

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων - Μεταλλουργών Τομέας Μεταλλουργίας και Τεχνολογίας Υλικών Εργαστήριο Μεταλλογνωσίας

Συσχέτιση μικροδομής και μαγνητικών ιδιοτήτων σε κοινούς ανθρακούχους χάλυβες

Διπλωματική Εργασία

Πετράκου Ζωή

Επιβλέπων Καθηγητής: Ε. Χριστοφόρου Αναπληρωτής Καθηγητής ΕΜΠ

18 Μαρτίου 2010

Περιεχόμενα

Πρόλογος	3
Prologue	4
Εισαγωγή	5
Ορισμός και Σκοπός των Μεθόδων ΜΚΕ	5
Εφαρμογές των Μεθόδων ΜΚΕ	6
Οι Μέθοδοι ΜΚΕ	6
Αξιοπιστία και Στατιστική των Μεθόδων ΜΚΕ	7
Μαγνητικές Μέθοδοι: Έλεγχος Θορύβου Barkhausen	7
Θεωρητικό Μέρος	9
Α. Μαγνητισμός	9
1. Μαγνητική διπολική ροπή	9
2. Ατομικές μαγνητικές ροπές	10
3. Διάνυσμα μαγνήτισης Μ	13
4. Πεδίο μαγνήτισης ή ένταση μαγνητικού πεδίου Η	16
5. Μαγνητική διαπερατότητα και μαγνητική επιδεκτικότητα	17
Β. Σιδηρομαγνητισμός	19
Γ. Η προέλευση του σιδηρομαγνητισμού και η αλληλεπίδραση	20
ανταλλαγής	
Δ. Μαγνήτιση, απομαγνήτιση και τα φαινόμενα που προκύπτουν	24
1. Μαγνητικές περιοχές	24
2. Τοιχώματα περιοχών	27
3. Κίνηση των μαγνητικών τοιχωμάτων	28
4. Εξάρτηση του Μ από το Η - φαινόμενο Barkhausen και	30
βρόχος υστέρησης	
Ε. Σκληρά και μαλακά μαγνητικά υλικά	36
1. Γενικά	36
2. Μαλακά μαγνητικά υλικά: mild steel, αποτελούμενες φάσεις,	37
χαρακτηριστικά και εφαρμογές	
Πειραματικό Μέρος	41
Α. Δείγματα και μεταλλογραφική προετοιμασία	41
1. Ενδοτράχυνση με τη μέθοδο της ψυχρής έλασης	41
2. Εγκιβωτισμός	41
3. Λείανση	42
4. Στίλβωση	43
5. Χημική προσβολή	43
Β. Πειραματικές διατάξεις	45
1. Διάταξη μέτρησης Barkhausen noise	45
2. Διάταξη μέτρησης σκληρότητας Vickers	46
3. Ηλεκτρονική Μικροσκοπία Σάρωσης (SEM) Αρχή Λειτουργίας	49
4. Παρατήρηση στο οπτικό μικροσκόπιο	53
Γ. Αποτελέσματα πειραματικών διαδικασιών – Σχολιασμός	55
1. Αποτελέσματα μέτρησης Barkhausen noise	55
Παρατηρήσεις	61

2. Αποτελέσματα παρατήρησης δοκιμίων στο SEM	63
Παρατηρήσεις	73,81,87,94
3. Εικόνες μικροδομής οπτικού μικροσκοπίου	102
4. Αποτελέσματα μετρήσεων μακροσκληρότητας Vickers	107
Παρατηρήσεις	114
Παράρτημα	116
Βιβλιογραφία	171

Πρόλογος:

Στην παρούσα διπλωματική εργασία αναπτύσσω αρχικά τη θεωρία του μαγνητισμού, πού ακριβώς οφείλεται, τι φαινόμενα λαμβάνουν χώρα κλπ, προκειμένου στη συνέχεια να αναπτύξω το φαινόμενο του θορύβου Barkhausen, καθώς κυρίως πάνω σε αυτό βασίζεται μια μαγνητική μέθοδος μη καταστροφικού ελέγχου μαγνητικών (φερρομαγνητικών) υλικών, την οποία αξιοποιώ στην παρούσα εργασία, προκειμένου να εξετάσω δοκίμια κοινού ανθρακούχου φερριτικού χάλυβα, με απώτερο σκοπό να αποδείξω τη ύπαρξη μονοτονικής συσχέτισης μεταξύ του σήματος Barkhausen noise και των μηχανικών ιδιοτήτων του συγκεκριμένου εξεταζόμενου υλικού, της σκληρότητας και της μικροδομής.

Πιο συγκεκριμένα, από το ίδιο φύλλο χάλυβα έκοψα 12 μικρότερα ελάσματα για δοκίμια τα οποία παραμόρφωσα σε διαφορετικό βαθμό με τη μέθοδο της ψυχρής έλασης. Έπειτα αφού μέτρησα τον θόρυβο Barkhausen με τη χρήση διάταξης σημειακής μέτρησης, συσχέτισα με διαγραμματικές απεικονίσεις τον βαθμό παραμόρφωσης (μείωση της διατομής) με τις διαφοροποιήσεις στο σήμα Barkhausen και τη μαγνητική διαπερατότητα. Έπειτα πραγματοποίησα μετρήσεις μακροσκληρότητας με τη μέθοδο Vickers, προκειμένου να συμπεράνω αν και πώς συσχετίζονται οι μεταβολές του θορύβου Barkhausen με τις μεταβολές στην σκληρότητα του υλικού. Τέλος παρατήρησα τα δοκίμια τόσο με ηλεκτρονικό μικροσκόπιο σάρωσης (SEM) όσο και με απλό οπτικό μικροσκόπιο, προκειμένου να διαπιστώσω τυχόν διαφοροποιήσεις στη μικροδομή.

Στο πέρας των πειραματικών διεργασιών έφτασα στα εξής συμπεράσματα: πως ο θόρυβος Barkhausen, η σκληρότητα και η μικροδομή σχετίζονται και μάλιστα μονοτονικά. Σε γενικές γραμμές διαπιστώθηκε ότι όσο αυξάνεται ο βαθμός πλαστικής παραμόρφωσης του συγκεκριμένου υλικού και η σκληρότητά του, τόσο μειώνεται η μαγνητική διαπερατότητά του ενώ αυξάνονται τα peak του σήματος Barkhausen (τα άλματα ή αλλιώς οι περιστροφές των μαγνητικών περιοχών, ένα φαινόμενο που θα επεξηγήσω αναλυτικά στην παρούσα εργασία), ενώ ταυτόχρονα λαμβάνουν σημαντικές μεταβολές στην μικροδομή του (μέγεθος, σχήμα των κόκκων). Αυτό μπορεί να αξιοποιηθεί και αντίστροφα, με τη χρήση δηλαδή αυτού του μαγνητικού μη καταστροφικού ελέγχου να διαπιστωθεί ο βαθμός παραμόρφωσης μια μεταλλικής χαλύβδινης κατασκευής και να εξαχθούν σχετικά ασφαλή συμπεράσματα όσο αφορά την ενδοτράχυνση που μπορεί να έχει υποστεί και την κατάσταση τόσο των μαγνητικών όσο και μηχανικών ιδιοτήτων, καθώς και για την μικροδομή του.

Prologue:

In this essay for the master degree of my studies I unfold the basics considering magnetism, the mechanisms behind it, its properties, the phenomena that occur during the magnetization of a magnetic material, so I may specifically unfold the phenomenon of the Barkhausen noise, which is the basic parameter in which a significant magnetic non-destructive testing (NDT) is based on. I refer to this, as it is the method I made use of, in order to examine specimens of a certain metallic material (ferromagnetic mild steel with carbon under 0,1%). My goal is to prove the existence of a relation between the Barkhausen noise we receive, when we magnetize the specimens by applying a magnetic field with monitored parameters, and the mechanic properties of the material, like the micro-structure, the degree of the plastic distortion and the hardness of it.

More specifically, I cut a sheet of mild steel into 12 smaller specimens in the shape of plates and distorted them using the method of cold rolling. Then I measured the signal of the Barkhausen noise using a certain layout on particular points on the surface of the plates and depicted the measurements on graphs, with the degree of distortion (reduction of the cross-section of the plates) on the xx' axis and the other Barkhausen noise's parameters on the yy' axis, so the direct relation between them becomes clear. After that, I took measurements of the HV (Vickers) hardness, in order to depict them, along with the Barkhausen noise's measurements on diagrams and confirm the connection between the differentiation/changes of the hardness, caused by the cold rolling, and the changes of the Barkhausen noise and its parameters (like the magnetic permeability, the movement of the magnetic domains when in a magnetic field a.s.o, things that I will explain in detail in this essay). In the end, I observed the micro-structure of the distorted metallic plates with the use of SEM and optical microscope, so I could have a clearer picture of the changes that might have occurred inside of the specimens.

After the completion of the above experimental procedures, I've come to these conclusions: there is indeed a direct connection/interaction between the Barkhausen noise that is emitted during the magnetization of the specimens and the changes they have undergone to the degree of their distortion, hardness and microstructure of their grains. In general, we will see in this essay that the more we may distort plastically our specimens with the method of cold rolling, the more its magnetic permeability decreases and its effective intensity of the Barkhausen effect rises, as the hardening increases and thus significant changes take place, concerning the magnetic domains and, in extension, its magnetic properties. Those conclusions may come in handy the other way around: by measuring the Barkhausen signal, one can come to safe conclusions, regarding the state of structure made of mild steel, specifically the state of its mechanic and magnetic properties, its structure of grains, its hardness, its degree of distortion and strain and have a clear view of its reliability.

Εισαγωγή:

Ορισμός και Σκοπός των Μεθόδων ΜΚΕ:

Ο χάλυβας, και ανάμεσα στα διάφορα προϊόντα αυτού συμπεριλαμβάνεται και ο ευρέως γνωστός και χρησιμοποιούμενος κοινός ανθρακούχος χάλυβας (mild steel, ποσοστό άνθρακα <0,3%, ακόμα μικρότερο ποσοστό άλλων προσμίξεων), είναι ένα από τα σημαντικότερα βιομηχανικά υλικά και οι χαλυβουργίες (εργοστάσια παραγωγής χάλυβα) ανήκουν στις «βαριές βιομηχανίες». Σε παλαιότερες εποχές, η βιομηχανική παραγωγή μιας χώρας αξιολογούνταν από την παραγωγή της σε χάλυβα. Η ελληνική βιομηχανία χάλυβα έχει αυξήσει σημαντικά την παραγωγή της τα τελευταία χρόνια και, από 1,0 εκατ. τόνους το 1990, ξεπέρασε τα 2,5 εκατ. τόνους το 2007.

Πρόκειται λοιπόν για προϊόν με πολλές εφαρμογές και γι' αυτό κατανοούμε την ανάγκη ύπαρξης τεχνικών αξιολόγησης των χαλύβδινων προϊόντων/κατασκευών μη καταστροφικών, προκειμένου να διαπιστωθεί, με ασφάλεια και αξιοπιστία, η ύπαρξη κάποιας ατέλειας στο υλικό, η οποία θα μπορούσε να αποδειχτεί ακόμα και καταστροφική για την κατασκευή μας ή ακόμα και επικίνδυνη για ανθρώπινες ζωές, και γενικά η αξιολόγηση μηχανικών ιδιοτήτων του μαγνητικού αυτού και σημαντικού αυτού υλικού, με αποφυγή την καταστροφή αυτού και, ακολούθως, την αχρήστευση της κατασκευής μας.

Γενικά, μη καταστροφικές δοκιμές (NDT: Non Destructive Testing) ή Mη καταστροφικοί Έλεγχοι (NDI: Non Destructive Inspection), ή μη καταστροφικές αξιολογήσεις (NDE: Non Destructive Evaluation) ονομάζονται οι έλεγχοι που δεν καταστρέφουν το εξεταζόμενο αντικείμενο. Οι μέθοδοι MKE είναι ζωτικής σημασίας για τη δημιουργία και συντήρηση κάθε εξαρτήματος και κατασκευής. Ο αντικειμενικός μας σκοπός είναι να συνδυάσουμε τα αποτελέσματα των MKE με τη θεωρία της Θραυστομηχανικής ώστε να προβλέψουμε την επέκταση τυχών ρωγμών και να υπολογίσουμε τον κίνδυνο αστοχίας του υλικού. Οι μη καταστροφικοί έλεγχοι θα χρησιμοποιηθούν για να διαπιστωθεί η ύπαρξη και το μέγεθος των ελαττωμάτων σε μια κατασκευή, χαλύβδινη στην προκειμένη περίπτωση, χωρίς όμως να τη καταστρέψουν ούτε να επηρεάσουν τη λειτουργικότητάς της. Με την συνδυασμένη χρήση των μεθόδων μη καταστροφικού ελέγχου (MKE) και της θραυστομηχανικής μπορούμε να είμαστε ενήμεροι συνεχώς για την καλή «υγεία» μιας κατασκευής (Health Monitoring) και για το προβλεπόμενο χρόνο ζωής και καλής λειτουργίας της (Residual Lifetime).

Κάθε μέθοδος ΜΚΕ έχει διαφορετικό βαθμό ακρίβειας που όμως ποτέ δεν φτάνει την απόλυτη ακρίβεια ενός καταστροφικού ελέγχου. Όμως οι ΜΚΕ είναι πολύ οικονομικότερες από τον καταστροφικό έλεγχο καθώς αφήνουν την κατασκευή άθικτη και διαθέσιμη για περαιτέρω έλεγχο ή λειτουργία. Καταστροφικοί και μη έλεγχοι εφαρμόζονται σε συνδυασμό κατά τον έλεγχο αξιοπιστίας μιας μεθόδου, οπότε τυχαία δείγματα ελέγχονται πρώτα με ΜΚΕ και στη συνέχεια με ΚΕ ώστε να συγκριθούν τα αποτελέσματα τους και να οριστεί ή να ρυθμιστεί καλύτερα η ακρίβειά της μεθόδου.

Εφαρμογές των Μεθόδων ΜΚΕ:

Πολλές κατασκευές κατά τη διάρκεια της λειτουργίας τους, χρειάζονται περιοδικούς μη καταστροφικούς έλεγχος, ώστε να εντοπιστούν πιθανές ζημιές που δεν θα γίνονταν αντιληπτές με τις απλές καθημερινές μεθόδους.Παραδείγματα τέτοιων κατασκευών είναι: ο σκελετός ή η επένδυση των αεροσκαφών, οι υπόγειες σωληνώσεις, οι κατασκευές από σκυρόδεμα και στον οπλισμό τους, τα πιεστικά δοχεία χημικών αντιδραστηρίων, τα συρματόσχοινα γεφυρών κλπ. Οι εφαρμογές των ΜΚΕ, σήμερα, καλύπτουν ένα τεράστιο φάσμα βιομηχανικών και κατασκευαστικών δραστηριοτήτων και τις συναντάμε σχεδόν παντού:

- Στην αυτοκινητοβιομηχανία (μηχανή, πλαίσιο).
- Στην αεροδιαστημική (Πλαίσια αεροπλάνων και διαστημοπλοίων, πύραυλοι, κινητήρες, τζετ).
- Στις κατασκευές (κτίρια, γέφυρες).
- Στη βιομηχανία (μηχανικά εξαρτήματα, καλούπια, πρέσες)
- Σε εγκαταστάσεις πετροχημικής, πυρηνικής παραγωγής ρεύματος, παραγωγής ρεύματος ορυχεία (πιεστικά δοχεία, δεξαμενές, λέβητες, εναλλάκτες τουρμπίνες, σωληνώσεις, συγκολλήσεις).
- Στο σιδηρόδρομο (σιδηροτροχιές, τροχοί και άξονες).
- Σε αγωγούς αερίου και πετρελαιαγωγούς.
- Στα πάρκα αναψυχής (παιχνίδια και τραίνα μεγάλης ταχύτητας)
- > Στην ιατρική (τομογραφίες, υπέρηχοι, ακτινογραφίες, καρδιογραφήματα.

Οι Μέθοδοι ΜΚΕ:

Ο ΜΚΕ χρησιμοποιεί διάφορες μεθόδους, κάθε μία από τις οποίες βασίζεται σε συγκεκριμένη επιστημονική παραδοχή ή αρχή λειτουργίας και επίσης μπορεί να διακρίνεται σε περισσότερες από μια τεχνικές. Η αξία κάθε μεθόδου εξαρτάται από το είδος του προβλήματος. Μια μέθοδος/τεχνική, λόγω φύσεως και της λειτουργίας της, μπορεί να είναι από ιδανική έως και εντελώς άχρηστη για την εφαρμογή που έχουμε υπ' όψιν μας. Για το λόγο αυτό η σωστή επιλογή είναι σημαντική για την τελική απόδοση του ΜΚΕ. Οι κυριότερες κατηγορίες μεθόδων και τεχνικές ΜΚΕ ακολουθούν παρακάτω:

Οπτικές Μέθοδοι

Οπτικός έλεγχος (Visual Inspection) Οπτικός έλεγχος με μικροσκόπιο Οπτικός έλεγχος με Βιντεοσκόπηση (Video Inspection) Οπτικές μέθοδοι με Laser: Ολογραφία (Holography) Συμβολομετρία (ESP Interferometry) Δυναμικός Έλεγχος Επιφανείας (Dynamic Surface-Inspection) Ραδιογραφικές μέθοδοι (Radiographic testing) όπως: Ακτίνες X (X-rays) και Ακτίνες Γάμα (Gamma rays) Ψηφιακή Τομογραφία (Computed Tomography)

Υποατομικά Σωματίδια (νετρόνια, πρωτόνια) (Neutron Radiography) Μέθοδοι Υπερήχων (Ultrasonic inspection)

Τεχνικές Ανάκλασης

Τεχνικές Περίθλασης (Time of Flight Diffraction ultrasonics – TOFD) Συστοιχίες Φάσης Υπερήχων (Phased Array ultrasonics)

Περιστρεφόμενα συστήματα (Internal Rotary Inspection System - IRIS) Έλεγχος με Διεισδυτικά Υγρά (Liquid Penetrant Flaw testing)

Μέθοδοι Ακουστικών Εκπομπών (Acoustic Emission, AE) – (φάσμα υπερήχων) Μέθοδος Θερμικών Εκπομπών (Thermal Emission) Ηλεκτρικές μέθοδοι

Ρεύματα Eddy (Eddy-Current & Remote field testing - RFT) Μέθοδος Πτώσης Δυναμικού (Potential Drop)

Μαγνητικές μέθοδοι

Έλεγχος Μαγνητικό Μελάνι/Σκόνη (Magnetic Ink/Powder) Έλεγχος με Μαγνητικά σωματίδια (Magnetic Particles) Μαγνητογραφία (Magnetography) Απώλεια Μαγνητικής Ροής (Magnetic flux leakage - MFL) Έλεγχος θορύβου Barkhausen.

Μηχανικοί Έλεγχοι

Μέθοδος Ακουστικής Πρόσκρουσης (Acoustic-Impact) – (ηχητικό φάσμα) Θερμογραφικός Έλεγχος (Thermographic inspection) (υπέρυθροι έλεγχοι) Μέθοδοι Μηχανικής Αντίστασης (Mechanical Impedance) Έλεγχοι Ταλαντώσεων (Vibration Monitoring)

Έλεγχοι Διαρροής (Leak Detection & testing)

Μικροκυματικές μέθοδοι (Microwave)

Αξιοπιστία και Στατιστική των Μεθόδων ΜΚΕ:

Η αξιοπιστία κάθε μεθόδου ΜΚΕ εξαρτάται από τις πιθανότητες σωστής ή λάθος διάγνωσης που έχει η μέθοδος. Κάθε εξεταζόμενο εξαρτάται μπορεί να έχε πραγματικά ελαττώματα (Ναι) ή να είναι χωρίς ελαττώματα (Όχι). Όλες οι δυνατές περιπτώσεις που προκύπτουν από τον συνδυασμό των παραπάνω απαντήσεων είναι τέσσερις. Συγκεκριμένα έχουμε: μπορεί να έχει πραγματικά

1. Σωστή Κατάφαση: Είναι ελαττωματικό (Ν) και ο ΜΚΕ το θεωρεί (Ν).

- 2. Λάθος Κατάφαση: Δεν είναι ελαττωματικό (Ο) αλλά ο ΜΚΕ το θεωρεί (Ν).
- 3. Λάθος Άρνηση: Είναι ελαττωματικό (Ν) αλλά ο ΜΚΕ δεν το θεωρεί (Ο).

4. Σωστή Άρνηση: Δεν είναι ελαττωματικό (Ο) και ο ΜΚΕ δεν το θεωρεί (Ο).

Δύο ποσότητες που χρησιμοποιούνται συχνά είναι η πιθανότητα εντοπισμού και η πιθανότητα λάθος συναγερμού κάθε μεθόδου ή τεχνικής. Η πιθανότητα εντοπισμού αντιστοιχεί στη πιθανότητα να είναι πραγματικά ελαττωματικό υπό τη συνθήκη η μέθοδος μας δίνει είτε σωστή κατάφαση (OR) ή λάθος κατάφαση. Η πιθανότητα λάθους συναγερμού αντιστοιχεί στη πιθανότητα να μην είναι ελαττωματικό υπό τη συνθήκη ότι η μέθοδος μας δίνει είτε λάθος κατάφαση (OR, 1st) σωστή άρνηση.

Μαγνητικές Μέθοδοι: Έλεγχος Θορύβου Barkhasuen:

Οι μαγνητικές μέθοδοι ΜΚΕ βασίζονται στον εντοπισμό των απωλειών της μαγνητικής ροής λόγω ατελειών του υλικού. Όταν ένα δοκίμιο μαγνητιστεί και περιέχει μια ασυνέχεια στην επιφάνειά του ή κάτω από αυτήν, δημιουργείται μια παραμόρφωση στη μαγνητική ροή η οποία προκαλεί ένα τοπικό πεδίο απώλειας μαγνητικής ροής. Οι μέθοδοι βασίζονται στους νόμους του Maxwell (1873) και χρησιμοποιούν σύγχρονες μεθόδους ανάλυσης πεπερασμένων στοιχείων και πολύ ισχυρούς υπολογιστές. Οι μαγνητικές μέθοδοι μπορούν να εφαρμοστούν μόνο σε υλικά που μαγνητίζονται.

Οι ατέλειες στη κρυσταλλική δομή ενός υλικού, οι οποίες είναι υπεύθυνες για τις μηχανικές ιδιότητές τους, είναι οι ίδιες που επηρεάζουν και τις μαγνητικές τους ιδιότητες. Η μεταξύ τους σχέση δεν έχει γίνει ακόμα πλήρως κατανοητή αλλά διαπιστώθηκε ότι οι μετρήσεις του μαγνητικού θορύβου Barkhausen και των βημάτων Barkhausen παρέχουν πληροφορίες για τις μηχανικές ιδιότητες. Ο μαγνητισμός των υλικών συμβαίνει με μια σειρά μικρών βημάτων από τον ένα κόκκο στον άλλο. Αν συνδέσουμε το πηνίο μαγνητισμού με ένα μεγάφωνο, τα βήματα αυτά ακούγονται σαν μια σειρά από κλικ και συνθέτουν έναν θόρυβο (ένα ανάλογο φαινόμενο είναι η μαγνητοακουστική εκπομπή). Ο θόρυβος Barkhausen είναι ευαίσθητος στη παρουσία τάσεων, ρωγμών, μικροατελειών, θερμικής κατεργασίας και πλαστικής παραμόρφωσης και παρουσιάζει αιχμές και ακραίες τιμές που βοηθούν στον εντοπισμό τους.

Θεωρητικό Μέρος:

Α. Μαγνητισμός:

1. Μαγνητική διπολική ροπή:

Για την εξήγηση των μαγνητικών ιδιοτήτων των υλικών θα χρησιμοποιήσουμε έννοιες που στηρίζονται στην έννοια της μαγνητικής διπολικής ροπής. Έστω ένας βρόχος ρεύματος σαν αυτός της εικόνας 1.1. Ενδεχομένως να πρόκειται για ένα πηνίο που διαρρέεται από ρεύμα Ι. Για λόγους απλότητας θα υποθέσουμε ότι ο βρόχος του ρεύματος βρίσκεται σε ένα επίπεδο. Η επιφάνεια που ορίζεται από το ρεύμα είναι Α. Έστω u_n το μοναδιαίο διάνυσμα που εξέρχεται από την επιφάνεια αυτή. Η φορά του διανύσματος αυτού είναι τέτοια ώστε, όταν κοιτάζουμε προς την ίδια φορά, το ρεύμα να έχει γύρω μας τη φορά των δεικτών του ρολογιού. Τότε η μαγνητική διπολική ροπή ή απλά μαγνητική ροπή μ_m ορίζεται από τη σχέση:

 $\mu_{m} = IAu_{n} (1) [1]$

Εικόνα 1.1: Ορισμός της μαγνητικής ροπής.

Εικόνα 1.2: Όταν μια μαγνητική διπολική ροπή βρεθεί εντός πεδίου, τότε αναπτύσσεται μια μηχανική ροπή.

Όταν μια μαγνητική ροπή βρεθεί μέσα σε ένα μαγνητικό πεδίο, τότε επενεργεί σε αυτήν την ροπή, η οποία τείνει να την περιστρέψει και να ευθυγραμμίσει τον άξονά της με το μαγνητικό πεδίο (εικόνα 1.2). Επιπλέον, αφού η μαγνητική ροπή είναι ένας βρόχος ρεύματος, δημιουργείται γύρω της ένα μαγνητικό πεδίο B (εικόνα 1.3), το οποίο είναι όμοιο με το πεδίο που δημιουργείται γύρω από μια μαγνητική ράβδο. Μπορούμε, από το ρεύμα Ι και τη γεωμετρία του, να υπολογίσουμε το μαγνητικό πεδίο B (η ανάλυση μπορεί να βρεθεί σε πολλά εγχειρίδια φυσικής). Για παράδειγμα, το πεδίο B σε ένα σημείο P που βρίσκεται σε απόσταση r από τον άξονα του πηνίου και στο κέντρο αυτού (εικόνα 1.3) είναι ευθέως ανάλογο της μαγνητικής ροπής αλλά και αντιστρόφως ανάλογο στην Τρίτη δύναμη της απόστασης (r^3), ισχύει δηλαδή B $\sim \mu_m/r^3$.

Εικόνα 1.3: Ένα μαγνητικό δίπολο δημιουργεί ένα μαγνητικό πεδίο, ακριβώς όπως και ένας ραβδόμορφος μαγνήτης. Το πεδίο Β εξαρτάται από τη μ_m.

2. Ατομικές μαγνητικές ροπές:

Ένα ηλεκτρόνιο που περιστρέφεται σε ένα άτομο συμπεριφέρεται σαν ένας βρόχος ρεύματος και έχει μαγνητική διπολική ροπή, η οποία ονομάζεται τροχιακή μαγνητική ροπή μ_{τροχ} (orbital magnetic moment) (εικόνα 2.1). Αν ω η γωνιακή συχνότητα του ηλεκτρονίου, τότε το ρεύμα Ι που αντιστοιχεί στο περιστρεφόμενο ηλεκτρόνιο είναι:

Ι = Φορτίο που ρέει ανά μονάδα χρόνου = -e/περίοδος = -(eω)/(2π)

Εικόνα 2.1: Ένα ηλεκτρόνιο που βρίσκεται σε τροχιά είναι ισοδύναμο με μια μαγνητική διπολική ροπή μ_{τροχ}.

Αν r η ακτίνα της τροχιάς, τότε η μαγνητική διπολική ροπή είναι:

$$\mu_{\tau\rho\sigma\chi} = I(\pi r^2) = -(e\omega r^2)/2$$

Αλλά αν η ταχύτητα ν του ηλεκτρονίου είναι ωr και η τροχιακή του στροφορμή είναι:

$$L = (m_e v)r = m_e \omega r^2$$

Χρησιμοποιώντας τη σχέση αυτή στη μ_{τροχ}, λαμβάνουμε:

Βλέπουμε ότι η μαγνητική ροπή είναι ανάλογη της τροχιακής στροφορμής και ότι τα δύο μεγέθη συνδέονται με έναν παράγοντα που περιλαμβάνει το λόγο μάζας προς το φορτίο του ηλεκτρονίου. Ο αριθμητικός παράγοντας που συσχετίζει την τροχιακή στροφορμή με τη μαγνητική ροπή είναι στην περίπτωση αυτή e/(2m_e) και ονομάζεται γυρομαγνητικός λόγος. Το αρνητικό πρόσημο στην εξίσωση (2) υποδεικνύει ότι η τροχιακή μαγνητική ροπή του ηλεκτρονίου έχει αντίθετη φορά από την L. Το αρνητικό πρόσημο οφείλεται στο αρνητικό φορτίο του ηλεκτρονίου.

Το ηλεκτρόνιο έχει επίσης και μια εσωτερική στροφορμή S, που αντιστοιχεί στο spin του. Στο spin του ηλεκτρονίου οφείλεται η ύπαρξη της μαγνητικής ροπής spin, η οποία συμβολίζεται μ_{spin}. Η σχέση που συνδέει τη μαγνητική αυτή ροπή με την S δεν είναι η ίδια με την εξίσωση (2). Ο γυρομαγνητικός λόγος είναι στην περίπτωση αυτή διπλάσιος από ότι προηγουμένως:

$$\mu_{spin} = -(eS)/m_e(3)$$

Η συνολική μαγνητική ροπή του ηλεκτρονίου απαρτίζεται από τη μ_{τροχ} και τη μ_{spin}, προστιθέμενες με τον κατάλληλο τρόπο. Δεν μπορούμε να πάρουμε απλά το άθροισμα των δύο μαγνητικών ροπών, αφού είναι αμφότερες διανυσματικές ποσότητες. Επιπλέον, η συνολική μαγνητική ροπή μ_{ατόμου} του ατόμου εξαρτάται από την τροχιακή κίνηση και τα spin όλων των ηλεκτρονίων. Τα ηλεκτρόνια όμως που βρίσκονται στις συμπληρωμένες υποστιβάδες δεν συνεισφέρουν στη συνολική

μαγνητική ροπή. Αυτό οφείλεται στο ότι, για κάθε ηλεκτρόνιο με κάθε L(ή S), υπάρχει ένα άλλο ηλεκτρόνιο με αντίθετο L(ή S). Ο λόγος που συμβαίνει αυτό είναι ότι το διάνυσμα L είναι χωροκβαντισμένο μέσω του m_I (μαγνητικός κβαντικός αριθμός, προκαλεί τον κβαντισμό της συνιστώσας της τροχιακής στροφορμής που είναι παράλληλη με ένα εξωτερικό μαγνητικό πεδίο) και σε μια συμπληρωμένη υποστιβάδα όλες οι αρνητικές και οι θετικές τιμές του m_I είναι κατειλημμένες. Παρομοίως, το πλήθος των ηλεκτρονίων που έχουν spin πάνω ισούται με το πλήθος των ηλεκτρονίων που έχουν spin κάτω. Έτσι σε μια συμπληρωμένη υποστιβάδα, το συνολικό ηλεκτρονικό spin είναι μηδέν και δεν υπάρχει καθόλου μαγνητική ροπή spin του ηλεκτρονίου. Επομένως, μόνο οι μη συμπληρωμένες υποστιβάδες συνεισφέρουν στη συνολική μαγνητική ροπή ενός ατόμου.

