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Tovoyig

H mopovoa OSuthopatikn epyoacio, omookomel otnv avaivon oflomotiog o€ mloio
(ovykekpyéva, ce mTAolo HETAPOPAS EUTOPELUATOKIPOTI®OV) PBactlOUEV] OTNV GTOTICTIKN
avéAvon TpayHaTIK®VY ototyeiov and BAdPeg Tavm oe TAoia idov TOTOL.

Ta mpog avdivon otoryeia apopovv oe PraPeg Koprog Mrnyavig, Hiextpoyevwntpuov kot
Bononrtikeov Mnyavnudtov (Time To Failure), mov cuvedéyncav omd eAANVIKY VOUTIMOKY
etoupia.

To mpwto pépog g perétng eivar Kupiwg BempnTikng PVGEMS, KAOMG EMKEVIPOVETOL CE
Bactkovg opiopovg, amapaitntovg yo v Pabutepn katovonon onUovIK®V Bepdtov Tov
apopovv o115 pebodoroyieg aflomotioc. Xt cvvéyea TAPoLSIALOVTOL KOl OVOTTOGGOVTOL
YpPNool pobnuatikoi optopol kot meptypdpovionr otatioTikés neBodoroyiec, ovGLDOOVE
ONUOGTOC Yo TNV TEPAULTEP® UEAETN, KATAVONOT] KOl AVAALGT TV GUAAEYDEVTOV dEdOUEVDV.

210 dgVTEPO WEPOG, TOPOVLCIALOVTOL T TPOYUOTIKA O€dOMEVA, Kol epappolovior ot
pebodoroyieg mov avamTOHYONKOV EKTEVDS OTOL TPOMNYOVUEVO KEQAAOD. Apykd Aowmdv,
TPOYWPOVUE GE KOTAVOUTN TOV UNYOVNUAT®OV To omoio vréotnoov Tig vwd pueAétn PAGPes.
Avtog 0 dwywpiopdc yivetor pe Paon 1o €idog tov unyoviupotog (Kopio Mnyovn,
Hlextpoyevvnipleg kor Bondnrtikd) kot Tic dpeg mOv TPOTEIVOVTAL OO TOV KATOOKELOGTN
Tov KAOe pnmroviuotog Yo emiBempnon. X1 ovvExeld, VTOAOYIloviol Ol OTOTIOTIKEG
KOTOVOUEG TOV  TEPLYPAPOVY TS Tpayuatikés PAapeg avd xatnyopia. Axolovbwg,
vroAoyifovior kol mopdyovior Staypdupato mov ameikoviCouv KoumdAeg aglomiotiog.
Ewwotepa, eEdyovtar dwaypappata emPioons, decpevpévov mbovotntov PAaBng, pvduod
BAGPNc. Ot idteg kapmdreg TaPOLSLALOVTAL Y10 TAPOUETPIKES KOl U1 TOPOUUETPIKES LeBOdOLG,
OTMG EMIONG KO AVTIGTOLY O TIVOKOTOIUEVO OTOTELEGLOLTOL.

Y10 1pito pépog g epyaciag, yivetor po. TPOoTAOEL VTOAOYIGUOL TNG GULVOAKNG
Katavouns Prapav yo 6Ao to mhoio, pe v xpnon mg HeBOdov TV SEVIPOV COAAUAT®V.
‘Etol emruyybveton n cOumtuén t@vV EMUEPOVS KOTOVOUMY GE L0 GUVOALKY], Y0, AOYOVLG
amAomoinong Tov vroloyiop®mv. M’ avtdv tov TPOTO TapAyovIOl KOUTOAES a&lomioTiog,
AVTIOTOLYEG LE AVTEG TOL OEVTEPOL HEPOVGS, TOV OUMG APOPOVV TO TAOIO MG GUVOAO.

Téloc, pe Pdon emiKopomoMUEVES TIUEG KOGTOLG Y10l TO AVTOAALOKTIKA TTOV (PN GLLOTOI0VVTAL
OTIG OMOLTOVUEVEG EMICKEVEG KOL TO OVTIGTOLYO EPYATIKO KOGTOG, VITOAOYILOVUE T1 GLVOAIKN
JOmAVY, YO TIC OVOYKOIEG EMIOKEVEG KOL Tr| CLVTNPNON COUE®VA HE TIG GLOTAGEIS TOV
KOTOAOKELOOTY Yo embedpnon pe Paon tc ®peg Asrtovpyioc. o to okomd avtd
ypnotpomolovvtal t6co OBewpntikés/ otatioTikéc uébodolr 600 Kol otoyEion amd TNV
TPOAYLLATIKT AEITOVPYIO TV UNYOVILATOV.

Q¢ ocvunépacpa odnyodpacte pécw HeAETNS gvausOnciog oty gbpeon PBéATiotg oyéong
HETAED GLUYVOTNTAG EMOEWPTNCEDV Kol ATOTOVUEVOL KOGTOVG,
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ABSTRACT

The aim of the hereby exposed thesis is the analysis of the reliability on vessels (specifically
on containerships) , based on the statistical analysis of real life data of failures on ships of this
kind.

The under examination data regard failures of Main Engine, Diesel Generators and Auxiliary
Equipment ( Time To Failure) , collected from the archives of a greek shipping company.

The first part of this dissertation research is mainly of theoretical nature, as it is focused on
basic definitions which are necessary for the deeper comprehension of essential issues related
to reliability methods. Afterwards, useful mathematic definitions are presented and developed
and statistical methods are described, which are of great importance to the further study,
comprehension and analysis of the collected data.

In the second part, we present the real life data and apply methods, which were developed
extensively in the previous chapters. Thus we first proceed to a categorization of the
machinery which suffered the failures under examination. This categorization is made
depending on the type of machinery (Main Engine, Diesel Generators, Auxiliaries) and the
amount of hours recommended by the manufacturer of each part of the machinery for
inspection. Then, we calculate the statistical distributions which describe the real life failures
depending on a category basis. The next step is the calculation and the production of
diagrams picturing reliability plots. More specifically, there are exported survival plots,
conditional probabilities of failure and failure rate. The same plots as well as the
corresponding tabulated results are presented for both parametric and non-parametric
methods.

In the third part of this study, we make an attempt of calculating the joint distribution of
failures for a vessel as a whole, by applying the fault tree method. In this way there is
achieved the integration of the distributions for each subcategory to one joint distribution,
which simplifies our calculations.  Reliability plots are produced by this method, which
correspond to the ones of the second part, but refer to the vessel as a whole.

Finally, based on updated cost for the spare parts used for the required repairs and the
corresponding labor cost, we reach the calculation of the total expense for the required
remedial actions, according to the recommendations of the manufacturer about repairs
depending on operation hours. To this purpose both theoretical/statistical methods and data
from the real life operation of the machinery are used.

In conclusion, through the application of sensitivity analysis, we are led to finding the
optimum relationship between the frequency of inspections and the demanded cost.
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CHAPTER 1 : THEORETICAL APPROACH
1.1 BASIC CONCEPTS

1.1.1 Reliability
The main concept of this thesis is reliability. However, concerning the broadest and more
general definition of reliability, there is a considerable controversy.

Until the 1960s, reliability was defined as ’ the probability that an item will perform a
required function under stated conditions for a stated period of time.”” Some authors still
prefer this definition ( (1), (2)).

A more general definition is given in standards like 1ISO 8402 and BS 4778:

“’the ability of an item to perform a required function, under given environmental and
operational conditions and for a stated period of time’” (1SO 8402).

From a qualitative point of view, reliability can be defined as the ability of the item to remain
functional. Quantitatively, reliability specifies the probability that no operational
interruptions will occur during a stated time interval.

e An item is a functional or structural unit of arbitrary complexity (e.g. component,
assembly, equipment, subsystem, system) that can be considered as an entity for
investigations.

e The required function specifies the item's task. It could be a single function or a
combination of functions that is necessary to provide a specified service.

1.1.2 Availability

is a broad term, expressing the ratio of delivered service to expected service. It is often
designated by A and used for the stationary & steady-state value of the point and average
availability (PA = AA). Point availability (PA(t)) is a characteristic of an item expressed by
the probability that the item will perform its required function under given conditions at a
stated instant of time t. From a qualitative point of view, point availability can be defined as
the ability of the item to perform its required function under given conditions at a stated
instant of time (dependability).

For a given item, the point availability PA(t) can be defined as:

MTTF

_ _PA(t)zMTTF+MTTR S _
where MTTF (mean time to failure ) denotes the mean functioning time of the item and

MTTR (mean time to repair) denotes the mean downtime after a repair.

1.1.3 Failure
“’failure is the termination of the ability of an item to perform a required function’” (IEC 50).
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“’equipment fails, if it is no longer able to carry out its intended function under the specific
operational conditions for which it was designed.”” (3)

1.1.4 Reliability theory

Deals with the interdisciplinary use of probability, statistics, and stochastic modeling,
combined with engineering insights into the design and the scientific understanding of the
failure mechanisms, to study the various aspects of reliability.

1.2 BRIEF HISTORY OF RELIABILITY

It is commonly accepted that probability and statistics are the essential ingredients
without which Reliability Engineering as a technical discipline could not have emerged. They
are the seminal ideas in the history of analytical thought upon which entire scientific and
engineering constructs rest, such as Reliability Engineering.

Apart from these two essential pillars, we assume that the idea and practice of mass
production—the manufacture of goods in large quantities from standardized parts—is another
fundamental ingredient in the development of Reliability Engineering.

Mass production techniques emerged in the early years of 20th century, however a
more quantitative/mathematical method and formal approach to reliability grew out of the
demands of modern technology and particularly out of the experiences in World War Il with
complex military systems. The catalyst came in the form of an electronic component, the
vacuum tube which for all practical purposes initiated the electronic revolution, enabled a
series of applications such as the radio, television, radar and others. The vacuum tube was
also the main source of equipment failure. Tube replacements were required five times as
often as all other equipments. (4)

It is this experience with the vacuum tubes that prompted the US department of
defense to initiate a series of studies for looking into these failures after the war; these efforts
eventually consolidated and gave birth to a new discipline, Reliability Engineering.

The next development that provided the necessary ingredient to coalesce all the
efforts into a new technical discipline was reliability prediction: if quantitative reliability
requirements were going to be specified, there would be a need to estimate and predict
component reliability before equipment was built and tested (5).

Then, in late 1950s, came the foundational AGREE report. It was built on many
previous efforts in reliability and ‘provided all the armed services with the assurance that
reliability could be specified, allocated, and demonstrated; i.e. that a reliability engineering
discipline existed” from that point and onwards, reliability engineering was rapidly
developed. There was a trend from component-level reliability to system-level attributes
(system reliability, effectiveness, availability, etc.).

Also, there was an increased specialization in statistical techniques, on the actual
physics of failure, as well as in specifying, predicting and testing reliability.

Over the next decade, the evolution in reliability was mainly focused on system level
reliability and safety of complex engineering system, such as nuclear power plants.

There were introduced techniques such as Probabilistic Risk Assessment and event
trees. The second characteristic of the 1970s in the development of Reliability Engineering is
the focus on software reliability. (6)

Over the last years, a number of software statistical packages were developed,
providing more convenient analysis of life data as well as the extraction of accurate results.
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CHAPTER 2

2.1 VARIOUS RELIABILITY ANALYSIS APPROACHES
In this chapter we will examine and analyze briefly various reliability analysis approaches
proposed through time.

It is well understood that such a wide subject can be seen in different perspectives. In
references the following material is presented in much greater detail.

2.1.1 Life data collection and terminology

Ascher and Feingold (7) evinced clearly the differences in reliability of parts and systems. As
‘parts’, are defined the non repairable items, in contrary to repairable systems. This basic
difference results in different reliability and maintainability strategies, even when inferred
from two different data sets, which contain exactly the same set-of —failure numbers. Hereby
as failure numbers, are denoted parameters like MTTF, FOM (Force Of Mortality) or
ROCOF (Rate Of Occurrence of failures).

Despite an almost 50-year evolution and development of reliability theory, Ascher highlights
the misunderstanding in the use of FOM, ROCOF and failure rate which are usually
confused.

In general, FOM is defined as the propensity that a non repairable item will fail in the next
small interval of time.

ROCOF is defined as the mean rate of failures per (repairable) system time.

Summarizing Ascher’s work, it is of essential importance to understand the situation which
generated a set of life data, as it will need different approaches to improve reliability. Also it
IS necessary for engineers and theorists to commence a strict terminology and notation (T&N)
use.

2.1.2 Markov approach or Markov modeling

In order to evaluate the operational reliability of a system, a mathematical model based on
continuous Markov chains can be used. (8)

Theoretically, for the basic Markov approach to be applicable, the behavior of the system
must be characterized by a lack of memory, meaning that the future state of the system is
independent of all past states except the present state. Additionally the process must be
stationary, meaning that the behavior of the system must be the same at all points of time.
Due to this Markovian hypothesis this approach is applicable to those systems the behavior of
which can be described by a distribution with constant hazard rate, such as exponential
distribution.

There had been attempts to fit various distributions and obtain a more flexible manner in the
Markovian hypothesis.

Such a process is called a semi Markov process.

In a Markovian approach, two states of a system are given: system operative and system
failed. For each state, there are given the so called state transition rates:

A=failure rate

u=repair rate

The above rates are called state transition since they represent the state at which the system
transits from one state to another.
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Assuming a constant failure and repair rate, i.e. they are characterized by the exponential
distribution, and after performing a few calculations that can be found in (9) it is concluded
that the system availability:

u A
Al) =—+ @A+ut
© A+u A+ue

We obtained a reliability function using the Markov process, assuming exponential hazard
rates. In following chapters this method will be generalized in order to include semi Markov
processes.

2.1.3 Bayesian networks method

Bayesian networks (BN) have been proposed as an alternative to traditional reliability
estimation approaches. From this perspective, a BN can be considered as an approach to
represent the interactions among the components in a system from probabilistic perspective.
This model is widely known as directed acyclic graph (DAG), where the nodes represent
system components (variables) and the links between each pair of nodes represent
relationship among them. This interaction of the components is leading to system “’success’’
or “’failure’’. In general the influence among nodes is uncertain; therefore we insert
probabilities distribution to each of the links joining the different nodes.
Also it is necessary to assign conditional probabilities between two components, forming a
child and parent relationship. The probabilities in the child nodes are calculated through the
probability values assigned to the parent nodes.
It is clear that in order to represent all relationship among each node, our model can become
substantially large, as the parent- child relationship leads to exponential growth of the
conditional probabilities. Also throughout a system’s life, it is common to add or remove
obsolete components. Thus the original BN may not be accurate through system’s life.
This complexity leads to the necessity for an expert with adequate knowledge of each specific
system to build the BN.
As an alternative/ solution to these problems, a number of special algorithms was introduced
and used in BN analysis. Such algorithms were designed to reduce the search space of the
best structure that fits adequately each system.
One of the most used algorithms is the K2 algorithm which was defined (10) as a greedy
heuristic search method.
Another approach in defining the best structure can be obtained using the MWST (Maximum
Weight Spanning Tree) method, combined with standard algorithms, as the Kruskal
algorithm.
The proposed methods use the following steps:

e Use of a dataset that contains observations (failure/full functionality) on a system

e Find association between system’s components

e Calculate the degrees of these associations

e Build the associated BN

e Use the BN to estimate overall system reliability.
In references (11) , (12) there can be found analytical calculations as well a full presentation
of an applicable BN method.
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2.1.4 OREDA analysis

OREDA (13) is a data collection program that was launched in the early 80s. The essential
advantage of OREDA is the large number of failure data collected, since a number of
important oil companies under the management of DNV and the cooperation of the
Norwegian Institute of Technology assure for the importance of the project.

> OREDA’s main purpose is to collect and exchange reliability data among the participating
companies and act as The Forum for co-ordination and management of reliability data
collection within the oil and gas industry’’, as it is clearly stated.

For that purpose reliability data have been collected for about 24.000 offshore equipment
units, involving approximately 33.000 failures. The equipments that are covered in this
database include rotating machinery (combustion engines, compressors etc), mechanical
equipment (cranes, boilers), control and safety units and subsea equipment. It is obvious that
all equipments are of highly importance for the marine industry.

The necessary mathematics to analyze the collected failure data are presented in the next
chapter. Briefly, after the statistical analyses of failures, based on Markov theory, we can
extract useful numerical data for reliability functions (MTTF, etc).

Such results had lead to important applications, such as estimate probabilities of critical
events, quantitative risk assessment, reliability centered maintenance, reliability based
inspection, life cycle cost, production availability, safety integrity level (SIL), spare parts
storage, manning resources, FMEA-analysis, benchmarking/KPIl assessment, root cause
analysis.

The importance of this project is obvious as a number of International Standards are based
upon these analyses (ISO 14 224: “Petroleum, petrochemical and natural gas industries —
Collection and exchange of reliability and maintenance data for equipment”).

Each attempt for a reliability analysis based on life data faces major difficulties in data
collection. This is the advantage of OREDA database, the continuous inflow of such data.

2.2 COLLECTION AND ANALYSIS OF FAILURE DATA

To perform a reliability analysis using statistical/ probabilities methods, a set of data is
necessary. Most cases concern data on time to failure. The so called *’failure data’’, *’lifetime
data’’, “’life data’” and so forth. (14)

The key to application of reliability techniques is acquisition, interpretation and analysis of
such data. As a result the field of statistics plays a major role in reliability applications.

One can detect that various types of data can be collected. For example operational data are
those collected under actual operating conditions. Such experimental data, regarding the
marine industry, are seldom available.

To implement and complete this thesis, we have contacted a major Greek shipping company
and collected failure (operational) data of the containership’s fleet.

These data contains time to failure of various major components, auxiliary items and
machinery of 7 containerships out of a fleet of 11 ships and for a period of 2 years.

These failure data were mainly collected from maintenance record. This means that both
component specific failures (primary failures) and common cause failures are included.
Repair times and necessary manpower for the repairs are recorded whenever possible.
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CHAPTER 3 INTRODUCTION TO RELIABILITY MATHEMATICS

The methods used to quantify reliability are the mathematics of probability and statistics.
Since we are dealing with life data it is necessary to understand and define basic descriptive
statistics.

A parameter is defined to be a population characteristic; we have already seen the MTTF.
The corresponding quantity in a sample is called a statistic.

The objective of descriptive statistics is to calculate appropriate statistics for purposes of
description and summarization of the information in a set of data, thus, effectively and
efficiently inferences concerning parameters could be determined.

3.1 HISTOGRAMS

A histogram is a graphical representation in bar chart form of a frequency table or frequency
distribution.

For example, from the life data we have collected, and regarding the failures in a group of
sister vessel’s liners of Main Engine, for a period of 2 years, the following table can be
obtained.

