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Abstract  

In the design of a vehicle, the engineer today more than ever has to perform a balancing act of 

sorts, in an attempt to satisfy the requirements of safety and practicality but also minimize the 

constructional and operational costs. Efficiency goes hand in hand with optimization and the 

empirical rules of designing have now been augmented by automated optimization 

procedures.  

The complexity of vehicle dynamics problems increases the need for deeper comprehension of 

the complex theory involved in the movement of a vehicle and the interaction with the 

environment it moves in. A solid knowledge of vehicle dynamics as well as vibration analysis is 

required. Moreover, the theoretical approach to the solution of such problems can be 

enhanced greatly by creating appropriate models which represent the vehicle and its behavior 

in simulated conditions. The engineer, with the correct implementation and use of such a 

model is able to predict the behavior of a vehicle, given the applicable conditions, and also 

optimize certain vehicle parameters in order to achieve a desired goal. 

The objective of this study is to examine certain aspects of a tri-axle tank-truck’s dynamic 

behavior under different loading conditions and modify this behavior in a desirable way by 

optimizing a number of vehicle parameter values. The loading cases examined represent 

typical conditions for such a vehicle in real-life practice.  

In particular, it is attempted to determine an optimum set of values from within an allowable 

range for the vehicle’s suspension characteristics in order to minimize the tank’s roll angle 

time-response. Different patterns of filling the tank will be examined and the movement of the 

vehicle will be simulated for different types of roads. The optimization of the vehicle 

parameters will be take place using both a deterministic quasi-Newton line search method 

(BFGS) and a stochastic genetic algorithm. The two methods will be compared to each other 

with regards to global search capabilities and overall convergence characteristics. In the 

process useful conclusions will be drawn regarding both the nature of the problem as well as 

the nature of the algorithms. 
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Περίληψη 

Κατά τον σχεδιασμό ενός οχήματος, ο μηχανικός σήμερα πρέπει να επιτελέσει το δύσκολο έργο 

της εύρεσης μίας ισορροπίας μεταξύ των απαιτήσεων ασφάλειας και πρακτικότητας με την 

ελαχιστοποίηση του κατασκευαστικού και λειτουργικού κόστους. Η αποδοτικότητα είναι 

συνυφασμένη με την βελτιστοποίηση και οι εμπειρικοί κανόνες σχεδίασης έχουν πλέον 

επαυξηθεί με αυτοματοποιημένες διαδικασίες βελτιστοποίησης. 

Η πολυπλοκότητα των προβλημάτων της δυναμικής οχημάτων αυξάνει την ανάγκη για 

βαθύτερη κατανόηση της σύνθετης θεωρίας που αναλύει την κίνηση ενός οχήματος και την 

αλληλεπίδρασή του με το περιβάλλον στο οποίο κινείται. Η στιβαρή γνώση δυναμικής 

οχημάτων και ανάλυσης κραδασμών είναι απαραίτητη. Επιπλέον, η θεωρητική προσέγγιση για 

την λύση τέτοιων προβλημάτων μπορεί να ενισχυθεί σημαντικά με την δημιουργία κατάλληλων 

μοντέλων που αντιπροσωπεύουν το όχημα και την συμπεριφορά του σε συνθήκες 

προσομοίωσης . Ο μηχανικός, με την σωστή εφαρμογή και χρήση ενός τέτοιου μοντέλου, είναι 

σε θέση να προβλέπει την συμπεριφορά του οχήματος για δεδομένες συνθήκες, και να 

βελτιστοποιεί παραμέτρους του οχήματος ώστε να επιτυγχάνεται ένας επιθυμητός στόχος. 

Ο σκοπός της παρούσας εργασίας είναι να εξετάσει συγκεκριμένα χαρακτηριστικά της 

δυναμικής συμπεριφοράς ενός τριαξονικού βυτιοφόρου οχήματος υπό διαφορετικές συνθήκες 

φόρτωσης και να τροποποιήσει την δεδομένη συμπεριφορά βελτιστοποιώντας τις τιμές 

κάποιων από τις παραμέτρους του οχήματος. Οι περιπτώσεις φόρτωσης που εξετάζονται 

αντιπροσωπεύουν τυπικές συνθήκες ρεαλιστικής πρακτικής για ένα τέτοιο όχημα. 

Συγκεκριμένα, επιχειρείται να προσδιοριστεί ένα βέλτιστο σύνολο τιμών, εντός επιτρεπτών 

ορίων, για τα χαρακτηριστικά των αναρτήσεων του οχήματος έτσι ώστε να ελαχιστοποιείται η 

απόκριση της γωνίας στρέψης του βυτίου. Εξετάζονται διαφορετικές περιπτώσεις πλήρωσης 

του βυτίου ενώ η κίνηση του οχήματος προσομοιώνεται σε διάφορα είδη οδοστρώματος. Η 

βελτιστοποίηση των εν λόγω παραμέτρων του οχήματος πραγματοποιείται με την χρήση 

ντετερμινιστικού quasi-Newton αλγορίθμου αναζήτησης γραμμής (BFGS) και με την χρήση 

στοχαστικού γενετικού αλγορίθμου. Μεταξύ των δύο μεθόδων πραγματοποιείται σύγκριση όσον 

αφορά της ικανότητες αναζήτησης του ολικού ελαχίστου της κάθε μίας αλλά και των 

γενικότερων χαρακτηριστικών της σύγκλισης. Από αυτήν την διαδικασία εξάγονται χρήσιμα 

συμπεράσματα για την φύση του προβλήματος και την φύση των αλγορίθμων. 
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C h a p t e r  1  

 

1 Optimizat ion 

1.1 The general concept of optimization in engineering 

Optimization is the process of finding the best solution from a set of feasible solutions to a 

given problem. The concept of optimization is closely connected with engineering since there 

is always the demand of designing and creating something new, such as a structure or a 

machine, which besides serving the initial purpose for which it was created, is even more 

functional, safer and more economical than the previous one.  

Since the beginning of engineering history, optimization has been a very important priority. 

Though, for lack of optimization algorithms or computer methods available, optimization was 

mostly done empirically. It was not until a few decades ago, that a breakthrough in modeling 

and analysis by numerical methods took place which in combination with the rapid 

development of computer technology made optimization a vital part of today’s modern 

designing. The engineer is now able to use more advanced algorithms and techniques to solve 

even more complicated problems which in turn helps design better products.  

In order to obtain a usable solution to an optimization problem two steps are required. The 

first step is the mathematical formulation of the optimization problem with the definition of 

the design variables, the objective function and the corresponding constraint functions. The 

second step is the selection and computer implementation of an optimization algorithm 

appropriate for the specific type of problem which will allow the evaluation of the available 

solutions and search for better ones. 
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An engineer uses their experience to formulate the problem, striking a balance between 

accuracy and solvability, but also to choose and implement the right optimization algorithm 

for the specific type of problem. Only then is the solution fast but also reliable. 

1.2 Mathematical formulation of a single-objective optimization problem 

The generic Single-objective Optimization Problem (SOP) of any type can be formulated in the 

same sense as any mathematical optimization. Essentially, this means minimizing or 

maximizing a real-value multivariable function by systematically choosing the values of its 

variables from within a set of allowed values.  

Let X  be the design space and 1[ ,..., ] ,T

n
x x x x X=  ∈
� �

 be a vector of the design variables. The 

design space X  can be continuous or discrete. Let ( ) : n
f x X ⊆ →
�

� �  be the objective 

function, which we are trying to maximize or minimize.  

Since  

 arg max ( ) arg min( ( ))
x Xx X

f x f x
∈∈

= −
��

� �
 (1.1) 

all optimization problems can be considered to be equivalent to minimization problems and 

then it is safe to say that the generic mathematical formulation is as follows: 

 1min ( ) , [ ,..., ] , :T n

n
x X

f x x x x X f X
∈

   = ∈   ⊆ →�

� �
� �  (1.2) 

subject to: 

 ( ) 0, p
g x g≤   ∈
�

�  (1.3) 

 ( ) 0, q
h x h=   ∈
�

�  (1.4) 

where: 

• 1( ) [ ( ), ..., ( )]
T

pg x g x g x=   
� � �

 are the p  inequality constraints 

• 1( ) [ ( ), ..., ( )]
T

qh x h x h x=   
� � �

 are the q  equality constraints 

• the condition that x X∈
�

, imposes limitations on the range of values that each design 

variable can take of the form : , 1,...,
L U

j j jx x x j n< <   =  where ,
L U

j jx x the lower and 
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upper limit respectively of the design variable 

addition to those imposed by Eq.

Every equality constraint reduces the number of design variables (dimensionality of the 

problem) by one and every inequality constraint reduces the size of the available search space 

but without altering its dimensional

1.2.1 Mathematical definitions

Convex Set: A set C in a real

C and all t  in the interval [0, 1], the point

 

is in C. In other words, every point on the 

Eq.(1.5) ). 

Figure 

Convex Function: A real-valued 

some vector space) is called convex, concave upwards, concave up or convex cup, if for any two 

points x  and y  in its domain

In other words, a function is convex 

above the graph) is a convex set

 

upper limit respectively of the design variable 
j

x . These inequality constraints are in 

addition to those imposed by Eq.(1.3) but can be treated in the same way.

Every equality constraint reduces the number of design variables (dimensionality of the 

problem) by one and every inequality constraint reduces the size of the available search space 

but without altering its dimensionality. 

definitions 

real or complex vector space is said to be convex if, for all 

[0, 1], the point 

( )1 -        t x t y+  

is in C. In other words, every point on the line segment connecting 

 

Figure 1.1 (a) convex and (b) non-convex (i.e. concave) set.

valued function f defined on an interval (or on any 

) is called convex, concave upwards, concave up or convex cup, if for any two 

domain C and any t  in [0, 1], 

( (1 ) ) ( ) (1 ) ( )f t x t y t f x t f y⋅ + − ⋅ ≤ ⋅ + − ⋅  

In other words, a function is convex if and only if its epigraph (the set of points lying on or 

convex set (Figure 1.2). 

 

3 

. These inequality constraints are in 

but can be treated in the same way. 

Every equality constraint reduces the number of design variables (dimensionality of the 

problem) by one and every inequality constraint reduces the size of the available search space 

is said to be convex if, for all x  and y in 

(1.5) 

x  and y  is in C (see 

 

convex (i.e. concave) set. 

(or on any convex subset of 

) is called convex, concave upwards, concave up or convex cup, if for any two 

( (1 ) ) ( ) (1 ) ( )    (1.6) 

(the set of points lying on or 
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Figure 1.2 Convex function and its epigraph. 

A function f  is said to be concave if f−  is convex. 

Feasible set or Feasible region: Feasible is the set F  of design vectors x which satisfy the 

constraints of the optimization problem of Eq.(1.2). F  is a subset of X � 

{ | ( ) 0 | ( ) 0}F x X g x h x= ∈ ≤ =    (1.7) 

F X⊆      (1.8) 

If all constraints are convex functions and the objective is also a convex function (in 

minimization) or concave (in maximization) then the feasible region is also convex. 

Global extrema: A real function has a global (or absolute) maximum point at *x  if  

( ) ( )*    f x f x x X≥ ∀ ∈ .     (1.9) 

Similarly, a real function has a global (or absolute) minimum point at *x  if  

( ) ( )*    f x f x x X≤ ∀ ∈ .     (1.10) 

Local extrema: A real function has a local maximum point at *x  if there exists some 0ε >  

such that 

( ) ( )*   , * ,f x f x x x x Xε≥    − <    ∈ .     (1.11) 

In other words, in a neighborhood of *x , the size of which is determined by the value of ε, *x  

acts like a global maximum. 

Similarly, a real function has a local minimum point at *x  if there exists some 0ε > such that 

( ) ( )*   , * ,f x f x x x x Xε≤    − <    ∈ .    (1.12) 

Critical points (Fermat’s theorem) 

Let ( ) : n
f x A ⊆ →
�

� �be a function and suppose that 0
x A∈  is a local extremum of f . If f  

is differentiable at 0
x  then 0

( ) 0f x∇ =  

The contrapositive of this statement is:  

If f  is differentiable at 0
x A∈  and 0

( ) 0f x∇ ≠  then 0
x  is not an extremum of f . 
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In essence this means that a local optimum can only be found where 0
( ) 0f x∇ = . 

The points 0
x A∈  for which 0

( ) 0f x∇ =  holds, are called critical points. 

Positive definite matrix 

An n n×  real symmetric matrix M is positive definite if 0T
z Mz >
� �

for all non-zero vectors z with 

real entries, where Tz denotes the transpose of z  

Positive semi-definite matrix 

An n n×  real symmetric matrix M is positive semi-definite if 0T
z Mz ≥
� �

for all non-zero vectors 

z with real entries. 

Negative definite matrix 

An n n×  real symmetric matrix M is negative definite if 0T
z Mz <
� �

for all non-zero vectors z

with real entries. 

Negative semi-definite matrix 

An n n×  real symmetric matrix M is negative semi-definite if 0T
z Mz ≤
� �

for all non-zero vectors 

z with real entries. 

Second (partial) derivative test 

Let ( ) : n
f x A ⊆ →
�

� �be a twice differentiable function and suppose that 0
x A∈  is a critical 

point of f (for critical points 0
( ) 0f x∇ =  must hold) 

If H  is the Hessian matrix (square matrix of second-order partial derivatives) of f then: 

• If H is positive definite at 0
x then 0

( )f x is a local minimum 

• If H is negative definite at 0
x then 0

( )f x is a local maximum 

• If H has both positive and negative eigenvalues then 0
x is a saddle point for f  (this is true 

even if x is degenerate).  

• Otherwise the test is inconclusive. 
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Quadratic Form 

A quadratic form is any function ( ) : n
f x →
�
� �of the form: 

 
1

( )
2

Tf x x Ax bx c = − +
� � � �

 (1.13) 

where A is an n n×  matrix, x
�

and b
�

are vectors of length nand c is a scalar value.  

Any quadratic form with a symmetric and positive definite A  will have a global minimum, and 

no local minima. The gradient and Hessian of the quadratic form f of Eq.(1.13) will be 

 ( )f x Ax b∇ = −
�� �

 (1.14) 

 
2 ( )f x A∇ =
�

 (1.15) 

The use of the present form in optimization is that finding the minimum (or maximum) any 

quadratic function can be equivalent to solving the system ( ) 0f x Ax b∇ = − =
�� �

 using any 

available numerical method. 

1.3 Optimization algorithms 

In an optimization problem, the types of mathematical relationships among the objective 

function, the constraints and the design variables, determine the solvability of the problem, 

the type of optimization algorithm that can or should be used and the confidence that the 

optimum solution obtained is in fact the global optimum. The linearity or not of the problem, 

its dimensionality, the convexity or concavity of the solution space and the continuity or not of 

the design space, all demand different approaches and characteristics from a method in order 

to locate the global optimum. The use of the right algorithm is vital in obtaining a fast and 

usable solution to any optimization problem. 

One very basic categorization among the optimization methods is between: 

• deterministic (or mathematical) methods and  

• probabilistic (or stochastic) methods. 

A deterministic algorithm is an algorithm whose each state is solely determined by the 

previous one and nothing else. Given a particular input, it will always produce the same output 

and the intermediate sequence of states will always be the same. This family of algorithms is 
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used in optimization for every scientific field such as mathematics, economics, logistics, etc. 

The search is based on the use of derivatives of the objective function or approximations 

thereof and basic infinitesimal calculus to locate local extrema in the objective function.  

Their main advantage is that convergence is rather quick compared to the other types of 

methods. However, the results are not satisfactory when it comes to non-convex functions that 

have more than one local extrema. The final result is determined by the initial point of the 

optimization process and since the search is based on theorems of differentiable real functions 

which have local validity, these algorithms are unable to qualitatively distinguish local from 

global extrema and are therefore easily “trapped” in local extrema. Consequently, these 

algorithms perform very well for finding the global extremum in convex problems or finding 

fast the nearest local optimum. 

On the other hand, stochastic methods insert probabilistic elements, either in the problem 

data (the objective function, the constraints, etc.), in the algorithm itself (random parameter 

values, random choices, search directions, etc.), or in both. This makes the final result 

independent from the initial point or points of the optimization and therefore the algorithm is 

less likely to be trapped in local optima. They are easier to program as they require less or no 

mathematical background knowledge compared to deterministic methods and can be more 

easily modified to be used for different problems or kinds of problems. However they lack in 

speed compared to deterministic algorithms. 

1.3.1 Line search methods 

The basic principle of an iterative line search method is in every iteration to improve the 

current position in the multi-dimensional solution space by taking a step of a certain length 

and toward a certain direction. The general formulation of every line search method can be 

described as follows: 

 
1n n n n

x x a p
+ = + ⋅
� � �

 (1.16) 

where: 

n is the number of the iteration (not an exponent) 

x
�

is the position in the solution space 

a is the step size and  

p is the search direction  



8 Chapter 1 

 

 

There are many different methods in the line search family. Their basic difference lies 

primarily in the way that the search direction is estimated in every iteration and secondarily in 

the estimation of the step length. Some methods maintain a constant step size throughout all 

the iterations and others estimate a different one after the search direction has been selected.  

The selection of a constant value for the step size may obviously the simplest but not the 

optimum. A small constant value for a  will increase the possibility that the algorithm will 

eventually converge but the process will be slow, whereas with a large step size the process 

moves faster but convergence may not be achieved. In any case, once the search direction has 

been selected, there is one value for the step size which minimizes what is now a one-

parameter optimization problem within the current iteration. By estimating this new step size 

in every iteration one can achieve the maximum gain, however this increases the 

computational cost since the minimization problem min ( )n n n

a
f x a p+ ⋅  must be solved for 

n
a  every time, at least to some extent. Especially in non-linear problems this can be rather 

time consuming while depending on the method and the way that the search direction is 

estimated, this process might even be unnecessary or harmful to convergence.  

