχνικών διατομών για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Λόγοι	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
φορτίων	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα	ζώνης/ακτίνα
$\mathbf{P}_{i}/\mathbf{P}_{0}$	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας	κυκλικής σήραγγας
	(%)	(%)	(%)	(%)
	Г.Д. ЗА	Г.Δ. 4В	Г.А. ЗА	Г.Δ. 4В
0,00	22,70	8,10	21,50	8,22
0,02	19,13	6,12	18,60	6,34
0,05	14,44	3,86	14,16	3,72
0,10	8,54	0,46	8,38	0,37
0,15	4,08	N/A	4,09	N/A
0,20	0,46	N/A	0,41	N/A

Γράφημα 14: Σύγκριση άνω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

Γράφημα 15: Σύγκριση κάτω κανονικοποιημένου εύρους πλαστικών ζωνών των δυο γεωτεχνικών διατομών για μέγιστες τιμές γεωτεχνικών παραμέτρων

Στους πίνακες κανονικοποιημένου εύρους, που όπως έχει αναφερθεί τα εύρη αντιστοιχούν στην ίδια κλίμακα μεγέθους, είναι ακόμα πιο ξεκάθαρη η μεγάλη διαφορά ανάμεσα στις δυο διατομές. Τα ποσοστά που αντιστοιχούν στην τομή σχεδιασμού 4B για τα άνω και κάτω εύρη πλαστικής ζώνης όλων των λόγων φορτίων και για τις τρεις ομάδες τιμών είναι κατά πολύ μικρότερα από αυτά της τομής σχεδιασμού 3A και επίσης αποτελούν πολύ μικρότερα μέρη της ακτίνας σε σχέση με αυτά της τομής σχεδιασμού 3A.

4.4.2.5. Αξιολόγηση των μελετημένων στοιχείων

Με βάση τα παραπάνω στοιχεία σύγκρισης των δυο διατομών, γίνεται φανερό ότι κατά την εφαρμογή όλων των περιπτώσεων των ομάδων των γεωτεχνικών παραμέτρων, το σχηματιζόμενο εύρος για την γεωτεχνική διατομή 3A είναι πάντα μεγαλύτερο από αυτό της γεωτεχνικής διατομής 4B. Συνεπώς, οι γεωτεχνικές παράμετροι που χαρακτηρίζουν την δεύτερη γεωτεχνική διατομή επιφέρουν καλύτερα αποτελέσματα κατά την κατασκευή και διάνοιξη της κυκλικής σήραγγας, αφού το έδαφος γύρω από την σήραγγα παραμορφώνεται λιγότερο.

Με την σύγκριση των γεωτεχνικών παραμέτρων αντοχής, δηλαδή της συνοχής c και της γωνίας τριβής φ των δυο διατομών στους αντίστοιχους πίνακες, διαπιστώνεται ότι και για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων, οι τιμές της συνοχής και τις γωνίας τριβής είναι μεγαλύτερες για την γεωτεχνική διατομή 4B από ότι για την γεωτεχνική διατομή 3A. Συμπεραίνεται λοιπόν, ότι οι τιμές αυτές παίζουν σημαντικό ρόλο κατά των σχεδιασμό μιας κυκλικής σήραγγας και μάλιστα όσο μεγαλύτερες είναι, τόσο πιο μικρό είναι το σχηματιζόμενο εύρος της πλαστικής ζώνης, συμπέρασμα απόλυτα αναμενόμενο και λογικά ορθό.

KEΦAΛAIO 5

5. ΣΥΣΧΕΤΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΦΑΡΜΟΓΗΣ ΚΡΙΤΗΡΙΟΥ MOHR-COULOMB ΤΟΥ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΦΥΛΛΟΥ EXCEL ΚΑΙ ΣΥΝΑΡΤΗΣΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΜΑΤLAB

5.1. Εισαγωγή

Κατά την εφαρμογή των παραμέτρων των χαρακτηριστικών γεωτεχνικών τομών σχεδιασμού 3A και 4B στο υπολογιστικό φύλλο Excel, όπως και κατά την εφαρμογή αυτών στην συνάρτηση πλαστικής ζώνης της γλώσσας προγραμματισμού MATLAB, το μέγεθος που μελετούνταν ήταν το εύρος της πλαστικής ζώνης που σχηματίζονταν γύρω από την κυκλική σήραγγα. Μετρήθηκε, δηλαδή, για τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων (ελάχιστες, μέσες και μέγιστες τιμές) των διατομών και για έξι διαφορετικούς λόγους φορτίων υποστήριξης και υπερκείμενων φορτίων P_i/P₀, το σχηματιζόμενο εύρος της πλαστικής ζώνης (m).

Τα μεμονωμένα συμπεράσματα που εξήχθησαν με την εφαρμογή του κριτηρίου Mohr-Coulomb στο υπολογιστικό φύλλο Excel και αφορούν στην μεταβολή του εύρους της πλαστικής ζώνης σε σχέση με τις γεωτεχνικές παραμέτρους και την εφαρμοζόμενη πίεση υποστήριξης P_i, συμφωνούν κατά το πλείστον με τα αντίστοιχα συμπεράσματα που πρόεκυψαν κατά την εφαρμογή της συνάρτησης πλαστικής ζώνης που υπακούει στο κριτήριο Mohr-Coulomb. Ακόμα, ο αριθμός των σχηματιζόμενων πλαστικών ζωνών για τις αντίστοιχες τομές σχεδιασμού και τις ομάδες γεωτεχνικών παραμέτρων επίσης συμφωνεί. Για την γεωτεχνική τομή σχεδιασμού 3A και στις δυο εφαρμογές σχηματίζονται έξι πλαστικές ζώνες και για τις τρεις ομάδες γεωτεχνικών παραμέτρων. Όσον αφορά, στη δεύτερη διατομή, η εφαρμογή των ελάχιστων τιμών επιφέρει έξι πλαστικές ζώνες.

Οι δυο εφαρμογές ναι μεν είναι σχεδιασμένες με βάση την ίδια εξίσωση και μάλιστα αυτή που υπάγεται στο κριτήριο Mohr-Coulomb, στηρίζονται ωστόσο σε διαφορετική φιλοσοφία σχεδιασμού και διαφορετική τεχνική και στρατηγική επίλυσης, όπως έχει αναφερθεί. Ο σκοπός λοιπόν του παρόντος κεφαλαίου είναι η συσχέτιση και η σύγκριση των τιμών του εύρους μεταξύ των δυο εφαρμογών των προηγούμενων κεφαλαίων για τις δυο χαρακτηριστικές γεωτεχνικές τομές σχεδιασμού 3A και 4B. Για τον λόγο αυτό στα επόμενα συγκρίνονται αρχικά τα αποτελέσματα ανάμεσα στην εφαρμογή Excel και στην εφαρμογή MATLAB των τριών ομάδων των γεωτεχνικών παραμέτρων και του κάθε εφαρμοζομένου λόγου φορτίων της γεωτεχνικής τομής σχεδιασμού 3A και στη συνέχεια τα αντίστοιχα αποτελέσματα της γεωτεχνικής τομής σχεδιασμού 4B.

Ακόμα, λαμβάνοντας υπόψη ότι στο κριτήριο Mohr-Coulomb του υπολογιστικού φύλλου Excel υπολογίζεται αυτόματα η τιμή της κρίσιμης πίεσης Pcr για οποιεσδήποτε τιμές των γεωτεχνικών παραμέτρων για 19 διαφορετικές τιμές της γωνίας β° και ότι με την εφαρμογή των γεωτεχνικών παραμέτρων στην συνάρτηση της πλαστικής ζώνης η τιμή της κρίσιμης πίεσης Pcr υπολογίζεται για 73 τιμές της γωνίας β (rad), η κρίσιμη πίεση Pcr ορίζεται ως επιπλέον συνδετήριος κρίκος ανάμεσα στις δυο διαφορετικές εφαρμογές. Στα επόμενα πραγματοποιείται και ο έλεγχος σύμπτωσης της τιμής της ανάμεσα σε αυτές για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων σχεδιασμού.

5.2. Σύγκριση Αποτελεσμάτων Αντιπροσωπευτικής Γεωτεχνικής Τομής Σχεδιασμού 3Α

5.2.1. Σύγκριση εύρους πλαστικής ζώνης των εφαρμογών Excel και MATLAB

Τα υπολογισθέντα εύρη της πλαστικής ζώνης που πρόεκυψαν κατά την εφαρμογή των χαρακτηριστικών τιμών της γεωτεχνικής τομής σχεδιασμού 3A στη λύση κλειστής μορφής του σχηματισμού της πλαστικής ζώνης που υπακούει στο κριτήριο Mohr-Coulomb και στην λύση κλειστής μορφής που επίσης υπακούει στο κριτήριο Mohr-Coulomb και που έχει σχεδιαστεί στο περιβάλλον του τεχνικού προγραμματισμού του προγράμματος MATLAB, παρατίθενται στους ακόλουθους πίνακες. Όπως διαπιστώνεται αναφέρονται σταδιακά οι τιμές του άνω και κάτω εύρους της πλαστικής ζώνης για τις ελάχιστες, τις μέσες και τις μέγιστες τιμές των γεωτεχνικών παραμέτρων (Πίνακας 1, 2, 3), ενώ κάτω από τον κάθε πίνακα έχουν σχεδιαστεί και παρουσιάζονται και τα αντίστοιχα γραφήματα.

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης (m) Εφαρμογή Excel	Άνω εύρος πλαστικής ζώνης (m) Εφαρμογή MATLAB	Κάτω εύρος πλαστικής ζώνης (m) Εφαρμογή Excel	Κάτω εύρος πλαστικής ζώνης (m) Εφαρμογή ΜΑΤLAB
0,00	2,3141	2,3171	2,0623	2,0635
0,02	1,9737	1,9762	1,7890	1,7896
0,05	1,5716	1,5737	1,4535	1,4596
0,10	1,0690	1,0723	1,0150	1,0175
0,15	0,7052	0,7002	0,6795	0,6751
0,20	0,4200	0,4160	0,4102	0,4110

Πίνακας 1: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Γράφημα 1: Σύγκριση άνω εύρους των δυο εφαρμογών (ελάχιστες τιμές παραμέτρων)

Γράφημα 2: Σύγκριση κάτω εύρους των δυο εφαρμογών (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
$\mathbf{P_i}/\mathbf{P_0}$	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Εφαρμογή Excel	Εφαρμογή MATLAB	Εφαρμογή Excel	Εφαρμογή MATLAB
0,00	1,6341	1,6336	1,5085	1,4982
0,02	1,3820	1,3820	1,2900	1,2859
0,05	1,0852	1,0828	1,0252	1,0175
0,10	0,7081	0,7002	0,6840	0,6751
0,15	0,4171	0,4160	0,4070	0,4110
0,20	0,1919	0,1928	0,1896	0,1862

Πίνακας 2: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P_0 (μέσες τιμές παραμέτρων)

Γράφημα 3: Σύγκριση άνω εύρους των δυο εφαρμογών (μέσες τιμές παραμέτρων)

Γράφημα 4: Σύγκριση κάτω εύρους των δυο εφαρμογών (μέσες τιμές παραμέτρων)

Λόγοι φορτίων	Ανω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
$\mathbf{P}_{i}/\mathbf{P}_{0}$	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Εφαρμογή Excel	Εφαρμογή MATLAB	Εφαρμογή Excel	Εφαρμογή MATLAB
0,00	1,1364	1,1349	1,0762	1,0748
0,02	0,9504	0,9566	0,9060	0,9030
0,05	0,7232	0,7218	0,6948	0,6940
0,10	0,4265	0,4270	0,4178	0,4110
0,15	0,2037	0,2041	0,2004	0,2049
0,20	0,0230	0,0228	0,0241	0,0186

Πίνακας 3: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P₀ (μέγιστες τιμές παραμέτρων)

Γράφημα 5: Σύγκριση άνω εύρους των δυο εφαρμογών (μέγιστες τιμές παραμέτρων)

Γράφημα 6: Σύγκριση κάτω εύρους των δυο εφαρμογών (μέγιστες τιμές παραμέτρων)

5.2.2. Συμπεράσματα

5.2.2.1. Γενικό συμπέρασμα

Είναι γεγονός ότι στους πίνακες και ακόμα περισσότερο στα αντίστοιχα γραφήματα των δυο εφαρμογών, είναι ολοφάνερη η σύμπτωση των τιμών του εύρους που υπολογιστήκαν με την εφαρμογή της λύσης κλειστής μορφής που υπακούει στο κριτήριο Mohr-Coulomb και την εφαρμογή της λύσης που υπακούει στο κριτήριο Mohr-Coulomb και που σχεδιάστηκε στο πρόγραμμα MATLAB, όπως και αναμένονταν. Οι διαφορές ανάμεσα στις δυο εφαρμογές είναι αμελητέες.