Έστω ένα άτομο, το οποίο, εκτός από τις συμπληρωμένες εσωτερικές υποστιβάδες, έχει και ένα ηλεκτρόνιο που περιστρέφεται σε ένα s τροχιακό (I=0). (αριθμός γωνιακής στροφορμής). Αυτό σημαίνει ότι η τροχιακή μαγνητική ροπή είναι μηδέν και ότι η μαγνητική ροπή του ατόμου οφείλεται στο spin του ηλεκτρονίου και μόνο, μ_{ατόμου} = μ_{spin}. Παρουσία ενός εξωτερικού μαγνητικού πεδίου στη διεύθυνση z, η μαγνητική ροπή δεν μπορεί απλά να περιστραφεί και να ευθυγραμμιστεί με το πεδίο, επειδή η spin στροφορμή πρέπει στην κβαντομηχανική να είναι χωροκβαντισμένη. Θα πρέπει δηλαδή η S_z (η συνιστώσα της S στον άξονα z)να είναι m_sħ, όπου m_s = ±½ είναι ο μαγνητικός κβαντικός αριθμός του spin. Η ροπή που επενεργεί στο περιστρεφόμενο (ιδιοπεριστροφή) ηλεκτρόνιο, προκαλεί τη μετάπτωση του άξονα του μαγνητικού spin γύρω από το εξωτερικό μαγνητικό πεδίο (εικόνα 2.2). Η μετάπτωση είναι τέτοια ώστε S_z = -½ħ και δημιουργεί μια μέση μαγνητική ροπή μ_z παράλληλα με το πεδίο, η οποία δίνεται από την εξίσωση (3) με S_z στη θέση του S:

$$\mu_z = -(eS_z)/m_e = -(em_s\hbar)/m_e = (e\hbar)/(2m_e) = \beta$$
 (4)

Εικόνα 2.2: Η μαγνητική ροπή spin περιστρέφεται (μετάπτωση γύρω από το εξωτερικό μαγνητικό πεδίο που είναι παράλληλο στον άξονα z και έχει μια μz παράλληλη με τον άξονα z.

Η ποσότητα β ονομάζεται μαγνητόνη του Bohr και η τιμή της είναι 9,27x10⁻²⁴ Am² ή JT⁻¹.

Επομένως το spin ενός και μόνο ηλεκτρονίου έχει μαγνητική ροπή παράλληλα με το πεδίο μια μαγνητόνη του Bohr.

3. Διάνυσμα μαγνήτισης Μ:

Έστω ένα σωληνοειδές πηνίο, ιδανικά απείρου μήκους, εντός του οποίο υπάρχει αέρας (ή κενό) (εικόνα 3.1, α). Το μαγνητικό πεδίο εντός του πηνίου είναι B_0 , όπου ο δείκτης 0 αναφέρεται στο γεγονός ότι το πεδίο είναι στο κενό. Το πεδίο εξαρτάται από το ρεύμα Ι του πηνίου και από τον αριθμό των περιελίξεων η ανά μονάδα μήκους. Το πεδίο θα είναι:

$$B = \mu_0 n l = \mu_0 l' (5)$$

όπου Ι' είναι το ρεύμα ανά μονάδα μήκους του πηνίου, δηλαδή Ι' = nI, και μ_0 η απόλυτη διαπερατότητα του ελεύθερου χώρου σε Henry ανά μέτρο, Hm⁻¹.

Εικόνα 3.1: α) Έστω ένα μακρύ σωληνοειδές πηνίο. Αν το μέσο εντός του πηνίου είναι κενό, τότε το μαγνητικό πεδίο είναι B_0 . β) Αν εισάγουμε ένα υλικό εντός του σωληνοειδές, τότε δημιουργείται μαγνήτιση Μ.

Αν εντός του πηνίου τοποθετήσουμε ένα κυλινδρικό υλικό μέσο (εικόνα 3.1, β), τότε βλέπουμε ότι το μαγνητικό πεδίο μεταβάλλεται. Το νέο μαγνητικό πεδίο παρουσία του υλικού μέσου συμβολίζεται Β και καλείται μαγνητική επαγωγή. Θα θεωρήσουμε ότι Β₀ είναι το εφαρμοζόμενο μαγνητικό πεδίο εντός του οποίου τοποθετείται το υλικό μέσο.

Κάθε άτομο του υλικού μέσου αντιδρά στο εφαρμοζόμενο πεδίο και αναπτύσσει, ή αποκτά, μια μαγνητική ροπή μ_m παράλληλα με το εφαρμοζόμενο πεδίο. Μπορούμε να θεωρήσουμε ότι κάθε μαγνητική ροπή μ_m είναι το αποτέλεσμα της μετάπτωσης της ατομικής μαγνητικής ροπής γύρω από το B₀. Επομένως, το υλικό μέσο αναπτύσσει μια συνολική μαγνητική ροπή παράλληλα με το πεδίο και μαγνητίζεται. Το διάνυσμα της μαγνήτισης Μ περιγράφει την ένταση της μαγνήτισης του μέσου. Το M ορίζεται ως η μαγνητική διπολική ροπή ανά μονάδα όγκου. Έστω ότι στον πολύ μικρό όγκο ΔV υπάρχουν N άτομα και ότι κάθε άτομο I έχει μαγνητική ροπή μ_{mi} (όπου i = 1 μέχρι N). Τότε το M ορίζεται με τον τρόπο:

 $M = (1/\Delta V)\Sigma \mu_{mi} = n_{at}\mu_{av} (6)$

όπου n_{at} είναι το πλήθος των ατόμων ανά μονάδα όγκου και μ_{μέση} (=μ_{av}) η μέση μαγνητική ροπή ανά άτομο. Μπορούμε να υποθέσουμε ότι κάθε άτομο αποκτά μαγνητική ροπή μ_{μέση} παράλληλη προς το B₀. Κάθε μία από τις μαγνητικές αυτές ροπές που είναι παράλληλες με το B₀ μπορεί να θεωρηθεί σαν ένας στοιχειώδης βρόχος ρεύματος στην ατομική κλίμακα, όπως απεικονίζεται σχηματικά στην εικόνα 3.1, β. Οι στοιχειώδεις αυτοί ρευματικοί βρόχοι οφείλονται στα ρεύματα των ηλεκτρονίων στο εσωτερικό των ατόμων και αντιστοιχούν στην τροχιακή κίνηση των ηλεκτρονίων και των spin τους. Το επίπεδο όλων των ρευματικών βρόχων είναι κάθετο στο εφαρμοζόμενο μαγνητικό πεδίο.

Έστω η διατομή του μαγνητισμένου μέσου (εικόνα 3.2). Η φορά του ρεύματος όλων των στοιχειωδών βρόχων ρεύματος στο επίπεδο αυτό, είναι προς την ίδια κατεύθυνση, αφού όλα τα άτομα αποκτούν την ίδια μαγνητική ροπή μ_{μέση}. Όλοι οι ρευματικοί βρόχοι που βρίσκονται σε γειτονικές θέσεις στο κύριο σώμα του υλικού διαρρέονται από ρεύμα σε αντίθετες κατευθύνσεις και αλληλοαναιρούνται. Επομένως, στο κύριο σώμα του υλικού, δεν υπάρχει συνολικά καθόλου ρεύμα, δηλαδή στο εσωτερικό ρεύμα είναι μηδέν. Τα ρεύματα όμως που βρίσκονται στους ρευματικούς βρόχους της επιφάνειας δεν μπορούν να αλληλοαναιρεθούν. Έτσι δημιουργείται συνολικά ένα επιφανειακό ρεύμα. Τα επιφανειακά ρεύματα επάγονται λόγω της μαγνήτισης του μέσου από το εφαρμοζόμενο μαγνητικό πεδίο και εξαρτώνται επομένως από τη μαγνήτιση Μ του δείγματος.

Επιφανειακά ρεύματα

Επιφανειαχά ρεύματα

Εικόνα 3.2: Οι στοιχειώδεις βρόχοι ρεύματος έχουν ως συνέπεια τη δημιουργία επιφανειακών ρευμάτων. Στο εσωτερικό δεν υπάρχει ρεύμα, αφού σε κάθε σημείο το ρεύμα των γειτονικών βρόχων αλληλοαναιρείται.

Εκ του ορισμού της Μ, η συνολική μαγνητική ροπή του κυλινδρικού δείγματος είναι:

Συνολική μαγνητική ροπή = M (όγκος) = MAI

Υποθέστε ότι το ρεύμα μαγνήτισης στην επιφάνεια ανά μονάδα μήκους του δείγματος είναι I_m . Τότε το συνολικό επιφανειακό ρεύμα που κυκλοφορεί είναι I_m και η συνολική μαγνητική ροπή του δείγματος θα είναι εξ ορισμού:

Συνολική μαγνητική ροπή = (Συνολικό ρεύμα)
x(επιφάνεια διατομής) = $I_m IA$

Εξισώνοντας τις δύο μαγνητικές ροπές βρίσκουμε:

 $M = I_m$

Καταλήξαμε στη σχέση αυτή εξετάζοντας μια συγκεκριμένη γεωμετρία δείγματος. Εξετάσαμε την περίπτωση κυλινδρικού δείγματος, στο οποίο το Μ είναι παράλληλο με τον άξονα του κυλίνδρου και όπου το Ι_m ρέει σε ένα επίπεδο κάθετο στο Μ. Η σχέση όμως είναι γενικότερη και η παραγωγής της υπάρχει σε πιο προχωρημένα εγχειρίδια. Πρέπει να δοθεί έμφαση στο γεγονός ότι το ρεύμα μαγνήτισης Ι_m δεν οφείλεται στη ροή των ελεύθερων φορέων φορτίου, όπως σε ένα χάλκινο σύρμα που διαρρέεται από ρεύμα, αλλά οφείλεται σε εντοπισμένα ηλεκτρονικά ρεύματα στο εσωτερικό των ατόμων που βρίσκονται στην επιφάνεια του στερεού. Η εξίσωση (7) δηλώνει ότι μπορούμε να αναπαραστήσουμε τη μαγνήτιση ενός μέσου με επιφανειακό ρεύμα Ι_m ανά μονάδα μήκους, το οποίο ισούται με Μ.

4. Πεδίο Μαγνήτισης ή ένταση μαγνητικού πεδίου Η:

Το μαγνητισμένο δείγμα της εικόνα 3.1, β που είναι τοποθετημένο εντός του σωληνοειδούς πηνίου αναπτύσσει ρεύματα μαγνήτισης στην επιφάνειά του. Συμπεριφέρεται επομένως σαν σωληνοειδές. Μπορούμε τώρα να εξετάσουμε το σωληνοειδές με ένα υλικό μέσο (εικόνα 4.1). Το μαγνητικό πεδίο στο μέσο δεν οφείλεται μόνο στα ρεύματα αγωγιμότητας Ι' στα καλώδια του σωληνοειδούς ανά μονάδα μήκους, αλλά επίσης και στα επιφανειακά ρεύματα μαγνήτισης Ι_m. Το μαγνητικό πεδίο Β εντός του σωληνοειδούς δίνεται από τη συνήθη έκφραση που ισχύει για σωληνοειδή, στην οποία όμως η ρευματική συνιστώσα αποτελείται από το Ι_m (εικόνα 4.1).

$$B = \mu_0(I' + I_m) = B_0 + \mu_0 M$$

Εικόνα 4.1: Το πεδίο Β στο υλικό του σωληνοειδούς οφείλεται στο ρεύμα αγωγιμότητας Ι που διαρρέει τα καλώδια και στο ρεύμα μαγνήτισης Ι_m στην επιφάνεια του μαγνητικού μέσου, Β = Β₀+μ₀Μ.

Η σχέση αυτή ισχύει γενικά και μπορεί να γραφτεί και σε διανυσματική μορφή:

$$B = B_0 + \mu_0 M$$
 (8)

Το πεδίο σε ένα σημείο εντός του μαγνητισμένου υλικού είναι το άθροισμα του εφαρμοζόμενου πεδίου B₀ συν τη συνεισφορά της μαγνήτισης M του υλικού. Η μαγνήτιση προκύπτει από την εφαρμογή του B₀ λόγω του ρεύματος των ελεύθερων φορέων στα καλώδια του σωληνοειδούς. Το ρεύμα αυτό ονομάζεται ρεύμα αγωγιμότητας και μπορούμε να το ρυθμίσουμε εξωτερικά. Είναι τώρα χρήσιμο να εισάγουμε ένα διανυσματικό πεδίο που αναπαριστά την επίδραση του εξωτερικού ρεύματος (ρεύμα αγωγιμότητας) και μόνο. Το μέγεθος B-μ₀M σε ένα σημείο ισούται εν γένει με τη συνεισφορά των εξωτερικών ρευμάτων στο μαγνητικό πεδίο στο εν λόγω σημείο εντός του υλικού, το οποίο μαγνητικό πεδίο ονομάζαμε B₀. Το μέγεθος B-μ₀M αναπαριστά το πεδίο μαγνήτισης επειδή είναι το πεδίο που δημιουργείται από τα εξωτερικά ρεύματα που μαγνητίζουν το υλικό. Το πεδίο μαγνήτισης Η ορίζεται ως:

$H = (B-M)/\mu_0$ (9)

Ή

 $H=B_0/\mu_0$ (10)

Το πεδίο μαγνήτισης είναι επίσης γνωστό και ως ένταση του μαγνητικού πεδίου και μετράται σε Am⁻¹. Ο λόγος για τον οποίο διαιρούμε με το μ_0 είναι ότι το διανυσματικό πεδίο Η που προκύπτει σχετίζεται με απλό τρόπο με τα εξωτερικά ρεύματα αγωγιμότητας (μέσω του νόμου το Ampere). Αφού στο σωληνοειδές το B₀ είναι μ₀nl, το πεδίο μαγνήτισης σε ένα σωληνοειδές θα είναι:

Η = nI = συνολικό ρεύμα αγωγιμότητας ανά μονάδα μήκους (10)

Είναι εν γένει χρήσιμο να φανταζόμαστε ότι το Η είναι η αιτία και το Β το αποτέλεσμα. Η αιτία Η εξαρτάται μόνο από τα εξωτερικά ρεύματα αγωγιμότητας, ενώ το αποτέλεσμα Β εξαρτάται από τη μαγνήτιση Μ του υλικού.

5. Μαγνητική διαπερατότητα και μαγνητική επιδεκτικότητα:

Υποθέστε ότι στο σημείο P ενός υλικού, το μαγνητικό πεδίο είναι B και το πεδίο μαγνήτισης H. Έστω B_0 το μαγνητικό πεδίο στο P απουσία υλικού μέσου (κενό). Η μαγνητική διαπερατότητα του μέσου στο P ορίζεται ως το μαγνητικό πεδίο ανά μονάδα πεδίου μαγνήτισης:

Με το μέγεθος αυτό συσχετίζεται το αποτέλεσμα B με την αιτία H σε ένα σημείο P του υλικού μέσου. Με απλούς ποιοτικούς όρους, η μ αναπαριστά το βαθμό στον οποίο ένα μαγνητικό πεδίο διεισδύει σε ένα υλικό μέσο. Η σχετική διαπερατότητα μ_r ενός μέσου είναι το ποσοστό κατά το οποίο αυξάνεται το μαγνητικό πεδίο όταν εισάγεται ένα υλικό μέσο σε σχέση με το μαγνητικό πεδίο στο κενό. Έστω, για παράδειγμα, ότι το πεδίο εντός ενός σωληνοειδούς που περικλείει το κενό είναι B₀, ενώ το πεδίο εντός ενός σωληνοειδούς που περικλείει ένα υλικό μέσο είναι B. Τότε η μ_r ορίζεται ως: $\mu_r = B/B_0 = B/(\mu_0 H)$ (12)

Από τις εξισώσεις (11) και (12) βλέπουμε καθαρά ότι:

 $\mu = \mu_0 \mu_r$

Η μαγνήτιση Μ που αποκτά ένα υλικό εξαρτάται από το συνολικό μαγνητικό πεδίο Β. Θα ήταν φυσικό να προχωρούσαμε την ανάλυση μας όπως και στα διηλεκτρικά, συσχετίζοντας τη Μ με το Β, κατ' αναλογία με τη συσχέτιση της πόλωσης με το ηλεκτρικό πεδίο. Για ιστορικούς όμως λόγους η Μ συσχετίζεται με το Η, δηλαδή με το πεδίο μαγνήτισης. Υποθέστε ότι το υλικό μέσο είναι ισοτροπικό (έχει τις ίδιες ιδιότητες σε όλα τις διευθύνσεις, ένα ιδανικό υλικό). Τότε η μαγνητική επιδεκτικότητα χ_m του υλικού ορίζεται από τον παρακάτω τύπο:

$$M = \chi_m H (13)$$

Η σχέση αυτή δεν ισχύει για όλα τα μαγνητικά υλικά. Όπως θα δούμε στη συνέχεια για τα σιδηρομαγνητικά υλικά, δεν ισχύει η σχέση (12). Αφού το μαγνητικό πεδίο είναι $B = \mu_0(H+M)$ θα έχουμε:

$$B = \mu_0 H + \mu_0 M = \mu_0 H + \mu_0 \chi_m H = \mu_0 (1 + \chi_m) H$$

Και

 $M_r = 1 + \chi_m (14)$

Η παρουσία του μαγνητικού υλικού λαμβάνεται υπόψη μέσω της σχετικής διαπερατότητας μ_r, ή (1+χ_m), με την οποία πολλαπλασιάζεται η μ₀. Μπορούμε εναλλακτικά να αντικαταστήσουμε τη μ₀ με τη μ = μ₀μ_r. Για παράδειγμα, η επαγωγή ενός σωληνοειδούς πηνίου όταν αυτό περικλείει ένα μαγνητικό μέσο αυξάνεται κατά μ_r.

Β. Σιδηρομαγνητισμός:

Πρόκειται για μία εκ των 5 κατηγοριών (διαμαγνητικά, παραμαγνητικά, σιδηρομαγνητικά, αντισιδηρομαγνητικά, σιδηριμαγνητικά) στις οποίες κατατάσσονται τα μαγνητικά υλικά και με την οποία θα ασχοληθούμε στην προκειμένη περίπτωση.

Σιδηρομαγνητικά ονομάζονται τα υλικά (π.χ. ο σίδηρος) που έχουν μεγάλη παραμένουσα μαγνήτιση ακόμα και απουσία εξωτερικού μαγνητικού πεδίου. Η μαγνητική επιδεκτικότητά χ_m είναι θετική και μάλιστα πολύ μεγάλη (ακόμα και άπειρη) και επιπλέον εξαρτάται από την ένταση του μαγνητικού πεδίου. Η σχέση ανάμεσα στη μαγνήτιση Μ και το εφαρμοζόμενο μαγνητικό πεδίο μ₀Η είναι εξαιρετικά μη γραμμική. Όταν το πεδίο είναι αρκετά μεγάλο, τότε η μαγνήτιση Μ του σιδηρομαγνήτη φτάνει στον κόρο (κορεσμό). Η ερμηνεία για το φαινόμενο του σιδηρομαγνητισμού στηρίζεται στην κβαντομηχανική αλληλεπίδραση ανταλλαγής (που θα αναπτυχθεί στη συνέχεια) μεταξύ των ατόμων του υλικού. Η αλληλεπίδραση αυτή προκαλεί το χωρισμό του υλικού σε περιοχές με μόνιμη μαγνήτιση. Στην εικόνα 1 απεικονίζεται μια μαγνητική περιοχή (magnetic domain) ενός τυπικού σιδηρομαγνητικού υλικού. Η περιοχή, λόγω του παραλληλισμού των μαγνητικών ροπών όλων των ατόμων Fe, έχει συνολικά ένα διάνυσμα μαγνήτισης Μ. Επειδή όλες οι ατομικές μαγνητικές ροπές είναι παράλληλες μεταξύ τους λέμε ότι η περιοχή αυτή παρουσιάζει μαγνητική τάξη. Το φαινόμενο του σιδηρομαγνητισμού εμφανίζεται κάτω από μια κρίσιμη θερμοκρασία που ονομάζεται θερμοκρασία Curie T_c. Για θερμοκρασίες κάτω από αυτήν, ο σιδηρομαγνητισμός χάνεται και το υλικό γίνεται παραμαγνητικό (υλικό με θετική αλλά μικρή μαγνητική επιδεκτικότητα, απουσία εφαρμοζόμενου πεδίου και λόγω των τυχαίων συγκρούσεων μεταξύ μορίων οι ροπές τους έχουν τυχαίους προσανατολισμούς και υπό την επίδραση εφαρμοζόμενου μαγνητικού πεδίου οι μαγνητικές ροπές έχουν διάφορους προσανατολισμούς).

Εικόνα 1: Σε μια μαγνητισμένη περιοχή ενός σιδηρομαγνητικού υλικού, όπως ο σίδηρος, είναι από μόνες τους παράλληλες και έχουν την ίδια φορά. Υπάρχει ένα ισχυρό διάνυσμα μαγνήτισης Μ ακόμα και απουσία εφαρμοζόμενου πεδίου.

Γ. Η προέλευση του σιδηρομαγνητισμού και η αλληλεπίδραση ανταλλαγής:

Τα μέταλλα μετάβασης (σίδηρος, κοβάλτιο, νικέλιο) είναι σιδηρομαγνητικά σε θερμοκρασία δωματίου. Επίσης τα μέταλλα σπάνιων γαιών (Ga, Dy) είναι σιδηρομαγνητικά σε θερμοκρασίες μικρότερες από αυτές δωματίου. Τα σιδηρομαγνητικά υλικά μπορούν να έχουν μόνιμη μαγνήτιση ακόμα και απουσία εφαρμοζόμενου πεδίου. Έχουν δηλαδή άπειρη επιδεκτικότητα.

Σε ένα μαγνητισμένο κρύσταλλο σιδήρου, όλες οι ατομικές μαγνητικές ροπές είναι παράλληλες και έχουν την ίδια φορά (εικόνα 1). Στην περίπτωση που απεικονίζεται, όλες οι ροπές είναι παράλληλες προς την κρυσταλλογραφική διεύθυνση [100]. Επομένως, η συνολική μαγνήτιση θα είναι σε αυτήν την διεύθυνση. Θα μπορούσε κανείς να σκεφτεί ότι ο λόγος για τον οποίο οι ροπές είναι παράλληλες είναι οι μαγνητικές δυνάμεις μεταξύ των ίδιων των ροπών, όπως συμβαίνει αντίστοιχα σε μακροσκοπικό επίπεδο όταν οι ραβδόμορφοι μαγνήτες αποκτούν διάταξη SNSN... Στην πραγματικότητα όμως, δεν είναι αυτή η αιτία που προκαλεί αυτόν τον παραλληλισμό των μαγνητικών ροπών. Η δυναμική ενέργεια της μαγνητικής αλληλεπίδρασης είναι μικρή, μικρότερη ακόμα και από τη θερμική ενέργεια.

Η ηλεκτρονική δομή του ατόμου στου σιδήρου είναι [Ar]3d⁶4s². Σε ένα απομονωμένο άτομο σιδήρου, τέσσερα από τα πέντε τροχιακά της υποστιβάδας 3d είναι μη κατειλημμένα. Λόγω του κανόνα του Hund, τα ηλεκτρόνια τείνουν να ευθυγραμμίσουν τα spin τους κατά τέτοιο τρόπο ώστε τα πέντε τροχιακά 3d να περιέχουν δύο ζευγαρωμένα και τέσσερα μη ζευγαρωμένα ηλεκτρόνια (εικόνα 2). Το απομονωμένο άτομο έχει τέσσερα ηλεκτρόνια με παράλληλα spin και επομένως η spin μαγνητική του ροπή είναι 4β.

Εικόνα 2: Ένα απομονωμένο άτομο Fe έχει τέσσερα μη ζευγαρωμένα spin και η spin μαγνητική του ροπή είναι 4β.

Εικόνα 3: Ο κανόνας του Hund για ένα άτομο με πολλά ηλεκτρόνια στηρίζεται στην αλληλεπίδραση ανταλλαγής.

Η προέλευση του κανόνα του Hund (εικόνα 3) έγκειται στο γεγονός ότι, όταν τα spin είναι παράλληλα (όταν τα ηλεκτρόνια έχουν το ίδιο m_s), τότε, λόγω της αρχής του αποκλεισμού του Pauli, τα ηλεκτρόνια θα πρέπει να καταλαμβάνουν τροχιακά με διαφορετικό m_i, να έχουν δηλαδή διαφορετική κατανομή στο χώρο (το μέγεθος m_i καθορίζει τον προσανατολισμό της τροχιάς).

Η ύπαρξη διαφορετικών τιμών mi έχει ως αποτέλεσμα η ενέργεια μεταξύ των ηλεκτρονίων λόγω της απώθησης Coulomb να είναι στην περίπτωση αυτή μικρότερη από ότι θα ήταν στην περίπτωση όπου τα ηλεκτρόνια έχουν αντίθετα spin (διαφορετικά m_s) καταλαμβάνοντας το ίδιο τροχιακό (ίδιο m_l) και επομένως την ίδια περιοχή του χώρου. Όπως φαίνεται, μολονότι η ενέργεια αλληλεπίδρασης μεταξύ των ηλεκτρονίων δεν έχει σχέση με τις μαγνητικές δυνάμεις, εξαρτάται όμως από τον προσανατολισμό των spin τους (m_s), ή από τις spin μαγνητικές ροπές τους και είναι μικρότερη όταν τα spin είναι παράλληλα. Επομένως, δύο ηλεκτρόνια αποκτούν παράλληλα spin, όχι λόγω μιας απευθείας μαγνητικής αλληλεπίδρασης μεταξύ των spin μαγνητικών ροπών τους, αλλά λόγω της αρχής του αποκλεισμού του Pauli και της ενέργειας της ηλεκτροστατικής αλληλεπίδρασης. Τα δύο αυτά δεδομένα συγκροτούν από κοινού την αλληλεπίδραση ανταλλαγής, η οποία εξαναγκάζει δύο ηλεκτρόνια να αποκτούν mi και ms τέτοια ώστε να ελαχιστοποιείται η ηλεκτροστατική ενέργεια. Επομένως, σε ένα άτομο η αλληλεπίδραση ανταλλαγής εξαναγκάζει δύο ηλεκτρόνια να αποκτούν το ίδιο ms αλλά διαφορετικό ml. Αυτό συμβαίνει λόγω της αρχής του αποκλεισμού του Pauli. Αυτός είναι ο λόγος για τον οποίο ένα απομονωμένο άτομο Fe έχει στην υποστιβάδα 3d τέσσερα μη ζευγαρωμένα spin.

Στον κρύσταλλο βέβαια, τα εξωτερικά ηλεκτρόνια δεν είναι δεσμευμένα από τα άτομα Fe από τα οποία προέρχονται. Αυτό ισχύει ειδικά για τα ηλεκτρόνια 4s. Τα ηλεκτρόνια χαρακτηρίζονται πλέον από κυματοσυναρτήσεις που ανήκουν σε ολόκληρο το στερεό. Στο κρυσταλλικό επίπεδο, για το Fe, το Co και το Ni, εξακολουθεί να ισχύει κάτι σαν τον κανόνα του Hund. Αν δύο ηλεκτρόνια 3d αποκτήσουν παράλληλα spin και καταλάβουν διαφορετικές κυματοσυναρτήσεις (αποκτούν επομένως διαφορετικές κατανομές αρνητικού φορτίου), τότε η αμοιβαία απώθηση Coulomb που προκύπτει μεταξύ τους και με άλλα ηλεκτρόνια, όπως επίσης και η έλξη με τα θετικά ιόντα Fe, έχουν ως αποτέλεσμα μια συνολική μείωση της δυναμικής ενέργειας. Η μείωση της ενέργειας οφείλεται και πάλι στην αλληλεπίδραση ανταλλαγής και είναι άμεσο αποτέλεσμα της αρχής του αποκλεισμού του Pauli και των δυνάμεων Coulomb. Άρα, η πλειοψηφία των ηλεκτρονίων 3d παραλληλίζουν τα spin τους χωρίς να χρειάζονται την εφαρμογή ενός μαγνητικού πεδίου. Το πλήθος των ηλεκτρονίων που όντως αποκτούν παράλληλο spin εξαρτάται από την ένταση της αλληλεπίδρασης ανταλλαγής και για τον κρύσταλλο του σιδήρου είναι 2.2 ηλεκτρόνια ανά άτομο. Αφού οι κυματοσυναρτήσεις των ηλεκτρονίων 3d σε ολόκληρο τον κρύσταλλο του σιδήρου είναι του σιδήρου, ορισμένοι προτιμούν να θεωρούν ότι τα ηλεκτρόνια 3d βρίσκονται τον περισσότερο χρόνο γύρω από τα άτομα Fe. Για το λόγο αυτό σχεδιάσαμε το μαγνητισμένο κρύσταλλο σιδήρου κατά τον τρόπο που τον σχεδιάσαμε στην εικόνα 1.