The most commonly used methods of this family are the steepest descent method, the Newton 

method, many of the latter’s variations (quasi-Newton) such as the BFGS, the method of 

conjugate gradients, etc. 

Steepest descent method 

In the steepest descent method, the search direction of Eq.(1.16) is selected to be that of the 

most rapid decrease of the objective function. This can be easily proved to be the negative 

gradient of the objective function in the current position, i.e. 

 
1 2

( ) , ,...,n n

n

f f f
p f x

x x x

 ∂ ∂ ∂
= −∇ = − ∂ ∂ ∂ 

� �
 (1.17) 

This means that in each iteration it is necessary to calculate the first derivative of the objective 

function and that the search direction of every iteration is orthogonal to the contour lines of 

the minimization function.  

This method can be used for spaces of any number of dimensions, even in infinite-dimensional 

ones. In the latter case the search space is typically a function space, and one calculates the 

Gâteaux derivative of the functional to be minimized to determine the descent direction. 
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The weaknesses of the algorithm include that every search direction is orthogonal to the 

previous one which does not inhibit the algorithm from searching the same directions more 

than once. Therefore, it can take a lot of iterations to converge towards a local minimum if the 

curvature of the function in different directions is very different and in that case the method 

appears to be moving in “zigzag”. Moreover, finding the optimal step size can be time-

consuming, especially for non-linear problems, whereas using a fixed step size can yield poor 

results. 

1. Initialization: Initialize 0x
�

, 
0

a , 0n =  

2. Find search direction:  Calculate 
( )

( )

n
n

n

f x
p

f x

−∇
=
∇

�
�

� . If ( )n
f x ε∇ ≤
�

, stop 

3. New solution: 
1n n n n

x x a p
+ = + ⋅
� � �

  

4. Check new Solution:  - If 
1

1( )n

n n
f x f f

+
+= ≥

�
, reduce 

n
a and Go to step 3 

                                    - If 
1

1( )n

n n
f x f f

+
+= <

�
, 1n n= +  and Go to step 2 

Figure 1.3: Algorithmic steps of a basic steepest descend method. 

Alternatively, the step size n
a  can be explicitly calculated in every iteration instead of 

manually selected and modified. The minimization problem min ( )n n n

a
f x a p+ ⋅  must be 

solved for n
a  (step 2b) and is then inserted in the formula of step 3 of Figure 1.3. This produces 

a greater need for calculations within each iteration but a smaller number of iterations is 

needed. In that case the 4th step of the algorithm is redundant.   

Newton method 

Newton's method assumes that the minimization function can be locally approximated as a 

quadratic Taylor expansion in the region around the optimum, and uses the first and second 

derivatives to find the critical point. For 1a =  the approximation can be written: 

 21
( ) ( ) ( ) ( )

2

T T
n n n n n n n nf x p f x p f x p f x p+ ≈ + ⋅∇ + ⋅ ⋅∇ ⋅
� � � � � � � �

 (1.18) 

In order to find a local optimum the first derivative of ( )n n
f x p+
� �

 must be equal to zero and 

therefore: 
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 2( )
( ) ( ) 0

n n
n n n

n

f x p
f x f x p

p

∂ +
= ∇ +∇ ⋅ =

∂

� �
� � �

�  (1.19) 

This means that as long as 
2 ( )n
F x∇
�

 (Hessian matrix) is positive definite it can be inversed and 

the search direction can be calculated as follows: 

 ( ) ( )1 1
2

( ) ( ) ( )
n n n n n

p f x f x B f x
− −

= − ∇ ∇ = − ∇
� � � �

 (1.20) 

The fact that the Hessian matrix, which contains second derivatives of the objective function, 

is needed increases the computational cost of this method. The step size is of secondary 

importance in this method and should be selected to be 1a =  unless the reduction in the 

objective function value is not large enough, in which case it should be properly adjusted to a 

smaller value. 

Quasi-Newton methods 

In quasi-Newton methods the Hessian matrix of second derivatives of the function to be 

minimized (matrix nB  in Eq. (1.20)) does not need to be computed at any stage. The Hessian is 

updated by analyzing successive gradient vectors instead. Quasi-Newton methods are a 

generalization of the secant method to find the root of the first derivative for multidimensional 

problems. In multi-dimensions the secant equation is under-determined, and quasi-Newton 

methods differ in how they constrain the solution.  

The BFGS method is one of the most popular members of this class and it was named by the 

initials of the researchers who first proposed it (Broyden, Fletcher, Goldfarb, Shanno). The new 

approximated Hessian to be used in Eq.(1.20) in order to find the new search direction for this 

method has to be symmetric and positive definite and is proposed to be: 

 
1

T T

T T

n n n n n n
n n

n n n n n

B s s B y y
B B

s B s y s

+ = + +
� � � �

� � � �  (1.21) 

As long as 0B is symmetric, so are all the produced matrices. For the creation of nB  two 

methods are generally effective. Either the actual Hessian matrix can be used or an identity 

matrix multiplied by a scalar factor. If Eq.(1.21) is used to produce the matrix 1nB + , that matrix 

must then be inversed to be applied in the form of Eq. (1.20). Instead, another calculation can 

be used in order to produce the inverse matrix in one step.: 
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 ( ) ( )1 T T Tn n n n n n n n n n nH I r s y H I r y s r s s+ = − − +
� � � � � � � � �

 (1.22) 

where: 

 1n n n
s x x

+= −
� � �

 (1.23) 

 
1( ) ( )n n n

y f x f x
+=∇ −∇

� � �
 (1.24) 

 
1
T

n

n n
r

y s
=

�
� �  (1.25) 

The basic algorithmic steps of the BFGS method are summarized in Figure 1.4 

1. Initialization: Initialize 0x
�

, 
0H , 0n = , 0ε >  

2. Find search direction: Calculate ( )n n n
p H f x= − ⋅∇
� �

. If ( )n
f x ε∇ ≤
�

, stop 

3. Find step size: Calculate 
n

a (according to Wolfe conditions) 

4. New solution: 
1n n n n

x x a p
+ = + ⋅
� � �

 , 1n n= +  

5. Intermediate calculations: 
1n n n

s x x
+= −

� � �
, 

1( ) ( )n n n
y f x f x

+=∇ −∇
� � �

, 

1
T

n

n n
r

y s
=

�
� �  

6. Hessian matrix: ( ) ( )1 T T Tn n n n n n n n n n nH I r s y H I r y s r s s+ = − − +
� � � � � � � � �

 

7. Update and loop: 1n n= + . Go to step 2 

Figure 1.4 Algorithmic steps of a basic BFGS method. 

1.3.2 Evolutionary Algorithms (EAs) 

Evolutionary Algorithms are probably the most important member of stochastic methods. 

They have been used with great success in a wide area of scientific fields such as engineering, 

biology, economics, operations research, etc. EAs are based on the model of natural evolution 

as proposed by Charles Darwin. They are categorized as heuristic algorithms, from the Greek 

work “ευρίσκω” which means “find”, in the sense no mathematical proof can be provided that 

such a process provides better solutions, although better solutions are indeed produced. The 

theory and its implementation include imitations of biological processes such as natural 

selection, adaptation and survival of the fittest. An initial population of individuals, each one 
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representing a candidate solution, undergoes a series of evaluations and recombinations, 

gradually evolving to an optimum (see also section 1.3.3). 

The main features of EAs involve the lack of need for derivatives and the random selection of 

the design variables vector. Most mathematical methods conduct their search by calculating 

the gradient of the objective function and moving towards the direction of decreasing values. 

In EAs each member of the population which is a candidate solution for the optimization 

problem, is directly tested on the fitness function. In the case of large-scale and highly non-

linear problems such as those encountered in structural optimization or many other areas, the 

calculation of the gradient is a rather time consuming process. EAs, by circumventing this 

need, are able to significantly expedite each iteration. The progress of the algorithm comes 

through genetic operations on the population rather than mathematical ones. Therefore the 

search occurs in many directions at the same time. Moreover, as the initial population is also 

random in addition to scattered, almost the entire design space is explored and the process is 

much less likely to be trapped in a local extremum compared to deterministic methods. Thus, 

even though a larger amount of iterations is needed, since the population is scattered all across 

the design space and the search is performed in random directions, the optimization is often 

faster. However, there is no certainty that the solution obtained is in fact the global optimum. 

The rate of convergence is very high during the initial iterations and becomes very low when 

close to the optimum. 

The above attributes make the EAs more suitable for non-convex problems or highly nonlinear 

ones. The two most popular and widely used Evolutionary Algorithms are the Genetic 

Algorithm (GA) and Evolution Strategies (ES). Both GAs and ES imitate biological evolution in 

nature and have some common characteristics that make them differ from other conventional 

optimization algorithms. Instead of a single design point, they work simultaneously with a 

population of design points in the space of design variables. This characteristic allows for a 

natural implementation on parallel computing environments which can significantly reduce 

the computational cost of the methodology. Moreover, in place of the usual deterministic 

operators, they use randomized operators such as mutation, selection and recombination, 

while they can also handle with minor modifications, continuous, discrete or mixed 

optimization problems. 
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1.3.3 Genetic Algorithm (GA) 

Genetic algorithms are based on Darwin’s theory of adaptation to the environment and natural 

selection through the survival of the fittest. According to this theory, in the course of 

evolution, species slowly adapt to their surroundings. Traits that can be beneficial to an 

organism and can provide a genetic advantage in their struggle for survival are becoming more 

predominant in a population while on the other hand, traits that do not provide an advantage 

are slowly becoming extinct.  

In natural biological environments, the individuals in a population are always competing 

against each other for food and other resources. The fittest individuals are the most successful 

and are primarily selected for reproduction, which usually includes mixing genetic material in 

order to produce an offspring who shares common characteristics with both parents. Apart 

from those hereditary characteristics in an offspring, from time to time, there exists a small 

probability that a completely new characteristic will appear in place of an old one in a random 

process of mutation. The combination of genetic characteristics of the parents along with the 

small probability of mutation due to outside random factors, ensure the creation of a new 

generation with better or worse characteristics which will once become parents of their own. 

This continuing process leads to improved individuals within the population or in this case of a 

computer implemented genetic algorithm, better solutions to an optimization problem. 

The creation of a computer implemented GA started in the early 60’s by a group of biologists 

(Barricelli 1962; Fraser 1962; Martin and Cockerham 1960) but their current form is attributed 

to John Holland along with his colleagues and students in Michigan University in the mid 70’s 

(Holland 1975). In the last few years, these types of algorithms have been improved and have 

proven to be rather reliable and successful in a wide range of science fields (Groves et al. 1990; 

Michalewicz et al 1991; Smith 1980; Carrol 1996) including computational mechanics (Galante 

1996; Nagendra et al. 1996; Ohsaki 1995; Adeli and Kumar 1995; Ghasemi and Hinton 1996; 

Shyue-Jian Wu and Chow 1995), and in many different types of optimization problems, single 

or multi-objective. If fact they have proven themselves to be better than gradient based 

methods or other stochastic methods in locating the global optimum (Grefenstette 1990; Chen 

and Chen 1997; Lagaros et al. 1998). 

The terminology used in GAs is borrowed from biology. Each candidate solution to an 

optimization problem is called an individual, creature or phenotype and their abstract 

representations are called chromosomes or the genotype of the genome. The chromosome is 
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consisted of genes, which represent the design variables and are located in specific positions 

within the chromosome called loci. The specific condition or value of each gene is called an 

allele.  

The GAs operate on a population of candidate solutions which evolve toward an optimum 

solution. First, the initial population is generated (usually randomly) and then every member 

of the initial population is encoded in a binary string (chromosome). The size of the randomly 

selected initial population depends on the nature of the problem and its formulation, namely 

the number of design variables and the range of the values they can take, translated in the 

average bit length of the genes. The members are evaluated and ranked amongst them by the 

objective function, based on their fitness. The fittest individuals have increased probabilities of 

being selected to become the parents for the next generation. After the selection, the genetic 

operators of crossover and mutation are applied and the new generation is created. The same 

procedure is repeated for the next population until an optimum solution is obtained.  

Encoding 

The chromosomes carry the encoded information using fixed-length binary character strings, 

much like actual chromosomes carry encoded genetic information. Each string is divided into 

n (number of design variables of the problem) segments, the genes. Each gene is the binary 

counterpart of the real value variable in an individual. It is common practice to use Grey 

encoding instead of the standard binary encoding. The reason is that with Grey encoding, the 

neighboring real values represented, differ by only one bit and therefore slight changes in the 

binary string represent slight changes of the real value variable.  

The bit length of all the genes in a chromosome is not necessarily the same and is selected in 

accordance with the range of each variable so that all possible variable values can be 

represented. The number of values or states represented by a gene with m-number of binary 

bits is 2m. When choosing the value for m (only natural numbers), it is obvious that the step 

sizes between 2m and 2m+1 can be rather large for high values of m. In the event that the possible 

binary values are more than the actual values that need to be encoded, the extra binary values 

can be handled in a number of ways (Lin and Hajela 1992). These extra binary values could 

represent real values outside the allowable range of the variables. In such case, when the 

fitness of an individual that contains such a value is calculated, some kind of penalty is 

imposed and that individual is ranked poorly in order to be disqualified in the selection stage. 
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Other techniques dictate that some real values are represented by more than one binary value 

or that the real values are increased in number so as to be equal to the binary ones.  

Fitness Evaluation 

The objective function of the problem is also called the fitness function. In structural 

optimization problems the fitness function is usually the weight of the structure. Each member 

of the population is evaluated and awarded a fitness value. Along with the fitness evaluation, 

the constraints and the feasibility of the solution must also be checked. This requires a 

complete structural analysis of the problem under the selected design variables, followed by 

the examination of constraint violations. In case of infeasible designs and constraint violations, 

the fitness value of the corresponding candidate solution must somehow receive a penalty in 

order to reflect the violation (see also section 1.4). The fact that each member is evaluated 

independently allows for parallel implementation of the algorithm, dividing the computational 

cost and speeding up the optimization process.  

The penalized fitness of each individual is normalized by the sum of penalized fitness values of 

the whole population and can provide a measure of the quality of each candidate solution 

compared to the rest of the population. Better solutions within the same population have a 

higher probability of becoming parents for the next generation.  

Selection 

The selection of members that will become parents and will breed the next generation can 

occur through a number of different proposed schemes. Most commonly used are the 

Tournament selection, Ranking selection and Proportionate selection. According to the 

Tournament selection scheme, the population is randomly divided into a number of subgroups 

and the best candidate from within each subgroup, based on its fitness, is selected to become a 

parent. According to the Ranking selection scheme, the solutions are ranked in an ascending 

order based on their fitness (best being last in the list). The probability of a solution to be 

picked is proportionate to its position on the list (lower in the list higher probability). The 

most common Proportionate selection scheme is the Roulette Wheel. Each solution is assigned 

a probability equal to its normalized fitness value on a pie chart or roulette wheel. A random 

number generator “spins the wheel” and a member is selected to become a parent.  

It is possible for the best members of the population to be exempt from the selection and 

reproduction process and pass to the next generation unchanged. This technique is called 



16 Chapter 1 

 

 

elitism and often increases the performance of the algorithm by ensuring that the best 

members and their best qualities are not lost or altered in the random processes of selection 

and reproduction.  

After the selection, the chromosomes have to be combined in order to produce the next 

generation of candidate solutions. This is achieved through the genetic operators of crossover 

(or recombination) and mutation. 

Crossover 

The crossover operator acts with a set probability pc on the selected parent chromosomes and 

combines parts of them to produce a new chromosome. This combination can occur in a 

number of different patterns.  

In one-point crossover, a crossover point is randomly selected within a chromosome and the 

remaining binary string is interchanged between the two parent chromosomes producing two 

new offspring. Consider the following 2 parents which have been selected for crossover. The “|” 

symbol indicates the randomly chosen crossover point. 

Parent 1: 11001|010 

Parent 2: 00100|111 

After interchanging the parent chromosomes at the crossover point, the following offspring are 

produced: 

Offspring1: 11001|111 

Offspring2: 00100|010 

• In two-point crossover, two crossover points are selected instead of one and the middle 

part of the string is interchanged between the two parents. For example if the parents are 

the same as before  

Parent 1: 11|001|010 

Parent 2: 00|100|111 

After the application of the two-point crossover operator the following offspring are 

produced: 

Offspring1: 11|100|010 

Offspring2: 2: 00|001|111 
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• In uniform crossover, the bit strings of the parents’ chromosomes are compared on a bit-

by-bit level. The individual bits which are common for the same loci on both parents are 

passed on directly to the offspring. For the bits that differ between the two parents, there is 

a probability p (called mixing ratio), for each bit, that it comes from one parent and (1-p) 

that it comes from the other. Usually p=0.5 and consequently, half the genes come from 

each parent. 

• Arithmetic crossover produces offspring that are linear combinations of their parents’ 

vectors. 

Offspring1 = a * Parent1 + (1- a) * Parent2 

Offspring2 = (1 – a) * Parent1 + a * Parent2 

where a is a random weighting factor (chosen before each crossover operation). 

For example if we consider the following 2 parents which have been selected for crossover: 

Parent 1: (0.2)(2.1)(0.5)(7.6) 

Parent 2: (0.1)(3.7)(1.0)(3.3) 

If a = 0.7, the following two offspring would be produced: 

Offspring1: (0.17)(2.58)(0.65)(6.31) 

Offspring2: (0.13)(3.22)(085)(4.59) 

The offspring produced this way is always feasible in convex problems as it lies on the line 

segment between the two parents. 