Table 1: sample data for failures in M/E
liners (operational hours until failure)

1650 5723 17372
1924 5741
2063 7745
2676 8822
3361 16505
5093 17089

To construct the histogram for the above data, we need to divide the range of the data into
equally spaced class intervals covering all the data points. The range that the data will be
divided is important, since too small range would not reveal the shape of the data, and too
large a number would result in a flat appearing distribution.

Sturges (15) showed that the best visual graphical representation achieved when determining
the number of data range into k equally spaced classes where

k=1+3.332log (n).
Where n is the sample size.
Thus, the following table and diagram can be produced.

Table 2: Frequency table of Liners data

Cell boundaries number in cell
0-3600 5
3600-7200 3
7200-10800 2
10800-14400 0
14400-18000 3
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frequency table of M/E cylinder liners

O RLr N W~ Ul O
T R |

Figure 1: Histogram of measurements

3.2 FREQUENCY DISTRIBUTION

A frequency distribution is a graphical or numerical description of an entire set of data. The
objective is to present the data information in a concise form and in such a way that, if
possible, the general shape of the distribution is displayed.

For the above numerical example the well known cumulative distribution function has the
following form.

1
/
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0,8 /
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0,6 /
0,5
0,4 /
0,3
0,2
0,1

O T T T 1
0 5000 10000 15000 20000

Figure 2: Plot of cumulative distribution function

Cumulative distribution gives the number of values in the data set that are at or below a given
value. In our analysis the value of a population cumulative distribution function at a given
time is the population fraction failing by that time.
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3.3 DISTRIBUTIONS AND DENSITY FUNCTIONS

The model corresponding to the frequency distributions is the probability density function
(PDF), denoted by f(x), where x is any value of interest (in our case, the time between
failures).

In reliability approaches, the cumulative distribution function (CDF) is related to the PDF via
the following relationship

F(x)=ff(y)dy, 0<t<o
0

In reliability engineering we are concerned with the probability that an item will survive for a
stated interval, meaning that there is no failure in the interval (0 to t). This is given by the
reliability function R(x):

RO =1-f@ = | f@dr=1-] fwax

The hazard function or hazard rate h(x) is the conditional probability of failure in the interval
X to (x+dx), given that there was no failure by x:

hw = L&) __f)
R(x) 1-F(x)

The cumulative hazard function H(x) is given by:

)]

I-Fo ™

H(x) = Jj;h(x) dx = f

3.4 SAMPLE ESTIMATES OF POPULATION PARAMETERS

In order to complement the visual impression given by the various diagrams, a number of
parameters are defined:
e The sample mean, often referred as the expected value:

U= f tf(t)dt
0
e The variance, is an estimator of the spread of the data:
v =o® = [ (-
0

e The square root of the variance is called the standard deviation, also known as scale
parameter.

The mean, variance, and other sample estimates are often referred to as nonparametric
point estimators. They are nonparametric because they may be evaluated without knowing
the population distribution from which the sample was drawn, and they are point estimators
because they yield a single number.
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3.5 CONFIDENCE INTERVALS

The uncertainty in the estimation of various probabilistic functions parameters can be
approached through the so called confidence intervals.

How well the sample statistic estimates the underlying population value is always an
issue. A confidence interval addresses this issue because it provides a range of values which
is likely to contain the population parameter of interest. Confidence intervals are constructed
at a confidence level, such as 95%. It means that if the same population is sampled on
numerous occasions and interval estimates are made on each occasion, the resulting intervals
would bracket the true population parameter in approximately 95% of the cases. A
confidence stated at a 1-a level can be thought of as the inverse of a significance level, a.

For a given set of life data, if the parent distribution is known, then the point and
interval estimates of the distribution parameters become the center of attention (16).

For large sample sizes, point estimates, and confidence intervals for distribution
parameters may be expressed in elementary terms; then the sampling distributions approach
the normal form, enabling the confidence intervals to be expressed in terms of the standard
normal CDF.

That property yields directly from the Central Limit Theorem:

Provided that the sample size is sufficiently large (for reliability analysis, N>30 is considered
adequate) the sampling distribution for mean becomes normal.

Figure 3: Standard Normal Distribution

In relative statistical references (17) can be found point estimates and associated confidence
intervals for nearly all distributions.

The following figure displays the survival plot, with the 95% confidence limits for a given set
of life data.

The use and importance of survival plots will be evinced in Chapter 5, where such figures
will be used consecutively for the calculation of the number of units that have survived to a
given time. Also the survival function leads to some important conclusion, i.e. the type and
shape of the appropriate distribution that fits adequately well the real life data.

23



Reliability analysis/mapping for marine vessels: Results and Conclusions |

Percent

Survival Plot for C1
Lognormal - 95% CI
Complete Data - LSXY Estimates

100 4

a0

60 -

40

20 4

Table of Statistics
Lo 830553
Seale 0,655069
Maan 513038
StDev 350,45
Medizn 4045, 17
IR I047, 96
Faihwre 44
Ceansor L]
AD* 1,313
Cormelation 0,959

=

5000 10000 15000 20000

c1

Figure 4: Survival plot with confidence limits

24




Reliability analysis/mapping for marine vessels: Results and Conclusions |

CHAPTER 4 GRAPHICAL ANALYSIS AND PROBABILITY PLOTTING

4.1 PARAMETRIC ANALYSIS

It is of great importance in reliability engineering to determine which distribution best
fits a set of data and to derive interval estimates of the distribution parameters. Graphical
estimation methods can greatly ease this task and probability plotting papers have been
developed for this purpose. These are based upon the cumulative distribution function of each
distribution. The axes of probability plotting papers are transformed in such a way that the
true c.d.f. plots as a straight line. Therefore if the plotted data can be fitted by a straight line,
the data fit the appropriate distribution (18).

Now, recalling example 1, with the time to failure of the cylinder liners.

Table 3: sample data for failures in
MV/E liners (working hours until failure)

1650 5723 17372
1924 5741
2063 7745
2676 8822
3361 16505
5093 17089

In our effort to plot these data in proper plotting papers, the following diagrams were
produced.

Probability Plot for LINERS

Normal - 95% ClI Normal - 95% CI

99 99

90 90
- -
@ @

© 501 © 50
(9] (0]
o o

101 10

1 T ? T T 1

-10000 0 10000 20000 6 12
LINERS LINERS

After Box-Cox transformation (lambda = 0)

Lognormal - 95% ClI 3-Parameter Lognormal - 95% ClI
99 99
901 90
4 -
3 3
S 501 © 50
o 3]
o a
101 10
1 T T T 1= T T T
100 1000 10000 100000 100 1000 10000 100000 1000000
LINERS LINERS - Threshold

25



Reliability analysis/mapping for marine vessels: Results and Conclusions |

Probability Plot for LINERS
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Probability Plot for LINERS
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Figure 5: Individual distribution identification

Because of the small sample size, we can’t export reliable conclusions for the best fitting
distribution, but with a closer look we can take useful lessons.

4.2 NON PARAMETRIC ANALYSIS

In cases where no assumption is made for the form of the underlying distribution,
there have been developed methods for measuring and comparing statistical variables. These
methods called non parametric or distribution free statistical methods. They are slightly less
powerful than parametric in terms of the accuracy of the inferences derived for assumed
known distributions. The basic advantage is that they are simple to use and can be very useful
in reliability studies, provided that the data which were being used are independently and
identically distributed (i.i.d.) (19).

4.2.1 Non parametric estimates
For a given set of data the following sample measures may be derived.

e The sample mean

e The sample median
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e The sample standard deviation

1 N
o= h_rZ(Ié_ﬂ)g.

i=1

1 n
s? = — 1Z(xi — x)?
i=1

e The sample coefficient of variation

e The sample variance

CV=x/o

4.2.2 The empirical distribution and survival function

For a set of n lifetimes data the empirical distribution function is defined as

Number of lifetimes <t

n

Fn(t) =

The corresponding empirical survivor function is

Number of lifetimes >t
n

R,(t) =1-F(@) =

Usually such observations are distinct; therefore R, is a step function that decreases by 1/n
just before each observed failure time.

For the previously mentioned example we got the following figure:

Empirical Distribution Function of LINERS
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Figure 6: Empirical distribution function
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Survivor Function for LINERS
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Figure 7: Survivor function

4.2.3 Kaplan Meier estimators

The Kaplan- Meier estimators provide simple estimates of the reliability (survival function)
or the Cumulative Distribution Function for complete or censored sample data without
assuming a particular distribution model (20).

A general expression for the K-M estimates can be written. Assume we have n units
on test and order the observed times for these n units from t; to t,. Some of these are actual

failure times and some are running times for units taken off test before they fail. Keep track
of all the indices corresponding to actual failure times. Then the K-M estimator of R(t) are

given by:
= n;
ﬁ(t)=| |—"1
L n;
j=0

Where j=S and t; less than or equal to t; means we only form products for indices j that are in
S and also correspond to times of failure less than or equal to t;.

Once values for R (t;) are calculated, the CDF estimates are

Ft)=1-R()

A natural estimator of the cumulative failure rate Z(t) is deducted from R(t):
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If the points (t,Z(t)) are plotted, from the shape of the plot we can extract a number of
conclusions.

a) A convex Z(t) indicates an increasing failure rate

b) A concave Z(t) indicates a decreasing failure rate.

The cumulative failure rate diagram is also referred as Nelson plot since it was suggested by
Nelson (17).

4.2.4 Boxplots

In non parametric analysis, boxplot is a very useful tool.

Boxplots are an excellent tool for conveying location and variation information in data sets,
particularly for detecting and illustrating location and variation changes between different
groups of data.

Boxplots are formed by vertical axis, which is the response variable and horizontal axis,
which is the factor of interest.

To produce a boxplot the following actions are performed.

e Calculate the median and the quartiles (the lower quartile is the 25th percentile and
the upper quartile is the 75th percentile).

e Plot a symbol at the median (or draw a line) and draw a box (hence the hame box
plot) between the lower and upper quartiles; this box represents the middle 50% of the
data- the "body" of the data.

e Draw a line from the lower quartile to the minimum point and another line from the
upper quartile to the maximum point. Typically a symbol is drawn at these minimum
and maximum points, although this is optional.

Thus the boxplot identifies the middle 50% of the data, the median, and the extreme points.

There is a useful variation of the boxplot that more specifically identifies outliers. To create
this variation (19)
e Calculate the median and the lower and upper quartiles.
e Plot a symbol at the median and draw a box between the lower and upper quartiles.
e Calculate the interquartile range (the difference between the upper and lower quartile)
and call it 1Q.
e Calculate the following points (also called fences):

L1 = lower quartile - 1.5*I1Q
L2 = lower quartile - 3.0*1Q
U1 = upper quartile + 1.5*1Q
U2 = upper quartile + 3.0*1Q

The line from the lower quartile to the minimum is now drawn from the lower quartile to the
smallest point that is greater than L1. Likewise, the line from the upper quartile to the
maximum is now drawn to the largest point smaller than U1.

Potential outliers points are indicated with an asterisk in the boxplot. It is obvious that none
of our sample data is an outlier as it is clearly indicated in Figure 8. However, it must be
noticed that an outlier point, as defined in next part, it is not necessarily ignored. Careful
investigation must be carried out to determine the further use of outlier points.
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Boxplot of LINERS
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Figure 8: Boxplot for liners

4.3 OUTLIERS

An outlier is an observation that lies an abnormal distance from other values in a random
sample from a population.

> An outlying observation, or outlier, is one that appears to deviate markedly from other
members of the sample in which it occurs.”” (22)

A point beyond an inner fence on either side is considered a mild outlier. A point beyond an
outer fence is considered an extreme outlier.

Outliers should be investigated carefully. Often they contain valuable information about the
process under investigation or the data gathering and recording process. Before considering
the possible elimination of these points from the data, one should try to understand why they
appeared and whether it is likely that similar values will continue to appear.

4.4 GOODNESS OF FIT

In analyzing statistical data we need to determine how well the data fit an assumed
distribution. The goodness of fit can be tested statistically to provide a level of s-significance
that the null hypothesis (that the data indeed fit well an assumed distribution) is rejected.
Goodness of fit testing can be considered an extension of s-significance testing in which the
sample cdf is compared with the real cdf.

A number of methods are available for testing how closely a set of data fits an assumed
distribution. Hereunder are presented the methods that are used in this thesis.
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4.4.1 The x2? goodness of fit

The chi-square test is used to test if a sample of data came from a population with a specific
distribution.

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any
univariate distribution for which you can calculate the cumulative distribution function. The
chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes). This is
actually not a restriction since for non-binned data you can simply calculate a histogram or
frequency table before generating the chi-square test. However, the value of the chi-square
test statistic is dependent on how the data is binned. Another disadvantage of the chi-square
test is that it requires a sufficient sample size in order for the chi-square approximation to be
valid.

The chi-square test is defined for the hypothesis:

Ho : The data follow a specified distribution.

H; : The data do not follow the specified distribution

Test statistic: For the chi-square goodness-of-fit computation, the data are divided into k bins
and the test statistic is defined as

K
x? = Z(Oi — E;)?/E;
i=1

Where 0; is the observed frequency for bin i and E; is the expected frequency for bin i. The
expected frequency is calculated by
Ei=N(F(Y)-F(Y))

where F is the cumulative Distribution function for the distribution being tested, Y, is the
upper limit for class i, Y| is the lower limit for class i, and N is the sample size.

This test is sensitive to the choice of bins. There is no optimal choice for the bin width (since
the optimal bin width depends on the distribution). Most reasonable choices should produce
similar, but not identical, results.

The test statistic follows, approximately, a chi-square distribution with (k - ¢) degrees of
freedom where k is the number of non-empty cells and ¢ = the number of estimated
parameters (including location and scale parameters and shape parameters) for the
distribution + 1. For example, for a 3-parameter Weibull distribution, ¢ = 4.

Therefore, the hypothesis that the data are from a population with the specified distribution
is rejected if

2.2
X">X" (a,k-c)

where xz(a,k-c) is the chi-square percent point function with k - ¢ degrees of freedom and a
significance level of a.

In the above formulas for the critical regions, the convention that is followed is that x? is the
upper critical value from the chi-square distribution and x%1., is the lower critical value from
the chi-square distribution.
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4.4.2 The Kolmogorov- Smirnov test

Another goodness of fit test commonly used in statistics and reliability is the Kolmogorov-
Smirnov (K-S) test. It is rather simpler to use than the x test and can give better results with
a relatively small number of life data.

The Kolmogorov—Smirnov statistic quantifies a distance between the empirical distribution
function of the sample and the cumulative distribution function of the reference distribution,
or between the empirical distribution functions of two samples. The null distribution of this
statistic is calculated under the null hypothesis that the samples are drawn from the same
distribution (in the two-sample case) or that the sample is drawn from the reference
distribution (in the one-sample case). In each case, the distributions considered under the null
hypothesis are continuous distributions but are otherwise unrestricted.

The two-sample KS test is one of the most useful and general nonparametric methods for
comparing two samples, as it is sensitive to differences in both location and shape of the
empirical cumulative distribution functions of the two samples.

The Kolmogorov-Smirnov test is defined by:

Ho : The data follow a specified distribution.

H, : The data do not follow the specified distribution
Test statistic: the Kolmogorov-Smirnov test statistic is defined as
1 i

— i —
D= max (F() ——5~

=~ FO)

where F is the theoretical cumulative distribution of the distribution being tested which must
be a continuous distribution (i.e., no discrete distributions such as the binomial or Poisson),
and it must be fully specified (i.e., the location, scale, and shape parameters cannot be
estimated from the data).

The hypothesis regarding the distributional form is rejected if the test statistic, D, is greater
than the critical value obtained from a table. There are several variations of these tables in the
literature that use somewhat different scalings for the K-S test statistic and critical regions.
These alternative formulations should be equivalent, but it is necessary to ensure that the test
statistic is calculated in a way that is consistent with how the critical values were tabulated.

4.4.3 The Anderson- Darling test

The Anderson-Darling test is used to test if a sample of data came from a population with a
specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and gives
more weight to the tails than does the K-S test. The K-S test is distribution free in the sense
that the critical values do not depend on the specific distribution being tested. The Anderson-
Darling test makes use of the specific distribution in calculating critical values. This has the
advantage of allowing a more sensitive test and the disadvantage that critical values must be
calculated for each distribution. Currently, tables of critical values are available for the
normal, lognormal, exponential, Weibull, extreme value type I, and logistic distributions.
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The Anderson-Darling test is defined by:

Ho : The data follow a specified distribution.

H, : The data do not follow the specified distribution

Test statistic: the Anderson-Darling test statistic is defined as

A2 =—N -,

N
2i—1
S = Z ‘N (InF(Y) +1n (1= F(Yy41-0)

where F is the cumulative distribution function of the specified distribution. Note that the Y;
are the ordered data.

The critical values for the Anderson-Darling test are dependent on the specific distribution
that is being tested. Tabulated values and formulas have been published (23) for a few
specific distributions (normal, lognormal, exponential, Weibull, logistic, extreme value type
1). The test is a one-sided test and the hypothesis that the distribution is of a specific form is
rejected if the test statistic, A, is greater than the critical value.

4.4.4 P- value

The so called p- value determines the appropriateness of rejecting the null hypothesis in a
hypothesis test. P-values range from 0 to 1. The smaller the p- value, the smaller the
probability that rejecting the null hypothesis is a mistake. Before proceeding with the
reliability analyses it is of great importance to determine the s-significance level. A
commonly used value is 0.05. If the p- value of a test statistic is less than the s- level, the null
hypothesis may be rejected.

Because of their indispensable role in hypothesis testing, p- values are used in many areas of
statistics including basic statistics, linear models, reliability, and multivariate analysis among
many others. The key is to understand what the null and alternate hypotheses represent in
each test and then use the p-value to aid in the critical decision to reject the null hypothesis.

4.4.5 Examples of goodness of fit tests

For example, for the above mentioned set of life data, the goodness of fit test gives the
following graphs. The assumed hypothesis is that the data following a normal distribution.

This test compares the empirical cumulative distribution function of the sample data with the
distribution expected if the data were normal. If this observed difference is sufficiently large,
the test will reject the null hypothesis of population normality.

If the p-value of this test is less than the chosen s-level, we can reject the null hypothesis and
conclude that the population is non-normal.
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Kolmogorov Smirnov test for LINERS
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Figure 9: Kolmogorov- Smirnov test

The respective graph for Anderson-Darling test, concluding more details for the calculated
parameters is the following:

Anderson Darling test for LINERS

Anderson-Darling Normality Test

A-Squared 0,86
P-Value 0,019
Mean 6532,7
StDev 5316,7
Variance 28267350,1
Skewness 1,29568
Kurtosis 0,71609
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Figure 1.10: Anderson- Darling test

The graphical summary includes four graphs: histogram of data with an overlaid normal
curve, boxplot, 95% confidence intervals for p, and 95% confidence intervals for the median.
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CHAPTER 5 EXPERIMENTAL RESULTS

The preceding theoretical analysis, was nothing more than an introduction, so that the below
experimental results to become deeply understandable.