Θα μπορούσε κανείς να σκεφτεί ότι όλα τα στερεά θα έπρεπε να συμπεριφέρονται σαν τον σίδηρο και να γίνονται αυθόρμητα σιδηρομαγνητικά, αφού η ευθυγράμμιση των spin έχει ως αποτέλεσμα διαφορετικές χωρικές κατανομές του αρνητικού φορτίου και κατά πάσα πιθανότητα μείωση της ηλεκτροστατικής ενέργειας. Όμως αυτό δεν ισχύει πάντα. Γνωρίζουμε ότι, στα ομοιοπολικά στερεά, τα ηλεκτρόνια αποκτούν ελάχιστη ενέργεια όταν τα spin των δύο ηλεκτρονίων έχουν αντίθετη φορά. Στους ομοιοπολικούς δεσμούς των μορίων, η αλληλεπίδραση ανταλλαγής δεν μειώνει την ενέργεια. Όταν τα spin των ηλεκτρονίων είναι παράλληλα, τότε η χωρική κατανομή του αρνητικού φορτίου είναι τέτοια που δημιουργείται μια αμοιβαία συνισταμένη ηλεκτροστατική

Στην απλούστερη περίπτωση, όταν δηλαδή εξετάζουμε δύο άτομα, η ενέργεια ανταλλαγής εξαρτάται από το διατομικό διαχωρισμό των δύο αλληλεπιδρώντων ατόμων και από τα σχετικά spin των δύο εξωτερικών ηλεκτρονίων (στα οποία αναφερόμαστε ως ηλεκτρόνιο 1 και ηλεκτρόνιο 2). Για την κβαντομηχανική, η ενέργεια αλληλεπίδρασης μπορεί να παρασταθεί με όρους της ενέργειας ανταλλαγής E_{ex}:

$$E_{ex} = -2J_eS_1S_2$$
 (15)

όπου S₁ και S₂ είναι η στροφορμή λόγων spin των αντίστοιχων ηλεκτρονίων, J_e μια αριθμητική ποσότητα που ονομάζεται ολοκλήρωμα ανταλλαγής και στο οποίο συμπεριλαμβάνεται η ολοκλήρωση των κυματοσυναρτήσεων με τους διάφορους όρους της δυναμικής ενέργειας αλληλεπίδρασης. Άρα, ο όρος αυτός εξαρτάται από τις ηλεκτροστατικές αλληλεπιδράσεις και, επομένως, από τη διατομική απόσταση. Για την πλειοψηφία των στερεών, ο όρος J_e είναι αρνητικός, και έτσι η ενέργεια ανταλλαγής είναι αρνητική όταν οι S₁ και S₂ έχουν αντίθετη φορά, όταν δηλαδή τα spin είναι αντιπαράλληλα. Αυτή είναι η αντισιδηρομαγνητική κατάσταση. Για τον Fe, Co και Ni η J_e είναι θετική και η E_{ex} είναι αρνητική όταν οι S₁ και S₂ είναι αυτομένως, τα spin των ηλεκτρονίων 3d των ατόμων αποκτούν την ίδια φορά προκειμένου να ελαχιστοποιήσουν την ενέργεια ανταλλαγής. Η αυθόρμητη αυτή μαγνήτιση είναι το φαινόμενο του σιδηρομαγνητισμού. Στην εικόνα 4

απεικονίζεται με ποιο τρόπο το J_e καθώς μεταβάλλεται ο λόγος της διατομικής απόστασης προς την ακτίνα της υποστιβάδας 3d (r/r_d). Για τα μεταβατικά μέταλλα Fe, Co, Ni, ο λόγος r/r_d είναι τέτοιος ώστε η ποσότητα J_e να είναι θετική. Σε όλες τις άλλες περιπτώσεις, η ποσότητα αυτή είναι αρνητική και δεν προκαλείται σιδηρομαγνητική συμπεριφορά. Για να αναφερθεί ότι το Mn, το οποίο δεν είναι σιδηρομαγνητικό, μπορεί να κραματωθεί με άλλα στοιχεία ώστε να αυξηθεί ο λόγος r/r_d και έτσι να καταστεί σιδηρομαγνητικό.

Εικόνα 4: Το ολοκλήρωμα ανταλλαγής ως συνάρτηση του λόγου r/r_d όπου r η διατομική απόσταση και r_d η ακτίνα τροχιάς d (ή η μέση ακτίνα της υποστιβάδας d). Τα μέταλλα μεταξύ Cr και Ni (συμπεριλαμβανομένων και των αυτών των δύο) είναι μεταβατικά μέταλλα. Για το Gd ο άξονας x αντιστοιχεί στο μέγεθος r/r_f, όπου r_f η ακτίνα της τροχιάς f.

Δ. Μαγνήτιση, απομαγνήτιση και τα φαινόμενα που προκύπτουν:

1. Μαγνητικές περιοχές:

Είναι δυνατόν ένας μονοκρύσταλλος σιδήρου να μην έχει παραμένουσα μαγνήτιση απουσία μαγνητικού πεδίου. Αν θερμάνουμε ένα μαγνητισμένο κομμάτι σιδήρου σε θερμοκρασία μεγαλύτερη της θερμοκρασίας Curie και στη συνέχεια το ψύξουμε χωρίς να εφαρμόσουμε μαγνητικό πεδίο, τότε το δείγμα δεν θα έχει παραμένουσα μαγνήτιση. Ο λόγος της απουσίας μαγνήτισης είναι η δημιουργία μαγνητικών περιοχών που αλληλοαναιρούνται. Μια μαγνητική περιοχή (magnetic domain) είναι μια περιοχή του κρυστάλλου στην οποία όλες οι spin μαγνητικές ροπές έχουν τον ίδιο προσανατολισμό έτσι ώστε να παράγεται μαγνητική ροπή σε μία διεύθυνση.

Στην εικόνα 1.1, α απεικονίζεται ένας μονοκρύσταλλος σιδήρου ο οποίος, λόγω του φαινομένου του σιδηρομαγνητισμού (προσανατολισμός όλων των ατομικών spin), έχει παραμένουσα μαγνήτιση. Ο κρύσταλλος είναι σαν μια μαγνητική ράβδος και γύρω του υπάρχουν οι γραμμές του μαγνητικού πεδίου. Όπως γνωρίζουμε, στο μαγνητικό πεδίο αποθηκεύεται δυναμική ενέργεια ΔΕ που ονομάζεται μαγνητοστατική ενέργεια. Μπορούμε να ελαττώσουμε την ενέργεια αυτή του εξωτερικού πεδίου διαιρώντας τον κρύσταλλο σε δύο περιοχές με αντίθετη μαγνήτιση (εικόνα 1.1, β). Έτσι οι δυναμικές γραμμές του εξωτερικού πεδίου μειώνονται και υπάρχει λιγότερη δυναμική ενέργεια αποθηκευμένη στο μαγνητικό πεδίο. Οι γραμμές του πεδίου παραμένουν μόνο στα άκρα. Η διάταξη αυτή είναι ενεργειακά προτιμότερη, επειδή, ελαττώνοντας τις εξωτερικές γραμμές του πεδίου, ελαττώνουμε τη μαγνητοστατική ενέργεια. Δημιουργείται όμως έτσι ένα όριο ανάμεσα στις δύο περιοχές το οποίο ονομάζεται τοίχωμα Bloch. Το όριο είναι τα σημεία όπου αντιστρέφεται η μαγνήτιση και όπου, επομένως, αντιστρέφονται και τα ατομικά spin. Για να περιστρέψουμε όμως ένα ατομικό spin κατά 180° σε σχέση με το γειτονικό του, απαιτείται η προσφορά ενέργειας. Αυτό συμβαίνει επειδή, λόγω της ενέργειας ανταλλαγής, είναι ενεργειακά προτιμότερη η διάταξη των παράλληλων (και με την ίδια φορά) ατομικών spin. Λέμε ότι το τοίχωμα της εικόνας 1.1, β είναι ένα τοίχωμα 180° αφού κατά την διέλευση από αυτό η μαγνήτιση αντιστρέφεται κατά 180°. Άρα είναι προφανές ότι η περιοχή του τοιχώματος, όπου μεταβάλλεται η διεύθυνση (ή η φορά) των γειτονικών ατομικών spin κατά τη μετάβαση από τη μία περιοχή στην άλλη, έχει μικρότερη ΔΕ από τον κύριο σώμα της κάθε περιοχής, όπου όλα τα ατομικά spin είναι ευθυγραμμισμένα.

Εικόνα 1.1: α) Μια μαγνητισμένη σιδηρομαγνητική ράβδος στην οποία υπάρχει μια μαγνητική περιοχή, και η οποία δημιουργεί επομένως μαγνητικό πεδίο. β) Ο σχηματισμός δύο μαγνητικών περιοχών με αντίθετη μαγνήτιση μειώνει το εξωτερικό μαγνητικό πεδίο. Υπάρχουν παρόλα αυτά δυναμικές γραμμές στα άκρα του μαγνήτη. γ) Ο σχηματισμός περιοχών εγκλεισμού στα άκρα περιορίζει τις εξωτερικές δυναμικές γραμμές. δ) ένα δείγμα με πολλές μαγνητικές περιοχές και περιοχές εγκλεισμού. Δεν υπάρχει καθόλου εξωτερικό μαγνητικό πεδίο και το δείγμα δείχνει μη μαγνητισμένο.

Το εύρος του τοιχώματος μεταξύ των περιοχών δεν είναι μια διατομική απόσταση αλλά το τοίχωμα έχει μεγαλύτερο πλάτος. Το πλάτος του τοιχώματος για τον σίδηρο είναι της τάξης του 0,1μm, και ισούται με αρκετές εκατοντάδες ατομικές αποστάσεις. Όσο μεγαλύτερο είναι το εύρος του τοιχώματος τόσο μεγαλύτερη η ενεργειακή του διαφορά από το κύριο σώμα της περιοχής.

Η μαγνητοστατική ενέργεια που σχετίζεται με τις πεδιακές γραμμές στις άκρες της εικόνας 1.1, β μπορεί να μειωθεί περαιτέρω εξαφανίζοντας τις γραμμές αυτές, κλείνοντας τις άκρες με πλευρικές περιοχές, με περιοχές δηλαδή των οποίων η μαγνήτιση είναι κατά 90° κάθετη προς τις αρχικές περιοχές (1.1, γ). Οι περιοχές αυτές ονομάζονται περιοχές εγκλεισμού και τα τοιχώματά τους είναι τοιχώματα επίσης 90°. Στα τοιχώματα αυτά η μαγνήτιση περιστρέφεται κατά 90°. Μειώνοντας όμως τη μαγνητοστατική ενέργεια, έχουμε αυξήσει τη δυναμική ενέργεια των τοιχωμάτων, αφού έχουν προστεθεί περισσότερα τοιχώματα. Η δημιουργία καινούργιων μαγνητικών περιοχών συνεχίζεται (αυθόρμητα) μέχρις ότου η μείωση της δυναμικής ενέργειας που επιτυγχάνεται με την προσθήκη ενός επιπλέον τοιχώματος. Η συνολική ενέργεια του δείγματος είναι τότε η ελάχιστη και βρίσκεται σε κατάσταση ισορροπίας, ενώ η συνολική του μαγνήτιση

είναι μηδέν. Στην εικόνα 1.1, δ απεικονίζεται ένα δείγμα που έχει πολλές περιοχές και μηδενική μαγνήτιση. Το μέγεθος, το σχήμα και η κατανομή των μαγνητικών περιοχών εξαρτάται από πολλούς παράγοντες όπως το μέγεθος και το σχήμα του δείγματος. Για σωματίδια σιδήρου με διάσταση μικρότερη από 0,01μm, η αύξηση της δυναμικής ενέργειας για τη δημιουργία τοιχώματος είναι πολύ μεγαλύτερη και τα σωματίδια αυτά είναι σωματίδια μίας μόνο περιοχής, άρα είναι πάντοτε μαγνητισμένα.

Η μαγνήτιση κάθε περιοχής είναι συνήθως παράλληλη προς μια από τις προτιμώμενες διευθύνσεις, τις διευθύνσεις δηλαδή αυτές προς τις οποίες διευκολύνεται ο προσανατολισμός των ατομικών spin (τις διευθύνσεις δηλαδή όπου επιτυγχάνεται μεγιστοποίηση της επίδρασης της αλληλεπίδρασης ανταλλαγής). Για το σίδηρο η μαγνήτιση είναι εύκολη σε οποιαδήποτε από τις έξι <100> διευθύνσεις (παράλληλα με τις ακμές του κύβου). Οι διευθύνσεις αυτές ονομάζονται εύκολες διευθύνσεις. Η μαγνήτιση του κρυστάλλου παράλληλα με ένα εφαρμοζόμενο πεδίο πραγματοποιείται μέσω της αύξησης των περιοχών με μαγνήτιση (ή συνιστώσες μαγνήτισης Μ) παράλληλη με το εφαρμοζόμενο πεδίο Η (εικόνα 1.2). Θεωρούμε για λόγους απλότητας ότι το πεδίο μαγνήτισης είναι παράλληλο με μία από τις εύκολες διευθύνσεις. Το τοίχωμα Bloch μεταξύ των περιοχών Α και Β μετακινείται προς τα δεξιά και έτσι, η περιοχή Α μεγαλώνει εις βάρος της Β, που μικραίνει. Το αποτέλεσμα είναι ότι ο κρύσταλλος αποκτά μια συνολική μαγνήτιση Μ παράλληλα με το Η. Η μετακίνηση του τοιχώματος Bloch προκαλείται από τα spin του τοιχώματος και από τα spin της περιοχής Β που εφάπτονται σε αυτό. Τα spin αυτά περιστρέφονται βαθμιαία από το εφαρμοζόμενο πεδίο, αφού σε αυτά επενεργεί μια ροπή. Επομένως, η διαδικασία της μαγνήτισης πραγματοποιείται λόγω της μετακίνησης των τοιχωμάτων Bloch ενός κρυστάλλου.

Εικόνα 1.2: α) Ένας μη μαγνητισμένος κρύσταλλος σιδήρου απουσία εφαρμοζόμενου μαγνητικού πεδίου. Οι περιοχές Α και Β έχουν περίπου το ίδιο μέγεθος και αντίθετη μαγνήτιση. β) Όταν εφαρμόζεται ένα εξωτερικό μαγνητικό πεδίο, τότε το τοίχωμα μεταξύ των περιοχών κινείται προς την πλευρά της περιοχής Β. Έτσι η περιοχή Α μεγαλώνει, ενώ η Β μικραίνει. Το τελικό αποτέλεσμα είναι η απόκτηση του δείγματος συνολικής μαγνήτισης.

2. Τοιχώματα περιοχών:

Όπως προαναφέραμε, οι spin μαγνητικές ροπές αντιστρέφονται κατά τη διέλευση μέσα από ένα τοίχωμα περιοχής. Έχουμε αναφέρει ότι το τοίχωμα δεν έχει πλάτος μια μόνο ατομική απόσταση, αφού αυτό θα συνεπαγόταν ότι τα spin δύο γειτονικών ατόμων θα σχημάτιζαν γωνία 180° και για αυτό το λόγο η αλληλεπίδραση ανταλλαγής θα ήταν εξαιρετικά ισχυρή. Στην εικόνα 2.1 απεικονίζεται μια σχηματική αναπαράσταση της δομής ενός τοιχώματος Bloch 180° που χωρίζει τις περιοχές Α και Β. Οι γειτονικές μαγνητικές ροπές spin περιστρέφονται σταδιακά και ότι η περιστροφή είναι πλήρης σε διάστημα αρκετών ατομικών αποστάσεων. Η ύπαρξη των δυνάμεων ανταλλαγής ανάμεσα στα γειτονικά ατομικά spin καθιστά ενεργειακά προτιμότερη τη μικρή σχετική περιστροφή. Αν επιδρούσαν μόνο οι δυνάμεις ανταλλαγής, τότε η σχετική περιστροφή των γειτονικών spin θα ήταν τόσο μικρή που το πάχος του τοιχώματος 180° θα ήταν άπειρο.

Οι μαγνητικές ροπές, όμως, που δεν είναι προσανατολισμένες παράλληλα προς την εύκολη διεύθυνση μαγνήτισης, έχουν επιπλέον ενέργεια, η οποία ονομάζεται ενέργεια ανισοτροπίας (Κ) (ανισοτροπία: διαφορετικές ιδιότητες, όπως μαγνητικές, σε κάθε κρυσταλλική διεύθυνση). Αν το τοίχωμα είναι παχύ τότε η ενέργεια Κ του τοιχώματος θα είναι αρκετά μεγάλη, καθώς περιέχει πολλές μαγνητικές ροπές που περιστρέφονται πέραν της εύκολης διεύθυνσης. Η ενέργεια ανισοτροπίας του τοιχώματος ελαχιστοποιείται όταν ο προσανατολισμός της μαγνητικής ροπής μεταβάλλεται κατά 180° και από την εύκολη διεύθυνση (+z), μεταβαίνει, χωρίς ενδιάμεσες περιστροφές, και πάλι στην ίδια διεύθυνση έχοντας όμως αντίθετη φορά (-z). Για να πραγματοποιηθεί αυτό απαιτείται η ύπαρξη ενός τοιχώματος με πάχος μια ατομική απόσταση. Το πάχος του τοιχώματος είναι στην πραγματικότητα ένας συμβιβασμός ανάμεσα στην ενέργεια ανταλλαγής (που απαιτεί την ύπαρξη ενός τοιχώματος μεγάλου πάχους) και την ενέργεια ισορροπίας του τοιχώματος είναι αυτό για το οποίο ελαχιστοποιείται η συνολική δυναμική ενέργεια, η οποία είναι το άθροισμα της ενέργειας ανταλλαγής και της ενέργειας ανισοτροπίας εντός του τοιχώματος. Στην περίπτωση του σιδήρου το πάχος είναι περίπου 0,1μm, ενώ για το κοβάλτιο, όπου η ενέργεια ανισοτροπίας είναι μεγαλύτερη, το πάχος είναι μικρότερο.

3. Κίνηση των μαγνητικών τοιχωμάτων:

Για να μαγνητιστεί ένας σιδηρομαγνητικός μονοκρύσταλλος θα πρέπει να μετακινηθούν τα τοιχώματα των περιοχών που έχουν μαγνήτιση παράλληλη προς το επιβαλλόμενο πεδίο εις βάρος των περιοχών των οποίων η μαγνήτιση είναι αντίθετη προς τη μαγνήτιση του επιβαλλόμενου πεδίου. Η μετακίνηση ενός τοιχώματος εντός ενός κρυστάλλου επηρεάζεται από τις κρυσταλλικές ατέλειες και τις προσμίξεις και δεν είναι ομαλή. Για παράδειγμα σε ένα τοίχωμα Bloch 90° , η διεύθυνση της μαγνήτισης μεταβάλλεται κατά 90° κατά τη διέλευση μέσα από το τοίχωμα. Λόγω της μαγνητικής παραμόρφωσης, η παραμόρφωση του πλέγματος δεν είναι ίδια στις δύο πλευρές του τοιχώματος αυτού και έτσι δημιουργείται μια περίπλοκη κατανομή παραμόρφωσης, και επομένως, και τάσης. Όπως γνωρίζουμε, οι κρυσταλλικές ατέλειες όπως οι διαταραχές, οι σημειακές ατέλειες κλπ, δημιουργούν γύρω τους κατανομές παραμόρφωσης και τάσης. Άρα, τα τοιχώματα των περιοχών και οι κρυσταλλικές ατέλειες αλληλεπιδρούν μεταξύ τους. Οι διαταραχές είναι γραμμικές ατέλειες οι οποίες παραμορφώνουν το πλέγμα σε αρκετή απόσταση γύρω τους. Στην εικόνα 3.1 απεικονίζεται σχηματικά μια διαταραχή που περιβάλλεται από εφελκυστικές και θλιπτικές τάσεις και ένα τοίχωμα το οποίο έχει μια εφελκυστική τάση από τη μεριά της διαταραχής. Αν το τοίχωμα πλησιάσει πολύ στη διαταραχή, τότε οι θλιπτικές και εφελκυστικές τάσεις αλληλοαναιρούνται και το τελικό αποτέλεσμα είναι η δημιουργία ενός απαραμόρφωτου πλέγματος, το οποίο χαρακτηρίζεται από μικρότερη ενέργεια παραμόρφωσης. Η διάταξη που χαρακτηρίζεται από χαμηλότερη ενέργεια, κρατάει το τοίχωμα της περιοχής κοντά στη διαταραχή. Για να απομακρυνθεί τώρα το τοίχωμα από τη διαταραχή απαιτείται η εφαρμογή ισχυρότερου μαγνητικού πεδίου. Τα τοιχώματα μεταξύ των περιοχών επηρεάζονται επίσης και από τις μη μαγνητικές προσμίξεις και τα εγκλείσματα. Ένα έγκλεισμα για παράδειγμα, που βρίσκεται σε μια περιοχή, μαγνητίζεται, δημιουργούνται σε αυτό βόρειος και νότιος πόλος (εικόνα 3.2, α). Αν το τοίχωμα έπρεπε να περάσει μέσα από το έγκλεισμα, αν έπρεπε δηλαδή γύρω από αυτό να υπάρχουν δύο διαφορετικές περιοχές (3.2, β), τότε η μαγνητοστατική ενέργεια θα ήταν μικρότερη –γεγονός που είναι ενεργειακά προτιμότερο. Η μείωση της μαγνητοστατικής δυναμικής ενέργειας σημαίνει ότι απαιτείται πλέον μεγαλύτερη δύναμη για να κινηθεί το τοίχωμα και να απομακρυνθεί από το έγκλεισμα. Η πρόσμιξη επομένως συγκρατεί κατά κάποιο τρόπο το τοίχωμα, παρεμποδίζοντας την κίνησή του.

Εικόνα 3.1: Η κατανομή τάσης και της παραμόρφωσης γύρω από μια διαταραχή και κοντά σε ένα τοίχωμα μεταξύ περιοχών.

Εικόνα 3.2: Η αλληλεπίδραση ενός τοιχώματος με ένα μαγνητικό έγκλεισμα (χωρίς μόνιμη μαγνήτιση). α) Το έγκλεισμα μαγνητίζεται και υπάρχει μαγνητοστατική ενέργεια. β) Η διάταξη αυτή έχει μικρότερη δυναμική ενέργεια και για αυτό είναι προτιμότερη.

Επομένως, βλέπουμε ότι η κίνηση ενός τοιχώματος εντός κρυστάλλου δεν είναι ομαλή, αλλά ότι πραγματοποιείται με απότομα άλματα. Το τοίχωμα συγκρατείται σε κάποιο σημείο από μια ατέλεια ή πρόσμιξη και για να ελευθερωθεί απαιτείται η εφαρμογή ενός ισχυρότερου μαγνητικού πεδίου. Μόλις αποδεσμευτεί το τοίχωμα κινείται μέχρις ότου δεσμευτεί από μια άλλη ατέλεια, όπου και παραμένει μέχρι το πεδίο να αυξηθεί ακόμα περισσότερο και να αποδεσμευτεί εκ νέου. Κάθε φορά που το τοίχωμα αποδεσμεύεται παράγονται πλεγματικές ταλαντώσεις, που σημαίνει ότι το μέρος της ενέργειας χάνεται ως θερμότητα. Η συνολική κίνηση του τοιχώματος είναι μην αντιστρέψιμη (υστερητική) και συνεπάγεται απώλεια ενέργειας με τη μορφή θερμότητας που διοχετεύεται στον κρύσταλλο.

4. Εξάρτηση του Μ από το Η – Φαινόμενο Barkhausen και βρόγχος υστέρησης:

Η πλειοψηφία των μαγνητικών υλικών που χρησιμοποιούνται σε εφαρμογές είναι πολυκρυσταλλικά. Επομένως στη μικροδομή τους αποτελούνται από πολλούς κόκκους διαφόρων μεγεθών και προσανατολισμών, που εξαρτώνται από την προετοιμασία και το θερμικό ιστορικό των συστατικών. Σε ένα μη μαγνητισμένο πολυκρυσταλλικό δείγμα κάθε κρυσταλλικός κόκκος περιέχει πολλές μαγνητικές περιοχές (εικόνα 4.1). Η δομή των περιοχών σε κάθε κόκκο εξαρτάται από το μέγεθος και το σχήμα του κόκκου και, ως ένα βαθμό, από τη μαγνήτιση των γειτονικών κόκκων. Οι πολύ μικροί κόκκοι (μικρότεροι από 0,1μm) μπορεί να περιέχουν μια μόνο περιοχή. Στις πιο πολλές περιπτώσεις όμως οι πολλοί κόκκοι περιέχουν πάνω από μία περιοχές. Η δομή δεν θα έχει στο σύνολό της καθόλου μαγνήτιση, εφόσον βέβαια δεν της είχε προηγουμένως επιβληθεί κάποιο μαγνητικό πεδίο. Μπορούμε να υποθέσουμε ότι το δείγμα είχε θερμανθεί σε θερμοκρασία Curie και στη συνέχεια ψύχθηκε μέχρι τη θερμοκρασία δωματίου χωρίς εφαρμογή εξωτερικού μαγνητικού πεδίου.

Εικόνα 4.1: Σχηματική απεικόνιση των μαγνητικών περιοχών εντός των κόκκων ενός μη μαγνητισμένου πολυκρυσταλλικού δείγματος σιδήρου. Οι πολύ μικροί κόκκοι αποτελούνται από μια περιοχή.

Έστω εφαρμογή ενός πολύ μικρού εξωτερικά επιβαλλόμενου μαγνητικού πεδίου μ_0 Η. Έστω επίσης ότι η διεύθυνση στην οποία εφαρμόζεται το πεδίο είναι η +x. Τα τοιχώματα των περιοχών των διάφορων κόκκων αρχίζουν να μετακινούνται, και οι περιοχές των οποίων μια συνιστώσα του προσανατολισμού της μαγνήτισης είναι παράλληλη προς το πεδίο μεγαλώνουν εις βάρος των περιοχών των οποίων η μαγνήτιση είναι ενάντια στο πεδίο (σημείο a, εικόνα 4.2). Τα τοιχώματα των περιοχών που είναι δεσμευμένα από ατέλειες της κρυσταλλικής δομής τείνουν να εξαφανιστούν. Δημιουργείται μια πολύ μικρή αλλά σημαντική μαγνήτιση παράλληλα με το πεδίο. Αυτό σημειώνεται στην περιοχή Οα της καμπύλης της μαγνήτισης προς το πεδίο μαγνήτισης (Μ-Η) (εικόνα 4.2). Καθώς το πεδίο συνεχίζει να αυξάνεται τα τοιχώματα διανύουν μεγαλύτερες αποστάσεις (σημείο b, 4.2) και συναντούν διάφορα εμπόδια, όπως κρυσταλλικές ατέλειες, προσμίξεις, δεύτερες φάσεις κ.ο.κ., τα οποία έλκουν τα τοιχώματα και εμποδίζουν την κίνησή τους. Ένα τοίχωμα που είναι δεσμευμένο σε μια ατέλεια δεδομένου ενός εφαρμοζόμενου πεδίου, δεν μπορεί να κινηθεί μέχρις ότου το πεδίο αυξηθεί αρκετά. Τότε θα ασκείται στο τοίχωμα επαρκής δύναμη ώστε να το αποδεσμεύσει. Το τοίχωμα

κινείται στη συνέχεια απρόσκοπτα μέχρι να συναντήσει το επόμενο εμπόδιο. Καθώς ένα τοίχωμα απελευθερώνεται απότομα από μια δομική ατέλεια και κατευθύνεται προς το επόμενο εμπόδιο, δύο παράγοντες προκαλούν ουσιαστικά την παραγωγή θερμότητας: οι απότομες μεταβολές της παραμόρφωσης του πλέγματος αφενός (που οφείλονται στη μαγνητική παραμόρφωση) δημιουργούν πλεγματικά κύματα τα οποία απομακρύνουν μέρος της ενέργειας και απότομες μεταβολές της μαγνήτισης αφετέρου, που επάγουν δινορρεύματα (eddy currents) τα οποία καταναλώνουν ενέργεια λόγω της θέρμανσης Joule (οι μαγνητικές περιοχές έχουν μη μηδενική ηλεκτρική αντίσταση). Οι διαδικασίες αυτές συνεπάγονται τη μετατροπή της ενέργειας σε θερμότητα και είναι μη αντιστρέψιμες. Τα απότομα άλματα στη μετακίνηση των τοιχωμάτων προκαλούν, αυξανόμενου του μαγνητικού πεδίου, απότομες μεταβολές στη μαγνήτιση του δείγματος. Το φαινόμενο αυτό ονομάζεται φαινόμενο Barkhausen.

Αν ένα πηνίο αγώγιμου καλωδίου τοποθετηθεί πλησίον του δείγματος, την ώρα που δρα μαγνητικό πεδίο και προκαλεί τη μετακίνηση των μαγνητικών τοιχωμάτων, το αποτέλεσμα θα είναι ένας ηλεκτρικός παλμός στο πηνίο, εξαιτίας της αλλαγής της μαγνήτισης.

Η πρώτη παρατήρηση αυτού του ενδιαφέροντος φαινομένου με το συγκεκριμένο τρόπο πραγματοποιήθηκε από τον προαναφερθέν φυσικό Prof. Heinrich Barkhausen το 1919. Απέδειξε ότι ο βρόγχος υστέρησης (γραφική αναπαράσταση των φαινομένων μαγνήτισης ενός υλικού σε διάγραμμα κάθετων αξόνων, xx' για τη μαγνήτιση και yy' για το εξωτερικό επιβαλλόμενο μαγνητικό πεδίο) δεν είναι, από άποψη ομαλότητας των καμπυλών του, συνεχής αλλά αντιθέτως χαρακτηρίζεται από απότομα ασυνεχή «σκαλοπάτια», τα οποία οφείλονται στα άλματα Barkhausen, δηλαδή στην απότομη υστερητική μετακίνηση των μαγνητικών τοιχωμάτων. Όταν οι παλμοί προστίθενται όλοι μαζί, από όλες τις μετακινήσεις μαγνητικών τοιχωμάτων, ένα σήμα, όμοιο με θόρυβο, παράγεται (Barkhausen noise) (εικόνα 4.2).[4]

Εικόνα 4.2: Η εξάρτηση της Μ από το Η για ένα αρχικά μη μαγνητισμένο πολυκρυσταλλικό δείγμα σιδήρου (σημείο Ο).

a) Υπό την εφαρμογή πολύ ασθενούς πεδίου η μετακίνηση των τοιχωμάτων είναι αντιστρέψιμη (ανυστερητική).

b) Η μετακίνηση των τοιχωμάτων είναι μη αντιστρέψιμη (υστερητική) και πραγματοποιείται με απότομα άλματα.

c) Σχεδόν όλοι οι κόκκοι αποτελούνται από μια περιοχή και έχουν φτάσει στη μαγνήτιση κόρου στην εύκολη διεύθυνση.

 d) Η μαγνήτιση των επιμέρους κόκκων πρέπει να περιστραφεί για να ευθυγραμμιστεί με το πεδίο Η.

e) Όταν το πεδίο απομακρύνεται, τότε το δείγμα επιστρέφει από την κατάσταση d στην e.