5.2.2.2. Διαφορές υπολογισθέντων ευρών των δυο εφαρμογών

Με σκοπό την διαπίστωση της τάξεως της απόκλισης των μεγεθών, πραγματοποιήθηκε ο υπολογισμός της διαφοράς του άνω και του κάτω εύρους μεταξύ των δυο εφαρμογών (που προκύπτει με την αφαίρεση των στοιχείων την εφαρμογής MATLAB από τα στοιχεία της εφαρμογής Excel) για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων και τα αποτελέσματα παρουσιάζονται στους επόμενους πίνακες.

Πίνακας 4: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά άνω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)	Διαφορά κάτω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)
0,00	-0,0030	-0,0012
0,02	-0,0025	-0,0006
0,05	-0,0021	-0,0061
0,10	-0,0033	-0,0025
0,15	0,0050	0,0044
0,20	0,0040	-0,0008

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά άνω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)	Διαφορά κάτω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)
0,00	0,0005	0,0103
0,02	0,0000	0,0041
0,05	0,0024	0,0077
0,10	0,0079	0,0089
0,15	0,0011	-0,0040
0,20	-0,0009	0,0034

Πίνακας 5: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (μέσες τιμές παραμέτρων)

Πίνακας 6: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων Β./Β.	Διαφορά άνω εύρους μεταξύ των	Διαφορά κάτω εύρους μεταξύ των
1 / 1 0	(m)	(m)
0,00	0,0015	0,0014
0,02	-0,0062	0,0030
0,05	0,0014	0,0008
0,10	-0,0005	0,0068
0,15	-0,0004	-0,0045
0,20	0,0002	0,0055

Με βάση λοιπόν τα στοιχεία των παραπάνω πινάκων, συμπεραίνεται ότι οι διαφορές τόσο των άνω όσο και των κάτω ευρών των πλαστικών ζωνών και για τις τρεις ομάδες των γεωτεχνικών παραμέτρων είναι της τάξεως του χιλιοστού και μικρότερες. Εξαίρεση αποτελεί η διαφορά των κάτω ευρών για τις μέσες τιμές των γεωτεχνικών παραμέτρων η όποια ανέρχεται στο ένα εκατοστό.

Ακόμα, έστω και αν οι διαφορές είναι τόσο μικρής κλίμακας, κατά πλειονότητα, τα εύρη της εφαρμογής Excel είναι μικρότερα από τα αντίστοιχα της εφαρμογής MATLAB. Για αυτό και προέκυψαν αρνητικές τιμές κατά την αφαίρεση των ευρών της δεύτερης από το εύρος της πρώτης εφαρμογής.

Τέλος, είναι γεγονός ότι οι διαφορές μεταξύ των δυο εφαρμογών είναι αρκετά μικρής κλίμακας που επιτρέπουν την θεώρηση της απόλυτης σύμπτωσης των αποτελεσμάτων.

5.3. Σύγκριση Αποτελεσμάτων Αντιπροσωπευτικής Γεωτεχνικής Τομής Σχεδιασμού 4B

5.2.1. Σύγκριση εύρους πλαστικής ζώνης των εφαρμογών Excel και MATLAB

Όσον αφορά στην αντιπροσωπευτική γεωτεχνική τομή σχεδιασμού 4B, στα επόμενα παρουσιάζονται τόσο οι πίνακες εύρους πλαστικής ζώνης όσο και τα αντίστοιχα γραφήματα. Οι πίνακες περιέχουν τις τιμές του άνω και κάτω εύρους των ελάχιστων, μέσων και μέγιστων τιμών για 6 διαφορετικούς λόγους φορτίων P_i/P₀, και πρόκειται για τα εύρη που υπολογίστηκαν κατά την εφαρμογή της λύσης κλειστής μορφής που υπακούει στα κριτήριο Mohr-Coulomb και τα εύρη που καταγράφηκαν κατά την εκτέλεση της συνάρτησης πλαστικής ζώνης που υπακούει στα κριτήριο Mohr-Coulomb και τα εύρη που υπολογίστηκαν κατά την εκτέλεση της συνάρτησης πλαστικής ζώνης που υπακούει στα κριτήριο Mohr-Coulomb του προγράμματος MATLAB.

Πίνακας 1: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P₀ (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων Ρ _i /Ρ ₀	Άνω εύρος πλαστικής ζώνης (m)	Άνω εύρος πλαστικής ζώνης (m)	Κάτω εύρος πλαστικής ζώνης (m)	Κάτω εύρος πλαστικής ζώνης (m)
	Εφαρμογή Excel	Εφαρμογή MATLAB	Εφαρμογή Excel	Εφαρμογή MATLAB
0,00	1,4152	1,4125	1,3191	1,3245
0,02	1,2048	1,2075	1,1335	1,1323
0,05	0,9417	0,9461	0,8981	0,9030
0,10	0,6054	0,6025	0,5881	0,5805
0,15	0,3470	0,3495	0,3404	0,3359
0,20	0,1367	0,1364	0,1371	0,1302

Πίνακας 2: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P₀ (μέσες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
P_i/P_0	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Εφαρμογή Excel	Εφαρμογή MATLAB	Εφαρμογή Excel	Εφαρμογή MATLAB
0,00	0,8206	0,8184	0,7856	0,7888
0,02	0,6776	0,6785	0,6572	0,6562
0,05	0,5011	0,5041	0,4896	0,4863
0,10	0,2644	0,2602	0,2597	0,2610
0,15	0,0797	0,0798	0,0774	0,0744
0,20	N/A	N/A	N/A	N/A

Πίνακας 3: Εύρος πλαστικής ζώνης των δυο εφαρμογών για κάθε P_i/P_0 (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων	Άνω εύρος πλαστικής	Άνω εύρος πλαστικής	Κάτω εύρος πλαστικής	Κάτω εύρος πλαστικής
P_i/P_0	ζώνης (m)	ζώνης (m)	ζώνης (m)	ζώνης (m)
	Εφαρμογή Excel	Εφαρμογή MATLAB	Εφαρμογή Excel	Εφαρμογή MATLAB
0,00	0,4110	0,4049	0,4005	0,4110
0,02	0,3137	0,3061	0,3081	0,3172
0,05	0,1903	0,1928	0,1885	0,1862
0,10	0,0249	0,0228	0,0244	0,0186
0,15	N/A	N/A	N/A	N/A
0,20	N/A	N/A	N/A	N/A

5.2.2. Συμπεράσματα

5.2.2.1. Γενικό συμπέρασμα

Με βάση τις τιμές των πινάκων και τα αντίστοιχα γραφήματα, τα άνω και κάτω εύρη της πλαστικής ζώνης της εφαρμογής στο υπολογιστικό φύλλο Excel και της εφαρμογής της συνάρτησης πλαστικής ζώνης στο πρόγραμμα MATLAB είναι σχεδόν ίσα. Οι διάφορες μεταξύ των δυο εφαρμογών είναι αμελητέες και μόνο για την ομάδα των μέγιστων τιμών των γεωτεχνικών παραμέτρων παρατηρείται λίγο μικρότερη απόκλιση, μικρής κλίμακας και αυτή βεβαία.

5.2.2.2. Διαφορές υπολογισθέντων ευρών των δυο εφαρμογών

Για τον αριθμητικό υπολογισμό των διαφορών των ευρών των δυο εφαρμογών, αφαιρείται το εύρος της πλαστικής ζώνης της εφαρμογής MATLAB από το εύρος της εφαρμογής Excel για κάθε ομάδα τιμών των γεωτεχνικών παραμέτρων και για κάθε λόγο φορτίων και τα αποτελέσματα παρατίθενται στους ακολούθους πίνακες.

Πίνακας 4: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (ελάχιστες τιμές παραμέτρων)

Λόγοι φορτίων	Διαφορά άνω εύρους μεταξύ των	Διαφορά κάτω εύρους μεταξύ των
$\mathbf{P_i}/\mathbf{P_0}$	εφαρμογών Excel και MATLAB	εφαρμογών Excel και MATLAB
	(m)	(m)
0,00	0,0027	-0,0054
0,02	-0,0027	0,0012
0,05	-0,0044	-0,0049
0,10	0,0029	0,0076
0,15	-0,0025	0,0045
0,20	0,0003	0,0069

Λόγοι φορτίων Ρ _i /Ρ ₀	Διαφορά άνω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)	Διαφορά κάτω εύρους μεταξύ των εφαρμογών Excel και MATLAB (m)
0,00	0,0022	-0,0032
0,02	-0,0009	0,0010
0,05	-0,0030	0,0033
0,10	0,0042	-0,0013
0,15	-0,0001	0,0030
0,20	N/A	N/A

Πίνακας 5: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (μέσες τιμές παραμέτρων)

Πίνακας 6: Διαφορές των άνω και των κάτω ευρών πλαστικής ζώνης μεταξύ των εφαρμογών Excel και MATLAB (μέγιστες τιμές παραμέτρων)

Λόγοι φορτίων	Διαφορά άνω εύρους μεταξύ των	Διαφορά κάτω εύρους μεταξύ των
P_i/P_0	εφαρμογών Excel και MATLAB	εφαρμογών Excel και MATLAB
	(m)	(m)
0,00	0,0061	-0,0105
0,02	0,0076	-0,0091
0,05	-0,0025	0,0023
0,10	0,0021	0,0058
0,15	N/A	N/A
0,20	N/A	N/A

Οι τιμές των πινάκων δηλώνουν ότι οι διαφορές μεταξύ των δυο εφαρμογών είναι της τάξεως του χιλιοστού, με μέγιστη τιμή να ανέρχεται στο 1 εκατοστό.

Λαμβάνοντας υπόψη την κλίμακα των εφαρμογών που είναι της τάξεως του μέτρου, χωρίς σφάλμα γενικότητας, συμπεραίνεται ότι τα αποτελέσματα των δυο εφαρμογών συμπίπτουν.

