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Σύνοψις 
Η παρούσα διπλωματική εργασία, αποσκοπεί στην ανάλυση αξιοπιστίας σε πλοία 
(συγκεκριμένα, σε πλοία μεταφοράς εμπορευματοκιβωτίων) βασιζόμενη στην στατιστική 
ανάλυση πραγματικών στοιχείων από βλάβες πάνω σε πλοία ίδιου τύπου. 

Τα προς ανάλυση στοιχεία αφορούν σε βλάβες Κύριας Μηχανής, Ηλεκτρογεννητριών και 
Βοηθητικών Μηχανημάτων (Time To Failure), που συνελέγησαν από ελληνική ναυτιλιακή 
εταιρία. 

Το πρώτο μέρος της μελέτης είναι κυρίως θεωρητικής φύσεως, καθώς επικεντρώνεται σε 
βασικούς ορισμούς, απαραίτητους για την βαθύτερη κατανόηση σημαντικών θεμάτων που 
αφορούν στις μεθοδολογίες αξιοπιστίας. Στη συνέχεα παρουσιάζονται και αναπτύσσονται 
χρήσιμοι μαθηματικοί ορισμοί και περιγράφονται στατιστικές μεθοδολογίες, ουσιώδους 
σημασίας για την περαιτέρω μελέτη, κατανόηση και ανάλυση των συλλεχθέντων δεδομένων.  

Στο δεύτερο μέρος, παρουσιάζονται τα πραγματικά δεδομένα, και εφαρμόζονται οι 
μεθοδολογίες που αναπτύχθηκαν εκτενώς στα προηγούμενα κεφάλαια. Αρχικά λοιπόν, 
προχωρούμε σε κατανομή των μηχανημάτων τα οποία υπέστησαν τις υπό μελέτη βλάβες. 
Αυτός ο διαχωρισμός γίνεται με βάση το είδος του μηχανήματος (Κύρια Μηχανή, 
Ηλεκτρογεννήτριες και Βοηθητικά) και τις ώρες που προτείνονται από τον κατασκευαστή 
του κάθε μηχανήματος για επιθεώρηση. Στη συνέχεια, υπολογίζονται οι στατιστικές 
κατανομές που περιγράφουν τις πραγματικές βλάβες ανά κατηγορία. Ακολούθως, 
υπολογίζονται και παράγονται διαγράμματα που απεικονίζουν καμπύλες αξιοπιστίας. 
Ειδικότερα, εξάγονται διαγράμματα επιβίωσης, δεσμευμένων πιθανοτήτων βλάβης, ρυθμού 
βλάβης. Οι ίδιες καμπύλες παρουσιάζονται για παραμετρικές και μη παραμετρικές μεθόδους, 
όπως επίσης και αντίστοιχα πινακοποιημένα αποτελέσματα. 

Στο τρίτο μέρος της εργασίας, γίνεται μια προσπάθεια υπολογισμού της συνολικής 
κατανομής βλαβών για όλο το πλοίο, με την χρήση της μεθόδου των δέντρων σφαλμάτων. 
Έτσι επιτυγχάνεται η σύμπτυξη των επιμέρους κατανομών σε μια συνολική, για λογούς 
απλοποίησης των υπολογισμών. Μ’ αυτόν τον τρόπο παράγονται καμπύλες αξιοπιστίας, 
αντίστοιχες με αυτές του δευτέρου μέρους, που όμως αφορούν το πλοίο ως σύνολο. 

Τέλος, με βάση επικαιροποιημένες τιμές κόστους για τα ανταλλακτικά που χρησιμοποιούνται 
στις απαιτούμενες επισκευές και το αντίστοιχο εργατικό κόστος, υπολογίζουμε τη συνολική 
δαπάνη, για τις αναγκαίες επισκευές και τη συντήρηση σύμφωνα με τις συστάσεις του 
κατασκευαστή για επιθεώρηση με βάση τις ώρες λειτουργίας. Για το σκοπό αυτό 
χρησιμοποιούνται τόσο θεωρητικές/ στατιστικές μέθοδοι όσο και στοιχεία από την 
πραγματική λειτουργία των μηχανημάτων. 

Ως συμπέρασμα οδηγούμαστε μέσω μελέτης ευαισθησίας στην εύρεση βέλτιστης σχέσης 
μεταξύ συχνότητας επιθεωρήσεων και απαιτούμενου κόστους. 
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ABSTRACT 
The aim of the hereby exposed thesis is the analysis of the reliability on vessels (specifically 
on containerships) , based on the statistical analysis of real life data of failures on ships of this 
kind. 

The under examination data regard failures of Main Engine, Diesel Generators and Auxiliary 
Equipment ( Time To Failure) , collected from the archives of a greek shipping company. 

The first part of this dissertation research is mainly of theoretical nature, as it is focused on 
basic definitions which are necessary for the deeper comprehension of essential issues related 
to reliability methods. Afterwards, useful mathematic definitions are presented and developed 
and statistical methods are described, which are of great importance to the further study, 
comprehension and analysis of the collected data. 

In the second part, we present the real life data and apply methods, which were developed 
extensively in the previous chapters. Thus we first proceed to a categorization of the 
machinery which suffered the failures under examination. This categorization is made 
depending on the type of machinery (Main Engine, Diesel Generators, Auxiliaries) and the 
amount of hours recommended by the manufacturer of each part of the machinery for 
inspection. Then, we calculate the statistical distributions which describe the real life failures 
depending on a category basis. The next step is the calculation and the production of 
diagrams picturing reliability plots. More specifically, there are exported survival plots, 
conditional probabilities of failure and failure rate. The same plots as well as the 
corresponding tabulated results are presented for both parametric and non-parametric 
methods. 

In the third part of this study, we make an attempt of calculating the joint distribution of 
failures for a vessel as a whole, by applying the fault tree method. In this way there is 
achieved the integration of the distributions for each subcategory to one joint distribution, 
which simplifies our calculations.   Reliability plots are produced by this method, which 
correspond to the ones of the second part, but refer to the vessel as a whole.  

Finally, based on updated cost for the spare parts used for the required repairs and the 
corresponding labor cost, we reach the calculation of the total expense for the required 
remedial actions, according to the recommendations of the manufacturer about repairs 
depending on operation hours. To this purpose both theoretical/statistical methods and data 
from the real life operation of the machinery are used.  

 

In conclusion, through the application of sensitivity analysis, we are led to finding the 
optimum relationship between the frequency of inspections and the demanded cost.    
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CHAPTER 1 : THEORETICAL APPROACH 

1.1 BASIC CONCEPTS 

1.1.1 Reliability 
The main concept of this thesis is reliability.  However, concerning the broadest and more 
general definition of reliability, there is a considerable controversy. 

Until the 1960s, reliability was defined as ‘’ the probability that an item will perform a 
required function under stated conditions for a stated period of time.’’ Some authors still 
prefer this definition ( (1),  (2)).  

A more general definition is given in standards like ISO 8402 and BS 4778: 

‘’the ability of an item to perform a required function, under given environmental and 
operational conditions and for a stated period of time’’ (ISO 8402). 

From a qualitative point of view, reliability can be defined as the ability of the item to remain 
functional. Quantitatively, reliability specifies the probability that no operational 
interruptions will occur during a stated time interval. 

• An item is a functional or structural unit of arbitrary complexity (e.g. component, 
assembly, equipment, subsystem, system) that can be considered as an entity for 
investigations. 

• The required function specifies the item's task. It could be a single function or a 
combination of functions that is necessary to provide a specified service. 

1.1.2 Availability  
is a broad term, expressing the ratio of delivered service to expected service. It is often 
designated by A and used for the stationary & steady-state value of the point and average 
availability (PA = AA). Point availability (PA(t)) is a characteristic of an item expressed by 
the probability that the item will perform its required function under given conditions at a 
stated instant of time t. From a qualitative point of view, point availability can be defined as 
the ability of the item to perform its required function under given conditions at a stated 
instant of time (dependability). 

For a given item, the point availability PA(t) can be defined as:  

 

𝑃𝐴(𝑡) =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 

where MTTF (mean time to failure ) denotes the mean functioning time of the item and 
MTTR (mean time to repair) denotes the mean downtime after a repair. 
 

1.1.3 Failure 
 ‘’failure is the termination of the ability of an item to perform a required function’’ (IEC 50). 
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‘’equipment fails, if it is no longer able to carry out its intended function under the specific 
operational conditions for which it was designed.’’ (3) 

 
1.1.4 Reliability theory 
Deals with the interdisciplinary use of probability, statistics, and stochastic modeling, 
combined with engineering insights into the design and the scientific understanding of the 
failure mechanisms, to study the various aspects of reliability. 
 

1.2 BRIEF HISTORY OF RELIABILITY  
 

It is commonly accepted that probability and statistics are the essential ingredients 
without which Reliability Engineering as a technical discipline could not have emerged. They 
are the seminal ideas in the history of analytical thought upon which entire scientific and 
engineering constructs rest, such as Reliability Engineering. 

Apart from these two essential pillars, we assume that the idea and practice of mass 
production—the manufacture of goods in large quantities from standardized parts—is another 
fundamental ingredient in the development of Reliability Engineering. 

Mass production techniques emerged in the early years of 20th century, however a 
more quantitative/mathematical method and formal approach to reliability grew out of the 
demands of modern technology and particularly out of the experiences in World War II with 
complex military systems. The catalyst came in the form of an electronic component, the 
vacuum tube which for all practical purposes initiated the electronic revolution, enabled a 
series of applications such as the radio, television, radar and others. The vacuum tube was 
also the main source of equipment failure. Tube replacements were required five times as 
often as all other equipments. (4) 

It is this experience with the vacuum tubes that prompted the US department of 
defense to initiate a series of studies for looking into these failures after the war; these efforts 
eventually consolidated and gave birth to a new discipline, Reliability Engineering. 

The next development that provided the necessary ingredient to coalesce all the 
efforts into a new technical discipline was reliability prediction: if quantitative reliability 
requirements were going to be specified, there would be a need to estimate and predict 
component reliability before equipment was built and tested (5). 

Then, in late 1950s, came the foundational AGREE report. It was built on many 
previous efforts in reliability and ‘provided all the armed services with the assurance that 
reliability could be specified, allocated, and demonstrated; i.e. that a reliability engineering 
discipline existed’ from that point and onwards, reliability engineering was rapidly 
developed.  There was a trend from component-level reliability to system-level attributes 
(system reliability, effectiveness, availability, etc.). 

Also, there was an increased specialization in statistical techniques, on the actual 
physics of failure, as well as in specifying, predicting and testing reliability. 

Over the next decade, the evolution in reliability was mainly focused on system level 
reliability and safety of complex engineering system, such as nuclear power plants. 

There were introduced techniques such as Probabilistic Risk Assessment and event 
trees. The second characteristic of the 1970s in the development of Reliability Engineering is 
the focus on software reliability. (6) 

Over the last years, a number of software statistical packages were developed, 
providing more convenient analysis of life data as well as the extraction of accurate results. 
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CHAPTER 2  

2.1 VARIOUS RELIABILITY ANALYSIS APPROACHES 
In this chapter we will examine and analyze briefly various reliability analysis approaches 
proposed through time. 

It is well understood that such a wide subject can be seen in different perspectives. In 
references the following material is presented in much greater detail. 

2.1.1 Life data collection and terminology 
Ascher and Feingold (7) evinced clearly the differences in reliability of parts and systems. As 
‘parts’, are defined the non repairable items, in contrary to repairable systems. This basic 
difference results in different reliability and maintainability strategies, even when inferred 
from two different data sets, which contain exactly the same set-of –failure numbers. Hereby 
as failure numbers, are denoted parameters like MTTF, FOM (Force Of Mortality) or 
ROCOF (Rate Of Occurrence of failures).  
Despite an almost 50-year evolution and development of reliability theory, Ascher highlights 
the misunderstanding in the use of FOM, ROCOF and failure rate which are usually 
confused.  
In general, FOM is defined as the propensity that a non repairable item will fail in the next 
small interval of time. 
ROCOF is defined as the mean rate of failures per (repairable) system time. 
Summarizing Ascher’s work, it is of essential importance to understand the situation which 
generated a set of life data, as it will need different approaches to improve reliability. Also it 
is necessary for engineers and theorists to commence a strict terminology and notation (T&N) 
use. 
 

2.1.2 Markov approach or Markov modeling 
 
In order to evaluate the operational reliability of a system, a mathematical model based on 
continuous Markov chains can be used. (8) 
Theoretically, for the basic Markov approach to be applicable, the behavior of the system 
must be characterized by a lack of memory, meaning that the future state of the system is 
independent of all past states except the present state. Additionally the process must be 
stationary, meaning that the behavior of the system must be the same at all points of time. 
Due to this Markovian hypothesis this approach is applicable to those systems the behavior of 
which can be described by a distribution with constant hazard rate, such as exponential 
distribution. 
 There had been attempts to fit various distributions and obtain a more flexible manner in the 
Markovian hypothesis. 
Such a process is called a semi Markov process. 
In a Markovian approach, two states of a system are given:  system operative and system 
failed. For each state, there are given the so called state transition rates:  
λ=failure rate 
μ=repair rate 
The above rates are called state transition since they represent the state at which the system 
transits from one state to another. 
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Assuming a constant failure and repair rate, i.e. they are characterized by the exponential 
distribution, and after performing a few calculations that can be found in (9) it is concluded 
that the system availability: 

𝐴(𝑡) =
𝜇

𝜆 + 𝜇
+

𝜆
𝜆 + 𝜇

𝑒−(𝜆+𝜇)𝑡 

We obtained a reliability function using the Markov process, assuming exponential hazard 
rates. In following chapters this method will be generalized in order to include semi Markov 
processes. 
 

2.1.3 Bayesian networks method 
 
Bayesian networks (BN) have been proposed as an alternative to traditional reliability 
estimation approaches. From this perspective, a BN can be considered as an approach to 
represent the interactions among the components in a system from probabilistic perspective. 
This model is widely known as directed acyclic graph (DAG), where the nodes represent 
system components (variables) and the links between each pair of nodes represent 
relationship among them. This interaction of the components is leading to system ‘’success’’ 
or ‘’failure’’. In general the influence among nodes is uncertain; therefore we insert 
probabilities distribution to each of the links joining the different nodes. 
Also it is necessary to assign conditional probabilities between two components, forming a 
child and parent relationship. The probabilities in the child nodes are calculated through the 
probability values assigned to the parent nodes. 
It is clear that in order to represent all relationship among each node, our model can become 
substantially large, as the parent- child relationship leads to exponential growth of the 
conditional probabilities. Also throughout a system’s life, it is common to add or remove 
obsolete components. Thus the original BN may not be accurate through system’s life. 
This complexity leads to the necessity for an expert with adequate knowledge of each specific 
system to build the BN. 
As an alternative/ solution to these problems, a number of special algorithms was introduced 
and used in BN analysis. Such algorithms were designed to reduce the search space of the 
best structure that fits adequately each system.  
One of the most used algorithms is the K2 algorithm which was defined (10) as a greedy 
heuristic search method.  
Another approach in defining the best structure can be obtained using the MWST (Maximum 
Weight Spanning Tree) method, combined with standard algorithms, as the Kruskal 
algorithm. 
The proposed methods use the following steps: 

• Use of a dataset that contains observations (failure/full functionality) on a system 
• Find association between system’s components  
• Calculate the degrees of these associations 
• Build the associated BN 
• Use the BN to estimate overall system reliability. 

In references (11) , (12) there can be found analytical calculations as well a full presentation 
of an applicable BN method. 
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2.1.4 OREDA analysis 
 
OREDA (13) is a data collection program that was launched in the early 80s. The essential 
advantage of OREDA is the large number of failure data collected, since a number of 
important oil companies under the management of DNV and the cooperation of the 
Norwegian Institute of Technology assure for the importance of the project.  
‘’ OREDA’s main purpose is to collect and exchange reliability data among the participating 
companies and act as The Forum for co-ordination and management of reliability data 
collection within the oil and gas industry’’, as it is clearly stated. 
For that purpose reliability data have been collected for about 24.000 offshore equipment 
units, involving approximately 33.000 failures.  The equipments that are covered in this 
database include rotating machinery (combustion engines, compressors etc), mechanical 
equipment (cranes, boilers), control and safety units and subsea equipment. It is obvious that 
all equipments are of highly importance for the marine industry. 
The necessary mathematics to analyze the collected failure data are presented in the next 
chapter.  Briefly, after the statistical analyses of failures, based on Markov theory, we can 
extract useful numerical data for reliability functions (MTTF, etc).  
Such results had lead to important applications, such as estimate probabilities of critical 
events, quantitative risk assessment, reliability centered maintenance, reliability based 
inspection, life cycle cost, production availability, safety integrity level (SIL), spare parts 
storage, manning resources, FMEA-analysis, benchmarking/KPI assessment, root cause 
analysis. 
The importance of this project is obvious as a number of International Standards are based 
upon these analyses (ISO 14 224: “Petroleum, petrochemical and natural gas industries – 
Collection and exchange of reliability and maintenance data for equipment”). 
Each attempt for a reliability analysis based on life data faces major difficulties in data 
collection. This is the advantage of OREDA database, the continuous inflow of such data.  
 
 

2.2 COLLECTION AND ANALYSIS OF FAILURE DATA 
 
 
To perform a reliability analysis using statistical/ probabilities methods, a set of data is 
necessary. Most cases concern data on time to failure. The so called ‘’failure data’’, ‘’lifetime 
data’’, ‘’life data’’ and so forth. (14) 
The key to application of reliability techniques is acquisition, interpretation and analysis of 
such data. As a result the field of statistics plays a major role in reliability applications. 
One can detect that various types of data can be collected. For example operational data are 
those collected under actual operating conditions. Such experimental data, regarding the 
marine industry, are seldom available. 
 