Για να απομαγνητίσουμε το δείγμα πρέπει να εφαρμόσουμε ένα πεδίο μαγνήτισης Η_c με την αντίθετη φορά.

Καθώς αυξάνουμε το πεδίο, η μαγνήτιση συνεχίζει να αυξάνεται με απότομες μετακινήσεις τοιχωμάτων. Οι μετακινήσεις αυτές προκαλούν τη διεύρυνση των περιοχών με μαγνήτιση σε απόκλιση από το πεδίο. Κάποια στιγμή κάθε κρυσταλλικός κόκκος αποκτά μια μόνο περιοχή με μαγνήτιση σε μία από τις εύκολες διευθύνσεις (4.2, σημείο c). Ο προσανατολισμός ορισμένων κόκκων είναι τέτοιος που η εύκολη διεύθυνσή τους, και επομένως και η Μ που έχουν αποκτήσει, είναι παράλληλη προς το πεδίο. Σε πολλούς άλλους κόκκους, όμως η μαγνήτιση σχηματίζει μια γωνία με το Η (4.2, c). Από το σημείο αυτό και μέχρι το d κάθε περαιτέρω αύξηση του πεδίου προκαλεί την περιστροφή της μαγνήτισης των κόκκων και τον προσανατολισμό τους με τη διεύθυνση του πεδίο Η. Το πεδίο γίνεται κάποια στιγμή τόσο ισχυρό ώστε η Μ να είναι παράλληλη με το Η, και η μαγνήτιση του δείγματος φτάνει στον κόρο M_{sat}, όντας ταυτόχρονα παράλληλη με το πεδίο Η (άξονας xx') (σημείο d, 4.2).

Αν μειώναμε και τελικά μηδενίζαμε το πεδίο μαγνήτισης, τότε η μαγνήτιση κάθε κόκκου θα περιστρεφόταν ώστε να γίνει παράλληλη με την πλησιέστερη εύκολη διεύθυνση στον κόκκο. Επιπλέον, σε ορισμένους κόκκους, προκειμένου να μειωθεί η μαγνήτισή τους, θα δημιουργούνταν καινούργιες μικρές περιοχές (σημείο e, 4.2). Στο τέλος της διαδικασίας αυτής, μετά δηλαδή τη μετάβαση από το σημείο d στο e, το δείγμα διατηρεί μια μόνιμη μαγνήτιση, η οποία ονομάζεται παραμένουσα μαγνήτιση (M_r).

Αν εφαρμόσουμε τώρα ένα πεδίο μαγνήτισης με την αντίστροφη φορά (-x), τότε η μαγνήτιση του δείγματος, που θα εξακολουθούσε να είναι παράλληλη στη διεύθυνση +x θα μειωνόταν και κάποια στιγμή, όταν το εφαρμοζόμενο πεδίο είναι αρκετά μεγάλο, τότε η M θα ήταν μηδέν και το δείγμα θα είχε απομαγνητιστεί πλήρως. Η κατάσταση αυτή αντιστοιχεί στο σημείο f (εικόνα 4.3, α). Το πεδίο μαγνήτισης H_c που απαιτείται για να απομαγνητιστεί πλήρως το δείγμα ονομάζεται συνεκτικό πεδίο. Το μέγεθος αυτό παριστά την αντίσταση που παρουσιάζει το δείγμα στην απομαγνήτιση. Πρέπει να παρατηρήσουμε ότι στο σημείο f το δείγμα αποτελείται ξανά από κόκκους που περιέχουν πολλές μαγνητικές περιοχές. Επομένως, κατά τη διαδικασία της απομαγνήτισης, κατά τη μετάβαση από το σημείο e στο f, δημιουργούνται νέες μαγνητικές περιοχές. Η διαδικασία της απομαγνήτισης συνεπάγεται το σχηματισμό, γύρω από τις κρυσταλλικές ατέλειες νέων μαγνητικών περιοχών που αναιρούν τη συνολική μαγνήτιση.

Εικόνα 4.3: α) Ενδεικτική καμπύλη υστέρησης Μ-Η. β) Αντίστοιχη καμπύλη Β-Η. Η σκιασμένη επιφάνεια εντός του βρόγχου υστέρησης ισούται με τις απώλειες ενέργειας ανά μονάδα όγκου και ανά κύκλο.

Αν συνεχίσουμε να αυξάνουμε το μαγνητικό πεδίο προς την κατεύθυνση –x (4.3, α), τότε η διαδικασία από το f και μετά γίνεται όμοια με τη διαδικασία της μαγνήτισης από το σημείο a μέχρι το d της εικόνας 4.2, με μόνη διαφορά ότι η φορά του πεδίου τώρα είναι –x, ενώ πριν ήταν +x. Στο σημείο g το δείγμα έχει φτάσει στη μαγνήτιση κόρου στη διεύθυνση –x. Η πλήρης εξάρτηση της M από την H καθώς το μαγνητικό πεδίο κάνει έναν πλήρη κύκλο, έχει όψη του κλειστού βρόχου της εικόνας 4.3, οποίος λέγεται βρόχος υστέρησης. Βλέπουμε ότι στην διεύθυνση –x και στην +x η μαγνήτιση φτάνει στον κόρο ($M_{κορ}$) όταν το H φτάνει στην τιμή $H_{κορ}$. Όταν απομακρύνουμε το πεδίο το δείγμα διατηρεί μια παραμένουσα μαγνήτιση που αντιστοιχεί στα σημεία e και h και σημειώνεται με M_r . Το πεδίο μαγνήτισης H_c που απαιτείται για να απομαγνητίσουμε το δείγμα ονομάζεται συνεκτικό πεδίο και αντιστοιχεί στα σημεία f και i. Η αρχική καμπύλη μαγνήτισης (4.2), στην οποία ξεκινήσαμε από μη μαγνητισμένη κατάσταση ονομάζεται αρχική (παρθενική) καμπύλη μαγνήτισης.

Μπορούμε να σχεδιάσουμε ένα διάγραμμα που να απεικονίζει τη μεταβολή του Β και όχι της Μ (4.3, β). Ισχύει ο τύπος:

$\mathsf{B} = \mu_0 \mathsf{M} + \mu_0 \mathsf{H}$

από τον οποίο προκύπτει ο βρόχος υστέρησης που συνδέει τα μεγέθη Β και Η. Η πολύ μικρή αύξηση του Β με το Η όταν η Μ έχει φτάσει ήδη στον Κάσο οφείλεται στη διαπερατότητα του κενού (μ₀Η). Η επιφάνεια που περικλείεται από το βρόχο

υστέρησης του Β προς Η (διαγραμμισμένη επιφάνεια βρόχου στο 4.3, β) αντιστοιχεί στην ενέργεια που καταναλώνεται ανά μονάδα όγκου και ανά κύκλο εφαρμογής του πεδίου.

Έστω ότι υποβάλλουμε ένα υλικό σε ένα κυκλικά εφαρμοζόμενο πεδίο, που έχει εναλλάξ φορά προς το +x και –x), αλλά ότι δεν φτάνουμε μέχρι την μαγνήτιση κόρου του υλικού. Όπως είναι φανερό και στην εικόνα 4.4, ο βρόχος υστέρησης θα είναι διαφορετικός από την περίπτωση όπου το δείγμα φτάνει μέχρι τη μαγνήτιση κόρου. Το μαγνητικό πεδίο στο υλικό δεν φτάνει μέχρι την τιμή Β_{κορ} (που αντιστοιχεί στη Μ_{κορ}) αλλά, όταν το πεδίο μαγνήτισης είναι Η_m, φτάνει μέχρι τη μέγιστη δυνατή τιμή B_m. Επειδή οι διαδικασίες της μαγνήτισης και απομαγνήτισης είναι μη αναστρέψιμες, θα εξακολουθεί να υπάρχει φαινόμενο υστέρησης. Το σχήμα του βρόχου υστέρησης εξαρτάται από την ένταση του εφαρμοζόμενου εξωτερικά μαγνητικού πεδίου και, επιπλέον, από το σχήμα, το μέγεθος και το υλικό του εξεταζόμενου δείγματος. Η περιοχή που περικλείεται εντός του βρόχου εξακολουθεί να αντιστοιχεί στην ενέργεια που καταναλώνεται ανά μονάδα όγκου και κύκλο εφαρμογής του εναλλασσόμενου πεδίου. Ο βρόχος υστέρησης φτάνει μέχρι τις τιμές κόρου (4.3), τότε ονομάζεται βρόχος υστέρησης κόρου (κύριος βρόχος υστέρησης). Η παραμένουσα μαγνήτιση και το συνεκτικό πεδίο του δείγματος εξαρτώνται από το βρόχο Η-Η. Οι τιμές που αναφέρονται αντιστοιχούν συνήθως στο βρόχο υστέρησης κόρου.

Εικόνα 4.4: Ο βρόχος υστέρησης Β-Η εξαρτάται από το πλάτος του εξωτερικά επιβαλλόμενου μαγνητικού πεδίου και από το σχήμα και το μέγεθος του δείγματος, όπως και από το υλικό του.
Ε. Σκληρά και μαλακά μαγνητικά υλικά:

1.Γενικά:

Με βάση τη σχέση του B με το H, τα υλικά που χρησιμοποιούνται σε εφαρμογές διακρίνονται σε μαλακά και σε σκληρά μαγνητικά υλικά. Μια ενδεικτική μορφή των βρόχων υστέρησης απεικονίζεται στην εικόνα 1.1, παρακάτω. Τα μαλακά μαγνητικά υλικά μαγνητίζονται και απομαγνητίζονται εύκολα και επομένως απαιτούν την εφαρμογή σχετικά μικρών μαγνητικών πεδίων. Για να το θέσουμε διαφορετικά, οι βρόχοι B-H είναι στενοί. Το εμβαδόν της επιφάνειας του βρόχου υστέρησης είναι μικρό και, ως εκ τούτου, οι απώλειες ισχύος ανά κύκλο εφαρμογής εξωτερικά εφαρμοζόμενου μαγνητικού πεδίου μικρές. Τα μαλακά μαγνητικά υλικά είναι κατάλληλα για εφαρμογές όπου εφαρμόζονται πολλοί κύκλοι μαγνήτισηςαπομαγνήτισης, όπως για παράδειγμα σε ηλεκτρικές μηχανές, μετασχηματιστές και επαγωγείς, όπου το μαγνητικό πεδίο μεταβάλλεται κυκλικά. Οι εφαρμογές αυτές απαιτούν επίσης μικρές απώλειες υστέρησης, ή μικρή επιφάνεια βρόχου υστέρησης. Η λειτουργία των ηλεκτρονόμων (relays) που απαιτεί το άνοιγμα και το κλείσιμο ενός κυκλώματος, στηρίζεται στο μαγνητισμό και τον απομαγνητισμό ενός κομματιού σιδήρου και γι' αυτό χρησιμοποιούνται μαλακά μαγνητικά υλικά.

Τα σκληρά μαγνητικά υλικά από την άλλη πλευρά, μαγνητίζονται και απομαγνητίζονται δύσκολα και γι' αυτό απαιτούν την εφαρμογή σχετικά μεγάλων μαγνητικών πεδίων. Οι καμπύλες Β-Η είναι ευρείες και σχεδόν ορθογώνιες. Το συνεκτικό τους πεδίο είναι σχετικά μεγάλο, γεγονός που μαρτυρά ότι για τον απομαγνητισμό τους απαιτείται η εφαρμογή μεγάλων πεδίων. Το συνεκτικό πεδίο των σκληρών μαγνητικών υλικών μπορεί να είναι εκατομμύρια φορές μεγαλύτερο από το συνεκτικό πεδίο των μαλακών υλικών. Λόγω των χαρακτηριστικών τους, τα σκληρά μαγνητικά υλικά είναι κατάλληλα ως μόνιμοι μαγνήτες σε πολλές εφαρμογές. Είναι επίσης φανερό ότι η μαγνήτιση μπορεί να μεταβληθεί από μια διεύθυνση που τυχόν να βρίσκεται σε μια άλλη, για παράδειγμα από την –Br στην +B_r, με την εφαρμογή ενός κατάλληλου πολύ ισχυρού πεδίου μαγνήτισης. Αφού το συνεκτικό πεδίο είναι πολύ ισχυρό, αμφότερες οι καταστάσεις – Br και + Br παραμένουν μέχρι να τις μεταβάλλει και να προσανατολίσει διαφορετικά το μαγνητικό πεδίο ένα κατάλληλο, δηλαδή αρκετά ισχυρό, πεδίο μαγνήτισης. Τα σκληρά μαγνητικά υλικά χρησιμοποιούνται για τη μαγνητική εγγραφή ψηφιακών δεδομένων, όπου οι προαναφερθείσες καταστάσεις μπορούν να αντιστοιχούν στο 1 και το 0 (ή αντίστροφα).

Εικόνα 1.1: Μαλακά και σκληρά μαγνητικά υλικά.

2. Μαλακά μαγνητικά υλικά: mild steel, αποτελούμενες φάσεις, χαρακτηριστικά και εφαρμογές:

Θα εμβαθύνουμε περισσότερο στα μαλακά μαγνητικά υλικά και στις χρήσεις τους, και συγκεκριμένα στον εμπορικό σίδηρο με προσμίξεις μέχρι 0,2% και συγκεκριμένα τους φερρίτες.

Καταρχάς, ο χάλυβας (κοινώς ατσάλι) είναι κράμα σιδήρου–άνθρακα που περιέχει λιγότερο από 2,06% κ.β. άνθρακα, λιγότερο από 1,0% μαγγάνιο και πολύ μικρά ποσοστά πυριτίου, φωσφόρου, θείου και οξυγόνου. Οι κραματωμένοι χάλυβες, όπως π.χ. οι ανοξείδωτοι χάλυβες, οι εργαλειοχάλυβες, κ.λπ., αποτελούν ειδική κατηγορία χαλύβων που περιέχουν υψηλότερα ποσοστά άλλων μετάλλων. Είναι το πιο διαδεδομένο κατασκευαστικό υλικό μετά το σκυρόδεμα και το ξύλο. Χρησιμοποιείται παντού: από την αρχιτεκτονική και τη ναυπηγική μέχρι την κατασκευή χειρουργικών εργαλείων. Το ατσάλι είναι ένα από τα σημαντικότερα βιομηχανικά υλικά και οι χαλυβουργίες (εργοστάσια παραγωγής χάλυβα) ανήκουν στις «βαριές βιομηχανίες». Σε παλαιότερες εποχές, η βιομηχανική παραγωγή μιας χώρας αξιολογούνταν από την παραγωγή της σε χάλυβα. Μια από τις τρεις Ευρωπαϊκές Κοινότητες που ιδρύθηκαν το 1957 ήταν και η Ευρωπαϊκή Κοινότητα Άνθρακα και Χάλυβα.[2]

Οι χάλυβες διακρίνονται σε διάφορες κατηγορίες (αγγλ. grades), ανάλογα με την χημική τους σύσταση, την περαιτέρω κατεργασία τους, την κρυσταλλική τους δομή ή και την τελική τους χρήση. Κοινοί ή ανθρακούχοι χάλυβες (αγγλ. carbon steels). Περιέχουν άνθρακα (έως 2,06%) και μικρό ποσοστό μαγγανίου (έως 1,65%), πυριτίου (έως 0,6%) και χαλκού (έως 0,6%). Χρησιμοποιούνται πολύ και συγκολλούνται εύκολα. Με βάση τον περιεχόμενο άνθρακα, οι κοινοί χάλυβες διακρίνονται διακρίνονται σε διάφορες κατηγορίες, ανάλογα με το ποσοστό του άνθρακα. Εμείς στην προκειμένη εργασία εξετάσαμε δοκίμια χαλύβων χαμηλού άνθρακα ή μαλακούς χάλυβες (mild steels· C < 0,30%),

Γενικά, Ο φερρίτης είναι στερεά φάση καθαρού σιδήρου ή στερεό διάλυμα με βασικό συστατικό τον σίδηρο που κρυσταλλώνεται στο χωροκεντρωμένο κυβικό σύστημα. Ο φερρίτης είναι η κύρια φάση στους κοινούς χάλυβες και τους χυτοσιδήρους. Οι ιδιότητες του φερρίτη είναι σχεδόν ίδιες με τις ιδιότητες του καθαρού σιδήρου. Είναι όλκιμος και η εφελκυστική του αντοχή ανέρχεται σε περίπου 280 MPa. Η σκληρότητά του κυμαίνεται από 80 έως 100 HB (Brinell). Είναι επίσης ισχυρά μαγνητικός και μπορεί να αποκτήσει μόνιμη μαγνήτιση (σιδηρομαγνητικός) για θερμοκρασία χαμηλότερη από 770°C (θερμοκρασία Curie).

Ο φερρίτης ή α-Fe είναι σταθερός σε θερμοκρασία έως και 910°C. Η μέγιστη περιεκτικότητά του σε άνθρακα ανέρχεται σε 0,021% κ.β. στους 723°C και μειώνεται σε 0,006% κ.β. σε θερμοκρασία δωματίου. Σε θερμοκρασίες από 910 έως 1390°C, ο χωροκεντρωμένος κυβικός φερρίτης μετασχηματίζεται σε εδροκεντρωμένο κυβικό ωστενίτη (γ-Fe), που είναι πιο σκληρός και λιγότερο μαγνητικός (παραμαγνητικός). Σε θερμοκρασία ανώτερη από 1390°C έως το σημείο τήξης του σιδήρου (1539°C), ο ωστενίτης μετασχηματίζεται σε χωροκεντρωμένο κυβικό φερρίτη, που αποκαλείται δ-Fe για να ξεχωρίζει από τον φερρίτη των χαμηλών θερμοκρασιών. Η μέγιστη περιεκτικότητα του δ-Fe σε άνθρακα φτάνει το 0,09% στους 1493°C.

Η διαλυτότητα του άνθρακα στον φερρίτη είναι πολύ περιορισμένη, γιατί στο χωροκεντρωμένο κρυσταλλικό πλέγμα τα άτομα του άνθρακα καταλαμβάνουν θέσεις παρεμβολής, δηλ. παρεμβάλλονται ανάμεσα στα διατεταγμένα άτομα του σιδήρου και, εξαιτίας του μεγάλου μεγέθους τους, προκαλούν έντονες τοπικές τάσεις. Εκτός από άνθρακα, ο φερρίτης μπορεί να περιέχει και μικρές ποσότητες από χρώμιο, νικέλιο, πυρίτιο ή και φώσφορο.

Στους κοινούς ανθρακούχους χάλυβες, ο φερρίτης αποτελεί το κύριο συστατικό. Υπό συνθήκες που πλησιάζουν την θερμοδυναμική ισορροπία (π.χ. ανοπτημένους χάλυβες), όταν η περιεκτικότητα του άνθρακα είναι μικρότερη από 0,76% κ.β. (ευτηκτοειδής σύσταση στο μετασταθές διάγραμμα φάσεων Fe–C), τότε ο φερρίτης σχηματίζει ξεχωριστούς κόκκους (κρυστάλλους) και συνυπάρχει μαζί με τον σεμεντίτη στην πλακοειδή («λαμελοειδή») δομή του περλίτη. Όταν η περιεκτικότητα του άνθρακα είναι ίση η μεγαλύτερη από 0,76% κ.β., τότε ο φερρίτης υπάρχει μόνο στον περλίτη. Ο φερρίτης υπάρχει επίσης και σε μετασταθείς δομές που προκύπτουν με απότομη ψύξη («βαφή») των χαλύβων. Μία τέτοια δομή είναι και η δομή Widmanstätten (Βιντμανστάτεν) που δημιουργείται όταν ο χάλυβας ψυχθεί απότομα από την θερμοκρασία ωστενιτοποίησης σε θερμοκρασία κατά λίγο χαμηλότερη. Υπό αυτές τις συνθήκες, ο δημιουργείται φερρίτης που έχει μορφή μεγάλων σφηνών που διασταυρώνονται, καθώς αναπτύσσεται κατά μήκος ορισμένων κρυσταλλογραφικών επιπέδων. Ο φερρίτης είναι επίσης το κύριο συστατικό του μετασταθούς μπαινίτη, ο οποίος δημιουργείται όταν ο ρυθμός ψύξης είναι κάπως μεγαλύτερος, ώστε να αποφευχθεί η δομή Widmanstätten. Μαρτενσίτης δεν δημιουργείται όταν η τελική θερμοκρασία ψύξης δεν είναι αρκετά χαμηλή.[3]

Τέλος, λίγα πράγματα για τον περλίτη, καθώς το υλικό μας, το οποίο εξετάσαμε στην παρούσα διπλωματική εργασία, ήταν κοινός ανθρακούχος χάλυβας με κύρια φάση τον φερρίτη και –ελάχιστους μεν, υπαρκτούς δε- κόκκους περλίτη.

Ο περλίτης είναι μικρογραφική δομή του χάλυβα που αποτελείται από εναλλασσόμενα φύλλα («λαμέλες») φερρίτη (α-Fe) και σεμεντίτη (Fe₃C). Η σύστασή του είναι: 88,5% κ.β. φερρίτης και 11,5% κ.β. σεμεντίτης. Ο περλίτης σχηματίζεται κατά τον ευτηκτοειδή μετασχηματισμό του ωστενίτη (γ-Fe), όταν η θερμοκρασία είναι χαμηλότερη από 727°C. Η ευτηκτοειδής σύσταση του ωστενίτη είναι 0,77% κ.β. C. Η ονομασία του περλίτη οφείλεται στο γεγονός ότι στο μικροσκόπιο παρουσιάζει λαμπερή εμφάνιση με ζώνες όπως το μάργαρο (σεντέφι), το υλικό δηλαδή που κάνει τα μαργαριτάρια να αστράφτουν. Επειδή περιέχει πολύ φερρίτη, ο περλίτης είναι και αυτός όλκιμος. Η σκληρότητά του είναι κάπως υψηλότερη και κυμαίνεται από 200 έως 250 HB (Brinell).

Γενικά, ένα ιδανικό μαλακό μαγνητικό υλικό έχει μηδενικό πεδίο (H_c), πολύ μεγάλη μαγνήτιση κόρου (B_{κop}), μηδενική παραμένουσα μαγνήτιση (B_r), μηδενικές απώλειες υστέρησης και πολύ μεγάλα μ_{r,max} και μ_{ri}. Ο καθαρός σίδηρος, παρ' ότι είναι μαλακό μαγνητικό υλικό, δεν χρησιμοποιείται στις ηλεκτρικές μηχανές (εκτός από ορισμένες ειδικού τύπου εφαρμογές σε ηλεκτρονόμους) λόγω της μεγάλης αγωγιμότητάς του που, υπό συνθήκες επιβολής μεταβαλλόμενων πεδίων, επιτρέπει τη δημιουργία δινορρευμάτων. Τα επαγόμενα δινορρεύματα στο σίδηρο δημιουργούν ανεπιθύμητες απώλειες Joule (Rl²). Η προσθήκη ενός μικρού ποσοστού πυριτίου στο σίδηρο (πυρίτιο-σίδηρος), δημιουργεί το υλικό που είναι γνωστό και ως πυριτιούχος χάλυβας, ο οποίος έχει μεγαλύτερη ειδική αντίσταση, μειώνοντας έτσι τα επαγόμενα δινορρεύματα. Ο πυριτιούχος χάλυβας χρησιμοποιείται ευρέως στους μετασχηματιστές ισχύος και στις ηλεκτρικές μηχανές (λαγανας), μηχανές. Γενικά πάντως για τον εμπορικό σίδηρο (προσμίξεις από 0,2% και κάτω) παρουσιάζονται μεγάλα δινορρεύματα απωλειών και: μ₀H_c < 10⁻⁴, B_{κop} = 2,2, B_r < 0,1, μ_{ri} = 150, μ_{r,max} = 10⁴ και W_h = 250.

Οι φερρίτες είναι σιδηρομαγνητικά υλικά και είναι συνήθως ανάμικτα οξείδια μεταβατικών μετάλλων, ένα από τα οποία είναι ο σίδηρος. Ο φερρίτης Mn για παράδειγμα έχει χημικό τύπο MnFe₂O₄ και ο φερρίτης MgZn χημικό τύπο Mg₁. _xZn_xFe₂O₄. Τα υλικά αυτά είναι συνήθως μονωτές και επομένως δεν αναπτύσσονται

σε αυτά δινορρεύματα απωλειών. Τα υλικά αυτά είναι χρήσιμα σε εφαρμογές υψηλών συχνοτήτων, όπου οι απώλειες λόγω δινορρευμάτων καθιστούν απαγορευτική τη χρήση οποιουδήποτε υλικού με μη μηδενική αγωγιμότητα. Μολονότι χαρακτηρίζονται από υψηλή αρχική διαπερατότητα και χαμηλές απώλειες, δεν έχουν το ίδιο μεγάλη μαγνήτιση κόρου όσο οι σιδηρομαγνήτες, και επιπλέον η θερμοκρασία χρήσεώς τους (που καθορίζεται από τη θερμοκρασία Curie) είναι μικρότερη. Υπάρχουν πολλοί τύποι εμπορικών φερριτών. Ανάλογα με την εφαρμογή που θα χρησιμοποιηθούν, διαφέρουν στις αντοχές απωλειών τους και στο εύρος συχνοτήτων λειτουργίας. Οι φερρίτες MnZn για παράδειγμα έχουν υψηλή αρχική διαπερατότητα αλλά είναι χρήσιμοι μόνο μέχρι το 1MHz, ενώ οι φερρίτες NiZn από την άλλη έχουν μεν μικρότερη αρχική διαπερατότητα αλλά μπορούν να χρησιμοποιηθούν μέχρι τα 200MHz. Η αρχική διαπερατότητα μειώνεται εν γένει στην περιοχή των υψηλών συχνοτήτων αυξανόμενης της συχνότητας. Ενδεικτικές εφαρμογές: εφαρμογές HF μικρών απωλειών. Η χαμηλή αγωγιμότητά τους εν ολίγοις συνεπάγεται πολύ μικρά δινορρεύματα απωλειών. Αξιοποιούνται σε μετασχηματιστές HF, σε επαγωγείς και σε κεφαλές εγγραφής. $\mu_0 H_c = 10^{-5}$, $B_{kop} = 0,4$, $B_r < 0,01$, $\mu_{ri} = 2x10^3$, $\mu_{r, max} = 5x10^3$ και $W_h < 0,01$.

Πειραματικό Μέρος:

Α. Δείγματα και μεταλλογραφική προετοιμασία:

Τα δείγματά μας, 12 στον αριθμό, είναι δοκίμια κοινού ανθρακούχου χάλυβα Stahl37 με ποσοστό εμπεριεχομένου άνθρακα κάτω από 0,1% και ακόμα λιγότερες λοιπές προσμίξεις, φερριτο-περλιτικός από άποψη αναμενόμενων εμπεριεχομένων φάσεων. Παρακάτω αναφέρω με τη σειρά τις διαδικασίες παραμόρφωσης και προετοιμασίας των δειγμάτων, με τη σειρά που ακολουθήθηκαν:

1. Ενδοτράχυνση με τη μέθοδο της ψυχρής έλασης:

Η ενδοτράχυνση ή εργοσκλήρυνση είναι μέθοδος αύξησης της αντοχής και της σκληρότητας ενός μεταλλικού υλικού (μετάλλου ή κράματος) με παραμόρφωση πέρα από το όριο διαρροής. Η ενδοτράχυνση έχει ιδιαίτερη σημασία στην μεταλλοτεχνία του χάλυβα, όταν το μέταλλο αυτό υποβληθεί σε ψυχρή κατεργασία, δηλ. σε πλαστική παραμόρφωση υπό θερμοκρασία χαμηλότερη από το μισό της θερμοκρασίας τήξης. Η παραμόρφωση πέρα από το όριο διαρροής οδηγεί σε δραματική αύξηση της πυκνότητας των διαταραχών — γραμμικών και διεπιφανειακών — στο εσωτερικό των κρυστάλλων του υλικού. Καθώς μεγαλώνει η παραμόρφωση του υλικού, οι διαταραχές μετακινούνται (ολισθαίνουν), τέμνονται, αλληλεπιδρούν μεταξύ τους και συσσωρεύονται σε ορισμένα σημεία, με αποτέλεσμα να εμποδίζει η μία την κίνηση της άλλης. Με την αύξηση της πυκνότητας των ατελειών, την αλλαγή της κατανομής τους και την παρεμπόδιση της κίνησής τους, το υλικό χάνει την ολκιμότητά του και γίνεται πιο σκληρό (κάτι που αναμένεται να διαπιστώσουμε και στις μετρήσεις σκληρότητας, που μετά θα συσχετίσουμε με τα αποτελέσματα από το Barkhausen noise analysis). Η ενδοτράχυνση με ψυχρή ολκή, έλαση ή άλλη μηχανική κατεργασία προκαλεί αύξηση της σκληρότητας του μετάλλου ή κράματος, επιμήκυνση των κόκκων (κρυστάλλων) κατά την διεύθυνση της παραμόρφωσης και, επομένως, ανισοτροπία στο υλικό.

Τα δοκίμιά μας έχουν υποστεί ψυχρή έλαση σε διαφορετικούς βαθμούς το κάθε ένα: ένα δοκίμιο υπέστη 0% μείωση διατομής (reduction of cross-section), ώστε να είναι το μέτρο σύγκρισής μας, 2 δοκίμια 5%, 2 δοκίμια 10% μείωση διατομής, 1 δοκίμιο 13%, 2 δοκίμια 15%, 2 δοκίμια 20%, 1 δοκίμιο 26% και 1 δοκίμιο 34% μείωση.

2. Εγκιβωτισμός:

Ο εγκιβωτισμός συνίσταται στην επιλεκτική επικάλυψη του μεταλλικού δοκιμίου μας με πολυμερές υλικό, προκειμένου να αυξήσουμε το μέγεθός του και να το χειριζόμαστε ευκολότερα στις περαιτέρω διεργασίες. Γίνεται σε πρότυπους κυλίνδρους, με το δοκίμιο τοποθετημένο στο κέντρο. Χρησιμοποιήθηκε ρητίνη 2-Hydroxypropyl methacrylate, με αναλογία 2 μέρη σκόνη και 1 μέρος υγρό κατ' όγκο, με ισχυρή ανάδευση για 30 δευτερόλεπτα και έπειτα αφού μοιράστηκε το μίγμα ομοιόμορφα σε 12 καλούπια των 20-25mL, με τα δοκίμια ήδη στον πάτο, αφέθηκε για 15 λεπτά προκειμένου να στερεοποιηθεί.

