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Μεταπλαςτικι Απόκριςθ και Κατάρρευςθ υςτθμάτων  

Πλαιςίου–Θεμελιώςεωσ, και  ειςμικι Μόνωςθ μζςω Λικνιςμοφ 

 

Εκτενής Περίληψη 

Οποιαδιποτε, ζςτω και αδρομερισ, επιςκόπθςθ τθσ ςφγχρονθσ βιβλιογραφίασ του 

αντιςειςμικοφ ςχεδιαςμοφ, κα ιταν πλθμμελισ εάν παρζλειπε τθν αναφορά ςτθν 

αυξανόμενθ ςφγχρονθ τάςθ “δθμιουργικισ αμφιςβιτθςθσ” των ςυμβατικϊν (και 

κακιερωμζνων μζςα από τουσ διεκνείσ Κανονιςμοφσ) μεκόδων οι οποίεσ βαςίηονται 

ςτον υπολογιςμό δυνάμεων. Αντί αυτισ, προτείνεται θ προςζγγιςθ του ςχεδιαςμοφ 

με γνϊμονα τισ μετακινιςεισ, τόςο των δομικϊν ςτοιχείων τθσ καταςκευισ 

(Δομοςτατικόσ Σχεδιαςμόσ Ανωδομήσ) όςο και τθσ κεμελίωςθσ (Γεωτεχνικόσ 

Σχεδιαςμόσ Θεμελιώςεωσ). Η νζα λογικι ςχεδιαςμοφ προτείνει τθν (υπό-

προχποκζςεισ) εγκατάλειψθ τθσ ςχετικισ κανονιςτικισ απαγόρευςθσ, προκρίνοντασ 

τθν δθμιουργία “πλαςτικισ άρκρωςθσ” υπό τθν διεπιφάνεια κεμελιϊςεωσ εδάφουσ 

(υλοποιοφμενθσ είτε μζςω αποκόλλθςθσ του πρϊτου ι αςτοχίασ φζρουςασ 

ικανότθτασ του τελευταίου). Κατ’ αυτόν τον τρόπο περιορίηεται θ αδρανειακι 

φόρτιςθ που δφναται να μεταδοκεί ςτθν ανωδομι (χιμα i). Μία τζτοια λογικι ζχει 

αποτελζςει αντικείμενο μελζτθσ διεκνϊσ, θ δε διερεφνθςθ τισ εφαρμοςιμότθτάσ τθσ 

ςε απλζσ επιφανειακζσ κεμελιϊςεισ ζχει επιχειρθκεί  τόςο αναλυτικά όςο και 

πειραματικά. τθν παροφςα διδακτορικι διατριβι επιδιϊκεται θ ολοκλθρωμζνθ 

διερεφνθςθ τθσ αποτελεςματικότθτασ τθσ ιδζασ αυτισ ςε επίπεδο όχι ενόσ απλοφ 
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κεμελίου αλλά μίασ πλαιςιωτισ καταςκευισ. Ωσ εκ τοφτου, κφριο αντικείμενο τθσ 

ζρευνασ αποτελεί θ μελζτθ τθσ μι-γραμμικισ και ανελαςτικισ αλλθλεπίδραςθσ 

ςυςτθμάτων κεμελιϊςεωσ–εδάφουσ–πλαιςίου υποβαλλομζνων ςε ιςχυρι εδαφικι 

διζγερςθ που ενίοτε υπερβαίνει κατά πολφ τθν ςυμβατικι διζγερςθ ςχεδιαςμοφ. Η 

εργαςία διαρκρϊνεται ςε 5 βασικζς ενότητες: 

 

χιμα i. Μθ-γραμμικι ανελαςτικι απόκριςθ κεμελιϊςεωσ (α) μζςω αναςθκϊματοσ του 

κεμελίου (όταν         ) και (β) μζςω κινθτοποιιςεωσ του μθχανιςμοφ “φζρουςασ 

ικανότθτασ” του εδάφουσ (όταν        ).  
 

Αντικείμενο τθσ πρώτησ ενότητασ είναι θ βακμονόμθςθ και επαλικευςθ ενόσ 

αξιόπιςτου καταςτατικοφ προςομοιϊματοσ ικανοφ να αναπαράγει με πιςτότθτα τθν 

μι-γραμμικι λικνιςτικι απόκριςθ ςυςτθμάτων κεμελιϊςεωσ επί αργιλικοφ και 

αμμϊδουσ εδάφουσ. Σο προςομοίωμα ενςωματϊνεται ςτον κϊδικα πεπεραςμζνων 

ςτοιχείων ABAQUS και χρθςιμοποιείται ςτισ επακόλουκεσ αναλφςεισ. 

Η δεφτερη ενότητα αποτελεί τον κυρίωσ κορμό τθσ διεξαχκείςθσ ζρευνασ: μελετά 

ενδελεχϊσ  τθν δυναμικι απόκριςθ ςε επιβαλλόμενθ ςειςμικι διζγερςθ ρεαλιςτικϊσ 

απλϊν πλαιςιωτϊν καταςκευϊν επί εδαφικισ ςτρϊςθσ. υγκρίνεται ποιοτικά και 

H

P

M

Αναςικωμα 
κεμελίου

(α)

(β)

H

P

M

Κινθτοποίθςθ μθχανιςμοφ 
“φζρουςασ ικανότθτασ”
κεμελίου
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ποςοτικοποιείται θ αποτελεςματικότθτα τθσ νζασ φιλοςοφίασ ζναντι του 

ςυμβατικοφ ςχεδιαςμοφ. 

τθν τρίτη ενότητα τθσ διατριβισ αναπτφςςεται μια απλοποιθμζνθ μεκοδολογία 

προκαταρκτικοφ ςχεδιαςμοφ τθσ κεμελίωςθσ με εφαρμογι τθσ προτεινόμενθσ 

προςζγγιςθσ. Βάςει αυτισ υπολογίηεται θ μζγιςτθ και θ ελάχιςτθ ανεκτι διάςταςθ 

του κεμελίου ϊςτε να εξαςφαλίηεται θ αποτελεςματικότθτα τθσ προτεινόμενθσ 

λογικισ ςχεδιαςμοφ. 

Οι αναλφςεισ των ενοτιτων 2 και 3 πραγματοποιικθκαν κεωρϊντασ ςυνκικεσ 

μονοδιάςτατθσ εδαφικισ ενίςχυςθσ. Προκειμζνου να λθφκοφν υπόψιν διδιάςτατα 

κυματικά φαινόμενα τα οποία ενδζχεται να αλλοιϊνουν τον τελικϊσ επιβαλλόμενο 

κραδαςμό, ςτθν τζταρτη ενότητα διενεργείται ενδελεχισ μελζτθ τθσ επίδραςθσ τθσ 

διδιάςτατθσ γεωμετρίασ εδαφικισ κοιλάδασ ςτθν παραγόμενθ ςτθν επιφάνεια 

ςειςμικι διζγερςθ.  

Η επίδραςθ τθσ παραγόμενθσ ςτθν επιφάνεια παραςιτικισ κατακόρυφησ 

ςυνιςτϊςασ τθσ ςειςμικισ κίνθςθσ ςε επιφανειακϊσ κεμελιωμζνθ ςτθν κζςθ αυτι 

πλαιςιωτι καταςκευι, μελετάται ςτθν τελευταία πζμπτη ενότητα τθσ διατριβισ. Η 

περιγραφι των αναλφςεων και τα κφρια αποτελζςματα ςυνοψίηονται ανά ενότθτα 

ςτισ επόμενεσ παραγράφουσ τθσ εκτενοφσ περίλθψθσ. 
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Ενότητα 1 

Απλοποιημζνο Καταςτατικό Προςομοίωμα για την  

Ανακυκλική Απόκριςη Επιφανειακών Θεμελίων 

 

1.1. Ειςαγωγι 

Παρότι ςτθ βιβλιογραφία απαντάται ζνα ςθμαντικό πλικοσ ιδιαιτζρωσ αξιόλογων  

καταςτατικϊν προςομοιωμάτων τθσ εδαφικισ ςυμπεριφοράσ *e.g., Prevost, 1980; 

Houlsby, 1986; Jefferies, 1993; Whittle  & Kavvadas, 1994; Pestana, 1994; Pestana & 

Whittle, 1995; 1999; Gajo & Wood, 1999; Jeremic et al., 1999; Kavvadas & Amorosi, 

2000; Puzrin & Houlsby, 2001a; 2001b; 2001c; Einav et al., 2003; Houlsby & Puzrin, 

2006+, τα πλζον λεπτομερι εξ αυτϊν προορίηονται ςυνικωσ για χριςθ από 

εξειδικευμζνουσ χριςτεσ ςε ειδικοφσ αρικμθτικοφσ κϊδικεσ, ι απαιτοφν τθν 

βακμονόμθςθ ενόσ μεγάλου αρικμοφ παραμζτρων, κακιςτϊντασ δφςκολθ τθν 

εφαρμογι τουσ ςτθν πράξθ. ε μία προςπάκεια υπζρβαςθσ μζρουσ των ανωτζρω 

δυςχερειϊν, ςτο πρϊτο κεφάλαιο τθσ διατριβισ προτείνεται και επαλθκεφεται ζνα 

απλοποιθμζνο προςομοίωμα (τροποποίθςθ του ενςωματωμζνου ςτον αρικμθτικό 

κϊδικα ABAQUS προςομοιϊματοσ “κινθματικισ κράτυνςθσ”), προκειμζνου με 

επιτυχία να αναπαραχκεί θ ςυμπεριφορά κεμελίων υποκειμζνων ςε λικνιςτικι 

ταλάντωςθ επί αργιλικοφ ι αμμϊδουσ εδάφουσ. Σο εν λόγω προςομοίωμα απαιτεί 

τθν βακμονόμθςθ δφο μόνον παραμζτρων, κακιςτϊντασ το ζτςι ελκυςτικό για 

εφαρμογι ςε πρακτικά προβλιματα παρότι εν γζνει δεν μπορεί  να κεωρθκεί ωσ 

γενικισ χριςεωσ και κακολικισ ιςχφοσ όπωσ ςυηθτείται παρακάτω.  
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1.2. Καταςτατικζσ χζςεισ 

Σο προςομοίωμα ςυνδυάηει μι-γραμμικι κινθματικι κράτυνςθ με ςυςχετιςμζνο 

νόμο πλαςτικισ ροισ, με το κριτιριο διαρροισ Von Mises (καταλλιλωσ 

τροποποιθμζνο ϊςτε να λαμβάνει υπόψιν τθν επίδραςθ τθσ μζςθσ ορκισ τάςθσ ςε 

άμμουσ).  

Επομζνωσ, θ μζγιςτθ τάςθ διαρροισ για αργίλουσ ορίηεται ωσ   

uS3y        (1.1)  

όπου Su θ αςτράγγιςτθ διατμθτικι αντοχι, ενϊ για άμμουσ 

    (1.2) 

όπου θ τάςθ διαρροισ εκφράηεται ςυναρτιςει τθσ μζςθσ οκταεδρικισ τάςθσ και τθσ 

γωνίασ διατμθτικισ αντοχισ φ. Η εξζλιξθ των δφο ςυνιςτωςϊν του νόμου κράτυνςθσ 

(κινθματικισ και ιςοτροπικισ) δίδεται ςε μονοδιάςτατθ απεικόνιςθ ςτο χιμα 1.1. 

 

χιμα 1.1. Εξζλιξθ του νόμου κράτυνςθσ του καταςτατικοφ Προςομοιϊματοσ. 

 

Ωσ εγγενείσ περιοριςμοί του προςομοιϊματοσ αναφζρονται θ αδυναμία του να 

αναπαραγάγει αφενόσ τθν ανάπτυξθ υπερπιζςεων πόρων ςτισ αργίλουσ και 

1 2 3
y 3 sin

3

  
 

  
  

 

Fig. 17. (a) Overview of the finite element discretization ; (b) nonlinear
isotropic/kinematic hardening constitutive soil model : simplified
one-dimensional (left) and three-dimensional (right) representation of the
hardening law ; (c) calibration of constitutive model against measured and
published G : γ curves.
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αφετζρου τθν διαςτολικι ςυμπεριφορά τθσ άμμου. Εντοφτοισ ο μζν πρϊτοσ 

περιορςιςμόσ κεωρείται ωσ μικρισ ςθμαςίασ για το εξεταηόμενο πρόβλθμα 

δυναμικισ αλλθλεπίδραςθσ αργιλικοφ εδάφουσ-κεμελίου δεδομζνθσ τθσ ταχείασ 

φφςεωσ τθσ ςειςμικισ φόρτιςθσ, ενϊ ο ζτεροσ κα δειχκεί ςτα επόμενα ότι δεν 

επθρεάηει τθν ςυμπεριφορά του ςυνολικοφ ςυςτιματοσ εδάφουσ–κεμελίου.  

Σο τροποποίθμζνο καταςτατικό προςομοίωμα ζχει ειςαχκεί ςτον κϊδικα ABAQUS 

μζςω υπορουτίνασ. Η βακμονόμθςθ του προςομοιϊματοσ βαςίηεται ςτισ 

παραμζτρουσ: (i) αντοχι: Su ι, φ; c (ii) αρχικι δυςκαμψία: Go , Vs  ; και  (iii) ςτισ 

καμπφλεσ G-γ των Ishibashi & Zhang [1993] (χιμα 1.2).  

 

χιμα 1.2. Βακμονόμθςθ τροποποιθμζνου καταςτατικοφ προςομοιϊματοσ για άμμο. φγκριςθ 
των υπολογιςκειςϊν καμπυλϊν G–γ και ξ–γ με τισ δθμοςιευμζνεσ των Ishibashi and Zhang [1993] 
για τάςθ εγκιβωτιςμοφ ςvo = 50 kPa. 
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1.3. Επαλικευςθ του Προςομοιώματοσ για Άργιλο 

Οι αρικμθτικζσ προβλζψεισ ςυγκρίνονται με τα πειραματικά αποτελζςματα των 

Gajan et al. [2005]. Σα πειράματα αυτά είχαν εκτελεςτεί ςτον φυγοκεντριςτι του 

Πανεπιςτθμίου Davis (ΗΠΑ), ςυνίςταντο δε ςε κατακόρυφθ φόρτιςθ κεμελίου 

ακολουκοφμενθ από ςειρά κφκλων αργισ ανακυκλικισ φόρτιςθσ ςε τρία ςτάδια 

αυξανομζνου πλάτουσ επιβαλλόμενθσ μετακίνθςθσ. 

Αρικμθτικό Προςομοίωμα 

Σο 3-διάςτατο προςομοίωμα πεπεραςμζνων ςτοιχείων (Π..) απεικονίηεται ςτο 

χιμα 1.3 (κατά το ιμιςυ λόγω ςυμμετρίασ). Σόςο τα ςτοιχεία του εδάφουσ όςο και 

του κεμελίου ζχουν προςομοιωκεί με χριςθ οκτακομβικϊν ςτοιχείων ενϊ θ 

διεπιφάνειά τουσ με τα λεγόμενα ςτοιχεία “κενοφ” (gap elements), τα οποία 

επιτρζπουν τθν ολίςκθςθ και τθν αποκόλλθςθ του κεμελίου από το ζδαφοσ ανάλογα 

με τθν φόρτιςθ. Η ςυμπεριφορά του εδάφουσ κακορίηεται από το καταςτατικό 

προςομοίωμα που περιγράφθκε παραπάνω, θ βακμονόμθςθ του οποίου 

πραγματοποιικθκε με βάςθ τθν αρχικό πείραμα κατακόρυφθσ φόρτιςθσ του 

κεμελίου. 

 

χιμα 1.3. Χρθςιμοποιθκζν 3-Δ προςομοίωμα πεπεραςμζνων ςτοιχείων  
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Αξιολόγθςθ Αποτελεςμάτων  

Η ςφγκριςθ τθσ αρικμθτικισ πρόβλεψθσ με τισ πειραματικζσ μετριςεισ απεικονίηεται 

ςτο χιμα 1.4 για όλουσ τουσ κφκλουσ φόρτιςθσ. τον πρϊτο κφκλο θ ανάλυςθ 

υπερεκτιμά τθν μζγιςτθ κετικι ροπι, ενϊ θ απόκλιςθ είναι μειωμζνθ ςτθν αντίκετθ 

κατεφκυνςθ (χ. 1.4α). H ςφγκριςθ είναι πολφ ικανοποιθτικι ςε όρουσ ςτροφισ–

κακίηθςθσ (χιμα 1.4β) τόςο ωσ προσ τον υπολογιςμό τθσ κακίηθςθσ ανά κφκλο 

φόρτιςθσ όςο καί τθσ ςυνολικισ. Αξίηει πάντωσ να παρατθρθκεί ότι αντίκετα με τα 

πειραματικά αποτελζςματα οι παραχκζντεσ αρικμθτικά βρόχοι είναι ενδεικτικοί 

ςυμπεριφοράσ ςτθν οποία δεςπόηει το αναςικωμα. Αυτι θ διαφορά ενδεχομζνωσ 

οφείλεται ςε τοπικοφ χαρακτιρα προχπάρχουςεσ πλαςτικοποιιςεισ κάτω από το 

κεμζλιο ςτο πείραμα (πικανόν αποτζλεςμα προθγουμζνων δοκιμϊν). Κατά τθν 

διάρκεια του δευτζρου ςταδίου, οι παραγόμενοι βρόχοι υςτζρθςθσ (χιματα 1.4 γ-

δ), τόςο πειραματικά όςο και αναλυτικά  φανερϊνουν ςθμαντικι απϊλεια ενζργειασ 

ςτθν διεπιφάνεια κεμελίου-εδάφουσ. το τελικό ςτάδιο, τόςο το πείραμα όςο και θ 

ανάλυςθ αναδεικνφουν τθν εντόνωσ μι γραμμικι ςυμπεριφορά του ςυςτιματοσ 

εδάφουσ-κεμελιϊςεωσ (χιμα 1.4ε). Η πλιρθσ ανάπτυξθ τθσ οριακισ ροπισ του 

κεμελίου (Mult ≈ 300 kNm) είναι ςαφϊσ αναγνωρίςιμθ ςτθν καμπφλθ     (αφξθςθ 

ςτροφισ υπό ςτακερι ροπι). Η μι-ςυμμετρικι ωςτόςο μορφι τθσ πειραματικισ 

καμπφλθσ δεν είναι δυνατόν να αναπαραχκεί. Σζλοσ, όπωσ φαίνεται και ςτο  (χιμα 

1.4ςτ), το προςομοίωμα εξακολουκεί να προβλζπει με επιτυχία τθν ςυμπεριφορά ςε 

όρουσ ςτροφισ–κακίηθςθσ (ακόμθ και ςτο τρίτο ςτάδιο όπου οι επιβαλλόμενεσ 

μετακινιςεισ είναι αρκετά ςθμαντικζσ).  

 



Μεταπλαστική Απόκριση Σσστημάτων Πλαισίοσ–Θεμελιώσεως 

- x - 
 

1.4. Επαλικευςθ του Προςομοιώματοσ για Άμμο 

Χρθςιμοποιοφνται πειραματικά δεδομζνα από το Ερευνθτικό πρόγραμμα TRISEE, ςτα 

πλαίςια του οποίου διεξιχκθςαν ςτο εργαςτιριο ELSA (JRC, Ιςπρα, Ιταλία), δοκιμζσ 

αργισ ανακυκλικισ φόρτιςθσ κεμελίου (χιμα 1.5) επί υγρισ (μθ-κορεςμζνθσ) 

άμμου, υψθλισ (HD) και χαμθλισ (LD) πυκνότθτασ [Faccioli et al, 2001]. Ενϊ ςτθν 

πρϊτθ περίπτωςθ ο ςτατικόσ κατακόρυφοσ ςυντελεςτισ  αςφαλείασ του κεμελίου 

(ιτοι οι παράμετροι αντοχισ του εδαφικοφ υλικοφ) είναι ςαφϊσ υπολογιςμζνοσ (FS = 

5, φp = 43ο), για τθν χαλαρι άμμο οι δθμοςιευμζνοι υπολογιςμοί κυμαίνονται από FS 

= 2 ζωσ FS = 7. Λόγω τθσ ζντονθσ αυτισ διαςποράσ ςτθν τιμι του FS, κατά τθν 

αρικμθτικι προςομοίωςθ υιοκετικθκαν δφο εναλλακτικά ςενάρια ( FS =3, φp = 30ο  

και  FS=5, φp = 35ο ). 
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χιμα 1.4. φγκριςθ αρικμθτικισ πρόβλεψθσ με πειραματικζσ μετριςεισ ανά ςτάδιο 
ανακυκλικισ φόρτιςθσ ςε όρουσ ροπισ-ςτροφισ και κακίηθςθσ-ςτροφισ του κεμελίου. 
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χιμα 1.5. καριφθματικι απεικόνιςθ τθσ πειραματικισ διάταξθσ μελζτθσ τθσ μθ-
γραμμικισ ςυμπεριφοράσ κεμελίων υποβαλλόμενων ςε οριηόντια ανακυκλικι φόρτιςθ 
(πθγι: Faccioli et al, 2001). 

 
 

 

χιμα 1.6. Χρθςιμοποιθκζν 3-Δ προςομοίωμα πεπεραςμζνων ςτοιχείων για τθν 
αναπαραγωγι των πειραμάτων μεγάλθσ κλίμακασ 1-g που διεξιχκθςαν ςτο εργαςτιριο 
ELSA ςτα πλαίςια του ερευνθτικοφ προγράμματοσ TRISEE 

 

Αρικμθτικι Προςομοίωςθ και Αποτελζςματα 

Προςομοιϊνεται θ Σρίτθ Φάςθ του πειράματοσ κατά τθν οποία ςτθν κορυφι τθσ 

καταςκευισ επιβάλλονται θμιτονοειδείσ κφκλοι μετακίνθςθσ αυξανόμενου πλάτουσ, 

μζχρισ πλιρουσ ενεργοποίθςθσ τθσ φζρουςασ αςτοχίασ του εδάφουσ.  

Η μεκοδολογία προςομοίωςθσ είναι όμοια με αυτιν που ακολουκικθκε  ςτθν 

περίπτωςθ τθσ αργίλου. Σο τριςδιάςτατο αρικμθτικό προςομοίωμα όπωσ 

καταςτρϊκθκε ςτον κϊδικα ABAQUS δίνεται ςτο χιμα 1.6. 
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Για τθν βακμονόμθςθ του καταςτατικοφ προςομοιϊματοσ χρθςιμοποιοφνται 

δθμοςιευμζνα αναλυτικά αποτελζςματα των Allottey & El Naggar [2008]. Βάςει 

αυτϊν, για τθν πυκνι άμμο υιοκετικθκε C = 8500ςy  ενϊ για τθν χαλαρι C = 6000ςy . 

Όπωσ δείχνει το χιμα 1.7α γιά τθν πυκνι άμμο θ ςφγκριςθ τθσ αρικμθτικισ 

πρόβλεψθσ με τθν πειραματικι μζτρθςθ είναι άκρωσ ικανοποιθτικι ςε όρουσ 

υςτερθτικϊν βρόχων ροπισ-ςτροφισ, αρκετά δε ικανοποιθτικι ςε όρουσ οριηόντιασ 

επιβαλλόμενθσ δφναμθσ-μετακίνθςθσ  (χιμα 1.7β): προβλζπεται με ακρίβεια τόςο 

θ οριακι τιμι τθσ ροπισ αντοχισ όςο και θ ςιγμοειδισ μορφι του βρόχου Μ-κ 

(χαρακτθριςτικι μι-γραμμικισ ςυμπεριφοράσ του κεμελίου λόγω αναςθκϊματοσ). 

Αντίκετα με τθν ςυμπεριφορά του κεμελίου επί πυκνισ άμμου όπου το 

αναςικωμα δεςπόηει, ςτθν χαλαρι άμμο ο κφριοσ μθχανιςμόσ αςτοχίασ του 

κεμελίου είναι θ βφκιςι του εντόσ του εδάφουσ, όπωσ υποδεικνφει το πειραματικό 

αποτζλεςμα και επιβεβαιϊνει θ αρικμθτικι ανάλυςθ (χιμα 1.8 για FSv ≈ 3). 

ε ςυμφωνία με τθν μετρθκείςα πειραματικϊσ τιμι, θ αρικμθτικϊσ 

υπολογιςκείςα τιμι τθσ ροπισ αντοχισ του ςυςτιματοσ είναι Mult ≈ 40 kNm. ε 

όρουσ οριηόντιασ δφναμθσ–μετακίνθςθσ, το ςενάριο FS = 3 οδθγεί ςε υπολογιςμό 

μεγαλυτζρων μετακινιςεων από ότι το FS = 5. Πάντωσ, κανζνα ςενάριο δεν 

αναπαράγει τθν αποτυπωκείςα πειραματικϊσ ζντονθ μθ-ςυμμετρικότθτα τθσ 

ολίςκθςθσ του κεμελίου (προσ τισ αρνθτικζσ τιμζσ του άξονα x). 

 

Ανακυκλικι Κακίηθςθ (Πυκνι και Χαλαρι Άμμοσ) 

Η μζγιςτθ μετρθκείςα κακίηθςθ είναι τθσ τάξθσ των 2 cm για τθν πυκνι άμμο και 7 

cm για τθν χαλαρι αντιςτοίχωσ. Σο αρικμθτικό προςομοίωμα για τθν πυκνι άμμο 

προβλζπει ικανοποιθτικά  το πριονωτό ςχιμα τθσ καμπφλθσ χρονικισ εξζλιξθσ τθσ 



Μεταπλαστική Απόκριση Σσστημάτων Πλαισίοσ–Θεμελιώσεως 

- xiv - 
 

κακιηιςεωσ (ενδεικτικό του αναςθκϊματοσ του κεμελίου), υπερεκτιμά όμωσ 

ελαφρϊσ τθν τελικι τιμι τθσ (χιμα 1.9α) . τθν περίπτωςθ τθσ χαλαρισ άμμου, το 

ςενάριο        FS = 5 δίνει τθν πλζον ικανοποιθτικι πρόβλεψθ (χιμα 1.9β).  

 

 

χιμα 1.7. φγκριςθ αρικμθτικισ πρόβλεψθσ με τισ πειραματικζσ μετριςεισ ςε όρουσ (α) 
υςτερθτικϊν βρόχων ροπισ-ςτροφισ και (β) οριηόντιασ επιβαλλόμενθσ δφναμθσ-
μετακίνθςθσ για το πείραμα τθσ πυκνισ άμμου. 
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χιμα 1.8. φγκριςθ αρικμθτικισ πρόβλεψθσ (με κεϊρθςθ FSv ≈ 3) με τισ πειραματικζσ 
μετριςεισ ςε όρουσ (α) υςτερθτικϊν βρόχων ροπισ-ςτροφισ και (β) οριηόντιασ 
επιβαλλόμενθσ δφναμθσ-μετακίνθςθσ για το πείραμα ςε χαλαρι άμμο.  