5.4. Συσχέτιση Κρίσιμης Πίεσης Pcr

5.4.1. Καταγραφή κρίσιμης πίεσης Pcr και εξαγωγή συμπεράσματος

Η διαδικασία εφαρμογής της συνάρτησης πλαστικής ζώνης κατά την οποία σημειωθήκαν τα εύρη των πλαστικών ζωνών για τις τομές σχεδιασμού 3A και 4B έχει ήδη αναφερθεί (Κεφάλαιο 4). Επιπλέον, όπως έχει αναφερθεί, ταυτόχρονα με αυτό, και για τις δυο διατομές καταγράφηκαν οι τιμές της κρίσιμης πίεσης Pcr και μάλιστα μόνο αυτές που αντιστοιχούν στη γωνία β=0 rad ή β=3,1416 rad αφού αντιστοιχεί στη κρίσιμη πίεση για γωνίες β=0° και β=180° που υπολογίζεται αυτόματα με στο υπολογιστικό φύλλο Excel. Ακόμα, καθώς η κρίσιμη πίεση αλλάζει με την αλλαγή των τιμών των γεωτεχνικών παραμέτρων και όχι με την αλλαγή της τιμής της πίεσης υποστήριξης Pi, για την κάθε διατομή καταγράφηκαν συνολικά τρεις τιμές της κρίσιμης πίεσης, μια για κάθε ομάδα τιμών των παραμέτρων (Πίνακας 1).

Πίνακας 1: Τιμές κρίσιμης πίεσης Pcr των δυο γεωτεχνικών διατομών για τις τρεις ομάδες τιμών των γεωτεχνικών παραμέτρων

Τιμές παραμέτρων	Τιμή κρίσιμης πίεσης Pcr (kPa) (Γεωτεχνική τομή σχεδιασμού 3A)	Τιμή κρίσιμης πίεσης Pcr (kPa) (Γεωτεχνική τομή σχεδιασμού 4B)
Ελάχιστες τιμές παραμέτρων	142.3529	111.5643
Μέσες τιμές παραμέτρων	120.2867	81.6268
Μέγιστες τιμές παραμέτρων	98.8909	50.7636

Ανατρέχοντας στα προηγούμενα κεφάλαια (σελ.37, σελ.67) όπου έχουν καταγραφεί οι τιμές της κρίσιμης πίεσης Pcr όπως πρόεκυψαν στο κριτήριο Mohr-Coulomb, εύκολα διαπιστώνεται ότι οι τιμές αυτές συμπίπτουν για τις τρεις ομάδες τιμών των δυο διατομών. Συνεπώς οι εφαρμογές συμφωνούν ως προς των υπολογισμό των κρίσιμων πιέσεων Pcr.

5.4.2. Παραστατική συσχέτιση κρίσιμης πίεσης Pcr

Αν και με βάση τα παραπάνω είναι δυνατή η συσχέτιση των τιμών της κρίσιμης πίεσης των δυο εφαρμογών, με σκοπό την παραστατική παρουσίαση του αποτελέσματος θεωρήθηκε σκόπιμη η εξής ενέργεια:

Οι τιμές της κρίσιμης πίεσης των τριών ομάδων των γεωτεχνικών παραμέτρων των δυο διατομών που καταγράφηκαν στη συνάρτηση της πλαστικής ζώνης τίθενται σταδιακά ως πίεσης υποστήριξης στο κριτήριο Mohr-Coulomb του υπολογιστικού φύλλο Excel.

Έτσι προκύπτουν έξι συνολικά αρχεία Excel, τρία για την κάθε διατομή στα οποία υπολογίζονται οι διπολικές συντεταγμένες της πλαστικής ζώνης για 19 διαφορετικές τιμές της γωνίας β°.

Συμπεραίνεται ότι και στα έξι αρχεία, η εφαρμοζόμενη πίεση είναι ίση με την κρίσιμη και στα αντίστοιχα γραφήματα η πλαστική ζώνη σχηματίζεται στο περίγραμμα της κυκλικής σήραγγας με μηδενικό δηλαδή εύρος και μηδενική εκκεντρότητα όπως και αναμένονταν.

Ακόμα, σε κάθε αρχείο στο κριτήριο Mohr-Coulomb του υπολογιστικού φύλλου Excel, το κελί με την εφαρμοζόμενη πίεση υποστήριξης και την κρίσιμη έχει μεγεθυνθεί για την διευκόλυνση της ανάγνωσης τους, ενώ οι τιμές των λόγων φορτίων κάθε φορά τροποποιούνται για να αντιστοιχούν σε σωστές τιμές.

Τέλος, οι πίνακες των αρχείων και τα αντίστοιχα γραφήματα παρουσιάζονται στα επόμενα.

Πίνακας 2: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 3Α (ελάχιστες τιμές παραμέτρων)

Tunn	el properties		Calculation of plastic zone / Plastic zone coordinates																			
r _i	5 m/		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		π
C	20,39633499 m		٢	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466		X	0	1,102009397	2,140488013	3,060016	3,819302	4,393897	4,775608	4,969579	4,99031	4,8577245	4,593933	4,22094	3,759249	3,227182	2,6407	2,013551	1,35760346	0,6832742	4,80665E-16
d _i	21,0002 4 955 m		у	26,002	25,879	25,521	24,957	24,230	23,390	22,487	21,566	20,664	19,809	19,023	18,317	17,701	17,179	16,753	16,422	16,187	16,046	15,999
X _{up}	4,80544E-16 m																					
y _{up}	16,00024955 m		Σα	0,99869177	0,998697949	0,998715958	0,998744	0,998781	0,998823	0,998868	0,998915	0,99896	0,9990031	0,999043	0,999078	0,999109	0,999135	0,999157	0,999174	0,99918535	0,9991924	0,999194791
X _{down}	/ 0 m		Σ _β	0,999986037	0,998871711	0,995685552	0,990868	0,98506	0,979001	0,973418	0,968943	0,966059	0,9650642	0,966059	0,968943	0,973418	0,979001	0,98506	0,990868	0,99568555	0,9988717	0,999986037
Ydown	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	0,001294267	0,000173763	0,003030406	0,007877	0,013721	0,019822	0,025451	0,029972	0,032901	0,033939	0,032984	0,030135	0,025691	0,020134	0,014097	0,008306	0,00349979	0,0003207	0,000791245
y _{center}	21,00024955 m			_																		
¥ F	Pressure		X																			
۲,	477 kPa		у																			
Pi	<mark>142,35</mark> kPa																					
													l'm at									
		i										l unnel o	coordinates									
0-1	Desmanting		X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil	Properties 52 kPa		x y	0 26,00024955	1,101561323 25,87739653	2,13962974 25,51931855	3,058816 24,95545	3,817848 24,22888	4,392282 23,38936	4,773921 22,48675	4,967895 21,56595	4,98869 20,66413	4,8562125 19,809788	4,59256 19,02328	4,219725 18,3181	3,758204 17,70239	3,226311 17,18044	2,640004 16,75403	2,013031 16,42338	1,35725815 16,1879891	0,683102 16,047132	4,80544E-16 16,00024955
Soil c φ	Properties 52 kPa 38		x y Mo	0 26,00024955 416.0104812	1,101561323 25,87739653 416.7648212	2,13962974 25,51931855 418.9368566	3,058816 24,95545 422,2646	3,817848 24,22888 426.3467	4,392282 23,38936 430,6908	4,773921 22,48675 434,7729	4,967895 21,56595 438,1006	4,98869 20,66413 440.2726	4,8562125 19,809788 441.02699	4,59256 19,02328 440.2726	4,219725 18,3181 438,1006	3,758204 17,70239 434,7729	3,226311 17,18044 430,6908	2,640004 16,75403 426,3467	2,013031 16,42338 422,2646	1,35725815 16,1879891 418.936857	0,683102 16,047132 416,76482	4,80544E-16 16,00024955 416.0104812
<mark>c</mark> φ γ	S2 kPa 38 213,2315995		x y Mo Mo' (const for Per=Pi)	0 26,00024955 416,0104812 416,0104812	1,101561323 25,87739653 416,7648212 416,7643234	2,13962974 25,51931855 418,9368566 418,9349257	3,058816 24,95545 422,2646 422,2605	3,817848 24,22888 426,3467 426,3399	4,392282 23,38936 430,6908 430,6811	4,773921 22,48675 434,7729 434,7605	4,967895 21,56595 438,1006 438,086	4,98869 20,66413 440,2726 440,2566	4,8562125 19,809788 441,02699 441,01048	4,59256 19,02328 440,2726 440,2566	4,219725 18,3181 438,1006 438,086	3,758204 17,70239 434,7729 434,7605	3,226311 17,18044 430,6908 430,6811	2,640004 16,75403 426,3467 426,3399	2,013031 16,42338 422,2646 422,2605	1,35725815 16,1879891 418,936857 418,934926	0,683102 16,047132 416,76482 416,76432	4,80544E-16 16,00024955 416,0104812 416,0104812
<mark>c</mark> φ γ	Solution		x y Mo Mo' (const for Pcr=Pi) P _i (kPa)	0 26,00024955 416,0104812 416,0104812 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35	2,13962974 25,51931855 418,9368566 418,9349257 142,35	3,058816 24,95545 422,2646 422,2605 142,35	3,817848 24,22888 426,3467 426,3399 142,35	4,392282 23,38936 430,6908 430,6811 142,35	4,773921 22,48675 434,7729 434,7605 142,35	4,967895 21,56595 438,1006 438,086 142,35	4,98869 20,66413 440,2726 440,2566 142,35	4,8562125 19,809788 441,02699 441,01048 142,35	4,59256 19,02328 440,2726 440,2566 142,35	4,219725 18,3181 438,1006 438,086 142,35	3,758204 17,70239 434,7729 434,7605 142,35	3,226311 17,18044 430,6908 430,6811 142,35	2,640004 16,75403 426,3467 426,3399 142,35	2,013031 16,42338 422,2646 422,2605 142,35	1,35725815 16,1879891 418,936857 418,934926 142,35	0,683102 16,047132 416,76482 416,76432 142,35	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35