To implement and complete this thesis, we have contacted a major Greek shipping company 
and collected failure (operational) data of the containership’s fleet. 
These data contains time to failure of various major components, auxiliary items and 
machinery of 7 containerships out of a fleet of 11 ships and for a period of 2 years. 
These failure data were mainly collected from maintenance record. This means that both 
component specific failures (primary failures) and common cause failures are included.  
Repair times and necessary manpower for the repairs are recorded whenever possible.  
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CHAPTER 3 INTRODUCTION TO RELIABILITY MATHEMATICS  
 
The methods used to quantify reliability are the mathematics of probability and statistics. 
Since we are dealing with life data it is necessary to understand and define basic descriptive 
statistics. 
A parameter is defined to be a population characteristic; we have already seen the MTTF. 
The corresponding quantity in a sample is called a statistic. 
The objective of descriptive statistics is to calculate appropriate statistics for purposes of 
description and summarization of the information in a set of data, thus, effectively and 
efficiently inferences concerning parameters could be determined. 
 

3.1 HISTOGRAMS 
 
 A histogram is a graphical representation in bar chart form of a frequency table or frequency 
distribution. 
For example, from the life data we have collected, and regarding the failures in a group of 
sister vessel’s liners of Main Engine, for a period of 2 years, the following table can be 
obtained. 
 

Table 1: sample data for failures in M/E 
liners (operational hours until failure) 

 
1650 5723 17372 

 
1924 5741 

 
 

2063 7745 
 

 
2676 8822 

 
 

3361 16505 
 

 
5093 17089 

 
    To construct the histogram for the above data, we need to divide the range of the data into 

equally spaced class intervals covering all the data points. The range that the data will be 
divided is important, since too small range would not reveal the shape of the data, and too 
large a number would result in a flat appearing distribution. 
Sturges (15) showed that the best visual graphical representation achieved when determining 
the number of data range into k equally spaced classes where 
 

k=1+3.332log (n). 
Where n is the sample size. 
Thus, the following table and diagram can be produced. 
 

Table 2: Frequency table of Liners data 

Cell boundaries             number in cell 
0-3600 5 
3600-7200 3 
7200-10800 2 
10800-14400 0 
14400-18000 3 
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Figure 1: Histogram of measurements 

 
 

3.2 FREQUENCY DISTRIBUTION 
 
A frequency distribution is a graphical or numerical description of an entire set of data. The 
objective is to present the data information in a concise form and in such a way that, if 
possible, the general shape of the distribution is displayed.  
For the above numerical example the well known cumulative distribution function has the 
following form. 
 

 
Figure 2: Plot of cumulative distribution function 

Cumulative distribution gives the number of values in the data set that are at or below a given 
value. In our analysis the value of a population cumulative distribution function at a given 
time is the population fraction failing by that time. 
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3.3 DISTRIBUTIONS AND DENSITY FUNCTIONS 
 

The model corresponding to the frequency distributions is the probability density function 
(PDF), denoted by f(x), where x is any value of interest (in our case, the time between 
failures). 
In reliability approaches, the cumulative distribution function (CDF) is related to the PDF via 
the following relationship 

𝐹(𝑥) = � 𝑓(𝑦)
𝑡

0
𝑑𝑦,        0 ≤ 𝑡 < ∞ 

 
In reliability engineering we are concerned with the probability that an item will survive for a 
stated interval, meaning that there is no failure in the interval (0 to t). This is given by the 
reliability function R(x): 

𝑅(𝑥) = 1 − 𝑓(𝑥) = � 𝑓(𝑥)
∞

𝑥
𝑑𝑥 = 1 −� 𝑓(𝑥)

𝑥

−∞
𝑑𝑥 

 
The hazard function or hazard rate h(x) is the conditional probability of failure in the interval 
x to (x+dx), given that there was no failure by x: 

ℎ(𝑥) =
𝑓(𝑥)
𝑅(𝑥) =

𝑓(𝑥)
1 − 𝐹(𝑥) 

 
The cumulative hazard function H(x) is given by: 
 

𝐻(𝑥) = � ℎ(𝑥)
𝑥

−∞
𝑑𝑥 = �

𝑓(𝑥)
1 − 𝐹(𝑥)

𝑥

−∞
𝑑𝑥 

 

3.4 SAMPLE ESTIMATES OF POPULATION PARAMETERS 
 
In order to complement the visual impression given by the various diagrams, a number of 
parameters are defined: 

• The sample mean, often referred as the expected value: 

𝜇 = � 𝑡𝑓(𝑡)
∞

0
𝑑𝑡  

• The variance, is an estimator of the spread of the data: 

𝑉(𝑡) = 𝜎2 = � (𝑡 − 𝜇)2𝑓(𝑡)
∞

0
𝑑𝑡  

• The square root of the variance is called the standard deviation, also known as scale 
parameter. 

 
The mean, variance, and other sample estimates are often referred to as nonparametric 

point estimators. They are nonparametric because they may be evaluated without knowing 
the population distribution from which the sample was drawn, and they are point estimators 
because they yield a single number.  
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3.5 CONFIDENCE INTERVALS 
 

The uncertainty in the estimation of various probabilistic functions parameters can be 
approached through the so called confidence intervals. 

How well the sample statistic estimates the underlying population value is always an 
issue. A confidence interval addresses this issue because it provides a range of values which 
is likely to contain the population parameter of interest. Confidence intervals are constructed 
at a confidence level, such as 95%. It means that if the same population is sampled on 
numerous occasions and interval estimates are made on each occasion, the resulting intervals 
would bracket the true population parameter in approximately 95% of the cases. A 
confidence stated at a 1-a level can be thought of as the inverse of a significance level, a. 

For a given set of life data, if the parent distribution is known, then the point and 
interval estimates of the distribution parameters become the center of attention (16).  

For large sample sizes, point estimates, and confidence intervals for distribution 
parameters may be expressed in elementary terms; then the sampling distributions approach 
the normal form, enabling the confidence intervals to be expressed in terms of the standard 
normal CDF. 
 That property yields directly from the Central Limit Theorem: 
Provided that the sample size is sufficiently large (for reliability analysis, N>30 is considered 
adequate) the sampling distribution for mean becomes normal. 
 

 
 

Figure 3: Standard Normal Distribution 

 
In relative statistical references (17) can be found point estimates and associated confidence 
intervals for nearly all distributions. 
 
The following figure displays the survival plot, with the 95% confidence limits for a given set 
of life data. 
The use and importance of survival plots will be evinced in Chapter 5, where such figures 
will be used consecutively for the calculation of the number of units that have survived to a 
given time. Also the survival function leads to some important conclusion, i.e. the type and 
shape of the appropriate distribution that fits adequately well the real life data. 
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Figure 4: Survival plot with confidence limits 
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CHAPTER 4 GRAPHICAL ANALYSIS AND PROBABILITY PLOTTING 
 

4.1 PARAMETRIC ANALYSIS 
 

It is of great importance in reliability engineering to determine which distribution best 
fits a set of data and to derive interval estimates of the distribution parameters. Graphical 
estimation methods can greatly ease this task and probability plotting papers have been 
developed for this purpose. These are based upon the cumulative distribution function of each 
distribution. The axes of probability plotting papers are transformed in such a way that the 
true c.d.f. plots as a straight line. Therefore if the plotted data can be fitted by a straight line, 
the data fit the appropriate distribution (18). 

Now, recalling example 1, with the time to failure of the cylinder liners. 
 

Table 3: sample data for failures in 
M/E liners (working hours until failure) 

 
1650 5723 17372 

 
1924 5741 

 
 

2063 7745 
 

 
2676 8822 

 
 

3361 16505 
 

 
5093 17089 

 
     

In our effort to plot these data in proper plotting papers, the following diagrams were 
produced. 
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Figure 5: Individual distribution identification 

 
Because of the small sample size, we can’t export reliable conclusions for the best fitting 
distribution, but with a closer look we can take useful lessons. 
 
 

4.2 NON PARAMETRIC ANALYSIS 
 

In cases where no assumption is made for the form of the underlying distribution, 
there have been developed methods for measuring and comparing statistical variables. These 
methods called non parametric or distribution free statistical methods. They are slightly less 
powerful than parametric in terms of the accuracy of the inferences derived for assumed 
known distributions. The basic advantage is that they are simple to use and can be very useful 
in reliability studies, provided that the data which were being used are independently and 
identically distributed (i.i.d.) (19).  
 

4.2.1 Non parametric estimates 
 
For a given set of data the following sample measures may be derived. 
 

• The sample mean 
 

 
• The sample median 
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• The sample standard deviation 

 
• The sample variance 

𝑠2 =
1

𝑛 − 1
�(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 

 
• The sample coefficient of variation 

CV=�̅�/𝜎 
 

4.2.2 The empirical distribution and survival function 
 
For a set of n lifetimes data the empirical distribution function is defined as 
 

𝐹𝑛(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑠 ≤ 𝑡

𝑛  
 
The corresponding empirical survivor function is 
 

𝑅𝑛(𝑡) = 1 − 𝐹𝑛(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑠 > 𝑡

𝑛
 

 
Usually such observations are distinct; therefore Rn

 

 is a step function that decreases by 1/n 
just before each observed failure time. 

For the previously mentioned example we got the following figure: 
 

180001600014000120001000080006000400020000

100

80

60

40

20

0

Time t

F 
n 

(t
)

Empirical Distribution Function of LINERS

 
Figure 6: Empirical distribution function 
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Figure 7: Survivor function 

4.2.3 Kaplan Meier estimators 
 
The Kaplan- Meier estimators provide simple estimates of the reliability (survival function) 
or the Cumulative Distribution Function for complete or censored sample data without 
assuming a particular distribution model (20). 

 A general expression for the K-M estimates can be written. Assume we have n units 
on test and order the observed times for these n units from t1 to tn

Where j S and t

. Some of these are actual 
failure times and some are running times for units taken off test before they fail. Keep track 
of all the indices corresponding to actual failure times. Then the K-M estimator of R(t) are 
given by:  

𝑅�(𝑡) = �
𝑛𝑗−1
𝑛𝑗

𝑛

𝑗=0

 

j less than or equal to ti means we only form products for indices j that are in 
S and also correspond to times of failure less than or equal to ti

Once values for R (t

.  

i

 
F (t

) are calculated, the CDF estimates are  

i) = 1 – R (ti

A natural estimator of the cumulative failure rate Z(t) is deducted from R(t): 

) 

 

�̂�(𝑡) = −𝑙𝑛�
𝑛𝑗−1
𝑛𝑗

𝑛

𝑗=0
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If the points (t,Z(t)) are plotted, from the shape of the plot we can extract a number of 
conclusions. 

a) A convex Z(t) indicates an increasing failure rate 
b) A concave Z(t) indicates a decreasing failure rate. 

 
The cumulative failure rate diagram is also referred as Nelson plot since it was suggested by 
Nelson (17).  
 

4.2.4 Boxplots 
 
In non parametric analysis, boxplot is a very useful tool. 
Boxplots are an excellent tool for conveying location and variation information in data sets, 
particularly for detecting and illustrating location and variation changes between different 
groups of data.  
Boxplots are formed by vertical axis, which is the response variable and horizontal axis, 
which is the factor of interest. 
To produce a boxplot the following actions are performed. 

• Calculate the median and the quartiles (the lower quartile is the 25th percentile and 
the upper quartile is the 75th percentile).  

• Plot a symbol at the median (or draw a line) and draw a box (hence the name box 
plot) between the lower and upper quartiles; this box represents the middle 50% of the 
data- the "body" of the data. 

• Draw a line from the lower quartile to the minimum point and another line from the 
upper quartile to the maximum point. Typically a symbol is drawn at these minimum 
and maximum points, although this is optional. 

Thus the boxplot identifies the middle 50% of the data, the median, and the extreme points.  
 
There is a useful variation of the boxplot that more specifically identifies outliers. To create 
this variation (19) 

• Calculate the median and the lower and upper quartiles.  
• Plot a symbol at the median and draw a box between the lower and upper quartiles. 
• Calculate the interquartile range (the difference between the upper and lower quartile) 

and call it IQ. 
• Calculate the following points (also called fences):  

 
L1 = lower quartile - 1.5*IQ 
L2 = lower quartile - 3.0*IQ 
U1 = upper quartile + 1.5*IQ 
U2 = upper quartile + 3.0*IQ 

 
The line from the lower quartile to the minimum is now drawn from the lower quartile to the 
smallest point that is greater than L1. Likewise, the line from the upper quartile to the 
maximum is now drawn to the largest point smaller than U1. 
 
Potential outliers points are indicated with an asterisk in the boxplot. It is obvious that none 
of our sample data is an outlier as it is clearly indicated in Figure 8. However, it must be 
noticed that an outlier point, as defined in next part, it is not necessarily ignored. Careful 
investigation must be carried out to determine the further use of outlier points. 
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Figure 8: Boxplot for liners 

 

4.3 OUTLIERS 
 
An outlier is an observation that lies an abnormal distance from other values in a random 
sample from a population. 
‘’ An outlying observation, or outlier, is one that appears to deviate markedly from other 
members of the sample in which it occurs.’’ (22) 
A point beyond an inner fence on either side is considered a mild outlier. A point beyond an 
outer fence is considered an extreme outlier. 
Outliers should be investigated carefully. Often they contain valuable information about the 
process under investigation or the data gathering and recording process. Before considering 
the possible elimination of these points from the data, one should try to understand why they 
appeared and whether it is likely that similar values will continue to appear.  
 

4.4 GOODNESS OF FIT  
 
In analyzing statistical data we need to determine how well the data fit an assumed 
distribution. The goodness of fit can be tested statistically to provide a level of s-significance 
that the null hypothesis (that the data indeed fit well an assumed distribution) is rejected. 
Goodness of fit testing can be considered an extension of s-significance testing in which the 
sample cdf is compared with the real cdf. 
A number of methods are available for testing how closely a set of data fits an assumed 
distribution. Hereunder are presented the methods that are used in this thesis. 
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 4.4.1 The x2

 
 goodness of fit 

The chi-square test is used to test if a sample of data came from a population with a specific 
distribution.  

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any 
univariate distribution for which you can calculate the cumulative distribution function. The 
chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes). This is 
actually not a restriction since for non-binned data you can simply calculate a histogram or 
frequency table before generating the chi-square test. However, the value of the chi-square 
test statistic is dependent on how the data is binned. Another disadvantage of the chi-square 
test is that it requires a sufficient sample size in order for the chi-square approximation to be 
valid.  

The chi-square test is defined for the hypothesis:  
H0
H

 : The data follow a specified distribution. 
1

Test statistic: For the chi-square goodness-of-fit computation, the data are divided into k bins 
and the test statistic is defined as  

𝑥2 = �(𝑂𝑖 − 𝐸𝑖)2/𝐸𝑖

𝑘

𝑖=1

 

 : The data do not follow the specified distribution 

 
Where 𝑂𝑖 is the observed frequency for bin i and 𝐸𝑖 is the expected frequency for bin i. The 
expected frequency is calculated by  

Ei=N(F(Yu)-F(Yl
 

) 

where F is the cumulative Distribution function for the distribution being tested, Yu is the 
upper limit for class i, Yl
This test is sensitive to the choice of bins. There is no optimal choice for the bin width (since 
the optimal bin width depends on the distribution). Most reasonable choices should produce 
similar, but not identical, results. 

 is the lower limit for class i, and N is the sample size.  

The test statistic follows, approximately, a chi-square distribution with (k - c) degrees of 
freedom where k is the number of non-empty cells and c = the number of estimated 
parameters (including location and scale parameters and shape parameters) for the 
distribution + 1. For example, for a 3-parameter Weibull distribution, c = 4. 

Therefore, the hypothesis that the data are from a population with the specified distribution 
is rejected if  

x2>x2

where x

(a,k-c) 

2
(a,k-c)

In the above formulas for the critical regions, the convention that is followed is that x

  is the chi-square percent point function with k - c degrees of freedom and a 
significance level of a.  

2 is the 
upper critical value from the chi-square distribution and x2

1-a

 

 is the lower critical value from 
the chi-square distribution. 

 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF�
http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF�
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm�
http://www.itl.nist.gov/div898/handbook/eda/section3/eda363.htm�
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4.4.2 The Kolmogorov- Smirnov test 
 
Another goodness of fit test commonly used in statistics and reliability is the Kolmogorov- 
Smirnov (K-S) test. It is rather simpler to use than the x2

The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution 
function of the sample and the cumulative distribution function of the reference distribution, 
or between the empirical distribution functions of two samples. The null distribution of this 
statistic is calculated under the null hypothesis that the samples are drawn from the same 
distribution (in the two-sample case) or that the sample is drawn from the reference 
distribution (in the one-sample case). In each case, the distributions considered under the null 
hypothesis are continuous distributions but are otherwise unrestricted. 

 test and can give better results with 
a relatively small number of life data. 

The two-sample KS test is one of the most useful and general nonparametric methods for 
comparing two samples, as it is sensitive to differences in both location and shape of the 
empirical cumulative distribution functions of the two samples. 

 
The Kolmogorov-Smirnov test is defined by:  
H0
H

 : The data follow a specified distribution. 
a

Test statistic:  the Kolmogorov-Smirnov test statistic is defined as  
 : The data do not follow the specified distribution 

 

𝐷 = max
1≤𝑖≤𝑁

(𝐹(𝑌𝑖) −
𝑖 − 1
𝑁 ,

𝑖
𝑁 − 𝐹(𝑌𝑖)) 

 
where F is the theoretical cumulative distribution of the distribution being tested which must 
be a continuous distribution (i.e., no discrete distributions such as the binomial or Poisson), 
and it must be fully specified (i.e., the location, scale, and shape parameters cannot be 
estimated from the data). 
The hypothesis regarding the distributional form is rejected if the test statistic, D, is greater 
than the critical value obtained from a table. There are several variations of these tables in the 
literature that use somewhat different scalings for the K-S test statistic and critical regions. 
These alternative formulations should be equivalent, but it is necessary to ensure that the test 
statistic is calculated in a way that is consistent with how the critical values were tabulated. 
 