• The heuristic crossover operator uses the fitness values of the two parent chromosomes to 

determine the direction of the search and moves outside the range of the two, in the 

direction that the fitness is improved. The offspring are created according to the following 

equations: 

Offspring1 = BestParent + R * (BestParent – WorstParent) 

Offspring2 = BestParent      

where R is a random number between 0 and 1. 

With this operator, it is possible that Offspring1 will not be feasible. This can happen if R is 

chosen such that one or more of its genes fall outside of the allowable upper or lower 

variable bounds.  
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Mutation 

Mutation inserts a small probability pm (usually less than 1% or 1/pop_size for large populations 

(Goldberg 1989)) that a single binary bit in a given chromosome will be changed from its initial 

value. The result will be the creation of a different chromosome that may or may not (jump 

mutation) be similar to any other chromosome of the population. This process maintains a 

genetic diversity from one generation to the next and enables the algorithm to avoid local 

extrema in case the chromosomes of the population evolve to become too similar to one 

another.  

Termination 

The termination of the algorithm can occur for a number of user defined reasons such as a 

minimum criterion (value) reached by the solution obtained, a fixed number of generations 

exceeded, a fixed number of objective function evaluations executed, improvement of the best 

solution by less than a given threshold value for a number of generations, improvement of the 

mean fitness value of the population by less than a given threshold value for a number of 

generations, etc 

In conclusion the basic GA can be summarized in individual steps as follows in Figure 1.5: 

1. Initialization: Random generation of an initial population of candidate solutions and 

encoding in chromosomes. 

2. Analysis and Evaluation: The candidate solutions are evaluated by the fitness function. 

3. Selection: Members of the population are selected to be the parents for the next 

generation. 

4. Genetic Operators: Crossover and Mutation operators are applied to create the next 

generation. 

5. Analysis and Evaluation: The new generation is evaluated by the fitness function. 

6. Termination Criteria: If any one of the termination criteria is reached stop, else go back to 

step 3. 

Figure 1.5 Algorithmic steps of a basic GA. 
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Holland’s schema theorem 

No strict mathematical proof can be provided that the methodology of the genetic algorithms 

will work and that the initial population will eventually locate the optimum solution. In fact, 

this is the reason why the whole class of population-based algorithms is called heuristic. 

However, John Holland, who first proposed the GA as an optimization technique (Holland 

1975), provides an explanation why this method can indeed be used in order to drive the 

process towards better solutions through the schemata theorem  

As it was described previously, every chromosome is encoded in a fixed-length binary string of, 

say, m-number of bits. Consider that each individual binary bit can also receive in addition to 

the fixed values of 1 or 0 the value of *. This value represents a wild card of sorts and can be 

interpreted as either one of the other two fixed binary values of 1 or 0. Therefore the binary 

string or schema of S =*100*1 can represent the strings of 010001, 010011, 110001 and 110011. In 

general, it is obvious that a schema with r-number of non-fixed or wild card bits represents 2r 

strings and a string with k-number of bits can belong to 2k different schemata. 

The defining length, d( S ) of the schema is defined as the distance between the first and last 

fixed-value bits of the string. For the previously mentioned schema S , the defining length is d(

S )=6-2=4 (counting the positions of the bits from left to right) or alternatively d( S ) = 5-1=4 

(counting from right to left). Starting to count the positions in the string from either end does 

not change the result. If 'S = **0*1* then d( S ’) = 5-3 (left to right) = 4-2 (right to left)=2.  

The order, o( S ) of a schema is defined as the number bits in the schema that have a fixed 

value of 1 or 0. For the previous examples it is o( S )=4 and o( S ’)=2. 

The concept behind the definition of these quantities and the whole theory of schemata is to 

attempt to predict the representation of each of the competing schemata within a population 

in the following generations after the application of the genetic operators of selection, 

crossover and mutation. In order for the optimization to be driving forward, schemata of 

better fitness should be increasing their representation as the generations proceed and 

schemata of poor fitness should be slowly fading out. 

a) Assume that, in the phase of selecting the parents, a schema S  is represented in the 

population of generation g  by ( , )M S g  members which have an average fitness value of
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( , )F S g . If the average fitness of the whole population in the same generation is ( )F g then 

in the next generation 1g +  the representation of schema S should be: 

 
( , )

( , 1) ( , )
( )

F S g
M S g M S g

F g
+ = ⋅  (1.26) 

This is a linear approximation and the Eq.(1.26) is called reproductive schema growth 

equation. It is obvious that schemata for which ( , ) ( )F S g F g>  are better than the average 

of the population and will increase their representation in the following generation while 

for schemata for which ( , ) ( )F S g F g< their representation will decrease.  

If schema S  produces members who are better than average then there exists a positive ε 

so that:  

 ( , ) ( ) ( )F S g F g F gε= + ⋅  (1.27) 

and Eq.(1.26) can be rewritten as: 

 ( , 1) ( , ) (1 )M S g M S g ε+ = ⋅ +  (1.28) 

If this margin ε is considered to remain steady throughout the course of g  generations 

then  

 ( , ) ( ,0) (1 )g
M S g M S ε= ⋅ +  (1.29) 

which predicts that the representation of a schema S  in the initial population due to the 

selection operator will increase exponentially in the course of the future generations. 

b) The defining length of a schema is related with its preservation in a population after the 

crossover operator. As it was described previously, a number of crossover operators are 

available. Due to its simplicity, the one-point crossover operator will be described but the 

same general idea can be applied to the rest as well. 

In a chromosome of m-number of bits, there are (m-1)-positions on which the one-point 

operator can act and cut the chromosome in two. Out of the m-1 positions, only the d( S ) 

of them can actually destroy the schema. So for a chromosome on which the one-point 

crossover operator is applied, the probability that the schema survives is: 

 
( )

( ) 1
1

surv

d S
p S

m
= −

−
 (1.30) 
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Considering that crossover is applied on a chromosome under the probability pc the 

probability that a schema survives the operation is increased to:  

 
( )

( ) 1
1

surv c

d S
p S p

m
= − ⋅

−
 (1.31) 

There is also a small probability that even if the position where the one-point crossover 

operator is applied is such that the schema is affected, the parts of the chromosomes that 

are joined can still maintain the schema alive. For example, if the schema is S =*100*10* 

and exists in parent 1: 

parent 1: 0100|1100 

parent 2: 1001|0101 

After the crossover, the schema though initially affected is still maintained alive in 

offspring 1 

offspring 1: 0100|0101 

offspring 2: 1001|1100 

Therefore Eq.(1.31) is modified: 

 
( )

( ) 1
1

surv c

d S
p S p

m
≥ − ⋅

−
 (1.32) 

If Eq.(1.26) and (1.31) are combined, the reproduction of a schema after the selection and 

crossover operators becomes:  

 
( , ) ( )

( , 1) ( , ) 1
( ) 1

c

F S g d S
M S g M S g p

F g m

 + ≥ ⋅ ⋅ − ⋅ − 
 (1.33) 

c) The survival of a schema after the operator of mutation is in correlation with the order of 

the schema. It is obvious that only if the mutation happens in a non-fixed bit of the 

schema, can it still remain intact for the next generation. If the probability of mutation is 

pm then the probability of survival is: 

 ( ) ( )
( ) 1 1 ( )

o S

surv m mp S p o S p= − ≈ − ⋅  (1.34) 

Combining the above probability for mutation with Eq.(1.33), the reproduction of a schema 

after the selection, crossover and mutation operators becomes: 

 
( , ) ( )

( , 1) ( , ) 1 ( )
( ) 1

c m

F S g d S
M S g M S g p o S p

F g m

 + ≥ ⋅ ⋅ − ⋅ − ⋅ − 
 (1.35) 
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In interpretation of Eq.(1.35), it can be concluded that schemata with a small defining 

length and low order with above average fitness receive an exponential increase of 

representation in a population through the next generations. In other words, the final 

solution is comprised of fundamental blocks of small size and low order (building blocks 

hypothesis). 

1.3.4 Evolution Strategies (ES) 

Sharing a number of similarities with the Genetic Algorithm, Evolution Strategy is also a direct 

search optimization method in the class of Evolutionary Algorithms. ES use mutation, 

recombination and selection applied to a population of individuals containing candidate 

solutions in order to evolve iteratively better and better solutions. Evolution Strategies can be 

applied for single or multi-objective targets in all fields of optimization including continuous, 

discrete, combinatorial search spaces, with and without constraints as well as mixed search 

spaces. The objective function, also called goal function can be presented in mathematical 

form, via simulations, or even in terms of measurements obtained from real objects. 

The basic concept of ES begins with the creation of an initial population of feasible candidates. 

The feasibility is ensured by evaluating the initial population and modifying the infeasible 

designs until they become feasible. Then the application of a mutation operator is performed 

on that population. Usually, in real-value search spaces, mutation is achieved by adding a 

normally distributed random value to each vector component. This value can be common for 

all components or can be calculated individually for each one. The step size or mutation 

strength (i.e. the standard deviation of the normal distribution) has to be small in general, and 

is governed by self-adaptation or by covariance matrix adaptation (CMA-ES).  

The canonical versions of the ES are denoted by: 

(μ/ρ ,λ)-ES   and   (μ/ρ +λ)-ES, 

where μ denotes the number of parents, ρ ≤ μ the mixing number (i.e. the number of parents 

involved in the procreation of an offspring), and λ the number of offspring. 

The parents are deterministically selected from the set of either only the λ offspring, referred to 

as comma-selection (μ < λ must still hold), or the set of parents and offspring (μ+λ), referred to 

as plus-selection. Selection of the next μ parents is based on the fitness rankings within the 

current population and not the actual fitness values. It is obvious that in the comma-type 

selection, the existence of each individual is limited to one generation. This allows the (μ/ρ ,λ)-
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ES selection to perform better on problems with an optimum moving over time, or on 

problems where the objective function is noisy. 

For continuous optimization problems, the procedure can terminate when one of the following 

termination criteria is satisfied: 

i. The absolute or relative difference between the best and the worst objective function values 

is less than a given threshold value 

ii. The mean value of the objective values from all parent vectors in the last 2n generations has 

not improved by less than a given threshold value. 

To summarize, the basic ES algorithmic steps can be written as follows in Figure 1.6: 

1. Initialization:  Selection of μ parent vectors of the design variables. 

2. Analysis and Evaluation: Evaluation of the parents by the fitness function. 

3. Feasibility Check: If not all parents are feasible, modification of infeasible parents and 

go back to step 2. 

4. Genetic Operators: Mutation of all members and crossover every ρ parents to produce λ 

offspring.  

5. Analysis and Evaluation: Evaluation of the offspring by the fitness function. 

6. Feasibility Check: If not all offspring are feasible, discard infeasible offspring and go 

back to step 4. 

7. Parents Selection: Selection of the next generation parents according to (µ/ρ+λ) or (µ/ρ, 

λ) selection schemes 

8. Termination Criteria: If any one of the termination criteria is reached stop, else go back 

to step 4. 

Figure 1.6 Algorithmic steps of a basic ES. 

From what has been described in the previous sections, some differences between GAs and ES 

can be observed. The numerical representation of the design variables of the problem differs in 

these two algorithms. The basic GA operates on fixed-sized binary strings representing the real 

values of the design variables whereas ES work directly on real-valued vectors. Another 

difference can be found in the use of the genetic operators. Although, both GA and ES use the 

mutation and recombination (crossover) operators, the role of these genetic operators in each 

method is different. In GAs mutation is a secondary procedure to crossover. It affects a small 

number of alleles in the whole population and only serves to slightly diversify the genetic pool 
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in order to avoid entrapment in local extrema. Crossover is mainly responsible for finding the 

optimum solution by combining parts of the members of the population, in a way that could 

be likened to building the solution from individual independent blocks. In ES, on the other 

hand, mutation is more radical. It affects all the design variables at once and is the primary 

force that drives the optimization forward and separates one generation from the next. 

Crossover then takes on and multiplies the number of mutated candidate solutions. 

Furthermore, in ES the selection process for members that pass to the next generation is 

deterministic and only the fittest of each population carry on to the next. In GAs every 

member of the population has a probability to pass to the next generation and this probability 

increases according to its fitness. The selection process conducted among the candidates is 

probabilistic. 

1.4 Constraint Handling Techniques 

The generic single-objective optimization problem as it was presented previously in section 1.2 

is subject to a number of equality and/or inequality constraints. These constraints impose 

limitations to the values that the design variables can take and limit the available search space 

in which the optimum solution can be searched and found. In general, different optimization 

methods handle constraints in different ways. Gradient-based optimization methods cannot 

handle directly inequality constraints while on the other hand, methods such as the GA need 

the allowable interval of each design variable in order to initialize the population of candidate 

solutions.  

Constraint handling techniques are available which formulate the constraints of the problem 

in a way that they are incorporated in the objective function (e.g Lagrange Multipliers, Kuhn-

Tucker conditions, Augmented Lagrange Multipliers, etc). The new equivalent unconstrained 

problem can be solved instead by methods which can handle unconstrained problems.  

In the present work the penalty method will be used for handling the constraints of the 

problem. Any optimization method which can be used for unconstrained optimization 

problems can also work with the penalty method, as the constrained optimization problem is 

replaced by a series of unconstrained problems whose solutions ideally converge to the 

solution of the original constrained problem. The unconstrained problems are formed by 

adding a term to the objective function that consists of a penalty parameter and a measure of 

violation of the constraints. 
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Three degrees of penalty functions exist: barrier methods in which no infeasible solution is 

considered, partial penalty functions in which a penalty is applied near the feasibility 

boundary, and global penalty functions which are applied throughout the infeasible region 

(Schwefel 1995).  

In general, a penalty function approach is as follows: Given an optimization problem, 

 
min ( )f x   (P) 

subject to  

 x A∈   

 x B∈   

where: 

x  is the vector of design variables, constraints A  are relatively easy to satisfy and constraints 

B . are relatively difficult to satisfy, the optimization problem can be reformulated as follows: 

 
[ ]min ( ) ( ( , ))f x p d x B +  (R)

 

subject to  

x A∈  

where ( , )d x B  is a metric function describing the distance of the solution vector from the 

region B , and ( )p ⋅  is a monotonically non-decreasing penalty function such that (0) 0p = . If 

the exterior penalty function, ( )p ⋅ , grows quickly enough outside of B , the optimal solution 

of (P) will also be optimal for (R). Furthermore, any optimal solution of (R) will provide an 

upper bound on the optimum for (P), and this bound will in general be tighter than the one 

obtained by simply optimizing ( )f x over A. In practice, the constraints x B∈  are expressed in 

the forms of Eq.(1.3) and (1.4). 

Different possible distance metrics, ( )d ⋅ , include a count of the number of violated 

constraints, the Euclidean distance between x  and B as suggested by Richardson et al. (1989), 

a linear sum of the individual constraint violations or a sum of the individual constraint 

violations raised to an exponent, k . 

It can be difficult to find a penalty function which is an effective and efficient surrogate for the 

missing constraints. The effort required to tune the penalty function to a given problem 
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instance or repeatedly calculate it during search may negate any gains in eventual solution 

quality. As noted by Siedlecki and Sklansky (1989), much of the difficulty arises because the 

optimal solution will frequently lie on the boundary of the feasible region and thus many of 

the solutions similar to the optimum will be infeasible. Therefore, restricting the search to only 

feasible solutions or imposing very severe penalties makes it difficult to find the schemata that 

will drive the population toward the optimum as shown in the research of (Smith and Tate 

1993, Anderson and Ferris 1994, Coit et al. 1995, Michalewicz 1995). Conversely, if the penalty is 

not severe enough, then too large a region is searched and much of the search time will be 

used to explore regions far from the feasible region. 

Static penalty functions 

A simple method for penalizing infeasible solutions is to apply a constant penalty to those 

solutions which violate feasibility in any way. The penalized objective function would then be 

the unpenalized objective function plus a penalty (for a minimization problem). A variation on 

this simple penalty function is to add a metric based on number of constraints violated, where 

there are multiple constraints. The penalty function for a problem with m constraints would 

then be as below (for a minimization problem): 

 
( ) ( )

p i i

i

f x f x cδ= +∑  (1.36)
 

where  

1
i
δ =  , if constraint i is violated 

0
i
δ =  , if constraint i is satisfied 

( )
p

f x  is the penalized objective function,  

( )f x  is the unpenalized objective function,  

i
c is a constant imposed for violation of constraint i  and  

i  is the number of p q+  constraints of Eq.(1.3) and (1.4). 

This penalty function is based only on the number of constraints violated, and is generally 

inferior to an approach based on some distance metric from the feasible region (Goldberg 

1989, Richardson et al. 1989). 
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A more sophisticated and more effective penalty includes a distance metric for each constraint, 

and adds a penalty which becomes more severe with distance from feasibility. Distance metrics 

can be continuous (Juliff 1993) or discrete (Patton et al. 1995), and could be linear or non-linear 

(Le Riche et al. 1995). 

Dynamic penalty functions 

The primary deficiency with static penalty functions is the inability of the user to determine 

criteria for the i
c  coefficients. Moreover, the exploration of the infeasible region may prove to 

be beneficial at times, yet the final solution must be feasible. Many of these difficulties can be 

alleviated if a dynamic aspect which (generally) increases the severity of the penalty for a given 

distance as the search progresses is incorporated, as a variation of distance based penalty 

function. This scheme has the property of allowing highly infeasible solutions early in the 

search, while by gradually increasing the penalty imposed, the final solution is coerced to 

eventually move into the feasible region. A general form of a distance based penalty method 

incorporating a dynamic aspect based on the length of search t , is as follows for a minimization 

problem: 

 
( , ) ( ) ( ) k

p i i

i

f x t f x s t d = +∑  (1.37) 

where ( )
i

s t  is a monotonically non-decreasing in value with t . Metrics for t include number of 

generations or the number of solutions searched. If ( )
i

s t is too lenient, the resulting final 

solution may be infeasible and if ( )
i

s t  is too severe, the search may converge to non-optimal 

feasible solutions. Therefore, these penalty functions typically require problem specific tuning 

to perform well. Joines and Houck (1994) propose that, 

 
( ) ( )a

i i
s t c t=  

(1.38) 

where a  is a constant equal to 1 or 2. 