 

 
χιμα 1.9. Εξζλιξθ κακιηιςεων ανά κφκλο φόρτιςθσ: φγκριςθ πειράματοσ με τισ προβλεψεισ 
τθσ αρικμθτικισ ανάλυςθσ για πείραμα ςε: (α) πυκνι και (β) χαλαρι άμμο.  
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Ενότητα 2: 

Μη-Γραμμική και Ανελαςτική Συμπεριφορά Θεμελιώςεων: 

Εφαρμογή ςτην Σειςμική Προςταςία Πλαιςιωτών Φορζων  

 

2.1 Ειςαγωγι 

Ωσ γνωςτόν, θ φιλοςοφία των ςφγχρονων αντιςειςμικϊν Κανονιςμϊν απαγορεφει 

τόςο τθν εξάντλθςθ τθσ φζρουςασ ικανότθτασ του εδάφουσ όςο και τθν δυνατότθτα 

ςθμαντικισ αποκόλλθςθσ ( > 50 %) του κεμελίου από το ζδαφοσ. Προσ τοφτο 

ειςάγονται ςθμαντικοί πρόςκετοι ςυντελεςτζσ αςφαλείασ ζναντι των εν λόγω 

μθχανιςμϊν αςτοχίασ. Εντοφτοισ, εξαιτίασ του ανακυκλικοφ και κινθματικοφ 

χαρακτιρα τθσ ςειςμικισ φόρτιςθσ, θ ενεργοποίθςθ τθσ μι-γραμμικισ ανελαςτικισ 

απόκριςθσ τθσ κεμελίωςθσ δεν ςυνιςτά υποχρεωτικϊσ αςτοχία υπό ιςχυρι ςειςμικι 

ζνταςθ. Αντικζτωσ μάλιςτα, πρόςφατεσ μελζτεσ καταδεικνφουν τθν ενδεχομζνωσ 

ευνοϊκι δράςθ τθσ και προτείνουν μζχρι και τθν ενςωμάτωςθ ςχετικϊν οδθγιϊν 

ςτουσ Κανονιςμοφσ [Paolucci, 1997; Pecker, 2000; FEMA-356, 2000; Makris & 

Roussos, 2000; Pecker & Pender, 2000; Faccioli et al., 2001; Kutter et al., 2003; 

Gazetas et al., 2003; 2007; Harden and Hutchinson, 2006; Paolucci et al., 2008; 

Kawashima et al., 2007; Gajan & Kutter, 2008; Chatzigogos et al., 2009; 

Anastasopoulos et al., 2010a+. Βάςει των ανωτζρω, κα ιταν ενδεχομζνωσ εφικτι θ 

ανακεϊρθςθ τθσ υφιςταμζνθσ φιλοςοφίασ προσ μία κατεφκυνςθ ςχεδιαςμοφ που 

κα επζτρεπε τθν εκδιλωςθ των προαναφερκζντων μθχανιςμϊν αςτοχίασ, εφόςον 

βζβαια τα παραγόμενα μετακινθςιακά μεγζκθ παραμζνουν εντόσ αποδεκτϊν ορίων. 
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τθν παροφςα ενότθτα διερευνάται θ αποτελεςματικότθτα τθσ εν λόγω 

προςζγγιςθσ για τθν περίπτωςθ πλαιςιωτϊν φορζων. τα παραδείγματα που 

εξετάηονται επιχειρείται θ λικνιςτικι ςειςμικι μόνωςθ των καταςκευϊν ευνοϊντασ 

κατά τον ςχεδιαςμό τθν μι-γραμμικι απόκριςθ τθσ κεμελίωςθσ μζςω του 

μθχανιςμοφ του αναςθκϊματοσ. το χιμα 2.1 περιγράφεται ςκαριφθματικά θ 

βαςικι ιδζα του προτεινομζνου ςχεδιαςμοφ: ςυγκρίνεται θ απόκριςθ ςε οριηόντια 

φόρτιςθ 2 πανομοιότυπων πλαιςίων επί μεμονωμζνων πεδίλων, ςχεδιαςμζνων: (α) 

ςυμβατικά, ςφμφωνα με τον ιςχφοντα αντιςειςμικό κανονιςμό και (β) νεωτεριςτικά, 

ακολουκϊντασ τθν προτεινόμενθ μεκοδολογία. τθν πρϊτθ περίπτωςθ, οι 

διαςτάςεισ των κεμελίων είναι τζτοιεσ ϊςτε να εξαςφαλίηουν πρακτικϊσ ςυνκικεσ 

πάκτωςθσ των υποςτυλωμάτων ςτθν βάςθ τουσ, και επομζνωσ, θ επιβαλλόμενθ 

φόρτιςθ να  μεταφράηεται ςε δομθτικι επιπόνθςθ τθσ ανωδομισ, μζχρισ 

εξαντλιςεωσ τθσ διατικζμενθσ πλαςτιμότθτασ του υποςτυλϊματοσ θ οποία 

ςυνεπάγεται κατάρρευςη του πλαιςίου. Αντικζτωσ ςτθν λικνιςτικϊσ μονωμζνθ 

καταςκευι τα κεμζλια εςκεμμζνα υποδιαςταςιολογοφνται ϊςτε όταν θ 

επιβαλλόμενθ φόρτιςθ υπερβεί μια “κρίςιμθ” τιμι να αναςθκϊνονται. 

Επιτυγχάνεται ζτςι ουςιαςτικά ο περιοριςμόσ τθσ μεταδιδόμενθσ ζνταςθσ ςτθν 

ανωδομι.  
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χιμα 2.1: υγκριτικι απόκριςθ 2 πανομοιότυπων (ςε όρουσ ανωδομισ) πλαιςιωτϊν 
καταςκευϊν επί μεμονωμζνων πεδίλων  ςχεδιαςμζνων: (α) ςυμβατικά ςφμφωνα με τον ιςχφοντα 
αντιςειςμικό κανονιςμό και (β) ακολουκϊντασ τθν προτεινόμενθ μεκοδολογία.  

 

2.2 Ιδιότθτεσ τθσ Καταςκευισ  

χεδιαςμόσ Ανωδομισ 

Σα χαρακτθριςτικά του (υπό-μελζτθν) πλαιςίου παρουςιάηονται ςτο χιμα 2α. Η 

καταςκευι ζχει μελετθκεί ςυμβατικά ςφμφωνα με τον ΕΑΚ 2000 κεωρϊντασ 

επιτάχυνςθ ςχεδιαςμοφ Ad = 0.36 g, και ςυντελεςτι ςυμπεριφοράσ q = 3.5.  

υμβατικόσ χεδιαςμόσ Θεμελιώςεωσ  

Προκειμζνου να ικανοποιθκοφν οι απαιτιςεισ περιοριςμοφ τθσ εκκεντρότθτασ του 

κανονιςμοφ e < B/3, θ ελάχιςτθ διάςταςθ του τετραγωνικοφ κεμελίου προκφπτει B = 

1.7 m. Ο επιτυγχανόμενοσ ζτςι ςυντελεςτισ αςφαλείασ ζναντι κατακορφφων 

φορτιϊν είναι: FSV ≈ 8 υπό ςτατικζσ ςυνκικεσ και FSE ≈ 1.93, υπό ςειςμικζσ 

(ψευδοςτατικϊσ εφαρμοηόμενεσ).  
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Μθ υμβατικόσ χεδιαςμόσ Θεμελιώςεωσ (Νζα Προςζγγιςθ) 

Τιοκετείται διάςταςθ κεμελίου Β = 1.40 m, θ οποία εξαςφαλίηει μεν επαρκι 

ςυντελεςτι αςφαλείασ υπό ςτατικζσ ςυνκικεσ (FSV = 5.9) αλλά δεν ικανοποιεί το 

(ςυμβατικό) κριτιριο τθσ εκκεντρότθτασ. Η ροπι αντοχισ του εν λόγω κεμελίου 

[Gourvenec, 2007], υπό κατακόρυφο φορτίο Nv (προερχόμενο από το ςφνολο των μι 

ςειςμικϊν δράςεων) προκφπτει Mult ≈ 100 kNm, ενϊ θ ροπι αντοχισ του ςυμβατικϊσ 

ςχεδιαςμζνου υποςτυλϊματοσ είναι MRD ≈ 165 kNm. φμφωνα με τα παραπάνω, 

ορίηεται ο ςυντελεςτισ απομείωςθσ τθσ αντοχισ ωσ προσ αυτιν του υποςτυλϊματοσ 

ωσ CRF = ΜRD / Mult, ο οποίοσ για το υπό εξζταςθ παράδειγμα είναι ίςοσ με CRF = 

1.63. 

 

2.3 Αρικμθτικι Προςομοίωςθ 

Θεωρϊντασ ςυνκικεσ επίπεδθσ παραμόρφωςθσ, καταςτρϊκθκε και βακμονομικθκε 

καταλλιλωσ προςομοίωμα πεπεραςμζνων ςτοιχείων (x. 2.2 β) ςτον κϊδικα 

ABAQUS, το οποίο ενςωματϊνει το περιγραφζν ςτθν πρϊτθ ενότθτα τθσ διατριβισ 

καταςτατικό προςομοίωμα. Η χρονοϊςτορία τθσ επιτάχυνςθσ επιβάλλεται ςτουσ 

κόμβουσ τθσ βάςθσ του προςομοιϊματοσ, ενϊ ςτα πλευρικά του όρια κεωροφνται 

ςυνκικεσ ελευκζρου πεδίου. Σο ζδαφοσ κεωρείται ςτιφρι άργιλοσ με αντοχι Su = 

150 kPa.Για τθν προςομοίωςθ τθσ ανωδομισ χρθςιμοποιείται το ίδιο καταςτατικό 

προςομοίωμα καταλλιλωσ τροποποιθμζνο, ϊςτε να αναπαράγει τθν μι γραμμικι 

ςχζςθ ροπισ–καμπυλότθτασ των μελϊν ωπλιςμζνου ςκυροδζματοσ. Οι παράμετροι 

του προςομοιϊματοσ βακμονομικθκαν με βάςθ τθν καμπφλθ μονοτονικισ φόρτιςθσ 

τθσ κάκε διατομισ, θ οποία υπολογίςτθκε με χριςθ του κϊδικα X-tract 2000 

ςφμφωνα με ςτοιχεία των *Vintzilaiou et al., 2007].  Σο αποτζλεςμα τθσ 
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βακμονόμθςθσ ςε μονοτονικι και ανακυκλικι φόρτιςθ για το υποςτφλωμα του 

ιςογείου παρουςιάηεται ςτο χιμα 2.2 γ.  

 

 
 
χιμα 2.2. (α) Γεωμετρικά χαρακτθριςτικά και καμπτικζσ ροπζσ αντοχισ των ςτοιχείων τθσ 
ανωδομισ (κατά Ε.Α.Κ 2000), (β) προςομοίωμα πεπεραςμζνων ςτοιχείων: κεϊρθςθ ςυνκθκϊν 
επίπεδθσ παραμόρφωςθσ, ρεαλιςτικι προςομοίωςθ γεωμετρικϊν μθ-γραμμικοτιτων (δυνατότθτα 
αναςθκϊματοσ και P-δζλτα φαινόμενα), κακϊσ και τθσ ανελαςτικισ ςυμπεριφοράσ τθσ ανωδομισ 
και του υποκείμενου εδάφουσ. 
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2.4 Πλαίςιο υποβαλλόμενο ςε τατικι Φόρτιςθ Push-Over: 

Απόκριςθ του υςτιματοσ 

το χιμα 2.3 ςυγκρίνεται το αποτζλεςμα (καμπφλθ P-δ) τθσ ανάλυςθσ για το 

ςυμβατικϊσ ςχεδιαςμζνο πλαίςιο (κεμζλιο B = 1.7 m) και το ςχεδιαςμζνο ςφμφωνα 

με τθν προτεινόμενθ μεκοδολογία  (B = 1.4 m). Η απόκριςθ χωρίηεται ςε τρεισ 

διακριτζσ φάςεισ:  

(α) τθν αρχικι φάςθ, κατά τθν οποία καί τα δφο πλαίςια αποκρίνονται 

καμπτικϊσ μζχρισ διαρροισ των δοκϊν (χιμα 2.3, θμείο Α).  

(β) τθν ενδιάμεςθ φάςθ κατά τθν οποία τα δομικά ςτοιχεία του ςυμβατικοφ 

ςυςτιματοσ πλαςτικοποιοφνται εντόνωσ ζωσ ότου εξαντλθκεί πλιρωσ θ διατικζμενθ 

πλαςτιμότθτά τουσ (ςθμείο Β) οπότε το ςφςτθμα βαίνει προσ κατάρρευςθ. 

Απεναντίασ, το υποδιαςταςεολογθμζνο ςφςτθμα αποκρίνεται λικνιςτικά μεν διά του 

αναςθκϊματοσ του κεμελίου, καμπτικά δε ζωσ ότου οι κόμβοι του πλαιςίου 

αναπτφξουν πλαςτικζσ αρκρϊςεισ ςτισ κζςεισ των δοκϊν (θμείο C). 

(γ) τθν τελικι φάςθ, θ οποία υφίςταται μόνον για το μι-ςυμβατικό ςφςτθμα, 

όταν πιά κυριαρχεί το αναςικωμα των κεμελίων μζχρι τθν πλιρθ ανατροπι του 

πλαςίου (ςθμείο D). Κατά τθν διάρκεια του τρίτου ςταδίου το “λικνιςτικϊσ 

μονωμζνο”, ςφςτθμα εκφυλίηεται εξιδανικευμζνα ςε δφο μονοβάκμιουσ ταλαντωτζσ 

κινθματικϊσ μόνον αλλθλο-εξαρτθμζνουσ μζςω των οριηοντίων δοκϊν. 
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χιμα 2.3. τατικι ανάλυςθ επιβαλλόμενθσ μετακίνθςθσ για τισ 2 εναλλακτικζσ λφςεισ 

 

Απόκριςθ τθσ Θεμελίωςθσ 

Επίδραςη τησ Αυξομείωςησ του Αξονικοφ Φορτίου 

το χιμα 2.4α απεικονίηεται θ εξζλιξθ του αξονικοφ φορτίου κακενόσ 

υποςτυλϊματοσ λόγω αναςθκϊματοσ με τθν επιβαλλόμενθ μετακίνθςθ δ. Κατά τθν 

αρχική φάση, θ μείωςθ του αξονικοφ φορτίου του αριςτεροφ υποςτυλϊματοσ 

ςυνοδεφεται από ίςθ αφξθςθ του φορτίου ςτο δεξιό με το άκροιςμά τουσ να 

διατθρείται προφανϊσ ςτακερό. Η ςυμπεριφορά είναι ενδεικτικι τθσ πλαιςιωτισ 

λειτουργίασ τθσ καταςκευισ: θ εξωτερικϊσ επιβαλλόμενθ ροπι παραλαμβάνεται 

μζςω ηεφγουσ αξονικϊν δυνάμεων, πζραν αυτϊν που αναπτφςςονται λόγω ςτατικϊν 

φορτίων. τισ επόμενεσ φάςεισ, θ πλαιςιωτι λειτουργία περιορίηεται (λόγω 

πλαςτικοποίθςθσ των δοκϊν) και θ αξονικι δφναμθ αμφοτζρων των 

υποςτυλωμάτων τείνει προσ τθν αρχικι (ςτατικι) τιμι τθσ. 

Η επίδραςθ τθσ αξονικισ δφναμθσ Ν ςτθν καμπφλθ ροπισ–ςτροφισ του κεμελίου 

δίδεται ςτο χ. 2.4β. Όπωσ αναμενόταν *Houlsby & Puzrin, 1999; Bransby, 2001; 
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Taiebat & Carter, 2002; Gourvenec, 2007+, για ςυντελεςτι αςφαλείασ FSV μεγαλφτερο 

του 2, αφξθςθ του Ν ςυνεπάγεται αφξθςθ τθσ οριακισ ροπισ του κεμελίου. 

Επομζνωσ, ςτον ςχεδιαςμό ςφμφωνα με τθν προτεινόμενθ λογικι, θ πικανι 

διακφμανςθ του φορτίου πρζπει να λαμβάνεται υπόψιν διότι αυξάνοντασ τθν 

πραγματικι αντοχι του κεμελίου διακυβεφεται θ αποτελεςματικότθτα του 

αντιςυμβατικοφ ςχεδιαςμοφ (κακϊσ αυξάνεται τελικϊσ θ ζνταςθ που είναι δυνατόν 

να μεταδοκεί ςτθν ανωδομι).   

Επιρροή τησ διακφμανςησ του μοχλοβραχίονα M/Q  

Η εξζλιξθ  του λόγου M/Q με τθν επιβαλλόμενθ μετακίνθςθ δ φαίνεται ςτο χιμα 

2.4γ. τθν αρχική φάςη, κακϊσ το πλαίςιο δεν ζχει υποςτεί βλάβεσ, θ τιμι του λόγου 

M/Q κυμαίνεται περί τθν αρχικι τθσ τιμι μεταξφ 1.9 και 2.5. Κατά τθν διάρκεια τθσ 

ενδιάμεςησ φάςησ, ο λόγοσ M/Q τείνει προσ τθν τιμι 4.8, ιτοι το φψοσ απ’ τθν βάςθ 

του κζντρου μάηασ του προαναφερκζντοσ εξιδανικευμζνου μονοβακμίου ταλαντωτι. 

τθν τελική φάςη, ο λόγοσ M/Q μειϊνεται κακϊσ, παρότι θ αντοχι του  κεμελίου 

ζχει λάβει τθν οριακι τθσ τιμι (Μ=ςτακερό) το ςφςτθμα εξακολουκεί να διακζτει 

αποκζματα διατμθτικισ αντοχισ, με αποτζλεςμα θ τιμι τθσ διατμθτικισ δφναμθσ Q 

να αυξάνει. Όπωσ προκφπτει και από το χιμα 2.4δ, θ διακφμανςθ τθσ τιμισ του 

λόγου M/Q δεν επθρεάηει ουςιωδϊσ τθν οριακι ροπι του κεμελίου, αλλά επιδρά 

ςτθν ςτροφι ανατροπισ, και επομζνωσ κα πρζπει να λαμβάνεται υπόψιν ςτον 

ςχεδιαςμό με τθν νζα μεκοδολογία κακϊσ χαμθλι τιμι τθσ οριακισ ςτροφισ 

ςυνεπάγεται κίνδυνο ανατροπισ του κεμελίου. 

Η επιρροι των ανωτζρω μθχανιςμϊν αποτυπϊνεται ςτθν υπολογιηόμενθ καμπφλθ 

ροπισ-ςτροφισ των κεμελίων κατά τθν φόρτιςθ Push-Over του πλαιςίου (χ. 2.4ε). 

Πράγματι, θ αντοχι του δεξιοφ κεμελίου  (το κατακόρυφο φορτίο του οποίου 
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αυξάνει κατά τθν φόρτιςθ) υπερβαίνει ςαφϊσ αυτιν του αριςτεροφ ςτο οποίο όμωσ 

θ χαμθλότερθ τιμι του λόγου M/Q του εξαςφαλίηει μεγαλφτερθ ςτροφι ανατροπισ. 

 
 
χιμα 2.4. Επίδραςθ τθσ μεταβολισ του αξονικοφ φορτίου (α, β) και του λόγου Μ/Q (γ, δ) 
ςτθν μζγιςτθ ανελαςτικι απόκριςθ επιφανειακοφ κεμελίου (μζγιςτθ ροπι Μult και οριακι 
ςτροφι κult), (ε) “πραγματικι” καμπφλθ ροπισ αντοχισ-ςτροφισ των κεμελίων του πεδίλου  
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2.5 Απόκριςθ ςε Δυναμικι Φόρτιςθ 

Αποςκοπϊντασ ςτθ ςυγκριτικι αξιολόγθςθ των εναλλακτικϊν μεκόδων 

κεμελιϊςεωσ, τα δφο ςυςτιματα ζχουν υποβλθκεί ςε 24 χρονοϊςτορίεσ 

καταγεγραμμζνων επιταχφνςεων ποικίλων χαρακτθριςτικϊν (χιμα 2.5), πολλζσ από 

τισ οποίεσ ξεπερνοφν κατά πολφ τθν αντοχι ςχεδιαςμοφ του πλαιςίου. ε ςειςμό 

ιπιασ ζνταςθσ (π.χ. El Centro, 1940, μπλζ γραμμι), θ ςυμπεριφορά των δφο 

εναλλακτικϊν είναι ςυγκρίςιμθ, και εντόσ των ορίων λειτουργικότθτασ. Αναλυτικά 

παρουςιάηονται τα αποτελζςματα για το πλζον καταςτροφικό ςενάριο (Takatori , Ms 

7.2 Kobe 1995 earthquake-κόκκινθ γραμμι). 

 
χιμα 2.5. Φάςματα απόκριςθσ των επιταχυνςιογραφθμάτων που χρθςιμοποιικθκαν 
κατά τισ δυναμικζσ αναλφςεισ 
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είναι αςιμαντθ (0.5 cm). Εντοφτοισ, παρότι θ δομθτικι αςτοχία αποφεφγεται, θ 

ανάπτυξθ των ςτροφϊν οδθγεί ςε ςθμαντικι κινθματικοφ χαρακτιρα καταπόνθςθ. Η 

διαφορικι οριηόντια μετακίνθςθ ιςογείου-1ου ορόφου φτάνει τα 50cm (χιμα 2.6δ) 

αν και θ παραμζνουςα τιμι τθσ δεν ξεπερνά τα 5cm, αντιςτοιχοφςα ςε λόγο ςχετικισ 

διαφορικισ μετάκεςθσ τθσ τάξθσ του 2%. Επομζνωσ, παρότι οι βλάβεσ ςε μθ δομικά 

μζλθ και ςτισ δοκοφσ πρζπει να κεωροφνται βζβαιεσ, θ δομθτικι αςτοχία των 

υποςτυλωμάτων αποφεφγεται παρά τθν ςφοδρότθτα του ςειςμοφ. 

 

2.6 υγκεντρωτικά Αποτελζςματα και υμπεράςματα  

το χιμα 2.7 παρατίκενται τα αποτελζςματα για όλα τα εξεταςκζντα ςειςμικά 

ςενάρια ςε όρουσ: (α) λόγου κατανάλωςθσ πλαςτιμότθτασ ςτο ιςόγειο 

μαναπτυχθείςα/μδιαθζςιμη , (β) ςυνολικοφ λόγου διαφορικισ οριηόντιασ μετακίνθςθσ 

ορόφου προσ φψοσ ορόφου δ / h , (γ) διαφορικισ οριηόντιασ μετακίνθςθσ ορόφου 

λόγω κάμψθσ (και όχι λόγω ςτροφισ κεμελίου)  δC / h και (δ) κακίηθςθσ. 

Όταν το ςυμβατικϊσ κεμελιωμζνο ςφςτθμα υπόκειται ςε ςειςμικζσ διεγζρςεισ 

που υπερβαίνουν τον ςειςμικό κραδαςμό ςχεδιαςμοφ, οι βλάβεσ των 

υποςτυλωμάτων είναι ςαφϊσ μι επιςκευάςιμεσ (χιμα 2.7α). Παρότι ςε όρουσ 

ςυνολικισ διαφορικισ  μετακίνθςθσ (χιμα 2.7β) τα δφο ςυςτιματα φαίνεται ότι 

ςυμπεριφζρονται ιςοδφναμα, ςε όρουσ διαφορικισ μετακίνθςθσ λόγω καμπτικισ 

καταπόνθςθσ (χιμα 2.7γ) θ απόκριςθ του υπο-διαςταςιολογθμζνου ςυςτιματοσ 

είναι  ςαφϊσ ευνοϊκότερθ. Όπωσ προκφπτει από τουσ υπολογιςκζντεσ λόγουσ δC / h, 

οι βλάβεσ των υποςτυλωμάτων του «λικνιςτικϊσ μονωμζνου» πλαιςίου είναι 
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αςιμαντεσ για τουλάχιςτον το 50% των περιπτϊςεων, ενϊ για τισ υπόλοιπεσ 

διατθροφνται εντόσ των ορίων επιςκευαςιμότθτασ *Priestley et al., 2007]. 

Εν κατακλείδι ςυμπεραίνεται ότι θ καμπτικι καταπόνθςθ τθσ ανωδομισ είναι 

δυνατόν να περιοριςκεί με υπο-διαςταςιολόγθςθ των κεμελίων ϊςτε να 

αποκρικοφν  μθ-γραμμικά εξαντλϊντασ τιν φζρουςα ικανότθτά τουσ. Ετςι 

περιορίηουν τθν μεταδιδόμενθ ςτα υποςτυλϊματα ζνταςθ ςτα επίπεδα τθσ δικισ 

τουσ (μικρότερθσ) ροπισ αντοχισ. Αν και θ ςτροφι του κεμελίου ςυνεπάγεται 

ςθμαντικι κινθματικι επιπόνθςθ και βλάβεσ ςτα μθ δομικά μζλθ επί του πλαιςίου, θ 

δομθτικι αςτοχία των υποςτυλωμάτων αποφεφγεται ακόμθ και όταν θ ςειςμικι 

ζνταςθ υπερβαίνει κατά πολφ τθν αντοχι ςχεδιαςμοφ τθσ καταςκευισ.  
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χιμα 2.6: υγκριτικι υμπεριφορά των 2 εναλλακτικϊν ςχεδιαςμϊν κεμελίωςθσ 

(ςυμβατικόσ ςχεδιαςμόσ B = 1.7 m ;  μθ ςυμβατικόσ, B = 1.4 m) όταν το πλαιςίο διεγείρεται 

από εξαιρετικά ιςχυρό ςειςμικό κραδαςμό που κατά πολφ υπερβαινει τον ςειςμό ςχεδιαςμό 

του πλαιςίου (καταγραφι Takatori,Kobe 1995): (α) παραμορφωμζνοσ κάνναβοσ 

πεπεραςμζνων ςτοιχείων και ιςοχψεισ πλαςτικϊν παραμορφϊςεων, (β) βρόχοι καμπτικισ 

ροπισ - καμπυλότθτασ ςτθν βάςθ του υποςτυλϊματοσ, (γ) βρόχοι κακίηθςθσ-ςτροφισ 

κεμελίου (w–θ) και (δ) χρονοϊςτορία οριηόντιασ μετακίνθςθσ ςτο επίπεδο του ιςογείου. 
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χιμα 2.7: υνοπτικι παρουςίαςθ τθσ ςειςμικισ απόκριςθσ των 2 εναλλακτικϊν 

ςυςτθμάτων κεμελίωςθσ ςαν ςυνάρτθςθ τθσ μζγιςτθσ φαςματικισ ταχφτθτασ SV ςε όρουσ 

λόγου (α) απαιτοφμενθσ προσ διατικζμενθσ καμπυλότθτασ ςτθν βάςθ του υποςτυλϊματοσ 

(β) παραμζνουςασ οριηόντιασ μετακίνθςθσ ςτο επίπεδο του ιςογείου και (γ) λόγου 

διαφορικισ οριηόντιασ μετακίνθςθσ προσ φψοσ ιςογείου οφειλόμενου αποκλειςτικϊσ ςε 

καμπτικι καταπόνθςθ των υποςτυλωμάτων. Οι ςτάκμεσ επιτελεςτικότθτασ ακολουκοφν τον 

οριςμό των Priestley et al. (1996)  
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2.7 Επεκτείνοντασ τθν Εφαρμοςιμότθτα τθσ Νζασ Προςζγγιςθσ 

Σα αποτελζςματα των παρουςιαςκειςϊν αναλφςεων ανζδειξαν τθν 

αποτελεςματικότθτα τθσ προτεινόμενθσ προςζγγιςθσ όταν ο υντελεςτισ Αςφαλείασ 

των υπό-διαςταςιολογθμζνων κεμελίων είναι  FSV ≈ 5.3 υπονοϊντασ κατ’ ουςίαν ότι 

θ περαιτζρω μείωςι του κα απαιτιςει τθν ανάπτυξθ μεγαλφτερθσ ςτροφισ του 

κεμελίου κατά τθν επιβαλλόμενθ ιςχυρι φόρτιςθ. Σο εφλογον του επιχειριματοσ 

ελζγχεται ςυγκρίνοντασ τθ ςυμπεριφορά του πλαιςίου επί κεμελίων με ςτατικόν 

ςυντελεςτι αςφαλείασ  FSV = 4, υλοποιοφμενου με δφο μεκόδουσ: 

(α)  Θεμζλια πλάτουσ Β = 1.2 m επί εδάφουσ με αςτράγγιςτθ διατμθτικι αντοχι 

Su = 150 kPa,  (αντιςτοιχοφν ςε Ροπι Αντοχισ Mult = 100 kNm) 

(β)  Θεμζλια πλάτουσ Β=1.6 m επί εδάφουσ με αςτράγγιςτθ διατμθτικι αντοχι Su 

= 85 kPa (Ροπι Αντοχισ Mult = 145 kNm) 

Σα αποτελζςματα τθσ ανάλυςθσ των δφο ςυςτθμάτων υποβαλλομζνων ςτθν 

ιςχυρότατθ διζγερςθ Takatori (Kobe 1995) επιβεβαιϊνουν τθν αφξθςθ των 

αναπτυςςομζνων μετακινθςιακϊν μεγεκϊν του πλαιςίου από τισ τιμζσ που είχαν 

προκφψει με τον υψθλότερο ςυντελεςτι αςφαλείασ. Ωσ προσ τθν μεταξφ τουσ 

ςφγκριςθ, οι δφο εναλλακτικζσ, διακζτουςεσ τον ίδιον ςυντελεςτι αςφαλείασ (FSV = 

4), αναπτφςςουν αντίςτοιχθ μζγιςτθ ςτροφι (κ ≈ 0,08 rad) ςτθν κεμελίωςθ (χ.2.8β) 

και επομζνωσ αντίςτοιχουσ λόγουσ ςυνολικισ διαφορικισ οριηόντιασ μετάκεςθσ 

ιςογείου δ (χ.2.8γ). Ωςτόςο, ςε όρουσ διαφορικισ οριηόντιασ μετάκεςθσ λόγω 

καμπτικισ παραμόρφωςθσ, θ εναλλακτικι λφςθ Β = 1.2 m, είναι εμφανϊσ 
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ευνοϊκότερθ για τθν καταςκευι ― αποτζλεςμα τθσ μειωμζνθσ ροπισ αντοχισ και του 

ςυνακόλουκου περιοριςμοφ τθσ μεταδιδόμενθσ ζνταςθσ ςτθν ανωδομι. 