 

4.4.3 The Anderson- Darling test 
 
The Anderson-Darling test is used to test if a sample of data came from a population with a 
specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and gives 
more weight to the tails than does the K-S test. The K-S test is distribution free in the sense 
that the critical values do not depend on the specific distribution being tested. The Anderson-
Darling test makes use of the specific distribution in calculating critical values. This has the 
advantage of allowing a more sensitive test and the disadvantage that critical values must be 
calculated for each distribution. Currently, tables of critical values are available for the 
normal, lognormal, exponential, Weibull, extreme value type I, and logistic distributions. 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm�
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm�
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The Anderson-Darling test is defined by:  
H0
H

 : The data follow a specified distribution. 
a

Test statistic:  the Anderson-Darling test statistic is defined as  
 : The data do not follow the specified distribution 

 
𝐴2 = −𝑁 − 𝑆,  

𝑆 = �
2𝑖 − 1
𝑁 (𝑙𝑛

𝑁

𝑖=1

𝐹(𝑌𝑖) + ln (1 − 𝐹(𝑌𝑁+1−𝑖)) 

 
where F is the cumulative distribution function of the specified distribution. Note that the Yi

The critical values for the Anderson-Darling test are dependent on the specific distribution 
that is being tested. Tabulated values and formulas have been published (23) for a few 
specific distributions (normal, lognormal, exponential, Weibull, logistic, extreme value type 
1). The test is a one-sided test and the hypothesis that the distribution is of a specific form is 
rejected if the test statistic, A, is greater than the critical value. 

 
are the ordered data.  

 

4.4.4 P- value 
 

The so called p- value determines the appropriateness of rejecting the null hypothesis in a 
hypothesis test.  P-values range from 0 to 1.  The smaller the p- value, the smaller the 
probability that rejecting the null hypothesis is a mistake. Before proceeding with the 
reliability analyses it is of great importance to determine the s-significance level. A 
commonly used value is 0.05. If the p- value of a test statistic is less than the s- level, the null 
hypothesis may be rejected. 

Because of their indispensable role in hypothesis testing, p- values are used in many areas of 
statistics including basic statistics, linear models, reliability, and multivariate analysis among 
many others. The key is to understand what the null and alternate hypotheses represent in 
each test and then use the p-value to aid in the critical decision to reject the null hypothesis. 

 

4.4.5 Examples of goodness of fit tests 
 
 
For example, for the above mentioned set of life data, the goodness of fit test gives the 
following graphs. The assumed hypothesis is that the data following a normal distribution. 

This test compares the empirical cumulative distribution function of the sample data with the 
distribution expected if the data were normal. If this observed difference is sufficiently large, 
the test will reject the null hypothesis of population normality. 

If the p-value of this test is less than the chosen s-level, we can reject the null hypothesis and 
conclude that the population is non-normal. 
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Figure 9:  Kolmogorov- Smirnov test 

 
The respective graph for Anderson-Darling test, concluding more details for the calculated 
parameters is the following: 
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Figure 1.10: Anderson- Darling test 

The graphical summary includes four graphs: histogram of data with an overlaid normal 
curve, boxplot, 95% confidence intervals for µ, and 95% confidence intervals for the median.  
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CHAPTER 5 EXPERIMENTAL RESULTS 
 

The preceding theoretical analysis, was nothing more than an introduction, so that the below 
experimental results to become deeply understandable.  

It is well understood that all vessels in order to avoid unexpected repairs and failures follow a 
preventive maintenance plan for all equipment. The time to inspection depends on each 
manufacturer.  

 PROBABILITY PLOTTING 

The field data that where collected, regarding failures of onboard equipments in marine 
vessels can be initially analyzed through data plots. These data were divided into three 
categories, failures in Main Engine, failures in Diesel Generators and failures in Auxiliary 
equipment. 

Failures in Main Engine concern parts which, according to the manufacturer, must be 
inspected so that reliable operation is ensured, every 4000 and 8000 working hours. 
Therefore a logical approach is to further divide Main Engine failures in two categories, i.e. 
failures to parts in which the manufacturer suggests 4000 and 8000 working hours between 
inspections.  

Following the same approach for the auxiliary equipment, these were divided into three 
subcategories, parts with inter-inspection time of 4000, 6000 and 8000 working hours. 

On this basis the following tables can be obtained. 

 

Table 4: M/E 4000h 
540 2553 4146 
564 3088 4212 
688 3098 4237 

1092 3725 4256 
1487 3860 4317 
1634 3970 6374 
2076 4043 9548 
2134 4102 10042 
2447 4137 

  

 

Table 5: M/E 8000h 

357 2704 4650 6491 
746 3022 5190 6565 
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Table 6: Diesel Generators (inter 
inspection time of 4000hours)  
55 2100 4238 
183 2527 5062 
629 2546 5609 
844 2971 5849 
1100 2987 6058 
1123 3121 6157 
1300 3150 6485 
1397 3180 6593 
1512 3401 7690 
1751 4128 

  

 

Table 7: AUX 4000h 

 552 1428 2650 
 651 1463 2800 
 1031 1892 3425 
 1300 2480 4256 
 1400 2490 

  
     
 
 

   Table 8: AUX 6000h 

 196 1950 3723 
 1500 2540 3840 
 1605 3340 3856 
 1612 3700 5380 
 1700 3720 

  
    

1650 3073 5382 6608 
1924 3095 5389 6790 
1935 3103 5460 6899 
2063 3300 5723 6947 
2112 3348 5726 7549 
2132 3473 5740 7745 
2161 4436 5741 8330 
2676 4465 5790 8864 
2685 4480 5887 131399 
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    Table 9: AUX 8000h 
345 2630 5520 8148 
350 3577 5835 8235 
400 4000 5921 8542 
475 4172 5922 9990 

1444 4367 6334 15544 
1461 4480 6650 19624 
1462 5312 7800 

 2250 5360 7900 
 2300 5400 8020 
 For each one of the grouped data, a statistical analysis, both non parametric and parametric, 

can be applied, so that the basic descriptive statistics are interpreted and understood and it is 
concluded whether these follow a specific distribution.  

These calculations and diagrams will be repeated for all groups.  

5.1 M/E 4000 h 

5.1.1 Outlier points 
This analysis will begin by checking the life data for possible outlier point. It is reminded that 
an outlier is not necessary a false measure. Often they contain valuable information about the 
process under investigation of the data gathering and recording process. Before considering 
the possible elimination of these points from the data, one should try to understand why they 
appeared and whether it is likely similar values will continue to appear. 

 

Figure 10: Boxplot of M/E 4000 

In the above graph basic parameters are the following:  
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Table 10: Basic parameters 

Median Q1 Q3 IQR 
lower outer 
fence 

upper outer 
fence 

3725 1744.5 4230.75 2486.25 540 6374 
 

Two points are indicated as possible outliers. These correspond to failures in 9548 and 10042 
working hours. Since there are two points in this area and after searching in the failure 
database, it is established that both concern failures of exhaust valves.  It was decided to keep 
these points and continue with the analysis. 

Hereby Q1, Q3  are the 25% and 75% percentile respectively. It is self understood that the 
median coincide with the 50% percentile of the under analysis data. 

 

5.1.2 Basic statistics calculations 
 

Subject data can underlie under a few basic statistics calculations such as mean, Standard 
Error of mean, standard deviation variance, coefficient of variation first quartile, etc. 

Table 11: Basic statistics calculation 

Mean 

Standard 
error of 
the 
Mean 

Standard 
Deviation Variance 

Coefficient 
of 
Variation Q1 Median Q3 

3548,6 496,62 2432,9 5919158, 68,56 1744,50 3725,00 4230,7 

        
IQR Sum Minimum Maximum Range 

Sum of 
Squares Skewness Kurtosis 

2486,25 85167,00 540,00 10042,00 9502,00 438366393,00 1,31 2,12 
 

A graphical summary of the above can be plotted which provides through the histogram an 
approach of the appropriate distribution that describes well our data. 

Also it is useful for better control and inspection to plot statistical parameters and confidence 
intervals.  
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Figure 11: Graphical summary for M/E 4000 

Additionally we can see 95% confidence intervals for the mean, median and standard 
deviation. 

5.1.3 Histogram 
 

 

Figure 12: Histogram of M/E 4000 
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A histogram corresponds to the probability density function of a theoretical distribution and it 
is not as informative as a probability plot. 

 

5.1.4 Cumulative distribution function 
 

Next step is to calculate the empirical cumulative distribution function. 

This function is associated with the empirical measure of our sample. As can be seen clearly 
from the plot, it is a step function that jumps for 1/n at each of the n data points.  

The empirical cdf estimates the true underlying cdf of the points in the sample. The 
Kolmogorov Smirnov test, which was analyzed in Ch. 4.4.2 can be used to measure the 
discrepancy between the empirical distribution and the hypothesized distribution.  

 

 

Figure 13: Empirical CDF of M/E 4000 

 

From the above graph a number of useful conclusions can be extracted, since it is a consistent 
unbiased estimator of the population cdf. 

For example in 4000 hours the 40% approximately of the Main Engine parts under 
consideration, will have a failure. 
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To evaluate further our data, a probability plot is necessary. Probability plot includes: 

• An Anderson- Darling statistic and p- value test to verify whether the assumed 
distribution fits data well. 

• Confidence intervals for estimated percentiles. 

To proceed in these steps, a theoretical distribution must be fitted in the data. Then the 
theoretical curve estimates the population cdf. 

 

5.1.5 Individual distribution identification 
 

To decide which distribution follows well the failure data, we follow the method described in 
previous chapter. Life data are plotted in special plotting paper for each assumed distribution. 
The distribution plotting paper, for which data are plotted as a straight line, can be considered 
that fit the data.  

Using the statistical software Minitab, the following graphs were obtained. 
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Figure 14: Distribution identification for M/E 4000 

We have already presented an example with the use of such plots. 

Beyond the good eyeball fit of the data to a straight line, more reliable results are provided 
through various statistical tests. 
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Figure 15: Distribution identification for M/E 4000 

 

100000-10000

90

50

10

1

M/E 4000  h

P
e

rc
e

n
t

150001000050000

99

90

50

10

M/E 4000  h

P
e

rc
e

n
t

100001000100

99

90

50

10

1

M/E 4000  h

P
e

rc
e

n
t

100001000

99

90

50

10

1

M/E 4000  h - T hreshold

P
e

rc
e

n
t

Gamma
A D = 0,631 
P-V alue = 0,110

3-Parameter Gamma
A D = 0,656
P-V alue = *

Goodness of F it Test

Smallest Extreme V alue
A D = 2,165 
P-V alue < 0,010

Largest Extreme V alue
A D = 0,609 
P-V alue = 0,103

Probability Plot for M/E 4000 h
Smallest Extreme V alue - 95% C I Largest Extreme V alue - 95% C I

Gamma - 95% C I 3-Parameter Gamma - 95% C I

 

Figure 16: Distribution identification for M/E 4000 
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Figure 17: Distribution identification for M/E 4000 

It is necessary to compare various goodness of fit test to decide which distribution is 
appropriate for this set of data. 

Table 12: Comparison of goodness of fit tests for M/E 4000 

Distribution                AD       P  LRT P 
Normal                   1,098   0,006 
Box-Cox Transformation   0,608   0,101 
Lognormal                0,868   0,022 
3-Parameter Lognormal    0,621       *  0,253 
Exponential              1,626   0,021 
2-Parameter Exponential  1,192   0,039  0,015 
Weibull                  0,618   0,097 
3-Parameter Weibull      0,997   0,014  0,219 
Smallest Extreme Value   2,165  <0,010 
Largest Extreme Value    0,625   0,103 
Gamma                    0,631   0,110 
3-Parameter Gamma        0,656       *  0,185 
Logistic                 0,769   0,024 
Loglogistic              0,775   0,023 
3-Parameter Loglogistic  0,631       *  0,367 
Johnson Transformation   0,581   0,118 

 

The Box-Cox transformations uses a lambda of 0.05 and the Johnson transformation function 
is -0,748045 + 1,29142 * Asinh( ( X - 1710,31 ) / 2304,44 ) 
Minitab also includes a p- value for Likelihood Ratio Test (LRT), which tests whether a 2-
parameter distribution would fit the data equally well compared to its 3-parameter 
counterpart. 
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Since it is preferable to use normal models instead of non-normal, previous transformations 
will be ignored. 

Checking the Anderson Darling and p-value test, it is concluded that the Weibull distribution 
fits adequately well our data. In order to define subject distribution, it is necessary to estimate 
its parameters. 

According to Nelson (17), the scale parameter α of a Weibull distribution is the 63rd 
percentile. Calculating the 63rd

The slope of the fitted line in a Weibull plot corresponds to the shape parameter β. Using 
Weibull plot, shape parameter is calculated  as β=1.55328. 

 percentile, the scale parameter for this distribution is α= 
3955.87. 

Summarizing, the fitted distribution for the first group of failures, is fully defined. 

Weibull distribution of times to failure: 

• CDF: 𝐹(𝑥) = 1 − exp [−�𝑥
𝛼
�
𝛽

], 0 ≤ 𝑥 ≤ ∞ 

 

• PDF:f(x) = β
α

 (x
α

)β−1 exp �− �𝑥
𝛼
�
𝛽
� , 0 ≤ 𝑥 ≤ ∞  

 
Where  α=3955.87 
 β=1,55328. 

100001000100

99

90

80
70
60
50
40
30

20

10

5

3

2

1

hours

Pe
rc

en
t

Probability Plot for M/E 4000 h
Weibull - 95% CI

 

Figure 18: Plot of Weibull fit to the data 
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5.1.6 Reliability concepts 
 

To understand clearly issues as reliability, failure rate, and survival function, the next 
important step is to extract relevant plots, given that the Weibull distribution fits adequately 
well the life data. 

In addition to these plots, it is also of great assistance to extract tabulated values for 
possibilities of failures, etc in regards to time. 

According to earlier symbols, it is clear that F(t2)- F(t1) is the probability that a part survives 
to time t1 but fails before t2

Since it is useful to focus attention on the unfailed units, the reliability function or survival 
function is: R (t)= 1- F(t) 

 . It is also the fraction of the entire population that fails in that 
interval. 
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Figure 19: Plot of reliability function with 95% confidence intervals 

 

Table 13: table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,888590645 0,75141978 0,952353538 
2000 0,707046992 0,52884325 0,828089411 
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3000 0,521649861 0,34921057 0,668630713 
4000 0,361539855 0,21244054 0,512642357 
5000 0,237202679 0,11670455 0,381456047 
6000 0,148100144 0,05706026 0,27977857 
7000 0,088340731 0,02464218 0,203929802 
8000 0,05049672 0,00937149 0,148225601 
9000 0,027729244 0,00313563 0,107559004 

10000 0,014658238 0,00092293 0,077943904 
12000 0,003678923 5,4448E-05 0,040765882 
13000 0,001751668 1,0915E-05 0,029419614 
14000 0,000807534 1,9256E-06 0,021200586 
15000 0,000360832 2,9891E-07 0,015255503 

 

The table above shows the percentage of the items under investigation that will survive at a 
given time. The survival curve is surrounded by two outer lines - the approximate 95.0% 
confidence interval for the curve, which provides a range of reasonable values for the "true" 
survival function at each point. 

The conditional survival probabilities gives the reliability for a new mission of t duration, 
having already accumulated T hours of operation up to the start of this new mission, and the 
units are checked out to assure that they will start the next mission successfully. It is called 
conditional because you can calculate the reliability of a new mission based on the fact that 
the unit or units already accumulated T hours of operation successfully. 

For the Weibull distributed category M/E 4000 the conditional probabilities for a range of 
1000 to 10000 hours is plotted in the following graph. 

 

Figure 20: Conditional probabilities 

For comparison the survival plot (as in Figure 24: Survival plot for M/E 4000 can be seen). 
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To understand deeply this figure, for equipment that has survived 4000 hours, the conditional 
probabilities to survive t hours are: 

Table 14: Conditional probabilities for M/E 4000 

t P 
1000 0,371234 
2000 0,273451 
3000 0,190452 
4000 0,125061 
5000 0,077241 
6000 0,044782 
8000 0,012373 

10000 0,002611 
 

For example, given that equipment has survived 4000 hours, the probability to survive 
additionally 2000 hours is 0.273 or 27.3%. 

To visualize this example, a pie chart can be drawn which introduces the conditional 
probabilities, given that equipment has already survived for 4000 operational hours. Clearly 
can be seen the reduction of survival probabilities as the additional requested time to failure 
is increasing. 

 

 

Figure 21: Conditional probabilities for M/E 4000 at 4000 hours 
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5.1.7 Failure rate plot 
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Figure 22: Hazard plot for M/E 4000 

 

It is already defined in a previous chapter but it is also reminded here that the failure rate plot 
(hazard plot) is of great importance. The units of this rate are failures per unit time. It is the 
failure rate of the survivors to time t in the very next instant following t. It is not a probability 
and it can have values greater than 1. 

In cases with constant failure plot, we can have a quick calculation of the MTTF (Mean Time 
To Failure) since it is the reciprocal of the assumed constant failure rate. However in Weibull 
distribution the failure rate is a function of time. As it was written in previous chapter, the 
concave shape of the curve indicates a decreasing failure rate. 

 

5.1.8 Cumulative failure plot 
 

We can integrate the hazard function to obtain the cumulative failure function. Each plot 
point represents the cumulative percentage of units failing at time t. 
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Figure 23: Cumulative failure plot for M/E 4000 

 

Table 15: table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,111409355 0,0476465 0,248580215 
2000 0,292953008 0,1719106 0,471156745 
3000 0,478350139 0,3313693 0,650789428 
4000 0,638460145 0,4873576 0,787559461 
5000 0,762797321 0,618544 0,883295446 
6000 0,851899856 0,7202214 0,942939741 
7000 0,911659269 0,7960702 0,975357825 
8000 0,94950328 0,8517744 0,990628511 
9000 0,972270756 0,892441 0,99686437 

10000 0,985341762 0,9220561 0,999077074 
12000 0,996321077 0,9592341 0,999945552 
13000 0,998248332 0,9705804 0,999989085 
14000 0,999192466 0,9787994 0,999998074 
15000 0,999639168 0,9847445 0,999999701 

 

The cumulative failure curve is surrounded by two outer lines - the approximate 95.0% 
confidence interval for the curve, which provides reasonable values for the "true" cumulative 
failure function. 
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5.1.9 Non parametric analysis 
To use nonparametric methods, one does not assume a parametric form for a distribution. 
Nonparametric comparisons are less sensitive than parametric ones and are usually used in 
engineering applications because they are often adequate and yield more information for 
small samples. 

Table 16: Non parametric estimates 

              Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
3548,63       496,620  2575,27  4521,98 
 

Reliability plots can be produced also with a nonparametric approach. 