Adaptive Penalty Functions 

While incorporating distance together with the length of the search into the penalty function 

has been generally effective, these penalties ignore any other aspects of the search. In this 

respect, they are not adaptive to the ongoing success (or lack thereof) of the search and cannot 

guide the search to particularly attractive regions or away from unattractive regions based on 

what has already been observed. A few authors have proposed making use of such search 
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specific information. Siedlecki and Sklansky (1989) discuss the possibility of self-adapting 

penalty functions, but their method is restricted to binary-string encodings with a single 

constraint, and involves considerable computational overhead. 

Bean and Hadj-Alouane (1992) and Hadj-Alouane and Bean (1992) propose penalty functions 

which are revised based on the feasibility or infeasibility of the best penalized solution during 

recent generations. Smith and Tate (1993) and Tate and Smith (1995) used both search length 

and constraint severity feedback in their penalty function which was enhanced by the work of 

Coit et al. (1995). This penalty function involves the estimation of a near-feasible threshold 

(NFT) for each constraint. Conceptually, the NFT is the threshold distance from the feasible 

region at which the user would consider the search as “getting warm.” The penalty function 

encourages the evolutionary algorithm to explore within the feasible region and the NFT-

neighborhood of the feasible region, and discourage search beyond that threshold. 
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2 Vehicle  Dynamics 

2.1 Introduction to vehicle dynamics 

A vehicle is most often a man-made device that is designed or used to transport people or 

cargo. Vehicles come in many different forms and types and can be categorized according to a 

number of factors some of which are the terrain they move upon (land, air, water, snow, etc), 

their power source (fuels, such as petroleum or diesel, nuclear power, wind, waves, batteries, 

electrical power, solar energy, gravity, human or animal power, etc), the means they use to 

permit or ease movement (wheels, hulls, wings, rotors, jets or cushions of air, etc) and many 

others. 

In the field of physics, dynamics is the branch which studies of the causes of motion and 

changes in motion. Combined with kinematics, which describes the motion of objects without 

consideration of the causes leading to it, they compose the branch of classical mechanics. 

Generally speaking, dynamics is the study of how physical systems might develop or alter over 

time and what their relationship with the causes of those changes is. The foundation of 

modern day dynamics is Newtonian mechanics and the basic elements used in the analysis are 

the generalized forces (including torques) acting on the bodies, the elemental properties of the 

bodies, particularly mass and moment of inertia, and the motion of the examined bodies 

measured by differences in their position, velocity or acceleration.  

So, the subject of "vehicle dynamics" is concerned with the movements of vehicles and parts 

thereof and the forces responsible for them. Said movements include the acceleration and 

braking, ride, and turning of the vehicle among others. Vehicle dynamics in the broadest sense 

encompasses all the forms of vehicles - ships, airplanes, railroad trains, rubber-tired vehicles, 
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hovercrafts and so many others. Obviously the principles involved in the dynamics of these 

many types of vehicles are very diverse and extensive. Since the performance and movement of 

a vehicle is a response to the forces imposed on it, the study of vehicle dynamics must involve 

the study of how and why the forces are produced. Depending on the particular vehicle, the 

forces acting on it may be developed by fluid movement - water or air, by metal tires against 

rails or rubber tires against the road. In the following sections it will be attempted to present 

the most important types of forces acting on a motor vehicle and their origins. 

2.2 Coordinate systems and movement 

Two types of coordinate systems are used to describe the full range of motion of a vehicle and 

its components. The first one is fixed on the vehicle and the other is fixed on the earth.  

By the Vehicle Fixed Coordinate System (body frame - S), the vehicle’s motions are defined with 

reference to a right-hand orthogonal coordinate system which originates at the vehicle’s center 

of gravity (CG) and travels along with the vehicle. By SAE and ISO convention the axes of 

reference for the movement are (see Figure 2.1): 

x - Forward and on the longitudinal plane of symmetry 

y - Lateral out the left side of the vehicle 

z - Upward with respect to the vehicle 

p - Roll velocity about the x axis 

q - Pitch velocity about the y axis 

r - Yaw velocity about the z axis 



Vehicle Dynamics 

 

Vehicle motion is usually described by the velocities (forward, lateral, vertical, 

yaw) with respect to the vehicle fixed coordinate system, where the velocities are referenced to 

the earth fixed coordinate system.

Vehicle attitude and trajectory through the course of a maneuver are defined with respect to a 

right-hand orthogonal axis system fixed on the earth. It is normally selected to coincide with 

the vehicle fixed coordinate system at the point where the maneuver is started. By the 

Fixed Coordinate System (world frame 

X - Forward travel 

Y - Travel to the right 

Z - Vertical travel (positive downward)

ψ - Heading angle (angle between x and X in the ground plane)

v - Course angle (angle between the vehicle's velocity vector and X axis)

β - Sideslip angle (angle between x axis and the vehicle velocity vector)

Figure 2.1 ISO and SAE Vehicle

 

Vehicle motion is usually described by the velocities (forward, lateral, vertical, 

yaw) with respect to the vehicle fixed coordinate system, where the velocities are referenced to 

the earth fixed coordinate system. 

Vehicle attitude and trajectory through the course of a maneuver are defined with respect to a 

thogonal axis system fixed on the earth. It is normally selected to coincide with 

the vehicle fixed coordinate system at the point where the maneuver is started. By the 

(world frame - N) the coordinates (see Figure 2.2

Vertical travel (positive downward) 

Heading angle (angle between x and X in the ground plane) 

e between the vehicle's velocity vector and X axis) 

Sideslip angle (angle between x axis and the vehicle velocity vector) 

ISO and SAE Vehicle-fixed (S) and Earth-fixed (N) axis coordinate systems.
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Vehicle motion is usually described by the velocities (forward, lateral, vertical, roll, pitch and 

yaw) with respect to the vehicle fixed coordinate system, where the velocities are referenced to 

Vehicle attitude and trajectory through the course of a maneuver are defined with respect to a 

thogonal axis system fixed on the earth. It is normally selected to coincide with 

the vehicle fixed coordinate system at the point where the maneuver is started. By the Earth 

2) are: 

 

 

fixed (N) axis coordinate systems. 
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2.3 Road Loads  

When a vehicle is moving and because of this movement it is susceptible to a number of 

loading conditions which inhibit the movement and need to be overborne in order for it to still 

be able to move forward and even accelerate. For a motor vehicle, as the one discussed about 

in the current work, the two main categories of road loads are the aerodynamic resistance and 

the rolling resistance.  

The aerodynamic forces acting on a vehicle arise from two sources, namely the form drag and 

viscous friction. When a vehicle is moving through the open air, Bernoulli’s principle connects 

velocity and pressure of the air flow around the moving vehicle. The irregularities of the shape 

of the vehicle alter the normal laminar flow of air, causing the air to bend around its shape and 

move at different velocities on different parts of the surface area of the vehicle. This generates 

an uneven pressure distribution on the surface of the vehicle, which in turn translates into the 

creation of an aerodynamic force and moment acting on the vehicle. Moreover, the friction 

between the air molecules and the surface of the vehicle generates a second component in the 

aerodynamic force affecting the vehicle. The vector sum of these forces and moments can be 

analyzed into components acting about the principal axes of the vehicle as shown in Table 2.1. 

Drag is the largest and most important aerodynamic force as it acts directly against the 

movement of the vehicle. Factors that influence the aerodynamic efficiency of a vehicle are the 

vehicle speed, the wind speed and direction, air density, the vehicle’s frontal area and for the 

moments the wheelbase as well. 

 

Figure 2.2 Vehicle in an Earth-fixed coordinate system 
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The other major vehicle resistance force is the rolling resistance of the tires. In fact, at low 

speeds, the rolling resistance is the primary and only significant motion resistance force. The 

difference from other resistances is that they act only under certain conditions of motion, 

while rolling resistance is present from the instant the wheels begin to turn. In addition, a 

large part of the power expended in a rolling wheel is converted into heat within the tire. The 

consequent temperature rise reduces both the abrasion resistance and the flexure fatigue 

strength of the tire material, and may become the limiting factor in tire performance. 

There are at least seven mechanisms responsible for rolling resistance: 

• Energy loss due to deflection of the tire sidewall near the contact area 

• Energy loss due to deflection of the tread elements 

• Scrubbing in the contact patch 

• Tire slip in the longitudinal and lateral directions 

• Deflection of the road surface 

• Air drag on the inside and outside of the tire 

• Energy loss on bumps 

The most important factors affecting the tire’s rolling resistance are: 

• Tire Temperature 

• Tire Inflation Pressure 

• Velocity 

• Tire Material and Design 

• Tire Slip 

Table 2.1 Aerodynamic force analysis 

Direction Force Moment 

Longitudinal 

(x-axis, positive rearward) 
Drag Roll 

Lateral 

(y-axis positive to the right) 
Side force Pitch 

Vertical 

(z-axis positive upward) 
Lift Yaw 
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2.4 Excitations 

The movement of a vehicle, especially at high speeds, is responsible for causing a broad 

spectrum of vibrations which are transmitted through the vehicle components to the 

passengers onboard the vehicle. The tactile and visual vibrations are commonly referred to as 

“ride”, while aural vibrations are referred to as “noise”. According to their frequencies, 

vibrations are classified as ride when they are in the range of 0-25 Hz and as noise in the range 

of 25-20,000 Hz, since 25 Hz is approximately the lower frequency threshold of hearing. 

However, in practice, these different types of vibrations are usually so interrelated that it may 

be difficult to consider them separately. Vibrations in motor vehicle may be excited by 

multiple sources but in general two main classes of excitations are considered, road roughness 

and on-board sources. The on-board excitations originate from moving (rotating) components 

of the vehicle and in general include the tire/wheel assemblies, the driveline and the engine. 

Road roughness 

Road roughness includes all those major and minor abnormalities of the road surface which 

make the road deviate from its perfect state or absolute flatness. Road roughness is described 

by the elevation profile along the wheel tracks of the vehicle. Road elevation profiles can be 

measured either by performing close interval rod and level surveys or by high-speed 

profilometers. Road profiles can be considered "broad-band random signals" and therefore 

they can be described either by the profile itself or its statistical properties. One of the most 

useful representations is the Power Spectral Density (PSD) function, which is a plot of the 

amplitudes of the sine waves obtained after performing a Fourier transformation on the profile 

versus spatial frequency. Spatial frequency is expressed as the "wavenumber" with units of 

cycles/meter and is the inverse of the wavelength of the sine wave on which it is based.  

The deviations in elevation seen by a vehicle as it moves along the road translate into a vertical 

displacement input to the wheels which excites the vibrations. Since vibrations are measured 

and perceived mainly as accelerations, the roughness of the road could also be viewed as an 

acceleration input at the wheels in order to have a better correlation between the two. In order 

to transform the displacement input into accelerations, a traveling velocity is assumed and the 

displacements of elevation are expressed as a function of time. By differentiating this signal 

once, the velocity of the input at the wheels is obtained, and by doing so once more the 

acceleration. 
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As described so far, the road roughness is a vertical input able to excite only a bounce motion 

on a single wheel. The longitudinal distance between the front and back wheel of a vehicle 

causes the same point of the road profile to reach the back wheel with a certain time delay 

compared to the front one. This difference in elevation can produce a pitching motion of the 

vehicle. Similarly, because of the lateral distance between the left and right wheeltrack, a 

slightly different road profile is encountered by each side. This difference in elevation between 

the left and right road profile points creates a roll excitation input to the vehicle. Roll 

excitations are, in general, more noticeable by the passengers of a vehicle when it is moving at 

lower speeds.  

Tire/wheel assembly  

The tire/wheel assembly includes rotating and stationary parts such as tires, wheels, hubs, 

brakes, etc and is partly responsible for absorbing road roughness excitations and isolating the 

vehicle from the road. Ideally, it does so without contributing any excitations of its own to the 

vehicle. In reality, however, numerous slight imperfections in the manufacture of the rotating 

parts of the assembly, when combined, can cause variations in the forces and moments the 

assembly experiences. These in turn are transmitted to the axle of the vehicle and act as 

excitation sources for ride vibrations. The imperfections can result in non-uniformities of three 

major types - mass imbalance, dimensional variations and stiffness variations. 

Imbalance is caused by a non-uniform distribution of mass in the individual components of 

the assembly along or about the axis of rotation. Asymmetry about the axis of rotation causes 

static imbalance. The resultant effect is a force rotating in the wheel plane with a magnitude 

proportional to the imbalance mass, the radius from the center of rotation, and the square of 

the rotational speed. The excitations produced by this phenomenon are in the radial and 

longitudinal direction. On the other hand, asymmetric mass distribution along the axis of 

rotation causes dynamic imbalance. The resultant effect is a rotating torque on the wheel, 

affecting the overturning moment and aligning torque at the wheel rotational frequency. The 

two forms of imbalance are independent from one another and they do not have to be 

simultaneously present. The tires, wheels, hubs and brake drums may all contribute to the 

above imbalance effects. 

A tire is a rotating elastic body loaded in the radial direction, resembling an array of radial 

springs which are periodically compressed as the wheel rotates. The free length of the springs, 

establishes the dimensional non-uniformities (free radial runout), whereas slight variations in 
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the radial stiffness of the tire can cause variations in the compression length of the springs at a 

nominal load producing rolling non-uniformities (loaded radial runout). 

The non-uniformities of a tire/wheel assembly generate radial, lateral and tractive excitation 

forces and displacements at the axle of the vehicle as the wheel rotates causing ride and noise 

vibrations. In practice, the different types of non-uniformities of the tire/wheel assembly tend 

to be highly correlated and the resulting conditions cannot easily be separated and corrected 

independently. 

Driveline 

The driveline is considered to be everything between the transmission and the wheels, 

generally consisting of the driveshaft, gear reduction and differential in the drive axle, and axle 

shafts connecting to the wheels. 

The driveshaft is the main source of ride excitations. They arise directly from two sources, 

namely i) a mass imbalance of the driveshaft hardware, and ii) secondary couples or moments 

imposed on the driveshaft due to angulation of the cross-type universal joints.  

Mass imbalance of the driveshaft may result from the combination of any of the five following 

factors: i) asymmetry of the rotating parts, ii) off-center position of the shaft on its supporting 

flange and end yoke, iii) deviation from straightness of the shaft, iv) off-center position of the 

shaft due to running clearances, and v) deflection of the shaft due to elasticity. An initial 

imbalance exists as a result of the asymmetry, runouts and looseness in the structure. As the 

shaft rotates, a rotating force is created which imposes forces on the support means in the 

vertical and lateral directions. The magnitude of the excitation force is equivalent to the 

product of this static imbalance and the square of the rotating speed. When this force is 

applied on the elastic shaft it can cause it to bend thus causing additional asymmetry and 

increasing the dynamic imbalance of the shaft. In that sense, the apparent magnitude of the 

imbalance can change with speed. 

Every universal joint that operates at an angle creates a secondary couple load that traverses 

down the centerline of the drive shaft. The magnitude and direction of this secondary couple 

load is proportional to the magnitude of the torque transferred through the joint and the angle 

of the shafts. In the same sense, in a cross-type universal joint, speed variations result in 

variations of torque on the driveline which result in variations of the secondary couple. Thus, 

the forces which are produced and transferred to the support points of the driveline on the 
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transmission, to the crossmembers supporting the driveline intermediate bearings and at the 

rear axle, vary depending on the torque applied to the driveline. Consequently, these forces 

can excite ride vibrations on the vehicle and torsional vibrations in the driveline. The torque 

variations may also act directly at the transmission and the rear axle varying the drive forces at 

the ground and thus generating directly longitudinal vibrations in the vehicle.  

Engine 

The engine is the primary power source on a motor vehicle. In piston engines the torque 

delivered is not constant in magnitude, rather it consists pulses corresponding to the power 

strokes of each cylinder, while the flywheel acts as an inertial damper between the pulses. In 

effect, the torque output to the driveshaft consists of a steady-state component plus 

superimposed torque variations. These torque variations may result in excitation forces on the 

vehicle similar to those produced by the secondary couple. The engine roll direction is the 

most important for excitation of vibrations. 

2.5 Suspensions 

The suspension of a vehicle is basically a system of springs, shock absorbers and linkages 

connecting the tire/wheel assembly (see also section 2.4) to the chassis. In that sense, the 

tire/wheel assembly on the lower end of the suspension is considered an unsprung mass, since 

it encounters the excitation from the road directly, and the chassis with the rest of the vehicle 

on the higher end of the suspension a sprung mass, because the excitation is filtered through 

the suspension. 

The primary purpose of the suspension system on a vehicle is dual. For one it contributes to 

the good handling of the vehicle by ensuring constant contact between the wheels and the 

road surface during movement on a rough road, or by resisting to rolling or pitching 

movements during turning, accelerating or braking. At the same time it absorbs road 

anomalies and insulates the vehicle from road noise and vibrations, providing comfort to the 

passengers and protection to the vehicle’s components from excessive wear. These two goals 

are contradicting and the appropriate selection of the setting is made according to the use of 

the vehicle. In general, softer springs improve the comfort of the passengers and stiffer springs 

provide better handling on the road. 
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Passive suspensions, which are most commonly used for conventional vehicles, consist of a 

traditional spring (leaf spring, torsion beam, coil spring, rubber bushing, air spring, etc) and a 

damper or shock absorber. The spring absorbs impacts by storing the potential energy in its 

extension or contraction and the damper is responsible for the dissipation of this energy so 

that the system does not resonate.  