 
χιμα 2.8: Απόκριςθ πλαιςίων επί κεμελίων με FSV = 4 ςτθν διζγερςθ Takatori (Kobe, 1995): 

(α) ιςοχψείσ παραμενουςϊν πλαςτικϊν παραμορφϊςεων, (β) ροπι-κακίηθςθ κεμελίων και 

(γ) χρονοϊςτορίεσ λόγου διαφορικισ μετακίνθςθσ ιςογείου. 
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Ενότητα 3: 

Απλοποιθμζνθ Μζκοδοσ χεδιαςμοφ Θεμελιϊςεων 

 με βάςθ τθν Νζα Προςζγγιςθ  

 

3.1 Προτεινόμενθ Μεκοδολογία 

Αντικείμενο τθσ Ενότθτασ αυτισ αποτελεί θ ανάπτυξθ μιασ απλοποιθμζνθσ 

μεκοδολογίασ για τθν εφαρμογι τθσ νζασ λογικισ ςχεδιαςμοφ, ςε απλοφσ 

πλαιςιωτοφσ φορείσ επί επιφανειακϊν κεμελίων. Προκειμζνου θ μζκοδοσ να είναι 

εφαρμόςιμθ με επιτυχία δφο αντικρουόμενα κριτιρια ωσ προσ τισ διαςτάςεισ του 

κεμελίου κα πρζπει να ικανοποιοφνται ταυτόχρονα: (i) να είναι αρκετά μικρζσ ϊςτε 

θ οριακι του ροπι να μθν υπερβεί αυτιν του υποςτυλϊματοσ και (ii) αρκετά 

μεγάλεσ ϊςτε να εξαςφαλίηεται ζνα ικανοποιθτικό περικϊριο αςφαλείασ ζναντι 

ανατροπισ, χωρίσ ωςτόςο να διακυβεφεται θ γενικι ευςτάκεια τθσ καταςκευισ (FSV  

> 3). Προκφπτει δθλαδι θ ανάγκθ υπολογιςμοφ ενόσ άνω και ενόσ κάτω ορίου τθσ 

διάςταςθσ Β.  

 

3.2 Εκτίμθςθ του Ανω Ορίου  

Για τον προςδιοριςμό ενόσ αςφαλοφσ άνω ορίου θ ελάχιςτθ τιμι του ςυντελεςτή 

απομείωςησ CRF, πρζπει να λαμβάνει τθν τιμι 2, ϊςτε αφενόσ μεν να αποκλειςτεί το 

ενδεχόμενο υπζρβαςθσ τθσ ροπισ αντοχισ του υποςτυλϊματοσ λόγω διακφμανςθσ 

του κατακορφφου φορτίου Ν, αφετζρου δε  να ςυνυπολογιςτοφν πικανζσ 
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αβεβαιότθτεσ ωσ προσ τθν πραγματικι αντοχι του εδάφουσ και τθσ ανωδομισ, ι 

φαινόμενα δυναμικισ υπεραντοχισ. 

3.3 Εκτίμθςθ του Κάτω Ορίου  

Ο υπολογιςμόσ του ελάχιςτου πλάτουσ του κεμελίου απαιτεί γνϊςθ τόςο τθσ 

οριακισ ςτροφισ ανατροπισ του πλαιςίου θtop (αντοχι) όςο και τθσ μζγιςτθσ 

επιβαλλόμενθσ ςτροφισ λόγω ςειςμοφ θdem (απαίτθςθ), όπωσ εξθγείται παρακάτω. 

 

Απλοποιθμζνθ Μζκοδοσ για τθν Εκτίμθςθ τθσ  κtop  

Η οριακι τιμι τθσ ςτροφισ του πλαιςίου κα αναπτυχκεί κατά τθν διάρκεια τθσ τρίτθσ 

και τελευταίασ φάςθσ του χιματοσ 2.4ε. τθν φάςθ αυτι, το πλαίςιο ζχει 

ουςιαςτικϊσ εκφυλιςτεί ςε δφο μονοβάκμιουσ ταλαντωτζσ, και αποκρίνεται ςτο 

επιβαλλόμενο φορτίο μζςω λικνιςμοφ με αςιμαντθ κάμψθ. Όπωσ φαίνεται ςτο 

χιμα 3.1 οι υπολογιςκείςεσ καμπφλεσ ροπισ-ςτροφισ των δφο κεμελίων 

διαςτάςεων Β x B περιβάλλονται αρκετά ικανοποιθτικά από τισ καμπφλεσ ροπισ–

ςτροφισ δφο μονοβακμίων ταλαντωτϊν επί κεμελίων επίςθσ διαςτάςεων Β x B, οι 

οποίοι αντιςτοιχοφν απλοποιθτικά ςε δφο ακραίουσ ςυνδυαςμοφσ αξονικοφ φορτίου 

Ν και μοχλοβραχίονα Μ/Q: 

Ταλαντωτής Α: Ν = NFD = 247 kN, M/Q = 2.4 (ιτοι οι ψευδοςτατικϊσ 

υπολογιηόμενεσ τιμζσ των μεγεκϊν Ν και M/Q ςφμφωνα με τον ΕΑΚ2000, Παρ. 5.2) 

Ταλαντωτής Β: Ν = 135 kN, M/Q = 4.8 (ιτοι οι οριακζσ τιμζσ των μεγεκϊν Ν και 

M/Q κατά τθν τρίτθ φάςθ τθσ απόκριςθσ ). 
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χιμα 3.1. Πλαίςιο υποβαλλόμενο ςε ςτατικι φόρτιςθ ελεγχόμενθσ μετακίνθςθσ: 
φγκριςθ τθσ καμπφλθσ Μ-κ των πεδίλων του πλαιςίου με τισ αντίςτοιχεσ καμπφλεσ 2 
“ιςοδφναμων” μονοβακμίων ςυςτθμάτων τφπου Α και Β, διάςταςθσ κεμελίου Β=1.40 m.  

 

Δεδομζνου ότι θ πλιρθσ μι-γραμμικι ανάλυςθ Push-Over του όλου πλαιςίου (επί 

εδαφικισ ςτρϊςθσ) δεν είναι πρακτικϊσ εφαρμόςιμθ κατά τον ςχεδιαςμό, θ 

παροφςα ζρευνα κατζλθξε ότι ο απλοφςτεροσ τρόποσ υπολογιςμοφ τθσ ςτροφισ 

ανατροπισ του πλαιςίου είναι θ εφαρμογι ςυντελεςτι αςφαλείασ 1.5 ςτθν οριακι 

ςτροφι που υπολογίηεται από τθν φόρτιςθ Push-Over του ταλαντωτι Α. Δεδομζνου 

μάλιςτα ότι ο ςτατικόσ ςυντελεςτισ αςφαλείασ του κεμελίου είναι αρκετά υψθλόσ, θ 

βφκιςι του λόγω πλαςτικοποίθςθσ του εδάφουσ δείχκθκε ιδθ ότι είναι αςιμαντθ. 

Αρα, χωρίσ ουςιϊδθ βλάβθ τθσ γενικότθτασ, ο εξιδανικευμζνοσ ταλαντωτισ ςτθν 

φάςθ ζναρξθσ τθσ ανατροπισ είναι δυνατόν να απλοποιθκεί ζτι περαιτζρω ωσ ζνα 

άκαμπτο ςϊμα επί άκαμπτθσ βάςθσ. Η βαςικι ορκότθτα τθσ απλοποθτικισ αυτισ 

παραδοχισ επιβεβαιϊνεται ςτο χιμα 3.2, όπου θ πρόβλεψθ τθσ κult με χριςθ του 

άκαμπτου ςϊματοσ (κult = tan-1(b/h) ≈ b/h ) ςυγκρίνεται με τον ακριβι υπολογιςμό 

τθσ με χριςθ τριδιάςτατου αρικμθτικοφ προςομοιϊματοσ. Όπωσ αναμενόταν, όςο 
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μικρότεροσ είναι ο ςυντελεςτισ αςφαλείασ τόςο μικρότερθ είναι θ ακρίβεια τθσ 

απλοποίθςθσ. Λαμβάνοντασ πάντωσ υπόψιν ότι ςε πραγματικζσ καταςκευζσ ο 

υντελεςτισ Αςφαλείασ ςπανίωσ κείται κάτω του 3, θ απλοποίθςθ κεωρείται 

εξαιρετικά εφλογθ.  

 

 
χιμα 3.2. φγκριςθ μετα-πλαςτικισ απόκριςθσ M–θ του μονοβακμίου ταλαντωτι τφπου 
Α εδραηομζνου επί μθ-γραμμικοφ εδάφουσ με Su= 150 kPa (μαφρθ γραμμι) και Su= 80 kPa 
(γκρι γραμμι) με τθν απόκριςθ του ιςοδφναμου ςτερεοφ ςϊματοσ επί άκαμπτθσ βάςθσ. 
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υντθρθτικόσ Τπολογιςμόσ τθσ ειςμικισ Απαίτθςθσ  κdem  

Η οριακι ςτροφι θtop αντιςτοιχεί ςε οριακή μετακίνηςη δκ  ςτο κζντρο μάηασ τθσ 

καταςκευισ. Επομζνωσ, θ ηθτοφμενθ αςφαλισ διάςταςθ του κεμελίου κα πρζπει να 

ικανοποιεί τθν απαίτθςθ  δκ > δε όπου δε θ ςειςμικϊσ επιβαλλόμενθ  μετακίνθςθ 

(“απαίτθςθ”). Διευκρινίηεται ότι ςτθν παροφςα ζρευνα δεν αναηθτείται μια μζκοδοσ 

υπολογιςμοφ τθσ πραγματικισ ςειςμικισ απαίτθςθσ, αλλά ζνασ απλοποιθτικόσ 

τρόποσ ςυντθρθτικισ εκτίμθςθσ τθσ μζγιςτθσ πικανισ μετακίνθςθσ δε. τα πλαίςια 

αυτά, ωσ μζτρο τθσ απαίτθςθσ προτείνεται θ μζγιςτθ τιμι τθσ φαςματικισ 

μετακίνθςθσ του επιταχυνςιογραφιματοσ ςχεδιαςμοφ (SDmax). Δεδομζνου ότι θ 

ιδιοπερίοδοσ τθσ λικνιςτικά αποκρινόμενθσ καταςκευισ μεταβάλλεται ραγδαία από 

τθν αρχικι τθσ τιμι Σel (τείνοντασ αςυμπτωτικά προσ το άπειρο λίγο πριν απ’τθν 

ανατροπι) θ κεϊρθςθ μίασ ςυγκεκριμζνθσ τιμισ φαςματικισ μετακίνθςθσ κα ιταν 

ανεπαρκισ. Θεωρείται επίςθσ αυτονόθτο ότι  θ μζγιςτθ μετακίνθςθ SDmax
   μόνον 

από ςφμπτωςθ κα ιταν πικανόν να αναπτυχκεί όντωσ ςτο πλαίςιο. Ωςτόςο ςτόχοσ 

τθσ ζρευνασ είναι να καταδειχκεί ότι θ τιμι αυτι αποτελεί ςυντθρθτικι μόνον 

εκτίμθςθ  τθσ πραγματικισ μετακίνθςθσ και άρα εφλογθ εκτίμθςθ του ηθτοφμενου 

δείκτθ δε . Η ιςχφσ τθσ υπόκεςθσ αυτισ εξετάηεται ςτισ επόμενεσ παραγράφουσ.  

 

τερεό ώμα υποβαλλόμενο ςε απλοφσ παλμοφσ: φγκριςθ με Αναλυτικζσ Λφςεισ  

το χιμα 3.3α απεικονίηεται ενδεικτικι ςφγκριςθ τθσ ακριβοφσ λφςθσ των Zhang & 

Makris *2001+ (γραμμοςκιαςμζνθ περιοχι) με τθν εκτίμθςθ τθσ απλοποιθτικισ 

μεκοδολογίασ (διακριτά ςθμεία), για ςτερεό ςϊμα επί άκαμπτθσ βάςθσ 

υποβαλλομζνου ςε παλμοφσ θμιτόνου και ςυνθμιτόνου, ενϊ ςτο χιμα 3.3β θ 
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εκτίμθςθ τθσ απλοποιθτικισ μεκοδολογίασ ςυγκρίνεται με τθν ακριβι λφςθ των  

Gerolymos et al. *2005+ για ςϊματα υποβαλλόμενα ςε παλμοφσ Ricker. Όπωσ 

προκφπτει από τθν επιςκόπθςθ των χθμάτων 3.3, θ υπολογιηόμενθ επιτάχυνςθ 

ανατροπισ με βάςθ το SDmax δεν είναι ςυντθρθτικι ςε όλο το φάςμα των 

εξεταςκειςϊν ςυχνοτιτων. Κατόπιν αυτοφ, θ διεξαχκείςα ζρευνα κατζλθξε ότι είναι 

αναγκαία θ εφαρμογι ενόσ ςυντελεςτι αςφαλείασ τθσ τάξθσ του 1.4 ςτθν εκτίμθςθ 

με βάςθ το SDmax, ϊςτε να εξαςφαλίηεται ςυντθρθτικόσ υπολογιςμόσ ςε όλεσ τισ 

περιπτϊςεισ.  

 

χιμα 3.3. φγκριςθ τθσ προτεινόμενθσ προςεγγιςτικισ μεκοδολογίασ με τισ ακριβείσ λφςεισ 
(α) των Zhang & Makris (2001) και (β) των Gerolymos et al. (2005) για τον λικνιςμό ςτερεϊν 
ςωμάτων επί άκαμπτθσ βάςθσ διεγειρόμενων από απλοφσ παλμοφσ ςε όρουσ φαςμάτων 
λικνιςμοφ (rocking spectra).  
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Εφαρμογι τθσ Μεκοδολογίασ ςε Διώροφο Πλαίςιο επί Μθ Γραμμικοφ Εδάφουσ  

Ακολουκϊντασ τθν παραπάνω διαδικαςία, θ οριακι ςτροφι του μελετθκζντοσ ςτθν 

προθγοφμενθ ενότθτα διωρόφου πλαιςίου επί κεμελίων διαςτάςεων 1.1 x 1.1 m 

υπολογίηεται ωσ θult = 0.14 rad, θ οποία αντιςτοιχεί ςε δκ = 71 cm (ςτο κζντρο μάηασ 

του πλαιςίου). Η ιςχφσ επομζνωσ τθσ μεκοδολογίασ κα επαλθκευτεί εφόςον θ 

καταςκευι παραμζνει αςφαλισ ζναντι ανατροπισ για ςειςμοφσ των οποίων θ 

μζγιςτθ φαςματικι μετακίνθςθ δεν ξεπερνά τα 71 cm. Προκειμζνου να εκτιμθκοφν 

τα πικανά περικϊρια αςφαλείασ τθσ απλοποιθτικισ μεκόδου, διερευνάται θ 

δυναμικι απόκριςθ του πλαιςίου ςε διεγζρςεισ ανθγμζνεσ ςε μζγιςτθ φαςματικι 

μετακίνθςθ  SDmax = 1.1 δκ ( ≈ 78 cm) και SDmax= .0.9 δκ ( ≈ 64 cm).  

ε όλεσ τισ περιπτϊςεισ, για SDmax= 0.9 δκ θ απλοποιθτικι εκτίμθςθ είναι 

ςυντθρθτικι. Αρα προκφπτει, ότι θ εφαρμογι ενόσ ςυντελεςτι αςφαλείασ τθσ τάξθσ 

μόλισ του 1.1 κα ιταν απολφτωσ ικανοποιθτικι. Αρκετά ενκαρρυντικό είναι το 

γεγονόσ ότι ακόμθ και όταν SDmax = 1.1 δκ, θ ανατροπι επζρχεται ςε δφο μόνον 

ςειςμικά ςενάρια από τα 24 ςυνολικά Σο γεγονόσ αυτό πάντωσ δεν κεωρείται 

ανθςυχθτικό λόγω του μι-ρεαλιςτικοφ δυςμενοφσ χαρακτιρα των ανθγμζνων 

χρονοϊςτοριϊν (PGA ≈ 2g).  
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Ενότητα 4: 

Κυματικι Διάδοςθ εντόσ μαλακισ Αλλουβιακισ Κοιλάδασ:  

Δθμιουργία παραςιτικισ Κατακόρυφθσ υνιςτϊςασ  

 

4.1 Ειςαγωγι 

Παρότι τα φαινόμενα τοπογραφικισ ενίςχυςθσ λόγω διδιάςτατθσ κυματικισ 

διάδοςθσ ζχουν μελετθκεί ενδελεχϊσ ςτθν βιβλιογραφία, ςυνικωσ οι αναλφςεισ 

γίνονται με χριςθ ελαςτικϊν αναλφςεων και εξιδανικευμζνων παλμϊν (Trifunac, 

1971; Wong &; Harmsen & Harding, 1981, Sánchez-Sesma & Luzón, 1995, Bao et al., 

1996, Bielak et al., 1999, 2000). Περιοριςμζνθ μόνον προςοχι ζχει αφιερωκεί ςτθ 

διερεφνθςθ τθσ επίδραςθσ κυρίων παραμζτρων του προβλιματοσ όπωσ το ςυχνοτικό 

περιεχόμενο τθσ κίνθςθσ και οι “λεπτομζρειζσ” τθσ (π.χ. διάρκεια, αρικμόσ κφκλων, 

διαδοχι παλμϊν) λαμβάνοντασ υπόψιν τθν μθ γραμμικι εδαφικι απόκριςθ. Η 

εμβάκυνςθ ςτον ρόλο των παραπάνω παραγόντων, οι οποίοι ενδζχεται να 

μεταβάλλουν ςθμαντικά τθν αναπτυςςόμενθ κίνθςθ ςτθν επιφάνεια εδαφικϊν 

κοιλάδων (κζςεισ κεμελιϊςεωσ καταςκευϊν), επιχειρείται ςτθν τζταρτθ ενότθτα τθσ 

διατριβισ. Επιπλζον, ιδιαίτερθ βαρφτθτα δίδεται ςτθ μελζτθ τθσ γζνεςθσ μίασ 

παραςιτικισ κατακόρυφησ ςυνιςτϊςασ τθσ κίνθςθσ, απόρροια τθσ διδιάςτατθσ 

γεωμετρίασ και μόνον. Λόγω του ότι θ ςυνιςτϊςα αυτι αναμζνεται να είναι 

ςφγχρονθ και ομοιοςυχνοτικι με τθν οριηόντια ςυνιςτϊςα κεωρείται και πολφ πιο 

επιηιμια για τισ καταςκευζσ.  
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4.2 Γεωμετρία του Προβλιματοσ και Μζκοδοσ Ανάλυςθσ 

Μελετάται θ πολφ μαλακι αλλουβιακι κοιλάδα Ohba ςτθν Ιαπωνία (Tazoh et al. 

[1984]).  Η ταχφτθτα διάδοςθσ του διατμθτικοφ κφματοσ VS κυμαίνεται μεταξφ 40 και 

65 m/s ςτο ζδαφοσ και περί τα 400 m/s ςτο υπόβακρο. Σο αρικμθτικό προςομοίωμα 

για τισ δυναμικζσ εν χρόνω αναλφςεισ απεικονίηεται ςτο χιμα 4.1. ε όλεσ επόμενεσ 

περιπτϊςεισ τα αποτελζςματα αναφζρονται ςε επιβολι ςτθν βάςθ του 

προςομοιϊματοσ χρονοϊςτορίασ αποκλειςτικϊσ οριηόντιασ επιτάχυνςθσ. 

 

χιμα 4.1: (α) Απλοποιθμζνθ γεωμετρία τθσ κοιλάδασ Ohba. (β) το αρικμθτικό 
προςομοίωμα πεπεραςμζνων ςτοιχείων που χρθςιμοποιικθκε ςτισ δυναμικζσ αναλφςεισ. 
ε μεγζκυνςθ θ πυκνι διακριτοποίθςθ πλθςίον του άκρου τθσ κοιλάδασ.  

 

Προκειμζνου να αποφευχκοφν μι ρεαλιςτικζσ ανακλάςεισ κυμάτων, 

τοποκετοφνται ςτθ βάςθ  του προςομοιϊματοσ απορροφθτικά ςφνορα ενϊ ςτα 

πλευρικά του όρια αναπαράγονται ςυνκικεσ ελευκζρου πεδίου. Σα ςτοιχεία του 

δικτφου είναι αρκετά μικρϊν διαςτάςεων για τθν αναπαραγωγι πικανϊν υψίςυχνων 

κυματομορφϊν. Η ιςχφσ τθσ αρικμθτικισ μεκοδολογίασ ζχει επιβεβαιωκεί από τουσ 

Tazoh et al. [1988], Fan et al. [1992] and Psarropoulos et al. [2007]. 
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4.3 Ο ρόλοσ του υχνοτικοφ περιεχομζνου 

το χιμα 4.2 απεικονίηεται θ χωρικι κατανομι του ςυντελεςτι τοπογραφικισ 

επιδείνωςθσ             (λόγοσ των PGA διδιάςτατθσ προσ μονοδιάςτατθσ 

ανάλυςθσ) όταν θ κοιλάδα υποβάλλεται ςε  παλμοφσ Ricker (ελαςτικζσ αναλφςεισ με 

ξ=2%). Με τον υψίςυχνο παλμό Ricker3 (χιμα 4.2(α)), θ απόκριςθ τθσ κοιλάδασ 

είναι εμφανϊσ μονοδιάςτατθ ςτο κζντρο. Διδιάςτατα φαινόμενα εντοπίηονται ςτισ 

άκρεσ όπου τα κφματα υπόκεινται ςε πολλαπλζσ ανακλάςεισ (εντόσ των 

οριοκετουμζνων από το υπόβακρο εδαφικϊν πριςμάτων) προκαλϊντασ επιδείνωςθ 

(AG ≈ 1.3). ε αντίςτοιχα ςυμπεράςματα ζχουν καταλιξει μεταξφ άλλων οι Sánchez-

Sesma et al. [1988], ενϊ θ ςυγκεκριμζνθ κατανομι του ςυντελεςτι επιδείνωςθσ 

εξθγεί ενδεχομζνωσ τθν κατανομι των παρατθρθκειςϊν βλαβϊν επί εδαφικϊν 

κοιλάδων ςε διάφορουσ καταγεγραμμζνουσ ςειςμοφσ (π.χ. Palos Grandes, 1997) 

Μειουμζνθσ τθσ ςυχνότθτασ του κραδαςμοφ (Ricker 1 : of = 1 Hz) θ χωρικι 

κατανομι του ςυντελεςτι AG τροποποιείται δραςτικά (χιμα 4.2(β)). Σο 

παραγόμενο κφμα είναι λιγότερο ευαίςκθτο ςτθν τοπογραφικι ανωμαλία ωσ 

αποτζλεςμα τθσ μικρότερθσ ςυχνότθτασ του παλμοφ. Ακολοφκωσ, θ επιδείνωςθ 

λόγω πολλαπλϊν ανακλάςεων (πλθςίον των άκρων) που παρατθρικθκε ςτθν 

προθγοφμενθ περίπτωςθ επιςκιάηεται πλζον από τθν υπερκετικι ςυμβολι των 

αντιρρόπωσ διαδιδόμενων προσ το κζντρο επιφανειακϊν κυμάτων Rayleigh. Σα 

τελευταία ςυντελοφν ςτθν μετάκεςθ τθσ περιοχισ μζγιςτθσ επιδείνωςθσ (AG = 1.7)  

πλθςίον του κζντρου. Περαιτζρω μείωςθ τθσ ςυχνότθτασ του παλμοφ (Ricker 0.5, 

χιμα 4.2(γ)), οδθγεί ςε εξομάλυνςθ τθσ κατανομισ των ςυντελεςτϊν επιδείνωςθσ 

ΑG. Η παρατθροφμενθ χωρικι κατανομι τουσ είναι ενδεικτικι φαινομζνων 
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διδιάςτατου ςυντονιςμοφ, επιβεβαιϊνοντασ πλθκϊρα ςχετικϊν δθμοςιευμζνων 

μελετϊν (Bard and Bouchon, 1985; Moczo et al, 1996; Hill et al, 1990).  

 

χιμα 4.2. Κατανομι του ςυντελεςτι εδαφικισ επιδείνωςθσ AG όταν θ κοιλάδα διεγείρεται 
(α) από τον υψίςυχνο παλμό Ricker 3, (β) από τον παλμό Ricker1 και από τον εξαιρετικά 
μεγαλοπερίοδο παλμό Ricker 0.5. Θεϊρθςθ ελαςτικισ εδαφικισ απόκριςθσ με ςυντελεςτι 
βιςκοελαςτικισ απόςβεςθσ ξ = 2 %.  
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χιμα 4.3: Επιρροι του ςυχνοτικοφ περιεχομζνου τθσ διζγερςθσ ςτο παραγόμενο κυματικό 
πεδίo όταν θ κοιλάδα διεγείρεται από (α) τον υψίςυχνο παλμό Ricker 3, (β) τον παλμό Ricker 
1 και (γ) τον παλμό υψθλισ περιόδου Ricker 0.5. 

 

Σα ανωτζρω επαλθκεφονται καί από τθν μορφι των παραγομζνων ςυνκετικϊν 

ςειςμογραφθμάτων (χιμα 4.3). τον ενδιάμεςθσ-ςυχνότθτασ παλμό Ricker1, 

απεικονίηονται κακαρά οι 2 πρϊτεσ ιδιομορφζσ των διαδιδομζνων προσ το κζντρο 

επιφανειακϊν κυμάτων (R1, R2). Η ςυμβολι των τελευταίων προκαλεί ενιςχφςεισ, 

παρατθροφμενεσ ςχεδόν ςε όλο το μικοσ τθσ κοιλάδασ. Αντικζτωσ με τον υψίςυχνο 

παλμό Ricker3 (χιμα 4.3β), παρότι δθμιουργείται ζνα εξαιρετικά πολφπλοκο 
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ταχζωσ (λόγω τθσ απόςβεςθσ), με αποτζλεςμα τθν απουςία οποιαςδιποτε 

ενίςχυςθσ ςε περιοχζσ εκτόσ των άκρων.  