It is well understood that all vessels in order to avoid unexpected repairs and failures follow a
preventive maintenance plan for all equipment. The time to inspection depends on each
manufacturer.

PROBABILITY PLOTTING

The field data that where collected, regarding failures of onboard equipments in marine
vessels can be initially analyzed through data plots. These data were divided into three
categories, failures in Main Engine, failures in Diesel Generators and failures in Auxiliary
equipment.

Failures in Main Engine concern parts which, according to the manufacturer, must be
inspected so that reliable operation is ensured, every 4000 and 8000 working hours.
Therefore a logical approach is to further divide Main Engine failures in two categories, i.e.
failures to parts in which the manufacturer suggests 4000 and 8000 working hours between
inspections.

Following the same approach for the auxiliary equipment, these were divided into three
subcategories, parts with inter-inspection time of 4000, 6000 and 8000 working hours.

On this basis the following tables can be obtained.

Table 4: M/E 4000h

540 2553 4146
564 3088 4212
688 3098 4237
1092 3725 4256
1487 3860 4317
1634 3970 6374
2076 4043 9548
2134 4102 10042
2447 4137

Table 5: M/E 8000h

357 2704 4650 6491
746 3022 5190 6565
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1650 3073 5382 6608
1924 3095 5389 6790
1935 3103 5460 6899
2063 3300 5723 6947
2112 3348 5726 7549
2132 3473 5740 7745
2161 4436 5741 8330
2676 4465 5790 8864
2685 4480 5887 131399

Table 6: Diesel Generators (inter
inspection time of 4000hours)
55 2100 4238

183 2527 5062

629 2546 5609

844 2971 5849
1100 2987 6058
1123 3121 6157
1300 3150 6485
1397 3180 6593
1512 3401 7690
1751 4128

Table 7: AUX 4000h

552 1428 2650
651 1463 2800
1031 1892 3425
1300 2480 4256
1400 2490

Table 8: AUX 6000h

196 1950 3723
1500 2540 3840
1605 3340 3856
1612 3700 5380
1700 3720
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Table 9: AUX 8000h
345 2630 5520 8148
350 3577 5835 8235
400 4000 5921 8542
475 4172 5922 9990
1444 4367 6334 15544
1461 4480 6650 19624
1462 5312 7800
2250 5360 7900
2300 5400 8020
For each one of the grouped data, a statistical analysis, both non parametric and parametric,
can be applied, so that the basic descriptive statistics are interpreted and understood and it is
concluded whether these follow a specific distribution.

These calculations and diagrams will be repeated for all groups.
5.1M/E4000h

5.1.1 Qutlier points

This analysis will begin by checking the life data for possible outlier point. It is reminded that
an outlier is not necessary a false measure. Often they contain valuable information about the
process under investigation of the data gathering and recording process. Before considering
the possible elimination of these points from the data, one should try to understand why they
appeared and whether it is likely similar values will continue to appear.

Boxplot of M/E 4000 h
10000 - #
H
8000 -
S 6000
[=]
[=]
=t
1]
5 4000-
2000 -
D i

Figure 10: Boxplot of M/E 4000
In the above graph basic parameters are the following:
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Table 10: Basic parameters

lower outer upper outer
Median Q1 Q3 IQR fence fence
3725 1744.5 4230.75 | 2486.25 | 540 6374

Two points are indicated as possible outliers. These correspond to failures in 9548 and 10042
working hours. Since there are two points in this area and after searching in the failure
database, it is established that both concern failures of exhaust valves. It was decided to keep
these points and continue with the analysis.

Hereby Q1, Q3 are the 25% and 75% percentile respectively. It is self understood that the
median coincide with the 50% percentile of the under analysis data.

5.1.2 Basic statistics calculations

Subject data can underlie under a few basic statistics calculations such as mean, Standard
Error of mean, standard deviation variance, coefficient of variation first quartile, etc.

Table 11: Basic statistics calculation

Standard

error of Coefficient

the Standard of
Mean Mean Deviation | Variance | Variation Q1 Median Q3
3548,6 | 496,62 2432,9 5919158, | 68,56 1744,50 3725,00 |4230,7

Sum of

IQR Sum Minimum | Maximum | Range Squares Skewness | Kurtosis
2486,25 | 85167,00 | 540,00 10042,00 | 9502,00 438366393,00 | 1,31 2,12

A graphical summary of the above can be plotted which provides through the histogram an
approach of the appropriate distribution that describes well our data.

Also it is useful for better control and inspection to plot statistical parameters and confidence

intervals.
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Summary for M/E 4000 h
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Figure 11: Graphical summary for M/E 4000

Additionally we can see 95% confidence intervals for the mean, median and standard
deviation.

5.1.3 Histogram

Histogram of m/e 4000 h
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Figure 12: Histogram of M/E 4000
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A histogram corresponds to the probability density function of a theoretical distribution and it
is not as informative as a probability plot.

5.1.4 Cumulative distribution function

Next step is to calculate the empirical cumulative distribution function.

This function is associated with the empirical measure of our sample. As can be seen clearly
from the plot, it is a step function that jumps for 1/n at each of the n data points.

The empirical cdf estimates the true underlying cdf of the points in the sample. The
Kolmogorov Smirnov test, which was analyzed in Ch. 4.4.2 can be used to measure the
discrepancy between the empirical distribution and the hypothesized distribution.

Empirical CDF of M/E 4000 h
100 |—|
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=
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M/E 4000 h

Figure 13: Empirical CDF of M/E 4000

From the above graph a number of useful conclusions can be extracted, since it is a consistent
unbiased estimator of the population cdf.

For example in 4000 hours the 40% approximately of the Main Engine parts under
consideration, will have a failure.
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To evaluate further our data, a probability plot is necessary. Probability plot includes:

e An Anderson- Darling statistic and p- value test to verify whether the assumed
distribution fits data well.

e Confidence intervals for estimated percentiles.

To proceed in these steps, a theoretical distribution must be fitted in the data. Then the
theoretical curve estimates the population cdf.

5.1.5 Individual distribution identification

To decide which distribution follows well the failure data, we follow the method described in
previous chapter. Life data are plotted in special plotting paper for each assumed distribution.
The distribution plotting paper, for which data are plotted as a straight line, can be considered
that fit the data.

Using the statistical software Minitab, the following graphs were obtained.

Probability Plot for M/E 4000 h
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Figure 14: Distribution identification for M/E 4000

We have already presented an example with the use of such plots.

Beyond the good eyeball fit of the data to a straight line, more reliable results are provided
through various statistical tests.
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Probability Plot for M/E 4000 h
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Figure 15: Distribution identification for M/E 4000
Probability Plot for M/E 4000 h
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Figure 16: Distribution identification for M/E 4000
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Probability Plot for M/E 4000 h
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Figure 17: Distribution identification for M/E 4000

It is necessary to compare various goodness of fit test to decide which distribution is
appropriate for this set of data.

Table 12: Comparison of goodness of fit tests for M/E 4000

Distribution AD P LRT P
Normal 1,098 0,006
Box-Cox Transformation 0,608 0,101
Lognormal 0,868 0,022
3-Parameter Lognormal 0,621 * 0,253
Exponential 1,626 0,021
2-Parameter Exponential 1,192 0,039 0,015
Weibull 0,618 0,097
3-Parameter Weibull 0,997 0,014 0,219

Smallest Extreme Value 2,165 <0,010
Largest Extreme Value 0,625 0,103

Gamma 0,631 0,110
3-Parameter Gamma 0,656 * 0,185
Logistic 0,769 0,024
Loglogistic 0,775 0,023
3-Parameter Loglogistic 0,631 * 0,367

Johnson Transformation 0,581 0,118

The Box-Cox transformations uses a lambda of 0.05 and the Johnson transformation function
is -0,748045 + 1,29142 * Asinh( ( X - 1710,31) / 2304,44)

Minitab also includes a p- value for Likelihood Ratio Test (LRT), which tests whether a 2-
parameter distribution would fit the data equally well compared to its 3-parameter
counterpart.
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Since it is preferable to use normal models instead of non-normal, previous transformations
will be ignored.

Checking the Anderson Darling and p-value test, it is concluded that the Weibull distribution
fits adequately well our data. In order to define subject distribution, it is necessary to estimate
its parameters.

According to Nelson (17), the scale parameter a of a Weibull distribution is the 63"
percentile. Calculating the 63" percentile, the scale parameter for this distribution is o=
3955.87.

The slope of the fitted line in a Weibull plot corresponds to the shape parameter 3. Using
Weibull plot, shape parameter is calculated as p=1.55328.

Summarizing, the fitted distribution for the first group of failures, is fully defined.
Weibull distribution of times to failure:
“\P
« CDRF(x)=1-exp[-(3) ] 0<x<o

B
e PDF:f(x) = g (z)ﬁ_1 exp [— (i) ,0<x<o

Where 0=3955.87
B=1,55328.

Probability Plot for M/E 4000 h
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Figure 18: Plot of Weibull fit to the data
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5.1.6 Reliability concepts

To understand clearly issues as reliability, failure rate, and survival function, the next
important step is to extract relevant plots, given that the Weibull distribution fits adequately
well the life data.

In addition to these plots, it is also of great assistance to extract tabulated values for
possibilities of failures, etc in regards to time.

According to earlier symbols, it is clear that F(t,)- F(t;) is the probability that a part survives
to time t; but fails before t, . It is also the fraction of the entire population that fails in that
interval.

Since it is useful to focus attention on the unfailed units, the reliability function or survival
function is: R ()= 1- F(t)

Survival Plot for M/E 4000 h
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Figure 19: Plot of reliability function with 95% confidence intervals

Table 13: table of survival probabilities
95% confidence intervals
time | probability lower upper
1000 | 0,888590645 | 0,75141978 | 0,952353538
2000 | 0,707046992 | 0,52884325 | 0,828089411
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3000 | 0,521649861 | 0,34921057 | 0,668630713
4000 | 0,361539855 | 0,21244054 | 0,512642357
5000 | 0,237202679 | 0,11670455 | 0,381456047
6000 | 0,148100144 | 0,05706026 | 0,27977857
7000 | 0,088340731 | 0,02464218 | 0,203929802
8000 | 0,05049672 | 0,00937149 | 0,148225601
9000 | 0,027729244 | 0,00313563 | 0,107559004
10000 | 0,014658238 | 0,00092293 | 0,077943904
12000 | 0,003678923 | 5,4448E-05 | 0,040765882
13000 | 0,001751668 | 1,0915E-05 | 0,029419614
14000 | 0,000807534 | 1,9256E-06 | 0,021200586
15000 | 0,000360832 | 2,9891E-07 | 0,015255503

The table above shows the percentage of the items under investigation that will survive at a
given time. The survival curve is surrounded by two outer lines - the approximate 95.0%
confidence interval for the curve, which provides a range of reasonable values for the "true"
survival function at each point.

The conditional survival probabilities gives the reliability for a new mission of t duration,
having already accumulated T hours of operation up to the start of this new mission, and the
units are checked out to assure that they will start the next mission successfully. It is called
conditional because you can calculate the reliability of a new mission based on the fact that
the unit or units already accumulated T hours of operation successfully.

For the Weibull distributed category M/E 4000 the conditional probabilities for a range of
1000 to 10000 hours is plotted in the following graph.
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Figure 20: Conditional probabilities

For comparison the survival plot (as in Figure 24: Survival plot for M/E 4000 can be seen).
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To understand deeply this figure, for equipment that has survived 4000 hours, the conditional
probabilities to survive t hours are:

Table 14: Conditional probabilities for M/E 4000

t P
1000 | 0,371234
2000 | 0,273451
3000 | 0,190452
4000 | 0,125061
5000 | 0,077241
6000 | 0,044782
8000 | 0,012373
10000 | 0,002611

For example, given that equipment has survived 4000 hours, the probability to survive
additionally 2000 hours is 0.273 or 27.3%.

To visualize this example, a pie chart can be drawn which introduces the conditional
probabilities, given that equipment has already survived for 4000 operational hours. Clearly
can be seen the reduction of survival probabilities as the additional requested time to failure
is increasing.

conditional probabilities for 4000 hours

6000 hours
8000 hours 10000 hours

P=0.044
5000 hours P=0.012 P=0.002
P=0.077

4000 hours 1
P=0.125 '

3000 hours
P=0.190

Figure 21: Conditional probabilities for M/E 4000 at 4000 hours
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5.1.7 Failure rate plot

Hazard Plot for M/E 4000 h
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Figure 22: Hazard plot for M/E 4000

It is already defined in a previous chapter but it is also reminded here that the failure rate plot
(hazard plot) is of great importance. The units of this rate are failures per unit time. It is the
failure rate of the survivors to time t in the very next instant following t. It is not a probability
and it can have values greater than 1.

In cases with constant failure plot, we can have a quick calculation of the MTTF (Mean Time
To Failure) since it is the reciprocal of the assumed constant failure rate. However in Weibull
distribution the failure rate is a function of time. As it was written in previous chapter, the
concave shape of the curve indicates a decreasing failure rate.

5.1.8 Cumulative failure plot

We can integrate the hazard function to obtain the cumulative failure function. Each plot
point represents the cumulative percentage of units failing at time t.
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Cumulative Failure Plot for M/E 4000 h
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The cumulative failure curve is surrounded by two outer lines - the approximate 95.0%
confidence interval for the curve, which provides reasonable values for the "true" cumulative

failure function.

Figure 23: Cumulative failure plot for M/E 4000

Table 15: table of cumulative failure probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,111409355

0,0476465

0,248580215

2000

0,292953008

0,1719106

0,471156745

3000

0,478350139

0,3313693

0,650789428

4000

0,638460145

0,4873576

0,787559461

5000

0,762797321

0,618544

0,883295446

6000

0,851899856

0,7202214

0,942939741

7000

0,911659269

0,7960702

0,975357825

8000

0,94950328

0,8517744

0,990628511

9000

0,972270756

0,892441

0,99686437

10000

0,985341762

0,9220561

0,999077074

12000

0,996321077

0,9592341

0,999945552

13000

0,998248332

0,9705804

0,999989085

14000

0,999192466

0,9787994

0,999998074

15000

0,999639168

0,9847445

0,999999701

T
10000
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5.1.9 Non parametric analysis

To use nonparametric methods, one does not assume a parametric form for a distribution.
Nonparametric comparisons are less sensitive than parametric ones and are usually used in
engineering applications because they are often adequate and yield more information for
small samples.

Table 16: Non parametric estimates

Standard 95,0% Normal CI
Mean(MTTF) Error Lower Upper
3548,63 496,620 2575,27 4521,98

Reliability plots can be produced also with a nonparametric approach.

A distribution-free estimate of the reliability at age y is the sample fraction that survive an
age y. that is, if X of the n times to failure are beyond age y, then the estimate of reliability is:

R(y)=X/n

Survival Plot for M/E 4000 h
Kaplan-Meier Method - 95% CI
100
80
~ 604
C
I
©
(O]
& 404
20 \:l
O T T T T T
0 2000 4000 6000 8000 10000
hours

Figure 24: Survival plot for M/E 4000
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Table 17: kaplan meier estimates for survival

probabilities
95% confidence
intervals
survival
time | probability lower upper

540 0,95833 | 0,878388 | 1,000000
564 0,91667 | 0,806092 | 1,000000
688 0,87500 | 0,742687 | 1,000000
1092 0,83333 | 0,684234 | 0,982433
1487 0,79167 | 0,629189 | 0,954144
1634 0,75000 | 0,576762 | 0,923238
2076 0,70833 | 0,526487 | 0,890180
2134 0,66667 | 0,478069 | 0,855264
2447 0,62500 | 0,431314 | 0,818686
2553 0,58333 | 0,386093 | 0,780573
3088 0,54167 | 0,342324 | 0,741009
3725 0,45833 | 0,258991 | 0,657676
4043 0,41667 | 0,219427 | 0,613907
4102 0,37500 | 0,181314 | 0,568686
4137 0,33333 | 0,144736 | 0,521931
4146 0,29167 | 0,109820 | 0,473513
4212 0,25000 | 0,076762 | 0,423238
4237 0,20833 | 0,045856 | 0,370811
4256 0,16667 | 0,017567 | 0,315766
4317 0,12500 | 0,000000 | 0,257313
6374 0,08333 | 0,000000 | 0,193908
9548 0,04167 | 0,000000 | 0,121612
10042 0,00000 | 0,000000 | 0,000000
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Cumulative Failure Plot for M/E 4000 h
Kaplan-Meier Method - 95% ClI
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Figure 25: Cumulative failure plot for M/E 4000
Hazard Plot for M/E 4000 h
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Figure 26: Hazard plot for M/E 4000
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Table 18: cumulative failure probabilities and hazard rates

95% confidence
intervals
cumulative
failure

time | probability | lower upper hazard rates
540 0,04167 | 0,000000 | 0,121612 0,04167
564 0,08333 | 0,000000 | 0,193908 0,04348
688 0,12500 | 0,000000 | 0,257313 0,04545
1092 0,16667 | 0,017567 | 0,315766 0,04762
1487 0,20833 | 0,045856 | 0,370811 0,05000
1634 0,25000 | 0,076762 | 0,423238 0,05263
2076 0,29167 | 0,109820 | 0,473513 0,05556
2134 0,33333 | 0,144736 | 0,521931 0,05882
2447 0,37500 | 0,181314 | 0,568686 0,06250
2553 0,41667 | 0,219427 | 0,613907 0,06667
3088 0,45833 | 0,258991 | 0,657676 0,07143
3725 0,54167 | 0,342324 | 0,741009 0,08333
4043 0,58333 | 0,386093 | 0,780573 0,09091
4102 0,62500 | 0,431314 | 0,818686 0,10000
4137 0,66667 | 0,478069 | 0,855264 0,11111
4146 0,70833 | 0,526487 | 0,890180 0,12500
4212 0,75000 | 0,576762 | 0,923238 0,14286
4237 0,79167 | 0,629189 | 0,954144 0,16667
4256 0,83333 | 0,684234 | 0,982433 0,20000
4317 0,87500 | 0,742687 | 1,000000 0,25000
6374 0,91667 | 0,806092 | 1,000000 0,33333
9548 0,95833 | 0,878388 | 1,000000 0,50000
10042 1,00000 | 1,000000 | 1,000000 1,00000

Another advantage of the non parametric method is that we can approach the Mean Residual

Life of the machinery under investigation (24).

MRL of an item at age t, is the expected remaining life of the item. It is sometimes of interest

to study the function

when an item has survived up to time t, then g(t) gives the MRL(t) as a percentage of the

initial MTTF.

It is another approach/ expression of the failure rate function, as can be seen in the

g(t)=MRL(t)/MTTF

application of this function on the real life data.
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mrl/mttf
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Figure 27: MRL/MTTF for M/E 4000h

In full compliance with the failure rate function, at every instant of time the remaining life of
the items is decreasing. For example in 3000 hours is 35% of mean residual life at time 0.