Η χημική αντίδραση του πολυμερισμού συνίσταται στην εξουδετέρωση των ελεύθερων ριζών των ακόρεστων μονομερών, χωρίς καμία αποβολή προϊόντων αντίδρασης. Το σχηματιζόμενο υλικό έχει την ίδια χημική σύσταση με την πρώτη ύλη και ένα πολλαπλάσιο μοριακό βάρος του αρχικού. Κατά τη χημική αντίδραση διασπώνται οι διπλοί και οι τριπλοί δεσμοί και έτσι μπορούν πολλά μονομερή μόρια να συνδεθούν μεταξύ τους και να σχηματίσουν μόρια μεγάλου μοριακού βάρους. Η συγκολλητική ύλη που προκύπτει έχει μεγαλύτερη συγκολλητική ικανότητα και προσφύεται ισχυρότατα επάνω σε οποιαδήποτε επιφάνεια. Είναι στεγανή στο νερό και δεν επηρεάζεται από ελαφρά οξέα, λίπη, έλαια και άλλες χημικές ουσίες.

3. Λείανση:

Η λείανση πραγματοποιήθηκε σε οριζόντιο, υδρόψυκτο, μονοαξονικά περιστρεφόμενο τροχό, πάνω στην οποία τοποθετήσαμε λειαντικά χαρτιά σταδιακά αυξανόμενης κοκκομετρίας, καθώς προχωρούσε η λείανση των δοκιμίων. Ξεκινήσαμε με χαρτί των 800 κόκκων ανά τετραγωνική ίντσα και προχωρήσαμε στα 1200 και προς το τέλους, μόνο όταν τα δοκίμιά μας προορίζονταν για SEM και μέτρηση μικροσκληρότητας, στους 2500 κόκκους/inch² (ονομαστική πυκνότητα κόκκων). Όσο αυξάνεται ο αριθμός των κόκκων ανά μονάδα επιφάνειας, τόσο μικραίνει το μέγεθος των κόκκων και λεπταίνει το λειαντικό χαρτί. Άρα στην πρώτη λείανση χρησιμοποιήσαμε το χονδρότερο χαρτί και το λεπτότερο προς το τέλος, όσο τα δοκίμιά μας αποκτούσαν όλο και πιο λεία επιφάνεια. Το υλικό των λειαντικών χαρτιών μας ήταν καρβίδιο του πυριτίου (Silicon Carbide), ένα κρυσταλλικό υλικό σχεδόν το ίδιο σκληρό με το διαμάντι και ιδιαίτερα πυρίμαχο. Χρόνος παραμονής σε κάθε χαρτί ήταν, για το χαρτί των 800 κόκκων ανά τετραγωνική ίντσα, 5 λεπτά ενώ για τα μεγαλύτερα 10 λεπτά, στο αυτόματο με στροφές 100rpm.

Το χαρτί μας κόπηκε σε σχήμα κυκλικό, στο μέγεθος της κεφαλής του λειαντικού μηχανήματος, προκειμένου να έχουμε τη βέλτιστη εφαρμογή και επιπεδότητα του χαρτιού και το στερεώσαμε με στεφάνι. Επίσης δεν παραλείψαμε να παρέχουμε συνεχώς στην επιφάνεια λείανσης νερό. Η ελεγχόμενη παροχή νερού βοηθά στην απαγωγή θερμότητας από το δοκίμιο και την απομάκρυνση γρεζιών. Κατά τη διάρκεια της όλης διαδικασίας δεν υπάρχει γενικά κίνδυνος οξείδωσης του μεταλλικού δοκιμίου. Όμως μετά το πέρας της λείανσης, επειδή η λειασμένη επιφάνεια έρχεται σε επαφή με τον ατμοσφαιρικό αέρα, επιβάλλεται απομάκρυνση του νερού και καθαρισμός αλλιώς κινδυνεύει να αλλοιωθεί. Άρα λοιπόν, μετά τη λείανση, το δοκίμιο ξεπλύθηκε με νερό, καθαρίστηκε με αιθανόλη και στεγνώθηκε με παροχή κρύου αέρα (όχι θερμό αέρα για να αποφύγουμε οποιαδήποτε θερμική επεξεργασία) με το δοκίμιο υπό γωνία ώστε να φεύγει ελεύθερα το νερό, με τη βοήθεια της βαρύτητας.

Η λείανση, μαζί με το στάδιο της στίλβωσης και σε περιπτώσεις με υψηλότερες απαιτήσεις ως προς την καθαρότητα της εικόνας της επιφάνειας των δοκιμίων, ήταν παρεμβαλλόμενα στάδια, πριν σχεδόν από κάθε διαδικασία, δηλαδή πραγματοποιήθηκαν πριν και την μακρο-σκληρομέτρηση Vickers, και την μέτρηση Barkhausen noise, τη μικροσκληρομέτρηση, τη μελέτη στο SEM και πριν την φωτογράφιση των δειγμάτων στο οπτικό μικροσκόπιο.

4. Στίλβωση:

Πρόκειται ουσιαστικά για λείανση αλλά σε επίπεδο μm. Πραγματοποιήσαμε στίλβωση με στόχο την εξαφάνιση όλων των λειαντικών γραμμών και να καταστήσουμε την επιφάνεια του δοκιμίου όσο γίνεται πιο επίπεδη και ομαλή, σαν καθρέφτη. Η διάταξη είναι πάλι οριζόντιος μονοαξονικά περιστρεφόμενος τροχός, χωρίς να είναι υδρόψυκτος.

Ξεκινήσαμε με αδαμαντόπαστα με μέγεθος διαμαντόκοκκων 6μm (κίτρινου χρώματος διαμαντόπαστα). Διασπείραμε ομοιόμορφα τη πάστα πάνω σε ειδικό ύφασμα, το οποίο είναι πολύ απαλό, με υφή παραπλήσια της τσόχας, το οποίο τοποθετήσαμε σε περιστρεφόμενη κεφαλή. Ταυτόχρονα παρείχαμε πάνω στο πανί στίλβωσης υγρό στίλβωσης, ούτως ώστε να έχουμε καλή διασπορά των κόκκων και διατήρηση της επιφάνειας του πανιού όσο πιο λεία γινόταν. Αν η επιφάνεια του πανιού δεν είναι λεία υπάρχει κίνδυνος δημιουργίας ανεπιθύμητων γραμμών στο δοκίμιο και καταστροφή του. Περιστρέψαμε λοιπόν την κεφαλή με ταχύτητα περίπου 100rpm (στροφές/min) για 15 λεπτά για κάθε δοκίμιο, στο αυτόματο, και κρατήσαμε σε σταθερή επαφή το δοκίμιο με το περιστρεφόμενο πανί στίλβωσης, χωρίς άσκηση πίεσης και με περιστασιακή παροχή ποσότητας υγρού, όποτε στεγνώνει η επιφάνεια του πανιού, γίνεται πιο τραχιά και καθιστά τη στίλβωση δυσχερή. Αφού στιλβώσαμε με αδαμαντόπαστα 6μm επαναλάβαμε την όλη διαδικασία και με αδαμαντόπαστα με μέγεθος διαμαντοκόκκων 1μm. Τέλος ξεπλύναμε και καθαρίσαμε απαλά την επιφάνεια του δοκιμίου μετά το πέρας της στίλβωσης.

5. Χημική προσβολή:

Το τελευταίο στάδιο της μεταλλογραφικής προετοιμασίας. Είναι η επιλεκτική κατανάλωση/αντίδραση και «φάγωμα» των ορίων των κόκκων του μεταλλικού δοκιμίου μας. Επειδή τα όρια των κόκκων είναι άτομα που δεν κατάφεραν να μπουν σε κατάλληλες πλεγματικές θέσεις, λόγω της ανάπτυξης και σύγκρουσης των κόκκων μεταξύ τους κατά την κρυστάλλωση, είναι ενεργειακά αναβαθμισμένα και έτσι αντιδρούν πιο έντονα με χημικές ουσίες. Έτσι με την εμβάπτιση ενός μεταλλικού δοκιμίου σε ένα κατάλληλο αντιδραστήριο (κάποιο οξύ λόγου χάρη), με παροχή ρεύματος (ηλεκτροχημική προσβολή) ή χωρίς (απλή χημική προσβολή) τα όρια των κόκκων αντιδρούν και καταναλώνονται πιο γρήγορα από τους κρυστάλλους του υλικού. Έχουμε δηλαδή διαφορετική επιδεκτικότητα/ανεκτικότητα σε προσβολή, λόγω της διαφορετικής χημικής σύστασης και κρυσταλλογραφίας. Έτσι παρουσιάζεται μια ανομοιογένεια στο ανάγλυφο της επιφάνειας του δοκιμίου, καθώς εκεί που είναι τα όρια (οι διεπιφάνειες) των κόκκων έχουμε «σκάψιμο» της επιφάνειας. Έτσι έμμεσα καθιστούμε ορατούς τους κόκκους στο οπτικό μικροσκόπιο. Η ηλεκτρολυτική προσβολή επιλέγεται όταν το δοκίμιό μας είναι υλικό που δεν προσβάλλεται εύκολα, π.χ. ανοξείδωτος χάλυβας, και προϋποθέτει κατάλληλη εγκιβώτιση δοκιμίου, ώστε να εξέχει το ένα άκρο του, προκειμένου να μπορούμε να το συνδέσουμε με ηλεκτρόδιο και πηγή ρεύματος. Γενικά πάντα ξεκινάμε με το πιο

δραστικό αντιδραστήριο και το λιγότερο χρόνο εμβάπτισης, προκειμένου να μην προσβληθεί υπερβολικά το δοκίμιο, χωρίς δηλαδή να «καεί».

Για τα 12 δοκίμιά μας χρησιμοποιήσαμε διάλυμα Nital 2% κατ' όγκο, δηλαδή νιτρικό οξύ αραιωμένο σε αιθανόλη σε αναλογία 2mL – 98mL αιθανόλη . Εμβαπτίσαμε τα δοκίμιά μας και τα κρατήσαμε μέσα στο αντιδραστήριο για περίπου 15sec (κατά μέσο όρο, καθώς κάθε δείγμα είχα διαφορετικό βαθμό παραμόρφωσης, άρα διαφορετική διαβάθμιση των κόκκων, άρα κατ' επέκταση και διαφορετική ταχύτητα και ένταση αντίδρασης με το Nital, διότι ως γνωστόν, όσο μεγαλύτερη η πλαστική παραμόρφωση, τόσο γρηγορότερη η αντίδραση). Έπειτα τα καθαρίσαμε και στεγνώσαμε για να θέσουμε τέλος στη χημική προσβολή. Η επιφάνεια που προσβάλλαμε θάμπωσε και σκούρυνε ελαφρώς, ένδειξη του ότι πετύχαμε ικανοποιητική προσβολή.

Β. Πειραματικές διατάξεις:

Παρακάτω περιγράφω συνοπτικά γενικά τις πειραματικές διατάξεις που χρησιμοποιήθηκαν με τη σειρά που πραγματοποιήθηκαν.

1. Διάταξη μέτρησης Barkhausen noise:

Χρησιμοποιήθηκε μια διάταξη σημειακής μέτρησης, η οποία αποτελείτο από:

- έναν ηλεκτρομαγνήτη που τροφοδοτείται με ρεύμα διέγερσης σταθερής συχνότητας 10 Hz και διεγείρει με πεδίο το υπό εξέταση υλικό
- 2. πηνίο τυλιγμένο στον πυρήνα του ηλεκτρομαγνήτη μέσω του οποίου ελέγχεται η σωστή ηλεκτρομαγνητική σύζευξη του αισθητήρα με το δοκίμιο (μεγιστοποιείται η ένδειξη του) και ταυτόχρονα παρέχει μια επιπλέον ποιοτική πληροφορία σχετικά με τη μαγνητική διαπερατότητα του υπό εξέταση υλικού, το οποίο εφεξής θα ονομάζεται πηνίο διαπερατότητας και η αντίστοιχη μέτρηση «ενδεικτική μέτρηση μαγνητικής διαπερατότητας» και
- 3. ένα πηνίο λήψης τοποθετημένο στο ενδιάμεσο μεταξύ των δύο πόδων του πυρήνα του ηλεκτρομαγνήτη στο οποίο είναι ενσωματωμένος ραβδόμορφος φερρίτης, ο οποίος αφενός έχει τη δυνατότητα να μεταβάλλει την απόστασή του καθ' ύψος και να προσαρμόζεται στην επιφάνεια του δείγματος όταν αυτό έχει μικρές επιφανειακές ανωμαλίες και αφετέρου ενισχύει το σήμα από το πηνίο λήψης (η όλη διάταξη θα ονομάζεται εφεξής διάταξη BHN)
- 4. μια γεννήτρια παραγωγής τριγωνικού εναλλασσόμενου ρεύματος 10 Hz και δυνατότητα ρύθμισης της ενίσχυσης του (dB) ώστε να βελτιστοποιείται η απόκριση του σήματος ανάλογα με το υπό εξέταση υλικό (σκληρό ή μαλακό μαγνητικό υλικό) και
- 5. μια κάρτα συλλογής δεδομένων (DAQ) που λαμβάνει, και ενισχύει το σήμα της διάταξης BHN και στην συνέχεια δίνει ως εξόδους τρεις ενδείξεις, τον αριθμό των σημείων τομής ενός κατωφλίου τάσης με τον BHN ο οποίος δείχνει τον αριθμό των παλμών Barkhausen πάνω από αυτό το κατώφλι (counts), την ενεργό τιμή του σήματος Barkhausen (rms) και την ενδεικτική μέτρηση μαγνητικής διαπερατότητας. Η διάταξη έχει τη δυνατότητα να μεταβάλλει το κατώφλι τάσης σε 6 διαφορετικά επίπεδα.[5][6]

2. Διάταξη μέτρησης σκληρότητας Vickers:

Η σκληρότητα είναι μια σύνθετη και αρκετά ακαθόριστη ιδιότητα που σχετίζεται με τη συνοχή και την αντίσταση που προβάλλει ένα σώμα στη διείσδυση. Η σκληρότητα ενός μετάλλου μετριέται με τη διείσδυση ενός σκληρού εκτυπωτικού εργαλείου μέσα στη μάζα του. Το εργαλείο αυτό έχει μικρές διαστάσεις, ώστε η δοκιμή είναι γενικά μη καταστρεπτική και για αυτό συνηθισμένη και πολύ χρήσιμη. Η μέθοδο Vickers είναι η εξής: μια πυραμίδα από διαμάντι με τετραγωνική βάση και γωνία κορυφής 136° πιέζεται με δύναμη P στη λειασμένη επιφάνεια του μετάλλου. Η σκληρότητα Vickers (HV ή DPN = diamond pyramid number) προκύπτει αν διαιρέσουμε το φορτίο P(kp) με την επιφάνεια της κοιλότητας του αποτυπώματος s(mm²), με διαγώνιο d. Η σκληρότητα Vickers είναι σταθερή μέσα σε μια μεγάλη περιοχή μεταβολής του φορτίου P, από 1 ως 120kp, με την προϋπόθεση ότι η γωνία της κορυφής είναι 136°. Για αυτό και η μέθοδος αυτή θεωρείται σαν η πιο αντικειμενική και επιστημονική. Σε μεγαλύτερες σκληρότητες, αντίθετα με άλλες μεθόδους όπως π.χ. Brinell, η διαμαντένια πυραμίδα δεν παραμορφώνεται. Έτσι η δοκιμή Vickers είναι η μόνη που χρησιμοποιείται στα πολύ σκληρά υλικά.

Η τιμή της σκληρότητας κατά Vickers προκύπτει από την χρήση του τύπου HV=1,854 (F/D^2) όπου F είναι το φορτίο εφαρμογής (σε Kgr) και D^2 η επιφάνεια του αποτυπώματος (σε mm²).

Μερικά από τα πλεονεκτήματα της μεθόδου αυτής είναι οι ιδιαίτερα αξιόπιστες μετρήσεις, η χρήση μόνο ενός τύπου διεισδυτή η δυνατότητα μέτρησης σκληρών, μαλακών ακόμα και κεραμικών υλικών. Σαν μειονεκτήματα μπορούν να θεωρηθούν το μεγάλο κόστος αγοράς καθώς και η ανάγκη για πολύ καλή προετοιμασία – λείανση του δοκιμίου.[7]

3. Ηλεκτρονική Μικροσκοπία Σάρωσης (SEM) Αρχή λειτουργίας:

Η ηλεκτρονική μικροσκοπία (electron microscopy) κάνει χρήση των ιδιοτήτων των ηλεκτρονίων καθώς αυτά οπισθοσκεδάζονται από ένα σώμα ή διέρχονται μέσα από αυτό. Η υπεροχή ενός ηλεκτρονικού μικροσκοπίου εν συγκρίσει με ένα οπτικό στηρίζεται στα εξής. Ένα οπτικό μικροσκόπιο μας επιτρέπει μεγέθυνση εκατοντάδων φορών. Ωστόσο η ελάχιστη λεπτομέρεια που μπορεί να διακριθεί είναι περίπου 200 nm , όριο το οποίο το θέτει η κυματική φύση του ορατού φωτός και το ελάχιστο μήκος κύματος του. Αντιθέτως, ένα ηλεκτρονικό μικροσκόπιο εκμεταλλεύεται τη κυματική φύση των ηλεκτρονίων σε μήκη κύματος πολύ μικρότερα. Η τελική μέγιστη ανάλυση είναι της τάξεως του 0,1 nm καθώς υπεισέρχονται περιορισμοί από τη κατασκευή του οργάνου. Σε ένα SEM μικροσκόπιο καθώς το δείγμα σαρώνεται το παραγόμενο σήμα μετατρέπεται σε εικόνα με τη βοήθεια μίας φθορίζουσας οθόνης καθοδικού σωλήνα (cathode ray tube , CRT) καθώς αυτή σαρώνεται με τον ίδιο ρυθμό με το δείγμα. Η μεγέθυνση ορίζεται ως το εμβαδό της οθόνης προς το εμβαδό της περιοχής όπου σαρώνεται. Ένα τυπικό SEM μικροσκόπιο αποτελείται από τα εξής:

- 1. Ένα πολυβόλο ηλεκτρονίων
- 2. Ένα σύστημα ανίχνευσης ηλεκτρονίων καθώς και μια μονάδα απεικόνισης
- 3. Ένα σύστημα κενού
- Το πολυβόλο ηλεκτρονίων (electron gun) παράγει μια έντονη δέσμη

ηλεκτρονίων η οποία εστιάζεται πάνω σε ένα μικρό σημείο στο εξεταζόμενο δείγμα

 - στόχο (target). Η αρχή λειτουργίας του σύντομα έχει ως ακολούθως. Ένα νήμα βολφραμίου (tungsten filament) στο ρόλο της καθόδου θερμαίνεται σε υψηλές θερμοκρασίες μεταξύ 2500 και 2700 Κ με αποτέλεσμα να εκπέμπονται από αυτό ηλεκτρόνια καθώς τα ηλεκτρόνια των εξωτερικών στοιβάδων αποκτούν αρκετή ενέργεια ώστε να υπερνικήσουν το έργο εξόδου. Αυτό ο τύπος πολυβόλου ονομάζεται θερμιονικός εκπομπός (thermionic emitter). Τα ηλεκτρόνια αυτά επιταχύνονται προς ένα διάφραγμα το οποίο διατηρεί υψηλά θετικό δυναμικό. Σπανιότερα χρησιμοποιείται εκπομπός πεδίου (field emitter) όπου τα ηλεκτρόνια αναγκάζονται να διαφύγουν από πολύ λεπτή ακίδα καθώς αυτή βρίσκεται σε διαφορά δυναμικού αρκετά μεγάλη ώστε να ηλεκτρόνια να διαφύγουν του υλικού μέσω του φαινομένου σήραγγας. Επιστρέφοντας στον πρώτο τύπο, το νήμα βρίσκεται στο εσωτερικό ενός συγκλίνοντα ηλεκτροστατικού φακού όπου αναλαμβάνει να εστιάσει τα παραγόμενα ηλεκτρόνια και με τη βοήθεια του διαφράγματος παράγεται τελικά μία αποκλίνουσα δέσμη ηλεκτρονίων περιορισμένης διαμέτρου. Ο φακός αυτός ονομάζεται Wehnelt cap και διατηρεί αρνητικό δυναμικό. Το μήκος κύματος της δέσμης των ηλεκτρονίων καθορίζεται από τη διαφορά δυναμικού V μεταξύ καθόδου και ανόδου. Τα ηλεκτρόνια σε τέτοιο δυναμικό αποκτούν κινητική ενέργεια eV. Η ποιότητα της εικόνας εξαρτάται κυρίως από

- 1. Το μέγεθος της διατομής της ακτίνας (όσο πιο μικρό τόσο το καλύτερο)
- Το σχήμα της διατομής της ακτίνα (υπό ιδανικές συνθήκες πρέπει να είναι κυκλικό)
- Η μέγιστη ένταση της δέσμης ηλεκτρονίων (όσο πιο έντονη τόσο το καλύτερο).

Σύστημα κενού είναι απαραίτητο προκειμένου να παραχθούν, ανιχνευτούν και να μετρηθούν τα ηλεκτρόνια. Τυπικές τιμές για το κενό είναι τα 10⁻⁶mmHg. Καθώς η εξερχόμενη από το πολυβόλο δέσμη δεν είναι παράλληλη ένα μαγνητικό πεδίο αναλαμβάνει να εστιάσει τη δέσμη αυτή ακριβώς πάνω στο τελικό διάφραγμα. Το μαγνητικό πεδίο χαρακτηρίζεται από κυλινδρική συμμετρία και δημιουργείται από δύο κατάλληλα διατεταγμένα ζεύγη μαγνητικών πόλων. Τότε έχουμε έναν φακό συμπύκνωσης (condensation lens). Καθώς τα ηλεκτρόνια της δέσμης διέρχονται από το μαγνητικό φακό αναγκάζονται να διαγράψουν ελικοειδή τροχιά. Η σύγκλιση, θα πρέπει ωστόσο να τονιστεί εδώ, ότι δεν είναι τέλεια καθώς τέτοιου είδους φακοί ηλεκτρονίων χαρακτηρίζονται από σφάλματα, όπως εξάλλου και οι οπτικοί φακοί. Διασπορά της ενέργειας των ηλεκτρονίων έχει ως αποτέλεσμα και διαφορετικό σημείο εστίασης αυτών των ηλεκτρονίων. Το φαινόμενο αυτό ονομάζεται χρωματική εκτροπή (chromatic aberration). Επιπλέον, καθώς το μαγνητικό πεδίο είναι ισχυρότερο σε μεγάλες αποστάσεις από τον κεντρικό άξονα τα ηλεκτρόνια δέχονται μεγαλύτερη δύναμη από αυτό με αποτέλεσμα να εστιάζονται σε μικρότερες αποστάσεις. Τότε έχουμε σφάλμα σφαιρικής εκτροπής (spherical aberration). Η μονάδα ανίχνευσης μετράει τον αριθμό των ηλεκτρονίων τα οποία προσπίπτουν σε αυτή και έχει τέτοια θέση έτσι ώστε μόνο ηλεκτρόνια από το δείγμα να ανιχνεύονται. Επιπλέον, η ποιότητα της τελικής εικόνας εξαρτάται και από τον ανιχνευτή κατά τους εξής τρόπους:

- 1. Την ευαισθησία του (υψηλότερη τόσο το καλύτερο)
- 2. Το επίπεδο θορύβου του (είναι επιθυμητό να βρίσκεται σε χαμηλά επίπεδα)

Η σάρωση του δείγματος και η σάρωση της οθόνης γίνονται συγχρονισμένα καθώς χρησιμοποιούν το ίδιο σήμα, σήμα το οποίο παράγεται από κοινή πηγή, τη γεννήτρια σάρωσης (scan generator). Δύο ζεύγη πλακών δημιουργούν δύο μεταβαλλόμενα κάθετα μεταξύ τους και παράλληλα στην επιφάνεια ηλεκτρικά πεδία, με τρόπο που ορίζει η γεννήτρια σάρωσης. Κατά αυτό τον τρόπο επιτυγχάνεται η εστίαση της δέσμης σε κάθε σημείο του δείγματος. Κατά τη διάρκεια της ο ανιχνευτής αναλαμβάνει τη μετάδοση του σε καθοδικού σωλήνα όπου εκεί τα ηλεκτρόνια επιταχύνονται από τη διαφορά δυναμικού η οποία επικρατεί μεταξύ καθόδου και ανόδου και διεγείρουν κάθε σημείο της φθορίζουσας οθόνης τόσο περισσότερο όσο περισσότερα είναι στον αριθμό. Καθώς το δείγμα δεν είναι ανάγκη να βρίσκεται κοντά στο τελικό διάφραγμα μπορούμε να επιτύχουμε ευρύ βάθος εστίασης (depth of focus) αν η μεταξύ τους απόσταση είναι μεγάλη. Όπως είδαμε καθώς η δέσμη των ηλεκτρονίων προσπίπτει στο δείγμα ένα πλήθος διαφορετικής φύσης αλληλεπιδράσεων λαμβάνει χώρα. Τα δευτερεύοντα ηλεκτρόνια όπου παράγονται είναι σχετικά λίγα σε αριθμό κι επομένως χρειάζεται ενίσχυση του ανάλογου σήματος.

Επιπλέον, επειδή οι διευθύνσεις όπου παράγονται είναι τυχαίες πρέπει με κάποιο τρόπο να συλλεχθούν. Για αυτό το σκοπό χρησιμοποιείται μια πλάκα (η πλάκα p του σχήματος αριστερά) υψηλού θετικού δυναμικού όπου έλκει τα δευτερεύοντα ηλεκτρόνια. Κατά την πρόσπτωση τους σε αυτή επιπλέον παράγονται φωτόνια. Τα φωτόνια αυτά προσπίπτουν στην πλάκα Ε του σχήματος και παράγονται ηλεκτρόνια. Με διαδοχικά τέτοια βήματα επιτυγχάνεται ενίσχυση του σήματος. Τα ηλεκτρόνια αυτά παραγόμενα από ένα μικρό βάθος της επιφάνειας του δείγματος, το πολύ 10 nm , φέρουν πληροφορίες για αυτήν αλλά χάνουν την πληροφορία της κατεύθυνσης από όπου προήλθαν καθώς συλλέγονται από διάφορες κατευθύνσεις και οδεύουν προς μία.

Λιγότερα είναι τα οπισθοσκεδαζόμενα ηλεκτρόνια τα οποία έχουν ενέργεια όση αυτή της αρχικής δέσμης. Σε αντίθεση με τα δευτερεύοντα μπορούν να δώσουν πληροφορία για τη δομή της επιφάνειας καθώς περιέχουν την πληροφορία της διεύθυνσης από όπου προήλθαν. Επίσης δεν υπάρχει ανάγκη για ενίσχυση του ήδη ισχυρού σήματος ενώ πριν από την πλάκα βρίσκεται πλέγμα αρνητικού δυναμικού το οποίο εμποδίζει τα δευτερεύοντα ηλεκτρόνια να εισέλθουν στον ανιχνευτή. Οι ακτίνες Χ τέλος, έχοντας ενέργειες χαρακτηριστικές των ατομικών ειδών, ανιχνεύονται δίνοντας πληροφορίες για τη χημική σύσταση του δείγματος. Ένας τρόπος ανίχνευσης στηρίζεται στη μέτρηση της έντασης των παλμών όπου δημιουργούνται καθώς τα εκπεμπόμενα φωτόνια προσπίπτουν σε επαφή p - n δημιουργώντας έτσι ζεύγη οπών-ηλεκτρονίων. Η μέθοδος αυτή ονομάζεται φασματομετρία διασποράς ενέργειας ακτινών X (energy dispersive x - ray spectrometry EDX). [8]

4. Παρατήρηση στο οπτικό μικροσκόπιο:

Το οπτικό μικροσκόπιο λέγεται και σύνθετο γιατί το ουσιαστικό στοιχείο του είναι ένα σύστημα φακών. Επειδή το πιο σημαντικό τμήμα του είναι το οπτικό σύστημα, δηλαδή ένα σύστημα από φακούς κατάλληλα διευθετημένους, οι ιδιότητες του οργάνου ταυτίζονται κατά κύριο λόγο με τις ιδιότητες των φακών που σχετίζονται με το φαινόμενο της διάθλασης του φωτός. Το οπτικό τμήμα αποτελείται από δύο συγκλίνοντα ομοαξονικά συστήματα φακών που αποτελούν τον αντικειμενικό και τον προσοφθάλμιο φακό. Ο πρώτος έχει μικρή εστιακή απόσταση. Το αντικείμενο τοποθετείται λίγο πέρα από την εστία του φακού και έτσι σχηματίζεται είδωλο πραγματικό και ανεστραμμένο. Ο δεύτερος είναι ο φακός με τον οποίο ο παρατηρητής βλέπει το αντικείμενο και χρησιμεύει για να μεγεθύνει την πραγματική εικόνα που δίνει ο αντικειμενικός. Η απόσταση μεταξύ τω 2 φακών πρέπει να είναι μεγαλύτερη από το άθροισμα των εστιακών τους αποστάσεων, ώστε το είδωλο του αντικειμένου να σχηματίζεται ανάμεσα στο οπτικό κέντρο και στην κύρια εστία του προσοφθάλμιου. Κατά συνέπεια προκύπτει φανταστικό είδωλο, μεγεθυσμένο, του πρώτου ειδώλου. Αξιοποιήθηκε για την παρατήρηση των δειγμάτων μετά το πέρας των μεταλλογραφικών διεργασιών (λείανση, στίλβωση, χημική προσβολή), προκειμένου να διαπιστωθεί η επιτυχημένη ή όχι διεκπεραίωσή τους, καθώς και για λήψης μερικών ενδεικτικών εικόνων της μικροδομής αυτών.