<u>ς</u> φ γ λ	Signature Signature <thsignature< th=""> <thsignature< th=""> <ths< th=""><th></th><th>x y Mo' (const for Pcr=Pi) P_i (kPa) P_{cr} (kPa)</th><th>0 26,00024955 416,0104812 416,0104812 142,35 142,35</th><th>1,101561323 25,87739653 416,7648212 416,7643234 142,35 143</th><th>2,13962974 25,51931855 418,9368566 418,9349257 142,35 143</th><th>3,058816 24,95545 422,2646 422,2605 142,35 144</th><th>3,817848 24,22888 426,3467 426,3399 142,35 146</th><th>4,392282 23,38936 430,6908 430,6811 142,35 147</th><th>4,773921 22,48675 434,7729 434,7605 142,35 148</th><th>4,967895 21,56595 438,1006 438,086 142,35 149</th><th>440,2726 440,2566 142,35 150</th><th>441,02699 441,01048 142,35 150</th><th>4,59256 19,02328 440,2726 440,2566 142,35 150</th><th>4,219725 18,3181 438,1006 438,086 142,35 149</th><th>3,758204 17,70239 434,7729 434,7605 142,35 148</th><th>3,226311 17,18044 430,6908 430,6811 142,35 147</th><th>2,640004 16,75403 426,3467 426,3399 142,35 146</th><th>2,013031 16,42338 422,2646 422,2605 142,35 144</th><th>1,35725815 16,1879891 418,936857 418,934926 142,35 143</th><th>0,683102 16,047132 416,76482 416,76432 142,35 143</th><th>4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142</th></ths<></thsignature<></thsignature<>		x y Mo' (const for Pcr=Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143	3,058816 24,95545 422,2646 422,2605 142,35 144	3,817848 24,22888 426,3467 426,3399 142,35 146	4,392282 23,38936 430,6908 430,6811 142,35 147	4,773921 22,48675 434,7729 434,7605 142,35 148	4,967895 21,56595 438,1006 438,086 142,35 149	440,2726 440,2566 142,35 150	441,02699 441,01048 142,35 150	4,59256 19,02328 440,2726 440,2566 142,35 150	4,219725 18,3181 438,1006 438,086 142,35 149	3,758204 17,70239 434,7729 434,7605 142,35 148	3,226311 17,18044 430,6908 430,6811 142,35 147	2,640004 16,75403 426,3467 426,3399 142,35 146	2,013031 16,42338 422,2646 422,2605 142,35 144	1,35725815 16,1879891 418,936857 418,934926 142,35 143	0,683102 16,047132 416,76482 416,76432 142,35 143	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142
<u>c</u> φ Υ λ	Solution		x y Mo' (const for Pcr=Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 142,35 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143	3,058816 24,95545 422,2646 422,2605 142,35 144	3,817848 24,22888 426,3467 426,3399 142,35 146	4,392282 23,38936 430,6908 430,6911 142,35 147	4,773921 22,48675 434,7729 434,7605 142,35 148	4,967895 21,56595 438,1006 438,086 142,35 149	440,2726 440,2726 440,2566 142,35 150	4,8562125 19,809788 441,02699 441,01048 142,35 150	4,59256 19,02328 440,2726 440,2566 142,35 150	4,219725 18,3181 438,1006 438,086 142,35 149	3,758204 17,70239 434,7729 434,7605 142,35 148	3,226311 17,18044 430,6908 430,6811 142,35 147	2,640004 16,75403 426,3467 426,3399 142,35 146	2,013031 16,42338 422,2646 422,2605 142,35 144	1,35725815 16,1879891 418,936857 418,934926 142,35 143	0,683102 16,047132 416,76482 416,76432 142,35 143	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142
Soil φ Υ λ	Properties 52 kPa 38 213,2315995 4,203745843 3		x y Mo' (const for Pcr-Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143	3,058816 24,95545 422,2646 422,2605 142,35 144	3,817848 24,22888 426,3467 426,3399 142,35 146	4,392282 23,38936 430,6908 430,6811 142,35 147	4,773921 22,48675 434,7729 434,7605 142,35 148	4,967895 21,56595 438,1006 438,086 142,35 149	4,98869 20,66413 440,2726 440,2566 142,35 150	4,8562125 19,809788 441,02699 441,01048 142,35 150	4,59256 19,02328 440,2726 440,2566 142,35 150	4,219725 18,3181 438,1006 438,086 142,35 149	3,758204 17,70239 434,7729 434,7605 142,35 148	3,226311 17,18044 430,6908 430,6811 142,35 147	2,640004 16,75403 426,3467 426,3399 142,35 146	2,013031 16,42338 422,2646 422,2605 142,35 144	1,35725815 16,1879891 418,936857 418,934926 142,35 143	0,683102 16,047132 416,76482 416,76432 142,35 143	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142
Soil φ Υ λ Calculation	Properties 52 kPa 38 213,2315995 4,203745843 4	0,3	x y Mo Mo' (const for Por=Pi) P _i (kPa) P _{cr} (kPa) Pi/Po	0 26,00024955 416,0104812 416,0104812 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143	3,058816 24,95545 422,2646 422,2605 142,35 144	3,817848 24,22888 426,3467 426,3399 142,35 146	4,392282 23,38936 430,6908 430,6811 142,35 147	4,773921 22,48675 434,7729 434,7605 142,35 148	4,967895 21,56595 438,1006 438,086 142,35 149	4,98869 20,66413 440,2726 440,2566 142,35 150	4,8562125 19,809788 441,02699 441,01048 142,35 150	4,59256 19,02328 440,2726 440,2566 142,35 150	4,219725 18,3181 438,1006 438,086 142,35 149	3,758204 17,70239 434,7729 434,7605 142,35 148	3,226311 17,18044 430,6908 430,6811 142,35 147	2,640004 16,75403 426,3467 426,3399 142,35 146	2,013031 16,42338 422,2646 422,2605 142,35 144	1,35725815 16,1879891 418,936857 418,934926 142,35 143	0,683102 16,047132 416,76482 416,76432 142,35 143	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142
Soil φ Y λ Calculation r _c	Properties 52 kPa 38 213,2315995 4,203745843 4,203745843 0 0 of plastic zone a c 5,001650387 m	0,3	x y Mo' (const for Por-Pi) P _i (kPa) P _C r (kPa) Pi/Po x	0 26,00024955 416,0104812 416,0104812 142,35 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143 1,10163873	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143 2,1430291	3,058816 24,95545 422,2646 422,2605 142,35 144 3,068121	3,817848 24,22888 426,3467 426,3399 142,35 146 3,836016	4,392282 23,38936 430,6908 430,6811 142,35 147 4,421667	4,773921 22,48675 434,7729 434,7605 142,35 148 148	4,967895 21,56595 438,1006 438,086 142,35 149 5,017771	4,98869 20,66413 440,2726 440,2566 142,35 150 5,042835	4,8562125 19,809788 441,02699 441,01048 142,35 150 4,9124961	4,59256 19,02328 440,2726 440,2566 142,35 150 4,643651	4,219725 18,3181 438,1006 438,086 142,35 149 4,262586	3,758204 17,70239 434,7729 434,7605 142,35 148 3,791082	3,226311 17,18044 430,6908 430,6811 142,35 147 3,247055	2,640004 16,75403 426,3467 426,3399 142,35 146 2,652584	2,013031 16,42338 422,2646 422,2605 142,35 144 2,018483	1,35725815 16,1879891 418,936857 418,934926 142,35 143 1,35891268	0,683102 16,047132 416,76482 416,76432 142,35 143 0,6832742	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142 142,35
Soil c φ γ γ λ Calculation r _c a _c	Properties 52 kPa 38 213,2315995 4,203745843 4,203745843 of plastic zone a _c 5,001650387 m 2,113439937 m	0,3	x y Mo' (const for Por-Pi) P _i (kPa) P _C r (kPa) Pi/Po x y	0 26,00024955 416,0104812 416,0104812 142,35 142,35 142,35	1,101561323 25,87739653 416,7648212 416,7643234 142,35 143 143 1,10163873 25,87773925	2,13962974 25,51931855 418,9368566 418,9349257 142,35 143 2,1430291 25,52649703	3,058816 24,95545 422,2646 422,2605 142,35 144 3,068121 24,96748	3,817848 24,22888 426,3467 426,3399 142,35 146 3,836016 24,24423	4,392282 23,38936 430,6908 430,6811 142,35 147 4,421667 23,40532	4,773921 22,48675 434,7729 434,7605 142,35 148 4,814258 22,49927	4,967895 21,56595 438,1006 438,086 142,35 149 5,017771 21,57158	440,2726 440,2726 440,2566 142,35 150 5,042835 20,66041	4,8562125 19,809788 441,02699 441,01048 142,35 150 4,9124961 19,795905	4,59256 19,02328 440,2726 440,2566 142,35 150 4,643651 19,00121	4,219725 18,3181 438,1006 438,086 142,35 149 4,262586 18,29079	3,758204 17,70239 434,7729 434,7605 142,35 148 3,791082 17,67348	3,226311 17,18044 430,6908 430,6811 142,35 147 3,247055 17,15585	2,640004 16,75403 426,3467 426,3399 142,35 146 2,652584 16,73378	2,013031 16,42338 422,2646 422,2605 142,35 144 2,018483 16,41098	1,35725815 16,1879891 418,936857 418,934926 142,35 143 1,35891268 16,1821217	0,683102 16,047132 416,76482 416,76432 142,35 143 0,6832742 16,045883	4,80544E-16 16,00024955 416,0104812 416,0104812 142,35 142 142 4,80665E-16 15,99899217