A distribution-free estimate of the reliability at age y is the sample fraction that survive an 
age y. that is, if X of the n times to failure are beyond age y, then the estimate of reliability is: 

R(y)=X/n 
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Figure 24: Survival plot for M/E 4000 
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Table 17: kaplan meier estimates for survival 
probabilities 

  
 

95% confidence 
intervals 

time 
survival 
probability lower upper 

540 0,95833 0,878388 1,000000 
564 0,91667 0,806092 1,000000 
688 0,87500 0,742687 1,000000 

1092 0,83333 0,684234 0,982433 
1487 0,79167 0,629189 0,954144 
1634 0,75000 0,576762 0,923238 
2076 0,70833 0,526487 0,890180 
2134 0,66667 0,478069 0,855264 
2447 0,62500 0,431314 0,818686 
2553 0,58333 0,386093 0,780573 
3088 0,54167 0,342324 0,741009 
3725 0,45833 0,258991 0,657676 
4043 0,41667 0,219427 0,613907 
4102 0,37500 0,181314 0,568686 
4137 0,33333 0,144736 0,521931 
4146 0,29167 0,109820 0,473513 
4212 0,25000 0,076762 0,423238 
4237 0,20833 0,045856 0,370811 
4256 0,16667 0,017567 0,315766 
4317 0,12500 0,000000 0,257313 
6374 0,08333 0,000000 0,193908 
9548 0,04167 0,000000 0,121612 

10042 0,00000 0,000000 0,000000 
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Figure 25: Cumulative failure plot for M/E 4000 
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Figure 26: Hazard plot for M/E 4000 
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Table 18: cumulative failure probabilities and hazard rates 

  
 

95% confidence 
intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

540 0,04167 0,000000 0,121612 0,04167 
564 0,08333 0,000000 0,193908 0,04348 
688 0,12500 0,000000 0,257313 0,04545 

1092 0,16667 0,017567 0,315766 0,04762 
1487 0,20833 0,045856 0,370811 0,05000 
1634 0,25000 0,076762 0,423238 0,05263 
2076 0,29167 0,109820 0,473513 0,05556 
2134 0,33333 0,144736 0,521931 0,05882 
2447 0,37500 0,181314 0,568686 0,06250 
2553 0,41667 0,219427 0,613907 0,06667 
3088 0,45833 0,258991 0,657676 0,07143 
3725 0,54167 0,342324 0,741009 0,08333 
4043 0,58333 0,386093 0,780573 0,09091 
4102 0,62500 0,431314 0,818686 0,10000 
4137 0,66667 0,478069 0,855264 0,11111 
4146 0,70833 0,526487 0,890180 0,12500 
4212 0,75000 0,576762 0,923238 0,14286 
4237 0,79167 0,629189 0,954144 0,16667 
4256 0,83333 0,684234 0,982433 0,20000 
4317 0,87500 0,742687 1,000000 0,25000 
6374 0,91667 0,806092 1,000000 0,33333 
9548 0,95833 0,878388 1,000000 0,50000 

10042 1,00000 1,000000 1,000000 1,00000 
 

Another advantage of the non parametric method is that we can approach the Mean Residual 
Life of the machinery under investigation (24). 

MRL of an item at age t, is the expected remaining life of the item. It is sometimes of interest 
to study the function 

g(t)=MRL(t)/MTTF 

when an item has survived up to time t, then g(t) gives the MRL(t) as a percentage of the 
initial MTTF. 

It is another approach/ expression of the failure rate function, as can be seen in the 
application of  this function on the real life data. 
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Figure 27: MRL/MTTF for M/E 4000h 

In full compliance with the failure rate function, at every instant of time the remaining life of 
the items is decreasing. For example in 3000 hours is 35% of mean residual life at time 0. 

5.2 M/E 8000 hours 
 

Following exactly the same procedure, the data that concerns failures of Main Engine that the 
manufacturer suggests 8000 working hours between inspections, can be analyzed. 
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Figure 28: Boxplot of M/E 8000h 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 1000 2000 3000 4000 5000

mrl/mttf

mrl/mttf



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

56 
 

Regarding this group of data, we can a priori exclude the measurement of 131399 since it is 
obvious an outlier point. It regards time to failure of one cylinder liner.  

Table 19: Basic parameters 

Median Q1 Q3 IQR 
lower outer 
fence 

upper outer 
fence 

4480 2685 5887 3202 357 8864 
 

5.2.2 Basic statistics calculations  
 

Some basic statistics calculations such as mean, Standard Error of mean, standard deviation 
variance, coefficient of variation first quartile, etc can be found in table 5.14 

Table 20: Basic statistics calculation 

Mean 

Standard 
error of 
Mean 

Standard 
Deviation Variance 

Coefficient 
of Variation Q1 Median Q3 

4474,55 326,86 2143,4 4594262,2 47,9024505 2685 4480 5887 

IQR Sum Minimum Maximum Range 
Sum of 
Squares Skewness Kurtosis 

3202 192406 357 8864 8507 1,05E+09 0,07319 -0,9168 
A graphical summary of the above can be found in figure 5.13 
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Figure 29: Graphical summary for M/E 8000h 
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As it was explained, the software package Minitab, that was used to produce these plots, 
assumes that the under examination data follows normal distribution and based on this 
assumption are calculated parameters as the mean, median, etc. As we proceed with our 
analysis, the proper distribution that fits adequately well our model will be used; therefore a 
possible variance between subject parameters is expected. 

 

5.2.3 Histogram 
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Figure 30: Histogram of M/E 8000h 

 

5.2.4 Cumulative distribution function 
 

As described in previous chapter, the empirical cdf is an estimator of the cumulative 
distribution function. To further define the proper distribution which fits the data well, these 
have to be plotted in special plotting paper. 

Therefore an indication of the percentage of items that have failed until time t can be obtained 
from Figure 31. 



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

58 
 

9000800070006000500040003000200010000

100

80

60

40

20

0

hours

Pe
rc

en
t

Empirical CDF of M/E 8000 h

 

Figure 31: Empirical CDF of M/E 8000h 

5.2.5 Individual distribution identification 
 

Using the statistical software Minitab, the following graphs were obtained. 
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Figure 32: Distribution identification for M/E 8000h 
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Figure 33: Distribution identification for M/E 8000h 
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Figure 34: Distribution identification for M/E 8000h 
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Figure 35: Distribution identification for M/E 8000h 

It is necessary to compare various goodness of fit test to decide which distribution is 
appropriate for this set of data. 

Table 21: Comparison of goodness of fit tests for M/E 8000h 

Goodness of Fit Test 
 
Distribution                AD       P  LRT P 
Normal                   0,593   0,117 
Box-Cox Transformation   0,593   0,117 
Lognormal                1,293  <0,005 
3-Parameter Lognormal    0,627       *  0,000 
Exponential              4,935  <0,003 
2-Parameter Exponential  4,530  <0,010  0,024 
Weibull                  0,605   0,112 
3-Parameter Weibull      0,601   0,123  0,437 
Smallest Extreme Value   0,737   0,049 
Largest Extreme Value    0,716   0,058 
Gamma                    0,804   0,041 
3-Parameter Gamma        0,631       *  0,062 
Logistic                 0,720   0,035 
Loglogistic              0,985   0,006 
3-Parameter Loglogistic  0,728       *  0,019 

 

Checking the Anderson Darling and p-value test, it is concluded that the normal distribution 
fits adequately well our data. 

In order to define subject distribution it is necessary to estimate its parameters. 

For the Normal distribution we need the mean and a standard deviation. 
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For this distribution:  

Mean = 4474.55 

Standard deviation = 2118.35 

Summarizing, the fitted distribution for the first group of failures, is fully defined. 

Normal distribution of times to failure: 

• CDF: 𝐹(𝑥) = 1
2

[1 + erf � 𝑥−𝜇
√2𝜎2

�], 𝑥 ∈ 𝑅 

 

• PDF:f(x)= 1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2

2𝜎2 , 𝑥 ∈ 𝑅 

 
Where μ=4474,55 
 σ=2118,35 

where erf is a function sometimes called the error function which can’t be expressed in terms 
of finite additions, subtractions, multiplications, and root extractions, and so must be either 
computed numerically or otherwise approximated. 
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Figure 36: Plot of Normal fit to the data 

As it was described earlier, because of the statistical nature of the process, it is necessary to 
use statistical intervals, which gives the range of plausible values for the process parameters 
based on the data and the underlying assumptions about the process. However, the intervals 
cannot always be guaranteed to include the true process parameters and still be narrow 
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enough to be useful. Instead the intervals have a probabilistic interpretation that guarantees 
coverage of the true process parameters a specified proportion of the time. In order for these 
intervals to truly have their specified probabilistic interpretations, the form of the distribution 
of the random errors must be known. Although the form of the probability distribution must 
be known, the parameters of the distribution can be estimated from the data. 

 

5.2.6 Reliability concepts 
 

Relevant plots for this group of data can be produced, similarly to previous chapter. 
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Figure 37: Plot of reliability function with 95% confidence intervals 

 

Table 22: table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,94951996 0,881495738 0,982044631 
2000 0,878627271 0,782445855 0,940125005 
3000 0,756812863 0,641679284 0,84831259 
4000 0,588629998 0,468676873 0,700778455 
5000 0,402050703 0,290646555 0,522094711 
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6000 0,235729394 0,1455946 0,35023035 
7000 0,116596822 0,05669969 0,21149406 
8000 0,048032508 0,01675938 0,114553816 
9000 0,016327395 0,003705657 0,055375121 

10000 0,004548767 0,000607245 0,023779993 
12000 0,000190797 6,48481E-06 0,003031298 
13000 2,85408E-05 4,19365E-07 0,000895117 
14000 3,452E-06 1,97722E-08 0,000232299 
15000 3,37031E-07 6,78394E-10 5,29068E-05 

 

The table above shows the percentage of the items under investigation that will survive at a 
given time. The survival curve is surrounded by two outer lines - the approximate 95.0% 
confidence interval for the curve, which provides a range of reasonable values for the "true" 
survival function at each point. 

The conditional survival probabilities gives the reliability for a new mission of t duration, 
having already accumulated T hours of operation up to the start of this new mission, and the 
units are checked out to assure that they will start the next mission successfully. It is called 
conditional because you can calculate the reliability of a new mission based on the fact that 
the unit or units already accumulated T hours of operation successfully. 

For the Normal distributed category M/E 8000 the conditional probabilities for a range of 
1000 to 10000 hours is plotted in the following graph. 

 

Figure 38: Conditional probabilities for M/E 8000h 
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To understand deeply this figure, for equipment that has survived 4000 hours, the conditional 
probabilities to survive t hours are: 

 

Table 23:Conditional probabilities at 4000 hours 

t P 
1000 0,402049087 
2000 0,235727912 
3000 0,116595754 
4000 0,048031899 
5000 0,016327121 
6000 0,004548669 
8000 0,000190791 

10000 3,45184E-06 
 

To visualize this table the following graph can be obtained. 

 

Figure 39: conditional probabilities at 4000 hours  
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5.2.7 Failure rate plot 
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Figure 40: Hazard plot for M/E 8000h 

It is reminded that regarding the shape of the failure rate curve is that it determines the 
frequency of failures. Nelson (25) suggested that if the failure rate curve is convex, then there 
will be an increasing failure rate life distribution. Correspondingly if the failure rate curve is 
concave, then there will be a decreasing failure rate life distribution. 

5.2.8 Cumulative failure plot 
 

The following table, indicates the percentage of items that will fail until time t. For example, 
regarding this group of data, at 4000 hours the 41.1% of the items will have failed. 

Table 24: table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,05048004 0,017955369 0,118504262 
2000 0,121372729 0,059874995 0,217554145 
3000 0,243187137 0,15168741 0,358320716 
4000 0,411370002 0,299221545 0,531323127 
5000 0,597949297 0,477905289 0,709353445 
6000 0,764270606 0,64976965 0,8544054 
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7000 0,883403178 0,78850594 0,94330031 
8000 0,951967492 0,885446184 0,98324062 
9000 0,983672605 0,944624879 0,996294343 

10000 0,995451233 0,976220007 0,999392755 
12000 0,999809203 0,996968702 0,999993515 
13000 0,999971459 0,999104883 0,999999581 
14000 0,999996548 0,999767701 0,99999998 
15000 0,999999663 0,999947093 0,999999999 
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Figure 41: Cumulative failure plot for M/E 8000h 

 

 

5.2.9 Non parametric analysis 
 

In non parametric analysis, there is no assumption or fit of a known distribution, but only 
with statistical tools, the necessary statistics/ estimators are calculated. 

Table 25: Non parametric estimates 

            Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   4474,56   326,869  3833,91  5115,21 
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A distribution free estimate of useful plots can be produced. 
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Figure 42: Survival plot for M/E 8000h 

 

Table 26: kaplan meier estimates for survival 
probabilities 

  
 

95% confidence intervals 

time 
survival 
probability lower upper 

357 0,976744186 0,022983807 0,931696753 
746 0,953488372 0,032114728 0,890544663 

1650 0,930232558 0,038849724 0,854088498 
1924 0,906976744 0,044295501 0,820159158 
1935 0,88372093 0,048884831 0,787908422 
2063 0,860465116 0,052841338 0,756897997 
2112 0,837209302 0,056298599 0,726866076 
2132 0,813953488 0,059343934 0,697641515 
2161 0,790697674 0,062038034 0,669105361 
2676 0,76744186 0,064424979 0,641171222 
2685 0,744186047 0,066537832 0,613774292 
2704 0,720930233 0,068401998 0,58686478 
3022 0,697674419 0,070037336 0,560403762 
3073 0,674418605 0,071459559 0,534360442 
3095 0,651162791 0,072681179 0,508710298 
3103 0,627906977 0,073712169 0,48343378 
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3300 0,604651163 0,074560438 0,458515389 
3348 0,581395349 0,075232167 0,43394301 
3473 0,558139535 0,075732054 0,409707436 
4436 0,534883721 0,076063487 0,385802025 
4465 0,511627907 0,076228663 0,362222472 
4480 0,488372093 0,076228663 0,338966658 
4650 0,465116279 0,076063487 0,316034584 
5190 0,441860465 0,075732054 0,293428366 
5382 0,418604651 0,075232167 0,271152313 
5389 0,395348837 0,074560438 0,249213064 
5460 0,372093023 0,073712169 0,227619827 
5723 0,348837209 0,072681179 0,206384717 
5726 0,325581395 0,071459559 0,185523233 
5740 0,302325581 0,070037336 0,165054925 
5741 0,279069767 0,068401998 0,145004315 
5790 0,255813953 0,066537832 0,125402198 
5887 0,23255814 0,064424979 0,106287501 
6491 0,209302326 0,062038034 0,087710012 
6565 0,186046512 0,059343934 0,069734538 
6608 0,162790698 0,056298599 0,052447471 
6790 0,139534884 0,052841338 0,035967765 
6899 0,11627907 0,048884831 0,020466562 
6947 0,093023256 0,044295501 0,00620567 
7549 0,069767442 0,038849724 0 
7745 0,046511628 0,032114728 0 
8330 0,023255814 0,022983807 0 
8864 0 0 0 
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Figure 43: Cumulative failure plot for M/E 8000h 
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Figure 44: Hazard plot for M/E 8000h 
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Table 27: cumulative failure probabilities and hazard rates 
  

 
95% confidence intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

357 0,023255814 0 0,068303247 0,023255814 
746 0,046511628 0 0,109455337 0,023809524 

1650 0,069767442 0 0,145911502 0,024390244 
1924 0,093023256 0,00620567 0,179840842 0,025 
1935 0,11627907 0,020466562 0,212091578 0,025641026 
2063 0,139534884 0,035967765 0,243102003 0,026315789 
2161 0,209302326 0,087710012 0,330894639 0,028571429 
2676 0,23255814 0,106287501 0,358828778 0,029411765 
2685 0,255813953 0,125402198 0,386225708 0,03030303 
2704 0,279069767 0,145004315 0,41313522 0,03125 
3022 0,302325581 0,165054925 0,439596238 0,032258065 
3073 0,325581395 0,185523233 0,465639558 0,033333333 
3095 0,348837209 0,206384717 0,491289702 0,034482759 
3103 0,372093023 0,227619827 0,51656622 0,035714286 
3300 0,395348837 0,249213064 0,541484611 0,037037037 
3348 0,418604651 0,271152313 0,56605699 0,038461538 
3473 0,441860465 0,293428366 0,590292564 0,04 
4465 0,488372093 0,338966658 0,637777528 0,043478261 
4480 0,511627907 0,362222472 0,661033342 0,045454545 
4650 0,534883721 0,385802025 0,683965416 0,047619048 
5389 0,604651163 0,458515389 0,750786936 0,055555556 
5460 0,627906977 0,48343378 0,772380173 0,058823529 
5723 0,651162791 0,508710298 0,793615283 0,0625 
5726 0,674418605 0,534360442 0,814476767 0,066666667 
5740 0,697674419 0,560403762 0,834945075 0,071428571 
5741 0,720930233 0,58686478 0,854995685 0,076923077 
5790 0,744186047 0,613774292 0,874597802 0,083333333 
5887 0,76744186 0,641171222 0,893712499 0,090909091 
6491 0,790697674 0,669105361 0,912289988 0,1 
6565 0,813953488 0,697641515 0,930265462 0,111111111 
6608 0,837209302 0,726866076 0,947552529 0,125 
6899 0,88372093 0,787908422 0,979533438 0,166666667 
7549 0,930232558 0,854088498 1 0,25 
7745 0,953488372 0,890544663 1 0,333333333 
8330 0,976744186 0,931696753 1 0,5 
8864 1 1 1 1 

 

In accordance to Figure 27: MRL/MTTF for M/E 4000h, we can plot the same function for 
M/E 8000 (24). 
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Figure 45: MRL/MTTF for M/E 8000 

An increasing failure rate is also noticed in this category of items. For example at 4000 hours 
the remaining life is about 40% of that in time 0. 

5.3 DIESEL GENERATORS 
 

Following exactly the same procedure, the data that concerns failures in Diesel Generators, as 
can be found in Table 6: Diesel Generators (inter inspection time of 4000hours), can be 
analyzed. 

5.3.1 Outlier points 
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Figure 46: Boxplot of D/G 
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From this plot we conclude that no outlier points exist in this group of data and the following 
parameters are calculated. 