5.2 M/E 8000 hours

Following exactly the same procedure, the data that concerns failures of Main Engine that the
manufacturer suggests 8000 working hours between inspections, can be analyzed.

5.2.1 Outlier points

Boxplot of M/E 8000 h
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Figure 28: Boxplot of M/E 8000h
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Regarding this group of data, we can a priori exclude the measurement of 131399 since it is
obvious an outlier point. It regards time to failure of one cylinder liner.

Table 19: Basic parameters

lower outer upper outer
Median Q1 Q3 IQR fence fence
4480 2685 5887 3202 357 8864

5.2.2 Basic statistics calculations

Some basic statistics calculations such as mean, Standard Error of mean, standard deviation
variance, coefficient of variation first quartile, etc can be found in table 5.14

Table 20: Basic statistics calculation

Standard
error of | Standard Coefficient
Mean Mean Deviation | Variance of Variation | Q1 Median Q3
4474,55 326,86 2143,4 | 4594262,2 | 47,9024505 2685 4480 5887
Sum of
IQR Sum Minimum | Maximum | Range Squares | Skewness | Kurtosis
3202 | 192406 357 8864 8507 | 1,05E+09 | 0,07319 | -0,9168

A graphical summary of the above can be found in figure 5.13

Summary for M/E 8000 h

Anderson-Darling Normality Test
0,59
0,117

A-Squared
P-Value

Mean
StDev

4474.6
2143,4
V ariance 4594262,2

\ Skewness 0,073191
Kurtosis -0,916837
N 43

Minimum 357,0

1st Quartile 2685,0

Median 4480,0

3rd Q uartile 5887,0

Maximum 8864,0
95% Confidence Interval for Mean

3814,9 5134,2
95% Confidence Interval for Median

3100,5 5724,0
95% Confidence Interval for StDev

1767,3 2724,3

T T T T
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Figure 29: Graphical summary for M/E 8000h
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As it was explained, the software package Minitab, that was used to produce these plots,
assumes that the under examination data follows normal distribution and based on this
assumption are calculated parameters as the mean, median, etc. As we proceed with our
analysis, the proper distribution that fits adequately well our model will be used; therefore a
possible variance between subject parameters is expected.

5.2.3 Histogram

Histogram of M/E 8000 h
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Figure 30: Histogram of M/E 8000h

5.2.4 Cumulative distribution function

As described in previous chapter, the empirical cdf is an estimator of the cumulative
distribution function. To further define the proper distribution which fits the data well, these
have to be plotted in special plotting paper.

Therefore an indication of the percentage of items that have failed until time t can be obtained
from Figure 31.
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Empirical CDF of M/E 8000 h
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Figure 31: Empirical CDF of M/E 8000h

5.2.5 Individual distribution identification

Using the statistical software Minitab, the following graphs were obtained.

Probability Plot for M/E 8000 h
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Figure 32: Distribution identification for M/E 8000h
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Probability Plot for M/E 8000 h
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Figure 33: Distribution identification for M/E 8000h
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Figure 34: Distribution identification for M/E 8000h
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Probability Plot for M/E 8000 h
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Figure 35: Distribution identification for M/E 8000h

It is necessary to compare various goodness of fit test to decide which distribution is
appropriate for this set of data.

Table 21: Comparison of goodness of fit tests for M/E 8000h

Goodness of Fit Test

Distribution AD P LRT P
Normal 0,593 0,117
Box-Cox Transformation 0,593 0,117
Lognormal 1,293 <0,005
3-Parameter Lognormal 0,627 * 0,000
Exponential 4,935 <0,003
2-Parameter Exponential 4,530 <0,010 0,024
Weibull 0,605 0,112
3-Parameter Weibull 0,601 0,123 0,437

Smallest Extreme Value 0,737 0,049
Largest Extreme Value 0,716 0,058

Gamma 0,804 0,041
3-Parameter Gamma 0,631 * 0,062
Logistic 0,720 0,035
Loglogistic 0,985 0,006
3-Parameter Loglogistic 0,728 * 0,019

Checking the Anderson Darling and p-value test, it is concluded that the normal distribution
fits adequately well our data.

In order to define subject distribution it is necessary to estimate its parameters.

For the Normal distribution we need the mean and a standard deviation.
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For this distribution:
Mean = 4474.55
Standard deviation = 2118.35
Summarizing, the fitted distribution for the first group of failures, is fully defined.

Normal distribution of times to failure:

o CDF:F(x) =1[1+erf(EL)Lx€R

(x—pw)?

. PDF:f(x):ﬁe‘ 20> ,x €R

Where u=4474,55
0=2118,35
where erf is a function sometimes called the error function which can’t be expressed in terms
of finite additions, subtractions, multiplications, and root extractions, and so must be either
computed numerically or otherwise approximated.

Probability Plot for M/E 8000 h
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Figure 36: Plot of Normal fit to the data

As it was described earlier, because of the statistical nature of the process, it is necessary to
use statistical intervals, which gives the range of plausible values for the process parameters
based on the data and the underlying assumptions about the process. However, the intervals
cannot always be guaranteed to include the true process parameters and still be narrow
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enough to be useful. Instead the intervals have a probabilistic interpretation that guarantees
coverage of the true process parameters a specified proportion of the time. In order for these
intervals to truly have their specified probabilistic interpretations, the form of the distribution
of the random errors must be known. Although the form of the probability distribution must
be known, the parameters of the distribution can be estimated from the data.

5.2.6 Reliability concepts

Relevant plots for this group of data can be produced, similarly to previous chapter.

Survival Plot for M/E 8000 h
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Figure 37: Plot of reliability function with 95% confidence intervals

Table 22: table of survival probabilities
95% confidence intervals

time lower

probability

upper

1000

0,94951996

0,881495738

0,982044631

2000

0,878627271

0,782445855

0,940125005

3000

0,756812863

0,641679284

0,84831259

4000

0,588629998

0,468676873

0,700778455

5000

0,402050703

0,290646555

0,522094711
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6000 | 0,235729394 0,1455946 | 0,35023035
7000 | 0,116596822 | 0,05669969 | 0,21149406
8000 | 0,048032508 | 0,01675938 | 0,114553816
9000 | 0,016327395 | 0,003705657 | 0,055375121
10000 | 0,004548767 | 0,000607245 | 0,023779993
12000 | 0,000190797 | 6,48481E-06 | 0,003031298
13000 | 2,85408E-05 | 4,19365E-07 | 0,000895117
14000 3,452E-06 | 1,97722E-08 | 0,000232299
15000 | 3,37031E-07 | 6,78394E-10 | 5,29068E-05

The table above shows the percentage of the items under investigation that will survive at a
given time. The survival curve is surrounded by two outer lines - the approximate 95.0%
confidence interval for the curve, which provides a range of reasonable values for the "true"
survival function at each point.

The conditional survival probabilities gives the reliability for a new mission of t duration,
having already accumulated T hours of operation up to the start of this new mission, and the
units are checked out to assure that they will start the next mission successfully. It is called
conditional because you can calculate the reliability of a new mission based on the fact that
the unit or units already accumulated T hours of operation successfully.

For the Normal distributed category M/E 8000 the conditional probabilities for a range of
1000 to 10000 hours is plotted in the following graph.
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Figure 38: Conditional probabilities for M/E 8000h
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To understand deeply this figure, for equipment that has survived 4000 hours, the conditional
probabilities to survive t hours are:

Table 23:Conditional probabilities at 4000 hours

t P
1000 | 0,402049087
2000 | 0,235727912
3000 | 0,116595754
4000 | 0,048031899
5000 | 0,016327121
6000 | 0,004548669
8000 | 0,000190791
10000 | 3,45184E-06

To visualize this table the following graph can be obtained.

conditional probabilities at 4000 hours

5000 hours 6000 hours
P=0.016 P=0.004

4000 hours
P=0.048

Figure 39: conditional probabilities at 4000 hours
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5.2.7 Failure rate plot
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Figure 40: Hazard plot for M/E 8000h

It is reminded that regarding the shape of the failure rate curve is that it determines the
frequency of failures. Nelson (25) suggested that if the failure rate curve is convex, then there
will be an increasing failure rate life distribution. Correspondingly if the failure rate curve is
concave, then there will be a decreasing failure rate life distribution.

5.2.8 Cumulative failure plot

The following table, indicates the percentage of items that will fail until time t. For example,
regarding this group of data, at 4000 hours the 41.1% of the items will have failed.

Table 24: table of cumulative failure probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,05048004

0,017955369

0,118504262

2000

0,121372729

0,059874995

0,217554145

3000

0,243187137

0,15168741

0,358320716

4000

0,411370002

0,299221545

0,531323127

5000

0,597949297

0,477905289

0,709353445

6000

0,764270606

0,64976965

0,8544054
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Figure 41: Cumulative failure plot for M/E 8000h

5.2.9 Non parametric analysis

In non parametric analysis, there is no assumption or fit of a known distribution, but only
with statistical tools, the necessary statistics/ estimators are calculated.

Mean(MTTF)
4474 ,56

Standard
Error

Table 25: Non parametric estimates

Lower

95,0% Normal CI

Upper

326,869 3833,91 5115,21
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A distribution free estimate of useful plots can be produced.

Survival Plot for M/E 8000 h
Kaplan-Meier Method - 95% CI
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Figure 42: Survival plot for M/E 8000h

Table 26: kaplan meier estimates for survival
probabilities
95% confidence intervals

time

survival
probability

lower

upper

357

0,976744186

0,022983807

0,931696753

746

0,953488372

0,032114728

0,890544663

1650

0,930232558

0,038849724

0,854088498

1924

0,906976744

0,044295501

0,820159158

1935

0,88372093

0,048884831

0,787908422

2063

0,860465116

0,052841338

0,756897997

2112

0,837209302

0,056298599

0,726866076

2132

0,813953488

0,059343934

0,697641515

2161

0,790697674

0,062038034

0,669105361

2676

0,76744186

0,064424979

0,641171222

2685

0,744186047

0,066537832

0,613774292

2704

0,720930233

0,068401998

0,58686478

3022

0,697674419

0,070037336

0,560403762

3073

0,674418605

0,071459559

0,534360442

3095

0,651162791

0,072681179

0,508710298

3103

0,627906977

0,073712169

0,48343378
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3300

0,604651163

0,074560438

0,458515389

3348

0,581395349

0,075232167

0,43394301

3473

0,558139535

0,075732054

0,409707436

4436

0,534883721

0,076063487

0,385802025

4465

0,511627907

0,076228663

0,362222472

4480

0,488372093

0,076228663

0,338966658

4650

0,465116279

0,076063487

0,316034584

5190

0,441860465

0,075732054

0,293428366

5382

0,418604651

0,075232167

0,271152313

5389

0,395348837

0,074560438

0,249213064

5460

0,372093023

0,073712169

0,227619827

5723

0,348837209

0,072681179

0,206384717

5726

0,325581395

0,071459559

0,185523233

5740

0,302325581

0,070037336

0,165054925

5741

0,279069767

0,068401998

0,145004315

5790

0,255813953

0,066537832

0,125402198

5887

0,23255814

0,064424979

0,106287501

6491

0,209302326

0,062038034

0,087710012

6565

0,186046512

0,059343934

0,069734538

6608

0,162790698

0,056298599

0,052447471

6790

0,139534884

0,052841338

0,035967765

6899

0,11627907

0,048884831

0,020466562

6947

0,093023256

0,044295501

0,00620567

7549

0,069767442

0,038849724

0

7745

0,046511628

0,032114728

8330

0,023255814

0,022983807

8864

0

0

0
0
0
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Cumulative Failure Plot for M/E 8000 h
Kaplan-Meier Method - 95% ClI
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Figure 43: Cumulative failure plot for M/E 8000h
Hazard Plot for M/E 8000 h
Empirical Hazard Function
Complete Data
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Figure 44: Hazard plot for M/E 8000h
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Table 27: cumulative failure probabilities and hazard rates

95% confidence intervals

time

cumulative
failure
probability

lower

upper

hazard rates

357

0,023255814

0

0,068303247

0,023255814

746

0,046511628

0

0,109455337

0,023809524

1650

0,069767442

0

0,145911502

0,024390244

1924

0,093023256

0,00620567

0,179840842

0,025

1935

0,11627907

0,020466562

0,212091578

0,025641026

2063

0,139534884

0,035967765

0,243102003

0,026315789

2161

0,209302326

0,087710012

0,330894639

0,028571429

2676

0,23255814

0,106287501

0,358828778

0,029411765

2685

0,255813953

0,125402198

0,386225708

0,03030303

2704

0,279069767

0,145004315

0,41313522

0,03125

3022

0,302325581

0,165054925

0,439596238

0,032258065

3073

0,325581395

0,185523233

0,465639558

0,033333333

3095

0,348837209

0,206384717

0,491289702

0,034482759

3103

0,372093023

0,227619827

0,51656622

0,035714286

3300

0,395348837

0,249213064

0,541484611

0,037037037

3348

0,418604651

0,271152313

0,56605699

0,038461538

3473

0,441860465

0,293428366

0,590292564

0,04

4465

0,488372093

0,338966658

0,637777528

0,043478261

4480

0,511627907

0,362222472

0,661033342

0,045454545

4650

0,534883721

0,385802025

0,683965416

0,047619048

5389

0,604651163

0,458515389

0,750786936

0,055555556

5460

0,627906977

0,48343378

0,772380173

0,058823529

5723

0,651162791

0,508710298

0,793615283

0,0625

5726

0,674418605

0,534360442

0,814476767

0,066666667

5740

0,697674419

0,560403762

0,834945075

0,071428571

5741

0,720930233

0,58686478

0,854995685

0,076923077

5790

0,744186047

0,613774292

0,874597802

0,083333333

5887

0,76744186

0,641171222

0,893712499

0,090909091

6491

0,790697674

0,669105361

0,912289988

0,1

6565

0,813953488

0,697641515

0,930265462

0,111111111

6608

0,837209302

0,726866076

0,947552529

0,125

6899

0,88372093

0,787908422

0,979533438

0,166666667

7549

0,930232558

0,854088498

1

0,25

7745

0,953488372

0,890544663

0,333333333

8330

0,976744186

0,931696753

0,5

8864

1

1

1
1
1

1

In accordance to Figure 27: MRL/MTTF for M/E 4000h, we can plot the same function for

M/E 8000 (24).
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mrl/mttf

0,9
y \
0,8
0,7 ‘\\\‘
0,6 ‘\\\\
0,5 ‘\\\\‘
0,4 \ e ir| /mMtE
0,3 ‘\\‘
0'2 ‘\\\~=\~“----
0,1

0 2000 4000 6000 8000

Figure 45: MRL/MTTF for M/E 8000

An increasing failure rate is also noticed in this category of items. For example at 4000 hours
the remaining life is about 40% of that in time 0.

5.3 DIESEL GENERATORS

Following exactly the same procedure, the data that concerns failures in Diesel Generators, as
can be found in Table 6: Diesel Generators (inter inspection time of 4000hours), can be
analyzed.

5.3.1 Outlier points

Boxplot of D/G

8000

7000

6000

5000

4000+

D/G

3000

2000

1000~

Figure 46: Boxplot of D/G
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From this plot we conclude that no outlier points exist in this group of data and the following
parameters are calculated.

Table 28: Basic parameters

lower outer upper outer
Median Q1 Q3 IQR fence fence
2987 1348.5 5335.5 3987 55 7690

5.3.2 Basic statistics calculations

Some basic statistics calculations such as mean, Standard Error of mean, standard deviation
variance, coefficient of variation first quartile, etc can be found in table 5.22

Table 29: Basic statistics calculation

Standard Coefficient
error of | Standard of
Mean Mean Deviation | Variance Variation Q1 Median Q3
3232,62 | 402,4201 2167,09 | 4696316,1 67,038 1348,5 2987 5335,5
Sum of
IQR Sum Minimum | Maximum | Range Squares | Skewness | Kurtosis
3987 93746 55 7690 7635 | 4,35E+08 | 0,425678 | -0,91999

A graphical summary of the above can be found in figure 47.
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Summary for D/G

Anderson-Darling Normality Test

A-Squared 0,58
P-Value 0,119
Mean 3232,6
StDev 2167,1

] V ariance 4696316,2

/ Skewness  0,425679
Kurtosis -0,919987

N 29

/ \ Minimum 55,0

| 1st Quartile 1348,5
\l\l\ Median 2987,0
T T T T T 3rd Q uartile 5335,5
0 2000 4000 6000 8000 Maximum 7690,0
95% Confidence Interval for Mean
— F— 2408,3 4056,9
95% Confidence Interval for Median
1711,4 4146,2
95% Confidence Interval for StDev
95% Confidence Intervals 1719.8 2930.9
Mean- | L4 |
Median{ | L |
20I00 25IOO 302)0 35I00 40I00 45IOO
Figure 47: Graphical summary for D/G
5.3.3 Histogram
Histogram of D/G
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Figure 48: Histogram of D/G
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5.3.4 Cumulative distribution function

Empirical CDF of D/G
100+
804
] 60_
=
()]
o
)
& 404
201
0_
T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
hours

Figure 49: Empirical CDF of D/G

As described in previous chapter, the empirical cdf is an estimator of the cumulative
distribution function. To further define the proper distribution which fits the data well, these
have to be plotted in special plotting paper.

5.3.5 Individual distribution identification

Using the statistical software Minitab, the following graphs were obtained. It can be seen that
the Weibull distribution describes adequately well the life data.

The Weibull distribution is widely used in reliability, since by altering the shape and scale
parameters a wide range of fitted data can be described. For example, in case that the shape
parameter is greater than 3, the distribution that arises is approximately normal.

In this case, where the shape parameter is greater than 1, this particular distribution appears to
have an Increasing Failure Rate.
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Exponential - 95% CI

Probability Plot for D/G

2-Parameter Exponential - 95% C|

Goodness of Fit Test
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Figure 50: Distribution identification for D/G
Probability Plot for D/G
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Figure 51: Distribution identification for D/G
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Probability Plot for D/G
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Figure 52: Distribution identification for D/G
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Figure 53: Distribution identification for D/G
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It is necessary to compare various goodness of fit test to decide which distribution is
appropriate for this set of data.
Table 30: Comparison of goodness of fit tests for D/G

Goodness of Fit Test

Logistic
Loglogistic
3-Parameter Loglogistic

,593 0,082
,683 0,043
374 * 0,052

Distribution AD P LRT P
Normal 0,584 0,119
Box-Cox Transformation 0,276 0,633
Lognormal 1,213 <0,005
3-Parameter Lognormal 0,353 * 0,002
Exponential 1,089 0,088
2-Parameter Exponential 1,420 0,022 1,000
Weibull 0,380 >0,250
3-Parameter Weibull 0,318 >0,500 0,551
Smallest Extreme Value 0,991 0,011
Largest Extreme Value 0,393 >0,250
Gamma 0,479 >0,250
3-Parameter Gamma 0,356 * 0,829

0

0

o,

Checking the Anderson Darling and p-value test, it is concluded that the Weibull distribution
fits adequately well our data.