The spring rate (or suspension rate or simply stiffness) is a ratio used to measure a spring’s 

resistance to being compressed or expanded during its deflection. The magnitude of the spring 

force increases as deflection increases according to Hooke's Law. It can be expressed as: 

k
F kx= −  where F is the force the spring exerts, k is the spring rate of the spring and x is the 

displacement from equilibrium length.  

Damping is any effect that tends to reduce the amplitude of oscillations in an oscillatory 

system. Mathematically, damping can be modeled as a force synchronous with the velocity of 

the object but opposite in direction to it. Practically, with the use of hydraulic gates and valves 

in a vehicles shock absorber, it is attempted to dissipate the stored dynamic energy in the 

suspension’s spring and convert it to heat, so that the oscillations of the system can be reduced 

and the vehicle can settle back to a normal state in a minimal amount of time. Damping also 

controls the travel speed and resistance of the vehicle's suspension. Most damping in modern 

vehicles can be controlled by increasing or decreasing the resistance to fluid flow in the shock 

absorber. 

2.6 General concept of modeling  

Besides an empirical approach to vehicle dynamics which is governed by intuition and trial and 

error in determining which factors influence the vehicle performance, in which way, and under 

what conditions, the analytical approach is mainly used by engineers in order to obtain more 

accurate and more reliable results. This approach attempts to describe the mechanics of the 

vehicle, based on the known laws of physics so that an analytical model of the phenomenon 

can be established. The mathematical description of a physical phenomenon dealing with 

dynamics is achieved by formulating a number of algebraic or differential equations which 

correlate forces or motions to control inputs and vehicle properties. The system of these 

mathematical equations, when solved, can describe the phenomenon and the state of the 

system at any time. The objective is to be able to evaluate the role and the importance of each 

vehicle property in the phenomenon of interest, predict the manner in which the system will 
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respond to various hypothetical inputs as well as how that response changes with different 

system parameter values. This way one can estimate the necessary modifications to be made to 

the system in order to achieve a certain goal. 

A system model can always only approximate real events as best as possible, or better yet, as 

best as needed and not actually reproduce them. System models should generally be as simple 

as possible. That way they are easier and faster to solve. However they should be accurate 

enough so that the correct result is reached, and in this case accuracy can lead to complexity. 

During the analysis and creation of a model, it is often necessary that a number of assumptions 

are made and a number of factors ignored in order to reduce the complexity of the model and 

improve manageability and solvability of the system. The number and nature of these 

assumptions determine the credibility of the analysis and the quality of the approximation. 

The engineer creating the model should have an understanding of the nature of the problem as 

well as the nature of the factors determining the outcome in order to be able to make educated 

decisions about what factors are important and avoid errors which can prove fatal to the 

analysis. 

In the past, the mathematical and computational limitations of obtaining a solution to 

complex systems inhibited the functionality of an analysis on complex models and confined 

the engineer. Every problem had to be mathematically expressed in closed forms in order to be 

solvable. Thus the existence of large numbers of components, systems, subsystems, and 

nonlinearities which are presented in vehicles made comprehensive modeling virtually 

impossible, limiting the scope to only simplistic models of certain mechanical systems.  

Nowadays, the increase of computer power and solidity of computational methods have 

allowed for a much more comprehensive approach to vehicle dynamics. Much more complex 

models for the behavior of separate components of a vehicle can be solved and on a second 

level they can be integrated into larger models of the overall vehicle, allowing simulation and 

evaluation of its total behavior. In cases where the engineer is uncertain of the importance of 

specific factors, those factors can be included in the model and their importance can be later 

on assessed by evaluating their influence on simulated behavior. This fortifies the analysis by 

widening the search field in the pursuit for performance improvement and by reduces 

uncertainty in our knowledge and understanding of important aspects in complex systems and 

phenomena. 
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3 Applicat ions   

In the current chapter, it is attempted to implement part of the aforementioned theoretical 

knowledge in a practical, real-life engineering problem of constrained optimization in vehicles’ 

dynamics. The concept is the optimization of specific aspects of a vehicle’s dynamic behavior 

by modifying certain vehicle parameter properties. In particular, an attempt is made to 

determine appropriate values from within a predefined range for the stiffness and damping 

constants of a tri-axle tank-truck’s (see section 3.1) suspension system and tank support 

system, in order to minimize the tank’s maximum occurring roll angle during movement.  

3.1 Model of the vehicle 

A tri-axle tank truck as the one shown in Figure 3.1 is studied. The tank is comprised of 6 

separate compartments and is mounted on the vehicle chassis frame (Π) through a sub-frame 

(Y) in an effort to minimize the torsion transferred from the tank’s movement to the chassis 

frame. The tank’s compartment numbering is shown in Figure 3.2 
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Figure 3.1 Vehicle layout and dimensions 

 

Figure 3.2 Tank’s compartment numbering 

The principal dimensions of the vehicle are shown in Figure 3.1 and other useful characteristics 

are shown in Table 3.1. The constraints imposed by structural or geometric limitations are 

shown in Table 3.2. 

  

A 

D 

B C 
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Table 3.1 Vehicle Parameters 

MODEL PARAMETERS SYMBOL VALUE UNITS 

Front Axle mass MFA 600 kg 

Middle Axle mass MMA 1300 kg 

Rear Axle mass MRA 600 kg 

Chassis mass M 6500 kg 

Chassis mass distribution: 

Front Axle / Rear Axles 
- 5500/3500 kg 

Tank mass (when filled) MT 17000 kg 

Tank mass (empty) ME 2500 kg 

Width of the chassis frame B 0.860 m 

Front/ Middle/ Rear  

Tires’ stiffness 
FRVi 800/1600/1600 kN/m 

Front/ Middle/ Rear  

wheel space 
TNi 2.100/1.900/1.900 m 

Table 3.2 Geometric and structural constraints 

MODEL PARAMETERS VALUE UNITS 

Suspension Stiffness 10000-500000 N/m 

Suspension Damping 1000-50000 N.s/m 

Supports stiffness 1000-50000 N/m 

Supports damping 100-5000 N.s/m 

Suspension Max. 

Displacement 
±0.2 m 

Front Axle/ Rear Axles  

load capacity  
7000/20000 kg 

 

The technique used for modeling the current vehicle is based on the notion of integrating 

numerous basic ideal system elements to form the full model of the vehicle. In particular, a 

lumped model was used for the individual elements of the system. The individual algebraic 

and differential elemental equations are derived from these elements and are then combined 

to form the mathematical description of the whole system. Such a model simplifies the 

description of physical systems, under certain assumptions (see below), by treating an 
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element’s certain distributed property as a concentrated one acting or applied on a certain 

point of the element. This way the dependent variables of the element equation become 

disengaged from the spatial coordinate while mathematically speaking, the state space of the 

system is reduced to a finite number and also the partial differential equations (PDEs) of the 

continuous (infinite-dimensional) time and space model of the physical distributed system are 

transformed into ordinary differential equations (ODEs) with a finite number of parameters. 

For mechanical systems the simplifying assumptions that have to be made in order for the 

lumped model to work, are that (a) all objects are rigid bodies and (b) all interactions between 

rigid bodies take place via kinematic pairs (joints), springs and dampers. 

The model assumes linear full-car suspension. The description of typical linear elements and 

their equations in mechanical systems are the following (Table 3.3): 

Table 3.3 Linear translational elements in mechanical systems 

Element Equation Energy 

Mass – m 

kinetic energy storage 
m

F mx= ��
 

21

2
E mx= �

 

Spring – k 

dynamic energy storage 
k

F kx=
 

21

2
U kx=

 

Damper – c 

energy dissipation 
c

F cx= �
 

21

2
V cx= �

 

 

It is also assumed that the tank has been mounted on the chassis frame using three supports 

(sub-frame Y), modeled as mass-less elements with equivalent stiffness and damping, which 

act on the left and the right side of the frame (Figure 3.3). The travelling velocity is set at 11.11 

m/s. 
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Figure 3.3 Model of the vehicle along the ABCD section of Figure 3.1 

When the equations from all the elements of the system are combined, an equation of the 

following form is produced for the whole system: 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )M x t C x t K x t P f t⋅ + ⋅ + ⋅ = ⋅�� �    (1.39)  

where, 

[ ]M is the mass matrix, 

[ ]C is the damping matrix, 

[ ]K is the stiffness matrix, 

( )x t is the displacements vector for all the DoF’s 

[ ]P is the coordinates matrix and 

( )f t is the excitations vector 

The roll angle of the tank is acquired by conducting dynamic analyses of the model of the 

system (solving Eq. 3.1 for ( )x t ) and studying the respective component in the cases of 

different road profile excitations as inputs and different loading cases of the tank, 

corresponding to various realistic hypothetical scenarios.  

This study examines 4 different basic loading scenarios. Each one represents a different filling 

pattern of the vehicle’s tank (Figure 3.2). The four loading cases examined are: 
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• Case 1: All 6 compartments of the tank are filled at 100% of their maximum capacity. 

• Case 2: All 6 compartments of the tank are filled at 80% of their maximum capacity. 

• Case 3: All 6 compartments of the tank are filled at 50% of their maximum capacity. 

• Case 4: All 6 compartments of the tank are filled at 20% of their maximum capacity. 

The excitations of the system represent overcoming an obstacle on the road, particularly a 

pothole (Figure 3.4) and a typical country road based on ISO/TC 108/WGp draft No.3e, 1972 

(Figure 3.5). 

 

       (a)        (b) 

Figure 3.4 Obstacle profile (a) left track, (b) right track 

 

       (a)        (b) 

Figure 3.5 Road profile (a) left track, (b) right track 

Two optimization algorithms are selected for the optimization process. A stochastic genetic 

algorithm and a deterministic line search method are going to be compared with regards to 

global search capabilities and overall convergence. In the process useful conclusions will be 

drawn regarding both the nature of the problem and the nature of the algorithms. Since the 
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left and right side of the vehicle are considered to have symmetrical properties, there are a 

total of 12 design variables in the optimization process. Namely those variables are the front, 

middle and rear suspension stiffness (3) and damping (3) and the front, middle and rear tank’s 

supports’ stiffness (3) and damping (3), for a total of 12 variables. 

3.2 Optimization with the Genetic Algorithm 

The GA optimizer was implemented using the Genetic Algorithm and Direct Search Toolbox™ 

of MATLAB® R2008a. The solver of the optimization process included the modeling of the 

vehicle according to the Vehicles Laboratory™ Toolbox Software Version 1.5.1 (MATLAB® 

R2008a) in conjunction with a dynamic penalty function for violations in constraints as they 

are described in Table 3.2. 

In order to overcome the stochastic nature of the algorithm and also to better apprehend the 

general behavior of the system and topology of the solution space, a number of 20 runs per 

load case per excitation input are executed. For every load case examined, the ten best runs of 

the particular excitation inputs are isolated, studied and compared in order to determine the 

behavior of the algorithm as well as the nature of the problem. 

3.2.1 Load Case 1: All compartments filled at 100%  

For this particular load case the tank of the truck is filled to the maximum possible degree. All 

6 compartments of the tank of the vehicle are fully filled, therefore the weight of the liquid 

inside the tank is 14500 kg and the tank’s center of gravity is in the middle of the tank.  

A number of 20 runs for every excitation input were executed and the 10 best optimized design 

vectors for each are presented as follows in Table 3.4 for the obstacle excitation and Table 3.5 

for the road excitation input. 
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Table 3.4 GA Case 1: Obstacle excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10001 10000 10000 10000 10000 10000 10000 350873 311152 485034 

M K susp 10000 10000 10000 10000 10001 10000 10000 10000 10000 10000 

R K susp 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 

F c susp 49742 49382 49610 49033 45927 46875 43331 46999 40141 45260 

M c susp 1003 1000 1000 1000 1000 1000 1001 1000 1001 12208 

R c susp 1002 1000 1000 1000 1000 1000 1001 1001 1001 1000 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1002 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1001 1000 1000 1000 1000 1000 1000 1000 1000 1000 

F c supp 991 4020 100 4596 4287 100 2288 2142 102 100 

M c supp 1854 1917 4549 102 101 4557 3436 100 2340 4981 

R c supp 3484 100 1863 827 1524 613 101 3524 2833 100 

roll 0.1429 0.1430 0.1430 0.1433 0.1437 0.1440 0.1443 0.1446 0.1448 0.1451 

 

Table 3.5 GA Case 1: Road excitation 

GA 1 2 3 4 5 6 7 8 9 10 
F K susp 21493 354880 292998 450897 290157 434007 10001 265421 458763 376072 

M K susp 10000 10000 19330 10000 10000 10000 10001 10000 56819 10001 

R K susp 10000 10001 10000 10000 10000 10000 10001 10001 10001 10001 

F c susp 39024 47359 47674 49114 36592 44741 31828 30936 43326 39892 

M c susp 1193 1001 1000 11975 1001 1001 1000 1001 1000 1000 

R c susp 1000 1000 1810 1000 1001 1001 1000 1000 10296 1000 

F K supp 1000 1000 1001 1000 1000 1000 1000 1000 1000 1001 

M K supp 1000 1000 1000 1000 1000 1000 1001 1000 1000 1001 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1001 

F c supp 3976 2411 4031 3002 3365 4604 4899 1801 4981 4805 

M c supp 4850 4853 3660 4633 4432 3319 4399 4921 3926 4413 

R c supp 4012 4559 4017 4154 3689 4064 4281 4558 3155 2722 

roll 0.4498 0.4507 0.4514 0.4516 0.4516 0.4516 0.4516 0.4521 0.4522 0.4524 

 

Figure 3.6 shows the graph for the maximum roll angles as they are shown in the previous 

tables. It is presented here as a visual aid for ranking the quality of each solution compared to 

the rest in its case. For the first input, all the above solutions are located within 2% of the 

optimum found value and for the second within 0.5%. 
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Table 3.4 shows a very clear general picture about where the globally optimum solution for this 

case is. For the first 9 parameters, the first 4 vectors are almost identical. The first 7 vectors are 

identical in 8 parameters and extremely close for the ninth.  

Not the exact same general picture comes out from Table 3.5. The basic differences involve the 

front suspension stiffness and damping. There appear to be two or more potential optimal 

ranges for the suspension stiffness, clear sign that the algorithm was trapped in completely 

different local optima. See for example design vectors 1, 2 and 4. For the first, the stiffness is 

very low, as the one found in the previous case. For the others it ranges from medial to very 

high within the allowable range. In order to assess the resulting difference between these 

instances, the roll angle time-response is plotted in Figure 3.7, as it is determined by changes 

on the stiffness of the front suspension. The second vector of Table 3.5 is used as a template 

and the difference in the respective responses by changing the front suspension stiffness from 

high (50) to medial (25) to low (1) are plotted for both excitation inputs. 

 

       (a)        (b) 

Figure 3.6 GA Case 1: Roll angle (a) obstacle excitation, (b) road excitation 
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It is obvious that for the obstacle (Figure 3.7a), the lower stiffness produces a clearly better 

response, and that is the reason why the algorithm easily located that solution as the optimum. 

For the road input the answer is not that straightforward. The system and the excitation 

produce a topology of the solution such, that the two valleys that appear at the same 

approximate depth in the response of Figure 3.7b are each slightly attenuated or amplified by 

the stiffness in a way that final result is inversed. Even so, the first valley is significantly 

attenuated by the low stiffness value while the second valley is only slightly amplified as a 

result. The maximum roll angles in both cases are quite similar and this explains why the 

algorithm was unable to distinguish the optimum area between the two and got trapped in two 

different places of the design space. Another interesting observation is that the difference in 

the response by changing the stiffness from medial (25) to high (50) is very small. This creates 

sort of a plateau for a large range of values in that dimension of the solution space where the 

algorithm is very difficult to improve. This explains why the 10 best solutions contain 2 

solutions with a low stiffness value and 8 dispersed in that high range, all with the same 

approximate objective function value. The graph shows that higher stiffness values within that 

range produces a slightly better final result.  

The supports’ damping parameters have not been mentioned so far because there seems to be 

no visible pattern and no individually optimal solution for each variable. Plotting these values 

in the same graph (Figure 3.8) proves this exact point. 

 

       (a)        (b) 

Figure 3.7 GA Case 1: Front suspension stiffness (a) obstacle excitation, (b) road excitation 
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By a first look, these graphs may seem rather random and uncorrelated. On a closer 

examination though, one can discern that this is not actually the case. The individual variable 

values may fluctuate significantly, but on the contrary the sum of the three values on every run 

remains within a relatively tight range (Figure 3.9). It appears that this sum can be distributed 

among the three variables in numerous equivalent ways and produce the exact same final 

result.  

This can be explained by the modeling of the tank and the sub-frame which supports it as rigid 

bodies, and the objective function selected since the roll of the tank affects all three supports 

in the same way. The supports act in parallel for containing the rolling of the tank’s body and 

the respective individual damping values are added to provide the equivalent damping for each 

side of the tank. Therefore, there is no significant point in listing the values for the individual 

variables, but rather their sum is mentioned as the defining factor in the optimization. 

 

       (a) (b) 

Figure 3.8 GA Case 1: Supports’ damping (a) obstacle excitation, (b) road excitation 

  

       (a)        (b) 

Figure 3.9 GA Case 1: Supports’ damping sum (a) obstacle excitation, (b) road excitation 
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To sum this section, Table 3.6 shows the optimum design vectors found for each excitation 

input.  