Table 28: Basic parameters 

 
5.3.2 Basic statistics calculations 
 

Some basic statistics calculations such as mean, Standard Error of mean, standard deviation 
variance, coefficient of variation first quartile, etc can be found in table 5.22 

 

Table 29: Basic statistics calculation 

Mean 

Standard 
error of 
Mean 

Standard 
Deviation Variance 

Coefficient 
of 
Variation Q1 Median Q3 

3232,62 402,4201 2167,09 4696316,1 67,038 1348,5 2987 5335,5 

        
IQR Sum Minimum Maximum Range 

Sum of 
Squares Skewness Kurtosis 

3987 93746 55 7690 7635 4,35E+08 0,425678 -0,91999 
 

A graphical summary of the above can be found in figure 47. 

 

Median Q1 Q3 IQR 
lower outer 
fence 

upper outer 
fence 

2987 1348.5 5335.5 3987 55 7690 
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Figure 47: Graphical summary for D/G 

5.3.3 Histogram 
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Figure 48: Histogram of D/G 
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5.3.4 Cumulative distribution function 
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Figure 49: Empirical CDF of  D/G 

As described in previous chapter, the empirical cdf is an estimator of the cumulative 
distribution function. To further define the proper distribution which fits the data well, these 
have to be plotted in special plotting paper. 

 

5.3.5 Individual distribution identification 
 

Using the statistical software Minitab, the following graphs were obtained. It can be seen that 
the Weibull distribution describes adequately well the life data. 

The Weibull distribution is widely used in reliability, since by altering the shape and scale 
parameters a wide range of fitted data can be described. For example, in case that the shape 
parameter is greater than 3, the distribution that arises is approximately normal. 

In this case, where the shape parameter is greater than 1, this particular distribution appears to 
have an Increasing Failure Rate. 
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Figure 50: Distribution identification for D/G 
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Figure 51: Distribution identification for D/G 
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Figure 52: Distribution identification for D/G 
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Figure 53: Distribution identification for D/G 
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It is necessary to compare various goodness of fit test to decide which distribution is 
appropriate for this set of data. 

Table 30: Comparison of goodness of fit tests for D/G 

Goodness of Fit Test 
 
Distribution                AD       P  LRT P 
Normal                   0,584   0,119 
Box-Cox Transformation   0,276   0,633 
Lognormal                1,213  <0,005 
3-Parameter Lognormal    0,353       *  0,002 
Exponential              1,089   0,088 
2-Parameter Exponential  1,420   0,022  1,000 
Weibull                  0,380  >0,250 
3-Parameter Weibull      0,318  >0,500  0,551 
Smallest Extreme Value   0,991   0,011 
Largest Extreme Value    0,393  >0,250 
Gamma                    0,479  >0,250 
3-Parameter Gamma        0,356       *  0,829 
Logistic                 0,593   0,082 
Loglogistic              0,683   0,043 
3-Parameter Loglogistic  0,374       *  0,052 

 

Checking the Anderson Darling and p-value test, it is concluded that the Weibull distribution 
fits adequately well our data. 

In order to define subject distribution it is necessary to estimate its parameters. 

Following the same steps as in the other groups of data we need to calculate the shape and 
scale parameter for this distribution. 

• Scale parameter α=3517.47 
• Shape parameter β=1.40425 

Summarizing, the fitted distribution for the first group of failures, is fully defined. 

Weibull distribution of times to failure: 

• CDF: 𝐹(𝑥) = 1 − exp [−�𝑥
𝛼
�
𝛽

], 0 ≤ 𝑥 ≤ ∞ 

 

• PDF:f(x) = β
α

 (x
α

)β−1 exp �− �𝑥
𝛼
�
𝛽
� , 0 ≤ 𝑥 ≤ ∞  

Where α, β have been already calculated. 
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Figure 54: Plot of Weibull fit to the data 

In the plotted data in Weibull plotting paper, it is understood that this distribution fits well the 
collected life data. 

5.3.6 Reliability concepts 
Relevant plots for this group of data can be produced, similarly to previous chapter.
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Figure 55: Plot of reliability function with 95% confidence intervals 
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Table 31: table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,842834281 0,699137952 0,92156171 
2000 0,635996853 0,472579419 0,76090491 
3000 0,449442278 0,301450117 0,58662197 
4000 0,301846413 0,177087075 0,43655613 
5000 0,19424434 0,094157597 0,32096339 
6000 0,120420337 0,045000398 0,23577378 
7000 0,07219769 0,019328394 0,17366855 
8000 0,041985698 0,007478481 0,1283315 
9000 0,023738409 0,002613884 0,09509234 

10000 0,013073913 0,000827452 0,07061856 
12000 0,003688102 6,21458E-05 0,03913607 
13000 0,00189387 1,47985E-05 0,0291867 
14000 0,000952243 3,21541E-06 0,02178629 
15000 0,000469236 6,38343E-07 0,01627437 

 

The table above shows the percentage of the items under investigation that will survive at a 
given time. For example at 6000 hours the 12% of the items will have survive. 

The conditional survival probabilities for this category, for a range of 1000 to 10000 hours is 
plotted in Figure 56: Conditional probabilities for D/G 

 

Figure 56: Conditional probabilities for D/G  
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Table 32: Conditional probabilities for D/G at 4000 hours 

t P 
1000 0,643519 
2000 0,398943 
3000 0,239184 
4000 0,139094 
5000 0,078642 
6000 0,043312 
8000 0,012218 

10000 0,003155 
 

For example, given that an item of this group has survived 4000 hours, the probability to 
survive additionally 5000 hours is 0.078. 

To visualize this example, a pie chart can be drawn. 

 

 

Figure 57: Conditional probabilities for D/G at 4000 hours 
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5.3.7 Failure rate plot 
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Figure 58: Hazard plot for D/G 

5.3.8 Cumulative failure plot 
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Figure 59: Cumulative failure plot for D/G 
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Table 33: table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,157165719 0,078438295 0,300862048 
2000 0,364003147 0,239095095 0,527420581 
3000 0,550557722 0,413378027 0,698549883 
4000 0,698153587 0,563443868 0,822912925 
5000 0,80575566 0,679036608 0,905842403 
6000 0,879579663 0,764226221 0,954999602 
7000 0,92780231 0,826331446 0,980671606 
8000 0,958014302 0,871668495 0,992521519 
9000 0,976261591 0,90490766 0,997386116 

10000 0,986926087 0,929381438 0,999172548 
12000 0,996311898 0,960863933 0,999937854 
13000 0,99810613 0,970813296 0,999985202 
14000 0,999047757 0,978213712 0,999996785 
15000 0,999530764 0,983725626 0,999999362 

 

5.3.9 Non parametric analysis 
 

Table 34: Non parametric estimates 

            Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   3232,62   402,420  2443,89  4021,35 
 
A distribution free estimate of useful plots can be produced. 
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Figure 60: Survival plot for D/G 
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Table 35: kaplan meier estimates for survival 
probabilities 

  
 

95% confidence intervals 

time 
survival 
probability lower upper 

55 0,965517241 0,899107757 1 
183 0,931034483 0,838809629 1 
629 0,896551724 0,785711245 1 
844 0,862068966 0,736566836 0,98757109 

1100 0,827586207 0,690105512 0,9650669 
1123 0,793103448 0,645671828 0,94053507 
1300 0,75862069 0,602876643 0,91436474 
1397 0,724137931 0,56146858 0,88680728 
1512 0,689655172 0,521276397 0,85803395 
1751 0,655172414 0,482179667 0,82816516 
2100 0,620689655 0,444092506 0,7972868 
2527 0,586206897 0,406954002 0,76545979 
2987 0,482758621 0,300888757 0,66462848 
3121 0,448275862 0,267274117 0,62927761 
3150 0,413793103 0,234540209 0,593046 
3180 0,379310345 0,202713195 0,55590749 
3401 0,344827586 0,171834839 0,51782033 
4128 0,310344828 0,141966052 0,4787236 
4238 0,275862069 0,113192718 0,43853142 
5062 0,24137931 0,085635264 0,39712336 
5609 0,206896552 0,059464932 0,35432817 
5849 0,172413793 0,034933099 0,30989449 
6157 0,103448276 0 0,21428876 
6485 0,068965517 0 0,16119037 
6593 0,034482759 0 0,10089224 
7690 0 0 0 
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Figure 61: Cumulative failure plot for D/G 
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Figure 62: Hazard plot for D/G 
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Table 36: cumulative failure probabilities and hazard rates 
  

 
95% confidence intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

55 0,034482759 0 0,100892243 0,034482759 
183 0,068965517 0 0,161190371 0,035714286 
629 0,103448276 0 0,214288755 0,037037037 
844 0,137931034 0,012428905 0,263433164 0,038461538 

1100 0,172413793 0,034933099 0,309894488 0,04 
1123 0,206896552 0,059464932 0,354328172 0,041666667 
1300 0,24137931 0,085635264 0,397123357 0,043478261 
1397 0,275862069 0,113192718 0,43853142 0,045454545 
1512 0,310344828 0,141966052 0,478723603 0,047619048 
1751 0,344827586 0,171834839 0,517820333 0,05 
2100 0,379310345 0,202713195 0,555907494 0,052631579 
2527 0,413793103 0,234540209 0,593045998 0,055555556 
2987 0,517241379 0,335371516 0,699111243 0,066666667 
3121 0,551724138 0,370722393 0,732725883 0,071428571 
3150 0,586206897 0,406954002 0,765459791 0,076923077 
3180 0,620689655 0,444092506 0,797286805 0,083333333 
3401 0,655172414 0,482179667 0,828165161 0,090909091 
4128 0,689655172 0,521276397 0,858033948 0,1 
4238 0,724137931 0,56146858 0,886807282 0,111111111 
5062 0,75862069 0,602876643 0,914364736 0,125 
5609 0,793103448 0,645671828 0,940535068 0,142857143 
5849 0,827586207 0,690105512 0,965066901 0,166666667 
6157 0,896551724 0,785711245 1 0,25 
6485 0,931034483 0,838809629 1 0,333333333 
6593 0,965517241 0,899107757 1 0,5 
7690 1 1 1 1 

 

 

In accordance to Figure 27: MRL/MTTF for M/E 4000h, we can plot the same function for 
D/G (24). 

This function indicates an increasing failure rate, since the mean remaining life is constantly 
decreasing as can be clearly seen in Figure 63. 
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Figure 63: MRL/MTTF for D/G 

5.4 AUX 4000 
 

We can analyze the failures which regard auxiliary equipment. We begin with that equipment 
that the manufacturer suggests 4000 working hours between inspections to take place. 

5.4.1 Outlier points 
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Figure 64:Boxplot of AUX 4000 

From this plot we conclude that no outlier points exist in this group of data and the following 
parameters are calculated. 
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Table 37:Basic parameters 

 

5.4.2 Basic statistics calculations 
 

Table 38: Basic statistic calculations 

Mean 

Standard 
error of 
Mean 

Standard 
Deviation Variance 

Coefficient 
of 
Variation Q1 Median Q3 

1936 304,9810 1099,62 1209174 56,79880 1165,5 1463 2645 

        
IQR Sum Minimum Maximum Range 

Sum of 
Squares Skewness Kurtosis 

1479,5 25168 552 4256 3704 63235344 0,7852907 0,038491 
A graphical summary of the above: 

4000300020001000

Median

Mean

28002400200016001200

1st Q uartile 1165,5
Median 1463,0
3rd Q uartile 2645,0
Maximum 4256,0

1271,5 2600,5

1215,2 2587,8

788,5 1815,2

A -Squared 0,37
P-V alue 0,371

Mean 1936,0
StDev 1099,6
V ariance 1209174,7
Skewness 0,785291
Kurtosis 0,038491
N 13

Minimum 552,0

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for AUX 4000 h

 

Figure 65: Graphical summary for AUX 4000 

Median Q1 Q3 IQR 
lower outer 
fence 

upper outer 
fence 

1463 1165.5 2645 1479.5 552 4256 
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5.4.3 Histogram 

4000300020001000

4

3

2

1

0

hours

Fr
eq

ue
nc

y
Histogram of AUX 4000 h

 

Figure 66: Histogram of AUX 4000 

5.4.4 Cumulative distribution function 
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Figure 67: Empirical CDF of AUX 4000 
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As described in previous chapter, the empirical cdf is an estimator of the cumulative 
distribution function. To further define the proper distribution which fits the data well, these 
have to be plotted in special plotting paper. The next chapter describes the procedure for this 
category of data. 

 

5.4.5 Individual distribution identification 
 

Using the statistical software Minitab, the following graphs were obtained. 

As it is concluded after the goodness of fit tests, the Loglogistic distribution describes well 
our data and therefore is used for the farther calculation of useful results. 

It is noted that at Appendix A, the statistical properties for each used distribution are 
presented, as an assist for further examination.  
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Figure 68: Distribution identification for AUX 4000 



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

90 
 

600030000

99

90

50

10

1

A UX 4000  h

P
e

rc
e

n
t

100001000100

99

90

50

10

1

A UX 4000  h

P
e

rc
e

n
t

10000010000100010010

99

90

50

10

1

A UX 4000  h - T hreshold

P
e

rc
e

n
t

3-Parameter Loglogistic
A D = 0,239 
P-V alue = *

Goodness of F it Test

Logistic
A D = 0,357 
P-V alue > 0,250

Loglogistic
A D = 0,207
P-V alue > 0,250

Probability Plot for AUX 4000 h
Logistic - 95% C I Loglogistic - 95% C I

3-Parameter Loglogistic - 95% C I

 

Figure 69: Distribution identification for AUX 4000 
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Figure 70: Distribution identification for AUX 4000 
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Figure 71: Distribution identification for AUX 4000 

It is necessary to compare various goodness of fit test to decide which distribution is 
appropriate for this set of data. 

 

Table 39: Comparison of goodness of fit tests for AUX 4000 

Goodness of Fit Test 
 
Distribution                AD       P  LRT P 
Normal                   0,370   0,371 
Box-Cox Transformation   0,224   0,779 
Lognormal                0,224   0,779 
3-Parameter Lognormal    0,227       *  0,831 
Exponential              1,277   0,049 
2-Parameter Exponential  0,689   0,145  0,010 
Weibull                  0,231  >0,250 
3-Parameter Weibull      0,371   0,444  0,214 
Smallest Extreme Value   0,643   0,083 
Largest Extreme Value    0,244  >0,250 
Gamma                    0,215  >0,250 
3-Parameter Gamma        0,271       *  1,000 
Logistic                 0,357  >0,250 
Loglogistic              0,207  >0,250 
3-Parameter Loglogistic  0,239       *  0,978 
 

Checking the Anderson Darling and p-value test, it is concluded that the Loglogistic 
distribution fits adequately well our data. 

In order to define subject distribution it is necessary to estimate its parameters. 
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For the Loglogistic distribution to be fully defined, we must calculate the scale and the shape 
parameter. 

The scale parameter for this distribution is also the median, for the shape parameter, we use 
the method of Maximum Likelihood. Further details can be found in (14). 

Summarizing, the fitted distribution is: 

Log- logistic distribution of times to failure 

• CDF: 𝐹(𝑥) = 1
1+(𝑥/𝛼)−𝛽

, 0 ≤ 𝑥 < ∞ 

• PDF: 𝑓(𝑥) =
�𝛽𝛼�(𝑥𝛼)𝛽−1

[1+(𝑥/𝛼)𝛽]2
, 0 ≤ 𝑥 < ∞ 

Where α=scale parameter= 1682.8 

 β=shape parameter=0.3419 
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Figure 72: Plot of Loglogistic fit to the data 

In the plotted data in Log- logistic plotting paper, it is understood that this distribution fits 
well the collected life data. 

5.4.6 Reliability concepts 
Relevant plots for this group of data can be produced, similarly to previous chapter. 
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Figure 73:Plot of reliability function with 95% confidence intervals 

Table 40 : table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,819369214 0,581291261 0,936795115 
2000 0,377137512 0,185411744 0,616961707 
3000 0,157133767 0,0529529 0,383321058 
4000 0,074777896 0,018390359 0,2585237 
5000 0,040550605 0,007723819 0,186650179 
6000 0,024280386 0,003737323 0,1416842 
7000 0,015652331 0,002007439 0,111666277 
8000 0,010673007 0,001166957 0,090592175 
9000 0,007603596 0,000721449 0,075196582 

10000 0,005609857 0,000468506 0,063582935 
12000 0,003310626 0,00022135 0,047468293 
13000 0,002625514 0,000159121 0,04172597 
14000 0,002118017 0,000117171 0,037020823 
15000 0,001733982 8,8094E-05 0,033112191 

 

For the Loglostic distributed category AUX 4000 the conditional probabilities for a range of 
1000 to 10000 hours is plotted in the following graph 
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Figure 74: Conditional probabilities for AUX 4000 

For example the conditional probabilities for an item to survive t hours, given that it has 
survived 2000 hours are: 

Table 41: Conditional probabilities for AUX 4000 at 2000 hours 

t P 
1000 0,3650 
2000 0,0910 
3000 0,0156 
4000 0,0018 
5000 0,0002 
6000 0,0000 
8000 0,0000 

10000 0,0000 
 

For this category the expected values of probabilities is particularly low. This can be 
explained partly due to the relatively small number of observations that were recorded for this 
items. 

As can be seen in Table 7: AUX 4000h, the 92% of the items that were recorded, have failed 
before the suggested by the manufacturer limit of 4000 hours for inspection. 

This can be fixed in an oncoming collection of same life data, where in that case the available 
samples for analysis will be larger and therefore will produce more reliable results. 