4.4 Επιρροι των Χαρακτθριςτικών τθσ Διζγερςθσ 

τθν περίπτωςθ τθσ ελαςτικισ απόκριςθσ χαρακτθριςτικά τθσ διζγερςθσ όπωσ ο 

αρικμόσ των κφκλων, θ διάρκεια, το ςυχνοτικό περιεχόμενο δεν φαίνεται να 

επθρεάηουν τθν ενίςχυςθ ςτισ άκρεσ τθσ κοιλάδασ, αλλά επιδροφν ουςιωδϊσ ςτθ 

γζνεςθ επιφανειακϊν κυμάτων, υπευκφνων για τθν επιδείνωςθ του κραδαςμοφ ςτο 

κζντρο τθσ (Bard & Bouchon, 1980, Fishman & Ahmad, 1995): θ αφξθςθ του αρικμοφ 

των ςθμαντικϊν κφκλων φόρτιςθσ αυξάνει προφανϊσ τθν πικανότθτα ενιςχυτικισ 

ςυμβολισ επιφανειακϊν κυμάτων αντιρρόπωσ διαδιδόμενων προσ το κζντρο τθσ 

κοιλάδασ και κατακορφφωσ διαδιδόμενων από τθν βάςθ, με τελικό αποτζλεςμα τθν 

επιδείνωςθ του κραδαςμοφ. 

 
χιμα 4.4. Χϊρικι κατανομι του ςυντελεςτι εδαφικισ επιδείνωςθσ AG για κοιλάδα 
διεγειρόμενθ από  παλμό Ricker 1: (α)  με κεϊρθςθ ςταδιακϊσ αυξανομζνου ποςοςτοφ 
απόςβεςθσ ξ και (β) με κεϊρθςθ ιςοδφναμθσ γραμμικισ απόκριςθσ (γκρί γραμμι) και 
πλιρουσ μθ γραμμικισ ςυμπεριφοράσ (μαφρθ γραμμι)  
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χιμα 4.5. Επιρροι τθσ εδαφικισ μθ-γραμμικότθτασ ςτθν ςειςμικι απόκριςθ τθσ κοιλάδασ 
όταν θ διζγερςθ είναι (α) θ καταγραφι Κζδε του ςειςμοφ τθσ Ακινασ (1999) και (β) το 
επιταχυνςιογράφθμα τθσ Λευκάδασ (2003). Με μαφρθ γραμμι απεικονίηεται το 
αποτζλεςμα τθσ πλιρουσ μι-γραμμικισ ανάλυςθσ, ενϊ με τθν εςτιγμζνθ θ απόκριςθ τθσ 
κοιλάδασ με κεϊρθςθ ελαςτικισ εδαφικισ ςυμπεριφοράσ. 
 

4.5 Μι-Γραμμικι Απόκριςθ του εδάφουσ 

Οι μθ γραμμικζσ αναλφςεισ τθσ κοιλάδασ υποβαλλομζνθσ τόςο ςε εξιδανικευμζνουσ 

παλμοφσ όςο και ςε πραγματικά επιταχυνςιογραφιματα, επιβεβαιϊνουν τθν 

ςθμαςία τθσ μι γραμμικότθτασ, θ οποία τροποποιεί ςθμαντικά τθν διδιάςτατθ 

απόκριςθ του ςχθματιςμοφ. Πζραν τθσ πλιρωσ μι-γραμμικισ ανάλυςθσ, ιςοδφναμεσ 

γραμμικζσ αναλφςεισ κακϊσ και ελαςτικζσ με αυξθμζνθ ιξωδοελαςτικι απόςβεςθ ξ, 

αξιοποιοφνται εν προκειμζνω ςτθν αξιολόγθςθ εναλλακτικϊν (απλοφςτερων) 

μεκόδων ανάλυςθσ οι οποίεσ λαμβάνουν ζμμεςα υπόψιν τθν μι γραμμικι εδαφικι 

ςυμπεριφορά. Αποδεικνφεται ότι θ αφξθςθ του ποςοςτοφ αποςβζςεωσ ξ ορκϊσ 

εκτιμά τθν μείωςθ τθσ επιδείνωςθσ ςτο κζντρο τθσ κοιλάδασ, είναι όμωσ ανεπαρκισ 

ςτθν αναπαραγωγι των φαινομζνων που λαμβάνουν χϊρα ςτα άκρα του 

ςχθματιςμοφ. Αντιςτοίχωσ, θ πρόβλεψθ τθσ ιςοδφναμθσ γραμμικισ ανάλυςθσ 
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(Αρικμθτικόσ κϊδικασ QUAD4M, Hudson et al, 1994), αν και  ςαφϊσ πλθςιζςτερθ 

ςτθν πραγματικι μι γραμμικι εδαφικι απόκριςθ, αναπαράγει μζροσ μόνον του 

ςυνόλου των φαινομζνων (χιμα 4.4). Ωσ εκ τοφτου, θ διεξαγωγι πλιρουσ μθ 

γραμμικισ ανάλυςθσ προκρίνεται ωσ θ αναγκαία λφςθ. 

Ζνα από τα πιο ενδιαφζροντα ευριματα τθσ ζρευνασ αφορά ςτο παράδοξο τθσ 

αφξθςθσ (και όχι μείωςθσ όπωσ ςυνικωσ ζχει παρατθρθκεί) τθσ τοπογραφικισ 

επιδείνωςθσ ςτα άκρα τθσ κοιλάδασ λόγω τθσ μθ γραμμικότθτασ του εδάφουσ 

(χιμα 4.5). Γενεςιουργό αίτιο του φαινομζνου εικάηεται ο εξισ μθχανιςμόσ: Σα 

αρχικϊσ προςπίπτοντα κφματα, προκαλοφν διαρροι του εδάφουσ πλθςίον τθσ 

διεπιφάνειάσ του με τον βράχο δθμιουργϊντασ ςτθν περιοχι μία πλαςτικοποιθμζνθ 

ηϊνθ, ςτθν οποία «παγιδεφονται» τα μετζπειτα προςπίπτοντα κφματα (λόγω των 

επόμενων κφκλων ςειςμικισ φόρτιςθσ). Πράγματι, επιβεβαιϊνοντασ τθν ιςχφ του 

μθχανιςμοφ, το φαινόμενο είναι ιςχυρότερο για τθν διζγερςθ τθσ Λευκάδασ από ότι 

για τθν διζγερςθ ΚΕΔΕ.  

 

4.6 Δθμιουργία Παραςιτικισ Κατακόρυφθσ υνιςτώςασ 

Όπωσ ιδθ αναφζρκθκε, θ διζγερςι τθσ κοιλάδασ με αμιγϊσ οριηόντια ςειςμικι 

κίνθςθ αναπόφευκτα δθμιουργεί  λόγω τθσ διδιάςτατθσ γεωμετρίασ και μία 

παραςιτικι κατακόρυφθ ςυνιςτϊςα. τα πλαίςια τθσ διατριβισ επιχειρείται μία 

πρϊτθ απόπειρα επαλικευςθσ του μθχανιςμοφ, υποβάλλοντασ το προςομοίωμα ςε 

πραγματικά επιταχυνςιογραφιματα. Πράγματι, (χιμα 4.6α) θ εξαίτθςθ με τθν 

οριηόντια μόνον (Ah) ςυνιςτϊςα του επιταχυνςιογραφιματοσ Λευκάδασ (2003),  

παράγει μία ςθμαντικι κατακόρυφθ ςυνιςτϊςα Av ςτθν επιφάνεια τθσ κοιλάδασ θ 

οποία ςε όρουσ μζγιςτθσ τιμισ είναι ςυγκρίςιμθ με τθν οριηόντια (max Av ≈ 0.6 max 
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Ah). Επιπλζον (χ. 4.6β), ωσ ςυνζπεια τθσ γεωμετρίασ, θ κατακόρυφθ παραςιτικι 

ςυνιςτϊςα Av είναι εν φάςει με τθν οριηόντια. Αξίηει μάλιςτα να ςθμειωκεί ότι 

αντίκετα με τθν καταγραφείςα κατακόρυφθ ςυνιςτϊςα τθσ ςειςμικισ κίνθςθσ 

“Λευκάδασ” θ οποία, ωσ αποτζλεςμα  κυμάτων P είναι ιδιαιτζρωσ υψίςυχνθ και 

επομζνωσ αςιμαντθ για τισ καταςκευζσ * Fardis et al., 2003+, θ παραςιτικι 

ςυνιςτϊςα (χ.4.6γ) χαρακτθρίηεται από ςυχνοτικό περιεχόμενο πρακτικϊσ όμοιο με 

αυτό τθσ οριηοντίασ. Ετςι πολλαπλαςιάηεται θ  πικανότθτα επιηιμιασ δράςθσ ςτισ 

καταςκευζσ.  

Ολοκλθρϊνοντασ, κεωρικθκε ιδιαιτζρου πρακτικοφ ενδιαφζροντοσ θ διερεφνθςθ 

τθσ ευαιςκθςίασ τθσ παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ ςτθν μι-γραμμικι 

απόκριςθ του εδάφουσ (χιμα 4.7). Για τθν περίπτωςθ τθσ υψίςυχνθσ διζγερςθσ 

ΚΕΔΕ (χιμα 4.7α), θ κατανομι του λόγου Av / Ah παραμζνει πρακτικϊσ ανεπθρζαςτθ, 

ενϊ για τισ περιπτϊςεισ ενδιάμεςθσ και χαμθλισ ςυχνότθτασ διεγζρςεισ Λευκάδασ 

και Yarimca (χιμα 4.7β) αντιςτοίχωσ, θ μι-γραμμικότθτα όχι μόνον δεν τροποποιεί 

τθν γενικι τάςθ, αλλά ςτισ περιοχζσ των άκρων επιφζρει ακόμθ και αφξθςθ  τθσ 

τιμισ του λόγου Av / Ah ςτα άκρα τθσ κοιλάδασ. Η αφξθςθ αυτι είναι αποτζλεςμα 

κυρίωσ τθσ απομείωςθσ τθσ οριηόντιασ επιτάχυνςθσ (μείωςθ του παρονομαςτι ςτον 

λόγο Av / Ah) αποκαλφπτοντασ τθν εν γζνει περιοριςμζνθ ευαιςκθςία  τθσ 

παραςιτικισ ςυνιςτϊςασ ςτθ μι γραμμικι απόκριςθ του εδάφουσ.  
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χιμα 4.6. (α) Χωρικι κατανομι του λόγου max Av/max Ah κατά μικοσ τθσ επιφάνειασ τθσ 

κοιλάδασ όταν θ τελευταία διεγείρεται από το επιταχυνςιογράφθμα του ςειςμοφ τθσ 

Λευκάδασ (2003), (β) παραγόμενεσ χρονοϊςτορίεσ επιτάχυνςθσ (οριηόντιασ και 

κατακόρυφθσ) και (γ) ελαςτικά φάςματα απόκριςθσ ςτθ κζςθ Α όπου ο λόγοσ  

max Av/max Ah λαμβάνει τοπικά μζγιςτθ τιμι. 

 

 

χιμα 4.7. Επιρροι τθσ μθ-γραμμικισ ςυμπεριφοράσ του εδάφουσ ςτθν παραςιτικϊσ 

αναπτυςςόμενθ κατακόρυφθ ςυνιςτϊςα: κοιλάδα διεγειρόμενθ (α) από τθν υψίςυχνθ 

καταγραφι του ΚΕΔΕ (Ακινα, 1999) και (β) από τθν μακροπερίοδθ καταγραφι τθσ Yarimca 

(Kocaeli, 1999).  
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Ενότητα 5: 

ειςμικι Αλλθλεπίδραςθ Εδάφουσ-Θεμελιϊςεωσ-Πλαιςίου ςε 

Περιοχζσ Εντόνου Γεωμορφικοφ Αναγλφφου  

 

5.1  Ειςαγωγι 

Αντικείμενο ετοφτθσ τθσ ενότθτασ είναι θ διερεφνθςθ των επιηιμιων ςυνεπειϊν τθσ 

παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ ςε καταςκευζσ κεμελιωμζνεσ πλθςίον των 

άκρων εδαφικισ κοιλάδασ. Όπωσ διαπιςτϊκθκε ςτθν προθγοφμενθ ενότθτα, θ εν 

λόγω ςυνιςτϊςα είναι αφενόσ “εν ςυγχροτιςμϊ” με τθν οριηόντια ςυνιςτϊςα τθσ 

κίνθςθσ και αφετζρου είναι πολφ λιγότερο ευαίςκθτθ ςτθν μι γραμμικι εδαφικι 

απόκριςθ.  Δεδομζνου ωςτόςο ότι τα ωσ άνω ςυμπεράςματα ζχουν εξαχκεί από 

ανάλυςθ μιάσ ςυγκεκριμζνθσ μαλακισ εδαφικισ κοιλάδασ, εξετάηεται αρχικϊσ θ 

δυνατότθτα γενίκευςισ τουσ μζςω αναλφςεων μιασ ςκλθρότερθσ εδαφικισ κοιλάδασ 

και εν ςυνεχεία επιχειρείται θ αδιαςτατοποίθςθ του προβλιματοσ ϊςτε τα 

παραγόμενα αποτελζςματα να δφνανται να κεωρθκοφν ωσ γενικισ ιςχφοσ, 

ανεξάρτθτα από τθν ςυγκεκριμζνθ γεωμετρία του προβλιματοσ και τισ ιδιότθτεσ των 

εδαφικϊν υλικϊν. τον κυρίωσ κορμό τθσ τρζχουςασ ενότθτασ μελετάται με χριςθ 

προςομοιϊματοσ πεπεραςμζνων ςτοιχείων θ ςειςμικι απόκριςθ μίασ ρεαλιςτικϊσ 

απλισ πλαιςιωτισ καταςκευισ κεμελιωμζνθσ επιφανειακϊσ πλθςίον του άκρου τθσ 

κοιλάδασ. 
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5.2  Γενίκευςθ των Αποτελεςμάτων : μζτριασ ςκλθρότθτασ κοιλαδα 

Σο εξεταςκζν πρόβλθμα απεικονίηεται ςτο χιμα 5.1. Ωσ εξαίτθςθ ςτθν βάςθ του 

προςομοιϊματοσ ζχουν χρθςιμοποιθκεί καταγραφζσ από ιςτορικοφσ ςειςμοφσ 

μετρίασ ζωσ ςθμαντικισ εντάςεωσ (χ. 5.1β) οι οποίοι παρουςιάηουν ποικιλία ωσ 

προσ τα χαρακτθριςτικά τουσ (ζνταςθ, ςυχνοτικό περιεχόμενο και αρικμόσ κφκλων 

φόρτιςθσ)  

 

 
 
χιμα 5.1: (α) χθματικι απεικόνιςθ του αρικμθτικοφ προςομοιϊματοσ τθσ κοιλάδασ, (β) 
χρονοϊςτορίεσ επιταχυνςιογραφθμάτων που χρθςιμοποιικθκαν ωσ διεγζρςεισ βάςθσ του 
προςομοιϊματοσ Π..  

 

Σα αποτελζςματα παρουςιάηονται ςυγκεντρωτικά ςτο χιμα 5.2 και επιγραμματικά 

ςυνοψίηονται ωσ εξισ:   
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• Όταν το ζδαφοσ είναι ελαςτικό, θ “κοιλαδικι” ενίςχυςθ (ΑG = α2D / α1D ) είναι 

ςαφϊσ μή προβλζψιμθ. Περιοχζσ ςυςςωρευμζνθσ ενίςχυςθσ διαδζχονται περιοχζσ 

με αςιμαντθ ενίςχυςθ κατά ςχεδόν-χαοτικόν τρόπο, ενϊ θ κατανομι των 

ενιςχφςεων επθρεάηεται εντόνωσ από τα χαρακτθριςτικά τθσ διζγερςθσ.  

• Η μι γραμμικι εδαφικι ςυμπεριφορά απλοποιεί δραςτικά τθν 

παρατθροφμενθ απόκριςθ τθσ κοιλάδασ. ε όλεσ τισ περιπτϊςεισ, θ όποια κοιλαδικι 

ενίςχυςθ περιορίηεται εντόσ των εδαφικϊν πριςμάτων (γραμμοςκιαςμζνεσ 

περιοχζσ). Μάλιςτα δε, θ επιδείνωςθ ςτα ακραία ςφνορα τθσ κοιλάδασ είναι πικανόν 

ακόμθ και να ξεπεράςει τθν αντίςτοιχθ υπό ελαςτικζσ ςυνκικεσ  

• Η παραςιτικι ςυνιςτϊςα όχι μόνον δεν εκφυλίηεται λόγω μι-γραμμικισ 

εδαφικισ απόκριςθσ αλλά ενδζχεται ακόμθ και να ξεπεράςει τθν τιμι τθσ 

αντίςτοιχθσ οριηόντιασ επιτάχυνςθσ (λόγω μειϊςεωσ τθσ τελευταίασ). Πάντωσ, ςτο 

μι γραμμικό πρόβλθμα θ εν λόγω ςυνιςτϊςα αναπτφςςεται πάντοτε πλθςίον των 

άκρων τθσ κοιλάδασ. 

5.3 Διαςτατικι Ανάλυςθ 

Ελαςτικι υμπεριφορά 

τισ ζωσ τϊρα παρουςιαςκείςεσ αναλφςεισ θ γεωμετρία τθσ κοιλάδασ ζχει κεωρθκεί 

ςτακερι. Αποςκοπϊντασ ςτθν απεξάρτθςθ των αποτελεςμάτων από τθν γεωμετρία 

τθσ κοιλάδασ, επιχειρικθκε θ αδιαςτατοποίθςθ του προβλιματοσ όπωσ 

περιγράφεται παρακάτω (χ. 5.3α) . Αγνοϊντασ ςε πρϊτθ φάςθ τθν μι 

γραμμικότθτα, τα αποτελζςματα αδιαςτατοποιοφνται εφόςον ο λόγoσ       

(μικοσ κφματοσ προσ πάχοσ τθσ κοιλάδασ) παραμζνει ςτακερόσ, με αποτζλεςμα 
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βζβαια να διατθρείται ςτακερόσ και ο λόγοσ τθσ δεςπόηουςασ ςυχνότθτασ του 

εδαφικοφ προφίλ προσ αυτιν τθσ ςειςμικισ διζγερςθσ: 

   
 

  
 

  

     
  

    

         
  

             

         
    (5.1) 

 

 

χιμα 5.2: (α) Χωρικι κατανομι του ςυντελεςτι κοιλαδικισ ενίςχυςθσ (ΑG) και (β) του 
λόγου τθσ «παραςιτικϊσ» αναπτυςςόμενθσ  κατακόρυφθσ επιτάχυνςθσ ςτθν επιφάνεια τθσ 
κοιλάδασ προσ τθν αντίςτοιχθ τιμι τθσ οριηοντίασ (υπό 1-διάςτατεσ ςυνκικεσ) για γραμμικι 
(αριςτερά) και μθ-γραμμικι εδαφικι απόκριςθ (δεξιά) Με ζντονθ μαφρθ γραμμι 
απεικονίηεται θ περιβάλλουςα. 

 

Με τον τρόπο αυτόν επιτυγχάνεται θ ορκι αναπαραγωγι τθσ επίδραςθσ τόςο τθσ 

κυματικισ διάδοςθσ (αφοφ τα παραγόμενα μικθ των κυμάτων εξαρτϊνται από τισ 

διαςτάςεισ τθσ κοιλάδασ) κακϊσ και τθσ 1-διάςτατθσ εδαφικισ ενίςχυςθσ αφοφ ο 

λόγοσ των ςυχνοτιτων διζγερςθσ/εδαφικοφ προφίλ παραμζνει ςτακερόσ . Η 

αδιάςτατθ αυτι παράμετροσ   είναι δυνατόν να κεωρθκεί ωσ μζτρο τθσ 
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είναι ενδεικτικζσ μικροφ μικουσ κφματοσ ςχετικά με τισ διαςτάςεισ τθσ κοιλάδασ, 

που οδθγεί ςε αυξθμζνθ ικανότθτα αντίλθψθσ τθσ γεωμετρίασ και επομζνωσ 

αναπαραγωγισ των κυματικϊν ανακλάςεων που είναι δυνατόν να δθμιουργθκοφν 

λόγω αυτισ. Η ςφγκριςθ των αναλφςεων για μία ςυγκεκριμζνθ τιμι του λόγου   ςε 

αδιάςτατουσ όρουσ απεικονίηεται ςτο χιμα 5.4β. 

 

χιμα 5.3:  Διαςτατικι ανάλυςθ με κεϊρθςθ ελαςτικήσ απόκριςθσ του εδαφικοφ υλικοφ τθσ 
κοιλάδασ: (α) εξεταςκείςεσ γεωμετρίεσ και ομοδοποίθςθ αυτϊν βάςει του ςυντελεςτι  

  = λ /d, και (β) τυπικό αποτζλεςμα τθσ διαςτατικισ ανάλυςθσ (  = 6.25). 
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     ) καί τθν αντοχι του εδαφικοφ υλικοφ. Ωσ εκ τοφτου, προκειμζνου να 

αδιαςτατοποιθκεί επιτυχϊσ το μι γραμμικό πρόβλθμα, απαιτείται ο λόγοσ των 

αντοχϊν των δφο προφίλ (       ) να ιςοφται με τον λόγο  των διαςτάςεων των δφο 

κοιλάδων (     ). Σο χιμα 5.4 επιβεβαιϊνει τθν επιτυχι αδιαςτατοποίθςθ του 

προβλιματοσ τόςο ςε όρουσ χωρικισ κατανομισ των ςυντελεςτϊν επιδείνωςθσ, όςο 

και χρονοϊςτοριϊν των δφο ςυνιςτωςϊν τθσ επιτάχυνςθσ ςτο ςθμείο Α.  

 

χιμα 5.4: Διαςτατικι ανάλυςθ με κεϊρθςθ ανελαςτικήσ εδαφικισ απόκριςθσ. Σα 
αποτελζςματα παρουςιάηονται ςε όρουσ (α) χωρικισ κατανομισ των μεγίςτων 
επιταχφνςεων  (οριηοντίων και κατακορφφων) και (β) χρονοϊςτοριϊν επιταχφνςεων ςτθν 
κζςθ Α.  
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του άκρου κοιλάδασ όπου θ παραςιτικι κατακόρυφθ ςυνιςτϊςα είναι μεγάλθ. Η 

επίλυςθ/ανάλυςθ διενεργείται ςε 2 ςτάδια : 

(i) αρχικϊσ υπολογίηεται θ επιφανειακι απόκριςθ τθσ κοιλάδασ χωρίσ τθν 

παρουςία του πλαιςίου ςε αποκλειςτικϊσ οριηόντια διζγερςθ ςτο βραχϊδεσ 

υπόβακρο  

(ii) Οι παρογόμενεσ χρονοϊςτορίεσ οριηόντιασ και παραςιτικισ κατακόρυφθσ 

επιτάχυνςθσ του πρϊτου ςταδίου (ςτθν κζςθ κεμελιϊςεωσ του πλαιςίου) 

χρθςιμοποιοφνται ωσ διζγερςθ ενόσ  αποηευγμζνου προςομοιϊματοσ το οποίο 

περιλαμβάνει μόνον το ζδαφοσ εγγφσ του πλαιςίου.  

Για να ποςοτικοποιθκεί θ επίδραςθ τθσ παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ, 

ςυγκρίνεται θ απόκριςθ του πλαιςίου υποβαλλομζνου ςτθν οριηόντια μόνον 

ςυνιςτϊςα τθσ επιτάχυνςθσ με τθν απόκριςθ του πλαιςίου υποβαλλομζνου ςτθν 

ςυνδυαςμζνθ οριηόντια και παραςιτικι-κατακόρυφθ ςυνιςτϊςα. Για λόγουσ 

πλθρότθτασ παρατίκενται και τα αποτελζςματα από τθν δυναμικι ανάλυςθ του 

πλαιςίου επί του αυτοφ εδαφικοφ προφίλ, κεωρϊντασ ςυνκικεσ ελευκζρου πεδίου 

(δθλ. ανεπθρζαςτου από φαινόμενα κοιλάδασ).  

 

Επιηιμια επίδραςθ τθσ Παραςιτικισ Κατακόρυφθσ υνιςτώςασ : Μθχανιςμοί  

Αποτζλεςμα τθσ ςφγχρονθσ με τθν οριηόντια παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ 

είναι, ανάλογα με τθ φορά τθσ φόρτιςθσ άλλοτε θ μείωςθ κι άλλοτε θ αφξθςθ του 

αξονικοφ φορτίου των υποςτυλωμάτων. Αμφότερα τα φαινόμενα είναι πικανόν να 

είναι ιδιαιτζρωσ επιβλαβι για τθν καταςκευι όπωσ εξθγείται παρακάτω. 
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Αφξηςη του Αξονικοφ Φορτίου 

το χιμα 5.4 απεικονίηονται ςυγκριτικά οι παραμορφωμζνοι κάνναβοι-

αποτελζςματα των δυναμικϊν αναλφςεων του πλαιςίου (ιςοχψείσ πλαςτικϊν 

παραμορφϊςεων). Απουςία τθσ παραςιτικισ ςυνιςτϊςασ το πλαίςιο αποκρίνεται 

ςτθν επιβαλλόμενθ ιςχυρι ςειςμικι διζγερςθ μζςω κυρίωσ αναςθκϊματοσ από το 

ζδαφοσ κεμελιϊςεωσ, με αποτζλεςμα τον περιοριςμό του αδρανειακοφ φορτίου 

που μεταφζρεται από τθν κεμελίωςθ ςτθν ανωδομι. Ο παλμόσ τθσ οριηόντιασ 

επιτάχυνςθσ προκαλεί ςτροφι των δφο κεμελίων και, φυςικά, κινθματικοφ 

χαρακτιρα καταπόνθςθ τθσ ανωδομισ. Όταν ωςτόςο ο παλμόσ αυτόσ ςυνοδεφεται 

από ζναν “ςυγχροτιςμζνο” κατακόρυφο παλμό, αυξάνει το (μεταφερόμενο μζςω τθσ 

αξονικισ δφναμθσ του υποςτυλϊματοσ) κατακόρυφο φορτίο του κεμελίου (χιμα 

5.4α) τθν χρονικι ςτιγμι t = 3.8 s. Ετςι, το αναςικωμα του τελευταίου περιορίηεται ι 

και ακυρϊνεται. Όντωσ, τθν χρονικι ςτιγμι αυτιν θ ςτροφι του δεξιοφ κεμελίου 

μειϊνεται κατά 80% (χ. 5.4β γκρί γραμμι) ςε ςχζςθ με τθν τιμι τθσ απουςία 

κατακόρυφθσ ςυνιςτϊςασ— επιβεβαίωςθ τθσ αδυναμίασ του κεμελίου να 

αναςθκωκεί. Ωσ εκ τοφτου, το υποςτφλωμα αποκρίνεται ςτθν επιβαλλόμενθ 

ςειςμικι ζνταςθ καμπτικά, όπωσ ξεκάκαρα φαίνεται και ςτα παραχκζντα 

διαγράμματα ροπισ καμπυλότθτασ του υποςτυλϊματοσ (χιμα 5.4γ). Όπωσ μάλιςτα 

προκφπτει από τθν ςφγκριςθ των τριϊν περιπτϊςεων που απεικονίηονται, ζαν είχαμε 

αγνοιςει τθν παραςιτικι κατακόρυφθ ςυνιςτϊςα, κα ςυμπεραίναμε εςφαλμζνα ότι 

θ “κοιλαδικι” ενίςχυςθ δεν προκαλεί ουςιϊδθ επιδείνωςθ τθσ καταπόνθςθσ του 

πλαιςίου: αφξθςθ μόλισ κατά 10% τθσ αναπτυςςόμενθσ καμπυλότθτασ ςτο 

υποςτφλωμα ςε ςχζςθ με τθν καμπυλότθτα υπό ςυνκικεσ ελευκζρου πεδίου. 
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Μείωςη του Αξονικοφ Φορτίου 

Οι πικανζσ επιπτϊςεισ τθσ μείωςθσ του αξονικοφ φορτίου εξαιτίασ τθσ 

παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ επεξθγοφνται ςτο χιμα 5.5. Η βαςικι 

ςυνζπεια ενόσ “ςυγχροτιςμζνου” παλμοφ κατακόρυφθσ επιτάχυνςθσ με φορά προσ 

τα κάτω, είναι θ δυνθτικι απϊλεια τθσ επαφισ κεμελίου-εδάφουσ. Πικανό 

αποτζλεςμα: μία κινθματικϊσ αναπτυςςόμενθ μόνιμθ παραμόρφωςθ του 

υποςτυλϊματοσ όπωσ επεξθγείται παρακάτω. Ιδοφ γιατί: υνεπεία τθσ δράςθσ του 

κφριου οριηόντιου παλμοφ το αξονικό φορτίο του αριςτεροφ κεμελίου είναι 

μειωμζνο λόγω τθσ λικνιςτικισ παραμόρφωςθσ του πλαιςίου τθν ςτιγμι εκείνθ 

δζχεται ταυτόχρονα τθν αδρανειακι δφναμθ ενόσ κατακόρυφου παλμοφ φοράσ προσ 

τα άνω. Ο τελευταίοσ οδθγεί ςε ςτιγμιαία πλιρθ αποκόλλθςθ του κεμελίου από το 

ζδαφοσ, όπωσ μαρτυροφν και οι κετικζσ τιμζσ τθσ αξονικισ δφναμθσ (χιμα 5.6α). 