Table 3.6 GA Case 1: Optimum design vectors 

GA 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10001 21493 

M K susp 10000 10000 

R K susp 10000 10000 

F c susp 49742 39024 

M c susp 1003 1193 

R c susp 1002 1000 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1001 1000 

Σc supp 6329 12838 

roll 0.1429 0.4498 

 

In order to be able to make a more educated decision in the end, both optimum vectors are 

applied to the system for both excitations. The responses obtained are depicted in Figure 3.10. 

The continuous line represents the vector optimized for the obstacle and the dotted line 

represents the vector optimized for the road. 

 

       (a)        (b) 

Figure 3.10 GA Case 1: Optimized responses (a) obstacle excitation, (b) road excitation 
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3.2.2 Load Case 2: All compartments filled at 80%  

The 6 compartments of the tank of the vehicle are partially filled, at 80% of their maximum 

capacity. Therefore the weight of the liquid inside the tank is 14500*0.8 = 11.600 kg and since 

the loading is symmetric, the center of gravity is still in the middle of the tank lengthwise. It 

should be mentioned again here, that in all the cases of partially filled compartments, the 

movement of the liquid inside the compartment is not modeled or taken into consideration 

and the tank with the liquid inside is modeled as a rigid body. 

The ten out of 20 best design vectors found by the GA for the second loading case are 

presented in Table 3.7 and Table 3.8 for the obstacle and the road excitation input respectively. 

Table 3.7 GA Case 2: Obstacle excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10000 10000 10000 10000 322574 10000 462750 298130 

M K susp 10000 10000 10000 10000 10000 10000 10001 10000 10002 10001 

R K susp 10000 10000 10000 10000 10000 10000 10001 10000 10000 10001 

F c susp 49804 49248 47625 47264 45476 41727 46685 39585 36584 35604 

M c susp 1000 1001 1000 1000 1000 5317 1000 3266 1000 1001 

R c susp 1000 1001 1000 1000 1000 1000 1001 1001 14091 1000 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 5755 5790 5433 5609 4911 5734 4763 5520 4865 4415 

roll 0.1562 0.1563 0.1567 0.1568 0.1576 0.1586 0.1586 0.1591 0.1591 0.1592 

 

Table 3.8 GA Case 2: Road excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10003 10001 380852 407952 386401 287384 395194 483525 366090 241131 

M K susp 10000 10000 10000 10002 10000 10000 10000 10000 10000 10003 

R K susp 10001 10001 10000 10000 20360 10001 10000 10000 69116 10002 

F c susp 49734 43032 44088 49672 43419 39421 48817 44608 25050 28576 

M c susp 1000 1000 1001 1000 1000 1000 1000 21682 6090 1003 

R c susp 1001 1001 1000 9918 3899 1000 4938 1000 1000 1474 

F K supp 1000 1000 1000 1001 1001 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1001 1000 1000 1000 

R K supp 1000 1000 1001 1001 1000 1002 1000 1000 1000 1000 

Σc supp 11682 11533 9059 8865 9135 8787 8765 8800 9368 8383 

roll 0.4590 0.4595 0.4607 0.4611 0.4613 0.4618 0.4620 0.4629 0.4633 0.4638 
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Figure 3.11 shows the graph of the maximum occurring roll angle for the ten best runs of every 

input. For the obstacle, the solutions lie within 2% and for the road within 1%.  

The results shown in Table 3.7 and Table 3.8 appear a little clearer than the previous load case. 

For both excitation inputs there seems to be a general agreement on the first 9 optimum 

parameters. The neighborhood of the global optimum seems to be similar and is located by the 

algorithm for both excitation inputs. Furthermore, the respective roll angles have increased 

compared to the previous load case once the tank has become emptier and therefore lighter. 

The reduced inertia of a smaller tank mass makes the system more sensitive to the same 

excitations. 

As far as the supports’ damping is concerned, a graph of the respective sums is presented in 

Figure 3.12 for reasons explained in section 3.2.1. 

  

       (a)        (b) 

Figure 3.11 GA Case 2: Roll angle (a) obstacle excitation, (b) road excitation 

 

       (a)        (b) 

Figure 3.12 GA Case 2: Supports’ damping sum (a) obstacle excitation, (b) road excitation 
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There appears to be better homogeneity between the first four values of Figure 3.12a compared 

to the rest. Something interesting can thus be noticed by looking at the design vectors of Table 

3.7 in correlation with the obtained roll angles as shown in Figure 3.11. First of all, these values 

are taken with more confidence since they are separated from the rest in their graph, in the 

same way that the best respective roll angles are separated from the rest in their graph. 

Moreover, as these values are kept relatively constant, there appears to be a direct relation 

between the front suspension damping and the roll angle, as expected by the linear modeling 

of the dampers. A higher suspension damping produces a lower roll angle as shown in Figure 

3.13 for the obstacle excitation input. Of course the relation ceases to be this straightforward 

when more parameters come in play and their values are differentiated. What else is evident 

from Figure 3.13 is that the roll angle could in fact become lower and drop as low as 0.1561 just 

by setting the damping to 50000 which is the highest allowable limit. 

 

Figure 3.13 Relation between roll angle and front suspension damping 

The large difference between the first two values and the rest in Figure 3.12b is explained by the 

respective values for the front suspension stiffness in the design vectors, as seen in Table 3.8, 

and the fact that, as mentioned in section 3.2.1, the system has a different balance point. Again 

for these two design vectors, as the supports’ damping is kept constant, the relation between 

the front suspension damping and the roll angle is proportionate. 

Table 3.9 shows the optimum design vectors found for each excitation input. The two vectors 

are practically identical with the exception of the supports’ damping sum which is found to be 

twice as large for the road excitation.  
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Table 3.9 GA Case 3: Optimum design vectors 

GA 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 10003 

M K susp 10000 10000 

R K susp 10000 10001 

F c susp 49804 49734 

M c susp 1000 1000 

R c susp 1000 1001 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 5755 11681 

roll 0.1562 0.4590 

 

The responses obtained by these two vectors with each different input are depicted in Figure 

3.14. The continuous line represents the vector optimized for the obstacle and the dotted line 

represents the vector optimized for the road. 

       (a)        (b) 

Figure 3.14 GA Case 2: Optimized  responses (a) obstacle excitation, (b) road excitation 

3.2.3 Load Case 3: All compartments filled at 50%  

In this case, the 6 compartments of the tank of the vehicle are filled in half. The weight of the 

liquid inside the tank is 14500*0.5=7250 kg.  

Table 3.10 and Table 3.11 show the optimum design vectors found by the GA for the obstacle 

and road excitation input, respectively, for this particular load case.  
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Table 3.10 GA Case 3: Obstacle excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10000 10000 10000 10000 10000 10001 10000 10000 

M K susp 10000 10000 10000 10001 10000 10000 10000 10000 10001 10000 

R K susp 10000 10000 10000 10000 10000 10000 10000 10000 10001 10001 

F c susp 49299 48349 48286 48593 47567 46479 45302 45039 42844 43185 

M c susp 1000 1000 1000 1001 1000 1000 1000 1000 1001 1000 

R c susp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 4707 4678 4695 4426 4767 4892 4752 4735 4629 4334 

roll 0.1863 0.1866 0.1866 0.1866 0.1868 0.1872 0.1876 0.1877 0.1885 0.1885 

Table 3.11 GA Case 3: Road excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10000 10001 10000 414640 398918 383816 484877 10000 

M K susp 10000 10000 10000 10000 10000 10001 10000 10001 10000 10000 

R K susp 10000 10000 10000 10000 10000 10001 10000 10000 10001 10000 

F c susp 47508 48622 47962 41527 46529 1000 1001 1000 29918 35295 

M c susp 1000 1000 1000 1000 12174 1000 1000 1000 3296 1000 

R c susp 1000 1000 1001 1000 1000 1001 1001 1000 1000 1000 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1050 1000 1000 1000 1000 1000 1000 1000 

Σc supp 5412 5779 5094 5136 5058 5688 5662 5857 5628 5280 

roll 0.4952 0.4952 0.4974 0.4985 0.5006 0.5022 0.5025 0.5033 0.5034 0.5039 

 

In Figure 3.15 the roll angle throughout the runs is depicted, as it appears in the above tables. 

The solutions lie within 1% for the obstacle excitation and within 2% for the road excitation.  

        (a)               (b) 

Figure 3.15 GA Case 3: Roll angle (a) obstacle excitation, (b) road excitation 
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Again, in this load case, the results of the two optimization processes tend to agree to a large 

degree. The 9 first variables of the first few optimum vectors are practically the same, with all 

the values being set to the lowest allowable limit except for the front suspension damping 

which is very high. The supports’ damping sum is shown in Figure 3.16. 

For this particular load case, the supports’ damping values are relatively close for the two 

inputs, compared to what has been the case so far. 

As a result of all the above, Table 3.12 summarizes the optimum design vectors for each 

excitation input and Figure 3.17 depicts the responses obtained by these two vectors. The 

continuous line represents the vector optimized for the obstacle and the dotted line represents 

the vector optimized for the road. Since the design vectors are very similar, the responses 

obtained are also very similar.  

Table 3.12 GA Case 3: Optimum design vectors 

GA 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 10000 

M K susp 10000 10000 

R K susp 10000 10000 

F c susp 49299 47508 

M c susp 1000 1000 

R c susp 1000 1000 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 4707 5412 

roll 0.1863 0.4952 

 

        (a)               (b) 

Figure 3.16 GA Case 3: Supports’ damping sum (a) obstacle excitation, (b) road excitation 
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3.2.4 Load Case 4: All compartments filled at 20%  

In the last case the tank is only full by 20% which makes the tank very light and thus more 

susceptible to movement. The liquid carried inside the tank weighs 14500*0.2=2900 kg 

compared to the 14.500 kg of the first load case (section 3.2.1) 

Table 3.13 and Table 3.14 show the ten best runs out of 20 that were executed for each road 

profile input. 

Table 3.13 GA Case 4: Obstacle excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 

M K susp 10000 10000 10000 10000 10000 10001 10000 10000 10000 10000 

R K susp 10000 10001 10000 10000 10000 10001 10000 10000 10000 10000 

F c susp 49468 49165 49001 48264 47437 48670 46713 46776 43249 40976 

M c susp 1000 1000 1000 1001 1000 1000 1000 1000 1000 1001 

R c susp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 3487 3704 3402 3848 3780 3117 3293 3068 3496 3709 

roll 0.246
7 

0.2469 0.2469 0.2475 0.2476 0.2476 0.2480 0.2486 0.2494 0.2508 

  

  

       (a)        (b) 

Figure 3.17 GA Case 3: Optimized  responses (a) obstacle excitation, (b) road excitation 
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Table 3.14 GA Case 4: Road excitation 

GA 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10000 10000 10000 10001 10000 10000 10000 10000 

M K susp 10000 10000 10000 10000 10001 10000 10000 10000 10000 10000 

R K susp 10000 10000 10001 10001 10001 10000 10000 10001 10000 10000 

F c susp 49405 49074 48747 47477 45677 45854 44375 48799 38624 40317 

M c susp 1001 1000 1000 1000 1001 1001 1000 1001 1000 3326 

R c susp 1002 1000 1000 1000 1000 1000 1000 1000 1000 3009 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1001 1000 1000 1000 1000 

F c supp 7512 7562 7118 8312 7755 8056 7827 5999 8744 8547 

roll 0.5707 0.5709 0.5716 0.5727 0.5727 0.5728 0.5735 0.5753 0.5776 0.5797 

 

The general picture is maintained from the previous load cases and the optimization for both 

inputs tends to agree on the values of all variables, differing only on the supports’ damping. An 

interesting observation that can be made is that, now that the tank is lighter and the response 

of the tank’s roll angle to the excitation input is sharper, the local optimum (high front 

suspension stiffness) that appeared in the results of previous cases for the road excitation input 

has now completely disappeared. For the first load case, when the tank was the heaviest, the 

algorithm can barely keep from getting trapped in that local optimum, for the second case the 

algorithm was not trapped in local optima only 2 times and for the third case only 5 times.  

The obtained values of the roll angle for the fourth load case are depicted in Figure 3.18 for the 

obstacle and for the road excitation input respectively. These values range within 

approximately 1.5% of the optimum found value for both cases.  

  

        (a)               (b) 

Figure 3.18 GA Case 4: Roll angle (a) obstacle excitation, (b) road excitation 
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The optimum design vectors found for each input are presented in Table 3.15. 

Table 3.15 GA Case 4: Optimum design vectors 

GA 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 10000 

M K susp 10000 10000 

R K susp 10000 10000 

F c susp 49468 49405 

M c susp 1000 1001 

R c susp 1000 1002 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 3488 7512 

roll 0.2467 0.5707 

 

Figure 3.19 shows the responses obtained by these two vectors with each different input. The 

continuous line represents the vector optimized for the obstacle and the dotted line represents 

the vector optimized for the road. 

 

 

       (a)        (b) 

Figure 3.19 GA Case 4: Optimized responses (a) obstacle excitation, (b) road excitation 
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3.3 Optimization with the BFGS method 

The line-search optimizer used is part of the Vehicles Laboratory™ Toolbox Software Version 

1.5.1 (MATLAB® R2008a). A number of 20 runs were executed per loading case per excitation 

input. The initial vectors were selected randomly from within the allowable range for every 

variable, following a uniform distribution. Out of the 20 runs, the 10 best were separated and 

presented here to be processed. 

3.3.1 Load Case 1: All compartments filled at 100%  

For the first load case, where the tank is 100% full, the 10 best design vectors obtained for the 

obstacle and the road excitation input are presented in Table 3.16 and Table 3.17 respectively. 

Table 3.16 LS Case 1: Obstacle excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 482984 469040 445472 478561 498037 444463 470312 499553 453887 

M K susp 10000 10000 10220 13143 12302 10703 25069 67237 77489 56276 

R K susp 10000 10000 10463 21294 24811 42027 26877 10160 10262 31263 

F c susp 50000 49222 49096 45030 45727 28821 40584 33716 28892 33484 

M c susp 1003 5945 18064 22067 22790 17755 39951 46623 16476 16176 

R c susp 1000 12063 15201 1127 24075 19451 16010 2273 3802 34310 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 6122 5677 5536 5665 5497 5508 5449 5444 4961 5519 

roll 0.1428 0.1448 0.1450 0.1453 0.1455 0.1459 0.1461 0.1465 0.1466 0.1469 

Table 3.17 LS Case 1: Road excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 347899 14029 435739 476596 473820 197983 281468 10000 10000 10001 

M K susp 76551 13626 43918 24151 134096 23411 78360 10000 10000 10002 

R K susp 254878 24946 231100 244451 111277 376656 224533 10000 10015 10004 

F c susp 38554 45414 47207 21725 16605 38943 33183 50000 49792 49983 

M c susp 10501 14847 37759 37529 29148 27716 40437 1000 9908 31159 

R c susp 5691 24273 46970 38634 21167 7159 38022 17072 41659 25190 

F K supp 1000 1000 1000 1000 1001 1000 1000 31702 12246 22330 

M K supp 1000 1000 1000 1000 1001 1000 1000 31719 48918 39205 

R K supp 1000 1000 1000 1000 1001 1000 1000 9917 4374 4313 

Σc supp 11162 12960 11515 11742 11974 11109 11493 15000 8311 10216 

roll 0.4572 0.4576 0.4590 0.4594 0.4597 0.4627 0.4638 0.6458 0.6480 0.6484 
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Figure 3.20 shows the graph of the roll angle during the ten best runs of every input as they 

appear in the above tables. Between best and the worst of these 10 angles there is a difference 

of 3% for the obstacle input and of a staggering 42% for the road excitation input. 

       (a)        (b) 

Figure 3.20 LS Case 1: Roll angle (a) obstacle excitation, (b) road excitation 

After the examination of the optimized design vectors in combination with Figure 3.20, various 

interesting observations can be made. For the obstacle excitation input, there appear to be at 

least two general directions of search in the solution space, differing mainly in the suspension 

stiffness value. The best solution obtained, which is significantly better than the rest, is found 

in the lower region of the suspension stiffness value range while all the other solutions are 

located in the higher region of the range. The fact that only one run out of 20 has located this 

optimum shows that for one, the algorithm can easily be trapped in local optima depending on 

the initial vector, but also that the topology of the solution space is such that the solution is 

not particularly easy to find. 

A similar behavior, yet even more acute, can be noticed for the road excitation input. In this 

case, because of the nature of the excitation, the solution space is significantly more complex 

and highly non-convex. As a result, the algorithm is unable to produce a coherent set of 

optimized design vectors and appears to be very easily trapped in the numerous local optima 

that exist. The final result produced is practically inconclusive and unusable as to what the 

general location of the global optimum is. Moreover, there appears to be a relatively high 

homogeneity among the first 7 runs and the last three. Between the two groups, there is a very 

large difference in fitness values. This proves that the algorithm again got trapped near a local 

optimum which is significantly inferior in fitness, showing it is unable to perform a global 

search. The position of this local optimum inside the solution space seems to be related mainly 

0.130

0.135

0.140

0.145

0.150

1 2 3 4 5 6 7 8 9 10

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5 6 7 8 9 10



64 Chapter 3 

 

 

to the values of the supports’ stiffness and the algorithm’s inability to direct these parameters 

to the lower limit of their range.  