Γ. Αποτελέσματα πειραματικών διαδικασιών - Σχολιασμός:

1. Αποτελέσματα μέτρησης Barkhausen noise:

Για κάθε έλασμα/δοκίμιο πραγματοποιήθηκαν 5 μετρήσεις σε 3 σημεία (κέντρο και κοντά στα 2 άκρα του ελάσματος) της κάθε πλευράς τους. Συνολικά για κάθε δοκίμιο πραγματοποιήθηκαν 5(μετρήσεις)x3(σημεία κάθε πλευράς)x2(πλευρές) = 30 μετρήσεις για κάθε threshold, με σύνολο threshold 6. Έπειτα πάρθηκαν οι μέσοι όροι για κάθε ποσοστό μείωσης διατομής (για 0%, 5%, 10%, 13%, 15%, 20%, 26%, 34%) και χαράχθηκαν διαγράμματα ποσοστού πλαστικής παραμόρφωσης-counts, ποσοστού παραμόρφωσης-V1 (τάση/σήμα πηνίου διέγερσης) και ποσοστού παραμόρφωσης-V2 (τάση/σήμα πηνίου λήψης).

Η παράμετρος V1 απεικονίζει την πραγματική ένταση του BE (the effective intensity of the Barkhausen Effect) ή αλλιώς την ενεργό τιμή στου σήματος Barkhausen, τα counts είναι τα peaks του παλμογράφου (οι ηλεκτρικοί παλμοί που σημειώνονται στο πηνίο λήψης που αντιστοιχούν σε μετακινήσεις μαγνητικών τοιχωμάτων), ενώ η παράμετρος V2 αντικατοπτρίζει ουσιαστικά τις συνθήκες μαγνήτισης. Το επίπεδό της εξαρτάται από τη θέση του αισθητήρα, την ποιότητα της επαφής καθώς και από τη μαγνητική διαπερατότητα (permeability) του υπό εξέταση υλικού. Επίσης εξαρτάται και από την κατάσταση του υλικού, την καταπόνησή του και τις παραμένουσες τάσεις: μειώνεται όταν υπάρχουν θλιπτικές τάσεις (compressive stress) και αυξάνεται στην περίπτωση εφελκυστικών (tensile stress). Το γεγονός αυτό καθιστά τη παράμετρο V2 χρήσιμη για την σωστή τοποθέτηση του αισθητήρα και την ποιοτική εκτίμηση του δοκιμίου. Πρακτικά πάντως ουσιαστικά αναπαριστά τη μαγνητική διαπερατότητα. Τέλος τα thresholds είναι οι προκαθορισμένες τιμές τάσης κατωφλιού, μια συγκεκριμένη τιμή τάσης, πάνω από την οποία πρέπει να είναι το σήμα του Barkhausen effect για να καταμετρηθεί και να έχουμε αριθμό συμβάντων (περιστροφές μαγνητικών περιοχών).[9][10]

Οι μετρήσεις παραθέτονται στο τέλος της παρούσας εργασίας, στο παράρτημα, όπως και οι μέσοι όροι των counts, V1 και V2, βάση με τους οποίους χαράχθηκαν τα παρακάτω διαγράμματα, για κάθε threshold.

Threshold = 1:

Threshold = 2:

Threshold = 3:

Threshold = 4:

Threshold = 5:

Threshold = 6:

Παρατηρήσεις:

Από τα διαγράμματα παραμόρφωσης-counts εξάγουμε το συμπέρασμα, κάτι που άλλωστε αναμέναμε, όσο περισσότερο παραμορφώνουμε το υλικό μας τόσα περισσότερα counts σημειώνονται, όσο δηλαδή αυξάνεται ο βαθμός παραμόρφωσης (μείωση διατομής) τόσα περισσότερα άλματα σημειώνονται, δηλαδή περιστροφές μαγνητικών περιοχών. Το γεγονός αυτό μαρτυρά αύξηση των μαγνητικών τοιχωμάτων, άρα αυτό σημαίνει πως σημειώθηκε αύξηση των τοιχωμάτων 180° σε βάρος των 90°, τα οποία είναι λιγότερο ευκίνητα (λόγω των συγκεκριμένων εύκολων αξόνων περιστροφής). Έτσι λοιπόν είχαμε ενίσχυση του θορύβου Barkhausen αλλά και αύξηση της μέσης ελεύθερης απόστασης που τα τοιχώματα μπορούν να διανύσουν.

Παρατηρώντας το διάγραμμα βαθμού παραμόρφωσης-V1 (ενεργό τιμή του BHN) διαπιστώνουμε μια συσχέτιση μεταξύ αυτών των δύο παραμέτρων. Όσο αυξάνεται ο βαθμός παραμόρφωσης παρατηρείται σε γενικές γραμμές μια αύξηση της έντασης του Barkhausen effect.

Τέλος, από το διάγραμμα βαθμού παραμόρφωσης-V2 (ενδεικτική μαγνητική διαπερατότητα υλικού) εξάγουμε το συμπέρασμα ότι όσο περισσότερο παραμορφώνεται πλαστικά ο φερρομαγνητικός κοινός ανθρακούχος χάλυβας που εξετάζουμε τόσο μειώνεται η μαγνητική διαπερατότητα του υλικού. Όπως αναφέραμε και νωρίτερα, η παράμετρος V2 εξαρτάται και από την κατάσταση του υλικού, την καταπόνησή του και τις παραμένουσες τάσεις: μειώνεται όταν υπάρχουν θλιπτικές τάσεις (compressive stress) και αυξάνεται στην περίπτωση εφελκυστικών (tensile stress). Όσο παραμορφώνεται λοιπόν το υλικό μας με τη μέθοδο της ψυχρής έλασης, επιβάλλονται θλιπτικές τάσεις τόσο στην επιφάνεια όσο και σε κάποιο βάθος του υλικού και να σκληραίνει μαγνητικά, με αποτέλεσμα η ενέργεια που χρειάζεται για την εκτροπή των μαγνητικών περιοχών και την περιστροφή τους να είναι μεγαλύτερη.

Γενικά, όπως γνωρίζουμε αλλά και όπως μας αποδεικνύουν τα πειραματικά δεδομένα μας, όσο μεγαλύτερος ο βαθμός παραμόρφωσης του εξεταζόμενου υλικού μας, τόσο αυξάνεται και η πυκνότητα των διαταραχών, άρα κατ' επέκταση και των σημείων αγκύρωσης, που παρεμποδίζουν την κίνηση των τοιχωμάτων υπό την επίδραση επιβαλλόμενου μαγνητικού πεδίου. Άλλωστε, το πιο σημαντικό μικροδομικό χαρακτηριστικό που δρα καταλυτικά, απουσία άλλων παραγόντων όπως προαναφέρθηκε, είναι η πυκνότητα διαταραχών. Τα σημεία αγκύρωσης επιδρούν στην περιστροφή των περιοχών προσθέτοντας ένα ενεργειακό φράγμα στην μετακίνηση σε νέους άξονες εύκολης μαγνήτισης που έχουν την ίδια διεύθυνση με την επιβαλλόμενη τάση και μαγνητική διέγερση. Εξαναγκάζονται δηλαδή οι περιοχές ενεργειακά σε μικρότερη περιστροφή σε άξονα που βρίσκεται πιο κοντά σε σχέση με την αρχική τους θέση με αποτέλεσμα να συμβαίνου και στην περίπτωση των τοιχωμάτων για τα οποία μειώνεται η μέση ελεύθερη απόσταση κίνησής τους.

Από τις μετρήσεις προκύπτει ότι αν και μειώνεται από τη μία η ένταση των φαινομένων από την άλλη αυξάνει ο αριθμός των συμβάντων κάτι το οποίο οδηγεί σε αύξηση του αριθμού των counts.

Όλα τα παραπάνω συμπεράσματα ισχύουν για όλα τα thresholds στα οποία πραγματοποιήθηκαν οι μετρήσεις μας. Η μόνη διαφορά είναι ότι όσο υψηλότερη η τιμή τάσης κατωφλιού που θέτουμε για να μετρήσουμε αριθμό συμβάντων, τόσο μειώνονται τα counts (τα σήματα του πηνίου λήψης, τα άλματα Barkhausen) που έχουν τουλάχιστον αυτή τη τιμή και πάνω.

Γενικά πάντως, ένα από τα δύο σημαντικότερα χαρακτηριστικά ενός υλικού που επηρεάζουν την ένταση του σήματος του Barkhausen noise είναι η πιθανή ύπαρξη διαταραχής λόγω τάσεων παραμόρφωσης, όπου μπορεί με τη σειρά της να διαφοροποιήσει την κατεύθυνση που θα επιλέξουν οι μαγνητικές περιοχές (ή σωστότερα, τα τοιχώματά τους) για να μετακινηθούν κατά τη μαγνήτιση υπό την επίδραση πεδίου. Το φαινόμενο επίδρασης των ελαστικών ιδιοτήτων με την δομή των μαγνητικών περιοχών και των μαγνητικών ιδιοτήτων του υλικού λέγεται μαγνητοελαστική αλληλεπίδραση (magneto elastic interaction). Ως αποτέλεσμα αυτής, σε υλικό με θετική μαγνητοανισοτροπία, όπως ο σίδηρος, κοβάλτιο κλπ, (positive magnetic anisotropy), θλιπτικές τάσεις θα μειώσουν την ισχύ του Barkhausen noise ενώ εφελκυστικές την ενισχύουν. Αυτό το γεγονός μπορούμε να το εκμεταλλευτούμε προκειμένου, μετρώντας την ισχύ του σήματος (intensity of Barkhausen noise) να διαπιστώσουμε την ύπαρξη ή όχι παραμενουσών τάσεων (residual stresses) και ακολούθως την ύπαρξη ή όχι παραμορφωσης, το είδος της, το βαθμό της και να ορίσουμε την κατεύθυνση των κύριων τάσεων (principal stresses).

Το δεύτερο χαρακτηριστικό υλικού που επηρεάζει την ισχύ/πυκνότητα του σήματος Barkhausen έχει να κάνει με τη σκληρότητα, οπότε θα αναφερθούμε σε αυτό παρακάτω, όπου παραθέτω τις μετρήσεις Vickers.

2. Αποτελέσματα παρατήρησης δοκιμίων στο SEM:

Στο ηλεκτρονικό μικροσκόπιο σάρωσης παρατηρήθηκαν ενδεικτικά 5 δοκίμια που υπέστησαν σε διαφορετικά ποσοστό μείωση της διατομής τους με την μέθοδο της ψυχρής έλασης: το δοκίμιο αναφοράς (0%), 10%, 15%, 20% και 26%. Τραβήχτηκαν φωτογραφίες τόσο με secondary όσο και (κυρίως) backscattered electrons (οπισθοσκεδαζόμενα ηλεκτρόνια), ενώ πραγματοποιήθηκαν και στοιχειακές αναλύσεις, τόσο σε μια επιφάνεια, όσο και σημειακά σε διάφορους κόκκους.

Για 0% μείωση διατομής (δοκίμιο αναφοράς):

SEI: δευτερογενών ηλεκτρονίων (μεγέθυνση x500):

BES: Πισωσκεδαζομένων ηλεκτρονίων (μεγεθύνσεις x200, x250, x500, x1000, x2000:

Στοιχειακή ανάλυση (επιφάνειας και σημειακή):

Στις εικόνες των πισωσκεδαζομένων ηλεκτρονίων δεν διακρίνουμε αξιοπρόσεκτες χρωματικές διαφορές μεταξύ των κόκκων αλλά μια σχετική ομοιομορφία, κάτι άλλωστε λογικό και αναμενόμενο, δεδομένου της σύστασης του υλικού (κοινός ανθρακούχος χάλυβας με άνθρακα λιγότερο από 0,1% και ελάχιστες κραματικές προσθήκες. Το αποδεικνύουν άλλωστε και οι στοιχειακές αναλύσεις, που παρουσιάζουν τον Fe ως το κυρίαρχο στοιχείο (σχεδόν 100%).

Παρατηρούμε ότι, όπως άλλωστε γνωρίζαμε, το δοκίμιο αναφοράς μας είναι σχετικά χονδρόκοκκο και αποτελείται κυρίως από φερρίτη. Υπάρχουν και κάποιες υποψίες ύπαρξης περλίτη στα όρια των κόκκων εξαιτίας του πολύ μικρού ποσοστού του εμπεριεχομένου άνθρακα. Επίσης είναι πιθανή η παρουσία σφαιροποιημένου σεμεντίτη, σε ελάχιστα όμως σημεία.

Επίσης πιθανή είναι και η παρουσία κάποιων τάσεων, ακόμα και σε αυτό το μη-παραμορφωμένο δοκίμιο και πιθανότατα οφείλονται στην κατεργασία που υπέστει το υλικό εξ΄ κατασκευής, πριν παραδωθεί σε μας και μελετηθεί.

Τέλος, το σχήμα των κόκκων είναι πολυγωνικό και ομοιόμορφο, δεν παρατηρούνται δηλαδή αξιόλογες μεταβολές στο σχήμα και στις διαστάσεις από κόκκο σε κόκκο, ούτε κάποιος ιδιαίτερος προσανατολισμός.

Δοκίμιο με 10% μείωση διατομής:

Εικόνες πισωσκεδαζομένων ηλεκτρονίων (μεγεθύνσεις x250, x500, x1000, x2000, x2500 και x3500):

Στοιχειακή ανάλυση:

Λόγω της μικρής σχετικά παραμόρφωσης, δεν διακρίνουμε σημαντικές διαφορές ως προς το μέγεθος/προσανατολισμό των κόκκων. Ίσως με μια πιο προσεκτική ματιά να διακρίνουμε σε πολύ μικρό βαθμό κάποιες εννοποιήσεις κόκκων (μεγάλωμα ορισμένων σε βάρος άλλων, που μικραίνουν ακόμα περισσότερο), ίσως και το γεγονός ότι κάποια όρια αρχίζουν και διακρίνονται εντονότερα, λόγω της πίεσης που ασκείται στις διεπιφάνειες επαφής των κόκκων, καθώς αυτοί παραμορφώνονται λόγω της έλασης. Γενικά το ανάγλυφο είναι ελαφρώς εντονότερο εξαιτίας της πλαστικής παραμόρφωσης.

Σε κάποιες φωτογραφίες αυξημένης μεγέθυνσεις διακρίνουμε ελάχιστους κόκκους περλίτη (λόγω των χαρακτηριστικών λεπτών πλακιδίων φερρίτη-σεμεντίτη που εναλλάσσονται, δίνοντάς του ένα χαρακτηριστικό και αναγνωρίσιμο μοτίβο). Μόνο σε αυτούς τους κόκκους παρουσιάζουν οι στοιχειακές αναλύσεις ίχνη άνθρακα, κατά τα άλλα, όπως είναι και το λογικό, η σύσταση παραμένει η ίδια, με τον σίδηρο να είναι σχεδόν κατ' αποκλειστικότητα η κυριάρχη φάση.

Δοκίμιο 15% μείωσης διατομής:

Εικόνες πισωσκεδαζομένων ηλεκτρονίων (μεγεθύνσεις x250, x500, x1000, x1500 και x2000):

Στοιχειακές αναλύσεις:

Μικρές διαφορές με το δοκίμιο με τη 10% παραμόρφωση. Μια από αυτές η πεπλάτυνση των κόκκων και στη μικροδομή. Επίσης παρατηρείται εντονότερα από το προηγούμενο δοκίμιο η ενοποίηση των κόκκων εξαιτίας των θλιπτικών τάσεων που επιβλήθηκαν κατά την ψυχρή έλαση. Αρχίζουν να εμφανίζουνται εντονότερες διαφοροποιήσεις ως προς το μέγεθος και σχήμα από κόκκο σε κόκκο φερρίτη, καθώς κάποιοι κόκκοι μεγαλώνουν συνεχώς εις βάρος άλλων μικρότερων.

Δοκίμιο με 20% μείωση διατομής:

Εικόνες πισωσκεδαζόμενων ηλεκτρονίων (μεγεθύνσεις x250, x500, x1000, x2000, x2500 και x3000):

Στοιχειακές αναλύσεις:

Το φαινόμενο της ενοποίησης των κόκκων είναι πια σαφώς εντονότερο, το υλικό έχει πάψει να είναι όπως το αρχικό χονδρόκοκκο δοκίμιο αναφοράς, οι κόκκοι παρουσιάζουν σημαντικές διαφοροποιήσεις ως προς το σχήμα, τις διαστάσεις, το μέγεθος κλπ, παύει πια να υπάρχει ομοιομορφία. Εξακολουθεί πάντως να μην υπάρχει κάποιος ευκολοδιάκριτος προσανατολισμός των κόκκων ως προς την διεύθυνση έλασης.

Όπως και σε προηγούμενα παραμορφωμένα δοκίμια, έτσι και δω η σύσταση δεν έχει αλλάξει καθόλου, η επικρατούσα φάση είναι φερρίτης, οι στοιχειακές αναλύσεις εμφανίζουν κυρίως Fe, με ελάχιστους μικροσκοπικούς κόκκους περλίτη σε ορισμένα σημεία των ορίων κόκκων, που δίνουν στις αναλύσεις κάποια μικρά peak άνθρακα.

Τα ίδια ουσιαστικά ισχύουν και για το τελευταίο δοκίμιο, με 26% μείωση διατομής, απλά σε μεγαλύτερο βαθμό όσο αφορά τις διαφορές στη μικροδομή των φερριτικών κόκκων, όπως θα δούμε και παρακάτω.

Δοκίμιο με 26% μείωση διατομής:

Εικόνες πισωσκεδαζομένων ηλεκτρονίων (μεγεθύνσεις x250, x500, x1000, x2000, x3000):

Στοιχειακές αναλύσεις:

3. Εικόνες μικροδομής οπτικού μικροσκοπίου:

Στη συνέχεια παραθέτω φωτογραφίες και των 12 δοκιμίων που τραβήχτηκαν στο οπτικό μικροσκόπιο, περισσότερο ως μια συμπληρωματική εικόνα για τη μικροδομή τους, μαζί με αυτές που λάβαμε από το ηλεκτρονικό μικροσκόπιο SEM.

Πρώτο δοκίμιο με 5% μείωση διατομής.

Δεύτερο δοκίμιο με 5% μείωση διατομής.

Πρώτο δοκίμιο με 10% μείωση διατομής.

Δεύτερο δοκίμιο με 10% μείωση διατομής.

13% μείωση διατομής.

Πρώτο δοκίμιο με 15% μείωση διατομής.

Δεύτερο δοκίμιο με 15% μείωση διατομής.

Πρώτο δοκίμιο με 20% μείωση διατομής.

Δεύτερο δοκίμιο με 20% μείωση διατομής.

26% μείωση διατομής.

34% μείωση διατομής.

Σημείωση: τόσο στις εικόνες του ηλεκτρονικού μικροσκοπίου σάρωσης όσο και στο οπτικό μικροσκόπιο παρατηρήθηκαν κάποια μαύρα στίγματα σε διάφορα σημεία ορισμένων δοκιμίων. Αυτό οφείλεται στην αποκόλληση υλικού από αυτά τα σημεία, εξαιτίας ορισμένων προβλημάτων στη διαδικασία προετοιμασίας των δειγμάτων αυτών, και συγκεκριμένα στη φάση της λείανσης.

4. Αποτελέσματα μετρήσεων μακροσκληρότητας Vickers:

Οι μετρήσεις μας, όπως προαναφέραμε, πργματοποιήθηκαν με τη μέθοδο Vickers, αφού προηγήθηκε πρώτα εγκιβωτισμός, λείανση, στίλβωση και χημική προσβολή των δειγμάτων. Τα τοποθετήσαμε στην τράπεζα και κεντράραμε, δηλαδή περιστρέψαμε τη τράπεζα μέχρι να φανούν οι γραμμές της λείανσης καθαρά στο φακό, καθώς οι γραμμές βοηθούν στο να βρεθεί το σωστό σημείο για την σκληρομέτρηση. Επιλέξαμε φορτίο 98Ν ≈ 10kg, κατεβάσαμε τον φακό και τοποθετήσαμε στη θέση του τη διεισδυτική κεφαλή. Κατεβάσαμε την κεφαλή, ασκήσαμε την παραπάνω δύναμη και επαναφέραμε. Στο φακό διακρίναμε, μεγεθυμένο, το αποτύπωμα, το οποίο είχε σχήμα ρόμβου, ήταν θαμπό και ορατό με το μάτι μεν, απειροελάχιστο δε. Μικρό αποτύπωμα δηλώνει μεγάλη σκληρότητα του υλικού. Άρα απαιτείται και μεγαλύτερο φορτίο. Έτσι λοιπόν ρυθμίσαμε το σύστημα να επιβάλλει μεγαλύτερο φορτίο, 196Ν, και πραγματοποιήσαμε 12 μετρήσεις για ελαχιστοποίηση σφάλματος σε κάθε δοκίμιο, με αποστάσεις μεταξύ των μετρήσεων τουλάχιστον 3d και μεγαλύτερες (d η διάμετρος του αποτυπώματος), καθώς μετά από κάθε διείσδυση επηρεάζεται η γύρω περιοχή του αποτυπώματος και οι μετρήσεις μέσα σε αυτή τη περιοχή δεν είναι αξιόπιστες και
αντιπροσωπευτικές του μεταλλικού δοκιμίου μας. Σε κάθε διείσδυση μετρήσαμε την οριζόντια και την κάθετη διάμετρο (d1 & d2) με τη χρήση χάρακα, βγάλαμε τον μέσο όρο τους d και από πίνακες εξάγαμε τη σκληρότητα HV. Όλες οι μετρήσεις πραγματοποιήθηκαν με φορτίο σταθερό στα 196Ν. Πραγματοποιήθηκαν μετρήσεις στα πιο αντιπροσωπευτικά δοκίμια, για 0%, 5%, 10% (2 δοκίμια), 13%, 15%, 20% και 26% μείωση διατομής.

Οι μετρήσεις παραθέτονται στο παράρτημα, στο τέλος της παρούσας εργασίας, όπως και οι μέσοι όροι σκληρότητας για κάθε ποσοστό παραμόρφωση, με βάση τους οποίους χαράκτηκαν τα παρακάτω διαγράμματα, τόσο το διάγραμμα παραμόρφωσης-σκληρότητας, όσο και τα διαγράμματα σκληρότητας-counts, σκληρότητας-V1 και σκληρότητας-V2.

Στη συνέχεια συνδιάσαμε τα πειραματικά μας αποτελέσματα τόσο από το Barkhausen noise όσο και από τη μακροσκληρότητα και τα αποτυπώσαμε στα παρακάτω διαγράματα για κάθε threshold (χρησιμοποιώντας πάντα τους μέσους όρους, τόσο του HV, των counts, V1 και V2, για κάθε ποσοστό παραμόρφωσης). Τα διαγράμματα είναι HV-counts, HV-V1 και HV-V2, με τη σκληρότητα πάντα στον άξονα xx' και την κάθε παράμετρο στον yy'.

Threshold = 1:

Threshold = 2:

Threshold = 3:

Threshold = 4:

Threshold = 5:

Threshold = 6:

Παραητηρήσεις:

Όπως ήταν αναμενόμενο, η ψυχρή έλαση επέφερε ενδοτράχυνση στο δοκίμιό μας, όσο δηλαδή αυξάνεται η πλαστική παραμόρφωση, τόσο αυξάνεται και η μακροσκληρότητα (βλέπε 1° διάγραμμα, ποσοστού παραμόρφωσηςμακροσκληρότητα Vickers, reduction of cross-section-Average HV).

Όμως στα διαγράμματα βλέπουμε και μια μονοτονική συσχέτιση μεταξύ HV και counts, V1 και, λιγότερο, με το V2. Σε γενικές γραμμές παρατηρούμε ότι με την

αύξηση της πλαστικής παραμόρφωσης και όσο ενδοτραχύνεται ο φερρομαγνητικός μας κοινός ανθρακούχος χάλυβας, τόσα περισσότερα συμβάντα λαμβάνουν χώρα (περιστροφές μαγνητρικών περιοχών οι οποίες αντιπροσωπεύονται από τα counts), και τόσο αυξάνεται και η ενεργός τιμή του σήματος Barkhausen (V1), ενώ όπως ήταν αναμενόμενο με την αύξηση της παραμόρφωσης και, κατ' επέκταση, της σκληρότητας, η μαγνητική διαπερατότητα του υλικού μειώνεται. Λογικό, καθώς όσο αυξάνονται οι διαταραχές εξαιτίας της παραμόρφωσης, τόσα περισσότερα σημεία αγκύρωσης προκύπτουν, άρα τόσο πιο δυσχερής και με μεγαλύτερες ενεργειακές απαιτήσεις είναι η περιστροφή των μαγνητικών περιοχών (ή σωστότερα διατυπωμένο, η μετακίνηση των τοιχωμάτων), με αποτέλεσμα να γίνεται δυσκολότερη η μαγνήτιση του υλικού.

Είναι πάντως εντυπωσιακό το γεγονός ότι, παρότι μεταξύ βαθμού παραμόρφωσης και counts, V1 και V2 δεν παρατηρούσαμε κάποια μονοτονικότητα, μόλις συσχετίσαμε τα counts, V1 και V2 με την μακροσκληρότητα, τότε παρατηρήσαμε μονοτονικότητα. Αυτό πρακτικά σημαίνει ότι μπορεί να αξιοποιηθεί και στην πράξη, δηλαδή στη βιομηχανία ή οπουδήποτε αλλού χρειαζόμαστε έναν μη καταστροφικό έλεγχο προκειμένου να διαπιστώσουμε, με τη χρήση του μαγνητικής μεθόδου Barkhausen noise analysis, την κατάσταση του χαλύβδινου προϊόντος μας, όσο αφορά τη σκληρότητά του.

Σε αυτό το σημείο θα να αναφέρουμε το 2° σημαντικό χαρακτηριστικό που δύναται να επηρεάσει το Barkhausen, το οποίο είναι η μικροδομή του υπό εξέταση υλικού και μπορεί να αποδωθεί σε όρους σκληρότητας: η ισχύς του σήματος συνεχώς μειώνεται σε μικροδομές που χαρακτηρίζονται από αύξηση σκληρότητας. Αυτό το στοιχείο μπορεί να αξιοποιηθεί, προκειμένου ο θόρυβος Barkhausen να μας παρέχει πληροφορίες καθοριστικής σημασίας για την κατασκευή μας και συγκεκριμένα για την κατάσταση της μικροδομής του υλικού μας και της καταπόνησής/παραμόρφωσης που μπορεί να υπέστει. [11][12]

Παράρτημα

Μετρήσεις Barkhausen Noise:

Για threshold = 1:

Reduction (%)	Counts	V1	V2
0	3295	321	427
0	3260	311	425
0	3237	313	425
0	3228	315	425
0	3245	315	427
0	3160	307	431
0	3119	311	418
0	3177	313	435
0	3145	307	423
0	3212	311	427
0	3242	311	423
0	3245	313	408
0	3295	313	411
0	3361	317	419
0	3364	317	410
0	3178	289	405
0	3062	289	408
0	3031	281	410
0	2993	283	417
0	2993	279	413
0	3061	295	414
0	2970	293	415
0	3023	307	419
0	3022	293	419
0	3136	303	419
0	3058	295	408
0	3053	299	415
0	2914	287	414
0	3065	291	411
0	3047	297	419
5	4861	448	319
5	4869	441	320
5	4831	443	320
5	4758	435	326
5	4871	454	326
5	3903	406	419
5	3914	387	419
5	3872	388	421

5	3884	389	427
5	3794	391	427
5	3847	413	432
5	3879	408	441
5	3877	409	448
5	3764	410	445
5	3812	400	447
5	4238	363	343
5	4193	361	345
5	4220	363	345
5	4294	367	343
5	4189	367	341
5	4174	495	407
5	4226	491	407
5	4221	489	409
5	4237	483	409
5	4130	487	411
5	4129	472	414
5	4151	476	416
5	4117	472	417
5	4159	473	417
5	4137	476	415
5	4469	503	416
5	4498	509	419
5	4486	507	423
5	4438	505	423
5	4488	510	425
5	5316	528	322
5	5261	530	325
5	5206	529	323
5	5240	526	325
5	5247	530	327
5	4415	528	445
5	4449	532	445
5	4399	522	447
5	4433	528	445
5	4364	528	445
5	4591	534	413
5	4676	518	412
5	4562	517	415
5	4546	520	417
5	4512	522	415
5	4914	482	351
5	4915	487	349
	1010	,	0.0

5	4861	478	351
5	4966	484	349
5	4882	487	351
5	4400	542	419
5	4456	545	421
5	4485	544	421
5	4410	545	429
5	4454	550	427
10	4855	479	373
10	5010	499	375
10	5084	506	371
10	5147	514	373
10	5144	522	375
10	4586	512	384
10	4622	511	384
10	4478	517	391
10	4574	514	394
10	4517	507	394
10	4526	509	441
10	4430	489	435
10	4307	519	437
10	4554	505	427
10	4541	514	414
10	4949	472	345
10	5094	495	361
10	4930	465	349
10	4687	443	349
10	4945	472	353
10	4544	469	395
10	4449	478	397
10	4428	492	411
10	4231	492	423
10	4360	487	409
10	4446	516	468
10	4620	538	441
10	4744	540	433
10	4816	545	429
10	4597	526	437
10	3836	353	379
10	3894	359	389
10	3815	359	397
10	3791	363	397
10	3798	363	398
10	4848	417	301
	1010		001

10	4827	419	297
10	4870	419	297
10	4818	415	299
10	4819	412	299
10	6669	580	279
10	6575	582	283
10	6560	576	283
10	6492	573	283
10	6465	576	285
10	6020	582	299
10	5989	580	299
10	6058	576	299
10	5856	574	297
10	5894	528	299
10	5168	479	328
10	5212	474	331
10	5137	472	331
10	5222	464	331
10	5264	474	329
10	6451	556	345
10	6506	552	341
10	6434	553	343
10	6382	551	349
10	6390	550	353
13	4490	503	387
13	4430	502	395
13	4326	505	395
13	4430	501	394
13	4380	501	396
13	4293	477	386
13	4255	474	387
13	4230	474	385
13	4288	474	381
13	4304	476	379
13	4401	492	407
13	4339	495	413
13	4376	496	411
13	4422	494	411
13	4496	494	409
13	4567	505	383
13	4671	507	373
13	4769	509	365
13	4548	506	384
13	4585	506	379

13	4943	505	353
13	4924	503	355
13	4757	503	363
13	4667	505	359
13	4643	504	361
13	4825	505	365
13	4373	505	398
13	4663	509	379
13	4589	507	375
13	4580	508	373
15	5866	448	320
15	6089	483	329
15	5546	433	325
15	5828	441	323
15	5954	456	341
15	6985	578	299
15	7260	582	299
15	7341	580	299
15	7195	572	305
15	7378	586	305
15	5545	546	321
15	5824	575	320
15	5604	560	320
15	5667	570	320
15	5669	576	320
15	5832	584	321
15	5850	584	323
15	5812	592	315
15	5799	584	323
15	6020	586	315
15	7218	565	335
15	7084	560	337
15	7034	557	328
15	7139	557	329
15	7004	550	326
15	5777	536	347
15	6008	543	345
15	6059	545	345
15	6051	545	347
15	5755	544	351
15	6290	609	323
15	6283	590	322
15	6286	598	320
15	6266	602	321