In order to define subject distribution it is necessary to estimate its parameters.

Following the same steps as in the other groups of data we need to calculate the shape and
scale parameter for this distribution.

e Scale parameter a=3517.47
e Shape parameter f=1.40425

Summarizing, the fitted distribution for the first group of failures, is fully defined.

Weibull distribution of times to failure:

B
e CDF:F(x)=1-—exp [—(g) ,0<x <

. 8
e PDF:f(x) = S (&)B_l exp [— (i) ,0<x<o

Where a, p have been already calculated.
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Probability Plot for D/G
Weibull - 95% ClI
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Figure 54: Plot of Weibull fit to the data

In the plotted data in Weibull plotting paper, it is understood that this distribution fits well the
collected life data.

5.3.6 Reliability concepts
Relevant plots for this group of data can be produced, similarly to previous chapter.

Survival Plot for D/G
Weibull - 95% ClI
100 -
80
= 601
C
(]
2
(O]
o 404
20
0_
T T T T T T
0 2000 4000 6000 8000 10000
hours

Figure 55: Plot of reliability function with 95% confidence intervals
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Table 31: table of survival probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,842834281

0,699137952

0,92156171

2000

0,635996853

0,472579419

0,76090491

3000

0,449442278

0,301450117

0,58662197

4000

0,301846413

0,177087075

0,43655613

5000

0,19424434

0,094157597

0,32096339

6000

0,120420337

0,045000398

0,23577378

7000

0,07219769

0,019328394

0,17366855

8000

0,041985698

0,007478481

0,1283315

9000

0,023738409

0,002613884

0,09509234

10000

0,013073913

0,000827452

0,07061856

12000

0,003688102

6,21458E-05

0,03913607

13000

0,00189387

1,47985E-05

0,0291867

14000

0,000952243

3,21541E-06

0,02178629

15000

0,000469236

6,38343E-07

0,01627437

given time. For example at 6000 hours the 12% of the items will have survive.

The conditional survival probabilities for this category, for a range of 1000 to 10000 hours is

plotted in Figure 56: Conditional probabilities for D/G

0,9
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20000

5000
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survival

To understand deeply this figure, for equipment that has survived 4000 hours, the conditional

Figure 56: Conditional probabilities for D/G

probabilities to survive t hours are:
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Table 32: Conditional probabilities for D/G at 4000 hours

t P
1000 | 0,643519
2000 | 0,398943
3000 | 0,239184
4000 | 0,139094
5000 | 0,078642
6000 | 0,043312
8000 | 0,012218
10000 | 0,003155

For example, given that an item of this group has survived 4000 hours, the probability to
survive additionally 5000 hours is 0.078.

To visualize this example, a pie chart can be drawn.

conditional probabilities at 4000 hours

4000 hours 5000 hours 6000 hours
P=0.139 P=0.078 [%—8000 hours

A\ Y

Figure 57: Conditional probabilities for D/G at 4000 hours
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5.3.7 Failure rate plot

Hazard Plot for D/G
Weibull
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Figure 58: Hazard plot for D/G

5.3.8 Cumulative failure plot

Cumulative Failure Plot for D/G
Weibull - 95% CI
100 -
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c
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hours

Figure 59: Cumulative failure plot for D/G
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Table 33: table of cumulative failure probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,157165719

0,078438295

0,300862048

2000

0,364003147

0,239095095

0,527420581

3000

0,550557722

0,413378027

0,698549883

4000

0,698153587

0,563443868

0,822912925

5000

0,80575566

0,679036608

0,905842403

6000

0,879579663

0,764226221

0,954999602

7000

0,92780231

0,826331446

0,980671606

8000

0,958014302

0,871668495

0,992521519

9000

0,976261591

0,90490766

0,997386116

10000

0,986926087

0,929381438

0,999172548

12000

0,996311898

0,960863933

0,999937854

13000

0,99810613

0,970813296

0,999985202

14000

0,999047757

0,978213712

0,999996785

15000

0,999530764

0,983725626

0,999999362

5.3.9 Non parametric analysis

Upper

Standard
Mean(MTTF) Error Lower
3232,62 402,420 2443,89 4021,35

A distribution free estimate of useful plots can be produced.

Table 34: Non parametric estimates

95,0% Normal CI

100

Survival Plot for D/G

Kaplan-Meier Method - 95% CI

80

60

Percent

40

20

T
0 1000

T
2000

T
3000

T
4000
hours

T
5000

T T
6000 7000

Figure 60: Survival plot for D/G
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Table 35: kaplan meier estimates for survival
probabilities

95% confidence intervals

time

survival
probability

lower

upper

55

0,965517241

0,899107757

1

183

0,931034483

0,838809629

1

629

0,896551724

0,785711245

1

844

0,862068966

0,736566836

0,98757109

1100

0,827586207

0,690105512

0,9650669

1123

0,793103448

0,645671828

0,94053507

1300

0,75862069

0,602876643

0,91436474

1397

0,724137931

0,56146858

0,88680728

1512

0,689655172

0,521276397

0,85803395

1751

0,655172414

0,482179667

0,82816516

2100

0,620689655

0,444092506

0,7972868

2527

0,586206897

0,406954002

0,76545979

2987

0,482758621

0,300888757

0,66462848

3121

0,448275862

0,267274117

0,62927761

3150

0,413793103

0,234540209

0,593046

3180

0,379310345

0,202713195

0,55590749

3401

0,344827586

0,171834839

0,51782033

4128

0,310344828

0,141966052

0,4787236

4238

0,275862069

0,113192718

0,43853142

5062

0,24137931

0,085635264

0,39712336

5609

0,206896552

0,059464932

0,35432817

5849

0,172413793

0,034933099

0,30989449

6157

0,103448276

0

0,21428876

6485

0,068965517

0,16119037

6593

0,034482759

0,10089224

7690

0

0
0
0

0
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Cumulative Failure Plot for D/G
Kaplan-Meier Method - 95% CI
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Figure 61: Cumulative failure plot for D/G
Hazard Plot for D/G
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Figure 62: Hazard plot for D/G
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Table 36: cumulative failure probabilities and hazard rates

95% confidence intervals

time

cumulative
failure
probability

lower

upper

hazard rates

55

0,034482759

0

0,100892243

0,034482759

183

0,068965517

0

0,161190371

0,035714286

629

0,103448276

0

0,214288755

0,037037037

844

0,137931034

0,012428905

0,263433164

0,038461538

1100

0,172413793

0,034933099

0,309894488

0,04

1123

0,206896552

0,059464932

0,354328172

0,041666667

1300

0,24137931

0,085635264

0,397123357

0,043478261

1397

0,275862069

0,113192718

0,43853142

0,045454545

1512

0,310344828

0,141966052

0,478723603

0,047619048

1751

0,344827586

0,171834839

0,517820333

0,05

2100

0,379310345

0,202713195

0,555907494

0,052631579

2527

0,413793103

0,234540209

0,593045998

0,055555556

2987

0,517241379

0,335371516

0,699111243

0,066666667

3121

0,551724138

0,370722393

0,732725883

0,071428571

3150

0,586206897

0,406954002

0,765459791

0,076923077

3180

0,620689655

0,444092506

0,797286805

0,083333333

3401

0,655172414

0,482179667

0,828165161

0,090909091

4128

0,689655172

0,521276397

0,858033948

0,1

4238

0,724137931

0,56146858

0,886807282

0,111111111

5062

0,75862069

0,602876643

0,914364736

0,125

5609

0,793103448

0,645671828

0,940535068

0,142857143

5849

0,827586207

0,690105512

0,965066901

0,166666667

6157

0,896551724

0,785711245

1

0,25

6485

0,931034483

0,838809629

0,333333333

6593

0,965517241

0,899107757

0,5

7690

1

1

1
1
1

1

In accordance to Figure 27: MRL/MTTF for M/E 4000h, we can plot the same function for

DIG (24).

This function indicates an increasing failure rate, since the mean remaining life is constantly

decreasing as can be clearly seen in Figure 63.
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Figure 63: MRL/MTTF for D/G
5.4 AUX 4000

We can analyze the failures which regard auxiliary equipment. We begin with that equipment
that the manufacturer suggests 4000 working hours between inspections to take place.

5.4.1 Outlier points

Boxplot of AUX 4000 h

4000+

3000 +

2000+

AUX 4000 h

1000

Figure 64:Boxplot of AUX 4000

From this plot we conclude that no outlier points exist in this group of data and the following
parameters are calculated.
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Table 37:Basic parameters

lower outer upper outer
Median Q1 Q3 IQR fence fence
1463 1165.5 2645 1479.5 | 552 4256
5.4.2 Basic statistics calculations
Table 38: Basic statistic calculations
Standard Coefficient
error of Standard of
Mean | Mean Deviation | Variance | Variation Q1 Median Q3
1936 | 304,9810 1099,62 | 1209174 | 56,79880 1165,5 1463 2645
Sum of
IQR Sum Minimum | Maximum | Range Squares Skewness | Kurtosis
1479,5 25168 552 4256 3704 | 63235344 | 0,7852907 | 0,038491

A graphical summary of the above:

Summary for AUX 4000 h

Anderson-Darling Normality Test

Mean

Median

A-Squared 0,37

P-Value 0,371

Mean 1936,0

StDev 1099,6

V ariance 1209174,7

/ Skewness 0,785291

~N Kurtosis 0,038491

\ N 13

/ Minimum 552,0

v \ 1st Q uartile 1165,5

Median 1463,0

: : : B e 3rd Quartile  2645,0

1000 2000 3000 4000 Maximum 4256,0
95% Confidence Interval for Mean

— | | 12715 2600,5
95% Confidence Interval for Median

1215,2 2587,8
95% Confidence Interval for StDev

959% Confidence Intervals 788.5 1815,2

I . i
I hd i
1200 1600 2000 2400 2800

Figure 65: Graphical summary for AUX 4000

87




Reliability analysis/mapping for marine vessels: Results and Conclusions |

5.4.3 Histogram

Histogram of AUX 4000 h
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Figure 66: Histogram of AUX 4000

5.4.4 Cumulative distribution function

Empirical CDF of AUX 4000 h
100+
80
-] 60_
=
]
2
)
& 40
201
O_
T T T T T
0 1000 2000 3000 4000
hours

Figure 67: Empirical CDF of AUX 4000
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As described in previous chapter, the empirical cdf is an estimator of the cumulative
distribution function. To further define the proper distribution which fits the data well, these
have to be plotted in special plotting paper. The next chapter describes the procedure for this
category of data.

5.4.5 Individual distribution identification

Using the statistical software Minitab, the following graphs were obtained.

As it is concluded after the goodness of fit tests, the Loglogistic distribution describes well
our data and therefore is used for the farther calculation of useful results.

It is noted that at Appendix A, the statistical properties for each used distribution are
presented, as an assist for further examination.

Probability Plot for AUX 4000 h
Normal - 95% C | Normal - 95% C|1 Goodness of Fit Test
99 99 Normal
90 > o AD = 0,370
P-Value = 0,371
- =
; ;
© 50 © 50 Box-C ox Transformation
[ [ “ AD = 0,224
. & P-Value = 0,779
10 10 ) -
°
1 I I I 1 } ! ! ! Lognormal
0 2500 5000 6 7 8 9 AD = 0,224
AUX 4000 h AUX 4000 h P-Value = 0,779
After Box-C ox transformation (lambda = 0)
3-Parameter Lognormal
Lognormal - 95% CI 3-Parameter Lognormal - 95% C1 AD = 0,227
99 99 P-Value = *
90 90
- 4=
® @
o 50 o 50
(9] (0]
o o
10 ) 10 .
T T 1 T T
100 1000 10000 1000 10000
AUX 4000 h AUX 4000 h - Threshold

Figure 68: Distribution identification for AUX 4000
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Logistic - 95% CI

Probability Plot for AUX 4000 h

- Good f Fit Test
Loglogistic - 95% CI oocness ot Fit Tes
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90+ o 90+ P-Value > 0,250
- -
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(3} 4 o ]
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o o P-Value > 0,250
10+ 10+ e
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=
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Figure 69: Distribution identification for AUX 4000
Probability Plot for AUX 4000 h
Smallest Extreme Value - 95% C 1 Largest Extreme Value - 95% CI1 Goodness of Fit Test
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AD = 0,643
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a 10 & 5o P-Value > 0,250
504 Gamma
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Figure 70: Distribution identification for AUX 4000
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Probability Plot for AUX 4000 h

Exponential - 95% CI 2-Parameter Exponential - 95% C|1 Goodness of Fit Test
90 20 Exponential
AD = 1,277
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Figure 71: Distribution identification for AUX 4000

It is necessary to compare various goodness of fit test to decide which distribution is
appropriate for this set of data.

Table 39: Comparison of goodness of fit tests for AUX 4000

Goodness of Fit Test

Distribution AD P LRT P
Normal 0,370 0,371
Box-Cox Transformation 0,224 0,779
Lognormal 0,224 0,779
3-Parameter Lognormal 0,227 * 0,831
Exponential 1,277 0,049
2-Parameter Exponential 0,689 0,145 0,010
Weibull 0,231 >0,250
3-Parameter Weibull 0,371 0,444 0,214

Smallest Extreme Value 0,643 0,083
Largest Extreme Value 0,244 >0,250

Gamma 0,215 >0,250
3-Parameter Gamma 0,271 * 1,000
Logistic 0,357 >0,250
Loglogistic 0,207 >0,250
3-Parameter Loglogistic 0,239 * 0,978

Checking the Anderson Darling and p-value test, it is concluded that the Loglogistic
distribution fits adequately well our data.

In order to define subject distribution it is necessary to estimate its parameters.
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For the Loglogistic distribution to be fully defined, we must calculate the scale and the shape
parameter.

The scale parameter for this distribution is also the median, for the shape parameter, we use
the method of Maximum Likelihood. Further details can be found in (14).

Summarizing, the fitted distribution is:

Log- logistic distribution of times to failure

e CDF: F(x) = 0<

1
1+(x/a)=B’ X<

B\x\B-1
. PDF:f(x)zM 0<

[1+(x/a)P12’ ~ — X < oo

Where a=scale parameter= 1682.8

B=shape parameter=0.3419

Probability Plot for AUX 4000 h
Loglogistic - 95% CI

99

95
90

80
70
60
50
40

Percent

20

T T
100 1000 10000
hours

Figure 72: Plot of Loglogistic fit to the data

In the plotted data in Log- logistic plotting paper, it is understood that this distribution fits
well the collected life data.

5.4.6 Reliability concepts
Relevant plots for this group of data can be produced, similarly to previous chapter.
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Survival Plot for AUX 4000 h
Loglogistic - 95% CI
100
80
= 601
C
()
e
(&)
Q404
20
0_
T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
hours

Figure 73:Plot of reliability function with 95% confidence intervals

Table 40 : table of survival probabilities
95% confidence intervals

time

probability

lower

upper

1000

0,819369214

0,581291261

0,936795115

2000

0,377137512

0,185411744

0,616961707

3000

0,157133767

0,0529529

0,383321058

4000

0,074777896

0,018390359

0,2585237

5000

0,040550605

0,007723819

0,186650179

6000

0,024280386

0,003737323

0,1416842

7000

0,015652331

0,002007439

0,111666277

8000

0,010673007

0,001166957

0,090592175

9000

0,007603596

0,000721449

0,075196582

10000

0,005609857

0,000468506

0,063582935

12000

0,003310626

0,00022135

0,047468293

13000

0,002625514

0,000159121

0,04172597

14000

0,002118017

0,000117171

0,037020823

15000

0,001733982

8,8094E-05

0,033112191

For the Loglostic distributed category AUX 4000 the conditional probabilities for a range of
1000 to 10000 hours is plotted in the following graph
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Figure 74: Conditional probabilities for AUX 4000

For example the conditional probabilities for an item to survive t hours, given that it has
survived 2000 hours are:

Table 41: Conditional probabilities for AUX 4000 at 2000 hours

t P
1000 0,3650
2000 0,0910
3000 0,0156
4000 0,0018
5000 0,0002
6000 0,0000
8000 0,0000
10000 0,0000

For this category the expected values of probabilities is particularly low. This can be
explained partly due to the relatively small number of observations that were recorded for this
items.

As can be seen in Table 7: AUX 4000h, the 92% of the items that were recorded, have failed
before the suggested by the manufacturer limit of 4000 hours for inspection.

This can be fixed in an oncoming collection of same life data, where in that case the available
samples for analysis will be larger and therefore will produce more reliable results.

For the actual data, we can extract the following plot.
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conditional probabilities for 2000 hours

3000 hours 4000 hours 5000 hours
P=0160__ p=0,002 P=0,0002
|/_

Figure 75: Conditional probabilities for AUX 4000 at 2000 hours

5.4.7 Failure rate plot

Hazard Plot for AUX 4000 h
Loglogistic
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Figure 76: Hazard plot for AUX 4000

The shape of the failure rate curve indicates an increasing and then on/ about 1800 hours a
decrease of the failure rate.
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5.4.8 Cumulative failure plot
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Figure 77: Cumulative failure plot for AUX 4000

Table 42 : table of cumulative failure probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,180630786

0,063204885

0,418708739

2000

0,622862488

0,383038293

0,814588256

3000

0,842866233

0,616678942

0,9470471

4000

0,925222104

0,7414763

0,981609641

5000

0,959449395

0,813349821

0,992276181

6000

0,975719614

0,8583158

0,996262677

7000

0,984347669

0,888333723

0,997992561

8000

0,989326993

0,909407825

0,998833043

9000

0,992396404

0,924803418

0,999278551

10000

0,994390143

0,936417065

0,999531494

12000

0,996689374

0,952531707

0,99977865

13000

0,997374486

0,95827403

0,999840879

14000

0,997881983

0,962979177

0,999882829

15000

0,998266018

0,966887809

0,999911906

5.4.9 Non parametric analysis

Mean(MTTF)
1936

Standard
Error

Table 43: Non parametric estimates

Lower

95,0% Normal CI

Upper

304,981 1338,25 2533,75
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A distribution free estimate of useful plots can be produced.