For the actual data, we can extract the following plot. 
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Figure 75: Conditional probabilities for AUX 4000 at 2000 hours 

 

5.4.7 Failure rate plot 
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Figure 76: Hazard plot for AUX 4000 

The shape of the failure rate curve indicates an increasing and then on/ about 1800 hours a 
decrease of the failure rate. 
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5.4.8 Cumulative failure plot 
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Figure 77: Cumulative failure plot for AUX 4000 

Table 42 : table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,180630786 0,063204885 0,418708739 
2000 0,622862488 0,383038293 0,814588256 
3000 0,842866233 0,616678942 0,9470471 
4000 0,925222104 0,7414763 0,981609641 
5000 0,959449395 0,813349821 0,992276181 
6000 0,975719614 0,8583158 0,996262677 
7000 0,984347669 0,888333723 0,997992561 
8000 0,989326993 0,909407825 0,998833043 
9000 0,992396404 0,924803418 0,999278551 

10000 0,994390143 0,936417065 0,999531494 
12000 0,996689374 0,952531707 0,99977865 
13000 0,997374486 0,95827403 0,999840879 
14000 0,997881983 0,962979177 0,999882829 
15000 0,998266018 0,966887809 0,999911906 

 

5.4.9 Non parametric analysis 
 

Table 43: Non parametric estimates 

            Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
      1936   304,981  1338,25  2533,75 
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A distribution free estimate of useful plots can be produced. 
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Figure 78: Survival plot for AUX 4000 

Table 44 : kaplan meier estimates for survival 
probabilities 

  
 

95% confidence intervals 

time 
survival 
probability lower upper 

552 0,923076923 0,778225193 1 
651 0,846153846 0,650023677 1 

1031 0,769230769 0,540200075 0,998261464 
1300 0,692307692 0,441417137 0,943198248 
1400 0,615384615 0,350922749 0,879846482 
1428 0,538461538 0,267468766 0,809454311 
1463 0,461538462 0,190545689 0,732531234 
1892 0,384615385 0,120153518 0,649077251 
2480 0,307692308 0,056801752 0,558582863 
2490 0,230769231 0,001738536 0,459799925 
2800 0,153846154 0 0,349976323 
3425 0,076923077 0 0,221774807 
4256 0 0 0 
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Figure 79: Cumulative failure plot for AUX 4000 
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Figure 80: Hazard plot for AUX 4000 
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Table 45 : cumulative failure probabilities and hazard rates 
  

 
95% confidence intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

552 0,076923077 0 0,221774807 0,076923077 
651 0,153846154 0 0,349976323 0,083333333 

1031 0,230769231 0,001738536 0,459799925 0,090909091 
1300 0,307692308 0,056801752 0,558582863 0,1 
1400 0,384615385 0,120153518 0,649077251 0,111111111 
1428 0,461538462 0,190545689 0,732531234 0,125 
1463 0,538461538 0,267468766 0,809454311 0,142857143 
1892 0,615384615 0,350922749 0,879846482 0,166666667 
2480 0,692307692 0,441417137 0,943198248 0,2 
2490 0,769230769 0,540200075 0,998261464 0,25 
2800 0,846153846 0,650023677 1 0,333333333 
3425 0,923076923 0,778225193 1 0,5 
4256 1 1 1 1 

 

Regarding the mean remaining life of this category of items the function MRL/MTTF can be 
calculated. 

 

Figure 81: MRL/MTTF for AUX 4000 

In accordance to the failure rate function, Figure 76: Hazard plot for AUX 4000, it is noted an 
increase in failure rate until about 1500 hours and then a slight decrease. 
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5.5 AUX 6000 
With the same procedure, we can analyze failures in auxiliary equipment, in which the 
manufacturer suggests 6000 working hours between inspections. 

5.5.1 Outlier points 
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Figure 82: Boxplot of AUX 6000 

From this plot we conclude that no outlier points exist in this group of data and the following 
parameters are calculated. 

Table 46: Basic parameters 

5.5.2 Basic statistics calculations 
 

Table 47: Basic statistic calculations 

Mean 

Standard 
error of 
Mean 

Standard 
Deviation Variance 

Coefficient 
of 
Variation Q1 Median Q3 

2681,4 484,73 1532,86 2349667 57,166 1578,75 2645 3720,7 

IQR Sum Minimum Maximum Range 
Sum of 
Squares Skewness Kurtosis 

2142 26814 196 5380 5184 93046070 0,14113339 -0,4137 

Median Q1 Q3 IQR lower outer fence upper outer fence 

2645 1578.75 3720.75 2142 196 5380 
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A graphical summary of the above: 
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Figure 83: Graphical summary for AUX 6000 

Additionally we can see 95% confidence intervals for the mean, median and standard 
deviation. 

5.5.3 Histogram 
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Figure 84: Histogram of AUX 6000 
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5.5.4 Cumulative distribution function 
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Figure 85: Empirical CDF of AUX 6000 

 

As described in previous chapter, the empirical cdf is an estimator of the cumulative 
distribution function. To further define the proper distribution which fits the data well, these 
have to be plotted in special plotting paper. 

 

5.5.5 Individual distribution identification 
 

Using the statistical software Minitab, the following graphs were obtained for the 
identification of the proper distribution that describes this category of data. It is reminded that 
not only the good eye ball fit is necessary, but the various goodness of fit tests provide the 
final necessary information, that will allow to choose the appropriate distribution among all 
the experimentally tested. 
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Figure 86: Distribution identification for AUX 6000 
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Figure 87: Distribution identification for AUX 6000 
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Figure 88: Distribution identification for AUX 6000 

10000100010010

90

50

10

1

A UX 6000  h

P
e

rc
e

n
t

10000100010010

90

50

10

1

A UX 6000  h - T hreshold

P
e

rc
e

n
t

100001000100

90

50

10

1

A UX 6000  h

P
e

rc
e

n
t

100001000

90

50

10

1

A UX 6000  h - T hreshold

P
e

rc
e

n
t

Weibull
A D = 0,430 
P-V alue > 0,250

3-Parameter Weibull
A D = 0,324 
P-V alue = 0,500

Goodness of F it Test

Exponential
A D = 1,160 
P-V alue = 0,065

2-Parameter Exponential
A D = 1,453 
P-V alue < 0,010

Probability Plot for AUX 6000 h
Exponential - 95% C I 2-Parameter Exponential - 95% C I

Weibull - 95% C I 3-Parameter Weibull - 95% C I

 

Figure 89: Distribution identification for AUX 6000 
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It is time to compare various goodness of fit test to decide which distribution is appropriate 
for this set of data. 

Table 48: Comparison of goodness of fit tests for AUX 6000 

Goodness of Fit Test 
 
Distribution                AD       P  LRT P 
Normal                   0,310   0,505 
Box-Cox Transformation   0,310   0,505 
Lognormal                0,902   0,014 
3-Parameter Lognormal    0,324       *  0,017 
Exponential              1,160   0,065 
2-Parameter Exponential  1,453  <0,010  1,000 
Weibull                  0,430  >0,250 
3-Parameter Weibull      0,324   0,500  0,424 
Smallest Extreme Value   0,440  >0,250 
Largest Extreme Value    0,349  >0,250 
Gamma                    0,549   0,184 
3-Parameter Gamma        1,192       *  1,000 
Logistic                 0,343  >0,250 
Loglogistic              0,573   0,088 
3-Parameter Loglogistic  0,336       *  0,081 
 

Checking the Anderson Darling and p-value test, it is concluded that the normal distribution 
fits adequately well our data. 

In order to define subject distribution it is necessary to estimate its parameters. 

For the normal distribution we need the mean and a standard deviation. 

For this distribution:  

Mean = 2668.55 

Standard deviation = 1387.12 

Summarizing, the fitted distribution for the first group of failures, is fully defined. 

Normal distribution of times to failure: 

• CDF: 𝐹(𝑥) = 1
2

[1 + erf � 𝑥−𝜇
√2𝜎2

�], 𝑥 ∈ 𝑅 

 

• PDF:f(x)= 1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2

2𝜎2 , 𝑥 ∈ 𝑅 

 
Where μ=2668.55 
 σ=1387.12 

where erf is a function sometimes called the error function which can’t be expressed in terms 
of finite additions, subtractions, multiplications, and root extractions, and so must be either 
computed numerically or otherwise approximated. 
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Figure 90: Plot of Normal fit to AUX 6000 data 

In the plotted data in normal plotting paper, it is understood that this distribution fits well the 
collected life data. 

5.5.6 Reliability concepts 
 

Relevant plots for this group of data can be produced, similarly to previous chapter.
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Figure 91 : Plot of reliability function with 95% confidence intervals 



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

107 
 

Table 49 : table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,8854892 0,665338538 0,976074442 
2000 0,6850849 0,443397334 0,865700111 
3000 0,4055717 0,200937088 0,640717117 
4000 0,1685608 0,047057221 0,40297492 
5000 0,0464023 0,004679312 0,222760735 
6000 0,0081595 0,000180991 0,108034221 
7000 0,0008962 2,61882E-06 0,045494656 
8000 6,064E-05 1,38895E-08 0,016495816 
9000 2,504E-06 2,66824E-11 0,005119162 

10000 6,273E-08 1,84297E-14 0,001353887 
12000 8,648E-12 0 5,79377E-05 
13000 4,73E-14 0 9,33627E-06 
14000 1,11E-16 0 1,27118E-06 
15000 0 0 1,46079E-07 

 

For the Normal distributed category AUX 6000 the conditional probabilities for a range of 
1000 to 10000 hours is plotted in the following graph. 

 

Figure 92: Conditional probabilities for AUX 6000 

For an item that has survived 2000 hours, the conditional probabilities to survive additionally 
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Figure 93: Conditional probabilities for AUX 6000 at 2000 hours 

 

This plot in a tabulated view: 

Table 50: Conditional probabilities for AUX 6000 at 2000 hours 

t P 
1000 0,405572827 
2000 0,168561208 
3000 0,046402376 
4000 0,00815948 
5000 0,000896242 
6000 6,06363E-05 
8000 6,27236E-08 

10000 8,64719E-12 
 

 

 

 

 

 

1000 hours
P= 0,4056

2000 hours
P= 0,1686

3000 hours
P= 0,0464

4000 hours
P= 0,0082 5000 hours

P= 0,0009
6000 hours
P= 0,0001

conditional probabilities for 2000 hours



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

109 
 

5.5.7 Failure rate plot 
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Figure 94: Hazard plot for AUX 6000 

The units of this rate are failures per unit time. It is the failure rate of the survivors to time t in 
the very next instant following t. It is not a probability and it can have values greater than 1. 

5.5.8 Cumulative failure plot 
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Figure 95: Cumulative failure plot for AUX 6000 
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Table 51: table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,114510829 0,023925558 0,334661462 
2000 0,314915117 0,134299889 0,556602666 
3000 0,5944283 0,359282883 0,799062912 
4000 0,831439241 0,59702508 0,952942779 
5000 0,953597688 0,777239265 0,995320688 
6000 0,99184051 0,891965779 0,999819009 
7000 0,999103753 0,954505344 0,999997381 
8000 0,999939363 0,983504184 0,999999986 
9000 0,999997496 0,994880838 1 

10000 0,999999937 0,998646113 1 
12000 1 0,999942062 1 
14000 1 0,999998729 1 
15000 1 0,999999854 1 

 

5.5.9 Non parametric analysis 
Table 52: Non parametric estimates 

            Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   2668,55   438,647  1808,81  3528,28 
 

A distribution free estimate of useful plots can be produced. 
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Figure 96: Survival plot for AUX 6000 
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Table 53: kaplan meier estimates for survival 
probabilities 

  
 

95% confidence intervals 

time 
survival 
probability lower upper 

196 0,9090909 0,739204333 1 
1500 0,8181818 0,590255059 1 
1605 0,7272727 0,464085576 0,990459879 
1700 0,6363636 0,352089022 0,920638251 
1950 0,5454545 0,251202364 0,839706727 
2540 0,4545455 0,160293273 0,748797636 
3340 0,3636364 0,079361749 0,647910978 
3700 0,2727273 0,009540121 0,535914424 
3720 0,1818182 0 0,409744941 
3723 0,0909091 0 0,260795667 
5380 0 0 0 
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Figure 97: Cumulative failure plot for AUX 6000 
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Figure 98: Hazard plot for AUX 6000 

Table 54 : cumulative failure probabilities and hazard rates 
  

 
95% confidence intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

196 0,090909091 0 0,260795667 0,090909091 
1500 0,181818182 0 0,409744941 0,1 
1605 0,272727273 0,009540121 0,535914424 0,111111111 
1700 0,363636364 0,079361749 0,647910978 0,125 
1950 0,454545455 0,160293273 0,748797636 0,142857143 
2540 0,545454545 0,251202364 0,839706727 0,166666667 
3340 0,636363636 0,352089022 0,920638251 0,2 
3700 0,727272727 0,464085576 0,990459879 0,25 
3720 0,818181818 0,590255059 1 0,333333333 
3723 0,909090909 0,739204333 1 0,5 
5380 1 1 1 1 

 

The mean remaining life function, versus the MTTF is plotted in the next figure. 
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Figure 99: MRL/MTTF for AUX 6000 

As it was noticed in the failure rate function, the mean remaining life is decreasing, for 
example at 2000 hours the remaining life of an item will be the 20% of the remaining life at 
time 0. 

5.6 AUX 8000 
The last group of data concerns failures in auxiliary equipment, in which the manufacturer 
suggests 8000 working hours between inspections. 
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Figure 100: Boxplot of AUX 8000 
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It is obvious that there is an outlier point in this set of data. After checking our database, this 
failure in 19624 hours, concern broken ball bearings in the electric motor of hot water 
circulating pump and can’t be ignored. The following parameters are calculated. 

Table 55: Basic parameters 

 

5.6.2 Basic statistics calculations 
Some basic statistics calculations such as mean, Standard Error of mean, standard deviation 
variance, coefficient of variation first quartile, etc can be found in table 56 

Table 56: Basic statistics calculations 

Mean 

Standard 
error of 
Mean 

Standard 
Deviation Variance 

Coefficient 
of 
Variation Q1 Median Q3 

5157,57 713,14 4219,03 17800262 81,802 1462 5312 7800 

IQR Sum Minimum Maximum Range 
Sum of 
Squares Skewness Kurtosis 

6338 180515 345 19624 19279 1,54E+09 1,4739 3,3974 
 

20000150001000050000

Median

Mean

70006000500040003000

1st Q uartile 1462,0
Median 5312,0
3rd Q uartile 7800,0
Maximum 19624,0

3708,3 6606,9

2918,6 5921,7

3412,7 5527,8

A -Squared 0,99
P-V alue 0,012

Mean 5157,6
StDev 4219,0
V ariance 17800262,5
Skewness 1,47399
Kurtosis 3,39745
N 35

Minimum 345,0

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for AUX 8000 h

 

Figure 101: Graphical summary for AUX 8000 

Median Q1 Q3 IQR 
lower outer 
fence 

upper outer 
fence 

5312 1462 7800 6338 345 15544 
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A significant concentration of failures in the area of 5000 operational hours is indicated in 
this graph, which affects the mean and median calculations. 

5.6.3 Histogram 
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Figure 102: Histogram of AUX 8000 

 

5.6.4 Cumulative distribution function 
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Figure 103: Empirical CDF of AUX 8000 
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As described in previous chapter, the empirical cdf is an estimator of the cumulative 
distribution function. To further define the proper distribution which fits the data well, these 
have to be plotted in special plotting paper. 

 

5.6.5 Individual distribution identification 
 

Using the statistical software Minitab, the following graphs were obtained. 
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Figure 104: Distribution identification for AUX 8000 
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Figure 105: Distribution identification for AUX 8000 
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Figure 106: Distribution identification for AUX 8000 
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Figure 107: Distribution identification for AUX 8000 

 

Table 57: Comparison of goodness of fit tests for AUX 8000 

Goodness of Fit Test 
 
Distribution                AD       P  LRT P 
Normal                   0,987   0,012 
Box-Cox Transformation   0,612   0,103 
Lognormal                1,850  <0,005 
3-Parameter Lognormal    0,797       *  0,078 
Exponential              1,061   0,096 
2-Parameter Exponential  1,065   0,070  0,093 
Weibull                  0,885   0,021 
3-Parameter Weibull      1,127   0,007  0,292 
Smallest Extreme Value   2,803  <0,010 
Largest Extreme Value    0,593   0,122 
Gamma                    0,960   0,021 
3-Parameter Gamma        1,310       *  0,113 
Logistic                 0,585   0,086 
Loglogistic              1,573  <0,005 
3-Parameter Loglogistic  0,749       *  0,189 
Johnson Transformation   0,538   0,156 
 

Checking the Anderson Darling and p-value test, it is concluded that the logistic distribution 
fits adequately well our data. 

In order to define subject distribution it is necessary to estimate its parameters. 
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The logistic distribution has no shape parameter. This means that the logistic pdf has only one 
shape, the bell shape, and this shape does not change. The shape of the logistic distribution is 
very similar to that of the normal distribution. 

The location parameter is also the median and the mean and therefore can be easily 
calculated.  

The scale parameter 

Summarizing, the fitted distribution is: 

Logistic distribution of times to failure 

• CDF: 𝐹(𝑥) = 1
1+𝑒−(𝑥−𝜇)/𝑠 ,−∞ < 𝑥 < ∞ 

• PDF: 𝑓(𝑥) = 𝑒−(𝑥−𝜇)/𝑠

𝑠[1+𝑒−(𝑥−𝜇)/𝑠]2
,−∞ < 𝑥 < ∞ 

Where s=scale parameter= 2171 

 μ=location parameter=4773.35 
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Figure 108: Plot of logistic fit to the data 

In the plotted data in logistic plotting paper, it is understood that this distribution fits well the 
collected life data. 
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5.6.6 Reliability concepts 
 

Relevant plots for this group of data can be produced, similarly to previous chapter. 
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Figure 109: Survival plot for AUX 8000 

Plot of reliability function with 95% confidence intervals 

Table 58: table of survival probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,850441121 0,731631147 0,922242695 
2000 0,782015203 0,649153093 0,874305896 
3000 0,693563594 0,552182671 0,805991599 
4000 0,588124252 0,445273374 0,717525467 
5000 0,473923766 0,337067283 0,61481357 
6000 0,362387691 0,238509148 0,507709099 
7000 0,263931809 0,158405954 0,405855036 
8000 0,184485525 0,099828383 0,315751974 
9000 0,124895673 0,060495136 0,240317678 

10000 0,082604046 0,035673851 0,179763678 
12000 0,034599198 0,011819846 0,096971177 
13000 0,022110825 0,006710207 0,070353928 
14000 0,014064387 0,003789522 0,050778371 
15000 0,008919451 0,002132455 0,036517032 

 



Reliability analysis/mapping for marine vessels: Results and Conclusions  
 

121 
 

the conditional probabilities for AUX 8000 are calculated and plotted according to the 
functions that can be found in Appendix A. 