Μετά τθν επανεπαφι του με το ζδαφοσ το κεμζλιο ζχει πλζον μετατεκεί ελαφρϊσ 

προσ τα αριςτερά ςε ςχζςθ με τθν αρχικι του κζςθ ενϊ το δεξιό κεμζλιο ζχει 

παραμείνει αμετακίνθτο ςτθν οριηόντια διεφκυνςθ (χιμα 5.6β): ςυνζπεια, θ μι-

αναςτρζψιμθ παραμόρφωςθ του υποςτυλϊματοσ. Η τελευταία αντανακλάται ςτθν 

παραμζνουςα καμπυλότθτα του υποςτυλϊματοσ θ οποία απεικονίηεται ςτο χιμα 

5.6γ, φυςικά δε διατθρείται καί κατά τουσ επόμενουσ κφκλουσ φόρτιςθσ.  
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χιμα 5.5: Πλαίςιο επί μεμονομζνων πεδίλων διεγειρόμενο από (1) μόνον οριηόντια 
επιτάχυνςθ και (2) ταυτόχρονθ δράςθ οριηόντιασ και κατακόρυφθσ (παραςιτικϊσ 
αναπτυςόμενθσ ςτα όρια κοιλαδικοφ ςχθματιςμοφ) επιτάχυνςθσ. Η ταυτόχρονθ παρουςία 
τθσ κατακόρυφθσ επιτάχυνςθσ (α) αυξάνει ζςτω και ςτιγμιαία το αξονικό φορτίο ςτο δεξιό 
υποςτφλωμα (β) εμποδίηοντασ το αναςικωμά του και (γ) προκαλϊντασ ςθμαντικζσ 
πλαςτικοποιιςεισ (αυξθμζνεσ απαιτιςεισ καμπυλότθτασ)  
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χιμα 5.6: Πλαίςιο επί μεμονομζνων πεδίλων διεγειρόμενο από (1) μόνον οριηόντια 
επιτάχυνςθ και (2) ταυτόχρονθ δράςθ οριηόντιασ και κατακόρυφθσ (παραςιτικϊσ 
αναπτυςόμενθσ ςτα όρια κοιλαδικοφ ςχθματιςμοφ) επιτάχυνςθσ. Η ταυτόχρονθ παρουςία 
τθσ κατακόρυφθσ επιτάχυνςθσ (με κατεφκυνςθ προσ τα πάνω) (α) μθδενίηει ζςτω και 
ςτιγμιαία το αξονικό φορτίο ςτο αριςτερό υποςτφλωμα. (β) Όταν το πζδιλο ανακτά εκ νζου 
επαφι με το ζδαφοσ ζχει ελαφρϊσ μετατοπιςτεί ςε ςχζςθ με τθν αρχικι του κζςθ. (γ) 
αυξάνοντασ ςθμαντικά τισ απαιτιςεισ πλαςιμότθτασ του αριςτεροφ υποςτυλϊματοσ  
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Πλαίςιο Τποβαλλόμενο ςε Καταγραφείςεσ Διεγζρςεισ 

Για επιβεβαίωςθ των ανωτζρω ςχετικά με τθν επιηιμια επιρροι τθσ παραςιτικισ 

κατακόρυφθσ ςυνιςτϊςασ ςτθν ςειςμικι απόκριςθ του πλαιςίου, παρουςιάηονται 

ςτθν ενότθτα αυτιν τα αποτελζςματα από τθν δυναμικι ανάλυςθ του πλαιςίου 

υποβαλλομζνου πλζον ςε δφο πραγματικοφσ ςειςμικοφσ κραδαςμοφσ: το ιπιασ 

ζνταςθσ επιταχυνςιογράφθμα τθσ Καλαμάτασ (ςειςμόσ 1986) και το ιςχυρό 

επιταχυνςιογράφθμα Tabas (ςειςμόσ Iran, 1978). Όπωσ γίνεται αντιλθπτό, για τθν 

ιπιασ ζνταςθσ διζγερςθ (χιμα 5.7), θ ςυμπεριφορά του πλαιςίου είναι ουςιαςτικά 

ελαςτικι και θ φπαρξθ τθσ κατακόρυφθσ ςυνιςτϊςασ δεν επθρεάηει τθν απόκριςι 

του. Αντικζτωσ, τα φαινόμενα είναι εντονότερα όταν θ κοιλάδα διεγείρεται από το 

ιςχυρό επιταχυνςιογράφθμα του Tabas (χιμα 5.8α), το οποίο παράγει ςτα άκρα τθσ 

κοιλάδασ (όπου και θ κεμελίωςθ του πλαιςίου) τισ χρονοϊςτορίεσ οριηόντιασ και 

κατακόρυφθσ επιτάχυνςθσ του χιματοσ 5.8β. Η επιδείνωςθ τθσ ςυμπεριφοράσ 

λόγω τθσ παραςιτικισ κατακόρυφθσ ςυνιςτϊςασ είναι εμφανισ: δραματικι αφξθςθ 

τθσ καμπτικισ επιπόνθςθσ, εξαιρετικά αυξθμζνθ καμπυλότθτα ςτο υποςτφλωμα, και 

διαφορικι ςχετικι μετάκεςθ ορόφου ενδεικτικι πλιρουσ αςτοχίασ του πλαιςίου.  
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χιμα 5.7: υγκριτικι απόκριςθ πλαιςίου διεγειρομζνου από αποκλειςτικϊσ οριηόντια 

επιτάχυνςθ (μαφρθ γραμμι) και από ταυτόχρονθ δράςθ οριηόντιασ και κατακόρυφθσ 

επιτάχυνςθσ (γκρι γραμμι): (α) ροπι καμπυλότθτα ςτθν βάςθ του υποςτυλϊματοσ και (β) 

διαφορικι οριηόντια μετακίνθςθ ιςογείου. Διζγερςθ: Καλαμάτασ, 1986. 
 
 

 

χιμα 5.8: (α) Κοιλάδα τφπου 1 διεγειρόμενθ από τθν οριηόντια επιτάχυνςθ τθσ καταγραφισ 

Dayhook ςτον ςειςμό του Tabas (1978) και (β) χρονοϊςτορίεσ οριηόντιασ (μαφρθ) και 

κατακόρυφθσ (γκρι γραμμι) επιτάχυνςθσ ςτθν κζςθ τθσ μζγιςτθσ κατακόρυφθσ ςυνιςτϊςασ. 
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χιμα 5.9: υγκριτικι απόκριςθ πλαιςίου διεγειρόμενου από αποκλειςτικϊσ οριηόντια 

επιτάχυνςθ (μαφρθ γραμμι) και από ταυτόχρονθ δράςθ οριηόντιασ και κατακόρυφθσ 

επιτάχυνςθσ (γκρι γραμμι): (α) Διάγραμμα ροπισ-καμπυλότθτασ ςτθν βάςθ του 

υποςτυλϊματοσ, και (β) χρονοϊςτορία διαφορικισ οριηόντιασ μετακίνθςθσ ιςογείου. 

Διζγερςθ: Καταγραφι Tabas (Ιράν, 1978). 
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Introduction 

 

 

 
 

Introduction—Motivation of the Study 

 

 

A growing population of pioneering researchers is currently pointing out the need of 

a skeptical look against the philosophy of current codes of practice. Performance based 

design (i.e. design based on acceptable displacements) is steadily gaining ground among 

structural engineers opposing the holistic applicability of the nowadays prevailing 

capacity design.  

The latter accepts that structural damage is unavoidable and understands that the 

increase of structural strength is not always associated with increased safety levels. 

Therefore modern seismic design principles, aim to control seismic damage rather than 

to avoid it. Through proper reinforcement detailing it is intended to ensure that critical 

structural members can sustain loads that exceed their capacity without collapsing, 
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Metaplastic Response of Frame–Foundation Systems 

while failure "is guided" to less important structural members (beams instead of 

columns) and to non-brittle mechanisms (bending instead of shearing) [Park & Paulay, 

1976].  

On the other hand, a crucial goal of current seismic foundation design, particularly 

as entrenched in the respective codes [e.g. EC8], is to avoid full mobilisation of strength 

in the foundation by "guiding" failure to the superstructure. To this end, over-strength 

factors (capacity design) and (explicit and implicit) factors of safety larger than 1 are 

introduced against each of those “failure” modes.  

Were the code provisions neglected, shallow foundations subjected to severe 

seismic shaking could experience detachment from the supporting soil due to the large 

overturning moments (arising from inertial and gravitational forces). The ensuing 

rotational uplift would possibly lead to a large increase of the imposed stresses on the 

soil under the edge of the footing. Yet, the occurrence of such an event does not 

necessarily imply failure ─ owing to the cyclic and kinematic nature of the seismic 

excitation: a bearing capacity “failure” mechanism may produce only a small rotation 

before the direction of motion is reversed.  

Performance-based design in earthquake geotechnics (i.e., design on the basis of 

limiting the maximum and permanent displacements and rotations of facilities during 

the design earthquake) has its justification on the above consequences of the cyclic and 

kinematic character of motion. Thus, the concept of allowing significant foundation 

uplifting (implying a geometric nonlinearity) and mobilization of ultimate bearing 

capacity (implying material inelasticity) during strong shaking has been suggested in 
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recent years as a substantial deviation from the conventional design philosophy [e.g., 

FEMA-356, 2000]. In fact a significant body of pragmatic evidence provide a robust 

justification of the idea that allowing nonlinear-inelastic foundation response is not only 

unavoidable, but may even be beneficial [Paolucci, 1997; Pecker, 1998, 2003; Martin & 

Lam, 2000; Makris & Roussos, 2000; Comartin et al., 2000; Pecker & Pender, 2000; 

Faccioli et al., 2001; Kutter et al., 2003; Gazetas et al., 2003; 2007; Paolucci et al., 2008;  

Kawashima et al., 2007; Gajan & Kutter, 2008]. 

Motivated by, but certainly notwithstanding the controversial nature of the 

aforementioned concepts, this research will attempt to provide exploitable insight into 

the Metaplastic Response and Collapse of Frame–Foundation Systems, and the 

Concept of Rocking Isolation, in honest hope that results may be functional both in the 

design of new and the upgrading of existing structures. 

- 3 -





Chapter 1: Literature  Review 

 

 1 
 

Literature Review 

 

 

1.1 From Conventional SSI analysis to Non-Linear Design of Foundations 

The need to assess Soil, Foundation and Structure Non-Linearity 

The dynamic response of structures under strong ground shaking and the associated 

complex soil-structure interaction phenomena have been thoroughly investigated over 

the last 40 years. One of the important contributions was that of Jennings and Bielak in 

1973, who studied how soil compliance may influence the seismic response of super-

structures. A comprehensive description of the state-of-art information on the dynamic 

Soil-Structure interaction problem can be found in Mylonakis, et al 2006: 

“During earthquake shaking, soil deforms under the influence of the incident seismic 

waves and ‘‘carries’’ dynamically with it the foundation and the supported structure. In 

turn, the induced motion of the superstructure generates inertial forces which result in 

dynamic stresses at the foundation that are transmitted into the supporting soil. Thus, 

superstructure-induced deformations develop in the soil while additional waves emanate 
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from the soil– foundation interface. In response, foundation and superstructure undergo 

further dynamic displacements, which generate further inertial forces and so on. 

The above phenomena occur simultaneously. However, it is convenient (both 

conceptually and computationally) to separate them into two successive phenomena 

referred to as ‘‘kinematic interaction’’ and ‘‘inertial interaction’’ (Kausel et al 1976; 

Kramer, 1996; Stewart et al, 1999; Kim and Stewart, 2003), and obtain the response of 

the Soil–Foundation– Structure system as a superposition of these two interaction 

effects: 

(a) “Kinematic interaction’’ (KI) refers to the effects of the incident seismic waves to 

the system shown in Fig. 1.1b, which consists essentially of the foundation and 

the supporting soil, with the mass of the superstructure set equal to zero (in 

contrast to the complete system of Fig. 1.1a). The main consequence of KI is that 

it leads to a ‘‘foundation input motion’’ (FIM) which is different (usually smaller) 

than the motion of the free-field soil and, in addition, contains a rotational 

component. Luco (1971), Elsabee et al. (1977), Harada et al. (1981), Tassoulas 

(1984), Wolf (1994) have proposed some of the most widely used simple 

expressions for estimating the translational and rocking components of this 

foundation motion for both surface and embedded foundations and for different 

type of incident seismic waves. These expressions are of the form �� �  ��  �
��	
  and correlate in the frequency domain the free-field motion �� (that can be 

determined through 1-dimesional wave propagation analysis) with the 

experienced motion (translational or rocking) at the foundation level. 

(b) ‘‘Inertial interaction’’ (II) refers to the response of the complete Soil–

Foundation–Structure system to the excitation by D’Alembert forces associated 
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with the acceleration of the superstructure due to the KI (Fig. 1.1b). For a surface 

or embedded foundation, II analysis is also conveniently performed in two steps, 

as shown in Fig. 1.1c: first compute the foundation dynamic impedance 

(‘‘springs’’ and ‘‘dashpots’’) associated with each mode of vibration, and then 

determine the seismic response of the structure and foundation supported on 

these springs and dashpots, and subjected to the kinematic accelerations ak(t) of 

the base. A number of analytical studies have been conducted to estimate the 

foundation impedance for each vibration mode. Among others Richart et al 

(1970), Veletsos and Nair (1975), Kausel and Roesset (1975), Gazetas (1983) 

studied the seismic interaction of structures on hysteretic foundations, Luco 

(1974), Gazetas and Roesset (1976), Gazetas (1980), Wong and Luco (1985), 

Guzina and Pak (1998), Vrettos (1999), extended the solutions to account for  

non-homogeneous soil profiles, while Stokoe and Richart (1974), Novak (1985), 

Gazetas and Stokoe (1991), Gazetas (1991), and Gazetas and Mylonakis (1998) 

provided both analytical solutions and experimental evidence on the dynamic 

response of an embedded foundation on a soil medium.  

Despite the indisputable value of all the aforementioned studies in understanding the 

mechanisms of the complex Soil-Foundation-Structure interaction problem there is one 

significant assumption/limitation: the system is considered to behave elastically( i.e. the 

soil behaviour was idealized as a linear visco-elastic material, and the elastic structure is 

always considered to have full contact with the underlying soil). However, over the last 

years there is a growing awareness of the need to consider also non-linear soil structure 

interaction in the seismic analysis and design (Paolucci 1997; Pecker, 1998, 2006; 

- 7 -



Metaplastic Response of Frame–Foundation Systems 

Apostolou and Gazetas; 2004, Gazetas et al, 2007; Pender; 2007). Three types of non-

linearity at the soil-foundation level are recognized (Figure 1.2). These are: 

i. Sliding at the soil-foundation interface when the transmitted horizontal force 

exceeds the available frictional resistance. As pointed out by Newmark (1965), 

under seismic conditions, due to the oscillatory nature of the loading, such an 

exceedance and the associated sliding it is not necessarily related with failure.  

ii. Seperation and Uplift of the Foundation, when the seismic overturning moment 

exceeds the footing moment capacity. Since 1963 Housner realized that this 

rocking oscillations may be particularly beneficial to the seismic response of the 

super-structure. 

iii. Plastification of the supporting soil, which may considerably modify the 

experienced ground motion at the foundation level.  

This urgent need to explicitly account for the aforementioned non-linear phenomena in 

the cotemporary earthquake design has emerged from: 

(a)  The fact that the intensity of the recorded ground accelerations over the last 20 

years had significantly exceeded the design accelerations. [A few examples: the 

1994 Northridge earthquake with an Ms of 6.8 and a maximum recorded P.G.A. of 

a = 0.98 g (Rinaldi 228 record); the 1995 Kobe earthquake (Ms = 7.2) with a 

maximum recorded acceleration of a= 0.85 g (JMA record); the 1986 San Salvador 

earthquake (Ms=5.6) and a =0.75g; the 2007 Niigata earthquake in northern 

Japan where an acceleration of a=1.20 g was recorded]. Under such a severe 

shaking, preventing the “plastic hinging” in the foundation system is a formidable 

task. And in fact, it may not even be desirable since enormous ductility demands 

would be imposed to superstructure. Alternatively, allowing inelastic soil-
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foundation response might be beneficial for the superstructure by isolating the 

transmitted accelerations to the latter. 

(b) The need to seismically upgrading/retrofitting an older/traditional building. A 

common procedure is by inserting a shear wall that will undertake most of the 

inertia-driven shear force. Yet, since the existing structural system is already 

carrying the vertical load, this newly added element will transmit a 

disproportionately large horizontal force and overturning moment onto the 

foundation. Accounting for soil-foundation inelasticities in the design of such a 

shear wall might be the only rational procedure: the conventional design that 

aims to increase the structural capacity by increasing the stiffness of some 

elements, unavoidably entails that the forces transmitted onto the foundation 

will also be increased, to the point that it might not be technically or economically 

feasible to undertake them “elastically”. 

(c)  A philosophical change being under way in structural earthquake engineering : 

from strength-based design (involving force considerations) to performance-

based design (involving displacement considerations). Geotechnical earthquake 

engineering has also been slowly moving in this direction : gravity retaining walls 

are indeed allowed to slide.  It is therefore considered as appropriate  for soil–

foundation–structure interaction (SFSI) to also move from imposing “safe” limits 

on forces and moments acting on the foundation (aiming at avoiding pseudo-

static “failure”) to performance–based design in which all possible conventional 

“failure” mechanisms are allowed to develop, while ensuring that maximum and 

permanent displacements and rotations would be acceptable. 
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An increased amount of research has also been conducted further extending the 

principle of performance based design (which allows the non-linear behavior of 

structural members provided that specific displacement acceptance criteria are met) to 

even allowing for rocking of structural members during earthquake loading.  A review of 

recent advances to non-linear structural design is attempted in the following paragraphs. 
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1.2 Performance Based Design 

Structural seismic design has been undergoing a critical reappraisal in recent years, with 

the emphasis changing from “strength” to “performance”. While in conventional seismic 

design methods, the objective is to provide life safety (strength and ductility) and 

damage control (serviceability drift limits), the performance-based design is a more 

general philosophy in which the design criteria are expressed in terms of achieving stated 

performance objectives when the structure is subjected to stated levels of seismic 

hazard. In this direction the Structural Engineers Association of California [SEAOC, 2000] 

has defined the marriage of the structural performance and earthquake intensity as a 

‘Performance Level’, and a suite of performance levels as a ‘Performance Objective’. Four 

performance levels are defined:  

Fully Operational: Facility continues in operation with negligible damage.  

Operational: Facility continues in operation with minor damage and minor disruption 

in nonessential services. 

Life Safe: Life safety is substantially protected, damage is moderate to extensive. 

Near Collapse: Life safety is at risk, damage is severe, structural collapse is prevented. 

The relationship between these performance levels and earthquake design level is 

summarised in Figure 1.3 (OES, 1995). 

 

1.2.1 Force-Based Assesment 

As the understanding on the importance of inelastic structural response under strong 

earthquake events increased, so did the necessity to accurately quantify the inelastic 

deformation capacity of structural components. Despite the wide-spread agreement that 
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inelastic time-history analysis is the most accurate approach of seismic design, the 

method is not yet mature enough for use by design professionals. To this end, a number 

of simple assessment approaches (generally based on push over analysis) have been 

developed over the years aiming to correlate the displacement demand of a specific 

earthquake to the displacement capacity of the structure and thus to estimate the 

expected structural damage without conducting full non-linear time-history analysis. 

Some of the most commonly used Force-Based Assessment approaches are described in 

the ensuing.  

 

N2 Method 

Fajfar et al (1997) provided an update on the N2 method. In this approach, the seismic 

displacement demand is estimated by response spectrum analysis of an equivalent 

single-degree-of-freedom (SDOF) bilinear model, representing the first elastic mode of 

the structure. This displacement demand is compared with the results of a push-over 

analysis of a multi-degree-of-freedom (MDOF) representation of the structure and with 

the use of a Park-Ang damage model local inelastic deformations are extracted. 

Capacity Spectrum Method 

The Capacity Spectrum Method (CSM) proposed by Freeman (1998) compares the 

capacity of a structure to resist lateral forces to the demands of earthquake response 

spectra in a graphical representation that allows a visual evaluation of how the structure 

will perform when subjected to earthquake ground motion. The structural capacity is 

represented by a lateral load force (V at the base of the building)-displacement (lateral 

roof displacement ΔR) diagram that accounts for sequential yielding of structural 

elements as the structure is laterally displaced beyond its elastic limits. To be directly 
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comparable to demand response spectra, ΔR and V are converted to a spectral set of 

coordinates (Sd and Sa respectively) by assuming the structure is of a single-degree-of 

freedom. Likewise the earthquake demand is also represented by a set of response 

spectra. To graphically estimate the earthquake demand on a structure, the capacity 

spectrum and the family of damped response spectra are plotted together on an ADRS 

format (i.e. Sa vs Sd coordinates with period T lines radiating from the origin) as 

illustrated in Figure 1.4. The intersection of the capacity spectrum with the appropriately 

damped response spectrum represents the estimated earthquake demand. 

Fajfar (1998) has recently combined the two approaches, but using inelastic spectra, 

related to displacement-ductility demand, rather than equivalent viscous damping (see 

Figure 1.5). This presumes that the shape of the hysteretic response of the structure is 

irrelevant, or requires some modification to the demand for structures with non-

structural hysteretic response. 

 

1.2.2 Performance-based design Approches 

A great amount of work has been conducted on the development of design procedures 

that aim to complement the conventional seismic design by addressing some 

performance based criteria.  

Bertero and Zagajeski (1979) and Fintel and Ghosh (1982) proposed force-based code 

design for preliminary strength determination, with inelastic time-history analyses to 

check inelastic deformation. A similar approach was suggested by Hatamoto et al (1990) 

and Stone and Taylor (1994) for buildings and bridges respectively, but using local 

damage indices rather than inelastic deformation as the acceptance criteria. Kappos 

(1997) proposed a modified version of the aforementioned procedures specialized for 
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frame structures: beam strength is based on forces reduced from modal elastic analysis 

using code force-reduction factors, while column strength is based on the results of 

inelastic time-history analyses using code spectrum-compatible accelerograms. Capacity 

design principles are then employed to determine the required shear strength of 

members and joints. The time-history analyses are also used to check that storey drifts 

and local inelastic deformations are within acceptable limits. According to Priestley 

(2000) the procedure of Kappos might reduce some of the potential conservatism 

associated with capacity design of columns, but consequent savings are likely to be 

minimal, while it is also not clear that a MDOF modal analysis is a better starting point 

than a simple SDOF model for ductile structures, since it is clear that inelastic action 

primarily reduces the force levels associated with the first mode, while having 

comparatively minor effect on the higher modes. Thus a force-based design approach 

which applies a constant force-reduction factor to all modes is likely to greatly 

underestimate the importance of higher modes, which is implicitly accounted for in 

simplified capacity design procedures (Paulay and Priestley, 1992). Fardis and 

Panagiotakos (1997) suggested another simplified design procedure according to which 

seismic design forces for ductile elements are calculated for the serviceability level 

earthquake  

 

1.3 Direct Displacement-Based  Design  Methodology 

All the aforementioned methods despite their undisputable value in suggesting design 

procedures that aim to reduce local damage, are basically force-based procedures that 

involve an addition of a displacement check to ensure that acceptable performance 
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levels are achieved in the design earthquake Priestley (2000). Therefore, an alternative 

design procedure known as “direct displacement-based design” has been developed 

(Priestley (1992), Priestley and Calvi (1997), Priestley and Kowalsky (2000)), where the 

overall performance of the building is controlled as a function of the design process. 

 In the displacement-based design the engineer specifies a target displacement rather 

than a displacement limit. Hence the structural system is designed so as to sustain a 

predefined level of damage under a predefined level of earthquake intensity. Strength 

and stiffness are not variables in this procedure, bud are the end results. A brief yet 

comprehensive description of the basic steps involved in Displacement Based Design is 

attempted in the following: 

 

Step 1: Application of the Substitute Structure Approach to obtain an equivalent elastic 

system  

The application of displacement-based design procedure requires the use of the 

Substitute Structure Approach (introduced by Gulkan and Sozen in 1974) according to 

which an inelastic system may be replaced by an equivalent elastic system. The latter is 

known as the substitute structure and is characterized by: (a) an effective stiffness, ��; 

(b) an effective damping, ��; and (b) effective period , ��. 

 To better illustrate this consider the inelastic force–displacement hysteretic response 

of a typical well confined concrete bridge pier (Figure 1.6). According to the Substitute 

Structure Approach this response can be modeled with an equivalent elastic secant 

stiffness ��to the maximum response point (denoted by the dotted line) coupled with 

an equivalent viscous damping value, �� (which is related to the hysteretic energy 

absorbed by the system). [The equivalent viscous damping consists of two components: 
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one due to the hysteretic energy dissipation, �����, and the other due to viscous 

damping, ����] . Since the effective properties of the substitute structure are elastic, a set 

of elastic response spectra can be used for design. Therefore, the substitute structure 

approach allows an inelastic system to be designed and analyzed using elastic response 

spectra. 

 

Step 2: Definition of the design Displacement 

To define the design displacement of a structure, specific criteria that relate 

quantitatively the experienced damage with the observed strain limits, the permanent 

displacements or drifts need to be established. For example for a reinforced concrete 

bridge column it is common to assume that the yield displacement will be achieved when 

the serviceability limit state is reached (i.e. onset of cover concrete crushing, or the 

development of crack widths of a size that might require injection grouting after an 

earthquake). Up to this point the structure is assumed to behave elastically. Similarly, the 

maximum (ultimate) design displacement will be achieved when the ‘damage control’ 

limit state is reached (i.e. beyond this point the structural repair is not economically 

feasible). Having established a relation between the design displacement and the limit 

state of the structure, it is then straightforward to relate these limit states to acceptable 

plastic curvatures, and thus to plastic drift ratios.  