15	6342	606	315
15	6147	563	325
15	6259	561	325
15	6082	551	336
15	5899	550	329
15	5851	542	330
15	6391	526	329
15	6382	532	328
15	6435	524	331
15	6458	526	331
15	6374	534	333
15	5273	419	331
15	5224	419	333
15	5194	419	335
15	5156	416	337
15	5208	421	336
15	5871	516	303
15	5802	514	305
15	5728	522	307
15	5733	520	307
15	5742	517	305
15	6636	559	349
15	6560	553	348
15	6602	555	347
15	6639	561	347
15	6669	555	347
20	4668	554	367
20	4478	555	371
20	4336	537	384
20	5127	572	355
20	5162	567	355
20	6299	584	305
20	6318	586	303
20	6282	588	305
20	6298	590	303
20	6284	592	305
20	5008	439	329
20	5103	435	331
20	5110	435	331
20	5140	433	331
20	5108	435	329
20	5855	505	331
20	5675	496	329
20	5571	522	333

20	5609	489	335
20	5645	487	336
20	5060	429	325
20	5304	427	326
20	5078	433	326
20	5307	431	327
20	5276	431	327
20	6162	584	299
20	6063	571	297
20	6149	578	297
20	6043	576	321
20	6165	564	305
20	5998	552	327
20	6037	547	329
20	5925	557	333
20	5889	556	331
20	5947	556	329
20	6534	448	315
20	5336	474	335
20	5499	471	341
20	5339	472	345
20	5399	481	341
20	6566	590	325
20	6516	604	329
20	6533	600	327
20	6535	596	329
20	6567	596	329
20	5183	493	369
20	5147	498	365
20	5172	491	367
20	5149	491	367
20	5129	495	367
20	6188	569	323
20	6265	569	325
20	6551	574	333
20	6414	572	331
20	5823	545	320
20	5587	512	307
20	5558	512	311
20	5544	514	313
20	5488	509	311
20	5554	516	313
26	6617	598	317
26	6189	606	325

26	6186	606	329
26	6200	606	331
26	6176	607	333
26	5858	590	331
26	5819	584	330
26	5791	593	333
26	5778	584	335
26	5782	584	335
26	6650	574	333
26	6878	581	335
26	6841	588	334
26	6902	584	335
26	6723	584	338
26	5054	545	398
26	5062	546	400
26	5030	549	398
26	5061	542	401
26	5082	540	401
26	5646	532	347
26	5650	526	347
26	5661	534	349
26	5706	536	349
26	5690	536	347
26	6370	590	305
26	6359	592	305
26	6381	580	305
26	6283	582	305
26	6450	574	307
34	4348	482	447
34	4463	481	447
34	4466	483	448
34	4380	481	447
34	4427	489	448
34	6277	530	333
34	6310	530	333
34	6432	530	329
34	6286	534	332
34	6357	528	331
34	5969	549	317
34	5887	550	320
34	5949	545	321
34	5957	545	321
34	6108	552	323
34	5162	562	441

34	5110	563	444
34	5127	569	441
34	5119	561	440
34	5108	564	443
34	6381	561	299
34	6364	549	301
34	6386	555	301
34	6360	553	303
34	6290	553	305
34	7056	569	325
34	7085	570	327
34	6958	571	326
34	7058	559	326
34	7354	576	337

Average counts/V1/V2:

Reduction (%)	Counts	V1	V2
0	3139,7	302,5333	418
5	4431,5	473,7833	394,5167
10	5071,25	496,3	361,8
13	4518,8	498,1667	383,3667
15	6166,25	538,3	326,1333
20	5684,25	523,0833	330,0833
26	5995,8333	572,4333	341,2667
34	5884,4667	541,4667	361,8667

Για threshold = 2:

Reduction (%)	Counts	V1	V2
0	1327	287	421
0	1301	287	419
0	1321	291	425
0	1333	289	425
0	1358	295	427
0	1303	291	399
0	1358	299	405
0	1362	299	407
0	1348	295	408
0	1375	297	403
0	1299	295	405
0	1337	291	407
0	1364	295	405
0	1321	291	409

0	1289	287	414
0	1433	305	416
0	1519	307	417
0	1486	303	418
0	1494	301	419
0	1493	303	417
0	1561	313	427
0	1553	317	427
0	1524	317	427
0	1551	315	425
0	1589	315	425
0	1613	321	425
0	1615	323	425
0	1604	323	425
0	1634	323	423
0	1629	326	429
5	2653	447	321
5	2721	447	321
5	2704	450	320
5	2704	448	320
5	2760	451	321
5	2251	391	417
5	2277	393	419
5	2218	390	418
5	2217	388	419
5	2225	388	421
5	2411	427	431
5	2387	417	425
5	2315	416	422
5	2299	417	427
5	2324	419	427
5	2180	375	338
5	2138	373	339
5	2174	377	341
5	2145	373	337
5	2187	377	341
5	2679	481	429
5	2694	483	435
5	2687	487	435
5	2697	490	433
5	2709	493	431
5	2613	483	417
5	2659	483	415
5	2646	481	415
5	2646	481	415

5	2653	485	417
5	2641	481	418
5	2763	524	417
5	2822	529	417
5	2773	526	417
5	2837	528	419
5	2775	526	421
5	2828	532	432
5	2741	536	433
5	2758	533	433
5	2795	532	431
5	2807	536	433
5	3179	536	329
5	3155	536	328
5	3187	538	327
5	3215	532	329
5	3154	534	331
5	2813	528	433
5	2810	530	431
5	2826	528	433
5	2795	530	433
5	2743	534	433
5	2874	558	441
5	2901	562	443
5	2885	562	441
5	2858	559	443
5	2814	557	441
5	2804	468	349
5	2764	464	349
5	2744	469	347
5	2588	450	351
5	2656	451	349
10	2852	468	355
10	2862	474	357
10	2850	471	353
10	2891	476	353
10	2910	483	349
10	2446	427	415
10	2422	423	415
10	2459	423	417
10	2461	427	415
10	2447	429	419
10	2839	500	357
10	2784	503	357
J			

10	2782	501	359
10	2818	509	357
10	2849	503	359
10	2626	458	369
10	2651	457	371
10	2667	461	363
10	2671	458	363
10	2644	455	365
10	3070	565	421
10	3055	564	421
10	3037	555	425
10	3075	564	421
10	3121	556	419
10	2627	469	369
10	2641	478	371
10	2676	475	373
10	2619	472	369
10	2645	474	371
10	1902	343	347
10	1900	341	347
10	1927	347	347
10	1912	341	345
10	1883	347	345
10	3402	578	320
10	3422	578	320
10	3386	580	320
10	3411	584	320
10	3393	567	317
10	2131	371	347
10	2129	377	346
10	2157	375	347
10	2189	369	347
10	2182	375	346
10	3549	559	307
10	3477	561	305
10	3472	554	307
10	3489	563	307
10	3541	555	305
10	3013	545	353
10	3077	540	351
10	3072	549	351
10	3076	540	353
10	3010	544	353
10	2928	474	311

10	2974	481	311
10	2910	472	311
10	2901	478	311
10	2901	481	311
13	2591	492	393
13	2642	494	375
13	2650	494	383
13	2633	494	383
13	2646	491	379
13	2423	467	385
13	2461	469	375
13	2379	467	394
13	2459	464	373
13	2422	466	377
13	2544	504	423
13	2543	502	415
13	2525	503	423
13	2521	505	413
13	2649	504	396
13	2622	502	405
13	2825	501	359
13	2781	504	357
13	2805	503	359
13	2758	503	361
13	2632	513	393
13	2619	513	384
13	2707	512	363
13	2650	512	393
13	2593	513	385
13	2800	518	381
13	2867	520	381
13	2753	520	384
13	2758	522	388
13	2852	520	381
15	2889	490	323
15	2981	489	323
15	2978	495	321
15	2947	490	323
15	2932	495	321
15	3383	562	311
15	3429	564	311
15	3496	573	307
15	3455	567	309
15	3384	560	311
10	5567		

15	3402	572	311
15	3378	575	307
15	3360	571	311
15	3479	570	309
15	3420	578	311
15	3477	596	313
15	3496	600	315
15	3488	600	313
15	3489	600	315
15	3506	600	317
15	3252	563	340
15	3269	555	343
15	3236	555	342
15	3229	550	339
15	3272	556	342
15	3239	560	323
15	3312	549	323
15	3360	549	322
15	3244	548	325
15	3240	551	325
15	3858	623	301
15	3907	626	301
15	3797	617	301
15	3747	613	299
15	3831	625	301
15	2879	516	393
15	2900	518	393
15	2912	522	395
15	2873	522	394
15	2840	518	395
15	3325	582	339
15	3345	572	339
15	3338	576	339
15	3333	577	339
15	3276	576	339
15	2416	417	320
15	2421	415	320
15	2422	415	323
15	2394	414	323
15	2472	417	321
15	3207	586	361
15	3191	585	361
15	3201	580	359
15	3258	582	361

15	3263	588	359
15	3011	499	329
15	3056	495	331
15	3079	499	329
15	3085	498	333
15	3058	497	329
20	3288	546	329
20	3277	549	330
20	3341	549	329
20	3263	554	331
20	3284	548	333
20	2499	419	325
20	2473	414	325
20	2483	411	322
20	2497	413	321
20	2484	412	327
20	3332	570	307
20	3395	568	307
20	3337	564	305
20	3328	558	303
20	3381	563	305
20	3273	525	311
20	3283	522	311
20	3315	526	311
20	3288	522	311
20	3303	528	309
20	3469	566	315
20	3350	565	315
20	3465	566	317
20	3460	560	315
20	3514	559	315
20	2732	464	339
20	2781	472	337
20	2752	468	338
20	2809	468	338
20	2717	460	341
20	3169	555	391
20	3176	559	391
20	3231	551	392
20	3184	559	392
20	3183	555	391
20	3304	604	357
20	3320	592	357
20	3289	596	355

3375	592	357
3364	593	357
2427	413	351
2367	412	350
2413	419	353
2401	409	351
2428	415	353
3143	499	320
3180	499	320
3140	501	317
3138	500	317
3232	507	321
2975	511	381
2990	509	381
2923	514	379
2922	501	379
2965	511	381
3329	559	345
3365	555	341
3260	561	341
3335	556	343
3324	565	345
3520	592	337
3485	597	337
3508	596	338
3459	590	337
3474	594	337
3354	562	329
3268	564	327
3362	562	331
3400	562	329
3324	567	327
3381	576	337
3404	572	335
3413	576	336
3440	578	335
3446	578	337
3132	532	329
3167	542	336
3119	542	333
3148	543	336
3196	547	334
3578	580	303
3651	586	301
	3375 3364 2427 2367 2413 2401 2428 3143 3180 3143 3180 3143 3180 3143 3180 3143 3180 3143 3180 3140 3138 3232 2975 2990 2923 2920 2965 3329 3365 3260 3335 3260 3335 3324 3520 3485 3508 3459 3474 3354 3268 3362 3400 3324 3362 3400 33474 3354 3268 3362 3404 3413 <	3375 592 3364 593 2427 413 2367 412 2413 419 2401 409 2428 415 3143 499 3180 499 3140 501 3138 500 3232 507 2975 511 2990 509 2923 514 2922 501 2965 511 3329 559 3365 555 3260 561 3324 565 3520 592 3485 597 3508 596 3459 590 3474 594 3354 562 3262 562 3485 597 3514 562 3268 564 3362 562 3400 562

26	3709	592	303
26	3600	584	301
26	3508	586	303
26	2972	526	345
26	2980	526	345
26	2977	524	345
26	2981	522	345
26	3028	528	345
34	2414	479	412
34	2400	480	413
34	2432	481	411
34	2390	478	411
34	2379	478	412
34	3388	584	301
34	3367	580	301
34	3421	590	303
34	3409	580	303
34	3452	584	303
34	3042	525	337
34	3012	530	336
34	3066	532	335
34	3022	528	336
34	3007	542	337
34	2881	567	441
34	2852	573	441
34	2871	568	443
34	2921	569	443
34	2880	566	445
34	3359	580	327
34	3341	576	329
34	3358	573	329
34	3415	576	331
34	3307	573	331
34	3126	544	305
34	3177	550	305
34	3129	542	301
34	3155	549	301
34	3204	547	301

Average counts/V1/V2:

Reduction (%)	Counts	V1	V2
0	1443,133	303,3667	417,4667
5	2660,533	478,9833	396,4

10	2786,883	480,7833	355,6
13	2637	499,7333	385,3667
15	3211,95	545,8833	330,55
20	3083,75	518,0167	338,85
26	3332,8	564,2	330,4333
34	3039,233	547,4667	354,1333

Για threshold = 3:

Reduction (%)	Counts	V1	V2
0	500	291	460
0	494	293	461
0	470	295	460
0	521	289	460
0	476	293	460
0	528	299	450
0	500	301	450
0	496	297	450
0	515	299	450
0	506	297	450
0	560	305	441
0	559	307	443
0	569	305	443
0	547	307	443
0	578	305	443
0	709	320	464
0	686	323	464
0	700	325	463
0	683	325	463
0	672	320	464
0	709	327	453
0	727	329	454
0	735	329	454
0	749	327	453
0	767	329	454
0	760	345	469
0	733	339	470
0	716	341	470
0	732	337	471
0	752	341	471
5	1543	447	327
5	1485	447	327
5	1505	443	327
5	1490	448	327

5	1492	445	327
5	1301	407	459
5	1280	401	459
5	1310	405	460
5	1299	401	459
5	1315	400	460
5	1285	407	439
5	1255	405	439
5	1267	402	439
5	1261	407	439
5	1294	413	439
5	1003	369	349
5	976	365	349
5	1014	369	349
5	1044	371	349
5	1034	369	349
5	1777	485	452
5	1773	481	452
5	1752	487	451
5	1761	483	452
5	1746	484	452
5	1673	473	417
5	1723	476	416
5	1669	473	417
5	1684	475	417
5	1661	474	417
5	1846	510	433
5	1827	514	433
5	1853	511	433
5	1829	509	433
5	1869	518	435
5	1944	524	333
5	1943	525	333
5	1927	526	333
5	1925	528	333
5	1858	524	333
5	1942	540	451
5	1950	536	451
5	1948	534	452
5	1914	536	451
5	1927	540	451
5	1939	522	448
5	1918	524	448
5	1896	521	448

5	1931	524	448
5	1979	522	448
5	1658	479	363
5	1716	487	363
5	1696	478	363
5	1702	484	363
5	1732	481	363
5	1969	552	450
5	2014	565	453
5	1988	559	452
5	2039	560	452
5	2026	558	452
10	1581	458	384
10	1562	454	383
10	1590	461	384
10	1638	465	384
10	1621	456	384
10	1773	512	371
10	1838	509	371
10	1852	508	371
10	1805	508	371
10	1851	512	371
10	1773	495	459
10	1767	496	458
10	1797	496	458
10	1799	495	459
10	1835	491	458
10	1917	510	379
10	1879	518	379
10	1887	518	381
10	1973	522	379
10	1925	518	381
10	1687	472	403
10	1666	467	404
10	1694	466	405
10	1672	466	405
10	1602	466	404
10	2076	551	458
10	2023	545	458
10	2018	541	458
10	1947	546	458
10	2004	548	458
10	835	336	353
10	841	336	353

10 890 343 353 10 827 339 355 10 1801 504 351 10 1806 504 353 10 1805 507 352 10 1805 507 353 10 1815 504 353 10 2143 578 320 10 2143 578 321 10 2143 576 320 10 2144 576 320 10 2144 576 323 10 2187 565 323 10 2187 565 323 10 2195 570 323 10 2195 570 323 10 1460 439 333 10 1446 439 333 10 1404 439 333 10 1877 542 343 </th <th>10</th> <th>841</th> <th>337</th> <th>353</th>	10	841	337	353
10 827 339 355 101801 504 351 101806 504 353 101754 499 353 101754 499 353 101815 504 353 102143 578 321 102143 578 321 102143 576 320 102144 576 320 102147 565 323 1022187 565 323 102222 566 325 102250 566 323 102166 562 325 102166 562 325 102166 562 323 101440 439 333 101446 439 333 101445 538 343 101878 542 341 101863 540 343 101863 540 343 101863 504 363 131672 505 367 131678 504 363 131769 514 379 131769 514 379 131769 514 379 131660 512 412 131672 515 409 131660 512 412	10	890	343	353
101801 504 351 101806 504 353 101805 507 352 101754 499 353 102158 574 320 102143 578 321 102189 580 321 102187 565 323 102187 565 323 102195 570 323 102250 566 325 102166 562 325 102166 562 323 102166 562 333 101440 439 333 101445 439 333 101446 439 333 101877 542 341 101863 540 343 101863 540 343 131724 503 349 131672 505 367 131678 504 363 131769 514 379 131769 514 379 131769 514 379 131760 516 433 131769 514 379 131760 516 433 131769 514 379 131760 516 433 131760 516 433 131760 516 433 131769<	10	827	339	355
10 1806 504 353 10 1754 499 353 10 1754 499 353 10 2158 574 320 10 2143 578 321 10 2143 578 321 10 2143 576 320 10 2144 576 320 10 2144 576 320 10 2144 576 323 10 2222 566 325 10 2250 566 323 10 2166 562 325 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1445 435 333 10 1877 542 343 10 1863 540 343 10 1863 540 343 13 1724 505 367 13 1678 504 363 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1769 514 379 13 1760 516 433 13 1760 516 433 13	10	1801	504	351
101805 507 352 101754499 353 101815 504 353 102158 574 320 102143 578 321 102189 580 321 102184 576 320 102187 565 323 102222 566 325 102250 566 323 102195 570 323 102166 562 325 102166 562 325 102166 562 323 101460 439 333 101441 439 333 101446 439 333 101445 538 343 101878 542 341 101854 538 343 101863 540 343 131724 503 355 131672 505 367 131678 504 363 131762 511 384 131769 514 379 131769 514 379 131660 512 412 131720 515 409 131720 515 409 131720 515 409	10	1806	504	353
10 1754 499 353 10 1815 504 353 10 2158 574 320 10 2143 578 321 10 2189 580 321 10 2158 586 320 10 2144 576 320 10 2144 576 320 10 2127 565 323 10 2222 566 323 10 2250 566 323 10 2166 562 325 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1446 439 333 10 1445 435 333 10 1475 542 341 10 1878 542 341 10 1877 542 343 10 1863 540 343 10 1863 540 343 10 1868 504 369 13 1724 503 349 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13	10	1805	507	352
10 1815 504 353 10 2158 574 320 10 2143 578 321 10 2189 580 321 10 2189 580 321 10 2144 576 320 10 2144 576 320 10 2144 576 323 10 2222 566 325 10 2250 566 323 10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1445 542 341 10 1878 542 341 10 1877 542 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1762 501 355 13 1762 504 369 13 1768 504 363 13 1769 514 379 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1769 514 406 13 1718 514 406	10	1754	499	353
10 2158 574 320 10 2143 578 321 10 2189 580 321 10 2158 586 320 10 2144 576 320 10 2144 576 320 10 2144 576 320 10 2187 565 323 10 2222 566 323 10 2250 566 323 10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1441 439 333 10 1444 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1475 538 343 10 1877 542 343 10 1877 542 343 10 1863 540 343 10 1863 540 343 13 1762 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1760 516 433 13	10	1815	504	353
10 2143 578 321 10 2189 580 321 10 2158 586 320 10 2187 565 323 10 2187 565 323 10 2222 566 325 10 2250 566 323 10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1475 435 333 10 1487 542 341 10 1877 542 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1767 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13	10	2158	574	320
10 2189 580 321 10 2158 586 320 10 2144 576 320 10 2187 565 323 10 2222 566 325 10 2250 566 323 10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1478 542 341 10 1877 542 343 10 1877 542 343 10 1863 540 343 13 1766 501 355 13 1764 503 349 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1766 516 433 13	10	2143	578	321
10215858632010214457632010218756532310222256632510225056632310219557032310216656232510146043933310144143933310144443933310144443933310144543933310144543933310144543933310147543533310187854234110185453834310187754234310186354034313170650135513172450334913167250536713176251138113176951437913176951437913176951437913176951437913176951437913166051241213172051540913172051540913172051540914152476726	10	2189	580	321
102144576320102187565323102222566325102195570323102166562325101460439333101441439333101404439333101446439333101446439333101445435333101445435333101475435333101878542341101854538343101863540343101863540343113170650135513167250536713167850436313176251138413176951437913176951437913168051243713176951437913176951437913176951437913176951443713166051241213172051540913171851440614151476370	10	2158	586	320
10 2187 565 323 10 2222 566 325 10 2250 566 323 10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1446 439 333 10 1444 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1445 435 333 10 1445 435 333 10 1878 542 341 10 1854 538 343 10 1863 540 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1758 510 381 13 1769 514 379 13 1769 514 379 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	10	2144	576	320
102222566325102250566323102195570323102166562325101460439333101431439333101404439333101404439333101446439333101446439333101445535333101475435333101878542341101854538343101863540343101863540343101863540343131706501355131672505367131678504363131762511384131758510381131769514379131660512412131720515409131718514406	10	2187	565	323
10225056632310219557032310216656232510146043933310143143933310144643933310144643933310144643933310141543533310141543533310147854234110187854234110187754234310186354034310186354034310186354034313170650135513172450334913167250536713176251138413176951437913176951437913176951643313176651643313176951437913176051643313176051643313176051643313176051643313176051643313178514409131718514409131718514409	10	2222	566	325
10 2195 570 323 10 2166 562 325 10 1460 439 333 10 1441 439 333 10 1444 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1415 435 333 10 1478 542 341 10 1878 542 341 10 1877 542 343 10 1863 540 343 10 1863 540 343 10 1863 540 343 13 1724 503 349 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1769 514 379 13 1760 516 433 13 1760 516 433 13 1720 515 409 13 1718 514 406	10	2250	566	323
10 2166 562 325 10 1460 439 333 10 1431 439 333 10 1404 439 333 10 1446 439 333 10 1446 439 333 10 1446 439 333 10 1415 435 333 10 1878 542 341 10 1878 542 341 10 1877 542 343 10 1863 540 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1772 505 367 13 1672 505 367 13 1762 511 384 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1706 516 433 13 1680 512 412 13 1720 515 409 13 1718 514 406	10	2195	570	323
10 1460 439 333 10 1431 439 333 10 1404 439 333 10 1446 439 333 10 1446 439 333 10 1415 435 333 10 1415 435 333 10 1878 542 341 10 1877 542 343 10 1877 542 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	10	2166	562	325
10 1431 439 333 10 1404 439 333 10 1446 439 333 10 1415 435 333 10 1415 435 333 10 1878 542 341 10 1877 542 343 10 1877 542 343 10 1800 538 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1672 505 367 13 1762 511 384 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1766 516 433 13 1706 516 433 13 1706 516 433 13 1769 514 409 13 1720 515 409 13 1720 515 409 13 1718 514 406	10	1460	439	333
10 1404 439 333 10 1446 439 333 10 1415 435 333 10 1415 435 333 10 1878 542 341 10 1877 542 343 10 1877 542 343 10 1800 538 343 10 1863 540 343 10 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1769 516 433 13 1766 516 433 13 1706 516 433 13 1769 514 379 13 1769 512 412 13 1720 515 409 13 1718 514 406	10	1431	439	333
10 1446 439 333 10 1415 435 333 10 1878 542 341 10 1878 542 343 10 1877 542 343 10 1800 538 343 10 1800 538 343 10 1863 540 343 11 1706 501 355 13 1724 503 349 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1680 512 437 13 1720 515 409 13 1778 514 406	10	1404	439	333
10 1415 435 333 10 1878 542 341 10 1854 538 343 10 1877 542 343 10 1800 538 343 10 1863 540 343 10 1863 540 343 11 1706 501 355 13 1724 503 349 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1766 516 433 13 1769 514 379 13 1760 516 433 13 1760 516 433 13 1760 516 433 13 1760 516 433 13 1760 516 433 13 1720 515 409 13 1718 514 406	10	1446	439	333
10 1878 542 341 10 1854 538 343 10 1877 542 343 10 1800 538 343 10 1863 540 343 10 1863 540 343 110 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1672 505 367 13 1678 504 363 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1766 516 433 13 1766 516 433 13 1766 516 433 13 1720 515 409 13 1718 514 406	10	1415	435	333
10 1854 538 343 10 1877 542 343 10 1800 538 343 10 1863 540 343 110 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1672 505 367 13 1678 504 363 13 1704 509 377 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	10	1878	542	341
10 1877 542 343 10 1800 538 343 10 1863 540 343 13 1706 501 355 13 1724 503 349 13 1672 505 367 13 1672 505 367 13 1678 504 363 13 1704 509 377 13 1762 511 384 13 1762 511 384 13 1769 514 379 13 1769 514 379 13 1766 516 433 13 1660 512 412 13 1720 515 409 13 1718 514 406	10	1854	538	343
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1877	542	343
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1800	538	343
131706 501 355 13 1724 503 349 13 1672 505 367 13 1678 504 369 13 1678 504 363 13 1704 509 377 13 1762 511 384 13 1758 510 381 13 1769 514 379 13 1769 516 433 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	10	1863	540	343
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	1706	501	355
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1724	503	349
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	1672	505	367
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1688	504	369
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1678	504	363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1704	509	377
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1762	511	384
13 1729 512 377 13 1769 514 379 13 1706 516 433 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	13	1758	510	381
131769514379131706516433131680512437131660512412131720515409131718514406	13	1729	512	377
13 1706 516 433 13 1680 512 437 13 1660 512 412 13 1720 515 409 13 1718 514 406	13	1769	514	379
131680512437131660512412131720515409131718514406	13	1706	516	433
13 1660 512 412 13 1720 515 409 13 1718 514 406 13 1752 476 370	13	1680	512	437
13 1720 515 409 13 1718 514 406 13 1553 476 370	13	1660	512	412
13 1718 514 406 12 1552 176 270	13	1720	515	409
	13	1718	514	406
15 1553 4/6 3/9	13	1553	476	379

13	1620	477	387
13	1575	475	384
13	1579	476	392
13	1527	477	392
13	1502	462	396
13	1480	462	394
13	1486	464	397
13	1469	460	399
13	1492	460	399
13	1714	504	404
13	1722	504	408
13	1681	504	402
13	1713	503	406
13	1688	503	407
15	1382	439	334
15	1376	450	335
15	1425	454	335
15	1366	445	336
15	1395	448	335
15	2065	571	307
15	2055	568	307
15	2140	575	307
15	1998	572	307
15	2025	576	307
15	2081	581	333
15	2091	590	333
15	2192	580	333
15	2118	580	333
15	2078	580	333
15	2240	596	315
15	2355	594	315
15	2243	596	315
15	2279	600	315
15	2285	597	315
15	2046	565	331
15	2086	569	331
15	2024	559	331
15	1972	559	331
15	2020	565	331
15	1923	545	353
15	1944	545	353
15	1943	542	353
15	1963	545	353
15	1940	543	353

15	2296	600	309
15	2217	598	309
15	2241	600	309
15	2260	604	309
15	2278	592	309
15	2022	542	329
15	1997	536	329
15	2014	545	329
15	2056	556	329
15	2011	548	329
15	2136	588	320
15	2146	588	320
15	2189	590	320
15	2151	590	320
15	2170	588	320
15	1589	472	338
15	1603	482	339
15	1572	476	338
15	1515	474	339
15	1595	477	338
15	2273	584	337
15	2243	588	337
15	2239	584	337
15	2260	590	337
15	2236	588	337
15	1959	540	323
15	1971	540	323
15	2003	550	323
15	2003	542	323
15	2003	548	323
20	2376	616	339
20	2316	606	339
20	2355	610	339
20	2348	606	339
20	2380	610	339
20	2149	567	305
20	2105	566	305
20	2195	574	307
20	2189	572	305
20	2131	565	305
20	1718	498	359
20	1743	501	361
20	1739	497	359
20	1770	499	359

1761	486	365
1722	488	365
1742	483	365
1700	486	365
1741	484	365
1801	506	349
1766	500	349
1768	500	349
1793	502	350
1786	499	350
2176	567	307
2132	565	307
2142	564	307
2155	570	309
2189	572	307
2060	558	489
1982	552	490
2025	562	489
2006	558	489
1997	554	489
1926	551	379
1904	561	379
1873	562	381
1917	557	381
1924	562	379
2244	596	355
2275	596	355
2279	600	355
2286	592	355
2277	596	355
1806	487	375
1793	487	377
1738	489	377
1836	490	375
1710	491	375
1878	516	325
1863	512	325
1803	510	325
1820	509	325
1819	505	326
1894	518	315
1910	522	315
1910	512	315
	176117221742170017411801176617681778217621322142215521892060198220252006199719261904187319171924224422752279228622771806179317381836171018781863180318201819189419101910	1761486172248817424831700486174148418015061766500176850217864992176567213256521425642155570218957220605581982552200655819975541926551190456118735622275596227559622755962275596227960022865922277596180648717384891836490171049118785161803510189451819105221910512

20	1866	522	315
20	1914	524	315
26	2187	588	333
26	2214	588	333
26	2208	586	333
26	2142	586	333
26	2146	586	333
26	2119	588	341
26	2146	590	341
26	2123	586	342
26	2149	586	341
26	2152	589	341
26	1996	545	333
26	1979	543	333
26	2013	548	333
26	2018	550	333
26	2024	552	333
26	1892	536	363
26	1888	534	363
26	1930	542	363
26	1871	534	363
26	1948	540	363
26	1736	510	369
26	1731	513	369
26	1745	509	369
26	1726	510	369
26	1742	518	369
26	2108	572	313
26	2107	576	313
26	2160	576	313
26	2146	585	315
26	2088	574	313
34	1524	474	495
34	1522	479	495
34	1491	472	495
34	1501	472	495
34	1516	467	495
34	1887	537	334
34	1925	541	334
34	1942	538	333
34	1925	538	333
34	1880	536	333
34	1980	548	307
34	1981	556	307
	1	1	