Πίνακας 3: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 3Α (μέσες τιμές παραμέτρων)

Tunn	el properties		Calculation of plastic zone / Plastic zone coordinates																			
ri	5 m		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		π
C	20,39633499 m	/	٢	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466	Į –	X	0	1,101203345	2,138944036	3,057857	3,816686	4,390992	4,772572	4,966549	4,987395	4,8550043	4,591462	4,218754	3,757368	3,225615	2,639449	2,012616	1,35698219	0,6829643	4,80448E-16
di	21,00024955 m		у	25,999	25,876	25,518	24,954	24,228	23,389	22,486	21,566	20,664	19,810	19,024	18,319	17,703	17,181	16,755	16,424	16,189	16,048	16,001
X _{up}	4,80544E-16 m																					
У _{ир}	16,000249 5 5 m		Σα	1,00124662	1,001240727	1,00122355	1,001197	1,001162	1,001121	1,001078	1,001034	1,000991	1,0009497	1,000912	1,000878	1,000849	1,000824	1,000803	1,000787	1,00077602	1,0007693	1,00076702
X _{down}	/ 0 m		Σ _β	1,000017713	0,998831639	0,995440302	0,990312	0,984131	0,977681	0,971738	0,966974	0,963904	0,9628449	0,963904	0,966974	0,971738	0,977681	0,984131	0,990312	0,9954403	0,9988316	1,000017713
Ydown	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	0,001228907	0,002409088	0,005783248	0,010884	0,017031	0,02344	0,029341	0,03406	0,037087	0,0381048	0,037008	0,033904	0,029111	0,023143	0,016673	0,010475	0,00533572	0,0019376	0,000749307
y _{center}	21,00024955 m																					
	/	-																				
P	ressure		X																			
P ₀ /	477 kPa	L	у																			
P _i	120,29 kPa	1																				
												Tunnel c	oordinates									
	_	-	X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil	Properties]	x y	0 26,00024955	1,101561323 25,87739653	2,13962974 25,51931855	3,058816 24,95545	3,817848 24,22888	4,392282 23,38936	4,773921 22,48675	4,967895 21,56595	4,98869 20,66413	4,8562125 19,809788	4,59256 19,02328	4,219725 18,3181	3,758204 17,70239	3,226311 17,18044	2,640004 16,75403	2,013031 16,42338	1,35725815 16,1879891	0,683102 16,047132	4,80544E-16 16,00024955
Soil c	Properties 58 kPa		x y Mo	0 26,00024955 416.0104812	1,101561323 25,87739653 416 7639259	2,13962974 25,51931855 418 9333833	3,058816 24,95545	3,817848 24,22888 426 3344	4,392282 23,38936 430.6733	4,773921 22,48675 434 7506	4,967895 21,56595 438,0744	4,98869 20,66413 440 2439	4,8562125 19,809788 440 9973	4,59256 19,02328	4,219725 18,3181 438.0744	3,758204 17,70239	3,226311 17,18044 430,6733	2,640004 16,75403 426 3344	2,013031 16,42338	1,35725815 16,1879891 418 933383	0,683102 16,047132	4,80544E-16 16,00024955 416.0104812
Soil c φ Y	Properties 58 kPa 41 254 5387688		x y Mo Mo' (const for Por=Pi)	0 26,00024955 416,0104812 416.0104812	1,101561323 25,87739653 416,7639259 416,7643234	2,13962974 25,51931855 418,9333833 418,9349257	3,058816 24,95545 422,2572 422,2605	3,817848 24,22888 426,3344 426,3399	4,392282 23,38936 430,6733 430,6811	4,773921 22,48675 434,7506 434,7605	4,967895 21,56595 438,0744 438,086	4,98869 20,66413 440,2439 440,2566	4,8562125 19,809788 440,9973 441,01048	4,59256 19,02328 440,2439 440,2566	4,219725 18,3181 438,0744 438,086	3,758204 17,70239 434,7506 434,7605	3,226311 17,18044 430,6733 430,6811	2,640004 16,75403 426,3344 426,3399	2,013031 16,42338 422,2572 422,2605	1,35725815 16,1879891 418,933383 418,934926	0,683102 16,047132 416,76393 416,76432	4,80544E-16 16,00024955 416,0104812 416,0104812
<mark>C</mark> φ Y	Properties 58 kPa 41 254,5387688		x y Mo Mo' (const for Pcr=Pi)	0 26,00024955 416,0104812 416,0104812	1,101561323 25,87739653 416,7639259 416,7643234	2,13962974 25,51931855 418,9333833 418,9349257 420,20	3,058816 24,95545 422,2572 422,2605	3,817848 24,228888 426,3344 426,3399	4,392282 23,38936 430,6733 430,6811	4,773921 22,48675 434,7506 434,7605	4,967895 21,56595 438,0744 438,086	4,98869 20,66413 440,2439 440,2566 120,20	4,8562125 19,809788 440,9973 441,01048	4,59256 19,02328 440,2439 440,2566	4,219725 18,3181 438,0744 438,086	3,758204 17,70239 434,7506 434,7605	3,226311 17,18044 430,6733 430,6811	2,640004 16,75403 426,3344 426,3399	2,013031 16,42338 422,2572 422,2605	1,35725815 16,1879891 418,933383 418,934926	0,683102 16,047132 416,76393 416,76432	4,80544E-16 16,00024955 416,0104812 416,0104812 410,020
Soil φ Υ λ	S8 kPa 41 41 254,5387688 4,81495131		x y Mo Mo' (const for Port=Pi) P _i (kPa)	0 26,00024955 416,0104812 416,0104812 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29	2,13962974 25,51931855 418,9333833 418,9349257 120,29	3,058816 24,95545 422,2572 422,2605 120,29	3,817848 24,228888 426,3344 426,3399 120,29	4,392282 23,38936 430,6733 430,6811 120,29	4,773921 22,48675 434,7506 434,7605 120,29	4,967895 21,56595 438,0744 438,086 120,29	4,98869 20,66413 440,2439 440,2566 120,29	4,8562125 19,809788 440,9973 441,01048 120,29	4,59256 19,02328 440,2439 440,2566 120,29	4,219725 18,3181 438,0744 438,086 120,29	3,758204 17,70239 434,7506 434,7605 120,29	3,226311 17,18044 430,6733 430,6811 120,29	2,640004 16,75403 426,3344 426,3399 120,29	2,013031 16,42338 422,2572 422,2605 120,29	1,35725815 16,1879891 418,933383 418,934926 120,29	0,683102 16,047132 416,76393 416,76432 120,29	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29
<u>Soil</u> φ Υ λ	S8 kPa 41 41 254,5387688 4,81495131		x y Mo Mo' (const for PCT=Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15	3,058816 24,95545 422,2572 422,2605 120,29 122,12	3,817848 24,228888 426,3344 426,3399 120,29 123,31	4,392282 23,38936 430,6733 430,6811 120,29 124,56	4,773921 22,48675 434,7506 434,7605 120,29 125,73	4,967895 21,56595 438,0744 438,086 120,29 126,68	4,98869 20,66413 440,2439 440,2566 120,29 127,30	4,8562125 19,809788 440,9973 441,01048 120,29 127,51	4,59256 19,02328 440,2439 440,2566 120,29 127,30	4,219725 18,3181 438,0744 438,086 120,29 126,68	3,758204 17,70239 434,7506 434,7605 120,29 125,73	3,226311 17,18044 430,6733 430,6811 120,29 124,56	2,640004 16,75403 426,3344 426,3399 120,29 123,31	2,013031 16,42338 422,2572 422,2605 120,29 122,12	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15	0,683102 16,047132 416,76393 416,76432 120,29 120,51	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29
Soil C Ψ Y λ	S8 kPa 41 41 254,5387688 4,81495131		x y Mo Mo' (const for Por=Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15	3,058816 24,95545 422,2572 422,2605 120,29 122,12	3,817848 24,22888 426,3344 426,3399 120,29 123,31	4,392282 23,38936 430,6733 430,6811 120,29 124,56	4,773921 22,48675 434,7506 434,7605 120,29 125,73	4,967895 21,56595 438,0744 438,086 120,29 126,68	4,98869 20,66413 440,2439 440,2566 120,29 127,30	4,8562125 19,809788 440,9973 441,01048 120,29 127,51	4,59256 19,02328 440,2439 440,2566 120,29 127,30	4,219725 18,3181 438,0744 438,086 120,29 126,68	3,758204 17,70239 434,7506 434,7605 120,29 125,73	3,226311 17,18044 430,6733 430,6811 120,29 124,56	2,640004 16,75403 426,3344 426,3399 120,29 123,31	2,013031 16,42338 422,2572 422,2605 120,29 122,12	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15	0,683102 16,047132 416,76393 416,76432 120,29 120,51	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29
Soil c φ Y λ	S8 kPa 41 41 254,5387688 4,81495131		x y Mo ['] (const for Pcr=Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15	3,058816 24,95545 422,2572 422,2605 120,29 122,12	3,817848 24,22888 426,3344 426,3399 120,29 123,31	4,392282 23,38936 430,6733 430,6811 120,29 124,56	4,773921 22,48675 434,7506 434,7605 120,29 125,73	4,967895 21,56595 438,0744 438,086 120,29 126,68	4,98869 20,66413 440,2439 440,2566 120,29 127,30	4,8562125 19,809788 440,9973 441,01048 120,29 127,51	4,59256 19,02328 440,2439 440,2566 120,29 127,30	4,219725 18,3181 438,0744 438,086 120,29 126,68	3,758204 17,70239 434,7506 434,7605 120,29 125,73	3,226311 17,18044 430,6733 430,6811 120,29 124,56	2,640004 16,75403 426,3344 426,3399 120,29 123,31	2,013031 16,42338 422,2572 422,2605 120,29 122,12	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15	0,683102 16,047132 416,76393 416,76432 120,29 120,51	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29
<u>ς</u> φ Υ λ	S8 kPa 41 41 254,5387688 4,81495131		x y Mo' (const for Pcr∈Pi) P _i (kPa) P _{cr} (kPa)	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15	3,058816 24,95545 422,2572 422,2605 120,29 122,12	3,817848 24,22888 426,3344 426,3399 120,29 123,31	4,392282 23,38936 430,6733 430,6811 120,29 124,56	4,773921 22,48675 434,7506 434,7605 120,29 125,73	4,967895 21,56595 438,0744 438,086 120,29 126,68	4,98869 20,66413 440,2439 440,2566 120,29 127,30	4,8562125 19,809788 440,9973 441,01048 120,29 127,51	4,59256 19,02328 440,2439 440,2566 120,29 127,30	4,219725 18,3181 438,0744 438,086 120,29 126,68	3,758204 17,70239 434,7506 434,7605 120,29 125,73	3,226311 17,18044 430,6733 430,6811 120,29 124,56	2,640004 16,75403 426,3344 426,3399 120,29 123,31	2,013031 16,42338 422,2572 422,2605 120,29 122,12	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15	0,683102 16,047132 416,76393 416,76432 120,29 120,51	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29
Soil φ γ λ Calculation	Properties 58 kPa 41 254,5387688 4,81495131 of plastic zone a _c	0,25	x y Mo Mo' (const for PCr=Pi) P _i (kPa) P _{CC} (kPa)	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15	3,058816 24,95545 422,2572 422,2605 120,29 122,12	3,817848 24,22888 426,3344 426,3399 120,29 123,31	4,392282 23,38936 430,6733 430,6811 120,29 124,56	4,773921 22,48675 434,7506 434,7605 120,29 125,73	4,967895 21,56595 438,0744 438,086 120,29 126,68	4,98869 20,66413 440,2439 440,2566 120,29 127,30	4,8562125 19,809788 440,9973 441,01048 120,29 127,51	4,59256 19,02328 440,2439 440,2566 120,29 127,30	4,219725 18,3181 438,0744 438,086 120,29 126,68	3,758204 17,70239 434,7506 434,7605 120,29 125,73	3,226311 17,18044 430,6733 430,6811 120,29 124,56	2,640004 16,75403 426,3344 426,3399 120,29 123,31	2,013031 16,42338 422,2572 422,2605 120,29 122,12	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15	0,683102 16,047132 416,76393 416,76432 120,29 120,51	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29
Soil φ Υ λ Calculation r _c	Properties 58 kPa 41 254,5387688 4,81495131 of plastic zone a _c 4,998681305 m	0,25	x y Mo Mo' (const for Por=Pri) P _i (kPa) P _{Cr} (kPa) Pi/Po x	0 26,00024955 416,0104812 416,0104812 120,29 120,29	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15 2,142111182	3,058816 24,95545 422,2572 422,2605 120,29 122,12 3,0668335	3,817848 24,22888 426,3344 426,3399 120,29 123,31 3,833073	4,392282 23,38936 430,6733 430,6811 120,29 124,56 4,418818	4,773921 22,48675 434,7506 434,7605 120,29 125,73 4,811273	4,967895 21,56595 438,0744 438,086 120,29 126,68 5,011569	4,98869 20,66413 440,2439 440,2566 120,29 127,30 5,036865	4,8562125 19,809788 440,9973 441,01048 120,29 127,51 4,9069239	4,59256 19,02328 440,2439 440,2566 120,29 127,30 4,638594	4,219725 18,3181 438,0744 438,086 120,29 126,68 4,258118	3,758204 17,70239 434,7506 434,7605 120,29 125,73 3,786328	3,226311 17,18044 430,6733 430,6811 120,29 124,56 3,246413	2,640004 16,75403 426,3344 426,3399 120,29 123,31 2,651329	2,013031 16,42338 422,2572 422,2605 120,29 122,12 2,0185331	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15 1,35894556	0,683102 16,047132 416,76393 416,76432 120,29 120,51 0,6832906	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29 120,29 4,80448E-16
Soil c φ γ γ λ Calculation r _c a _c	Properties 58 kPa 41 254,5387688 4,81495131 of plastic zone a _c 4,998681305 m 2,114016656	0,25	x y Mo [*] (const for Pcr=Pi) P _i (kPa) P _{cr} (kPa) P/Po x y	0 26,00024955 416,0104812 120,29 120,29 120,29 0 26,00035652	1,101561323 25,87739653 416,7639259 416,7643234 120,29 120,51 1,102008999 25,87937853	2,13962974 25,51931855 418,9333833 418,9349257 120,29 121,15 2,142111182 25,52455889	3,058816 24,95545 422,2572 422,2605 120,29 122,12 3,066835 24,96582	3,817848 24,22888 426,3344 426,3399 120,29 123,31 3,833073 24,24174	4,392282 23,38936 430,6733 430,6811 120,29 124,56 4,418818 23,40378	4,773921 22,48675 434,7506 434,7605 120,29 125,73 4,811273 22,49835	4,967895 21,56595 438,0744 438,086 120,29 126,68 5,011569 21,57088	4,98869 20,66413 440,2439 440,2566 120,29 127,30 5,036865 20,66083	4,8562125 19,809788 440,9973 441,01048 120,29 127,51 4,9069239 19,797287	4,59256 19,02328 440,2439 440,2566 120,29 127,30 4,638594 19,0034	4,219725 18,3181 438,0744 438,086 120,29 126,68 4,258118 18,29364	3,758204 17,70239 434,7506 434,7605 120,29 125,73 3,786328 17,67767	3,226311 17,18044 430,6733 430,6811 120,29 124,56 3,246413 17,15662	2,640004 16,75403 426,3344 426,3399 120,29 123,31 2,651329 16,7358	2,013031 16,42338 422,2572 422,2605 120,29 122,12 2,018531 16,41087	1,35725815 16,1879891 418,933383 418,934926 120,29 121,15 1,35894556 16,1820051	0,683102 16,047132 416,76393 416,76432 120,29 120,51 0,6832906 16,045764	4,80544E-16 16,00024955 416,0104812 416,0104812 120,29 120,29 120,29 4,80448E-16 16,00125431

Πίνακας 4: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 3Α (μέγιστες τιμές παραμέτρων)