Figure 3.21 shows the roll angle response of the system to both excitation inputs when the 

supports’ stiffness of the system is modified. The continuous line in the plot represents the 

response for the 8th design vector of Table 3.17 and the dotted line shows the same system after 

the supports’ stiffness has been set to the minimum allowable values, as it was found by the 

other optimized vectors. It is fairly obvious that the response is much better in the second 

case. As expected, when the stiffness is reduced, the oscillations of the system are attenuated 

in magnitude and the response becomes slower. However, the algorithm was unable to locate 

this clearly better solution due to the fact that it was trapped in a local optimum. 

The optimum design vectors, as they were obtained so far for both excitation inputs in this 

load case, are repeated in Table 3.18 and the responses of both those systems are plotted in 

Figure 3.22. The continuous line represents the vector optimized for the obstacle and the 

dotted line represents the vector optimized for the road. 

  

 

       (a)        (b) 

Figure 3.21 LS Case 1: Support stiffness parameters (a) obstacle excitation, (b) road excitation 
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Table 3.18 LS Case 1: Optimum design vectors 

LS 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 347899 

M K susp 10000 76551 

R K susp 10000 254878 

F c susp 50000 38554 

M c susp 1003 10501 

R c susp 1000 5691 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 6122 11162 

roll 0.1428 0.4572 

 

3.3.2 Load Case 2: All compartments filled at 80%  

For the second load case studied, the tank is by 20% lighter compared to the previous case and 

the results of the optimization are shown in Table 3.19 for the obstacle excitation input and in 

Table 3.20 for the road excitation input. 

  

 

       (a)        (b) 

Figure 3.22 LS Case 1: Optimized responses (a) obstacle excitation, (b) road excitation 
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Table 3.19 LS Case 2: Obstacle excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10003 10000 405007 327787 415730 317149 475753 467097 

M K susp 10003 10000 10000 10008 85232 71679 226919 97027 32558 157896 

R K susp 10000 10003 10119 10082 10984 282117 188197 240768 489662 373701 

F c susp 49258 49168 48410 47844 44298 47873 4703 33868 30995 11741 

M c susp 3167 3561 16766 3445 25613 20502 38579 39487 35747 26272 

R c susp 1222 1278 1104 18436 39494 13181 14298 17540 49969 29901 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 5617 5583 5408 5292 4977 5029 4803 4967 4995 4986 

roll 0.1565 0.1566 0.1581 0.1594 0.1621 0.1662 0.1662 0.1664 0.1664 0.1666 

Table 3.20 LS Case 2: Road excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 410832 364858 390585 379098 451975 383424 215613 305609 11127 394411 

M K susp 172734 32618 87989 261112 306160 130976 270901 303731 10035 17337 

R K susp 198848 252052 457116 70692 113192 283267 126027 208626 46262 457512 

F c susp 42999 16779 47415 25051 22764 8096 38674 42398 20902 40058 

M c susp 4580 19070 4270 5470 22147 45142 35664 36125 43903 24102 

R c susp 6438 25760 36224 24198 48866 43379 3890 48309 41556 27205 

F K supp 1000 1000 1000 1000 1000 1002 1004 1001 1000 1000 

M K supp 1000 1000 1000 1000 1001 1003 1000 1000 1000 1001 

R K supp 1000 1000 1000 1000 1000 1001 1006 1000 1000 33144 

Σc supp 8290 8681 8371 8645 8742 8876 8558 8669 9121 9876 

roll 0.4708 0.4723 0.4739 0.4743 0.4766 0.4779 0.4791 0.4794 0.4869 0.6574 

 

Between the roll angle values of Table 3.19 there is a 6.4% deviation, while for the values of 

Table 3.20 there is a deviation of 3.4% excluding the last run, or approximately 40% if the last 

run is included. The roll angles of Table 3.19 are presented in Figure 3.23a and the first 9 values 

of Table 3.20 are shown in Figure 3.23b. 
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       (a)        (b) 
Figure 3.23 LS Case 2: Roll angle (a) obstacle excitation, (b) road excitation 

Clearly, for the case of the obstacle excitation input (Figure 3.23a), there is a significant 

difference between the group of the first few best solutions and the group of the 5 worst. As far 

as the nature of the solution space is concerned, by looking at the respective design vectors, it 

is evident that the first few vectors lie in the same approximate neighborhood of the design 

space. Yet the final results they produce, even though they are similar they are not especially 

close. This is a sign of non-convexity of the solution space and inability of the algorithm to 

overcome a local optimum so as to direct the search towards the better solution. On the other 

hand, the close proximity of the last five solutions fitness-wise, is a phenomenon not attributed 

to the location and approximation of the exact same local optimum in the solution space, but 

rather the existence of numerous local optima with the same objective function value 

dispersed in the entire search space. In other words, there appear to be numerous local optima 

of the same or extremely proximate objective function value scattered throughout the solution 

space and at the same time various local optima of better fitness value in the neighborhood of 

the global optimum, where the algorithm can also get trapped.  

The same phenomenon yet even more amplified is observed for the road excitation input. As 

anticipated, the increased complexity of this excitation signal produces a more complex 

response and as a result the solution space is more diverse and with increased non-convexity. 

The local optima are more frequent which is indicated by the fact that none of the solutions 

found was approaching the global optimum. Instead the design vectors are scattered 

throughout the solution space. There only appears to be a general agreement on the supports’ 

stiffness and damping sum values by the majority of the runs, which stresses the increased 

importance of these parameters compared to the rest, in the response of the system and 

consequently the whole optimization process. 
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The optimum solutions found for this particular load case are shown in Table 3.21 and the 

respective responses are plotted in Figure 3.24. The continuous line represents the vector 

optimized for the obstacle and the dotted line represents the vector optimized for the road. 

Table 3.21 LS Case 2: Optimum design vectors 

LS 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 410832 

M K susp 10003 172734 

R K susp 10000 198848 

F c susp 49258 42999 

M c susp 3167 4580 

R c susp 1222 6438 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 5617 8290 

roll 0.1565 0.4708 

 

3.3.3 Load Case 3: All compartments filled at 50%  

In this load case the tank is half filled and therefore has half the weight compared to the first 

case. This should make the system more sensitive to the excitation and increase the magnitude 

of the response. Out of the 20 runs executed for the different inputs, the ten best are shown in 

Table 3.22 and Table 3.23. 

       (a)        (b) 

Figure 3.24 LS Case 2: Optimized responses (a) obstacle excitation, (b) road excitation 
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Table 3.22 LS Case 3: Obstacle excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 499992 498188 499362 496804 469906 496261 499096 488251 

M K susp 10000 10000 10051 11131 10789 13121 21487 33129 10000 12980 

R K susp 10000 10000 10001 21247 11022 21511 48872 26949 49758 78730 

F c susp 50000 49999 49779 45626 48918 45444 26429 46202 38961 26915 

M c susp 1000 1000 16921 14576 9646 2126 16426 43529 35662 24761 

R c susp 1000 1000 2208 6519 22010 37342 19939 11787 21256 32731 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 4711 4710 3806 3822 3806 3857 3730 3998 3955 3923 

roll 0.1861 0.1861 0.1913 0.1916 0.1925 0.1932 0.1933 0.1937 0.1937 0.1944 

Table 3.23 LS Case 3: Road excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 495242 472386 470437 494633 499221 455687 499694 499996 488794 481187 

M K susp 10832 10000 10042 10006 10000 12241 10586 10340 487382 312401 

R K susp 10191 10001 11147 10002 10055 25435 28927 39770 163347 199922 

F c susp 36911 40053 44367 31684 45290 9712 16704 46816 46065 15998 

M c susp 5614 3075 1019 1412 3646 22939 40586 17298 29218 38018 

R c susp 1275 1411 1012 6578 1275 9647 8175 33816 6279 46162 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 5987 6024 6149 5908 6134 5207 5119 4700 5640 5851 

roll 0.5036 0.5037 0.5038 0.5038 0.5040 0.5071 0.5092 0.5121 0.5257 0.5264 

 

In order to visualize the quality of each solution, the roll angles obtained are shown in the 

graphs of Figure 3.25. For both excitation inputs the 10th best value lies within approximately 

4.5% of the optimum one found. 

       (a)        (b) 

Figure 3.25 LS Case 3: Roll angle (a) obstacle excitation, (b) road excitation 
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For the first excitation, it is apparent that the first two solutions produce a far superior result 

compared to the rest. In fact, by looking at the respective design vectors, these two solutions 

are practically identical, clear indication that this exact point in the solution space is a strong 

local optimum (or compared to what has been found so far the global optimum.) The other 

solutions appear to have been trapped while searching for a different strong local optimum, 

better approached by the 3rd solution as it seems. 

For the second excitation, the five best solutions seem to be moving around the same general 

neighborhood and searching for the same strong local. The fitness values obtained are 

extremely close, perhaps even closer than would be normally expected by examining the 

respective design vectors. This could indicate that again, the design space has sort of a small 

plateau along some its dimensions, which inhibits the algorithm’s effort to direct the search 

towards the local optimum solution. 

Table 3.24 shows the optimum design vectors that were presented in the above tables for this 

particular load case and Figure 3.26 shows the response of the system for each of these vectors. 

Table 3.24 LS Case 3: Optimum design vectors 

LS 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 495242 

M K susp 10000 10832 

R K susp 10000 10191 

F c susp 50000 36911 

M c susp 1000 5614 

R c susp 1000 1275 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 4711 5987 

roll 0.1861 0.5036 
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       (a)        (b) 

Figure 3.26 LS Case 3: Optimized responses (a) obstacle excitation, (b) road excitation 

It is very interesting to notice how Figure 3.26b shows two almost equally good responses of 

the system as far as the objective function is concerned, yet the two design vectors are 

optimized for completely different excitation inputs and are significantly different. This can be 

attributed to the fact that the optimized vector for the road excitation is not in fact the 

problem’s global optimum solution. The algorithm was trapped in a completely different local 

optimum. However, comparing it to the optimum solution found by the GA for the same 

problem (section 3.2.3), although the distance between them in the solution space is 

significant, the two just happen to produce a very similar final result. 

3.3.4 Load Case 4: All compartments filled at 20% 

For the final loading case the tank is filled by only 20% and is extremely light making the 

system even more responsive to the excitations of the road. The optimization was executed 20 

times for each excitation input with random initial vectors and the ten best results obtained 

are presented in Table 3.25 and Table 3.26. 
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Table 3.25 LS Case 4: Obstacle excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 10000 10001 499699 448650 499399 346233 494705 378698 482535 

M K susp 10000 10000 10000 10013 69819 10135 10227 10068 11852 18992 

R K susp 10046 10332 10991 167813 117294 104491 109484 145242 153775 232713 

F c susp 49999 50000 49733 48350 49971 49120 48999 48755 45135 45277 

M c susp 1000 1000 1303 10776 6834 36562 41712 42277 32739 24548 

R c susp 1000 1000 1024 2762 1294 10812 5235 11805 1016 14438 

F K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Σc supp 3535 3544 3522 3109 3150 3194 3279 3144 3163 3129 

roll 0.2465 0.2465 0.2468 0.2602 0.2609 0.2621 0.2626 0.2630 0.2636 0.2644 

Table 3.26 LS Case 4: Road excitation 

LS 1 2 3 4 5 6 7 8 9 10 

F K susp 10000 499944 499172 407341 467187 10150 241430 323180 277537 342204 

M K susp 10008 10004 11314 120572 459244 12928 33111 129910 106910 148031 

R K susp 74762 490596 307581 403087 333456 96858 499989 499982 490545 499918 

F c susp 49967 41091 25096 49578 45874 49989 49966 49985 49556 49963 

M c susp 1393 2987 2760 28904 46173 14427 1007 1012 4048 1029 

R c susp 3027 1012 13156 18549 47412 5437 1003 1000 1943 2123 

F K supp 1000 1000 1000 7810 3445 49927 49968 46743 48596 48199 

M K supp 1000 1000 1000 5321 1357 49942 49996 47311 49947 49932 

R K supp 1000 1000 1000 2688 11535 46593 49992 46364 45399 41530 

Σc supp 11180 9591 5965 10246 11628 14248 301 349 318 315 

roll 0.5720 0.5932 0.5951 0.6583 0.6848 0.7172 0.7647 0.7710 0.7729 0.7735 

 

The roll angles for the ten best runs of every excitation are plotted in Figure 3.27. 

  

       (a)        (b) 

Figure 3.27 LS Case 4: Roll angle (a) obstacle excitation, (b) road excitation 
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Figure 3.27a clearly shows that the results obtained in the first three runs are significantly 

better than the rest. By examining the respective design vectors it is clear that these vectors 

have almost identical parameter values, meaning they have approached the same local 

optimum. The main difference with the other solutions is the extremely elevated front 

suspension stiffness value, which indicates the existence of another strong local optimum in 

that region, as has been noted previously. However, in this load case, because of the topology 

of the solution space due to the excitation, the two local optima have a large difference in their 

fitness value. The algorithm, unable to search globally, gets trapped in it anyway. 

The general picture that can be extracted from Table 3.26 and Figure 3.27b seems somewhat 

expected. Due to the complexity of the solution space and the numerous local optima, only 

one solution out of 20 was able to separate itself from the rest and end up in the approximate 

area where the global optimum is located. However, again the algorithm could not avoid 

getting trapped in local optima during the process and the global optimum could not be 

located very closely. The best solution obtained is still quite poor. As far as the rest of the 

solutions are concerned, they were trapped very fast in local optima with much inferior fitness 

values, as the algorithm is unable to perform a global search. As long as the parameters of the 

support stiffness are located on the lower limit of the allowable range, the solutions produced 

are improved significantly, as it seems by the group of the first three design vectors. 

In summation, the optimum design vectors found in this section are presented in Table 3.27 

and the respective responses of the systems are plotted in Figure 3.28. 
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Table 3.27 LS Case 4: Optimum design vectors 

LS 
Obstacle 

excitation input 
Road 

excitation input 

F K susp 10000 10000 

M K susp 10000 10008 

R K susp 10046 74762 

F c susp 49999 49967 

M c susp 1000 1393 

R c susp 1000 3027 

F K supp 1000 1000 

M K supp 1000 1000 

R K supp 1000 1000 

Σc supp 3535 11180 

roll 0.2465 0.5720 

 

In Figure 3.28a, the double peak that can be noticed in the response, is due to the deviation of 

the second design vector from the lower limit for the rear suspension stiffness.  

 

 

       (a)        (b) 

Figure 3.28 LS Case 4: Optimized responses (a) obstacle excitation, (b) road excitation 
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4 Conclusions  

In the final chapter of the current work, all the conclusions that were drawn while conducting 

this study are analyzed. These include a comparison between the capabilities and general 

behavior of the algorithms used, a description of how the system’s response is modified when 

the excitation input or the loading cases change, how the dynamic system behaves in general 

and why, and lastly the study’s proposition for the values of the parameters in question. In the 

final section possible ways to expand the current work are described, as they arose through the 

close involvement and friction with the subject during the preparation of this study. 

4.1 Optimization algorithms 

During the course of the optimization, both algorithms were not always successful in locating 

the globally optimum solution. Each to a different extent, they either became trapped in local 

optima, close or far away from the general position of the global optimum in the design space 

or simply reached a point where they were for various reasons unable to further improve their 

position and fitness. Apart from the final values for the roll angle obtained by each method’s 

optimum design vector, the frequency and location of the trapped solutions compared to the 

rest, and also the homogeneity in the parameter values of the solutions, help determine the 

general efficiency of the algorithms as well as their strengths, weaknesses and search 

capabilities. The following figures establish a comparison between the two methods’ general 

efficiency and robustness. They show the ten best objective function values obtained out of a 

total of 20 for each load case (rows) and each excitation input (columns). The first column of 

the figures depicts the results for the obstacle excitation input and the second column those of 

the road profile. The dark-colored line represents the results of the genetic algorithm while the 

light-colored line the results of the BFGS method. 
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Figure 4.1 Roll angles per load case (a) obstacle excitation, (b) road excitation 
GA: dark-colored line, BFGS: light-colored line 
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It is obvious that in general, the genetic algorithm produces superior results compared to the 

BFGS method for solving this problem. As the results of section 3.2 can also confirm, the GA 

shows good global search capabilities by scanning the entire search space efficiently and by 

avoiding being frequently trapped in local optima away from the global one. Even when the 

solution space of the problem was highly non-convex with multiple strong local optima, the 

GA was able to locate the optimum solution or at least arrive close to it. The results obtained 

had good repeatability, sign of a robust and reliable method. However, the algorithm showed 

weakness in locating the exact position of the global optimum and lacked strong local search 

capabilities. Once the population had converged in the neighborhood of the global optimum, 

it was difficult for the algorithm to locate its exact position or further improve the attained 

fitness. Instead, the final optimum solution obtained, lied very close to the global optimum in 

the design space and was not even necessarily a local optimum. This behavior was intensified 

when the optimum solution for an individual parameter was located on the boundaries of the 

design space and had to be approached from within the feasible region.  

On the other hand the BFGS method produced much more diverse results within the group of 

the 20 runs of every test case. The tables of section 3.3 which contain the design vectors for the 

values presented in Figure 4.1, show that the solutions obtained have reduced homogeneity 

and do not lie very close to each other within the solution space. Since this method performs a 

single-point search of the solution space and moves from the initial point towards the 

strongest local optimum in the vicinity, it completely lacks global search and hill climbing 

capabilities. In complex problems, such as the one in hand, this means that it can be very easily 

trapped in local optima. However, this method has strong local search capabilities and the 

exact location of each optimum can be determined precisely. Depending on the position of the 

initial vector and/or the topology and convexity of the solution space the results obtained 

ranged from slightly better than the GA, when the local optimum found happened to be the 

global one, to significantly worse when the local optimum was random. In general the method 

is considered far less reliable than the GA for the particular type of problem. 