Percent

100

Survival Plot for AUX 4000 h

Kaplan-Meier Method - 95% ClI

80

60

40-

204

T
1000

T
2000
hours

T
3000

T
4000

Figure 78: Survival plot for AUX 4000

Table 44 : kaplan meier estimates for survival
probabilities

95% confidence intervals

time

survival
probability

lower

upper

552

0,923076923

0,778225193

1

651

0,846153846

0,650023677

1

1031

0,769230769

0,540200075

0,998261464

1300

0,692307692

0,441417137

0,943198248

1400

0,615384615

0,350922749

0,879846482

1428

0,538461538

0,267468766

0,809454311

1463

0,461538462

0,190545689

0,732531234

1892

0,384615385

0,120153518

0,649077251

2480

0,307692308

0,056801752

0,558582863

2490

0,230769231

0,001738536

0,459799925

2800

0,153846154

0

0,349976323

3425

0,076923077

0

0,221774807

4256

0

0

0
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Cumulative Failure Plot for AUX 4000 h
Kaplan-Meier Method - 95% CI
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Figure 79: Cumulative failure plot for AUX 4000
Hazard Plot for AUX 4000 h
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Figure 80: Hazard plot for AUX 4000
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Table 45 : cumulative failure probabilities and hazard rates

95% confidence intervals

time

cumulative
failure
probability

lower

upper

hazard rates

552

0,076923077

0

0,221774807

0,076923077

651

0,153846154

0

0,349976323

0,083333333

1031

0,230769231

0,001738536

0,459799925

0,090909091

1300

0,307692308

0,056801752

0,558582863

0,1

1400

0,384615385

0,120153518

0,649077251

0,111111111

1428

0,461538462

0,190545689

0,732531234

0,125

1463

0,538461538

0,267468766

0,809454311

0,142857143

1892

0,615384615

0,350922749

0,879846482

0,166666667

2480

0,692307692

0,441417137

0,943198248

0,2

2490

0,769230769

0,540200075

0,998261464

0,25

2800

0,846153846

0,650023677

1

0,333333333

3425

0,923076923

0,778225193

1

0,5

4256

1

1

1

1

Regarding the mean remaining life of this category of items the function MRL/MTTF can be

calculated.
mrl/mttf

1
0,8
o L\ -
0.4 \/ mrl/mttf
0,2

0 : : : : : 1

0 1000 2000 3000 4000 5000 6000

Figure 81: MRL/MTTF for AUX 4000

In accordance to the failure rate function, Figure 76: Hazard plot for AUX 4000, it is noted an
increase in failure rate until about 1500 hours and then a slight decrease.
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5.5 AUX 6000
With the same procedure, we can analyze failures in auxiliary equipment, in which the
manufacturer suggests 6000 working hours between inspections.

5.5.1 Outlier points

Boxplot of AUX 6000 h

6000

5000 1

4000

3000

AUX 6000 h

2000 +

1000 ~

Figure 82: Boxplot of AUX 6000

From this plot we conclude that no outlier points exist in this group of data and the following
parameters are calculated.

Table 46: Basic parameters

Median Q1 Q3 IQR lower outer fence | upper outer fence
2645 1578.75 3720.75 2142 196 5380
5.5.2 Basic statistics calculations
Table 47: Basic statistic calculations
Standard Coefficient
error of | Standard of
Mean | Mean Deviation | Variance Variation Q1 Median Q3
2681,4 484,73 1532,86 2349667 57,166 1578,75 2645 | 3720,7
Sum of
IQR Sum Minimum | Maximum | Range Squares Skewness Kurtosis
2142 26814 196 5380 5184 | 93046070 | 0,14113339 | -0,4137
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A graphical summary of the above:

Summary for AUX 6000 h
Anderson-Darling Normality Test

A-Squared 0,39
P-Value 0,312
Mean 2681,4
StDev 1532,9
x V ariance 2349667,8
Skew ness 0,141133
Kurtosis -0,413696
N 10
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/ \ 1st Q uartile 1578,8
| I~ Median 2645,0
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95% Confidence Interval for Mean
1584,9 3777,9
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Figure 83: Graphical summary for AUX 6000

Additionally we can see 95% confidence intervals for the mean, median and standard
deviation.

5.5.3 Histogram

Histogram of AUX 6000 h
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Figure 84: Histogram of AUX 6000
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5.5.4 Cumulative distribution function

Empirical CDF of AUX 6000 h
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Figure 85: Empirical CDF of AUX 6000

As described in previous chapter, the empirical cdf is an estimator of the cumulative
distribution function. To further define the proper distribution which fits the data well, these
have to be plotted in special plotting paper.

5.5.5 Individual distribution identification

Using the statistical software Minitab, the following graphs were obtained for the
identification of the proper distribution that describes this category of data. It is reminded that
not only the good eye ball fit is necessary, but the various goodness of fit tests provide the
final necessary information, that will allow to choose the appropriate distribution among all
the experimentally tested.
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Probability Plot for AUX 6000 h
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Figure 86: Distribution identification for AUX 6000
Probability Plot for AUX 6000 h
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Figure 87: Distribution identification for AUX 6000
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Probability Plot for AUX 6000 h
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Figure 88: Distribution identification for AUX 6000
Probability Plot for AUX 6000 h
Exponential - 95% CI 2-Parameter Exponential - 95% CI1 Goodness of Fit Test
90 20 Py Exponential
AD = 1,160
50 50 P-Value = 0,065
- -
c =
& o ° 2-Parameter Exponential
o ° o AD = 1,453
[} (0] «
o 10 o 10 P-Value < 0,010
Weibull
1L ! ! ! 11y ! ! ! AD = 0,430
10 100 1000 10000 10 100 1000 10000 P-Value > 0,250
AUX 6000 h AUX 6000 h - Threshold
3-Parameter Weibull
Weibull - 95% C1 3-Parameter Weibull - 95% C 1 AD = 0,324
P-Value = 0,500
90 90
50 & 50
- =
= =
(9] (0]
° A S
8 10 & 10
°
1 T f T 1 T T
100 1000 10000 1000 10000
AUX 6000 h AUX 6000 h - Threshold

Figure 89: Distribution identification for AUX 6000
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It is time to compare various goodness of fit test to decide which distribution is appropriate
for this set of data.

Table 48: Comparison of goodness of fit tests for AUX 6000

Goodness of Fit Test

Distribution AD P LRT P
Normal 0,310 0,505
Box-Cox Transformation 0,310 0,505
Lognormal 0,902 0,014
3-Parameter Lognormal 0,324 * 0,017
Exponential 1,160 0,065
2-Parameter Exponential 1,453 <0,010 1,000
Weibull 0,430 >0,250
3-Parameter Weibull 0,324 0,500 0,424

Smallest Extreme Value 0,440 >0,250
Largest Extreme Value 0,349 >0,250

Gamma 0,549 0,184
3-Parameter Gamma 1,192 * 1,000
Logistic 0,343 >0,250
Loglogistic 0,573 0,088
3-Parameter Loglogistic 0,336 * 0,081

Checking the Anderson Darling and p-value test, it is concluded that the normal distribution
fits adequately well our data.

In order to define subject distribution it is necessary to estimate its parameters.
For the normal distribution we need the mean and a standard deviation.
For this distribution:
Mean = 2668.55
Standard deviation = 1387.12
Summarizing, the fitted distribution for the first group of failures, is fully defined.

Normal distribution of times to failure:

e CDF:F(x) =5[1+erf(Z5)Lx €R

V202
1 _Gmw?
J PDPﬂ@:ﬁEﬁe 202 ,x €ER

Where 1=2668.55
06=1387.12
where erf is a function sometimes called the error function which can’t be expressed in terms
of finite additions, subtractions, multiplications, and root extractions, and so must be either
computed numerically or otherwise approximated.
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Probability Plot for AUX 6000 h
Normal - 95% ClI
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Figure 90: Plot of Normal fit to AUX 6000 data

In the plotted data in normal plotting paper, it is understood that this distribution fits well the
collected life data.

5.5.6 Reliability concepts

Relevant plots for this group of data can be produced, similarly to previous chapter.

Survival Plot for AUX 6000 h
Normal - 95% CI
100 -
80
+= 601
c
()
2
(O
Q404
20
0 .
T T T T T T T
0 1000 2000 3000 4000 5000 6000
hours

Figure 91 : Plot of reliability function with 95% confidence intervals
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Table 49 : table of survival probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,8854892

0,665338538

0,976074442

2000

0,6850849

0,443397334

0,865700111

3000

0,4055717

0,200937088

0,640717117

4000

0,1685608

0,047057221

0,40297492

5000

0,0464023

0,004679312

0,222760735

6000

0,0081595

0,000180991

0,108034221

7000

0,0008962

2,61882E-06

0,045494656

8000

6,064E-05

1,38895E-08

0,016495816

9000

2,504E-06

2,66824E-11

0,005119162

10000

6,273E-08

1,84297E-14

0,001353887

12000

8,648E-12

0

5,79377E-05

13000

4,73E-14

9,33627E-06

14000

1,11E-16

1,27118E-06

15000

0

0
0
0

1,46079E-07

1000 to 10000 hours is plotted in the following graph.
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For an item that has survived 2000 hours, the conditional probabilities to survive additionally

t hours are:

Figure 92: Conditional probabilities for AUX 6000
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conditional probabilities for 2000 hours
4000 hours
P=0,0082 5000 hours 6000 hours

P=0,0009 P=0,0001

3000 hours
P=0,0464

Figure 93: Conditional probabilities for AUX 6000 at 2000 hours

This plot in a tabulated view:

Table 50: Conditional probabilities for AUX 6000 at 2000 hours

t P
1000 | 0,405572827
2000 | 0,168561208
3000 | 0,046402376
4000 | 0,00815948
5000 | 0,000896242
6000 | 6,06363E-05
8000 | 6,27236E-08
10000 | 8,64719E-12
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5.5.7 Failure rate plot

Hazard Plot for AUX 6000 h
Normal
0,0020-
0,0015
£ 0,00101
4
0,0005
0,0000
T T T T T T T
0 1000 2000 3000 4000 5000 6000
hours

Figure 94: Hazard plot for AUX 6000

The units of this rate are failures per unit time. It is the failure rate of the survivors to time t in
the very next instant following t. It is not a probability and it can have values greater than 1.

5.5.8 Cumulative failure plot

Cumulative Failure Plot for AUX 6000 h
Normal - 95% ClI
100
80
= 601
C
()
2
(&)
Q404
20+
0_
T T T T T T T
0 1000 2000 3000 4000 5000 6000
hours

Figure 95: Cumulative failure plot for AUX 6000
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Table 51: table of cumulative failure probabilities

95% confidence intervals
time | probability lower upper
1000 | 0,114510829 | 0,023925558 | 0,334661462
2000 | 0,314915117 | 0,134299889 | 0,556602666
3000 0,5944283 | 0,359282883 | 0,799062912
4000 | 0,831439241 0,59702508 | 0,952942779
5000 | 0,953597688 | 0,777239265 | 0,995320688
6000 | 0,99184051 | 0,891965779 | 0,999819009
7000 | 0,999103753 | 0,954505344 | 0,999997381
8000 | 0,999939363 | 0,983504184 | 0,999999986
9000 | 0,999997496 | 0,994880838 1
10000 | 0,999999937 | 0,998646113 1
12000 1 | 0,999942062 1
14000 1 | 0,999998729 1
15000 1 | 0,999999854 1
5.5.9 Non parametric analysis
Table 52: Non parametric estimates
Standard 95,0% Normal CI
Mean(MTTF) Error Lower Upper
2668,55 438,647 1808,81 3528,28
A distribution free estimate of useful plots can be produced.
Survival Plot for AUX 6000 h
Kaplan-Meier Method - 95% Cl
100
80
~ 601 ]
C
3
o
& 40
20
0 T T T T T T
0 1000 2000 3000 4000 5000 6000
hours

Figure 96: Survival plot for AUX 6000
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Table 53: kaplan meier estimates for survival

probabilities

95% confidence intervals

time

survival
probability

lower

upper

196

0,9090909

0,739204333

1

1500

0,8181818

0,590255059

1

1605

0,7272727

0,464085576

0,990459879

1700

0,6363636

0,352089022

0,920638251

1950

0,5454545

0,251202364

0,839706727

2540

0,4545455

0,160293273

0,748797636

3340

0,3636364

0,079361749

0,647910978

3700

0,2727273

0,009540121

0,535914424

3720

0,1818182

0

0,409744941

3723

0,0909091

0

0,260795667

5380

0

0

0

Percent

Cumulative Failure Plot for AUX 6000 h
Kaplan-Meier Method - 95% ClI
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Figure 97: Cumulative failure plot for AUX 6000
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1,0

Hazard Plot for AUX 6000 h
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Figure 98: Hazard plot for AUX 6000

Table 54 : cumulative failure probabilities and hazard rates

95% confidence intervals

time

cumulative
failure
probability

lower

upper

hazard rates

196

0,090909091

0

0,260795667

0,090909091

1500

0,181818182

0

0,409744941

0,1

1605

0,272727273

0,009540121

0,535914424

0,111111111

1700

0,363636364

0,079361749

0,647910978

0,125

1950

0,454545455

0,160293273

0,748797636

0,142857143

2540

0,545454545

0,251202364

0,839706727

0,166666667

3340

0,636363636

0,352089022

0,920638251

0,2

3700

0,727272727

0,464085576

0,990459879

0,25

3720

0,818181818

0,590255059

1

0,333333333

3723

0,909090909

0,739204333

1

0,5

5380

1

1

1

1

The mean remaining life function, versus the MTTF is plotted in the next figure.
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Figure 99: MRL/MTTF for AUX 6000

As it was noticed in the failure rate function, the mean remaining life is decreasing, for
example at 2000 hours the remaining life of an item will be the 20% of the remaining life at
time 0.

5.6 AUX 8000
The last group of data concerns failures in auxiliary equipment, in which the manufacturer
suggests 8000 working hours between inspections.

5.6.1 Outlier points

Boxplot of AUX 8000 h
20000 "
15000
=
o
o
S 10000
)
<
5000 -
o |

Figure 100: Boxplot of AUX 8000

113



Reliability analysis/mapping for marine vessels: Results and Conclusions |

It is obvious that there is an outlier point in this set of data. After checking our database, this

failure in 19624 hours, concern broken ball bearings in the electric motor of hot water

circulating pump and can’t be ignored. The following parameters are calculated.

Table 55: Basic parameters

lower outer upper outer
Median Q1 Q3 IQR fence fence
5312 1462 7800 6338 345 15544

5.6.2 Basic statistics calculations
Some basic statistics calculations such as mean, Standard Error of mean, standard deviation
variance, coefficient of variation first quartile, etc can be found in table 56

Table 56: Basic statistics calculations

Standard Coefficient
error of Standard of
Mean Mean Deviation | Variance | Variation Q1 Median Q3
5157,57 713,14 | 4219,03 | 17800262 81,802 1462 5312 7800
Sum of
IQR Sum Minimum | Maximum | Range Squares | Skewness | Kurtosis
6338 180515 345 19624 19279 | 1,54E+09 1,4739 | 3,3974

Summary for

AUX 8000 h

T
5000

T
10000

T
15000

T
20000

95% Confidence Intervals

Mean-

Median- I

T
3000

T
4000

T
5000

T T
6000 7000

P-Value

A-Squared

Anderson-Darling Normality Test

0,99
0,012

Mean
StDev

Skewne
Kurtosis
N

Variance

5157,6
4219,0
17800262,5
SS 1,47399
3,39745

35

Median
3rd Qual

Minimum
1st Quartile

Maximum

345,0
1462,0
5312,0
7800,0

19624,0

rtile

3708,3

2918,6

3412,7

95% Confidence Interval for Mean

6606,9

95% Confidence Interval for Median

5921,7

95% Confidence Interval for StDev

5527,8

Figure 101: Graphical summary for AUX 8000
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A significant concentration of failures in the area of 5000 operational hours is indicated in
this graph, which affects the mean and median calculations.

5.6.3 Histogram

Histogram of AUX 8000 h
124
10
8_
>
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c
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Q
i
4_
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O T T T | T | | T |
0 5000 10000 15000 20000
hours

Figure 102: Histogram of AUX 8000

5.6.4 Cumulative distribution function

Empirical CDF of AUX 8000 h
100 1 r___________J
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=
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T T T T T
0 5000 10000 15000 20000
hours

Figure 103: Empirical CDF of AUX 8000
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As described in previous chapter, the empirical cdf is an estimator of the cumulative
distribution function. To further define the proper distribution which fits the data well, these
have to be plotted in special plotting paper.

5.6.5 Individual distribution identification

Using the statistical software Minitab, the following graphs were obtained.

Probability Plot for AUX 8000 h
Logistic - 95% C| Loglogistic - 95% C Goodness of Fit Test
99 o 99 Logistic
. AD = 0,585
90 90 P-Value = 0,086
- -
g g Loglogistic
[ o
= >0 = %0 AD = 1,573
o o P-Value < 0,005
10 10
3-Parameter Loglogistic
i d | | L | | | AD = 0,749
-10000 0 10000 20000 100 1000 10000 100000 P-Value = *
AUX 8000 h AUX 8000 h
Johnson Transformation
3-Parameter Loglogistic - 95% C1 Normal - 95% CI AD = 0,538
99 99 P-Value = 0,156
®,
- o %
- -
5 @
© 50 o 50
(9] (]
o o
10 10
°
1 T 1 T T T
1000 10000 100000 -2 0 2
AUX 8000 h - Threshold AUX 8000 h
After Johnson transformation

Figure 104: Distribution identification for AUX 8000
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Probability Plot for AUX 8000 h

Smallest Extreme Value - 95% C |

Largest Extreme Value - 95% C |

Goodness of Fit Test
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90 (]
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90' 90.
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Figure 105: Distribution identification for AUX 8000
Probability Plot for AUX 8000 h
Exponential - 95% CI 2-Parameter Exponential - 95% CI Goodness of Fit Test
90 20 Exponential
AD = 1,061
50 50 P-Value = 0,096
- -
= c
& o 2-Parameter Exponential
5 10 7 S 10 AD = 1,065
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P Weibull
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Figure 106: Distribution identification for AUX 8000
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Probability Plot for AUX 8000 h
Normal - 95% CI Normal - 95% CI Goodness of Fit Test
99 P 99 Normal
[od AD = 0,987
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= =
= =
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Figure 107: Distribution identification for AUX 8000

Table 57: Comparison of goodness of fit tests for AUX 8000

Goodness of Fit Test

Distribution AD P LRT P
Normal 0,987 0,012
Box-Cox Transformation 0,612 0,103
Lognormal 1,850 <0,005
3-Parameter Lognormal 0,797 * 0,078
Exponential 1,061 0,096
2-Parameter Exponential 1,065 0,070 0,093
Weibull 0,885 0,021
3-Parameter Weibull 1,127 0,007 0,292

Smallest Extreme Value 2,803 <0,010
Largest Extreme Value 0,593 0,122

Gamma 0,960 0,021
3-Parameter Gamma 1,310 * 0,113
Logistic 0,585 0,086
Loglogistic 1,573 <0,005
3-Parameter Loglogistic 0,749 * 0,189

Johnson Transformation 0,538 0,156

Checking the Anderson Darling and p-value test, it is concluded that the logistic distribution
fits adequately well our data.

In order to define subject distribution it is necessary to estimate its parameters.
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The logistic distribution has no shape parameter. This means that the logistic pdf has only one
shape, the bell shape, and this shape does not change. The shape of the logistic distribution is
very similar to that of the normal distribution.