 

Figure 110: Conditional probabilities for AUX 8000 

 

Given that an item has survived at 4000 hours, the probability to survive additionally time t  

 

Figure 111: Conditional probabilities for AUX 8000 at 4000 hours 

The tabulated values of this figure are: 

Table 59: Conditional probabilities for AUX 8000 at 4000 hours 

t P 
1000 0,51506 
2000 0,419668 
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3000 0,328795 
4000 0,247069 
5000 0,17768 
6000 0,122062 
8000 0,049908 

10000 0,016721 
 

 

5.6.7 Failure rate plot 
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Figure 112: Failure rate plot for AUX 8000 
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5.6.8 Cumulative failure plot 
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Figure 113: Cumulative failure plot for AUX 8000 

Table 60: table of cumulative failure probabilities 
  

 
95% confidence intervals 

time probability lower upper 
1000 0,149558879 0,077757305 0,268368853 
2000 0,217984797 0,125694104 0,350846907 
3000 0,306436406 0,194008401 0,447817329 
4000 0,411875748 0,282474533 0,554726626 
5000 0,526076234 0,38518643 0,662932717 
6000 0,637612309 0,492290901 0,761490852 
7000 0,736068191 0,594144964 0,841594046 
8000 0,815514475 0,684248026 0,900171617 
9000 0,875104327 0,759682322 0,939504864 

10000 0,917395954 0,820236322 0,964326149 
12000 0,965400802 0,903028823 0,988180154 
13000 0,977889175 0,929646072 0,993289793 
14000 0,985935613 0,949221629 0,996210478 
15000 0,991080549 0,963482968 0,997867545 
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5.6.9 Non parametric analysis 
Table 61: Non parametric estimates 

            Standard   95,0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   5157,57   713,147  3759,83  6555,31 
 

A distribution free estimate of useful plots can be produced. 
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Figure 114: Survival plot for AUX 8000 

 

Table 62: kaplan meier estimates for survival 
probabilities 

  
 

95% confidence intervals 

time 
survival 
probability lower upper 

345 0,942857143 0,865958621 1 
350 0,914285714 0,821542607 1 
400 0,857142857 0,741213973 0,973071741 
475 0,828571429 0,7037122 0,953430658 

1444 0,8 0,667482248 0,932517752 
1461 0,771428571 0,632313911 0,910543232 
1462 0,742857143 0,598062014 0,887652272 
2250 0,714285714 0,564622169 0,86394926 
2300 0,685714286 0,531917242 0,83951133 
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2630 0,657142857 0,499889268 0,814396446 
3577 0,628571429 0,46849439 0,788648467 
4000 0,6 0,437699563 0,762300437 
4172 0,571428571 0,407480372 0,735376771 
4367 0,542857143 0,377819574 0,707894711 
4480 0,514285714 0,348706149 0,679865279 
5312 0,485714286 0,320134721 0,651293851 
5360 0,457142857 0,292105289 0,622180426 
5400 0,428571429 0,264623229 0,592519628 
5520 0,4 0,237699563 0,562300437 
5835 0,371428571 0,211351533 0,53150561 
5921 0,342857143 0,185603554 0,500110732 
5922 0,314285714 0,16048867 0,468082758 
6334 0,285714286 0,13605074 0,435377831 
6650 0,257142857 0,112347728 0,401937986 
7800 0,228571429 0,089456768 0,367686089 
7900 0,2 0,067482248 0,332517752 
8020 0,171428571 0,046569342 0,2962878 
8148 0,142857143 0,026928259 0,258786027 
8235 0,114285714 0,008881769 0,21968966 
8542 0,085714286 0 0,178457393 
9990 0,057142857 0 0,134041379 

15544 0,028571429 0 0,083764617 
19624 0 0 0 
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Figure 115: Cumulative failure plot 
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Figure 116: Hazard plot for AUX 8000 
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Table 63: cumulative failure probabilities and hazard rates 
  

 
95% confidence intervals   

time 

cumulative 
failure 
probability lower upper hazard rates 

345 0,057142857 0 0,134041379 0,029411765 
350 0,085714286 0 0,178457393 0,03030303 
400 0,142857143 0,026928259 0,258786027 0,032258065 
475 0,171428571 0,046569342 0,2962878 0,033333333 

1444 0,2 0,067482248 0,332517752 0,034482759 
1461 0,228571429 0,089456768 0,367686089 0,035714286 
1462 0,257142857 0,112347728 0,401937986 0,037037037 
2250 0,285714286 0,13605074 0,435377831 0,038461538 
2300 0,314285714 0,16048867 0,468082758 0,04 
2630 0,342857143 0,185603554 0,500110732 0,041666667 
3577 0,371428571 0,211351533 0,53150561 0,043478261 
4000 0,4 0,237699563 0,562300437 0,045454545 
4172 0,428571429 0,264623229 0,592519628 0,047619048 
4367 0,457142857 0,292105289 0,622180426 0,05 
4480 0,485714286 0,320134721 0,651293851 0,052631579 
5312 0,514285714 0,348706149 0,679865279 0,055555556 
5360 0,542857143 0,377819574 0,707894711 0,058823529 
5400 0,571428571 0,407480372 0,735376771 0,0625 
5520 0,6 0,437699563 0,762300437 0,066666667 
5835 0,628571429 0,46849439 0,788648467 0,071428571 
5921 0,657142857 0,499889268 0,814396446 0,076923077 
5922 0,685714286 0,531917242 0,83951133 0,083333333 
6334 0,714285714 0,564622169 0,86394926 0,090909091 
6650 0,742857143 0,598062014 0,887652272 0,1 
7800 0,771428571 0,632313911 0,910543232 0,111111111 
7900 0,8 0,667482248 0,932517752 0,125 
8020 0,828571429 0,7037122 0,953430658 0,142857143 
8148 0,857142857 0,741213973 0,973071741 0,166666667 
8235 0,885714286 0,78031034 0,991118231 0,2 
8542 0,914285714 0,821542607 1 0,25 
9990 0,942857143 0,865958621 1 0,333333333 

15544 0,971428571 0,916235383 1 0,5 
19624 1 1 1 1 

 

The mean remaining life function, versus the MTTF can be plotted. 
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Figure 117: MRL/MTTF for AUX 8000 

 

The transition window between 4000-6000 hours that where noticed in failure rate plot is 
clearly visible in this plot as well. 
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CHAPTER 6 JOINT DISTRIBUTION 
 

In this thesis so far, we have calculated and produced useful plots and results for the 

reliability analysis of a marine vessel. 

Both parametric and non parametric methods were used to produce more reliable results. 

The next step in this thesis is to calculate the joint distribution of all 6 categories of 

machinery, in order to export the total distribution of failures and relevant plots and results 

for a vessel as a whole.  

In cases such as this, it can be useful to characterize the system's behavior by fitting a 

distribution to the overall system and calculating parameters for this distribution. (Note: This 

is particularly useful in system simulation, since it significantly reduces simulation time.) 

This is equivalent to fitting a single distribution to describe RS

For this reason, a qualitative analysis must be performed.  

(t). In essence, it is like 

reducing the entire system to a component in order to simplify calculations. 

The main objective of system reliability is the construction of a model (life distribution) that 

represents the times-to-failure of the entire system based on the life distributions of the 

system’s elements. These elements can be components’ assemblies, sub-systems etc. 

6.1 APPROACHES OF SYSTEM RELIABILITY 
In theory and in praxis there are two basic approaches (categories of approaches): 

• Analytical calculations 

1. Static analytical calculations 

2. Time-dependent calculations 

• Simulation calculations 

Two types of analytical calculations can be performed using RBD (Reliability Block 

Diagrams) or FTA (Fault Tree Analysis): static reliability calculations and time-dependent 

reliability calculations. Systems can contain static blocks, time-dependent blocks or a mixture 

of the two (27). 

Static analytical calculations are performed on RBD or failure trees that contain static blocks. 

A static block can be interpreted either as a block with a reliability value that is known only 

at a given time (but the block's entire distribution is unknown) or as a block with a probability 
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of success that is constant with time. Static calculations can only be performed in the 

analytical mode and not in the simulation calculations. 

Time-dependent analysis approaches reliability as a function of time. That means that a 

known failure distribution is assigned to each component. The time scale can be any 

quantifiable time measure, such as years, months, hours, minutes or seconds, and also units 

that are not directly related to time. 

If one includes information on the repair and maintenance characteristics of the components 

and resources available in the system, other information can also be analyzed/obtained, such 

as i.e. system availability, maintability etc. This can be accomplished through discrete event 

simulation. 

In simulation, random failure times from each component's failure distribution are generated. 

These failure times are then combined in accordance with the way the components are 

reliability-wise arranged within the system. The overall results are analyzed in order to 

determine the behavior of the entire system. 

6.2 FAULT TREE ANALYSIS, RELIABILITY BLOCK DIAGRAMS 
 

Block diagrams are widely used in engineering in many different forms. Fault trees and 

reliability block diagrams are both symbolic analytical logic techniques that can be applied to 

analyze system reliability and related characteristics. They can also be used to describe the 

interrelation between the components and to define the system. 

When blocks are connected with direction lines, that represent the reliability relationship 

between these blocks, this is referred as reliability block diagram (RBD) (28).  

A fault tree diagram follows a top-down structure and represents a graphical model of the 

pathways within a system that can lead to a foreseeable, undesirable loss event (or a failure). 

The pathways interconnect contributory events and conditions using standard logic symbols 

(AND, OR, etc.). Fault tree diagrams consist of gates and events connected with lines.  

The most fundamental difference between fault tree diagrams and reliability block diagrams 

is that in an RBD, you work in the "success space", while in a fault tree you work in the 

"failure space". In other words, the RBD searches for success combinations while the fault 

tree searches for failure combinations. In addition, fault trees have traditionally been used to 

analyze fixed probabilities (i.e. each event that comprises the tree has a fixed probability of 

occurring) while RBDs may include time-varying distributions for the success (reliability 

equation) and other properties, such as repair/restoration distributions. In general (and with 
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some specific exceptions), a fault tree can be easily converted to an RBD. However, it is 

generally more difficult to convert an RBD into a fault tree, especially if one allows for 

highly complex configurations. 

 

6.3 BLOCKSIM MODEL OF RELIABILITY BLOCK DIAGRAM 
 

For the calculation of the total joint distribution, the software package Reliasoft BlockSim 

was used. 

This is a specialized software tool for system reliability, availability and related analyses. 

It also supports an array of reliability block diagram configuration and fault tree analysis 

capabilities, which turns to be a very useful tool for the needs of this thesis. 

Briefly this tool provides: 

• Identification of Critical Components 
• Reliability Optimization 
• System Maintainability Analysis (Determine Optimum Preventive Maintenance 

Intervals, etc.) 
• System Availability Analysis (Calculate Uptime, Downtime, Availability, etc.) 
• Throughput Calculation (Identify Bottlenecks, Estimate Production Capacity, etc.) 
• Resource Allocation for Maintenance Planning 
• Life Cycle Cost Analysis 

 

6.3.1 BUILDING THE JOINT DISTRIBUTION 
 

We have already calculated in Chapter 5 the distributions that fit adequately well each group 

of components. 

Our goal is to build a fault tree that will allow calculating the joint distribution of failures. 

Briefly, fault tree analysis is a deductive technique where we start with a specified system 

failure. The system failure is called the TOP event of the fault tree. The immediate casual 

events that either alone or in combination may lead to the TOP event are identified and 

connected to the TOP event through a logic gate. This procedure is continued deductively 

until we reach a suitable level of detail. The events in the lowest level are called the basic 

events of the fault tree (29). 

Fault tree analysis is a binary analysis. All events are assumed to occur or not to occur. 

Steps in a fault tree analysis (30) 

The following outline describes the steps to be taken in a fault tree analysis. 
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 Step 1: Define the TOP event.  

 

In our fault tree, the TOP event is considered to be any kind of failure, i.e. failure in Main 

Engine, Diesel Generators or Auxiliaries. In this thesis the performed functions and failures 

are not classified according to their severity or importance. Any kind of failure is considered 

as the actualization of the TOP event. 

 

 Step 2: Construction of the fault tree 

 

The fault tree construction always starts with the TOP event. We must thereafter try to 

identify all fault events that are the causes that result in the TOP event.  

In the fault tree that describes a failure in a vessel as a whole, the fault events are the failures 

distributions in all 6 subcategories that are already defined. 

As the object of this research is the probability of any failure, the TOP event is connected 

with the basic events with an OR gate. In this case, any failure that occurs in each 

subcategory, leads to a TOP event failure. 

Therefore the categories M/E 4000, M/E 8000, D/G, AUX 4000, AUX 6000, AUX 8000 are 

connected under OR gates. 

 

 Step 3: Qualitative analysis- Minimal cut sets 

 

A combination of fault events that will result in the TOP event is called a cut set. A cut set is 

said to be minimal, if the set cannot be reduced without losing its status as a cut set. 

In our fault tree we can trace possible cut sets that lead to a vessel’s failure. 

 

 Step 4: Quantitative analysis 

 

Quantitatively, we can calculate the probability of the top event, rank basic events by 

importance, extract reliability plots, such as failure rate, availability plots, etc. 

 

Following the steps described above, the following fault tree can be produced. 
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It is reminded that as top event is considered any failure that occurs, whether it comes from 

the Main Engine, Diesel Generators or the auxiliaries. 

The properties of the basic events have been defined according to the results of chapter 5. 

The Blocksim software was used for the significant advantages over similar fault tree 

analysis packages. In the properties of each event, the failure distribution can be defined 

accurately. 

 
For each event the failure distribution is used as input, therefore there is a greater accuracy in 

the probabilities calculation. 
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Also, the inspection interval can be defined; therefore each category has a priori a known 

inspection interval according to the manufacturer’s suggestion. 

Regarding the group of auxiliary equipment, there is an important detail that must be taken 

into account. 

During normal operation of a marine vessel, the Main Engine is, obviously, operating, so that 

the vessel moves. The electrical loads of a vessel are covered from the diesel generators. 

Usually a ship has 3 or 4 Diesel Generators and an emergency generator, which is capable to 

cover only the electric demands of safety equipment, such as radars, steering gear, etc. 

As a matter of good engineering practice, in order to achieve maximum efficiency of Diesel 

Generators, usually the operation of one Generator is capable to cover the normal electrical 

load of a vessel, and the second Generator to be in stand-by mode.  

For the operation of the auxiliary equipment, which we focus on, in this thesis, it is necessary 

that at least one Diesel Generator operates, so that to provide the necessary electrical energy. 

Therefore for the modeling of this modification in a fault tree, the Generators should operate 

for the auxiliaries to be able to operate.  

Based on this solution, the three Generators should be modeled under an AND gate (parallel 

operation), in series with the auxiliaries. 

Nevertheless, the above modification with three Generators in parallel operation gave the 

following results: 

Table 64: Failure probabilities for D/Gs 

t 
probability of failure for diesel 
generators in parallel operation 

1000 0,0091 
    2000 0,0629 
    3000 0,1659 
    4000 0,2966 
    5000 0,4319 
    6000 0,5563 
    7000 0,6623 
    8000 0,7479 
    9000 0,8147 
    10000 0,8654 
    11000 0,9032 
    12000 0,9309 
    13000 0,951 
    14000 0,9654 
    15000 0,9757 
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Table 65: Statistical parameters 

MTTF 
Mean 
availability 

Expected Number of 
Failures 

8900 hours 0,8938 1,69 
 

The above tables, which have been produced after simulating the fault tree with 3 Generators 

in parallel operation for 15.000 operating hours, indicate that the Mean Time To Failure is 

8900 operating hours. 

It is reminded that for the parts of Diesel Generators that we examine, the manufacturer 

suggests 4000 operating hours between inspections. Therefore, it is obvious that before an 

expected failure occurs, two inspections will have already taken place. 

It is concluded that the auxiliary equipment can be modeled in the fault tree under an OR 

gate, in series with the Main Engine and Diesel Generator. 

 

It was mentioned that a simulation for 15.000 hours was performed in the fault tree. 

To illustrate the simulation process, assume a single block with a failure and a repair 

distribution. The first event, , would be the failure of the component. Its first time-to-

failure would be a random number drawn from its failure distribution, . Thus, the first 

failure event, , would be at . Once failed, the next event would be the repair of the 

component, . The time to repair the component would now be drawn from its repair 

distribution, . The component would be restored by time . The next event 

would now be the second failure of the component after the repair, . This event would 

occur after a component operating time of after the item is restored (again drawn from 

the failure distribution), or at . This process is repeated until the end time. 
It is important to note that each run will yield a different sequence of events due to the 
probabilistic nature of the times. To arrive at the desired result, this process is repeated many 
times and the results from each run (simulation) are recorded. In other words, if we were to 

repeat this 1,000 times, we would obtain 1,000 different values for , or

. The average of these values, , 

would then be the average time to the first event, , or the mean time to first failure 
(MTTFF) for the component. Obviously, if the component were to be 100% renewed after 
each repair, then this value would also be the same for the second failure, etc (31). 
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6.3.2 BLOCKSIM RESULTS 
 

Following the described procedure, after simulating the fault tree for 15.000 operating hours, 

the following results were obtained. 

 
Figure 118: Unreliability function of joint distribution 
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Figure 119: Reliability function of joint distribution 

 
Figure 120: PDF of the joint distribution 
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Figure 121: Point availability function 

 

Figure 122: Point reliability function 
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Figure 123: Point Availability/ Reliability 

 

 

Figure 124: Mean availability function 
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Figure 125: Failure rate of the joint distribution 
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6.4.1 Mean Availability (All Events) 
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6.4.3 Point Reliability (Fail Events), R(t) 

This is the probability that the system has not failed by time t. This is similar to point 
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not have a single failure. Other (non-failure) downing events are ignored. During the 
simulation, a special counter again must be utilized. This counter is incremented by one (once 
in each simulation) if the system has had at least one failure up to 300 hours. Thus, the point 
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the number of simulations.  
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6.4.4 Expected Number of Failures, NF

This is the average number of system failures. The system failures (not downing events) for 
all simulations are counted and then averaged. 

   

6.4.5 Failure rate 
A function that describes the number of failures that can be expected to take place over a 
given unit of time. The failure rate function has the units of failures per unit time among 
surviving units, i.e. one failure per month. 

In the availability figure, at 4000, 6000, 8000 hours an inspection/ corrective maintenance  is 
carried out, if necessary. For this reason the availability at subject hours is increasing. 