34	1958	549	307
34	1984	553	307
34	1961	558	307
34	1872	555	472
34	1920	559	473
34	1871	561	473
34	1903	560	472
34	1895	557	472
34	1880	538	301
34	1891	542	301
34	1905	545	303
34	1869	547	303
34	2010	551	303
34	2060	561	341
34	2053	570	341
34	1992	564	341
34	2000	568	341
34	2029	567	343

Average counts/V1/V2:

Reduction (%)	Counts	V1	V2
0	621,633333	314,66666667	456,7
5	1656,28333	476,7166667	410,2833333
10	1758,45	496,55	373,4
13	1649,16667	494,9666667	391,4666667
15	2004,96667	553,8166667	327,5333333
20	1969,61667	538,4666667	355,5
26	2014,46667	558	342,1
34	1870,9	538,7666667	375,2333333

Για threshold = 4:

Reduction (%)	Counts	V1	V2
0	118	289	443
0	138	297	444
0	137	293	445
0	151	297	445
0	139	291	445
0	138	291	429
0	154	297	431
0	140	295	433
0	151	297	431
0	133	295	431

0	128	297	429
0	120	295	425
0	138	295	427
0	135	299	432
0	132	299	427
0	173	311	469
0	171	307	469
0	184	309	470
0	174	311	470
0	168	307	469
0	193	313	440
0	213	320	441
0	178	313	443
0	177	311	441
0	192	313	442
0	241	329	439
0	241	327	439
0	222	329	440
0	228	331	439
0	226	327	439
5	836	460	332
5	869	460	331
5	873	454	333
5	833	456	333
5	841	457	331
5	653	408	423
5	716	415	421
5	679	412	423
5	654	412	423
5	683	409	425
5	734	421	441
5	712	415	441
5	742	413	443
5	783	417	443
5	727	417	442
5	468	385	347
5	489	385	346
5	504	387	346
5	507	385	347
5	501	381	345
5	1035	476	439
5	1011	479	439
5	1021	481	438
5	1034	477	439

5	1057	476	439
5	1047	476	425
5	1052	484	425
5	1042	477	427
5	1031	475	426
5	1021	473	427
5	1216	522	412
5	1170	520	414
5	1226	517	413
5	1233	524	414
5	1235	520	413
5	1259	528	439
5	1259	530	439
5	1246	528	438
5	1289	528	439
5	1272	528	439
5	1263	542	336
5	1242	542	336
5	1247	536	335
5	1256	538	336
5	1248	546	336
5	1288	530	448
5	1309	530	451
5	1297	532	447
5	1324	532	447
5	1299	534	447
5	1349	548	445
5	1364	553	449
5	1388	555	446
5	1370	550	447
5	1349	556	451
5	872	466	365
5	952	468	365
5	1026	560	365
5	1005	474	365
5	917	472	365
10	948	465	369
10	909	466	369
10	910	468	373
10	957	471	373
10	945	467	373
10	947	456	461
10	938	453	462
10	951	453	467
10	941	450	466
----	------	-----	-----
10	932	448	467
10	1087	490	397
10	1077	485	399
10	1125	494	401
10	1049	483	405
10	1105	495	405
10	912	454	383
10	928	453	384
10	908	456	384
10	893	458	381
10	926	458	384
10	1415	538	445
10	1378	548	445
10	1387	548	443
10	1377	542	445
10	1368	546	448
10	1100	501	415
10	1101	495	415
10	1144	499	414
10	1089	498	414
10	1124	503	415
10	318	345	337
10	350	349	337
10	311	352	335
10	320	351	337
10	383	439	337
10	1410	576	353
10	1360	568	353
10	1440	572	351
10	1372	572	353
10	1388	570	353
10	981	478	321
10	936	471	320
10	980	476	323
10	944	475	320
10	956	472	323
10	1502	584	325
10	1446	580	323
10	1441	584	325
10	1479	588	323
10	1478	584	325
10	1307	561	345
10	1313	557	345

10	1265	555	345
10	1225	557	345
10	1275	563	343
10	872	457	315
10	869	456	315
10	941	460	315
10	867	458	315
10	902	455	315
13	1122	513	398
13	1146	514	401
13	1158	516	401
13	1123	512	401
13	1136	516	400
13	996	481	452
13	1003	478	452
13	1001	478	453
13	1001	478	452
13	993	472	454
13	1080	496	411
13	1097	493	410
13	1084	495	411
13	1060	499	416
13	1062	493	412
13	1110	502	429
13	1104	509	427
13	1092	509	429
13	1116	511	429
13	1096	505	429
13	1093	504	429
13	1106	505	427
13	1104	501	431
13	1121	505	429
13	1116	499	433
13	1097	506	379
13	1100	510	379
13	1097	510	377
13	1140	508	379
13	1087	507	377
15	933	499	331
15	942	493	329
15	926	497	331
15	981	501	331
15	955	495	333
15	1375	567	315
			010

15	1412	573	313
15	1440	569	313
15	1402	575	315
15	1407	568	317
15	1239	569	319
15	1267	569	321
15	1291	569	320
15	1309	575	321
15	1271	573	320
15	1494	590	320
15	1533	602	320
15	1508	604	321
15	1503	600	320
15	1500	596	320
15	1375	574	343
15	1374	580	342
15	1362	572	343
15	1406	580	343
15	1359	575	342
15	1178	543	337
15	1200	542	333
15	1164	545	336
15	1213	542	333
15	1165	543	336
15	1471	604	320
15	1430	604	320
15	1452	596	320
15	1444	598	320
15	1402	602	320
15	975	501	357
15	1041	505	361
15	1044	504	361
15	1037	501	359
15	1049	503	359
15	1288	553	329
15	1314	553	329
15	1312	552	331
15	1283	552	329
15	1295	549	330
15	807	464	325
15	794	460	327
15	796	461	325
15	806	465	326
15	794	462	325

15	1413	588	317
15	1382	588	317
15	1364	588	319
15	1390	592	317
15	1389	592	317
15	1059	512	337
15	1047	508	338
15	1194	550	337
15	1049	513	337
15	1047	517	336
20	1423	575	341
20	1484	580	340
20	1443	572	345
20	1419	578	344
20	1505	580	343
20	800	452	320
20	814	453	317
20	825	450	320
20	786	451	320
20	810	448	320
20	1416	577	333
20	1409	581	331
20	1385	582	333
20	1434	580	331
20	1453	584	331
20	1082	501	311
20	1101	507	311
20	1050	501	311
20	1084	503	311
20	1089	505	311
20	1466	580	321
20	1394	578	320
20	1453	582	320
20	1468	582	320
20	1465	580	320
20	858	460	345
20	905	466	343
20	864	461	346
20	834	466	344
20	897	469	345
20	1267	542	377
20	1305	551	377
20	1338	543	379
20	1320	547	383
-		-	

20	1318	545	384
20	1539	602	323
20	1557	600	323
20	1533	596	323
20	1546	604	323
20	1554	604	323
20	929	470	329
20	929	474	329
20	924	468	330
20	921	461	329
20	902	456	329
20	1129	495	415
20	1128	499	415
20	1162	504	412
20	1147	499	412
20	1135	516	414
20	1127	497	367
20	1092	496	369
20	1107	492	369
20	1115	497	371
20	1105	499	369
20	1340	555	353
20	1319	562	353
20	1426	580	353
20	1453	578	353
20	1401	568	355
26	1407	590	350
26	1397	584	352
26	1453	588	351
26	1363	582	351
26	1404	588	353
26	1281	570	331
26	1345	566	331
26	1290	561	331
26	1332	565	329
26	1281	562	333
26	1385	580	329
26	1376	584	329
26	1380	578	329
26	1323	576	328
26	1361	580	329
26	1332	557	333
26	1308	545	333
26	1285	556	333

26	1300	549	331
26	1312	550	331
26	1471	594	305
26	1448	590	307
26	1463	592	307
26	1478	586	307
26	1426	588	305
26	1186	529	353
26	1143	528	353
26	1203	526	355
26	1201	532	353
26	1204	532	353
34	923	456	495
34	925	455	493
34	931	458	496
34	947	450	495
34	899	449	496
34	1408	584	305
34	1458	590	305
34	1442	584	305
34	1451	590	303
34	1468	588	305
34	1148	534	307
34	1129	532	307
34	1107	534	309
34	1115	533	305
34	1122	530	307
34	1386	564	466
34	1369	564	465
34	1401	572	464
34	1363	564	464
34	1371	565	467
34	1254	552	331
34	1260	552	333
34	1301	553	334
34	1285	554	333
34	1242	553	331
34	1253	554	311
34	1217	553	311
34	1209	552	311
34	1217	549	309
34	1241	554	311

Average counts/V1/V2:

Reduction (%)	Counts	V1	V2
0	167,7667	306,1667	442,2333
5	1015,417	482,2	404,7
10	1058,367	493,4333	372,9
13	1088,033	500,8333	416,9
15	1227,533	548,6167	329,3833
20	1208,067	528,0667	344,8167
26	1337,933	566,9333	333,8333
34	1228,067	540,7333	369,1333

Για threshold = 5:

Reduction (%)	Counts	V1	V2
0	18	295	435
0	28	297	431
0	38	305	430
0	18	299	435
0	31	301	433
0	33	293	445
0	26	295	443
0	27	299	445
0	33	299	441
0	26	295	445
0	35	307	438
0	28	307	441
0	30	307	443
0	34	307	439
0	41	307	444
0	30	297	448
0	33	297	450
0	36	317	454
0	40	321	452
0	29	313	449
0	51	321	448
0	66	325	447
0	49	323	448
0	56	323	448
0	55	321	448
0	52	317	450
0	47	317	451
0	48	321	448
0	60	320	450
0	55	325	452
5	432	461	327

5	414	457	329
5	392	464	327
5	417	456	327
5	450	460	329
5	444	443	437
5	409	443	435
5	429	441	435
5	447	450	435
5	433	447	437
5	197	377	395
5	227	381	395
5	228	381	395
5	236	384	397
5	203	377	398
5	181	387	349
5	190	385	347
5	215	393	347
5	161	386	347
5	207	384	349
5	679	504	429
5	660	497	429
5	660	498	431
5	675	504	432
5	674	503	429
5	532	474	353
5	534	477	357
5	582	476	355
5	544	484	357
5	575	481	357
5	748	520	421
5	701	512	425
5	713	520	423
5	745	520	423
5	736	513	425
5	729	544	330
5	722	548	332
5	761	546	333
5	745	544	331
5	740	544	331
5	808	528	461
5	805	534	466
5	812	530	462
5	821	528	464
5	815	536	465

5	803	538	433
5	793	532	433
5	796	530	435
5	820	533	435
5	829	536	433
5	580	505	351
5	634	509	353
5	580	504	351
5	604	504	353
5	632	507	353
5	893	561	437
5	884	560	439
5	913	561	437
5	934	559	437
5	878	558	437
10	470	467	389
10	483	478	389
10	525	470	390
10	502	470	390
10	515	477	391
10	774	533	388
10	762	526	384
10	780	542	384
10	752	522	385
10	791	532	387
10	557	466	459
10	537	472	457
10	539	470	457
10	550	468	459
10	521	466	457
10	562	486	371
10	572	491	369
10	570	485	373
10	573	491	371
10	577	491	373
10	645	501	417
10	655	498	415
10	614	499	417
10	637	495	418
10	656	498	419
10	780	530	441
10	778	532	458
10	771	532	455
10	801	534	456

10	777	534	456
10	236	389	394
10	255	386	393
10	250	383	391
10	228	386	391
10	250	387	393
10	722	524	349
10	773	520	353
10	779	520	353
10	810	528	353
10	764	520	349
10	873	584	321
10	896	584	320
10	897	580	321
10	865	588	325
10	884	590	321
10	945	566	353
10	880	564	351
10	923	559	353
10	950	565	353
10	934	559	353
10	520	474	331
10	500	470	330
10	541	472	331
10	520	466	330
10	500	468	330
10	755	561	359
10	765	557	357
10	782	557	359
10	756	567	359
10	769	556	359
13	684	489	411
13	670	496	411
13	692	495	411
13	668	491	411
13	703	491	411
13	582	471	389
13	589	464	389
13	597	473	389
13	580	469	390
13	603	471	389
13	676	487	464
13	706	488	464
13	689	487	464

13	696	491	464
13	685	489	464
13	662	487	408
13	704	499	408
13	658	494	409
13	654	491	408
13	661	490	409
13	711	503	399
13	715	509	399
13	704	501	399
13	703	499	399
13	687	501	400
13	784	506	469
13	809	514	469
13	793	512	469
13	783	506	469
13	810	518	469
15	388	469	323
15	365	470	321
15	427	480	323
15	442	474	320
15	405	472	321
15	825	576	305
15	785	590	303
15	780	572	301
15	800	576	303
15	798	580	305
15	824	572	325
15	858	573	325
15	849	574	323
15	826	574	323
15	877	575	325
15	868	604	313
15	916	616	311
15	877	598	315
15	937	604	315
15	874	598	315
15	829	572	331
15	808	569	329
15	823	571	331
15	887	580	329
15	825	571	331
15	735	549	347
15	725	545	347

15	714	543	347
15	716	545	346
15	703	540	346
15	1011	625	325
15	1000	623	327
15	995	623	325
15	995	625	323
15	1027	620	327
15	793	543	321
15	786	544	321
15	762	545	320
15	751	543	322
15	765	542	321
15	655	528	309
15	622	525	311
15	614	522	311
15	641	530	309
15	609	524	311
15	384	498	351
15	398	495	353
15	343	501	353
15	393	500	351
15	340	491	353
15	754	538	377
15	700	525	373
15	703	524	375
15	708	524	375
15	724	521	375
15	699	532	319
15	751	551	320
15	770	548	320
15	768	552	320
15	790	558	321
20	542	501	307
20	564	498	307
20	618	508	305
20	566	497	305
20	578	504	307
20	912	588	307
20	963	594	311
20	923	588	309
20	934	592	307
20	877	588	311
20	363	423	311

20	369	423	311
20	344	423	311
20	358	423	311
20	366	423	313
20	680	522	323
20	715	522	323
20	673	523	321
20	726	528	322
20	671	524	321
20	668	503	343
20	661	507	341
20	646	504	341
20	676	508	341
20	621	504	341
20	851	565	336
20	861	567	333
20	866	569	339
20	867	562	339
20	853	567	337
20	845	554	361
20	786	551	361
20	804	553	361
20	855	559	363
20	791	553	363
20	666	518	323
20	682	518	320
20	669	520	320
20	709	524	320
20	651	520	320
20	1155	616	341
20	1093	618	343
20	1129	617	343
20	1097	617	349
20	1084	618	347
20	648	522	315
20	617	516	315
20	612	513	315
20	664	512	315
20	617	514	315
20	736	534	323
20	762	536	323
20	735	536	326
20	710	533	323
20	774	532	323

20	605	507	311
20	594	505	315
20	602	505	315
20	616	505	315
20	581	504	315
26	989	604	359
26	1052	613	361
26	1110	622	359
26	1116	620	359
26	1056	613	359
26	818	576	322
26	893	586	321
26	877	584	323
26	899	584	321
26	893	584	321
26	888	584	340
26	956	586	341
26	930	588	341
26	913	580	339
26	940	590	339
26	966	590	349
26	977	592	351
26	942	582	349
26	972	584	351
26	926	578	349
26	777	536	369
26	730	530	369
26	781	532	369
26	759	540	367
26	817	547	369
26	911	575	341
26	1005	586	341
26	940	586	339
26	971	591	339
26	980	586	339
34	667	485	478
34	669	481	478
34	623	479	476
34	628	478	476
34	628	476	478
34	752	536	333
34	717	534	335
34	737	536	333
34	730	528	335

34	731	534	333
34	845	560	317
34	850	552	313
34	866	555	317
34	829	553	317
34	830	553	319
34	934	551	460
34	964	561	458
34	933	560	461
34	938	557	459
34	889	553	460
34	760	551	313
34	760	551	311
34	784	552	311
34	765	554	311
34	734	548	311
34	854	571	343
34	850	573	344
34	844	570	345
34	880	578	345
34	876	575	347

Average counts/V1/V2:

Reduction (%)	Counts	V1	V2
0	38,43333	309,03333	444,3667
5	590,0167	486,98333	394,5833
10	659,1333	506,43333	381,8333
13	688,6	492,73333	423,4667
15	728,95	550,86667	328,6333
20	720,0167	529,63333	325,55
26	926,1333	581,63333	346,5333
34	795,5667	541,5	373,9

Για threshold = 6:

Reduction (%)	Counts	V1	V2
0	4	295	431
0	2	293	432
0	6	295	431
0	3	295	433
0	3	295	433
0	7	303	433
0	8	307	431

0	9	307	435
0	14	305	434
0	4	307	431
0	12	307	435
0	10	305	435
0	4	305	439
0	10	305	439
0	13	309	435
0	7	305	444
0	6	313	447
0	3	311	447
0	7	313	447
0	4	309	447
0	9	327	443
0	11	329	443
0	8	326	443
0	10	331	441
0	8	330	443
0	11	325	441
0	8	321	443
0	10	323	441
0	8	321	442
0	14	321	441
5	144	437	325
5	149	437	325
5	153	445	323
5	144	441	323
5	147	439	325
5	94	387	439
5	100	388	439
5	94	389	439
5	94	387	439
5	101	391	439
5	61	369	381
5	58	367	384
5	66	359	384
5	67	365	384
5	61	363	385
5	45	369	345
5	48	377	343
5	55	379	346
5	45	379	343
5	47	377	343
5	290	470	439

5	334	479	439
5	305	482	439
5	283	477	441
5	303	475	443
5	362	492	384
5	350	485	385
5	335	487	385
5	324	485	385
5	328	491	385
5	390	509	445
5	385	507	445
5	382	504	443
5	397	502	443
5	412	507	443
5	358	524	327
5	355	524	325
5	328	520	327
5	350	520	325
5	392	528	325
5	469	524	447
5	498	533	449
5	484	530	450
5	468	528	451
5	480	533	448
5	490	541	450
5	477	542	452
5	513	541	452
5	540	544	452
5	500	544	450
5	248	487	355
5	276	490	355
5	276	489	355
5	249	485	355
5	261	483	357
5	534	558	427
5	522	547	427
5	543	551	427
5	533	550	427
5	528	551	431
10	242	466	381
10	242	470	381
10	248	469	384
10	240	464	383
10	236	465	381

10	361	516	341
10	347	516	341
10	333	520	341
10	356	514	341
10	335	518	339
10	339	486	443
10	363	491	443
10	337	489	445
10	327	487	445
10	332	486	445
10	300	497	373
10	335	504	375
10	338	503	373
10	326	503	373
10	350	507	375
10	257	472	393
10	247	469	394
10	270	470	392
10	242	468	393
10	279	478	393
10	383	491	379
10	396	498	379
10	344	489	379
10	392	499	379
10	369	495	377
10	17	328	357
10	24	329	359
10	18	329	357
10	20	334	357
10	22	328	357
10	494	559	305
10	483	559	305
10	472	558	303
10	474	560	305
10	472	561	305
10	524	580	315
10	513	576	313
10	504	580	313
10	504	578	315
10	489	578	313
10	467	564	317
10	436	559	315
10	444	557	315
10	450	561	315
L	1	1	

10	432	562	315
10	176	435	337
10	162	433	337
10	173	437	339
10	164	435	336
10	158	435	337
10	417	546	347
10	402	542	349
10	384	536	347
10	408	544	349
10	398	545	349
13	400	495	415
13	403	496	417
13	384	494	415
13	387	497	415
13	396	492	416
13	298	478	381
13	382	489	381
13	343	485	381
13	338	485	383
13	327	483	383
13	402	485	484
13	398	483	484
13	420	493	486
13	404	493	485
13	408	489	485
13	452	516	429
13	371	510	429
13	417	510	431
13	405	509	431
13	447	518	433
13	381	495	390
13	398	497	390
13	373	500	390
13	386	502	388
13	407	499	389
13	467	505	497
13	491	497	498
13	461	503	498
13	470	501	499
13	456	502	499
15	293	514	321
15	319	514	323
15	310	513	322

15	291	520	323
15	309	516	323
15	450	573	295
15	468	576	295
15	440	570	295
15	443	571	295
15	462	572	293
15	494	564	323
15	508	563	325
15	483	563	325
15	474	563	323
15	482	564	323
15	492	588	313
15	521	596	311
15	479	584	311
15	474	584	311
15	503	586	311
15	489	569	326
15	503	576	325
15	464	574	325
15	484	576	325
15	439	575	327
15	362	549	343
15	406	543	342
15	366	543	343
15	358	540	341
15	381	538	341
15	568	601	303
15	564	604	305
15	529	602	305
15	526	604	305
15	557	607	305
15	522	573	320
15	481	567	320
15	499	570	321
15	521	576	320
15	503	576	321
15	313	526	320
15	318	532	319
15	291	530	320
15	293	526	321
15	304	528	319
15	236	495	321
15	255	495	321

15	262	495	321
15	232	498	321
15	241	493	321
15	447	556	339
15	464	563	341
15	463	564	339
15	438	554	341
15	469	561	339
15	508	573	320
15	500	570	320
15	493	570	320
15	511	572	321
15	538	574	320
20	613	594	313
20	639	598	313
20	592	594	314
20	568	584	315
20	581	592	315
20	579	574	367
20	559	580	369
20	561	576	369
20	560	574	367
20	578	584	369
20	259	448	344
20	235	447	343
20	214	443	344
20	227	445	342
20	245	448	344
20	296	487	346
20	291	485	349
20	315	493	346
20	265	485	349
20	273	483	347
20	387	524	342
20	404	526	343
20	368	528	346
20	402	522	344
20	407	524	344
20	486	561	341
20	460	563	344
20	473	561	341
20	489	557	343
20	474	558	341
20	446	556	365

20	475	560	363
20	474	555	365
20	451	553	365
20	470	563	367
20	619	592	353
20	590	594	353
20	619	595	351
20	638	594	351
20	608	592	351
20	499	566	323
20	445	561	322
20	439	557	323
20	438	565	321
20	454	561	323
20	348	505	403
20	388	511	403
20	366	505	404
20	388	508	401
20	369	507	402
20	306	509	331
20	307	505	329
20	313	500	331
20	314	505	331
20	302	503	331
20	545	569	343
20	555	573	345
20	563	567	345
20	537	572	343
20	557	568	343
26	602	570	369
26	604	572	367
26	623	564	371
26	597	584	367
26	586	562	369
26	545	580	347
26	574	584	347
26	572	588	349
26	561	584	346
26	559	588	347
26	550	580	361
26	536	578	359
26	557	584	361
26	521	580	361
26	523	572	361

26	575	547	397
26	542	542	398
26	505	544	397
26	542	550	397
26	571	546	397
26	474	540	377
26	477	534	379
26	402	530	377
26	420	532	379
26	456	534	377
26	564	592	331
26	558	586	331
26	553	586	334
26	568	586	335
26	617	594	333
34	341	477	456
34	357	478	457
34	352	473	456
34	384	472	456
34	322	466	454
34	409	532	335
34	397	532	333
34	438	534	333
34	387	529	333
34	421	530	333
34	508	559	320
34	556	561	321
34	527	559	322
34	536	559	321
34	489	558	323
34	341	477	456
34	357	478	457
34	352	473	456
34	384	472	456
34	322	466	454
34	409	532	335
34	397	532	333
34	438	534	333
34	387	529	333
34	421	530	333
34	508	559	320
34	556	561	321
34	527	559	322
34	536	559	321

34	489	558	323
----	-----	-----	-----

Reduction (%)	Counts	V1	V2
0	7,766667	311,2667	438,6667
5	293,75	472,7333	397,4
10	326,1167	495,4667	357,4
13	402,4	496,7	433,4
15	429,8833	557,2	320,4667
20	443,7167	540,15	347,9167
26	544,4667	567,1	364,0333
34	428,2667	521,2667	370,2

Average counts/V1/V2:

Μετρήσεις μακροσκληρότητας Vickers:

Δοκίμιο 0% reduction:

AA	d1	d2	d	HV
1	56,5	56 <i>,</i> 5	56,5	116
2	56	55 <i>,</i> 5	55,75	119,5
3	56,5	55	55,75	119,5
4	56	55 <i>,</i> 5	55,75	119,5
5	57	55	56	118
6	58,5	55	56,75	115
7	57,5	55	56,25	117
8	55	57	56	118
9	55,5	57	56,25	117
10	55,5	57	56,25	117
11	55	56,5	55,75	119,5
12	55,5	57,5	56,5	116

Average Hardness = 117,6667HV

Δοκίμιο 5% reduction:

AA	d1	d2	d	HV
1	53	53	53	132
2	53	53	53	132
3	53	52,5	52,75	133,5
4	53	52	52,5	134,5
5	53	52	52,5	134,5
6	53	53	53	132
7	52	52	52	137

8	53	52	52,5	134,5
9	52,5	52,5	52,5	134,5
10	53	52	52,5	134,5
11	54	53	53,5	129,5
12	53	53	53	132

Average Hardness = 133,375HV

Δοκίμιο 10% reduction (a):

AA	d1	d2	d	HV
1	52	50	51	143
2	52	52	52	137
3	47	46	46,5	172
4	51	51	51	143
5	51,5	50	50,75	144,5
6	51	52,5	51,75	138,5
7	52	52,5	52,25	135,5
8	50	50	50	148
9	51	50	50,5	145,5
10	51	51	51	143
11	49	47	48	161
12	51	51	51	143

Average Hardness = 146,1667HV

Δοκίμιο 10% reduction (b):

AA	d1	d2	d	HV
1	51,5	51	51,25	141,5
2	51	51	51	143
3	51	52	51,5	140
4	51,5	52	51,75	138,5
5	50	52,5	51,25	141,5
6	50,5	52	51,25	141,5
7	51	51	51	143
8	50,5	51	50,75	144,5
9	51	51	51	143
10	50	50	50	148
11	51	51,5	51,25	141,5
12	51	51	51	143

Average Hardness = 142,4167HV

Δοκίμιο 13% reduction:

AA	d1	d2	d	HV
1	51	50	50,5	145,5
2	51	50	50,5	145,5
3	52	49,5	50,75	144,5
4	52	50	51	143
5	51,5	49,5	51	143
6	51	49,5	50,25	146,75
7	52	49,5	50,75	144,5
8	51,5	49,5	50,5	145,5
9	51,5	50	50,75	144,5
10	51	50	50,5	145,5
11	51,5	51,5	51,5	140
12	51	51,5	51,25	141,5

Average Hardness = 144,1458HV

Δοκίμιο 15% reduction:

AA	d1	d2	d	HV
1	50	49,5	49,75	149,5
2	48	49,5	4875	156
3	48	49,5	48,75	156
4	49	49	49	154
5	50	49,5	49,75	149,5
6	51	51,5	51,25	141,5
7	51,5	51,5	51,5	140
8	49	50	49,5	151
9	48,5	49,5	49	154
10	51	52	51,5	140
11	51	51	51	143
12	50	51	50,5	145,5

Average Hardness = 148,333HV

Δοκίμιο 20% reduction:

AA	d1	d2	d	HV
1	49	49	49	154
2	49	49	49	154
3	49,5	49,5	49,5	151
4	49	49	49	154
5	49,5	49,5	49,5	151
6	48,5	48	48,25	159

7	48	49	48,5	157,5
8	49	49,5	49,25	152,5
9	49	49	49	154
10	48	49	48,5	157,5
11	48	49	48,5	157,5
12	49	49,5	49,25	152,5

Average Hardness = 154,5417HV

Δοκίμιο 26% reduction:

AA	d1	d2	d	HV
1	49	48	48,5	157,5
2	49,5	48,5	49	154
3	48	47,5	47,75	164,5
4	48	48,5	48,25	159
5	49,5	49	49,25	152,5
6	50	48	49	154
7	49	49	49	154
8	49	49	49	154
9	49	49,5	49,25	152,5
10	48,5	49,5	49	154
11	49	49	49	154
12	48,5	49	48,75	155,75

Average Hardness = 155,4792HV

Βιβλιογραφία:

- «Αρχές Ηλεκτρονικών Υλικών και Διατάξεων», S. O. Kasap, 2^η έκδοση, εκδόσεις Παπασωτηρίου.
- «Οι χάλυβες», Γ. Χ. Βοσνιάκος, Σημειώσεις μεταπτυχιακών μαθημάτων, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα 2007
- «Μετασχηματισμοί Φάσεων», Δρ. Γ. Φούρλαρης, Επ. Καθηγητής Φυσικής Μεταλλουργίας και Μετασχηματισμού Φάσεων ΕΜΠ, Αθήνα 2008, ΜΜΜ, Τομέας Μεταλλουργίας και Τεχνολογίας Υλικών.
- 4. "An introduction to Barkhausen noise and it's applications", a paper by Mark Willcox and Todd Mysak, Insight NDT.
- «Ανάπτυξη, προσομοίωση και εφαρμογή ηλεκτρομαγνητικών τεχνικών μη καταστροφικών δοκιμών σε μαγνητικές και μη μαγνητικές μεταλλικές επιφάνειες», Διδακτορική διατριβή του Κοσμά Ν. Κωσταντίνου, Μεταλλουργός Μηχανικός, Αθήνα 2009.
- 6. «Συσχέτιση μικροδομής και μαγνητικών ιδιοτήτων σε μαλακούς χάλυβες», Μπάλλιου Αγγελική-Μαρία, 29 Σεπτεμβρίου 2009.
- 7. «Σκληρομέτρηση», Σάββας Θ. Δακαλής, Τεχνικόν Γραφείον Δ. Βρεκόσις.
- «Ηλεκτρονική Μικροσκοπία και Μικροανάλυση», Δρ. Γ.Φούρλαρης, Αθήνα 2007, εκδόσεις ΕΜΠ.
- "Barkhausen noise: Elementary signals, power laws and scaling relations", Djordje Spasojevic, Srdjan Bukvic, Sava Milosevic and H. Eugene Stanley, Faculty of Physics, University of Belgrade, Serbia, 1996.
- 10. "Barkhausen effect measuring apparatus type MEB-2c, user manual", "Mag-Lab" s.c., Magnetic NDT, Poland.
- 11. G. Marshall, P. Evans, R. Ricks and A. Green, "Strain hardening overview (for aluminium)", aluminium.matter.org.uk, 2007
- 12. "Intermittency of Barkhausen avalanche in Co nanothin films", Dong-Hyun Kim and Sung-Chul Shin, Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Istitute of Science and Technology, Taejon Korea, 2004.