Tunne	l properties			Calculation of plastic zone / Plastic zone coordinates																		
r _i	<mark>5</mark> m		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		Π
C	20,39633499 m	/	þ	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466	/	X	0	1,101932126	2,140340005	3,059809	3,819051	4,393618	4,775317	4,969288	4,990031	4,8574638	4,593696	4,22073	3,759069	3,227032	2,64058	2,013461	1,35754392	0,6832445	4,80644E-16
d _i	21,00024955 m		у	26,002	25,879	25,521	24,957	24,230	23,390	22,487	21,566	20,664	19,809	19,023	18,317	17,702	17,180	16,753	16,422	16,187	16,046	15,999
x _{up}	4,80544E-16 m																					
У _{ир}	16,00024955 m		Σα	0,998462551	0,998469811	0,998490973	0,998524	0,998567	0,998617	0,99867	0,998725	0,998778	0,9988284	0,998875	0,998917	0,998953	0,998984	0,999009	0,999029	0,99904255	0,9990509	0,999053653
X _{down}	/ 0 m		Σ _β	0,999994764	0,998737589	0,995142981	0,989707	0,983156	0,97632	0,970021	0,964972	0,961718	0,9605959	0,961718	0,964972	0,970021	0,97632	0,983156	0,989707	0,99514298	0,9987376	0,999994764
Ydown	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	0,001532213	0,000267778	0,003347992	0,008817	0,015412	0,022297	0,02865	0,033752	0,037059	0,0382326	0,037156	0,033944	0,028932	0,022664	0,015853	0,009321	0,00389957	0,0003133	0,00094111
y _{center}	21,00024955 m																					
	7																					
Pi	ressure		X																			
P ₀ /	477 kPa		у																			
P _i	<mark>98,89</mark> kPa																					
,		-										Tunnel o	coordinates									
			X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil	Properties		у	26,00024955	25,87739653	25,51931855	24,95545	24,22888	23,38936	22,48675	21,56595	20,66413	19,809788	19,02328	18,3181	17,70239	17,18044	16,75403	16,42338	16,1879891	16,047132	16,00024955
C M	65 kPa		Мо	416 0104812	416 7647353	118 0365236	122 2630	126 3155	130 6801	434 7707	138 0081	440 2600	441 02414	110 2600	138 0081	434 7707	/130 6801	126 3155	122 2630	118 036521	416 76474	416 0104812
Ϋ́	306 2608076		MO' (const for Pcr=Pi)	416 0104812	416 7643234	418 9349257	422,2000	426,3399	430 6811	434 7605	438 086	440,2000	441 01048	440 2566	438 086	434 7605	430 6811	426,3399	422,2000	418 934926	416 76432	416 0104812
	000,2000010			00.00	00.00	00.00		.20,0000			100,000	110,2000			100,000			.20,0000				00.00
λ	5,55004037		P _i (KPa)	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89	98,89
			P., (kPa)	98 89	99.10	99.70	100.62	101.74	102.92	104.02	104.92	105.50	105.70	105.50	104.92	104.02	102.92	101.74	100.62	99.70	99.10	98.89
			· cr (···· •·)	00,00	, -			- ,	-)-	- ,-	- 1-		, .		- 1-	- 1-	- 1-	- 1				
Calculation	of plastic zone a c	0.21	Pi/Po																			
r _e	5,001365794 m	-,	X	0	1,101627399	2,142192929	3,065876	3,831988	4,416101	4,80682	5,007803	5,033256	4,9006706	4,63292	4,253106	3,783938	3,243595	2,649825	2,017407	1,3588531	0,6832445	4,80644E-16
a _c	2,113495201		у	26,00055089	25,87768908	25,5247315	24,96458	24,24083	23,4023	22,49697	21,57046	20,66108	19,798836	19,00586	18,29684	17,67977	17,15996	16,73822	16,41343	16,182333	16,046098	15,99920898
d _c	21,00057478 m		•																			

Γράφημα 3: Πλαστική ζώνη ειδικής τιμής πίεσης υποστήριξης Pi (μέγιστες τιμές παραμέτρων)

Όσον αφορά στην γεωτεχνική τομή σχεδιασμού 4B, οι πίνακες και τα γραφήματα έχουν ως εξής.

Πίνακας 5: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 4B (ελάχιστες τιμές παραμέτρων)

Tunnel	l properties		Calculation of plastic zone / Plastic zone coordinates																			
r _i	<mark>5</mark> m		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		Π
C	20,39633499 m	/	P	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466	/	X	0	1,101853962	2,140190283	3,0596	3,818798	4,393337	4,775023	4,968994	4,989748	4,8572001	4,593456	4,220518	3,758886	3,22688	2,640459	2,013371	1,35748368	0,6832145	4,80623E-16
di	21,00024955 m		у	26,002	25,879	25,521	24,956	24,230	23,390	22,487	21,566	20,664	19,810	19,023	18,318	17,702	17,180	16,753	16,423	16,187	16,046	15,999
X _{up}	4,80544E-16 m																					
y _{up}	16,00024955 m		Σα	0,998982367	0,998987174	0,999001183	0,999023	0,999052	0,999085	0,99912	0,999156	0,999191	0,9992246	0,999255	0,999283	0,999307	0,999327	0,999344	0,999357	0,99936632	0,9993718	0,99937367
X _{down}	/ 0 m		Σ _β	0,999976866	0,998789705	0,995395283	0,990262	0,984075	0,97762	0,971672	0,966905	0,963832	0,9627719	0,963832	0,966905	0,971672	0,97762	0,984075	0,990262	0,99539528	0,9987897	0,999976866
Y _{down}	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	0,000994499	0,000197469	0,003605901	0,008761	0,014976	0,021464	0,027448	0,032251	0,035359	0,0364527	0,035423	0,032378	0,027635	0,021707	0,015269	0,009095	0,00397104	0,0005821	0,000603196
y _{center}	21,00024955 m																					
	/								_													
Pr	essure		X																			
P ₀ /	467 kPa		у																			
P _i	111,56 kPa																					
,												Tunnel o	coordinates									
			X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil F	Properties		у	26,00024955	25,87739653	25,51931855	24,95545	24,22888	23,38936	22,48675	21,56595	20,66413	19,809788	19,02328	18,3181	17,70239	17,18044	16,75403	16,42338	16,1879891	16,047132	16,00024955
С 0	65 kPa		Мо	/16 010/812	116 76/6/85	/18 0361867	100 0630	106 31/13	130 687/	131 7686	138 0056	440 2671	441 02126	1/0 2671	138 0056	131 7686	130 6871	106 31/3	100 0630	/18 036187	116 76/65	/16 010/812
Υ Y	285 2589651		MO' (const for Por-Pi)	416 0104812	416 7643234	418 9349257	422,2002	426,3399	430,0074	434 7605	438 086	440,2071	441 01048	440 2566	438 086	434 7605	430 6811	426,3399	422,2002	418 934926	416 76432	416 0104812
	200,200000																		,000			
λ	4,81495131		P _i (KPa)	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56	111,56
			P _a (kPa)	111.56	111,79	112,42	113,39	114,57	115,82	116,99	117,94	118,55	118,76	118,55	117,94	116,99	115,82	114,57	113,39	112,42	111,79	111,56
				,••																		
Calculation of	of plastic zone a _c	0,24	Pi/Po																			
r _c	5,0010779 m		X	0	1,101931994	2,141963555	3,066552	3,834112	<mark>4,419544</mark>	4,810422	5,013934	5,039157	4,9061765	4,637916	4,257522	3,786739	3,245097	2,651022	2,018302	1,35879283	0,6832145	4,80623E-16
a _c	2,113551109		У	26,0000548	25,87903762	25,52424717	24,96545	24,24262	23,40417	22,49808	21,57115	20,66067	<mark>19,797472</mark>	19,00369	18,29402	17,6773	17,15818	16,7363	16,41139	16,1825468	<mark>16,046316</mark>	15,99942832

Πίνακας 6: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 4B (μέσες τιμές παραμέτρων)

Tunn	el properties		Calculation of plastic zone / Plastic zone coordinates																			
r _i	<mark>5</mark> m		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		Π
С	20,39633499 m	/	þ	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466	/	X	0	1,101573549	2,139653159	3,058849	3,817888	4,392326	4,773967	4,967941	4,988734	4,8562538	4,592597	4,219758	3,758232	3,226335	2,640023	2,013045	1,35726757	0,6831067	4,80547E-16
d _i	21,00024955 m		У	26,000	25,877	25,519	24,955	24,229	23,389	22,487	21,566	20,664	19,810	19,023	18,318	17,702	17,180	16,754	16,423	16,188	16,047	16,000
X _{up}	4,80544E-16 m																					
Yup	16,000249 5 5 m		Σα	0,999946157	0,999946411	0,999947153	0,999948	0,99995	0,999952	0,999953	0,999955	0,999957	0,999959	0,999961	0,999962	0,999963	0,999964	0,999965	0,999966	0,99996648	0,9999668	0,999966865
X _{down}	/ 0 m		Σ _β	1,00002002	0,998740959	0,995083757	0,989554	0,982888	0,975932	0,969523	0,964387	0,961076	0,9599341	0,961076	0,964387	0,969523	0,975932	0,982888	0,989554	0,99508376	0,998741	1,00002002
Ydown	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	7,38634E-05	0,001205453	0,004863395	0,010395	0,017062	0,024019	0,03043	0,035568	0,038881	0,0400249	0,038884	0,035575	0,03044	0,024032	0,017078	0,010412	0,00488272	0,0012258	5,31549E-05
y _{center}	21,00024955 m			_																		
	/																					
Р	ressure		X																			
P。 /	467 kPa		у																			
P _i	<mark>81,63</mark> kPa																					
,												Tunnel	coordinates									
			X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil	Properties		у	26,00024955	25,87739653	25,51931855	24,95545	24,22888	23,38936	22,48675	21,56595	20,66413	19,809788	19,02328	18,3181	17,70239	17,18044	16,75403	16,42338	16,1879891	16,047132	16,00024955
C	78 kPa		Ma	116 0101010	116 761007	110 0210702	100 0606	106 2404	120 6012	121 7600	100 0061	440 2574	444 04002	110 2571	100 0061	121 7600	120 6012	106 2404	100 0606	440 024070	116 76 101	416 0104010
Ψ V	40 376 6173157		IVIU Mo! (const for Par_Di)	410,0104012	410,704337	410,9049700	422,2000	420,3401	430,0013	434,7000	430,0004	440,2571	441,01093	440,2571	430,0004	434,7000	430,0013	420,3401	422,2000	410,934970	410,70434	410,0104012
1	570,0175157			410,0104012	410,7040204	410,3343237	422,2003	420,0000	400,0011	434,7003	400,000	440,2000	441,01040	440,2000	400,000	404,7000	430,0011	420,0000	422,2003	410,334320	410,70452	410,0104012
λ	5,828427125		P _i (KPa)	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63	81,63
			P _{cr} (kPa)	81,63	81,83	82,42	83,32	84,41	85,57	86,65	87,52	88,09	88,29	88,09	87,52	86,65	85,57	84,41	83,32	82,42	81,83	81,63
Calculation	of plastic zone a	0.17	Pi/Po																			
r		- 17-	¥	0	1,101853829	2.141999968	3.065182	3.831805	4,413793	4.806013	5.005927	5.03145	4.898986	4.631391	4.251755	3.782777	3.243457	2.649717	2.017484	1.35890402	0.6832699	4.80547E-16
110	5.000045036 m		A																			
a _c	5,000045036 m 2,113751718		y y	25,99964916	25,87869156	25,52432406	24,96368	24,24067	23,40105	22,49672	21,57025	20,66121	19,799253	19,00652	18,2977	17,68079	17,16012	16,7384	16,41326	16,1821524	16,045914	16,00021524