The figures for reliability and availability, tabulated, are shown in Table 66: Reliabity/ 
Availability for joint distribution 

Table 66: Reliabity/ Availability for joint distribution 

T R(t) A(t) 
1000 0,5183 0,5183 
2000 0,148 0,148 
3000 0,033 0,033 
4000 0,0043 0,0123 
5000 5,40E-06 0,315 
6000 8,50E-07 0,317 
7000 0 0,1173 
8000 0 0,0473 
9000 0 0,129 

10000 0 0,24 
 

For the total joint distribution of failures, it is very useful to calculate the conditional 

probabilities of failures. 

Given that a vessel has run a failure-free time of T1 hours, what is the probability that a 

failure occurs in the next T2 hours? 

Using the conditional probabilities theory (Appendix A) the following table is produced. 

Table 67:   conditional probabilities 
calculations 

t probability of failure 
 500/500 0,6574 
 1000/1000 0,6844 
 2000/1000 0,7758 
 2000/2000 0,9632 
 3000/1000 0,836 
 3000/2000 0,9802 
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3000/3000 0,9982 
 4000/1000 0,8792 
 4000/2000 0,9892 
 4000/3000 0,9993 
 4000/4000 0,99995 
  

For example, if a vessel had operated 2000 hours without a failure, then the probability that a 

failure occurs in the next 1000 hours is 0.7758 or 77.6%. 

 

6.5 EXPANDED ALGEBRAIC SOLUTION 
 

Blocksim provides the complete algebraic solution for the calculation of the joint equations.  

In the case that the basic events are modified in series and the component failure 
characteristics can be described by distributions, the system reliability is actually time-
dependent (system reliability theory page 119). In this case, the system reliability can be 
written: 

 

The reliability of the system for any mission time can now be estimated. 

In the under examination fault tree, system reliability is: 

 

RSystem=+Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000.Raux 6000 
 
 

m/e 8000:    Normal   µ=4474,56; σ=2182,48 
Block Failure Distribution Legend 

aux 4000:    Loglogistic   µ=2103,9; σ=2155,06 
aux 6000:    Logistic   µ=2681,4; σ=1715,5 
aux 8000:    Logistic   µ=5157,5; σ=4198,6 
d/g 3:    Weibull   β=1,40425; η=3517,47; γ=0 
d/g 2:    Weibull   β=1,40425; η=3517,47; γ=0 
d/g 1:    Weibull   β=1,40425; η=3517,47; γ=0 

me 4000:    Weibull   β=1,55328; η=3955,87; γ=0 

Using the same procedure, the probability function and the failure rate equation can be 
calculated. 
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Pdf function: 

fSystem=+fme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000.Raux 6000+fm/e 8000.Rme 

4000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000.Raux 6000+fd/g 1.Rme 4000.Rm/e 8000.Rd/g 2.Rd/g 3.Raux 

4000.Raux 8000.Raux 6000+fd/g 2.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 3.Raux 4000.Raux 8000.Raux 6000+fd/g 

3.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Raux 4000.Raux 8000.Raux 6000+faux 4000.Rme 4000.Rm/e 8000.Rd/g 

1.Rd/g 2.Rd/g 3.Raux 8000.Raux 6000+faux 8000.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 

6000+faux 6000.Rme 4000.Rm/e 8000.Rd/g 1.Rd/g 2.Rd/g 3.Raux 4000.Raux 8000 
 

Failure rate function: 

frSystem=+frme 4000+frm/e 8000+frd/g 1+frd/g 2+frd/g 3+fraux 4000+fraux 8000+fraux 6000 
 

where fi , Ri and fri

6.6 ADVANTAGES OF THE ANALYTICAL METHOD 

 are, correspondingly, the probability density function, reliability function 
and failure rate function of each subgroup that have been calculated in chapter 5. 

The primary advantage of the analytical solution is that it produces a mathematical 
expression that describes the reliability of the system. Once the system's reliability function 
has been determined, other calculations can then be performed to obtain metrics of interest 
for the system. Such calculations include: 

• Determination of the system's pdf. 
• Determination of warranty periods. 
• Determination of the system's failure rate. 
• Determination of the system's MTTF. 

Some useful parameters for the total distribution can be found in table  68. 

Table 68 : Basic parameters for joint distribution 

MTTF Mean availability 
1178 0,2007 

 

Summarizing, the MTTF for a vessel as a whole is 1178 hours. This mean that in average 
every 1178 hours a failure will occur.  

The theoretical calculated MTTF for the joint distribution of failures, is lower even than the 
MTTF of the least reliable subcategory of equipments. This can be explained due to the 
probabilistic nature of the calculations/ simulation in the fault tree analysis. 
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CHAPTER 7 REPLACEMENT AND INSPECTION COST 
 

So far we have handled with probabilities of failure, reliability and relevant plots. In order 
that useful qualitative calculations are made, it is necessary for us to work on the cost that 
these failures lead to. 

Nowadays, the effort to reduce operating cost of a vessel is very important. The proper 
preventive maintenance policy can help to avoid unexpected failures and therefore 
unexpected cost. 

 To calculate the consequences of failures in a vessel, this effort commenced with the 
collection of data for the cost of each failure that appears in the collected life data. These 
costs where categorized according to each subgroup of equipment that constitutes a vessel. 

Next, through a research in a shipping company, there were collected the cost for spare parts,  
the required time to complete each repair and the required number of manpower to carry out 
subject repair. 

The below table indicates a sample of repairs that regard the Main Engine. 

Table 69: Indicative repairs and cost for M/E 

PART 
COST/UNIT 
($) 

REQUIRED 
TIME FOR 
REPAIRS 
(hours) 

TOTAL 
NUMBER OF  
MANPOWER 

T/C BLOWER 
SIDE BEARING 9300,00 5 2 
AIR STARTING 
VALVE 4000,00 1 1 
T/C PEDESTAL 
ROTOR 14000,00 12 2 
CYLINDER 
COVER 26000,00 10 3 
STUFFING BOX 25000,00 4 2 
CYLINDER 
LINER 19500,00 14 3 
PISTON 
CROWN 14300,00 14 3 
EXHAUST 
VALVE 16000,00 3 2 
PUNCTURE 
VALVE 3000,00 2 1 
PISTON RINGS  640,00 12 3 
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It is noted that for the replacement of broken equipment it is assumed that a failure had 
occurred and the replacement of subject equipment is necessary to bring the system back to 
operating condition. Additionally, in a case of a simple inspection, for example as required 
from the manufacturer’s planned maintenance system, the cost that the repair includes is the 
labor cost for a repair/ inspection.  

For each one of the 6 subgroups of a vessel, the average cost for replacement of the group’s 
equipment, along with the inspection cost were calculated. It is noted that the labor cost was 
calculated based on the realistic assumption of 50$/hour for each employer. 

The following table is clearly indicative. 

Table 70: average cost for repairs/ inspection (all values in USD) 

category 
M/E 
4000 

M/E 
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 

average 
replacement 
cost 7280 17136 3060 3950 3950 3950 
average 
inspection cost 733 1121 400 150 150 150 

 

In chapter 5 the following values for the expected MTTF for each category were calculated. 

Table 71: MTTF for each category 

category 
M/E 
4000 

M/E 
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 

MTTF 3548 4474 3232 1936 2668 5157 
 

7.1 COST CALCULATION THROUGH THE STATISTICAL RESULTS 
For a period of 1 year,  the overall operational days for a typical containership are about 280 
to 320, the expected cost for replacement and maintenance, along with 95% confidence 
intervals for these values can be found in Table 72. 

Table 72: replacement cost 

category 
M/E 
4000 

M/E 
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 

sum 

failures per year 2,001 1,587 2,197 3,667 2,661 1,377 
cost per 
replacement 7280 17135,71 3060 3950 3950 3950 
cost per inspection 733 1121 400 150 150 150 
replacement cost 14568 27193 6722 14486 10512 5438 78920 
lower CI 4883 14815 196 1192 865 447 22398 
upper CI 32618 39572 13249 27780 20158 10429 143806 
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Therefore the expected cost for replacement of failed equipment, based on the statistical 
analysis that was carried out, is about 79.000$, for a period of 1 year. 

 

7.2 INTERPRETING THE RESULTS FOR REAL- LIFE DATA 
 

The life data that were collected concern a fleet of 11 containerships, of which we examine 
and analyze the failures that occurred to the 7 vessels of them. 

In this attempt, the failures for each category will be sorted by the time of occurrence in 
connection to the suggested by manufacturer inspection time. For example, for M/E 4000 
hours’ category, the following graph indicates that 42% of the incidents occurred at time less 
than the suggested by the manufacturer, 46% of the incidents occurred within the time span 
and 12% of the equipment was inspected at least one time before failure. 

 

Figure 126: M/E 4000 maintenance status 

The same graphs for the other categories can be calculated. In the following graphs can be 
seen that the majority of the equipments under investigation, have at least one failure prior 
even of the first suggested inspection. 
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Figure 127: M/E 8000, D/G maintenance status 

     

        

Figure 128: AUX 4000, AUX 6000 maintenance status 
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Figure 129: AUX 8000 maintenance status 

Based on this analysis, the actual cost for repairs, for the under investigation period of 2 
years, for the 7 containerships: 

Table 73: Actual repair costs 

category M/E 4000 
M/E  
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 sum 

under 
maintenanced 
replacement 101920 719700 61200 51350 43450 126400 1104020 
lower CI 26840 364093 979 3575 3575 10075 409137 
upper CI 179300 972493 66341 83325 83325 234825 1619609 
worthwile, 
overmaintena
nced 
inspection 9533 4486 800 300 0 600 15719 
Using the same assumption, but cutting down the suggested inspection time to the 75% of the 
proposed by the manufacturer time, we can recalculate these costs. 

Table 74: Repair cost  

category 
M/E 
4000 

M/E  
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 sum 

under maintenanced 
replacement 72800 565478 45900 43450 39500 94800 861929 

lower CI 24400 308078 1335 3575 3250 7800 348439 

upper CI 163000 822878 90465 83325 75750 181800 1417219 

worthwile, 
overmaintenanced 
inspection 10266 11214 5600 300 150 1650 29181 
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The replacement cost per ship per year in the first case was 78.800$/ship/year and in the 
second case was 61.500$/ship/year. 

In proportion, the inspection cost was raised from 1150$/ship/year to 2100$/ship/year. 

If we recalculate these costs, but by cutting down the inspection time to the half of the 
proposed of the manufacturer we get: 

Table 75: Repair cost 

category 
M/E 
4000 

M/E  
8000 D/G 

AUX 
4000 

AUX 
6000 

AUX 
8000 sum 

under 
maintenanced 
replacement 36400 325578 33660 27650 19750 47400 490439 

lower CI 12200 177378 979 2275 1625 3900 198358 

upper CI 81500 473778 66341 53025 37875 90900 803420 

worthwile, 
overmaintenanced 
inspection 13933 26914 7200 900 900 3450 53298 

 

The replacement cost per ship per year in this case reduced to 35000$/ship/year and the 
inspection cost was raised to 3800$/ship/year. 

A plot that describes the relation between inspection and replacement cost , in regards to the 
reduction of inter inspection time can be produced. 
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Figure 130: Replacement vs. inspection cost 

 

In Figure 130, t is the time for inspection for each component as it is proposed by the 
manufacturer. We can see how the replacement cost decreases as the inspection is carried out 
more frequently. 

Although the inspection cost increases, almost more than 3 times in the case of cutting down 
inspection time to half,  since the absolute value is small, compared to the replacement cost, 
the overall cost is drastically decreasing. 

Obviously the ideal case would be to perform a continuous inspection, but this is impossible, 
due to the large amount of equipment and machinery, that has to be inspected. For reference 
each one of the containerships has onboard at least 210 electric motors of different sizes. It is 
clear, that even if we reduce the inspection time of the electric motors from 4000 to 2000 
operating hours, it will become very difficult to perform this type of remedial actions. 
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CONCLUSIONS 
 

In this thesis, so far, we have dealt with reliability analysis of real life data which concerns 
failures of Main Engine, Diesel Generators and Auxiliary Equipment, taken from a fleet of 
containerships. These failures where categorized according to the suggested by the 
manufacturers, inspection time. Hereafter the distributions that describes the failures where 
calculated and relevant plots where produced. 

In order to simplify calculations, the joint distribution of failures, for a vessel as a whole was 
calculated. Finally it was calculated the cost for necessary repairs based on the theoretical 
analysis and this cost was compared to the cost from the real life data. 

This calculation of the cost could be considered as a qualitative comparison of the methods 
that were used in this research. The difference between the expected cost based on theoretical 
expected number of failures and the real cost that was calculated according to real- in situ 
data, was less than 1%. For the specific data of failures the present analysis could be 
considered as the proper approach to this subject. 

However in real life situations, availability is often determined more by spares holdings and 
administrative times than by predictable factors such as mean repair times. Therefore 
predictions and models of system reliability and availability should be used as a form of 
design review or in the marine industry as a form of annual budget and planning review. 

The consequences of failures in a vessel, apart from the repairs cost, could be the loss of hire 
in the case of a significant failure which could immobilize the vessel. The target is to plan the 
repairs to be carried out during a scheduled dry-docking or during anchorage. 

This research can be considered as a guide for step by step reliability analysis, for a future 
collection of similar data. In this way and according to the primary laws of statistics, as the 
sample number increase, more reliable results could be extracted and expanded for other 
types of ships. 

The major difficulty in similar attempts, is the collection of failures data. For example, the 
OREDA database includes information for 24000 offshore equipment units, involving more 
than 33000 failures. More analytical calculations could be performed, in case that a larger 
amount of such data was available. For example, a Failure Mode, Effects and Criticality 
Analysis could be carried out. That could lead to the calculation of severity of consequences 
for various failures.  

Nevertheless, the creation of a national database, under the supervision of a University or any 
other authority, in which all the concerned could register failures data for marine industry, is 
a significant step for the actualization of such analyses. The tremendous number of vessels, 
operating under Greek flag or under Greek management, provides a guarantee that a future 
effort of this kind will be successful, even if only the support of the domestic shipping 
companies is granted.   
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 APPENDIX A 
 

Distributions statistical properties 

 

For the distributions we used in this thesis, in this appendix can be found the statistical 
properties. 

Weibull distribution 

The Mean or MTTF 

The mean, , (also called MTTF or MTBF by some authors) of the Weibull pdf is given by: 

 

where is the gamma function evaluated at the value of . The gamma 
function is defined as: 

 

The Median 

The median, , is given by: 

 

The Mode 

The mode, , is given by: 

 

The Standard Deviation 

The standard deviation, σT

 

, is given by: 
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The Weibull Reliability Function 

The equation for the three-parameter Weibull cumulative density function, cdf, is given by: 

 

Recalling that the reliability function of a distribution is simply one minus the cdf, the 
reliability function for the three-parameter Weibull distribution is given by: 

 

The Weibull Conditional Reliability Function 

The three-parameter Weibull conditional reliability function is given by: 

 

or: 

 

These equations gives the reliability for a new mission of t duration, having already 
accumulated T hours of operation up to the start of this new mission, and the units are 
checked out to assure that they will start the next mission successfully. It is called conditional 
because you can calculate the reliability of a new mission based on the fact that the unit or 
units already accumulated T hours of operation successfully. 

The Weibull Reliable Life 

The reliable life, TR

 

, of a unit for a specified reliability, starting the mission at age zero, is 
given by: 

This is the life for which the unit will be functioning successfully with a reliability of R(TR). 
If R(TR

The Weibull Failure Rate Function 

) = 0.50 then , the median life, or the life by which half of the units will 
survive. 

The Weibull failure rate function, λ(T), is given by: 
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Normal distribution 

The Normal Mean, Median and Mode 

The normal mean or MTTF is actually one of the parameters of the distribution, usually 
denoted as μ. Since the normal distribution is symmetrical, the median and the mode are 
always equal to the mean, μ = = . 

The Normal Standard Deviation 

As with the mean, the standard deviation for the normal distribution is actually one of the 
parameters, usually denoted as σ

The Normal Reliability Function 

T. 

The reliability for a mission of time T for the normal distribution is determined by: 

 

There is no closed-form solution for the normal reliability function. Solutions can be obtained 
via the use of standard normal tables. Since the application automatically solves for the 
reliability, we will not discuss manual solution methods. 

The Normal Conditional Reliability Function 

The normal conditional reliability function is given by: 

 

Once again, the use of standard normal tables for the calculation of the normal conditional 
reliability is necessary, as there is no closed form solution. 

The Normal Reliable Life 

Since there is no closed-form solution for the normal reliability function, there will also be no 
closed-form solution for the normal reliable life. To determine the normal reliable life, one 
must solve: 

http://www.weibull.com/LifeDataWeb/the_normal_distribution.htm�
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for T. 

The Normal Failure Rate Function 

The instantaneous normal failure rate is given by: 

 

 

Log logistic distribution 

Mean, Median and Mode 

The mean of the loglogistic distribution, , is given by: 

 
  Note that for σ 1, does not exist. 
  The median of the loglogistic distribution, , is given by: 

 
   The mode of the loglogistic distribution, , if σ < 1, is given by: 

 

The Standard Deviation 

The standard deviation of the loglogistic distribution, σT

 

, is given by: 

Note that for σ 0.5, the standard deviation does not exist. 

The Loglogistic Reliability Function 

The reliability for a mission of time T, starting at age 0, for the loglogistic distribution is 
determined by: 

 
where: 
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The unreliability function is: 

 

The Loglogistic Reliable Life 

 
The loglogistic reliable life is: 

 

The Loglogistic Failure Rate Function 

The loglogistic failure rate is given by: 
  

 
 

Logistic distribution  
The logistic mean or MTTF is actually one of the parameters of the distribution, usually 
denoted as μ. Since the logistic distribution is symmetrical, the median and the mode are 
always equal to the mean, μ =  

The Logistic Standard Deviation 

The standard deviation of the logistic distribution, σT

 

, is given by: 

The Logistic Reliability Function 

The reliability for a mission of time T, starting at age 0, for the logistic distribution is 
determined by: 

 

or: 
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The unreliability function is: 

 

where: 

 

The Logistic Conditional Reliability Function 

The logistic conditional reliability function is given by: 

 

The Logistic Reliable Life 

The logistic reliable life is given by: 

 

The Logistic Failure Rate Function 

The logistic failure rate function is given by: 
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