The location parameter is also the median and the mean and therefore can be easily
calculated.

The scale parameter
Summarizing, the fitted distribution is:

Logistic distribution of times to failure

1
e—(—)/s

e CDF. F(x)= —0<x <o

e PDF: f(x) = —0 < x < oo

Where s=scale parameter= 2171

u=location parameter=4773.35

Probability Plot for AUX 8000 h
Logistic - 95% ClI
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Figure 108: Plot of logistic fit to the data

In the plotted data in logistic plotting paper, it is understood that this distribution fits well the
collected life data.
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5.6.6 Reliability concepts

Relevant plots for this group of data can be produced, similarly to previous chapter.

Survival Plot for AUX 8000 h
Logistic - 95% Cl

90

80

70

60

50

Percent

40-
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20+

10+

T T T T T
6000 8000 10000 12000 14000

AUX 8000 h

T T
0 2000 4000

Figure 109: Survival plot for AUX 8000

Plot of reliability function with 95% confidence intervals

Table 58: table of survival probabilities
95% confidence intervals

time

probability

lower

upper

1000

0,850441121

0,731631147

0,922242695

2000

0,782015203

0,649153093

0,874305896

3000

0,693563594

0,552182671

0,805991599

4000

0,588124252

0,445273374

0,717525467

5000

0,473923766

0,337067283

0,61481357

6000

0,362387691

0,238509148

0,507709099

7000

0,263931809

0,158405954

0,405855036

8000

0,184485525

0,099828383

0,315751974

9000

0,124895673

0,060495136

0,240317678

10000

0,082604046

0,035673851

0,179763678

12000

0,034599198

0,011819846

0,096971177

13000

0,022110825

0,006710207

0,070353928

14000

0,014064387

0,003789522

0,050778371

15000

0,008919451

0,002132455

0,036517032
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the conditional probabilities for AUX 8000 are calculated and plotted according to the
functions that can be found in Appendix A.
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Figure 110: Conditional probabilities for AUX 8000

Given that an item has survived at 4000 hours, the probability to survive additionally time t

8000 hours

conditional probabilities for 4000 hours
P=0,050

10000 hours
P=0,017

6000 hours
P=0,122

5000 hours
P=0,178

Figure 111: Conditional probabilities for AUX 8000 at 4000 hours

The tabulated values of this figure are:

Table 59: Conditional probabilities for AUX 8000 at 4000 hours

t P
1000 | 0,51506
2000 | 0,419668
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3000 | 0,328795
4000 | 0,247069
5000 | 0,17768
6000 | 0,122062
8000 | 0,049908
10000 | 0,016721

5.6.7 Failure rate plot

Hazard Plot for AUX 8000 h
Logistic
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Figure 112: Failure rate plot for AUX 8000
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5.6.8 Cumulative failure plot

Percent

Cumulative Failure Plot for AUX 8000 h
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Figure 113: Cumulative failure plot for AUX 8000

Table 60: table of cumulative failure probabilities

95% confidence intervals

time

probability

lower

upper

1000

0,149558879

0,077757305

0,268368853

2000

0,217984797

0,125694104

0,350846907

3000

0,306436406

0,194008401

0,447817329

4000

0,411875748

0,282474533

0,554726626

5000

0,526076234

0,38518643

0,662932717

6000

0,637612309

0,492290901

0,761490852

7000

0,736068191

0,594144964

0,841594046

8000

0,815514475

0,684248026

0,900171617

9000

0,875104327

0,759682322

0,939504864

10000

0,917395954

0,820236322

0,964326149

12000

0,965400802

0,903028823

0,988180154

13000

0,977889175

0,929646072

0,993289793

14000

0,985935613

0,949221629

0,996210478

15000

0,991080549

0,963482968

0,997867545
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5.6.9 Non parametric analysis
Table 61: Non parametric estimates

Standard 95,0% Normal CI
Mean(MTTF) Error Lower Upper
5157,57 713,147 3759,83 6555,31

A distribution free estimate of useful plots can be produced.

Survival Plot for AUX 8000 h
Kaplan-Meier Method - 95% CI
100

80
~ 601
C
o
2
[
& 40-

20

0 T T T
0 5000 10000 15000
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Figure 114: Survival plot for AUX 8000

Table 62: kaplan meier estimates for survival
probabilities

95% confidence intervals

time

survival
probability

lower

upper

345

0,942857143

0,865958621

1

350

0,914285714

0,821542607

1

400

0,857142857

0,741213973

0,973071741

475

0,828571429

0,7037122

0,953430658

1444

0,8

0,667482248

0,932517752

1461

0,771428571

0,632313911

0,910543232

1462

0,742857143

0,598062014

0,887652272

2250

0,714285714

0,564622169

0,86394926

2300

0,685714286

0,531917242

0,83951133
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Cumulative Failure Plot for AUX 8000 h
Kaplan-Meier Method - 95% CI
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Figure 115: Cumulative failure plot
Hazard Plot for AUX 8000 h
Empirical Hazard Function

1,0

0,84

0,6
O
]
IS
o

0,4+

0,2+

0,0 T T T T

0 5000 10000 15000 20000
hours

Figure 116: Hazard plot for AUX 8000
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Table 63: cumulative failure probabilities and hazard rates

95% confidence intervals

time

cumulative
failure
probability

lower

upper

hazard rates

345

0,057142857

0

0,134041379

0,029411765
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0

0,178457393
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400
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The mean remaining life function, versus the MTTF can be plotted.
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Figure 117: MRL/MTTF for AUX 8000

The transition window between 4000-6000 hours that where noticed in failure rate plot is
clearly visible in this plot as well.
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CHAPTER 6 JOINT DISTRIBUTION

In this thesis so far, we have calculated and produced useful plots and results for the

reliability analysis of a marine vessel.
Both parametric and non parametric methods were used to produce more reliable results.

The next step in this thesis is to calculate the joint distribution of all 6 categories of
machinery, in order to export the total distribution of failures and relevant plots and results

for a vessel as a whole.

In cases such as this, it can be useful to characterize the system's behavior by fitting a
distribution to the overall system and calculating parameters for this distribution. (Note: This
is particularly useful in system simulation, since it significantly reduces simulation time.)
This is equivalent to fitting a single distribution to describe Rs(t). In essence, it is like

reducing the entire system to a component in order to simplify calculations.
For this reason, a qualitative analysis must be performed.

The main objective of system reliability is the construction of a model (life distribution) that
represents the times-to-failure of the entire system based on the life distributions of the

system’s elements. These elements can be components’ assemblies, sub-systems etc.

6.1 APPROACHES OF SYSTEM RELIABILITY
In theory and in praxis there are two basic approaches (categories of approaches):

* Analytical calculations
1. Static analytical calculations
2. Time-dependent calculations

» Simulation calculations

Two types of analytical calculations can be performed using RBD (Reliability Block
Diagrams) or FTA (Fault Tree Analysis): static reliability calculations and time-dependent
reliability calculations. Systems can contain static blocks, time-dependent blocks or a mixture
of the two (27).

Static analytical calculations are performed on RBD or failure trees that contain static blocks.
A static block can be interpreted either as a block with a reliability value that is known only
at a given time (but the block’s entire distribution is unknown) or as a block with a probability
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of success that is constant with time. Static calculations can only be performed in the
analytical mode and not in the simulation calculations.

Time-dependent analysis approaches reliability as a function of time. That means that a
known failure distribution is assigned to each component. The time scale can be any
quantifiable time measure, such as years, months, hours, minutes or seconds, and also units
that are not directly related to time.

If one includes information on the repair and maintenance characteristics of the components
and resources available in the system, other information can also be analyzed/obtained, such
as i.e. system availability, maintability etc. This can be accomplished through discrete event
simulation.

In simulation, random failure times from each component's failure distribution are generated.
These failure times are then combined in accordance with the way the components are
reliability-wise arranged within the system. The overall results are analyzed in order to

determine the behavior of the entire system.

6.2 FAULT TREE ANALYSIS, RELIABILITY BLOCK DIAGRAMS

Block diagrams are widely used in engineering in many different forms. Fault trees and
reliability block diagrams are both symbolic analytical logic techniques that can be applied to
analyze system reliability and related characteristics. They can also be used to describe the
interrelation between the components and to define the system.

When blocks are connected with direction lines, that represent the reliability relationship
between these blocks, this is referred as reliability block diagram (RBD) (28).

A fault tree diagram follows a top-down structure and represents a graphical model of the
pathways within a system that can lead to a foreseeable, undesirable loss event (or a failure).
The pathways interconnect contributory events and conditions using standard logic symbols
(AND, OR, etc.). Fault tree diagrams consist of gates and events connected with lines.

The most fundamental difference between fault tree diagrams and reliability block diagrams
is that in an RBD, you work in the "success space"”, while in a fault tree you work in the
"failure space". In other words, the RBD searches for success combinations while the fault
tree searches for failure combinations. In addition, fault trees have traditionally been used to
analyze fixed probabilities (i.e. each event that comprises the tree has a fixed probability of
occurring) while RBDs may include time-varying distributions for the success (reliability

equation) and other properties, such as repair/restoration distributions. In general (and with
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some specific exceptions), a fault tree can be easily converted to an RBD. However, it is
generally more difficult to convert an RBD into a fault tree, especially if one allows for

highly complex configurations.

6.3 BLOCKSIM MODEL OF RELIABILITY BLOCK DIAGRAM

For the calculation of the total joint distribution, the software package Reliasoft BlockSim
was used.

This is a specialized software tool for system reliability, availability and related analyses.

It also supports an array of reliability block diagram configuration and fault tree analysis
capabilities, which turns to be a very useful tool for the needs of this thesis.

Briefly this tool provides:

e ldentification of Critical Components

e Reliability Optimization

System Maintainability Analysis (Determine Optimum Preventive Maintenance
Intervals, etc.)

System Availability Analysis (Calculate Uptime, Downtime, Availability, etc.)
Throughput Calculation (Identify Bottlenecks, Estimate Production Capacity, etc.)
Resource Allocation for Maintenance Planning

Life Cycle Cost Analysis

6.3.1 BUILDING THE JOINT DISTRIBUTION

We have already calculated in Chapter 5 the distributions that fit adequately well each group
of components.

Our goal is to build a fault tree that will allow calculating the joint distribution of failures.
Briefly, fault tree analysis is a deductive technique where we start with a specified system
failure. The system failure is called the TOP event of the fault tree. The immediate casual
events that either alone or in combination may lead to the TOP event are identified and
connected to the TOP event through a logic gate. This procedure is continued deductively
until we reach a suitable level of detail. The events in the lowest level are called the basic
events of the fault tree (29).

Fault tree analysis is a binary analysis. All events are assumed to occur or not to occur.

Steps in a fault tree analysis (30)

The following outline describes the steps to be taken in a fault tree analysis.
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Step 1: Define the TOP event.

In our fault tree, the TOP event is considered to be any kind of failure, i.e. failure in Main
Engine, Diesel Generators or Auxiliaries. In this thesis the performed functions and failures
are not classified according to their severity or importance. Any kind of failure is considered

as the actualization of the TOP event.

Step 2: Construction of the fault tree

The fault tree construction always starts with the TOP event. We must thereafter try to
identify all fault events that are the causes that result in the TOP event.

In the fault tree that describes a failure in a vessel as a whole, the fault events are the failures
distributions in all 6 subcategories that are already defined.

As the object of this research is the probability of any failure, the TOP event is connected
with the basic events with an OR gate. In this case, any failure that occurs in each
subcategory, leads to a TOP event failure.

Therefore the categories M/E 4000, M/E 8000, D/G, AUX 4000, AUX 6000, AUX 8000 are

connected under OR gates.
Step 3: Qualitative analysis- Minimal cut sets
A combination of fault events that will result in the TOP event is called a cut set. A cut set is
said to be minimal, if the set cannot be reduced without losing its status as a cut set.
In our fault tree we can trace possible cut sets that lead to a vessel’s failure.

Step 4: Quantitative analysis

Quantitatively, we can calculate the probability of the top event, rank basic events by

importance, extract reliability plots, such as failure rate, availability plots, etc.

Following the steps described above, the following fault tree can be produced.
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TOP
OR
I I I
OR OR OR
I I
m/e d/g 1 d/g 2 d/g 3 aux aux aux
8000 4000 6000 8000

It is reminded that as top event is considered any failure that occurs, whether it comes from

the Main Engine, Diesel Generators or the auxiliaries.

The properties of the basic events have been defined according to the results of chapter 5.

The Blocksim software was used for the significant advantages over similar fault tree

analysis packages. In the properties of each event, the failure distribution can be defined

accurately.
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Also, the inspection interval can be defined; therefore each category has a priori a known
inspection interval according to the manufacturer’s suggestion.
Regarding the group of auxiliary equipment, there is an important detail that must be taken
into account.
During normal operation of a marine vessel, the Main Engine is, obviously, operating, so that
the vessel moves. The electrical loads of a vessel are covered from the diesel generators.
Usually a ship has 3 or 4 Diesel Generators and an emergency generator, which is capable to
cover only the electric demands of safety equipment, such as radars, steering gear, etc.
As a matter of good engineering practice, in order to achieve maximum efficiency of Diesel
Generators, usually the operation of one Generator is capable to cover the normal electrical
load of a vessel, and the second Generator to be in stand-by mode.
For the operation of the auxiliary equipment, which we focus on, in this thesis, it is necessary
that at least one Diesel Generator operates, so that to provide the necessary electrical energy.
Therefore for the modeling of this modification in a fault tree, the Generators should operate
for the auxiliaries to be able to operate.
Based on this solution, the three Generators should be modeled under an AND gate (parallel
operation), in series with the auxiliaries.
Nevertheless, the above modification with three Generators in parallel operation gave the
following results:

Table 64: Failure probabilities for D/Gs

probability of failure for diesel
t generators in parallel operation
1000 0,0091
2000 0,0629
3000 0,1659
4000 0,2966
5000 0,4319
6000 0,5563
7000 0,6623
8000 0,7479
9000 0,8147
10000 0,8654
11000 0,9032
12000 0,9309
13000 0,951
14000 0,9654
15000 0,9757
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Table 65: Statistical parameters

Mean Expected Number of
MTTF availability | Failures
8900 hours 0,8938 1,69

The above tables, which have been produced after simulating the fault tree with 3 Generators
in parallel operation for 15.000 operating hours, indicate that the Mean Time To Failure is
8900 operating hours.

It is reminded that for the parts of Diesel Generators that we examine, the manufacturer
suggests 4000 operating hours between inspections. Therefore, it is obvious that before an
expected failure occurs, two inspections will have already taken place.

It is concluded that the auxiliary equipment can be modeled in the fault tree under an OR

gate, in series with the Main Engine and Diesel Generator.

It was mentioned that a simulation for 15.000 hours was performed in the fault tree.

To illustrate the simulation process, assume a single block with a failure and a repair
distribution. The first event,EF 1, would be the failure of the component. Its first time-to-
failure would be a random number drawn from its failure diStI‘ibUtiOn,TFl. Thus, the first
failure event, EFI, would be atTFl. Once failed, the next event would be the repair of the
component, ERI. The time to repair the component would now be drawn from its repair
diStI’ibUtiOﬂ,TRl. The component would be restored by time Try+ TRy, The next event
would now be the second failure of the component after the repair, EFz. This event would
occur after a component operating time of Try after the item is restored (again drawn from

the failure distribution), or at £ #1 T TR + TF;_ This process is repeated until the end time.
It is important to note that each run will yield a different sequence of events due to the
probabilistic nature of the times. To arrive at the desired result, this process is repeated many
times and the results from each run (simulation) are recorded. In other words, if we were to

repeat this 1,000 times, we would obtain 1,000 different values for EFI, or

1,000
1N
(Erm . Ery oo By ] oo 2 £,
h 12 h1po0 1. The average of these values, i=1 ,

would then be the average time to the first event, EFI, or the mean time to first failure
(MTTFF) for the component. Obviously, if the component were to be 100% renewed after
each repair, then this value would also be the same for the second failure, etc (31).
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6.3.2 BLOCKSIM RESULTS

Following the described procedure, after simulating the fault tree for 15.000 operating hours,
the following results were obtained.
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Figure 118: Unreliability function of joint distribution
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Figure 119: Reliability function of joint distribution
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Figure 120: PDF of the joint distribution
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Figure 121: Point availability function
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Figure 122: Point reliability function

138



Reliability analysis/mapping for marine vessels: Results and Conclusions |

Reliasoft BlokSim 7 - wwReliaSoft. om
AvzladlityadReliaadlityvs Time
1,000
faulttree Il
— Point Availability Line|
— Point Reliability Line
080
0,60
—
=
=
[a =
—
=
=
=g
040
0200
George Karadimas
NruA
30/6/2010
0000 12:58:008
0,000 3000,000 6000,000 9000,000 12000000 15000000
Ting (§

Figure 123: Point Availability/ Reliability
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Figure 124: Mean availability function
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Figure 125: Failure rate of the joint distribution
6.4 DEFINITIONS

The plotted parameters are defined as following.
6.4.1 Mean Availability (All Events)

This is the mean availability due to all downing events, which can be thought of as the
operational availability. It is the ratio of the system uptime divided by the total simulation
time (total time).

6.4.2 Point Availability (All Events), A(t)

This is the probability that the system is up at time t. As an example, to obtain this value at t =
300, then a special counter would need to be utilized during the simulation. This counter is
incremented by one every time the system is up at 300 hours. Thus, the point availability at
300 would be the times the system was up at 300 divided by the number of simulations.

6.4.3 Point Reliability (Fail Events), R(t)

This is the probability that the system has not failed by time t. This is similar to point
availability with the major exception that it only looks at the probability that the system did
not have a single failure. Other (non-failure) downing events are ignored. During the
simulation, a special counter again must be utilized. This counter is incremented by one (once
in each simulation) if the system has had at least one failure up to 300 hours. Thus, the point
reliability at 300 would be the number of times the system did not fail up to 300 divided by
the number of simulations.
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6.4.4 Expected Number of Failures, Nr

This is the average number of system failures. The system failures (not downing events) for
all simulations are counted and then averaged.

6.4.5 Failure rate

A function that describes the number of failures that can be expected to take place over a
given unit of time. The failure rate function has the units of failures per unit time among
surviving units, i.e. one failure per month.

In the availability figure, at 4000, 6000, 8000 hours an inspection/ corrective maintenance is
carried out, if necessary. For this reason the availability at subject hours is increasing.

The figures for reliability and availability, tabulated, are shown in Table 66: Reliabity/
Availability for joint distribution

Table 66: Reliabity/ Availability for joint distribution

T R(t) A(t)
1000 0,5183 | 0,5183
2000 0,148 0,148
3000 0,033 0,033

4000 0,0043 | 0,0123
5000 5,40E-06 0,315
6000 8,50E-07 0,317

7000 0| 0,1173
8000 0| 0,0473
9000 0 0,129
10000 0 0,24

For the total joint distribution of failures, it is very useful to calculate the conditional
probabilities of failures.