Πίνακας 7: Συντεταγμένες πλαστικής ζώνης ειδικής τιμής πίεσης υποστήριξης Ρί της γεωτεχνικής τομής σχεδιασμού 4B (μέγιστες τιμές παραμέτρων)

Tunnel properties			Calculation of plastic zone / Plastic zone coordinates																			
r _i	<mark>5</mark> m		ß	0		π/9	π/6			π/3			π/2			2π/3			5π/6	8π/9		π
С	20,39633499 m	/	þ	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
a _i	2,113760466	/	X	0	1,101624949	2,139751615	3,058986	3,818055	4,392511	4,77416	4,968134	4,98892	4,8564273	4,592755	4,219897	3,758352	3,226435	2,640103	2,013105	1,35730719	0,6831264	4,80561E-16
di	21,00024955 m		У	26,001	25,878	25,520	24,956	24,229	23,389	22,487	21,566	20,664	19,810	19,023	18,318	17,702	17,180	16,754	16,423	16,188	16,047	16,000
X _{up}	4,80544E-16 m	-																				
y _{up}	16,000249 5 5 m		Σα	0,999620036	0,999621831	0,999627063	0,999635	0,999646	0,999658	0,999671	0,999685	0,999698	0,9997105	0,999722	0,999732	0,999741	0,999749	0,999755	0,99976	0,99976342	0,9997655	0,99976616
X _{down}	/ O m		Σ_{β}	0,999971896	0,998586186	0,994624049	0,988633	0,981411	0,973876	0,966933	0,961368	0,957781	0,9565438	0,957781	0,961368	0,966933	0,973876	0,981411	0,988633	0,99462405	0,9985862	0,999971896
Ydown	26,00024955 m		$ \Sigma_{\alpha} - \Sigma_{\beta} $	0,000351861	0,001035644	0,005003014	0,011003	0,018235	0,025782	0,032739	0,038317	0,041917	0,0431667	0,041941	0,038364	0,032809	0,025873	0,018344	0,011127	0,00513937	0,0011793	0,000205736
y _{center}	21,00024955 m	-		_																		
	/																					
Pr	essure		X																			
P ₀ /	<mark>467</mark> kPa		У																			
P _i /	50,76 kPa	-																				
,		-		Tunnel coordinates																		
			X	0	1,101561323	2,13962974	3,058816	3,817848	4,392282	4,773921	4,967895	4,98869	4,8562125	4,59256	4,219725	3,758204	3,226311	2,640004	2,013031	1,35725815	0,683102	4,80544E-16
Soil I	Properties		у	26,00024955	25,87739653	25,51931855	24,95545	24,22888	23,38936	22,48675	21,56595	20,66413	19,809788	19,02328	18,3181	17,70239	17,18044	16,75403	16,42338	16,1879891	16,047132	16,00024955
C	91 kPa			440.0404040	440 70 400 44	440 0054000	100 0011	100 0 100	100 0005	40.4 7000	400.0004	440.0500	111.01000	440.0500	400.0004	404 7000	400.0005	100 0 100	400.0044	440.0050	140 70 100	440.0404040
Ψ	500 0 400000		Mo	416,0104812	416,7643941	418,9351998	422,2611	426,3408	430,6825	434,7622	438,0881	440,2589	441,01282	440,2589	438,0881	434,7622	430,6825	426,3408	422,2611	418,9352	416,76439	416,0104812
Ŷ	500,0408903		MO [*] (const for Pcr=Pi)	416,0104812	416,7643234	418,9349257	422,2605	426,3399	430,6811	434,7605	438,086	440,2566	441,01048	440,2566	438,086	434,7605	430,6811	426,3399	422,2605	418,934926	416,76432	416,0104812
λ	7,54863217		P _i (kPa)	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76	50,76
			P _{cr} (kPa)	50,76	50,94	51,45	52,22	53,17	54,17	55,11	55,87	56,36	56,53	56,36	55,87	55,11	54,17	53,17	52,22	51,45	50,94	50,76
Calculation of plastic zone a_c		0,11 Pi/Po																				
r _c	5,000234369 m	-	X	0	1,101643561	2,141412627	3,064148	3,82867	4,410753	4,798029	4,998435	5,022692	4,8893729	4,622666	4,2452	3,778134	3,239506	2,647885	2,016452	1,35822168	0,6832897	4,80561E-16
a _c	2,113714941		у	26,00030531	25,87776063	25,52308381	24,96235	24,23802	23,3994	22,49424	21,56941	20,66181	<mark>19,801629</mark>	19,01029	18,30188	17,68488	17,16481	16,74135	16,4156	<mark>16,1845725</mark>	<mark>16,045771</mark>	16,00007098
d _c	21,00030535 m	-																				

Γράφημα 6: Πλαστική ζώνη ειδικής τιμής πίεσης υποστήριξης Ρί (μέγιστες τιμές παραμέτρων)

KEPAAAIO 6_
6. ΕΞΑΓΩΓΗ ΓΕΝΙΚΟΤΕΡΩΝ ΣΥΜΠΕΡΑΣΑΜΑΤΩΝ

6.1. Συμπεράσματα για την Λύση Κλειστής Μορφής Σχηματισμού Πλαστικής Ζώνης Υπακούοντας στο Κριτήριο Mohr-Coulomb του Υπολογιστικού Φύλλου Excel

Με την πρακτική εφαρμογή χαρακτηριστικών τιμών δυο αντιπροσωπευτικών γεωτεχνικών τομών σχεδιασμού στη λύση κλειστής μορφής σχηματισμού πλαστικής ζώνης που υπακούει στο κριτήριο Mohr-Coulomb του υπολογιστικού φύλλου Excel, διαπιστώθηκε καταρχήν ότι είναι ένα εύχρηστο εργαλείο υπολογισμού στοιχείων της πλαστικής ζώνης που σχηματίζεται γύρω από μια κυκλική σήραγγα.

Έτσι λοιπόν, με την απλή εισαγωγή τιμών μιας γεωτεχνικής τομής, (δηλαδή της ακτίνας της κυκλικής σήραγγας r, του βάθους της d_i , της συνοχής c, της γωνίας τριβής φ, του ενιαίου υπερκείμενου φορτίου Ρο και της εσωτερικής πίεσης υποστήριξης Ρί, είναι δυνατή η εξαγωγή συμπερασμάτων σχετικών με την εικόνα της ημικυκλικής πλαστικής ζώνης και των διπολικών συντεταγμένων για 19 διαφορετικές τιμές της γωνίας β. Η διαπίστωση της έκτασης της πλαστικής ζώνης, δηλαδή του εύρους της, ειδικά πάνω από την οροφή και κάτω από το δάπεδο της κυκλικής σήραγγας, πραγματοποιείται εύκολα με την αφαίρεση των αντίστοιχων συντεταγμένων y από τις συντεταγμένες της οροφής και του δαπέδου της σήραγγας και με την κανονικοποίηση του, δηλαδή τη διαίρεση του με την ακτίνα της σήραγγας, πραγματοποιείται η διαπίστωση της κλίμακας επίδρασης των χαρακτηριστικών τιμών μιας γεωτεχνικής τομής στον σχηματισμό της πλαστικής ζώνης. Ακόμα, σημαντικό στοιχείο αποτελεί το γεγονός ότι με την εφαρμογή των παραπάνω δεδομένων υπολογίζεται αυτόματα η τιμή της κρίσιμης πίεσης, του ορίου δηλαδή ανάμεσα στην ελαστική και την πλαστική συμπεριφορά του εδάφους, καθώς και η τιμή της ακτίνας της πλαστικής ζώνης. Τέλος, η δυνατότητα της ταυτόχρονης εμφάνισης των πλαστικών ζωνών, οποιονδήποτε λόγων φορτίων, επιτρέπει την απόκτηση μιας γενικής εικόνας του σχηματισμού των πλαστικών ζωνών γύρω από την κυκλική σήραγγα.

6.2. Συμπεράσματα για την Λύση Κλειστής Μορφής Σχηματισμού Πλαστικής Ζώνης που υπακούει στο κριτήριο Mohr-Coulomb με την Εφαρμογή της Συνάρτησης Πλαστικής Ζώνης του Τεχνικού Προγράμματος MATLAB

Όσον αφορά στη συνάρτηση πλαστικής ζώνης της γλώσσας προγραμματισμού MATLAB, η εφαρμογή των ίδιων τιμών των δυο γεωτεχνικών τομών σχεδιασμού οδήγησε στο συμπέρασμα ότι η δημιουργηθείσα συνάρτηση προσφέρει έναν γρήγορο και εύκολο τρόπο υπολογισμού στοιχείων πλαστικής ζώνης μιας κυκλικής σήραγγας.

Η εισαγωγή των δεδομένων που αναφέρθηκαν στα προηγούμενα, δίνει ως αποτέλεσμα την πλήρη εικόνα της σχηματιζόμενης ζώνης, τις συντεταγμένες 73 σημείων, τις τιμές της γωνίας β των 73 σημείων αυτών, τις ακτίνες της πλαστικής ζώνης και τα αντίστοιχα σφάλματα. Επιπλέον, κατά την εφαρμογή της συνάρτησης πλαστικής ζώνης, υπολογίζονται αυτομάτως τα εύρη και η ακτίνα της πλαστικής ζώνης στην οροφή και στο δάπεδο της σήραγγας, δεν απαιτούνται δηλαδή επιπλέον εργασίες.

Ακόμα, σε σύγκριση με την λύσης κλειστής μορφής του υπολογιστικού φύλλου Excel, ο υπολογισμός των στοιχείων της πλαστικής ζώνης είναι ακόμα πιο γρήγορος ενώ οι διαφορές των τιμών του εύρους είναι αμελητέες.

Τέλος, η διαφορά του τρόπου παρουσίασης των στοιχείων των δυο εφαρμογών έγκειται στην εμφάνιση των πλαστικών ζωνών στις εικόνες. Στο υπολογιστικό φύλλο Excel, όπως έχει αναφερθεί εμφανίζονται σε μια εικόνα οι πλαστικές ζώνες ημικυκλικής μορφής μιας ομάδας τιμών για διάφορες τιμές της εφαρμοζόμενης πίεσης υποστήριξης. Στη συνάρτηση πλαστικής ζώνης προκύπτει διαφορετική πλήρης εικόνα της πλαστικής ζώνης (ολόκληρος ο κύκλος) για κάθε τιμή της πίεσης υποστήριξης της ίδιας ομάδας των γεωτεχνικών παραμέτρων μιας τομής σχεδιασμού.

Γενικά, οι δυο μέθοδοι βασίζονται στην ίδια εξίσωση Mohr-Coulomb αλλά αναπτύχτηκαν με διαφορετική τεχνική. Όσον αφόρα στον προσδιορισμό του εύρους της πλαστικής ζώνης ειδικά, λαμβάνοντας υπόψη τις αμελητέες απόκλισης των τιμών μεταξύ των δυο εφαρμογών, προκύπτει η δυνατότητα εναλλακτικής τους χρήσης.

ΕΠΙΛΟΓΟΣ

Με την εκπόνηση της παρούσας διπλωματικής εργασίας συμπεραίνεται ότι οι δυο αριθμητικές μέθοδοι επίλυσης της λύσης κλειστής μορφής (Excel & MATLAB) της σχηματιζόμενης πλαστικής ζώνης γύρω από μια κυκλική σήραγγα που εφαρμόστηκαν και μελετήθηκαν εκτενώς στα προηγούμενα, αποτελούν απλά και αρκετά εύχρηστα εργαλεία υπολογισμού στοιχείων πλαστικής ζώνης.