4.2 Excitation input 

The differences in the response of the system by changing the excitation input from the 

obstacle course to the road course are very noticeable in all the loading cases presented and to 

a large degree expected. For one, the roll angle time-response for the obstacle course is much 

simpler since the excitation itself is simpler. There is an initial peak at the point the pothole is 



78 Chapter 4 

 

 

encountered on the road, then the system oscillates slightly and the excitation is damped 

according to the parameters selected. The relation between the parameters and the response is 

straightforward and fairly easy to determine due to the relatively simple nature of the system 

and the excitation. On the other hand, the road profile is significantly more complex and rich, 

with numerous peaks and valleys on both tracks which excite the system on many frequencies. 

These different peaks and valleys of the excitation signals of the two tracks are combined and 

attenuated or amplified according to the individual vehicle parameters, to produce the 

respective responses presented in the previous sections. The form of the response is very much 

attributed to the form of both track signals as well as the parameters selected.  

With the road profile excitation, the solution space becomes more complex and highly non-

convex. Therefore, the algorithms, and especially the BFGS method, are more susceptible to 

being trapped in local optima. This led the BFGS method to being terminated prematurely and 

faster than usual on numerous occasions –depending on the randomly selected initial vector- 

while it was trapped in a position far away from the global optimum.  

As far as the individual parameters of the optimum design vectors are concerned, it is clear 

that between the two inputs, the main difference is expressed in the value of the supports’ 

damping sum. For the same load case, the road profile generally demands a greater value for 

this parameter.  

4.3 Load cases 

By examining the responses produced for the different load cases it is clear that as the tank 

gets emptier and lighter, the reduced inertia of the tank mass makes the system more sensitive 

to the same excitations thus the response of the system is amplified. Figure 4.2 shows the 

optimized roll angle time-responses for every load case of the obstacle excitation input and 

Figure 4.3 is the respective graph for the road excitation input. The load cases are expressed by 

the percentage of the tank being filled in each. 



Conclusions 79 

 

 

 
Figure 4.2: Optimized responses for the obstacle excitation 

 
Figure 4.3: Optimized responses for the road excitation 

From Figure 4.2 it is evident that the optimum response becomes sharper as the tank becomes 

lighter. The tank reacts faster to the initial disturbance and the maximum occurring roll angle 

increases in magnitude. The system oscillates more and it takes more time to return to the 

equilibrium state. Figure 4.3 shows that the optimum solutions are obtained when the two 

valleys which appear in the graph of the roll angle are of equal magnitude. For the fourth load 

case this does not seem to happen with the current settings, as it will be more clearly explained 

later on. The tank has become so light, even lighter than the weight of the chassis, and thus its 

movement is affected more intensely by the movement of the chassis. As a result, the initial 
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disturbances and the magnitude of the first valley cannot be attenuated enough, in the first 

place, in order for the two to become equal. (see also Figure 4.5) . 

Table 4.1 shows the optimum design vectors as they were determined for the obstacle 

excitation input and Table 4.2 contains the respective vectors for the road profile input. The 

solutions presented for cases 1, 3 and 4 of Table 4.1 were located using the BFGS method and 

the rest by the GA. 

Table 4.1 Optimum design vectors for the obstacle excitation  

Obstacle 
excitation input 

Case 1 Case 2 Case 3 Case 4 

F K susp 10000 10000 10000 10000 

M K susp 10000 10000 10000 10000 

R K susp 10000 10000 10000 10046 

F c susp 50000 49804 50000 49999 

M c susp 1003 1000 1000 1000 

R c susp 1000 1000 1000 1000 

F K supp 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 

Σc supp 6122 5755 4711 3535 

roll 0.1428 0.1562 0.1861 0.2465 

Table 4.2 Optimum design vectors for the road excitation  

Road 
excitation input 

Case 1 Case 2 Case 3 Case 4 

F K susp 21493 10003 10000 10000 

M K susp 10000 10000 10000 10000 

R K susp 10000 10001 10000 10000 

F c susp 39024 49734 47508 49405 

M c susp 1193 1000 1000 1001 

R c susp 1000 1001 1000 1002 

F K supp 1000 1000 1000 1000 

M K supp 1000 1000 1000 1000 

R K supp 1000 1000 1000 1000 

Σc supp 12838 11681 5412 7512 

roll 0.4498 0.4590 0.4952 0.5707 

 

It appears that, for the cases of the obstacle excitation input (Table 4.1), the only parameter of 

the optimum design vectors that practically changes from one load case to the next, is the 

value of the supports’ damping sum. The other parameters remain almost unchanged, except 

for some minor deviations which do not generally affect the final result to a significant extent 
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and can be attributed to the innate inabilities and weaknesses of the algorithms’ explained in 

section 4.1. For the road excitation input, shown in Table 4.2, the general picture is similar. The 

main difference between the design vectors lies again on the supports’ damping sum value. For 

the first load case, the optimum design vector is also differentiated for the front suspension 

stiffness and damping values by a small margin. As has been explained earlier, when the tank is 

heavy, the inertia of the tank is increased and the system becomes less responsive. Slightly 

increasing the stiffness of the front suspension and lowering the damping seems to improve 

the final outcome by making the tank react faster on the initial disturbance.  

The relation between the supports’ damping and the filling percentage of the tank is shown in 

Figure 4.4 

 
Figure 4.4 Supports’ damping sum vs tank fill percent (a) obstacle excitation, (b) road excitation 

It is interesting to notice how for the road profile input, the relation for the damping is not 

monotonous with the tank mass. For the third load case, when the tank is filled by 50%, the 

damping value found is significantly lower than expected. Various extra intermittent 

optimization test cases that were executed for the tank filled between 20 and 80% showed that 

the results do in fact follow this curve. Figure 4.5 shows the response to the same design vector 

as only the tank’s mass increases. The dotted line represents the full tank, the continuous line 

is for a half-full tank and the dashed line represents a tank filled at 20%. 
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Figure 4.5 Roll angle vs tank fill percent for the road excitation 

As it seems, as the tank’s mass changes, the point of occurrence of the maximum roll angle in 

the response of the tank is shifted between the first and the second valley. It has already been 

mentioned, that the optimum solution is achieved when the two are of equal magnitude. 

When the tank is full and its inertia is high, the response is slower at first and the maximum 

angle appears at the second valley. Damping has to be increased in order to make the initial 

response faster and more intense so that the first valley is amplified and the second is 

attenuated. On the other hand, due to the low inertia, the response of the light tank is very fast 

at the beginning but the magnitude is also very high. Increasing the damping might indeed 

accelerate the initial response further but it will also dampen the magnitude of the disturbance 

which is more desirable in this case. Even so, because of the small inertia of the tank in this 

case, the two valleys for the light tank can never become equal so reducing the magnitude of 

the first of the two is the best that can be achieved. 

4.4 Topology of the solution space 

So far, it has been shown that the optimum solutions are found near the boundaries of the 

design space. With the exception of the supports’ damping which varies with the load case, all 

the other variables are consistently driven towards the lowest limit, or in the case of the front 

suspension stiffness the upper limit of the respective allowable range. 
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As far as the suspensions are concerned, the sprung-to-unsprung mass ratio is extremely high 

due to the nature and loading of the vehicle. The inertia of the tank/chassis system is larger 

compared to the inertia of the wheels. When the suspension is softer, the unsprung mass 

(wheel system) is able to move more freely and absorb the vibrations from the road, so that 

they are not transferred to the vehicle. Since the roll angle of the tank is examined, reducing 

the amount of disturbances that pass from the wheels to the vehicle is the primary concern 

and therefore softer springs perform better. The same principle applies for the springs of the 

supports of the tank. However, in this case, since the chassis is much heavier than the wheels, 

the sprung-to-unsprung mass ratio is significantly lower than before and the movement of the 

unsprung mass is more difficult to be filtered. When the tank is approximately half filled, that 

ratio is close to 1. When the tank is heavier and the ratio increases and the response is better.  

The different sprung-to-unsprung mass ratio that the two suspensions see, also explains why 

the contribution of the supports’ parameters to the roll angle response is more important than 

that of the suspensions’. This has been made especially evident from the fact that the BFGS 

method, which does not possess good global search capabilities, is able to locate the optimum 

values for the supports’ stiffness more consistently than any other parameter and more easily 

so as the tank gets lighter. When the tank is very light though (section 3.3.4), other factors also 

come in play. The tank is more influenced from all parameters and the solutions space 

becomes highly non-convex, which hinders the search for the algorithm and this picture is 

distorted. But, still, the increased importance of these parameters is also evident from the fact 

that their slight deviations away from the lowest value appear to be more harmful to the roll 

angle than the deviations of any other parameter (see Figure 3.20b, Figure 3.23b, Figure 3.27b 

and Table 3.17, Table 3.20, Table 3.26 respectively).  

Damping on a dynamic system determines the rate at which the magnitude of the oscillation is 

reduced. When damping is low, the system oscillates until it gradually returns to the initial 

equilibrium state. As damping increases, it reaches a critical point where the response is such 

that the system returns to equilibrium as quickly as possible without oscillating. From that 

point on, as damping increases further, the system returns to equilibrium without oscillating 

but slower. Since the force produced by the damper is proportionate to the travel speed of the 

suspension, fast vertical movement of the wheel produces larger damping forces which resist 

movement. As the wheel meets an obstacle, it is inclined to move up or down at a speed 

determined by the vehicle’s speed and the profile of the obstacle. In that case, a high damping 
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value restricts the suspension’s travel speed and the suspension reacts initially as if it were 

stiffer.  

The response of the roll angle is found to be optimal when the front suspension has a high 

damping value. The vehicle is lighter in the front, since the tank is in the back, and the sprung-

to-unsprung mass ratio is lower for the front wheel. Increased damping makes the response, at 

the exact time the excitation is met by the wheel, faster and more intense but after that it 

reduces the overall magnitude more and makes the system return to stability faster. When 

damping is low, the initial response to the excitation is slower and milder but the overall 

magnitude is not damped as efficiently and the system needs more time to return to a state of 

equilibrium. Apparently the optimum spot between the two behaviors is found higher than the 

allowable range which drives this parameter to the highest allowable value. The middle and 

rear suspensions lie below the tank of the vehicle and therefore the sprung-to-unsprung mass 

ratio seen by them is significantly increased. It was found that high damping values for them 

do not really improve damping capabilities, but merely make the abnormalities of the road 

slightly more noticeable to the tank, as they make the suspensions appear artificially stiffer at 

the exact time the excitation is met by the wheel. As a result the optimal values for them are 

very low for this particular objective and therefore the respective parameters are driven to the 

lowest allowable limit.  

As far as the damping of the tank’s supports is concerned, it was found to be the only 

parameter that changed according to the loading. It has already been explained in section 3.2.1 

how the modeling of the vehicle and tank as rigid bodies makes the use of individual damping 

values for the three supports redundant. The selection of the appropriate value for this 

parameter has to do with the mass of the tank and the profile of the excitation. Previously in 

this section it was discussed how damping affects the response at the time the excitation is met 

and how later on. This phenomenon is much clearer for this particular parameter because the 

optimum solution happens to be within the allowable range. Figure 4.6a shows the roll angle 

response to an obstacle with the use of the optimum damping value (continuous line), a lower 

value (dotted line) and a higher value (dashed line). 
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Figure 4.6 Roll angle response vs supports’ damping 

When damping is high, the sprung mass is moved more violently at the time of the excitation 

is encountered but this movement is damped faster later on. Lower than optimum damping 

produces a movement which is smoother and slower in the beginning but the resulting 

magnitude is higher and equilibrium is reached slower. For the obstacle excitation, it was 

found that, as the mass of the tank and its inertia increases, the optimum damping value also 

increases in order to compensate. For the case of the road excitation, it was found that the 

progression of the supports’ damping parameter was not monotonous with the increase of the 

tank’s mass (Figure 4.4). The dynamic behavior of the system proves far more complex due to 

the nature of the excitation and the optimum values obtained for that case represent the 

balance points between conflicting targets and behaviors of the system affecting the objective 

of the optimization (see also section 4.3). 
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4.5 Optimum solution 

So far, through the preceding analysis, it has been shown and explained that the optimum 

design vectors for all the examined load cases and excitation inputs are quite similar and are 

neighboring in the design space. The front suspension damping is found to be very high in 

general, optimally placed near the upper limit of the allowable range, while the values of the 

suspension and support stiffnesses as well as the middle and rear suspension damping are 

optimally located at the lower limit of their respective allowable range (Table 4.1 and Table 

4.2). The defining factor which differentiates the individual cases in the optimization is the 

supports’ damping. The optimum value for each respective load case can be determined 

according to Figure 4.4. However, since the truck can only have one set of such components 

installed at any given time while the loading cases constantly change, there should be a value 

selected which can perform satisfactory for all cases. 

In order to make an educated selection, the time-response of the roll angle for all the load 

cases is presented indicatively for the vectors with the highest (12838 N.s/m), median (6122 

N.s/m) and the lowest (3535 N.s/m)damping value. These are the first vector of Table 4.2 for 

the road, and the first and last vectors of Table 4.1 for the obstacle, respectively. The results are 

shown in Figure 4.7. The high damping value is represented by the dotted line, the median 

value by the continuous line and the lowest value by the dashed line. 
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 (a) (b) 

Figure 4.7 Roll angle response vs support damping (a) obstacle excitation, (b) road excitation 
high value: dotted line, medial: continuous line, low: dashed line 
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It appears that the high damping value is very ineffective for all the load cases of the obstacle 

course. Even though the excitation is damped faster, the respective peak is significantly higher 

and since the objective is the minimization of the roll angle, this solution seems too aggressive. 

From the above graphs, a high damping value is found to be optimal only when the tank is 

heavy and on a road course. When the lowest damping value is selected, the best performance 

is obtained when the tank is light on an obstacle course. For a light tank on the road course the 

response does appear somewhat smoother than the median value but the maximum occurring 

angle is higher. The median value performs best when the tank is not very light on an obstacle 

course or is light on the road. When the tank is heavy and on a road course, the response of 

the median value is smoother than that of the heavy damping but the peak is found to be 

higher.  

An additional factor that should be taken into consideration is that the roll angles are 

increased as the tank gets lighter. This means that the gravity of the selection should be 

adjusted accordingly. When emphasis is given in minimizing the response of the light tank, the 

response of the heavy tank may be somewhat increased. However this way, the overall 

behavior remains more uniform and the supremum of the roll angles is kept lower.  

As an all-around selection, a medial value seems like a safer and more sensible choice. The 

maximum roll angle remains at the same approximate level for all the load cases on the road 

course which is the primary terrain for the truck to move in, while the vehicle’s behavior in 

case of the occasional obstacle still remains at a very good level. Among the values of the 

optimum vectors that were found in the optimal medial area of the range, the final selection 

was made between the values of the first vector of Table 4.1 for the obstacle (damping 6122 

N.s/m)and the last vector of Table 4.2 for the road (damping 7512 N.s/m).  

The respective graphs of the response are presented in Figure 4.8. The former vector is 

depicted with the continuous line while the latter with dotted line. 
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 (a) (b) 

Figure 4.8 Roll angle response vs support damping (a) obstacle excitation, (b) road excitation 
high value: dotted line, medial: continuous line, low: dashed line 
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Between these two vectors, the differences in the response are rather minimal. As expected the 

one with the highest damping value performs slightly better on the road when the tank is 

heavy and the lower setting performs slightly better in all other cases. Between the two vectors, 

the one with the lower setting is selected to have an overall best performance. Since slight 

differences from this parameter are minimal as well as subjective on the load case, there is no 

need for such accuracy in the values of the damping sum. Instead, an optimal range or 

approximate setting should be defined. In that sense the optimum settings selected for the 

suspensions and supports of the truck are shown in  

Vehicle  
Parameter 

Optimum  
Design Vector 

front suspension stiffness 10000 

middle suspension stiffness 10000 

rear suspension stiffness 10000 

front suspension damping 50000 

middle suspension damping 1000 

rear suspension damping 1000 

front support stiffness 1000 

middle support stiffness 1000 

rear support stiffness 1000 

Sum of front, middle and 
rear support damping 

~6000 
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4.6 Future Work 

Throughout the whole optimization process for the purpose of this work, the genetic 

algorithm proved to be highly reliable and robust in all the cases examined. It exhibited good 

global search capabilities with high repeatability for the results obtained. Moreover, the initial 

scanning of the entire solution space and the location of the general neighborhood of the 

global optimum was relatively fast and efficient. However, the algorithm lacked strong local 

search capabilities towards the end of the search and near the boundaries of the design space 

and thus the exact position of the global optimum was rarely located precisely. On the other 

hand, the BFGS method was not able to locate the global optimum as successfully on most 

occasions and the algorithm was very easily trapped in local optima with much inferior 

objective function values. However, the local search capabilities of the algorithm were very 

strong. The characteristics of these two algorithms seem complementary and a combination of 

the two might prove more efficient than each separate algorithm. A hybrid optimization 

algorithm which combines the global search capabilities of the genetic algorithm during the 

initial stages of the search and the local search capabilities of the BFGS method after the 

neighborhood of the global optimum has been located, could produce superior results for the 

given problem. 

In the current work the optimization was focused on a single objective; the minimization of 

the angular displacement (roll angle) of the vehicle’s tank, as the general stability of the truck 

on the road is highly dependent on it. Perhaps it would be useful as well as interesting to 

widen the optimization by targeting multiple objectives at the same time and examining how 

the parameters and the results of the optimization are differentiated on such occasions. Other 

potential objectives could include the minimization of the tank’s bounce or pitch movements 

or the minimization of the respective accelerations on the tank and the vibrations of the 

system. 
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