Given that a vessel has run a failure-free time of T1 hours, what is the probability that a
failure occurs in the next T2 hours?

Using the conditional probabilities theory (Appendix A) the following table is produced.

Table 67: conditional probabilities

calculations

t probability of failure

500/500 0,6574
1000/1000 0,6844
2000/1000 0,7758
2000/2000 0,9632
3000/1000 0,836
3000/2000 0,9802
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3000/3000 0,9982
4000/1000 0,8792
4000/2000 0,9892
4000/3000 0,9993
4000/4000 0,99995

For example, if a vessel had operated 2000 hours without a failure, then the probability that a
failure occurs in the next 1000 hours is 0.7758 or 77.6%.

6.5 EXPANDED ALGEBRAIC SOLUTION

Blocksim provides the complete algebraic solution for the calculation of the joint equations.

In the case that the basic events are modified in series and the component failure
characteristics can be described by distributions, the system reliability is actually time-
dependent (system reliability theory page 119). In this case, the system reliability can be
written:

Rs(t) = Ry(t) « Rq(t) « R3(t)

The reliability of the system for any mission time can now be estimated.

In the under examination fault tree, system reliability is:

Rsystem==tRme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000.Raux 6000

Block Failure Distribution Legend
m/e 8000: Normal u=4474,56;c=2182,48
aux 4000: Loglogistic p=2103,9; c=2155,06
aux 6000: Logistic p=2681,4; 6=1715,5

aux 8000: Logistic p=5157,5;6=4198,6

d/g 3: Weibull p=1,40425; 1=3517,47;y=0
d/g 2: Weibull p=1,40425; n=3517,47; y=0
d/g 1:  Weibull p=1,40425; n=3517,47; y=0

me 4000: Weibull B=1,55328; n=3955,87; y=0

Using the same procedure, the probability function and the failure rate equation can be
calculated.
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Pdf function:

fSystem=-+fme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000.Raux 6000+ fm/e 8000.Rme
4000-Rd/g 1.Rd/g 2-Rd/g 3-Raux 4000-Raux 8000-Raux 6000+fd/g 1.-Rme 4000.Rm/e 8000.Rd/g 2.Rd/g 3-Raux
4000.Raux 8000.Raux 6000+fd/g 2.Rme 4000.Rm/e 8000-Rd/g 1-Rd/g 3.Raux 4000-Raux 8000.Raux 6000+Tfd/g
3.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Raux 4000.Raux 8000.Raux 6000+ faux 4000.Rme 4000.Rm/e 8000-Rd/g
1.Rd/g 2.Rd/rg 3-Raux 8000.Raux 6000+ faux 8000.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2-Rd/g 3.Raux 4000.Raux
6000+Taux 6000.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000

Failure rate function:

frSystem=-+frme 4000 +frmse so00+fra/g 1+frda/g 2+frd/g 3+fraux 4000 +fraux 8000+fraux 6000

where f; , R; and fr; are, correspondingly, the probability density function, reliability function
and failure rate function of each subgroup that have been calculated in chapter 5.

6.6 ADVANTAGES OF THE ANALYTICAL METHOD

The primary advantage of the analytical solution is that it produces a mathematical
expression that describes the reliability of the system. Once the system's reliability function
has been determined, other calculations can then be performed to obtain metrics of interest
for the system. Such calculations include:

o Determination of the system's pdf.

e Determination of warranty periods.

o Determination of the system's failure rate.
o Determination of the system's MTTF.

Some useful parameters for the total distribution can be found in table 68.

Table 68 : Basic parameters for joint distribution

MTTF Mean availability
1178 0,2007

Summarizing, the MTTF for a vessel as a whole is 1178 hours. This mean that in average
every 1178 hours a failure will occur.

The theoretical calculated MTTF for the joint distribution of failures, is lower even than the
MTTF of the least reliable subcategory of equipments. This can be explained due to the
probabilistic nature of the calculations/ simulation in the fault tree analysis.
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CHAPTER 7 REPLACEMENT AND INSPECTION COST

So far we have handled with probabilities of failure, reliability and relevant plots. In order
that useful qualitative calculations are made, it is necessary for us to work on the cost that
these failures lead to.

Nowadays, the effort to reduce operating cost of a vessel is very important. The proper
preventive maintenance policy can help to avoid unexpected failures and therefore
unexpected cost.

To calculate the consequences of failures in a vessel, this effort commenced with the
collection of data for the cost of each failure that appears in the collected life data. These
costs where categorized according to each subgroup of equipment that constitutes a vessel.

Next, through a research in a shipping company, there were collected the cost for spare parts,
the required time to complete each repair and the required number of manpower to carry out
subject repair.

The below table indicates a sample of repairs that regard the Main Engine.

Table 69: Indicative repairs and cost for M/E

REQUIRED
TIME FOR | TOTAL

COST/UNIT | REPAIRS | NUMBER OF
PART () (hours) MANPOWER
T/C BLOWER
SIDE BEARING 9300,00 5 2
AIR STARTING
VALVE 4000,00 1 1
T/C PEDESTAL
ROTOR 14000,00 12 2
CYLINDER
COVER 26000,00 10 3
STUFFING BOX | 25000,00 4 2
CYLINDER
LINER 19500,00 14 3
PISTON
CROWN 14300,00 14 3
EXHAUST
VALVE 16000,00 3 2
PUNCTURE
VALVE 3000,00 2 1
PISTON RINGS 640,00 12 3
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It is noted that for the replacement of broken equipment it is assumed that a failure had
occurred and the replacement of subject equipment is necessary to bring the system back to
operating condition. Additionally, in a case of a simple inspection, for example as required
from the manufacturer’s planned maintenance system, the cost that the repair includes is the
labor cost for a repair/ inspection.

For each one of the 6 subgroups of a vessel, the average cost for replacement of the group’s
equipment, along with the inspection cost were calculated. It is noted that the labor cost was
calculated based on the realistic assumption of 50$/hour for each employer.

The following table is clearly indicative.

Table 70: average cost for repairs/ inspection (all values in USD)

M/E M/E AUX AUX AUX
category 4000 8000 D/G 4000 6000 8000
average
replacement
cost 7280 | 17136 3060 3950 3950 3950
average
inspection cost 733 1121 400 150 150 150

In chapter 5 the following values for the expected MTTF for each category were calculated.

Table 71: MTTF for each category

M/E M/E AUX AUX AUX
category 4000 8000 D/G 4000 6000 8000
MTTF 3548 4474 3232 1936 2668 5157

7.1 COST CALCULATION THROUGH THE STATISTICAL RESULTS

For a period of 1 year, the overall operational days for a typical containership are about 280
to 320, the expected cost for replacement and maintenance, along with 95% confidence
intervals for these values can be found in Table 72.

Table 72: replacement cost

M/E M/E AUX AUX AUX sum
category 4000 8000 D/G 4000 6000 8000
failures per year 2,001 1,587 2,197 3,667 2,661 1,377
cost per
replacement 7280 | 17135,71 3060 3950 3950 3950
cost per inspection 733 1121 400 150 150 150
replacement cost 14568 27193 6722 | 14486 | 10512 5438 | 78920
lower Cl 4883 14815 196 1192 865 447 | 22398
upper Cl 32618 39572 | 13249 | 27780 | 20158 | 10429 | 143806
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Therefore the expected cost for replacement of failed equipment, based on the statistical
analysis that was carried out, is about 79.000$, for a period of 1 year.

7.2 INTERPRETING THE RESULTS FOR REAL- LIFE DATA

The life data that were collected concern a fleet of 11 containerships, of which we examine
and analyze the failures that occurred to the 7 vessels of them.

In this attempt, the failures for each category will be sorted by the time of occurrence in
connection to the suggested by manufacturer inspection time. For example, for M/E 4000
hours’ category, the following graph indicates that 42% of the incidents occurred at time less
than the suggested by the manufacturer, 46% of the incidents occurred within the time span
and 12% of the equipment was inspected at least one time before failure.

M/E 4000 maintenance status
over

maintena

12% o

under
maintena
nced
42%

Figure 126: M/E 4000 maintenance status

The same graphs for the other categories can be calculated. In the following graphs can be
seen that the majority of the equipments under investigation, have at least one failure prior
even of the first suggested inspection.
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M/E 8000 maintenance status
over

mainten
anced
2%

worthwhil
e

maintenan

ced 7%

D/G maintenance status

worthwhil
e
maintena
ced 158

Figure 127: M/E 8000, D/G maintenance status

aux 4000 maintenance status

worthwhil
e

maintena

nced 1

aux 6000 maintenance status

Figure 128: AUX 4000, AUX 6000 maintenance status
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aux 8000 maintenance status
worthwhil over

e maintena
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Figure 129: AUX 8000 maintenance status

Based on this analysis, the actual cost for repairs, for the under investigation period of 2
years, for the 7 containerships:

Table 73: Actual repair costs

M/E AUX AUX AUX
category M/E 4000 | 8000 D/G 4000 6000 8000 sum
under
maintenanced
replacement 101920 719700 | 61200 51350 43450 | 126400 | 1104020
lower Cl 26840 364093 979 3575 3575 10075 409137
upper Cl 179300 972493 | 66341 83325 83325 | 234825 | 1619609
worthwile,
overmaintena
nced
inspection 9533 4486 800 300 0 600 15719

Using the same assumption, but cutting down the suggested inspection time to the 75% of the
proposed by the manufacturer time, we can recalculate these costs.

Table 74: Repair cost

M/E M/E AUX AUX AUX
category 4000 8000 D/G 4000 6000 8000 sum
under maintenanced
replacement 72800 | 565478 | 45900 | 43450 | 39500 94800 861929
lower Cl 24400 | 308078 1335 3575 3250 7800 348439
upper Cl 163000 | 822878 | 90465 | 83325 | 75750 | 181800 | 1417219
worthwile,
overmaintenanced
inspection 10266 11214 5600 300 150 1650 29181
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The replacement cost per ship per year in the first case was 78.800%/ship/year and in the
second case was 61.500%/ship/year.

In proportion, the inspection cost was raised from 1150%/ship/year to 2100$/ship/year.

If we recalculate these costs, but by cutting down the inspection time to the half of the
proposed of the manufacturer we get:

Table 75: Repair cost

M/E M/E AUX AUX AUX
category 4000 8000 D/G 4000 6000 8000 sum
under
maintenanced
replacement 36400 | 325578 | 33660 27650 19750 | 47400 490439
lower Cl 12200 | 177378 979 2275 1625 3900 198358
upper Cl 81500 | 473778 | 66341 53025 37875 90900 803420
worthwile,
overmaintenanced
inspection 13933 | 26914 | 7200 900 900 3450 53298

The replacement cost per ship per year in this case reduced to 35000%/ship/year and the
inspection cost was raised to 3800%$/ship/year.

A plot that describes the relation between inspection and replacement cost , in regards to the

reduction of inter inspection time can be produced.
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Figure 130: Replacement vs. inspection cost

In Figure 130, t is the time for inspection for each component as it is proposed by the
manufacturer. We can see how the replacement cost decreases as the inspection is carried out
more frequently.

Although the inspection cost increases, almost more than 3 times in the case of cutting down
inspection time to half, since the absolute value is small, compared to the replacement cost,
the overall cost is drastically decreasing.

Obviously the ideal case would be to perform a continuous inspection, but this is impossible,
due to the large amount of equipment and machinery, that has to be inspected. For reference
each one of the containerships has onboard at least 210 electric motors of different sizes. It is
clear, that even if we reduce the inspection time of the electric motors from 4000 to 2000
operating hours, it will become very difficult to perform this type of remedial actions.
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CONCLUSIONS

In this thesis, so far, we have dealt with reliability analysis of real life data which concerns
failures of Main Engine, Diesel Generators and Auxiliary Equipment, taken from a fleet of
containerships. These failures where categorized according to the suggested by the
manufacturers, inspection time. Hereafter the distributions that describes the failures where
calculated and relevant plots where produced.

In order to simplify calculations, the joint distribution of failures, for a vessel as a whole was
calculated. Finally it was calculated the cost for necessary repairs based on the theoretical
analysis and this cost was compared to the cost from the real life data.

This calculation of the cost could be considered as a qualitative comparison of the methods
that were used in this research. The difference between the expected cost based on theoretical
expected number of failures and the real cost that was calculated according to real- in situ
data, was less than 1%. For the specific data of failures the present analysis could be
considered as the proper approach to this subject.

However in real life situations, availability is often determined more by spares holdings and
administrative times than by predictable factors such as mean repair times. Therefore
predictions and models of system reliability and availability should be used as a form of
design review or in the marine industry as a form of annual budget and planning review.

The consequences of failures in a vessel, apart from the repairs cost, could be the loss of hire
in the case of a significant failure which could immobilize the vessel. The target is to plan the
repairs to be carried out during a scheduled dry-docking or during anchorage.

This research can be considered as a guide for step by step reliability analysis, for a future
collection of similar data. In this way and according to the primary laws of statistics, as the
sample number increase, more reliable results could be extracted and expanded for other
types of ships.

The major difficulty in similar attempts, is the collection of failures data. For example, the
OREDA database includes information for 24000 offshore equipment units, involving more
than 33000 failures. More analytical calculations could be performed, in case that a larger
amount of such data was available. For example, a Failure Mode, Effects and Criticality
Analysis could be carried out. That could lead to the calculation of severity of consequences
for various failures.

Nevertheless, the creation of a national database, under the supervision of a University or any
other authority, in which all the concerned could register failures data for marine industry, is
a significant step for the actualization of such analyses. The tremendous number of vessels,
operating under Greek flag or under Greek management, provides a guarantee that a future
effort of this kind will be successful, even if only the support of the domestic shipping
companies is granted.
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APPENDIX A

Distributions statistical properties

For the distributions we used in this thesis, in this appendix can be found the statistical
properties.

Weibull distribution

The Mean or MTTF

The mean, T, (also called MTTF or MTBF by some authors) of the Weibull pdf is given by:

T=}I+W-T(%+1)

1 1
where T (F T 1) is the gamma function evaluated at the value of (E T 1). The gamma
function is defined as:

Tin) = j: e iy

The Median

The median, T, is given by:

T=y+nn2)

|-

The Mode

The mode, T, is given by:

The Standard Deviation

The standard deviation, o, is given by:
or= -Jr(ﬁ 1)—1‘(l 1)2
Ty BT BT
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The Weibull Reliability Function

The equation for the three-parameter Weibull cumulative density function, cdf, is given by:

BTy =1-e ()

Recalling that the reliability function of a distribution is simply one minus the cdf, the
reliability function for the three-parameter Weibull distribution is given by:

| -( Ty }ﬁ'
R(T)=¢e \ "
The Weibull Conditional Reliability Function
The three-parameter Weibull conditional reliability function is given by:
=y 3y P
R(T+1) o (")
- —y VP
R(T) (%)

R(HT) =

or:
RUT) = e LY -(F)]

These equations gives the reliability for a new mission of t duration, having already
accumulated T hours of operation up to the start of this new mission, and the units are
checked out to assure that they will start the next mission successfully. It is called conditional
because you can calculate the reliability of a new mission based on the fact that the unit or
units already accumulated T hours of operation successfully.

The Weibull Reliable Life

The reliable life, Tg, of a unit for a specified reliability, starting the mission at age zero, is
given by:

Te=y+ 10+ {~WR(T)]}
This is the life for which the unit will be functioning successfully with a reliability of R(TR).

If R(Tg) = 0.50 then Tz = ir, the median life, or the life by which half of the units will
survive.

The Weibull Failure Rate Function
The Weibull failure rate function, A(T), is given by:
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<3| T

Normal distribution

The Normal Mean, Median and Mode

The normal mean or MTTF is actually one of the parameters of the distribution, usually
denoted as u. Since the normal distribution is symmetrical, the median and the mode are
always equal to the mean, u = 7= 7.

The Normal Standard Deviation

As with the mean, the standard deviation for the normal distribution is actually one of the
parameters, usually denoted as o,

The Normal Reliability Function

The reliability for a mission of time T for the normal distribution is determined by:

o X o0 l _i (t—_l.l}2
R(T) = ( Adt = [ ———e 2\°T ) {t
°T YT GTJ2T
There is no closed-form solution for the normal reliability function. Solutions can be obtained
via the use of standard normal tables. Since the application automatically solves for the

reliability, we will not discuss manual solution methods.

The Normal Conditional Reliability Function

The normal conditional reliability function is given by:

- {2
| L35
R(|T) = R(T'+1) _ v Tw oTy2n
T oo - 2
RD [T ),
¢ T CGT27

Once again, the use of standard normal tables for the calculation of the normal conditional
reliability is necessary, as there is no closed form solution.

The Normal Reliable Life

Since there is no closed-form solution for the normal reliability function, there will also be no
closed-form solution for the normal reliable life. To determine the normal reliable life, one
must solve:
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. 82
R = _ 1 &Y g

T grdlm
forT.
The Normal Failure Rate Function

The instantaneous normal failure rate is given by:

o t(T) GTA2T -

AT) = =

v D — (o) gy
*T o 2n

Log logistic distribution

Mean, Median and Mode

The mean of the loglogistic distribution, T is given by:
T=e“T(1+c)T(1-0)

Note that for & =1, T does not exist. ]
The median of the loglogistic distribution, T, is given by:

=

T= gt
The mode of the loglogistic distribution, T ifo<1,is given by:

— ¢ l-g

T = ?-;;+"_' = 4o

The Standard Deviation

The standard deviation of the loglogistic distribution, o, is given by:
or= ew‘l'(l +20) (1 -20)-(T{1+c)(1-c)?

Note that for & =0.5, the standard deviation does not exist.

The Loglogistic Reliability Function

The reliability for a mission of time T, starting at age 0, for the loglogistic distribution is
determined by:

B= 1
1+e

=

where:
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The unreliability function is:

The Loglogistic Reliable Life

The loglogistic reliable life is:
T = ghte(h(l-E-m(z)]

The Loglogistic Failure Rate Function
The loglogistic failure rate is given by:

ACT) = GTlilE'I- &%)

Logistic distribution

The logistic mean or MTTF is actually one of the parameters of the distribution, usually
denoted as w. Since the logistic distribution is symmetrical, the median and the mode are
always equal to the mean, u= 7.

The Logistic Standard Deviation

The standard deviation of the logistic distribution, o, is given by:

The Logistic Reliability Function

The reliability for a mission of time T, starting at age 0, for the logistic distribution is
determined by:

R(T) = _[: Ao

or:

1
1+ 2%

R(T) =
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The unreliability function is:

where:

The Logistic Conditional Reliability Function

The logistic conditional reliability function is given by:

oo R(T+1) , S
,L?‘ o

The Logistic Reliable Life
The logistic reliable life is given by:

Te = p+ofln(l— &) — (B)]

The Logistic Failure Rate Function

The logistic failure rate function is given by:

=

AD) = c(lE+ %)
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