Με την πρακτική εφαρμογή τους, πέρα από την θεωρητική ενασχόληση, προέκυψαν χρήσιμα νομογραφήματα που επιτρέπουν την γενίκευση συμπερασμάτων σχετικών με τα στοιχεία της πλαστικής ζώνης που σχηματίζεται γύρω από την κυκλική σήραγγα, με τις παραδοχές ισχύος του κριτηρίου Mohr–Coulomb αφενός, και τασικού πεδίου K₀=1 αφετέρου. Λαμβάνοντας υπόψη το γεγονός της εξαιρετικής χρησιμότητας και της αναγκαιότητας της γνώσης αυτών κατά την διάνοιξη των σηράγγων είναι πιθανή η μελλοντική χρήση των νομογραφημάτων ως άμεσα κριτήρια κατά τον σχεδιασμό και την παραγωγή ενός κατασκευαστικού μοντέλου, λειτουργώντας κατά αυτόν τον τρόπο ως συμπληρωματικά εργαλεία στα χέρια του μηχανικού για την μελέτη και τον σχεδιασμό μιας κυκλικής σήραγγας.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- 1. Hoek E., Brown E.T., (1980), Underground Excavations in Rock.
- Massinas S.A., Sakellariou M.G., (2009), Closed-Form Solution for Plastic Zone Formation Around a Circular Tunnel in Half-Space Obeying Mohr-Coulomb, Géotechnique 59, No 8, 691-701 [doi:10.1680/geot. 8069].
- Μαρίνος Π.Γ., Εκπαιδευτική Εκδρομή στις Σήραγγες Βάσης των
 Αλπεων., Βοήθημα Εκπαιδευτικής Εκδρομής Μεταπτυχιακών Φοιτητών. (St. Gotthard-Lotschberg-Alp tunnel).
- 4. Καψαμπέλη Α., (Αθήνα, Σεπτέμβριος, 2004), Μεταπτυχιακή Διπλωματική Εργασία: «Παραμετρική διερεύνηση της αλληλεπίδρασης μεταξύ εδάφους και κτιρίων υπό καθεστώς παραμορφώσεων λόγο διάνοιξης σηράγγων σε αστικό περιβάλλον».
- **5.** Τεχνική Γεωλογία και Σήραγγες, Κεφάλαιο 9: Σήραγγες, http://www.civ.uth.gr/lessons/52%5Ckephalaio_9.pdf
- δ. Σιταρένιος Π., Καββαδάς Μ., (Ξάνθη, 31/5-2/6/2006), Επιρροή της Χαλάρωσης της Βραχομάζας στη Διάνοιξη Σηράγγων, 5 Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, http://library.tee.gr/digital/m2134/m2134_sitarenios.pdf
- Παπάζογλου Δ., Υλικά Ι, Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης και Τεχνολογίας Υλικών, http://www.materials.uoc.gr/el/undergrad/courses/ETY141/notes/chap6.pdf
- Σωτηρόπουλος Η., Μούρτζας Ν., Σήραγγα Ανηλίου Αστοχία Πρανούς
 Ανατολικού Μετώπου,
 http://www.eesye.gr/uploads/60/37/16ANILIO.pdf

9. Μαρίνος Π. & Ερευνητική Ομάδα, Σύστημα Ανάλυσης Πληροφοριών

Σηράγγων – TIAS «Μια πρωτογενής σχεσιακή τράπεζα δεδομένων για σήραγγες. Εφαρμογές στην Εγνατία Οδό Α.Ε.»,

http://www.ntua.gr/temp_announce/170/parousiaseis170/files170

10. Γεωτεχνική Μηχανική,

http://www.survey.ntua.gr/main/labs/struct/geotech/index.html

11. MATLAB Introduction, Help Navigator.

ΠΑΡΑΡΤΗΜΑ

ΑΝΑΛΥΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΤΩΝ ΓΕΩΤΕΧΝΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 3Α

Υπολογισμός μέσης τιμής της παραμέτρου γ:

 $\begin{aligned} & \gamma_{\mu\acute{e}\sigma o} = \left\{ \left[\gamma_{(T.\epsilon)} * Z_{(T.\epsilon)} \right] + \left[\gamma_{(\Sigma\chi, 5.1)} * Z_{(\Sigma\chi, 5.1)} \right] + \left[\gamma_{(\Sigma\chi, 6.1)} * Z_{(\Sigma\chi, 6.1)} \right] + \left[\gamma_{(\Sigma\chi, 6.2/6.3/6.4 \epsilon.\phi)} * Z_{(\Sigma\chi, 6.2/6.3/6.4 \epsilon.\phi)} + Z_{(\Sigma\chi,$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c

<u>Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (ελάχιστη τιμή)</u>

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\epsilon\lambda\alpha\chi.)} = \{ [\mathbf{c}_{\epsilon\lambda(T.\epsilon)} * \mathbf{Z}_{(T.\epsilon)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 5.1)} * \mathbf{Z}_{(\Sigma\chi. 5.1)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} * \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + [\mathbf{c}_{\epsilon\lambda(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} + \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}] + \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)} + \mathbf{Z}_{(\Sigma\chi. 6.2/6.3/6.4 \ \epsilon.\phi)}$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (μέση τιμή)

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\mu\epsilon\sigma.)} = \{ [\mathbf{c}_{\mu\epsilon\sigma(T.\epsilon)} * \mathbf{Z}_{(T.\epsilon)}] + [\mathbf{c}_{\mu\epsilon\sigma(\Sigma\chi. 5.1)} * \mathbf{Z}_{(\Sigma\chi. 5.1)}] + [\mathbf{c}_{\mu\epsilon\sigma(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)}] + [\mathbf{c}_{\mu\epsilon\sigma(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)} + [\mathbf{c}_{\mu\epsilon\sigma(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)}] + [\mathbf{c}_{\mu\epsilon\sigma(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.2)} * \mathbf{Z}$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (μέγιστη τιμή)

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\mu\epsilon\gamma.)} = \{ [\mathbf{c}_{\mu\epsilon\gamma(\mathrm{T}.\epsilon)} * \mathbf{Z}_{(\mathrm{T}.\epsilon)}] + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 5.1)} * \mathbf{Z}_{(\Sigma\chi. 5.1)}] + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)} * \mathbf{Z}_{(\Sigma\chi. 6.1)}] + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)} + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)} + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)} + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)}] + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.2)} + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.1)} + [\mathbf{c}_{\mu\epsilon\gamma(\Sigma\chi. 6.2)} + [\mathbf{c}$

Υπολογισμός μέσης τιμής της γωνίας τριβής φ

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (ελάχιστη τιμή)

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (μέση τιμή)

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (μέγιστη τιμή)

• $\varphi_{(\mu \acute{e}\sigma \bullet \mu \acute{e}\gamma.)} = \{ [\varphi_{\mu \acute{e}\gamma(T.\epsilon)} * Z_{(T.\epsilon)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 5.1)} * Z_{(\Sigma \chi. 5.1)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 6.1)} * Z_{(\Sigma \chi. 6.1)} * Z_{(\Sigma \chi. 6.1)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)} * Z_{(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)} * Z_{(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [Z_{(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)}] + Z_{(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)} + Z_{(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 6.2/6.3/6.4 \ \beta.\phi)} + Z_{(\Sigma \chi. 6.2/6.$

Αντιπροσωπευτική Γεωτεχνική Τομή Σχεδιασμού 4Β

Υπολογισμός μέσης τιμής της παραμέτρου γ:

• $\gamma_{\mu \acute{e}\sigma o} = \{ [\gamma_{(T.\epsilon)} * Z_{(T.\epsilon)}] + [\gamma_{(\Sigma\chi, 5.1)} * Z_{(\Sigma\chi, 5.1)}] + [\gamma_{(\Sigma\chi, 9.1)} * Z_{(\Sigma\chi, 9.1)}] + [\gamma_{(\Sigma\chi, 9.2\beta)} * Z_{(\Sigma\chi, 9.2\beta)} * Z_{(\Sigma\chi, 9.2\beta)} \} + [\gamma_{(\Sigma\chi, 9.2\alpha)} * Z_{(\Sigma\chi, 9.2\alpha)}] + [\gamma_{(\Sigma\chi, 9.2\alpha)} * Z_{(\Sigma\chi, 9.2\alpha)} + Z_{(\Sigma\chi, 9.2\alpha)} + Z_{(\Sigma\chi, 9.2\alpha)}] + [\gamma_{(\Sigma\chi, 9.2\alpha)} + Z_{(\Sigma\chi, 9.2\alpha)}] + [\gamma_{(\Sigma$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (ελάχιστη τιμή)

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\epsilon\lambda\alpha\chi)} = \{ [c_{\epsilon\lambda(T.\epsilon)} *Z_{(T.\epsilon)}] + [c_{\epsilon\lambda(\Sigma\chi. 5.1)}*Z_{(\Sigma\chi. 5.1)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.1)}*Z_{(\Sigma\chi. 9.1)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.1)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.1)}*Z_{(\Sigma\chi. 9.1)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.1)}*Z_{(\Sigma\chi. 9.1)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}+Z_{(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}+Z_{(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\epsilon\lambda(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}+Z_{(\Sigma\chi. 9.2\alpha)}*Z_{(\Sigma\chi. 9.2\alpha)}+Z_{(\Sigma\chi. 9.2\alpha)}+Z_{$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (μέση τιμή)

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\mu\epsilon\sigma)} = \{ [c_{\mu\epsilon\sigma(T.\epsilon)} *Z_{(T.\epsilon)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 5.1)} *Z_{(\Sigma\chi. 5.1)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.1)} *Z_{(\Sigma\chi. 9.1)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.1)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.1)} + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.1)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.1)} *Z_{(\Sigma\chi. 9.1)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} *Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\beta)} *Z_{(\Sigma\chi. 9.2\beta)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} *Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\beta)} *Z_{(\Sigma\chi. 9.2\beta)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} *Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} *Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\beta)} *Z_{(\Sigma\chi. 9.2\beta)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} *Z_{(\Sigma\chi. 9.2\alpha)}] + [c_{\mu\epsilon\sigma(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}] + Z_{(\Sigma\chi. 9.2\alpha)} + Z_{(\Sigma\chi. 9.2\alpha)}$

Υπολογισμός μέσης τιμής της εδαφικής συνοχής c (μέγιστη τιμή)

• $\mathbf{c}_{(\mu\epsilon\sigma\sigma-\mu\epsilon\gamma)} = \{ [c_{\mu\epsilon\gamma(T,\epsilon)} * Z_{(T,\epsilon)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 5.1)} * Z_{(\Sigma\chi, 5.1)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.1)} * Z_{(\Sigma\chi, 9.1)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.1)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)}] + [c_{\mu\epsilon\gamma(\Sigma\chi, 9.2)} * Z_{(\Sigma\chi, 9.2)} * Z_{(\Sigma$

Υπολογισμός μέσης τιμής της γωνίας τριβής φ

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (ελάχιστη τιμή)

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (μέση τιμή)

Υπολογισμός μέσης τιμής της γωνίας τριβής φ (μέγιστη τιμή)

• $\varphi_{(\mu \acute{e}\sigma \bullet - \mu \acute{e}\gamma)} = \{ [\varphi_{\mu \acute{e}\gamma(T.\epsilon)} * Z_{(T.\epsilon)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 5.1)} * Z_{(\Sigma \chi. 5.1)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.1)} * Z_{(\Sigma \chi. 9.1)} * Z_{(\Sigma \chi. 9.1)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\alpha)} * Z_{(\Sigma \chi. 9.2\alpha)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\alpha)} * Z_{(\Sigma \chi. 9.2\alpha)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\alpha)} * Z_{(\Sigma \chi. 9.2\alpha)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\alpha)} * Z_{(\Sigma \chi. 9.2\alpha)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} * Z_{(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)}] + [\varphi_{\mu \acute{e}\gamma(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)} + Z_{(\Sigma \chi. 9.2\beta)}]$