 The effective damping is estimated by applying Jacobsen’s approach to the Takeda 

degrading-stiffness-hysteretic response which yields the following relation: 

�� � 0.05 �  ������
 ! "� # √%!

&      (1.1) 
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where 0.05 corresponds to a 5% viscous damping, r is the ratio of the post-elastic 

structural response curve to that of the initial elastic structural response curve (see 

Figure 1.7) and �� is the structural element ductility defined as  ��=  
��

��
  

Step 3: Define a set of suitable displacement Elastic Response Spectra 

In order to design for a displacement, a set of suitable displacement response spectra 

(DRS) must be employed. Figure 1.8 presents a typical DRS that can be used in 

performance-based design analyses. This particular DRS corresponds to an artificial 

accelerogram designed to satisfy a EuroCode7 design acceleration response spectrum 

Step 4: Calculate the maximum Force of the system 

For given values of design displacement and effective damping, the elastic displacement 

response spectra can be used to estimate the effective period of the substitute structure, 

����. By following a procedure similar to that described in Figure 1.9 the period  ���� is 

obtained at the point that the appropriate DRS curve (corresponding to the level of 

effective damping previously calculated) intersects with the maximum design 

displacement. For the simplest case of a single-degree-of-freedom (SDOF) oscillator, the 

effective period is related to the effective stiffness at maximum response, 	���  by the 

relation: 

	��� 
  
���

����
      (1.2) 

 Therefore, the maximum lateral force, F, is easily obtained by multiplying the effective 

stiffness by the target maximum displacement. Once the lateral force is established, the 

system can be designed. 

 Since 1995, when the idea of displacement based design was first introduced a great 

number of studies followed that extended its application to more complex structural 
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systems. Among them of particular interest is the work of Kowalsky et al (1995) who 

applied the above procedure in the design of RC bridge columns, while Calvi and Kingsley 

(1995) tested its applicability to multi-degree of freedom bridge structures. They 

concluded that the displacement based method may possess significant difficulties when 

applied to structures that experience modes of response that significantly deviate from 

their single dominant mode. Some years later Priesley and Kowalsky (2000) proposed a 

slightly modified procedure that could be applicable to concrete buildings as well. In 

2002 Kowalsky implemented a displacement-based procedure for the design of multi-

span bridge systems. The procedure was applied to a series of four span bridge 

structures, and dynamic inelastic time-history analyses were performed to provide 

verification. 

 

1.4 The Concept of Rocking Isolation: Application to Structural Members 

The work of Housner, who first recognized the possible positive role of rocking on the 

seismic response of structures, motivated further studies on the subject. Priestley et al. 

(1978) complemented Housner’s results by providing additional experimental data 

(rocking of a model slender structure on a 1-g shaking table), while he proposed a 

simplified design method to estimate the maximum rocking displacement for a single-

degree-of-freedom rocking structure using an equivalent response spectra approach. 

This metholodoly, that is based on the assumption that a rocking block may be 

represented by a (SDOF) oscillator of constant damping, whose period depends on the 

amplitude of rocking, was later embedded in the FEMA 356 document to compute 

rotations of slender structures. 
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 Later, Makris and Konstantinidis (2003), questioned the reliability of this simple 

spectrum analysis method and concluded that the information involved in the exact 

rocking spectrum cannot be obtained by other simplified approaches. Huckelbridge and 

Clough (1978) examined experimentally the effect of partial lift-off on a multistorey 

model structure and confirmed the benefit of uplift action in reducing the strength and 

ductility demands of the frame. Meek (1978) investigated parametrically the dynamic 

response of tipping core-braced buildings using a simplified first-mode model (Figure 

1.10). It was concluded that for structures with natural frequency between 0.5 and 4 Hz, 

tipping could notably reduce the pseudo-acceleration to values considerably less than 

the fixed-base response, and the reduction is even greater for more slender structures.  

 Two of the most widely studied methods of rocking isolation of structural members 

are discussed in the ensuing. 

 

1.4.1 Application of Post-tensioned Energy dissipating Mechanisms 

Motivated by the Northridge (1997) earthquake, where numerous structures 

experienced major damage, a significant amount of research (mainly expressed by the 

structural engineers) was conducted on the development and promotion of novel 

isolating concepts. “Jointed ductile systems”, for both frame and wall systems, were 

suggested as an alternative to the traditional “cast-in-place” solutions within the 

framework of the U.S. PRESSS (PREcast Seismic Structural System Structural). In these 

new typologies pure precast elements are connected though unbonded post-tensioning 

techniques; the inelastic demand is accommodated within the connection itself (beam-

column, column-foundation, wall-foundation critical interface) where a “controlled 

rocking” motion occurs with opening and closing of existing gap; as a consequence, a 
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very limited level of damage is expected in the structural elements which are maintained 

in the elastic range (Priestley, 1996; Priestley et al, 1999). Stanton et al, 1997 

experimentally manifested the promising efficiency and high flexibility of such hybrid pre-

cast concrete beam-to-column systems compared to the performance of the 

corresponding monolithic systems.  

 Christopoulos et al (2002) extended the “controlled rocking” connections, to steel 

frames. Figure 1.11 illustrates the implementation of this idea. In his work the simulation 

of the PTED (post-tensioned energy dissipating) connection was achieved by 

incorporating a flag-shaped hysteretic model, with self-centering capability (Figure 1.12). 

This flag-shaped hysteretic behaviour can be fully defined by simply incorporating a post-

yielding stiffness parameter and an energy-dissipation parameter as shown in Figure 

1.13. An ensemble of 20 historical earthquake records corresponding to ordinary ground 

motions having a probability of exceedance of 10% in 50 years, in California was used as 

an input in their parametric study. It was demonstrated that a flag-shaped hysteretic 

SDOF system of equal or lesser strength can always be found to match or better the 

response of an elastoplastic hysteretic SDOF system in terms of displacement ductility 

and without incurring any residual drift from the seismic event. A typical numerical 

example from this study is presented in Figure 1.14. It is clear that the “controlled 

rocking” system demonstrates less energy dissipation, but significantly reduced the 

produced residual drifts. 

 

1.4.2 Controlled Rocking 

“Controlled Rocking” is innovative beam-to-column connection that combines self-

centring characteristics as well as energy dissipation. The most significant feature of 
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these connections was their capacity to ensure small residual drifts, through self-

centering capabilities, even when significant inelastic transient deformations were 

mobilized during the seismic response. The first applications of this hybrid concept were 

performed to bridge piers by Mander and Chen (1997). Similar work was conducted at 

University of California, San Diego (Hewes and Priestley; 2001) where the seismic 

performance of precast segmented piers with unbonded post-tension cables have been 

tested both experimentally and analytically. Figure 1.15 illustrates the application of this 

rocking isolation concept on bridges as accomplished by the use of a “hybrid” system 

(that allows restricted detachment of the pier from the foundation). A number of 

alternative solutions, which rely on the use of post-tensioned bars or tendons (bonded or 

partially unbonded during the casting) have been proposed by Zatar and Mutsuyoshi, 

2000; Kawashima, 2002; Ikeda et al, 2002. It was verified that employing pre-stressing 

tendons in RC bridge piers could result in subsequent reductions of residual 

displacements, restrain-associated cracking, and enhanced concrete shear strength.  

 Kurama et al, (2002) applied the “controlled rocking” concept to pre-cast concrete 

walls and concluded that the amount of post-tensioning force and the initial stress and 

eccentricity of the post-tensioning steel are the key parameters affecting the behavior of 

such wall systems. The efficiency of rocking isolation on partially pre-stressed concrete 

cantilever walls had been experimentally investigated by Holden et al (2003). Figure16 

schematically compares the hysteretic behaviour of three alternative wall systems: (a) a 

conventional reinforced concrete system; (b) a fully prestressed precast concrete system; 

and (c) a partially prestressed “hybrid” concrete system. For the last two prestressed wall 

systems the tendons, if left un-bonded over a certain length, remain elastic during 

rocking. In this way the elastic restoring force essentially prevents residual lateral 
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displacements from. Since the concrete is not bonded to the tendons, considerably less 

cracking is induced than in monolithic walls. One the other hand monolithic systems can 

dissipate larger amounts of energy, but this is provided through structural damage and 

stiffness degradation, as well as residual drift. In contrast, prestressed-only systems 

dissipate little energy, which is expected to lead to larger displacement demands than for 

those systems where energy dissipation can take place. One the other hand partially pre-

cast pre-stressed systems are “hybrid” systems that intended to combine the benefits of 

both systems, thus providing a good level of energy dissipation and showing self-

centering characteristics as well as no damage. Experimental data form Holden et al 

study provide enough evidence on this theoretically expected response: The 

conventional precast reinforced wall (experimentally implemented as in Figure 

1.17a)performed  very well in terms of the ductility capacity and energy absorption 

capability, reaching 2.5% drift before significant strength degradation occurred, while the 

precast partially prestressed wall unit (Figure 1.17b) achieved slightly higher drift levels 

(in excess of 3% ) but no visible damage to the wall panel prior to failure. 

 Palermo et al (2004) further examined the comparative advantages of a hybrid 

solution both at local (bridge piers) and global level (bridge systems) against the 

conventional monolithic connection. Both systems had been represented with lumped 

plasticity models: elastic beam elements representing the bridge piers and inelastic 

rotational springs at the critical interface sections modeling the rocking motion in hybrid 

system or the formation of plastic hinge for the monolithic connection (Figure 1.18). 

Non-linear time-history analyses on different bridge configurations had shown no 

substantial differences in terms of maximum displacements for the two connection 

examined, with slightly higher values (10-15 %) for the less-dissipative hybrid systems. 
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More important outcome is that the use of “controlled rocking” solutions results in 

negligible residual displacement, while values in order of 20% of the maximum pier 

drift/displacement are expected when monolithic connections are adopted. 
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1.5 Non-Linear and Inelastic Response of Soil Foundation Systems 

In all the above studies the nonlinear capacity of the system is exploited at the 

superstructure level alone, typically permitting the energy dissipation at suitably selected 

points through formation of plastic hinges or insertion of isolation/dissipation devices, 

while in the same framework any damage at the foundation level is prohibitted. In other 

words, the geotechnical designer must ensure that the below-ground the support system 

will not even reach a number of “thresholds” that would statically imply failure. Thus, 

mobilisation of the bearing-capacity failure mechanism, severe foundation uplifting 

sliding, or any relevant combination are not allowed.  

 However, thanks to the cyclic and kinematic nature of the seismic excitation, 

mobilization of the bearing capacity failure mechanism under severe seismic shaking 

does not necessarily imply failure. In fact, a growing body of evidence , both analytical 

and experimental, suggests that allowing such nonlinear-inelastic foundation response is 

not only unavoidable, but may even be beneficial [Paolucci, 1997; Pecker, 1998, 2003; 

Martin & Lam, 2000; Makris & Roussos, 2000; Pecker & Pender, 2000; Faccioli et al., 

2001; Kutter et al., 2003; Gazetas et al., 2003; 2007; Gajan et al., 2005; Paolucci et al., 

2008;  Kawashima et al., 2007; Gajan & Kutter, 2008; Chatzigogos et al., 2009 ; 

Anastasopoulos et al., 2009]. The first realization of the aforementioned studies into 

practice can be found in Federal Emergency Management Agency NEHRP Guidelines for 

the seismic retrofit of buildings (1997) and the associated Applied Technology Council 

document (ATC 40) , where alternative design methods associated with the response of 

shear walls subjected to lateral earthquake induced rocking are discussed. 
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1.5.1 Theoretical Studies 

The current state–of–the art in nonlinear analysis of foundations involve the 

development of macro-element models [Paolucci, 1997; Cremer et al., 2001; 2002; Le 

Pape & Sieffert, 2001; Pecker, 2002; Paolucci et al., 2008] or advanced winkler models 

[Taylor et. al, 1981; Psycharis, 1983; Psycharis and Jennings, 1983; Yim and Chopra, 1984, 

1985; Nakaki and Hart, 1987; Filiatrault et al, 1992; Fenves 1998; Anderson, 2003; Chen 

and Lai; 2003; Houlsby et al., 2005; Harden et al., 2005; Allotey and Naggar, 2003, 2007; 

Raychowdhury and Hutchinson, 2009]and less often coupled simulations with FE models. 

A quite detailed inventory on the most representative theoretical studies on the subject 

can be found in the next paragraphs where some recent advances in the numerical 

modelling of Soil-Foundations systems are described. 

1.5.2 Experimental Evidence 

Aside from the theoretical studies, a significant number of experimental work has been 

conduct in parallel to enhance the understanding on the mechanics of foundation 

uplifting and mobilization of ultimate bearing capacity during strong shaking  

Foundation rocking  

One of the first attempts to provide experimental evidence on the non-linear response of 

Soil-Foundation systems under lateral loading were the large-scale experiments 

conducted in the framework of TRISEE project. Two tests were performed, with relative 

densities 45% (LD test) and 85% (HD test). The set-up consisted of a shallow foundation 

(1m x 1m in plan) resting on saturated uniform sand layer (Negro et al, 2000). The 

specimens were subjected both to a realistic time-history of horizontal force and 

overturning moment (representative of the seismic actions transmitted by the super-
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structure to the foundation during an earthquake) and to a series of displacement cycles 

of increasing amplitude up to the ultimate capacity of the soil-foundation system. The 

experimental data manifested the completely different response of the two test : The HD 

test experienced substantial foundation uplift under eccentric loading as demonstrated 

by the characteristic “s-shape” of the overturning moment-rotation curve (Figure 1.19a). 

This effect does not appear for LD conditions, where “punching” is the prevailing failure 

mode and foundation sinks into the sand preventing any uplift effects (Figure 1.19b). 

 Gajan et al (2005) and Gajan and Kutter (2009) had recognized that soil nonlinearity 

may act as an energy dissipation mechanism and thus potentially reducing shaking 

demands exerted on the building. To provide experimental evidence of the above 

statement, they conducted a great number of centrifuge experiments where the 

response of shear wall footings under cyclic and earthquake loading was investigated. 

Their parametric studies involve different footing dimensions, depth of embedment, 

initial static vertical factor of safety, soil density, and soil type. Figure 1.20 portrays the 

set up of the centrifuge experiment. Some of their most important findings are:  

i. the moment capacity was not observed to degrade with cycling, but due 

to the deformed shape of the footing–soil interface and uplift associated with large 

rotations and stiffness degradation was observed (Figure 1.21).  

ii. Permanent deformations beneath the footing accumulate with increasing 

number of cycles of loading but the rate of settlement accumulation decreases as 

the footing embeds itself.  

iii. For a particular FSV footings with a large moment to shear ratio dissipate 

considerably more energy through rocking and suffer less permanent settlement 

than footings with a low moment to shear ratio.  
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iv. Shallow foundations with a sufficiently large A/Ac ratio (where A is the 

actual footing Area and Ac is the area required to support the vertical and shear 

loads) suffer small permanent settlements and have a well defined moment 

capacity.  

Based on the above the authors suggested that shallow foundations with a sufficiently 

large A/Ac may be effectively used as energy dissipation devices to restrain loads 

transmitted to the superstructure. 

 Shirato et al (2007) and Paolucci et al (2008) explored the soil-foundation-structure 

interaction phenomena by performing a series of large-scale shaking table tests at the 

Public Works Research Institute in Tsukuba, Japan. The test model, that consisted of a 

steel rack at the top, a 0.5m sided square foundation block at the bottom and a short 

steel beam with I cross-section connecting the two massive blocks, was lying on nearly 

homogeneous sand layer of Dr = 80% (see Figure 1.22). The achieved static safety factor 

was rather high and was estimated to be equal to Fs=29. The model had been excited by 

a different excitation motions that range from sinusoidal-type waveforms to actual 

recorded accelerograms (e.g. JMA record). It was concluded that the soil–foundation 

system initiates significant yielding when the ultimate load levels are attained, and the 

foundation keeps in contact with the underlying soil only in the proximity of the 

foundation edges revealing significant foundation uplift. However, during the unloading 

phases and the subsequent reloading phases, the area of the contact zone does not 

increase remarkably, thus implying a permanent reduction of the foundation–soil contact 

area (Figure 1.23). This results in an overall degradation of the dynamic foundation 

impedances, and in turn, elongation of the natural period of the soil–foundation system. 
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A similar evidence of a curved soil surface formation beneath the foundation was also 

found by Gajan et al (2005). 

Soil Yielding 

Zeng and Steedman (1998) studied the behaviour of buildings on shallow foundations 

under earthquake loading by conducting centrifuge tests on dry or saturated sand 

speciments. Their work provided new insights into the mechanism of seismic bearing 

capacity failure. They concluded that the striking phenomenon of sudden foundation 

failure near the end of an earthquake is triggered by a combination of a critical 

permanent rotation and significant but well below the maximum ground acceleration. A 

direct implication is that an earthquake with moderate cycles is more likely to cause 

bearing capacity failure of foundations than an earthquake with just one or two strong 

cycles. 

 Maugeri et al (2000) tested experimentally the seismic bearing capacity failure 

mechanism of shallow foundations by performing 1-g shaking table experiments on dry 

sand. The foundation was subjected to a vertical eccentric load and to a sine dwell-type 

acceleration. The measured response (Figure 1.24) correlates well with the kinematic 

failure mechanism proposed by Paolucci and Pecker, (1997) and Richard et al., (1993). 

 On the seismic bearing capacity of foundations was also the work of Knappet et al 

(2006). A series of 1g shaking table experiments had been carried at Cambridge 

University in order to determine seismic induced displacements. To accurately measure 

the development of the failure mechanism within the soil, the technique of Particle 

Image Velocimetry (PIV), combined with high-speed videography and photogrammetry 

had been utilized. The experimental data (Figure 1.25) confirm the analytical results of 

Paolucci and Pecker, (1997) illustrating that for structures where the centre of mass is 
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significantly above the foundation level (moment-dominant response), seismic bearing 

capacity is expected to be drastically reduced due to uplift. 
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1.6 Non-linear dynamic Response of Shallow Foundations 

Scope of this chapter is to present a brief (yet comprehensive) overview of the different 

approaches used to model the Non-Linear Soil-Foundation-Structure Interaction (SFSI) 

problem for the case of shallow footings. Phenomena associated with geometric non-

linearities (i.e. sliding and rocking of the foundation), gap formation between the footing 

and soil, dynamic settlement-densification, and energy dissipation stemming from the 

non-linear soil behavior need to be realistically captured to completely describe the 

problem. The modeling approaches may be broadly divided into the following categories: 

(a) Analytical Methods (which involve analytical solutions, Winkler models and the 

Macroelement method) 

(b) Hybrid Methods; The term hybrid reflects the fact that the SSI problem is tackled 

by combining different numerical techniques.  

(c) Direct approaches primarily expressed by the Finite Element method. 

 In the methods presented in the ensuing the structural system is simulated with an 

increasing level of sophistication either as a combination of [M, Q, N] loading 

representing the (static or inertia) loading transferred from the superstructure to the 

foundation level, as a rigid block (neglecting the structural stiffness), or as an 1-dof or 

even a multi-degree of freedom system.  

 

1.6.1 Analytical Methods 

Rocking Response of a Rigid Block 

Housner, in his pioneering work of 1963, was the first to observe that foundation uplift 

may be responsible for the good performance of seemingly unstable structures during 

erthquakes. Motivated by the Chilean earthquakes of 1960’s he studied the dynamics of 
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a rigid block rocking on a rigid horizontal base, and demonstrated that there is a scale 

effect which makes the larger of two geometrically similar blocks more stable than the 

smaller block (Figure 1.26). 

 Following Housner’s seminal paper a large number of studies have been presented to 

address the complex dynamics of the free-standing block. Yim et al. (1980) adopted a 

probabilistic approach and conducted a numerical study using artificially generated 

ground motions to show that the rocking of a block is extremely sensitive to system 

parameters. Similar conclusions (which were further justified by experimental data) had 

been drawn from the work of Aslam et al. (1980). The authors studied the rocking and 

overturning response of rectangular blocks of various sizes and aspect ratios under 

several strong motion earthquakes. The sensitivity of overturning to small changes in 

base geometry and coefficient of restitution as well as to the type of the ground motion 

had been highlighted. Thus it was concluded that it may be difficult to use data from 

observations on standing and overturned rigid bodies after an earthquake to provide 

useful information on the intensity of ground motion. Spanos and Koh (1984) on the 

same problem identified ‘‘safe’’ and ‘‘unsafe’’ regions and developed analytical methods 

for determining the fundamental and subharmonic modes of the system. Their study was 

extended by Hogan (1989, 1990), who further elucidated the mathematical structure of 

the problem. The block of Figure 1.27(a) was excited by a cosine pulse of the form: 

'( � β α g cos�Ωτ � φ
     (1.3) 

and the complicated dynamics of its response were investigated. Following similar 

procedure with that proposed by Spanos and Koh, he concluded that that the domain of 

maximum transients of his solutions appears relatively ordered and possesses a high 

degree of predictability despite the chaotic nature that is present in the asymptotic part 
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of the solutions. A typical result of his work is presented in Figure 1.27(b). The horizontal 

axis corresponds to initial values 23 of the angular displacement and the vertical axis to 

initial values 43 of the angular velocities. Note that although at the figure corners it is 

evident the great unpredictability of the problem (i.e. a small change in the initial 

conditions may produce completely different asymptotic response), yet the central part 

of the figure elucidates a quite ordered response (i.e. n=1 or n=3 are the dominant 

orbits).  

 The steady state rocking response of rigid blocks was also studied analytically and 

experimentally by Tso and Wong (1989 a,b). Although their theoretical study was not as 

in-depth as the one presented by Hogan (1989), their experimental work provided 

valuable support to the theoretical findings.  

 Of exceptional interest is the work presented some years later by Makris and Roussos 

(1998, 2000) who studied the rocking response of a rigid block subjected to 

trigonometric pulses and near-source ground motions. Inspired by the latest recorded 

earthquakes. Firstly, they deducted that under a half-sine pulse, a rigid block overturns 

during its free vibration regime and not at the instant that the pulse expires. 

Subsequently, the rigid block dynamics under various cycloidal pulses (to account for 

some near-source ground motions characteristics) were examined. It was found that the 

toppling of a smaller block is more sensitive to the peak ground acceleration, whereas 

the toppling of larger block depends mostly on the incremental ground velocity. 

Moreover, it was concluded that the high-frequency fluctuations that occasionally 

override the long-duration (near-source pulse) in an actual earthquake record may be 

crucial for the toppling of a smaller block, whereas a larger block will only overturn due 

to the long-duration pulse. One year later Zhang and Makris (2001) investigated further 
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the response of a free-standing block under a cosine and a sinus pulse. They reveal that 

the block may overturn with two different modes: (a) by exhibiting one or more impacts; 

and (b) without exhibiting any impact. Yet the existence of the second mode results in a 

safe region that is located over the minimum overturning acceleration spectrum. The 

shape of this region depends not only on the geometric properties of the block under 

study and the shape of the excitation motion, but also is sensitive to  the coefficient of 

restitution and to the nonlinear nature of the problem. Typical results of their study are 

depicted on Figures 1.28 – 1.29. In the first one the overturning acceleration spectra 

(computed utilizing the linear and the non-linear formulation) of a specific rigid block 

excited by a one-sine pulse is illustrated, while Figure 6 provides the same information 

for the same block excited by a one-cosine pulse. In 2005 Gerolymos et al investigated 

the same highly unpredictable problem by means of artificial neural network modeling. 

After successfully comparing their results with the analytical solution of Zhang and 

Makris, 2001, they used this powerful tool to predict the response of the rigid block 

subjected to a variety of idealized pulses that resemble near-fault ground motion 

characteristics (i.e. Ricker pulses, T-Ricker etc) and even to real earthquake records. They 

concluded that the overturning of a block becomes more chaotic to predict (revealed by 

the presence of even more “safe islands” on the overturning acceleration spectrum) as 

the complexity of the excitation pulse increases. Figure 1.30 schematically illustrates the 

above statement by comparing the overturning acceleration spectrum obtain for a 

specific block subjected to (a) a real earthquake record (i.e Duzce, 1999 record) and (b) to 

a suitably fitted mathematical Ricker pulse.  

 Biot (2006) investigated analytically the role of ground elasticity on the rocking motion 

of a building and derived useful expressions on the influence of the soil and foundation 
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uplift on the natural period of a structure. In his work the soil medium was assumed to 

be a semi-infinite elastic body, while the building rocking was represented by a pair of 

opposite distributed loads at distance 2ξ (ξ varies accordingly to assumed structure 

dimensions) as depicted in Figure 1.31. It was established that for the case of a rigid 

structure of mass M whose center of gravity is at a height h above the ground and rests 

on a foundation of width 2l, and assuming that the axis of rotation is located at the 

surface of the soil, the frequency of the rocking motion is given by the equation: 

5 �  �
6&  7 8

9:; <  =�
:;     (1.4)  

where c is the elastic stiffness coefficient of the soil  and K is the radius of gyration of the 

structure with respect to the rocking axis. The second term under the radical represents 

the destabilizing influence of gravity. The limit case where 
8

9:; � =�
:;  (i.e when the 

tipping moment due to gravity equals the restoring moment of the soil) corresponds to 

statical instability and results in 5 � 0 (or to infinite fundamental period of the 

structure). Recently, Palmeri and Makris (2008) revisited the rocking response of rigid 

structures to account for phenomena associated with the presence of a flexible 

viscoelastic foundation layer. The effect of the stiffness and damping of the foundation 

was presented in terms of rocking spectra and the response was compared with those of 

the rigid block rocking on a monolithic base. Some interesting features were highlighted: 

for instance, less slender and smaller blocks tend to separate easier, whereas the smaller 

the angle of slenderness, the less sensitive the response to the flexibility of the 

foundation.  
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Winkler based models 

One of the most popular methods to engineering practitioners for modeling soil-

foundation-structure interaction problems (basically due to its simplicity, minimal 

computational effort and ease of implementation) is the beam-on-Winkler Foundation 

(BWF) approach. The idea dates back to 1867 and indicates that the physical soil medium 

may be replaced by a system of continuously distributed springs along the foundation 

width. Besides its inherent assumption that the discretely placed springs react 

independently from each other, thus ignoring the coupling effects between neighboring 

springs, the BWF method has been widely used to assess the study the rocking and uplift 

response of linear structures (Chopra and Yim, 1984; Psycharis and Jennings, 1983)and 

more recently to investigate the effect of both uplift and yield on structural response 

(Taylor et. al, 1981; Filiatrault et al, 1992; Anderson, 2003; Chen and Lai; 2003). A 

collection of the most representative publications on the subject is presented in the 

following paragraphs. 

 Psycharis (1983) and Psycharis and Jennings, 1983 studied the dynamics of rigid blocks 

and flexible systems that experience partial foundation uplift. The structure was 

supported through (a) a simple two-spring viscously damped foundation (Figure 1.32) 

and (b) a Winkler type foundation (springs-dashpots). The non linearity at the foundation 

interface has been taken into account by 3 distinct mechanism: (1) the use of viscous 

dampers, (2) the use of nonlinear springs (elastic-perfectly plastic) and (3) an impact 

mechanism that allows energy dissipation during impact. He concluded that the two-

spring foundation system though simple may be a good approximation of the system 

response. 

- 35 -



Metaplastic Response of Frame–Foundation Systems 

 Similar to the work of Psycharis, Yim and Chopra (1984) and Chopra and Yim (1985) 

evaluated the response of single-degree-of-freedom (sdof) and multi-degree-of-freedom 

(mdof) systems. The numerical approximation of the system consists of a linear structure 

of mass m, lateral stiffness k and lateral damping c, which is supported by two idealized 

foundation systems (Figure 1.33): (a) a two-element type system which involves only two 

spring-dashpot elements at the footing edges and (b) a Winkler type foundation system 

(pairs of spring-damper elements equally distributed along the foundation width). In 

both systems the horizontal slippage between the foundation and the supporting 

elements is prohibited and the stiffness and damping coefficients of the foundation 

model are assumed constant, independent of displacement amplitude or the excitation 

frequency. A primary conclusion of this work was that foundation flexibility and uplift 

have little effect on higher modes of vibration. 

 A few years later, Nakaki and Hart (1987) used elastic, no-tension Winkler springs with 

viscous dampers to study the rocking response of a shearwall supported on a mat 

foundation (Figure 1.34a). The inelastic shearwall structure was modeled utilizing a non-

linear stiffness degrading hysteretic model. Nakaki’s and Hart’s findings illustrate the 

beneficial role of foundation uplift, which may significantly reduce the structural ductility 

demand of the superstructure (Figure 1.34b).  

 In an application to bridge modeling, Fenves 1998 developed a composite spring 

model properly calibrated to capture the cumulative permanent settlement observed 

due to rocking of shallow footings under large amplitude cyclic motions. More Recently 

Houlsby et al., 2005 proposed a generalized (yet simplified) Winkler model to study the 

response of shallow foundations under cyclic loading. The model utilizes the concepts of 

hyperplasticity to simulate the experienced non-linear stress-displacement response. The 
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produced results closely resemble the system behavior obtained experimentaly and by 

conducting more sophisticated numerical analyses. 

 Harden et al., 2005 studied the behavior of shallow strip footings supporting rocking-

dominated shearwall buildings. To this end, they developed a Winkler-based model that 

shares common features with a material originally formulated by Boulanger et al, 1999 

for describing the behaviour of pile tip under cyclic loading. Each material is capable to 

simulate both the “far-field” (i.e elastic response of the footing) and “near-field” (i.e the 

permanent displacements) and to do so it consist of an ensemble of linear and nonlinear 

springs, gap elements and a dashpot, to account for radiation damping. Schematically the 

conceptual configuration of the “material” is depicted in (Figure 1.35). The main 

attributes of the model that make it particularly applicable to shallow foundation 

problems are summarized as follows: (a) it has a non-symmetric backbone (i.e reduced 

ultimate strength in tension), (b) under cyclic loading, the material does not attain full 

stiffness until the strain reaches the unloading strain of the previous cycle. In that sense, 

the material is able to capture phenomena such the cumulative settlement of the 

foundation. The accuracy of the model has been extensively tested against centrifuge 

and 1-g experiments in both sandy and clayey materials. 

 Of exceptional interest is also the recently published work of Allotey and Naggar 

(2003, 2007, 2008). They developed a Winkler-based approach to investigate the 

response of rigid footings under monotonic and cyclic conditions. The proposed cyclic 

response curve (Figure 1.36) comprises of a no-tension multi-linear degrading model. 

Two different paths of loading are distinguished. The standard reload curve which 

simulates loading of the original soil, and the direct reload curve (DRC) that simulates 

loading through a developed slack zone. The shape of the hysteresis loops may be 
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controlled by proper model parameters. The authors have extensively validated their 

model against centrifuge tests by Gajan et al, and large scale 1-g tests (TRISEE 

experiment). As indicated by Figure 1.37 the Allotey and Naggar model compares quite 

satisfactorily with the experimental data in terms of Moment-Rotation and settlement-

rotation loops. Howerer, it seems to systematically underpredict the permanent 

horizontal displacements. This is mainly attributed to the limited coupling between 

horizontal and vertical-rotational responses. 

 A critical review on the effectiveness of spring models for the simulation of shallow 

foundations on soil can be found in the work of Pender 2007. The author highlights some 

of the inherent deficiencies arising from the use of discrete spring elements. He 

compares the response of a rectangular rigid footing supported on a bed of uniformly 

distributed springs to that of a footing resting on a continuous soil assuming both linear 

and non-linear soil behaviour. He concluded that for given footing dimensions the 

rotational stiffness computed with the winkler approach is considerably less than that 

arising from the continuous medium assumption (Figure 1.38). The underlying reason is 

that the spring model doesn’t take into account the interaction between the neighboring 

springs and thus the calculated reaction pressure at each point depends only on the 

displacement at that point. This incompatibility between the two simulations may be 

remedied in the elastic case by adding an additional rotational spring beneath the 

footing. Yet if soil nonlinearity is taken into account the assumption of uniform spring 

elements it is possible to better represent the accomplished rotational stiffness (because 

the induced non-linearity tends to decrease more rapidly the rotational stiffness 

compared to the vertical one). A possible solution to bridge this gap between the linear 
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and the nonlinear response is the use of a bed of non-linear spring elements coupled 

with a non-linear rotational spring at the center of the footing. 

 Lastly Raychowdhury and Hutchinson, 2009 developed a new Winkler model that is 

built upon the work of Harden et al and complements the Allotey and Naggar model. In 

this newer version of the BNWF model, the vertical springs are of variable stiffness in 

order to simulate correctly not only the rocking, uplift and settlement but also the 

rotational stiffness of the system. This idea follows the FEMA 273 document that 

recommends the use of stiffer springs at the edge of the foundation compared to the 

central part. Moreover, horizontal springs are attached to the sides of the footing to 

capture the sliding and passive resistance. A schematic representation of the idealized 

BNWF model is depicted in Figure 1.39. Model evaluation was conducted by simulating 

the response of a number of centrifuge experiments that cover a wide range of shallow 

foundation problems. It was concluded that the proposed winkler model may quite 

reasonably predict not only the measured footing behaviour in terms of moment, shear, 

settlement and rotational demands but also the general hysteresis response (Figure 

1.40). 

 

Macro-elements models 

A further alternative strategy to study the complex soil-foundation interaction is by 

employing the macro-element concept. In this approach the entire soil-foundation 

system is replaced by one single element that describes the generalized force-

displacement behavior of a point (normally at the center of the footing) in the vertical, 

horizontal and rotational dimensions. A comparative advantage of this approach that 

makes it especially popular to structural engineers is that the produced element can be 
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makes it especially popular to structural engineers is that the produced element can be 

embedded in F.E. codes as a typical link/spring element in order to study the dynamic 

response of complicated structural systems accounting for the non-linear SFSI 

phenomena. 

 The concept of the ‘‘macroelement’’ was initially introduced by Nova and Montrasio 

in 1991. The authors abandoned the conceptual framework of elasticity for the 

prediction of settlements of foundations under static eccentric loading and instead 

proposed the use of a global linearized elastoplastic model with isotropic hardening and 

non-associated flow rule. We proceed with some detail on the formulation of the Nova 

and Montrasio macroelement, since it is consider being the starting point for all the sub-

sequent work on the subject. The principal elements of their formulation are presented 

hereafter: 

Firstly, the generalized stress variable vector Q is defined as: 

    (1.5) 

while the generalized strain variable vector  as follows: 

     (1.6) 

V, H, M correspond to the concentrated axial, shear and moment loading of the 

foundation and,  and  are the produced vertical and horizontal displacements and 

rotations at the center of mass of the foundation (Figure 1.41). The is the ultimate 

vertical load of the footing, B stands for the foundation width and ,  are constitutive 

parameters that can be experimentally evaluated. (The authors propose that  equals 
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>6 � ?6 <  @6 �1 < @
6B     (1.7) 

To account for soil isotropic hardening the loading function is given by : 

5�C, E8
 �  >6 � ?6 < @6 �1 < F
GH
6B..   (1.8) 

where E8 is a function of the “memory” of the system used to describe a common 

feature of soil material that as the plastic strain increases the strength may also increase 

simultaneously (hardening) . From a geometrical standpoint (Eq. 1.6) represents a closed 

form surface in the Q space that shares common shape with the surface described by Eq 

(1.5) , while it coincides with the latter when E8 = 1.  The proposed plastic flow used is 

non-associated and thus the plastic potential is given by the expression: 

I�C
 �  J6>6 � 26?6 <  @6 �1 < F
GK
6B      (1.9) 

where E= is just a scaling factor parameter with no physical meaning, and parameters λ 

and x are defined as λ = μ/μg  and x= ψ/ψg  with μg and ψg being parameters to be 

experimentally specified. In case λ=x=1 the plastic potential and the loading function 

coincide and the flow rule degenerates to associated. To summarize the macroelement 

presented consist of nine parameters that first need to be determined via simple 

experimental tests. After that, it may quite satisfactorily predict the induced settlements. 

Figure 1.42 summarizes the model performance in various tests where both inclined 

loading and overturning moment are present. 

 Based on the Nova and Montrasio formulation Paolucci in 1997 was the first to apply 

the macroelement approach to study the response of structures subjected to real 

earthquake loading. A year later Pedretti 1998 further improved the performance of the 

Nova and Montrasio model and extended its applicabilty to footings subjected to cyclic 

loading. In this work, the simplified elastoplastic model with isotropic hardening was 
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replaced by the more sophisticated bounding surface plasticity model (Dafalias and 

Hermann, 1982). The basic concept of this plasticity theory (illustrated in Figure 1.43) lies 

on the assumption that the loading surface may be replaced by a so called “bounding 

surface”. Each Point P (describing a particular loading state) within this surface can be 

mapped through a specified “mapping” rule to a conjugate point Ip lying on the bounding 

surface. The plastic modulus, that describes the soil behavior after its yield point, is 

defined as a continuous function of the distance between the Ip and the P points. A 

fundamental advantage of this formulation (especially in cyclic problems) is that the 

model establishes a smooth transition between elastic and plastic behavior particularly in 

unloading-reloading phases.  

 Le Pape and Sieffert (2001) derived another macro-element model based on a 

thermodynamically coherent framework. According to their theoretical approach the 

global non-associated behaviour of the foundation is not only a consequence of a local 

non-associated flow, but is the result of the total energy balance of the soil domain 

under study. Crémer 2001 and Crémer et al 2001 exploited further the macro-element 

concept and presented an element in which two separate mechanisms of non-linearity 

were introduced: (a) material nonlinearity generated by soil plastification and (b) 

geometric nonlinearities due to footing uplift. The model is based on the assumption that 

the total footing displacement may be obtained by adding the effect of each one of the 

above mechanisms. In terms of generalized kinematic parameters the system response is 

described by the following relation:  

L �  L�M � LNM � LON       (1.10) 

where L�M denotes the elastic displacements,  LNM the plastic displacements and LON the 

footing displacements associated with the uplift. To describe the nonlinear soil response 
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 a multi-yield elasto-plastic constitutive law with kinematic hardening for cohesive soil 

(Prevost's model, 1978) was adopted. Another important modification of this model is 

the definition of the non-associative flow rule. Instead of using the standard formula 

described by Eq. 1.7 (according to which the plastic potential and the loading surface are 

basically described by the same expression) Cremer proposed a slightly modified rule:  

   (1.11) 

, ,  stand for the axial, shear and moment loading applied on the foundation 

center and  ,   are constitutive parameters that need to be calibrated. Figure 1.44 

schematically illustrates the definition of the plastic potential in the ,  space. Note 

that in this plasticity model the loading surface  is growing inside the failure surface 

  and is related to the latter to a certain yielding level. To describe the foundation 

uplift a simple geometric model was utilized. Equations (1.12-1.14) summarize the basic 

mechanical- geometrical characteristics: 

Initiation of Uplift: 

     (1.12) 

 It is worth noting that the use of Equation (1.12) is based on the assumption of a 

parabolic stress distribution beneath the footing and implies that the onset of footing 

uplift takes place when the eccentricity ratio  equals ¼ . (Compared to 1/6 which is the 

value obtained if a constant stress distribution beneath the footing was assumed) 

During Uplift : 

   (1.13) 

.     (1.14) 
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In Equation 1.12 CPQcorresponds to the required moment for uplift onset, LPQ  is the 

footing rotation at that instance, and δ is a parameter that expresses the percentage of 

the footing area being detached from the underlying soil. The Moment-rotation 

relationship (described by Eq. 1.11) is illustrated in Figure 1.45. Lastly, by Eq. 1.12 a 

relationship between the derivative of vertical displacement and increment of footing 

rotation is established. It is worth mentioning that the above formulations are valid only 

if the underlying soil is elastic. Yet uplift behaviour is strongly coupled and influenced by 

soil yielding as the latter may induce an irreversible uplift behaviour. To tackle this 

coupled problem Crémer et al have built an uplift surface which moves inside an uplift 

domain. Each surface corresponds to an uplift percentage. Figure 1.46 schematically 

illustrates these “iso-separation” surfaces superimposed on the failure criterion of the 

plasticity model. A direct outcome is that the only values of separation that may be 

reached during uplift are those located inside the failure criterion. Another important 

consequence is that the moment of uplift onset is no longer a linear function of the 

vertical load CR.  

 Recently, Grange et al (2008) modified the plasticity model of Cremer et al (2001), 

(2002) to account for circular footings under 3-dimensional loading. Chatzigogos et al 

(2009, 2010) further extended the original formulation of Crémer and proposed that the 

irreversible elastoplastic soil behavior may be described by a bounding surface 

hypoplastic model the definition of which is independent of the ultimate loads of the 

system.  

 At the same time Paolucci et al (2008) upgraded the original Paolucci (1997) 

formulation by introducing a stiffness degradation model that aims to describe in an 

indirect way the coupled uplift-soil plasticity phenomena, while Shirato et al (2008(a,b)) 
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presented a macro-element in which an uplift model had been added in the Nova and 

Montrasio approach. 

 

1.6.2 Hybrid Methods 

The basic idea of hybrid modeling approach is that the total soil-structure system is 

partitioned in two distinct sub-domains (Figure 1.47). One substructure is the near-field 

and consists of the structure to be analysed under the prescribed loading conditions and 

a finite portion of soil immediately surrounding its base. This near-field may 

encompasses extremely complex phenomena such as arbitrary foundation geometries, 

soil heterogeneities/non-linearities and complicated foundation-superstructure systems.  

 The second substructure (the far-field) is a semi-infinite half-space which shares a 

common interface with the near-field and is considered to be sufficiently distant from 

the foundation-structure system so that it can be realistically assumed that the energy 

transmitted from the structural system to the far-field does not provoke non-linear 

effects. Since the far field radiates energy in the form of waves travelling away from the 

foundation, a realistic model must reflect this behaviour.  

 The two distinct domains may be modeled by different computational methods such 

as finite element or finite difference models, spectral elements, boundary integral 

methods etc. The combination of these alternative numerical approaches may offer 

significant advantages (mostly in decreasing the computational time) in the non-linear 

SSI problem that cannot provided by a single method on its own. A variety of hybrid 

methodologies are available that date back to 1980. Mita and Luco (1987) utilized the 

boundary integral together with the finite-element method to investigate the dynamic 

response of embedded foundations, while Bielak et al (1991) used a similar method to 
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study site effects. Fäh et al (1993, 1994) developed a hybrid procedure that combines the 

modal summation with finite differences method, to examine 2D wave scattering 

phenomena in two sedimentary valleys: the Friuli basin in Italy (1993) and the Mexico 

City Valley (1994). Zahradník and Moczo (1996) used the discrete-wavenumber and 

finite-differences methods to analyse the seismic wave fields at localized 2D near-surface 

structures that are excited by a point source. 

 It is beyond the scope of this study to refer separately to the formulation of all of the 

above methods. In the ensuing, attention will be focused on 3 hybrid methodologies for 

different reasons. The first one (developed by Gupta and his co-workers) is one of the 

earliest attempts in hybrid modeling, while the second is the DRM method which is 

indeed an effective algorithm that can be used to solve extremely diversive applications 

(i.e., modeling the propagation of seismic waves through a complex and heterogeneous 

domain from the fault-source to the ground surface, or study the non-linear dynamic soil 

–foundation-structure interaction). Lastly, this review will be complemented by 

describing the spectral element method, which has been extensively used for the 

simulation of SSI problems. 

 Gupta et al, 1980 tackled the problem of soil-structure interaction under dynamic 

conditions analytically by transforming the equation of motions in the frequency domain 

as follows: 

The equation of motion for the near-filed sub-domain gives 

?ST �  USV �  WS � X�Y
 �  5�Y
   (1.15) 

where S is the relative displacement of the near field against the motion of the 

surrounding far-field domain, and SV  and ST  are the corresponding velocity and 

acceleration. The term  X�Y
 describes the inertia loading of the structure due to the 
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earthquake loading, while the  5�Y
 term stands for the interaction forces between the 

two domains acting on the interface. Equation (1.13) when transformed into the 

frequency domain yields: 

�<	6? � Z	U � W
��	
 �  [�	
 �  \�	
.  (1.16) 

and by substituting �<	6? � Z	U � W
 by ]�	
 we get the simpler expression 

]�	
��	
 �  [�	
 �  \�	
   (1.17) 

where S is the complex value impedance matrix of the near-field. Equation (1.15) can be 

written in partitioned form as follows: 

^]�� ]�_
]�_̀ ]__

a bS�S_c �  d[�[_e � d 0
\_e   (1.18) 

Accordingly the equation of motion for the far-field when transformed into the 

frequency domain results to: 

]�	
��	
 �   \�	
    (1.19) 

Taking account the compatibility and equilibrium conditions on the interface, Equations 

(1.16) and (1.17) may be combined to describe the response of the whole system: 

^]�� ]�_
]�_̀ ]__ � ]a bS�S_c �  d[�[_e.   (1.20) 

 The originality of the developed methodology lies in the numerical trick used to obtain 

the far-field impedance matrix. First of all, the interface has been judiciously chosen to 

be hemispherical in form so that it provides a smooth surface along which mathematical 

boundary conditions can easily be satisfied. Then the domain has been divided into 

infinitesimally thin soil elements (extending to infinity in the direction normal to the 

hemispherical surface cavity), proposing a technique that may be thought of as the 

dynamic equivalent of the Winkler model (Figure 1.48). The dynamic load-deflection 

relationship of each of these infinitesimal soil elements is described through impedance 
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elements, the real parts of which represent stiffness and the imaginary parts radiation 

damping. The impedance functions of the system as formulated by the superposition of 

the all the above elements is discretized at the interface nodal points to obtain the far-

field impedance matrix that will be assembled into the matrix of Equation (1.18) in order 

to determine the  ��	
 of the system. The displacement time histories may be obtained 

by applying inverse Fourier Transform: 

S�Y
 �  �
6& f ��	
g�h�i	j

�j     (1.21) 

 

Domain Reduction Method (DRM) 

An alternative sub-structuring approach for dynamic analyses has been developed by 

Bielak and his co-workers (Bielak &Cristiano, 1984; Cremonini et al, 1988; Loukakis, 1988; 

Bielak et al, 2003). The proposed methodology aims to reduce the domain that has to be 

numerically modeled, by subdividing the problem into two sequential parts. First, a 

background structure is considered (kl) from which the localized geological features 

have been deleted, and the corresponding ground motion is calculated. During this step 

the computation requires a grid mesh that is only as fine as dictated by the softest 

material in the background model. In the second step, only a reduced region of interest            

( k ) which contains the localized feature (such as a sedimentary valley, a topographic 

relief or even a foundation-structure system) is modeled to the desired accuracy taking 

into account all possible induced non-linearities (Figure 1.49). The ground motion 

obtained in the first step is subsequently used to determine a set of localized equivalent 

forces, which are then applied as input over a local domain (  k ). An outside benefit of 

the proposed procedure is that all the waves of the exterior region  kl are outgoing. This 
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suggests that the size of the kl 
region may be drastically reduced provided that suitable 

absorbing boundaries are utilized to limit the propagation of spurious waves. 

Spectral Element Method (SEM) 

The spectral element method has been used for more than 25 years in computational 

fluid dynamics (Patera, 1984). However it has recently gained interest for studying 2-D 

(Seriani et al., 1992; Cohen et al. ,1993; Priolo et al. 1994) and 3-D (Komatitsch, 1997; 

Faccioli et al., 1997; Seriani, 1998; Komatitsch et al., 2000; Paolucci et al., 1999) seismic 

wave propagation and SSI problems. The SEM method instead of using the strong 

formulation to solve the equation of motion (as dictated by the Finite Element Method), 

is based on the weak formulation. One of the nice attributes of that formulation is that 

the stress-free surface boundary condition is naturally satisfied and doesn’t have to be 

imposed explicitly. Moreover the mass matrix M is diagonal by construction thus allowing 

for significant reduction in the complexity and the computational cost of the algorithm.  

 

1.6.3 Direct Methods (Coupled Approach) 

Direct methods treat the non-linear SSI problem globally, without decomposing the 

domain into sub-structures. Among direct methods the most broadly used is the finite 

element method. Both the structure and the foundation soil are modeled together in one 

single system through an assemblage of finite elements. The method is extremely 

popular basically due to its flexibility to model irregular problems that may involve 

arbitrary geometries or abnormal soil stratification. Moreover, F.E. may also comprehend 

both soil elasto-plastic constitutive behavior and geometric non-linearities at the soil-

foundation interface (i.e. detachment of the foundation from the underlying soil, 

foundation rocking response, sliding and P-δ effects of the superstructure). Yet, the 
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constantly increasing computational capacity is continuously enhancing the applicability 

of F.E modeling confronting even complex non-linear 3-D problems which were 

considered impossible in the past. The most important drawback of this approach is that 

the soil which is essentially semi-infinite in nature is normally modeled by a finite-size 

model having rigid boundaries which obstruct energy from radiating away from the 

foundation. One way to mitigate this problem is to place the boundaries of the model 

sufficiently far from the structure in order to eliminate the effects of the undesirable 

boundary-reflections. However, such an action leads to extremely large systems which 

may introduce a severe penalty on the required computer time. Therefore, the use of 

viscous and transmitting boundary elements is an appealing alternative to minimize 

errors associated with a finite-size model. They basically consist of a series of dashpots 

placed normally and tangentially at boundary nodes. The optimal absorption is achieved 

for perpendicularly impinging waves and by no means the angle of wave-incidence 

should exceed the 30
o 

to achieve accurate solutions (Zdravkovic and Kontoe, 2008).  

 Since the original work of Wolf and Darbre (1984) Wolf and Obernhuber (1985) and 

Wolf (1985) on the non-linear Soil Foundation Structure Interaction, where phenomena 

such as foundation uplift and soil stiffness had initially been introduced (Figure 1.50), 

direct methods and particularly F.E. have experienced a significant growth. A great 

portion of the work conducted has been oriented to the estimation of the bearing 

capacity of footings under combined loading. Following the experimental and analytical 

findings of Ticof, 1977; Butterfield, 1981; Georgiadis and Butterfield, 1988; Tan, 1990; 

Dean et al., 1992; Gottardi and Butterfield, 1993; Butterfield and Gottardi, 1995; Murff, 

1994; a significant number of numerical studies was performed to estimate the 3D yield 

loci in V-H-M space of various foundation systems (shallow foundation, skirted footings 
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e.t.c) accounting for different soil and loading conditions. In the following paragraphs 

some of the most relevant works are briefly described. 

 Houlsby and Martin (1992) simulated the non-linear response of a spudcan foundation 

(offshore foundation) on clay (Figure 1.51). The soil model is described by an incremental 

plasticity model which employs a yield surface and a plastic flow rule which is properly 

calibrated through small-scale laboratory tests. It was found that the model may quite 

reasonably reproduce important features of the observed behaviour, but fails in 

simulating cyclic loading events. Tani and Craig in 1995 utilized a FE code to investigate 

the influence of linearly increasing undrained shear strength with depth on the bearing 

capacity of shallow foundations, under both plane strain and axisymmetric conditions. 

Their numerical results have been validated against centrifuge experiments. The effect of 

pre-loading on the bearing capacity of a surface foundation lying on a normally 

consolidated stratum has been thoroughly examined by Bransby (2002). In his FE 

analyses a Cam Clay model was chosen to describe the non-linear soil response. It was 

concluded that the application of a vertically dead weight loading may significantly 

increase the foundation capacity especially in terms of horizontal loading (Figure 1.52). In 

1999, Bransby and Randolph studied the response of a skirted footing under combined 

vertical (V), moment (M) and horizontal (H) loading. In this foundation system 

(extensively used in offshore engineering) the presence of the skirt has a binary role: on 

one hand it allows suction to develop when uplift loadings are applied resulting in an 

increased uplift capacity, while on the other, during compressive loading the achieved 

confinement within the skirts results in increased bearing capacity. A two dimensional 

F.E. model had been utilized to deduce the ultimate footing loading. The soil was 

modelled as an elastic-plastic Tresca material with a linearly increasing with depth 
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undrained shear strength. It was found that the shape of the yield locus was similar to 

that predicted by relevant research works in V-M and V-H space, but differed significantly 

in M-H representation. The bearing capacity of skirted footings under combined loading 

had been also investigated by Gourvenec and Randolph (2003). In this study emphasis 

was given on the effect of shear strength heterogeneity. The degree of heterogeneity 

was defined in terms of a non-dimensional non-homogeneity factor. It was concluded 

that under combined loading conditions, the load capacity for heterogeneous soil 

conditions cannot be estimated by simply scaling the failure locus obtained for 

homogeneous conditions by a factor related to the degree of heterogeneity.  

 Another significant work on the field was that of Taiebat and Carter (2000). They 

conducted 3-dimensional finite-element analyses of circular foundations lying on a 

homogeneous and purely cohesive soil. The foundations were assumed to adhere fully to 

the soil (i.e. compressive, tensile and shear stresses may develop at the interface 

between the footing and the soil). The three-dimensional failure locus in V-H-M space 

was presented, and an equation that approximates the shape of the failure locus was 

also suggested. A similar work has been published by Gourvenec 2007 where the 

ultimate limit states of rectangular footings with varying (B/L) ratios (under combined 

vertical (V ), moment (M) and horizontal (H) loading) were presented. In this study 2 

distinct footing/soil interface conditions are considered: interface unable to sustain 

tension and interface with unlimited tensile resistance. Results are presented as failure 

envelopes in V-H, V-M and V-M-H space accompanied by extremely useful analytical 

expressions. The main outcome of this work is that for footings unable to sustain tension 

the footing aspect ratio does not affect the shape of the failure envelope: therefore the 

ultimate limit state of a footing may be derived from a unique envelope scaled 
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appropriately and a closed-form expression is proposed to describe the shape of this 

normalized failure envelope. This is certainly not the case when the footings are able to 

sustain tension and hence the shape of failure envelope is controlled by footing 

geometry and dimensions. Typical results from this work are displayed in Figure 1.53. 

In all the above studies, despite the great amount of sophistication involved in describing 

the limit state of complicated foundation systems, relatively little attention had been 

drawn to realistically simulate the superstructure (the most common approach is to 

replace the structural system by combined M, Q, N loading) and the geometric non-

linearities associated with the latter (i.e. P-delta effects).  Only recently, Anastasopoulos 

et al, (2009) conducted fully coupled FE numerical analyses to investigate the rocking 

response of a 1-dof bridge pier lying on a stiff clay profile. The nonlinear response of both 

the pier and the underlying soil were simulated utilizing a properly calibrated plastic 

model with kinematic hardening. The footing-soil interface has been modeled 

accordingly to simulate geometric nonlinearities at the foundation level, while P-delta 

phenomena where also taken into account (Figure 1.54). Subjecting the pier to an 

ensemble of recorded accelerograms well beyond the structure’s design, the authors 

manifested the beneficial role of rocking and soil yielding in dissipating the seismic 

energy, hence protecting the superstructure from collapse. Figure 1.55 illustrates this 

“fail-safe” response of the under-designed system that not only survives collapse but also 

experiences minimal residual drift. The only price to pay is the relatively high settlements 

that for the case displayed here (pier subjected to the devastating Takatori accelerogram 

recorded during the Kobe, 1995 earthquake) exceeded 20 cm. 
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1.7 2D Wave Propagation Phenomena 

1.7.1 Theoretical Studies 

Analytical Solutions 

The scattering of earthquake waves from surface and subsurface inhomogeneities has 

been extensively studied during the past fifty years. Pioneering work in this area was 

done in the 60's and early 70's. Early attempts involve the study of the elastic wave 

propagation problems in horizontally stratified media with irregular and regular 

interfaces (Herrera, 1964; Tsai 1969; Aki and Larner, 1970; Boore, 1970). Closed form 

exact analytical solutions on the 2d diffraction problem (using separation of variables and 

expansion of the solution in a basis of orthogonal functions) were obtained by Trifunac 

(1971, 1973) for semicircular and by Wong and Trifunac (1974a, b) for semi-elliptical 

valleys and canyons subjected to plane SH waves. Their work revealed the prominent 

role of surface topography on the resulting surface motion: the amplification of surface 

displacement changes rapidly from one point to another, but the amplification is always 

less than 2. The angle of incidence of plane SH waves γ (see Figure 1.56), and. the ratio of 

λ/r (with r being the dimension of the subsurface irregularity and λ the wavelength of the 

incident wave) control the trends and the complication of the amplification pattern.  

The diffraction problem of dilatational (P) and vertically polarized shear (SV) incident 

waves has received less attention due to its complexity (the orthogonal wave functions 

developed in classical physics are not separable for the half-space surface due to 

coupling of the boundary conditions). Lee (1984) and Lee and Cao (1989) overcame this 

difficulty for a semi-spherical valley and canyon by expanding the spherical wave 

functions further into power series that could match all the boundary conditions. 

Following a similar procedure Cao and Lee (1990) analytically tackled the scattering of 
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plane P waves by circular and cylindrical canyons by approximating the surface of the 

half-space close to the canyon by a cylindrical surface with very large radius and 

represented the scattered waves in Fourier-Bessel series. Todorovska and Lee (1991) 

extended further the applicability of the Cao and Lee (1999) method by studying the 

scattering of plane elastic SH waves from shallow circular alluvial valleys with variable 

depth.  

Despite the value of the aforementioned analytical methods in highlighting the main 

mechanisms involved in the 2-d diffraction problems, their applicability is limited to 

special geometries assuming elastic wave propagation. To this end, a number of 

numerical methods (boundary integral equations, finite difference and finite elements 

methods) have been developed over the years to study the dynamics of more complex 

irregularities of arbitrary shape. In the ensuing the main advances in the 2D and 3D valley 

amplification effects are briefly presented and the most significant outcomes are 

summarized.  

 

Boundary element Algorithms and other approximate numerical techniques 

The boundary integral equation method was firstly introduced by Wong and Jennings 

(1975) for a canyon of arbitrary shape. Their work was followed by series of methods 

using different types of integral equations. (i.e., Sánchez-Sesma and Esquivel (1979), 

Wong (1982), Dravinski (1982), Sánchez-Sesma et al. (1985), Kawase (1988), Niwa and 

Hirose (1985), Bouchon et al (1989), Gaffet and Bouchon (1991)). Jongmans and Campilo 

(1993) used the boundary integral equation method of Gaffet and Bouchon (1991) to 

predict amplification effects in Ubaye Valley. The 2-d model utilized in their study 

consists of a series of branches of cosine and straight lines and is depicted in Figure 1.57. 
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Although the numerical simulations were able to explain some general features of the 

recorced spectral ratios, some important discrepancies existed between synthetic and 

experimental amplifications: modeling results systematically underestimated the 

recorded amplification effects.  

 Sanchez-Sesma et al (1993) proposed the use of an indirect boundary integral 

formulation (BEM) to study the physics of diffraction problems. The method was 

validated against the theoretical solutions of Trifunac (1971) for the response of a 

semicircular valley subjected to oblique incident (φ = 30
o
) harmonic SH waves, and 

Dravinski and Mossessian (1987) for the case of again a semicircular valley excited by 

oblique incident SV and Rayleigh waves (φ = 30
o
). Afterwards the BEM was utilized to 

study the response of semielliptical soft deposits under incident Rayleigh waves. It was 

concluded that even a relatively mild heterogeneity can generate important variations in 

both amplitude and polarization of the ground motion. A very soft shallow deposit was 

also analysed against incident SH and SV waves. Very large amplifications were computed 

and the contour maps of transfer functions in the frequency-space domain (f-x) reveal a 

fine structure in which locally generated surface waves play a significant role for 

frequencies higher than the one that controls the 1D response at the centre (Figure 

1.58). Sanchez-Sesma and Luzon in 1995 extended further this work to account for 

diffraction phenomena associated with the 3-dimesional basin geometry. It was revealed 

that even in a simple axisymmetric case, 3-dimensional diffractions result in extremely 

complicated amplification patterns.  

 Fishman and Ahmad (1995) studied the seismic response of two-dimensional alluvial 

valleys of semi-elliptical cross-section subjected to SH, P and SV waves. Using a rigorous 

boundary element algorithm they studied the influence of key parameters, such as, 
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valley depth, impedance ratio, frequency, and angle of incidence on surface ground 

motion. Furthermore, the case of a valley within a layered half-space has been analyzed 

and results were compared with those obtained for a valley within a homogeneous half-

space.  

 Recent studies with BEM involve the work of Semblat and Duval (2000) and Kham et al 

(2002) .Of extremely interest is also the work of Bard and Bouchon (1980(a,b)). The latter 

using the Aki-Larner technique extended in the time domain, investigated thoroughly the 

dynamic response of bi-dimensional valleys of various geometrical and elastic 

parameters to vertically incident SH, P and SV waves both in frequency and time-domain. 

They concluded that irrespectively of the type of the incident wave, the valley behaviour 

is quantitatively similar: non-planar interface causes surface waves (Love waves when 

the valley is excited by SH waves and Rayleigh waves when subjected to P and SV waves) 

to be generated at the valley edges and propagate laterally inside the basin (Figure 1.59). 

The amplitude of these waves is greatly controlled by the velocity contrast, the valley 

shape and the frequency content of the excitation and may under circumstances be even 

higher than the disturbance associated with the direct incident signal. 

 Paolucci et al (1992) presented a simplified methodology to study the SH wave 

propagation in a class of wedge-shaped alluvial valleys. The proposed method that is 

based on the assumption that these wedge-shaped valleys may be divided into simple 

elements for which the scalar Green's functions can be easily determined, allows for fast 

parametric analyses both for the prediction of the seismic valley response and for 

interpretation of existing instrumental data. The scalar Green's function at a point P(r, φ) 

due to a harmonic antiplane load at a source S (ro, φo) is expressed as a superposition of 

the contributions of 4N source points in unbounded homogeneous medium, located on 
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the circle of ray ro. Figure 1.60 schematically summarizes the above procedure for the 

case of a rigid base valley assuming N=3. 

 

Finite difference Methods 

Harmsen and Harding (1981) were among the first to apply finite difference techniques 

to study the response of a sedimentary basin in an isotropic elastic half-space to 

vertically incident compressional and shear sources. In this study of primary interest was 

also the formation of Rayleigh waves over the flank of the basin and the effect of soil 

anisotropy on the latter (Figure 1.61). In 1983 Otsuki and Harumi investigated the effect 

of subsurface inhomogeneity on the surface motion. The examined geometry (Figure 

1.62) that consists of a cliff with a soft layer and filled land, was subjected to vertically 

incident SV waves. It was found that the surface displacement is very much influenced by 

surface irregularities when the incident wavelengths are comparable to the size of the 

topographic features. Moreover the combining incident SV and Rayleigh waves were 

assumed to be responsible for a zone of large amplification near the slope crest. Another 

interesting work is that of Mozco et al (1996), who parametrically investigated possible 

2D resonance phenomena in different parabolic valley geometries using finite difference 

algorithm. Figure 1.63 summarizes their main findings: a 2D resonance is observed in all 

the four valleys examined despite the fact that the valley-layer velocity contrasts are well 

below the existence curve of Bard and Bouchon (1985). 

 Hill et al (1990) conducted a comprehensive study in order to delineate some of the 

important factors controlling low frequency SH wave amplification observed in the Salt 

Lake Basin in Utah. Towards this end, a finite-difference method was used to simulate 

SH-wave propagation and resonance phenomena in a group of two-dimensional models 
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of the Salt Lake Basin corresponding to different levels of basin complexity as illustrated 

in Figure 1.64 (from a 1-dimensional profile to a relative complicated asymmetric basin 

structure). Results indicate that the low-frequency SH amplification (0.2 to 2.0 Hz ) is 

greater over the deepest part of the basin and is primarily attributed to multiple 

reflections inside the two near surface low-velocity layers (Figure 1.65). Their predictions 

of site amplification are somewhat verified by comparing synthetic spectral ratios with 

measured spectral ratios determined from nuclear explosions. The numerical findings of 

Hill et al had been further affirmed by the work of Olsen et al (1995). In this later work a 

more sophisticated 3D finite-difference model was utilized to study the 0.2 to 1.2 Hz 

elastodynamic site amplification in the Salt Lake Valley. Simulations were carried out for 

a P wave propagating vertically from below and for P waves propagating horizontally to 

the north, south, east, and west. Their results revealed that for steeply incident P waves, 

the impedance decrease and resonance effects associated with the deeper basin 

structure control the amplification of the initial P-wave arrival, whereas reverberations in 

the near-surface unconsolidated sediments were responsible for the large-amplitude 

coda waves. These reverberations were mainly caused by P-to-S converted waves, and 

their strength was found to be highly sensitive to the incidence angle of the source. 

 Fäh et al. (1993, 1995) used a hybrid technique based on mode summation and finite 

differences to simulate 2-Hz ground motion in Rome for the 13 January 1915 Fucino 

earthquake. They found peak accelerations of up to 60 cm/sec
2
 and maximum 

amplification factors of 5–6 within the 2D basin model of Rome with respect to a 1D 

model, caused by resonance effects and excitation of local surface waves. According to 

their study the largest amplification was observed at the edge of the sedimentary basin 

of the Tiber River valley. Some years later Natale and Nunziata (2004) employed the 
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same hybrid method to study the 2D wave effects at Sellano Valley during the 1997–1998 

Umbria seismic sequence.  

 During the months that followed the 1994 M6.7 Northridge earthquake, several 

acceleration stations were deployed in the San Fernando basin to record aftershock data 

so as to indirectly estimate site-amplification effects. In parallel, a significant amount of 

numerical models have been constructed to reproduce analytically the observed valley 

response. Haase et al. (1996), Pitarka and Irikura (1996)and Hauksson and Haase (1997) 

proposed different 2D cross sections models of the San Fernado valley, while more 

sophisticated 3D models have been utilized by Olsen et al (1995) and Olsen and Archuleta 

(1996). In 1999 Scrivner and Helmberger using a two-dimensional finite difference 

numerical technique (Vidale et al., 1985; Helmberger and Vidale, 1988) modeled the 

seismic response of San Fernado valley under two distinct aftershocks with similar 

epicenters, but with different hypocentral depths: a shallow (4 km) and deep (16 km) 

event. The main objective of that work was to decide upon a valley structure and soil 

properties that may replicate the main features of the observed response: the deep 

event was mostly insensitive to the basin, while recorded waveforms from the shallow 

event manifest the existence of large basin-generated surface waves. The recorded 

waveforms also indicated interactions of the wavefield with structure below the basin. 

The numerical model that fitted best the measured response included a slow upper basin 

down to 1.5 km, a deeper basin down to 3.5 km, and a gradient in the background model 

at 5.5 km depth. The velocity contrast between the upper and lower basins needed to be 

large to generate multiple cycles in the surface waves. The velocity contrast and depth of 

the upper basin were sensitive parameters of the upper basin, whereas the waveforms 
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were less sensitive to the steepness of the basin edge. The location of the bottom of the 

deep basin, relative to the source, was found to be another important parameter. 

 Olsen et al (2000), using a powerful finite difference algorithm simulated viscoelastic 

wave propagation in a three-dimensional model of the upper Borrego Valley, southern 

California, for a M 4.9 earthquake with epicenter 5 km north of the valley. The simulation 

reproduces quite well the overall pattern of ground motions at the basin surface (Figure 

1.66) and borehole sites (as recorded by the implemented surface and deep downhole 

array) and shows a good correlation of the observed to the synthetic waveforms (Figure 

1.67): the first wave arrival was nicely reproduced while the model cannot capture the 

late arrivals. In another study Olsen et al (2006) utilized the already developed powerful 

numerical algorithm to estimate long-period (>1 Hz) ground motions for possible 

earthquake scenarios for a 3D velocity model of Rome. They discriminate two possible 

mechanisms of seismic hazard in Rome: (1) seismic waves from Alban Hills at an average 

distance of 25 km from Rome which may generate large peak motions and (2) seismic 

waves form Apennines regions (80-100 km away) that may result in ground motions of 

extended durations causing significant damage on the built environment. 

 Another extremely ambitious project was that conducted by Hartzell et al (2006) who 

utilizing the 3D finite difference code of Liu and Archuleta (2002), constructed a 3D 

velocity and attenuation model of the Santa Clara Valley. Waveforms were calculated to 

an upper frequency of 1 Hz using a parallelized code. Figure 1.68 depicts the 3-

dimensional geologic structure of the model while Figure 1.69 shows a typical outcome 

of their study for a specific earthquake scenario. 

 Of particular interest is the work of Kamiyama and Matsukawa (2002) who 

formulated an iterative numerical method for analyzing nonlinear earthquake response 

- 61 -



Metaplastic Response of Frame–Foundation Systems 

of irregular grounds. The method (PSM) combines the principles of the equivalent linear 

method with that of pseudo-spectral techniques. Kamiyama and Fukuchi (2007) utilized 

PSM to investigate the effects of induced non-linearity to wave scattering phenomena by 

studying the response of two ground models to vertically incident Ricker wavelets: a soft 

surface layer (assumed to behave nonlinearly) which forms (a) symmetric trapezoidal 

basin and (b) an asymmetric basin over a bed halfspace. They concluded that when the 

soil response is considered linear the irregularity of the surface layer plays an important 

role in generating some secondary waves that travel horizontally along the surface. 

These horizontally traveling waves overlap with those direct vertically propagating 

amplifying the ground motion at the valley surface. Contrarily to the linear response, 

when the soft soil is allowed to respond non-linearly, the horizontally traveling waves are 

less pronounced due to the increased damping effects (increasing strain results in 

increased damping values). Another important outcome of this study was that the effects 

of material nonlinearity were observed to be more remarkable for the secondary waves, 

which appear in the later phases of the motions, rather than for the direct waves of 

vertical propagation. 

 

Finite Elements Methods 

An extremely thorough study on the 2D site effects of the Salt Lake valley in Utah had 

been conducted by Benz and Smith (1988). The authors using a non-Galerkin finite-

element formulation and an explicit finite-difference technique (Kelly et al., 1976) 

investigated the valley response under both near- and far field earthquakes. Figure 1.70 

illustrates the cross-sections of the simplified numerical model along with the four 

kinematic source simulations. Synthetic seismograms from vertically incident plane-wave 
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sources and buried double-couple sources predict large amplitude Rayleigh-wave 

propagation from the edges of the basin and, in general, an almost uniform site 

amplification pattern. On the other hand, in the case of the near-field simulations, the 

produced amplification seems to be overshadowed by the source directivity effects: the 

maximum amplification is observed near the surface projection of the fault while the 

amplification rapidly decays as the distance from the fault increases. 

 Papageorgiou and Kim (1991) studied the seismic response (due to antiplane line 

(point) sources and incident plane SH waves) of Caracas valley at Venezuela through a 2-

D model of its NS cross-section through the Palos Grandes district .It was concluded that 

the steeply sloped northern edge of the valley was a more efficient generator and 

reflector of surface waves than the mildly sloped southern edge. Also the spectral 

amplification and time response characteristics of this asymmetric wedge-shaped valley 

were highly controlled by the direction of incidence of the excitation waves (Figure 1.71). 

The same 2-D model of the valley was then used to simulate also the antiplane response 

of the valley to synthetic strong motions equivalent--in amplitude,frequency content, 

and duration--to those that most likely were generated by the 29 July 1967 Caracas 

earthquake. The analysis revealed that for the specific event the peak acceleration was 

fairly uniform across the valley, varying from 0.15 to 0.21 g, while on the contrary, peak 

velocities and peak rotational (torsional) strains varied considerably (factor of 2 to 3) 

across the valley. 

 In all the preceding studies emphasis was given in the proper simulation of the 

complicated wave-field pattern by ignoring phenomena associated with inelastic soil 

response. Towards this direction was the work of Zhang and Papageorgiou (1996) who 

using a hybrid numerical technique that combines the boundary integral equation 
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method with the finite-element method (Zhang et al., 1995) estimated the severity of 

ground motion that the Marina District experienced during the 1989 Loma Prieta 

mainshock. To validate their numerical algorithm, initially the elastic response of a two-

dimensional model of a cross section of the Marina District was simulated and compared 

with the recorded aftershock data. Subsequently, the same 2-dimensional model was 

excited by the ground-motion time histories recorded at an adjacent rock outcrop site 

during the mainshock (Figure 1.72). To account for the effect of soil nonlinearities, an 

iterative procedure, referred to as the "equivalent linear approach", was adopted 

according to which the values of soil damping and stiffness are selected to be consistent 

with the level of strain at. Their conclusions suggest that, in general, the damping 

characteristics of soil deposits (reflecting the amount of induced non-linearity) are a key 

factor in controlling the nature of the overall response of a sedimentary basin.  

 Bielak and Ghattas in 1999 studied the earthquake response of a small valley in 

Kirovakan in order to explain the spatial distribution of the structural damage during the 

1988 Armenia earthquake. The results of the 2D finite elements simulations show striking 

differences with respect to the corresponding 1D soil amplification analyses. In 

particular, it was concluded that the peak ground response and structural response were 

almost twice as large for the 2D as for the 1D model. Moreover, the 2D model exhibits, a 

new set of resonant frequencies and concomitant ‘‘mode shapes’’ across the valley, 

which are directly related to the rapid oscillation (both spatial and with frequency) of the 

ground amplification ratio along the valley (Figures 1.73 and 1.74). These results 

provided a meaningful explanation of the observed irregular damage distribution: two 

identical structures located in the same vicinity or two slightly different structures 
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located essentially on the same site experienced significantly different earthquake 

motion and therefore different level of damage.  

 Puglia et al (2007) utilized the finite element code QUAD4M (Hudson et al., 1994) to 

conduct two-dimensional time domain analyses in order to explain complex site 

amplification phenomena in the town of San Giuliano di Puglia, during the Molise 2002 

earthquake sequence. Two different geometries of the geological structure have been 

hypothetized : (a) a syncline (“basin” model) and (b) an overthrust (“wedge”model). The 

numerical modeling for the aforementioned structures is depicted in Figure 1.75. The 

analyses provided a PGA distribution along the ground surface increasing from the edges 

to the center of the clay deposit, and characterized by significant longitudinal 

fluctuations. This result is consistent with the irregular seismic damage distribution. 

 The effects of basin edge slope on the dynamic response of horizontal soil deposits 

have been also investigated by Ciliz et al (2007). To this end, 24 basin models of 

trapezoidal cross section were generated to represent different valley geometries (i.e. 

depth of basin, slope of basin edge), while the non linear stress strain behavior of soils 

had been also incorporated using an equivalent linear method. To quantify the effects of 

basin edge slope the dimensionless ratio PGA
2D

/PGA
1D

 was introduced. It was concluded 

that a significant shadow area (where the predictions of the 1D analyses were 

conservative compared to that of the 2D analyses by a factor of as low as 0.30 ) could be 

observed in almost all cases examined. Besides, the PGA
2D

/PGA
1D

 values were decreasing 

with increasing slope inclination. However, beyond this region one-dimensional analysis 

results were unconservatively biased by a factor as high as 1.2, with maximum being the 

2D amplification at a region between 0.8 to 1.4 (in dimensionless terms). 

 

- 65 -



Metaplastic Response of Frame–Foundation Systems 

1.7.2 Observational Evidence 

Lately, the critical issue of capturing the real aggravation mechanisms and the necessity 

to confirm the theoretical results has led to the development of fully instrumented test-

sites, which serve as large scale natural laboratories. The Euroseistest in the Volvi basin in 

Greece [Pitilakis, 2004; Chavez-Garcia et al., 2000; Raptakis et al., 2000; Makra et al., 

2001; 2005], the Japanese seismograph arrays in Ashighara Valley [Ohtsuki & Harumi, 

1983; Ohtsuki et al., 1984]  and Ohba Valley [Tazoh et al., 1988; Gazetas et al., 1993], the 

alluvial Valley of Parkway in New Zealand [Chavez-Garcia et al., 1998], the Coachella 

Valley in California [Field, 1996], and the Valley of Nice in France [Sanchez-Sesma et al., 

1988], are some of the best known test sites. Their merits include : (i) the high density of 

the installed  accelerograph arrays, (ii) the detailed knowledge of subsoil geometry and 

soil mechanical properties, and (iii) the accumulation of records. Site response analysis 

confirmed the importance of 2D geometry effects, clearly suggesting that 1D soil 

amplification phenomena may be significantly contaminated (aggravated) by laterally 

propagating surface waves. Although such studies have offered valuable insights, in most 

cases only weak ground motions have been recorded so far. 

 One of the first attempts to provide observational evidence of the importance of 2D 

and 3D site effects was that of King and Tucker (1984). In this early work in order to 

measure the dependence of valley site's response on key parameters (such as, input 

signal's azimuth and incidence angle, the position of the site within the valley, frequency, 

valley dimension, and the impedance contrast of the valley sediments to the basement 

rock) a number of field experiments had been designed. The valley under study was 400 

m wide and 700 m long, with a maximum sediment thickness of 60 m. The average 

seismic impedance contrast between the sediments and underlying basement rock was 
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about 6:1. Their findings correspond to elastic valley response as the input motions were 

weak, varying between 10
-5

 and 10
-3

 g. Results from this study show apparent site 

amplifications: Ratios of Fourier spectra from soil sites to spectra from nearby rock sites 

were as much as a factor of ten, depending strongly on the frequency and the distance of 

the site from the valley edge. In fact ground motion at valley-edge and mid-valley sites, 

separated by less than 100 m, differed by as much as a factor of five. On the other hand 

the response to earthquake motion of a valley was found slightly to depend on the input 

signal's azimuth and the angle of incidence. 

 The work of Frankel (1994) had considerably contributed in the better understanding 

of the basin induced surface waves. Utilizing measured data from three dense arrays 

deployed in the San Bernardino Valley, he showed that the long duration of shaking with 

periods of 1 to 3 sec that followed the aftershocks of the Big Bear and Landers 

earthquakes may be only attributed to short-period surface waves propagating in the 

valley. Indeed comparison of the observed records with synthetics determined from a 

flat layered velocity models indicates that these surface waves could not be generated 

near the source, but must have been produced by trapping of the incident S wave near 

the edge of the Valley (Figure 1.76).  

 Field (1996) based on measurements of a linear array deployed in the Coachella 

Valley, California, during the 1992 Landers/Big Bear aftershock sequence provided 

experimental evidence that the seismic response of the site was clearly dominated by 

basin-edge-induced waves: Sediment to bedrock spectral ratios computed using short 

windows that exclude the basin-edge-induced waves imply that the multi-dimensional 

effects are significant only below 4 Hz, where they increase amplifications by an 

approximate factor of 2. In the same pace was also the work of Malagnini et al (1996) 
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who based on explosion, earthquake (only low intensity events), and ambient noise 

recordings collected at the eastern edge of a Pliocene sediment-filled valley, nearby the 

town of San Casciano dei Bagni deducted extremely high amplification amplitudes. Figure 

1.77 clearly demonstrates the above observation with the left figure incorporating the 

observed amplifications that may be attributed only to the direct S waves, while the right 

figure illustrates the experienced amplifications where all wave trains were taken into 

account. It is clear that these later arrivals significantly amplify the valley response for 

frequencies below 2.5 Hz.  

 In 1999 Chávez-García et al employing data from a dense seismograph array that 

operated for more than 2 months in the alluvial basin of Parkway in New Zealand studied 

the amplification phenomena associated both with 1D and 2D valley response. The 

primary conclusion of this work was that it may be extremely difficult to differentiate 

between 2D and 1D site effects, if try to do so in the frequency domain (as they both 

appear at the same frequency range). A side outcome was that a stable direction of 

propagation for edge-generated Rayleigh waves was distinguished irrespectively of the 

excitation events confirming that valley geometry strongly controls the produced wave-

forms. Stephenson (2007) by exploiting data recorded by a temporary dense 

seismometer array again at the Parkway valley, distinguished strongly 2-d phenomena 

site effects associated with both transverse and longitudinal waves, while quite 

interestingly he provided evidence of a ‘‘cellular mode of resonant response’’ of the 

valley similar to that suggested by Bard and Bouchon in their numerical studies.  

 Additional evidence on the importance of basin generated surface waves was 

presented by Cornou et al (2003b) by studying the site effects in Grenoble Basin in 

French Alps. In an attempt to explain the large amplification and the significant duration 
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increase of ground even for moderate-size events, a dense array of 29 seismometers had 

been established. Utilizing a methodology developed by Cornou et al, 2003a (which is 

based on time–frequency coherence and multiple signal classification algorithm) the 

complex recorded wave field was decomposed and the distinguished wave arrivals have 

been identified. It was concluded that the ground motion inside the valley was 

dominated by basin-edge-induced waves (60% Rayleigh waves and 40% Love waves) that 

carry 4 times more energy than the direct wave field, regardless of the type of event 

considered. Similar were the findings of Hartzell et al (2003), who analyzing the ground 

motion records from a 52-element dense seismic array near San Jose in California, 

concluded that the observed amplification pattern (who is almost the same for both local 

and regional events) may be attributed to the generation/trapping of surface waves 

above the shallowing basement of the basin.  

 From an engineering perspective, valuable are the findings of Safak (2007) who 

investigated the effects of surface waves on structural response and presented both 

observational and analytical confirmations of their significance. He suggested that 

surface waves may be particular critical for long-period structures, such as tall buildings 

and base-isolated structures since their energy is mainly concentrated at long periods. 

Moreover because of their long duration, surface waves can push a damaged structure 

into complete collapse because of the additional hysteretic deformation cycles that the 

structure goes through. Figure 1.78 clearly illustrates the above statement by comparing 

the response of 2-second elasto-plastic oscillator when subjected to an excitation of 20 

seconds (where the late arrivals that are associated with surface waves have artificially 

been removed) and when excited by the entire record.  
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Figure 1.1: (a) The geometry of soil–structure interaction problem; (b) decomposition into 

kinematic and inertial response; (c) two-step analysis of inertial interaction (after Mylonakis 

et al, 2006). 

 

 
Figure 1.2: Interaction curves in the normalised N–M plane for bearing capacity failure on 

rigid (1) or deformable (2) soil. Decomposition of uplifting and soil-yielding mechanisms  

(after Gazetas et al, 2007) 
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Figure 1.3: Relationship between earthquake design level and performance level (after OES, 

1995) 

 

 

 

Figure 1.4: Graphical solution using the Capacity Design Spectrum approach (after Freeman, 

1998) 
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Figure 1.5: Modification of Capacity Spectrum Method utilizing inelastic response 

spectrum proposed by Fajfar (1998) 

 

 

Figure 1.6: Step 1 of the Displacement-based Design Approach: Determine the 

effective Stiffness and Damping Properties of the equivalent 1-dof system 

 

 

Figure 1.7: Step 2 of the Displacement-based Design Approach: Estimation of effective 

damping according to Tadeka degrading stiffness hysteresis 
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Figure 1.8: Step 3 of the Displacement-based Design Approach: Decide upon a 

Displacement response spectra  

 

 

 

Figure 1.9: Step 4 of the Displacement-based Design Approach: Obtaining the 

effective period (at the point of the maximum Displacement) from a Elastic 

Displacement Response Spectrum for a given allowable displacement 
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Figure 1.10: Model of core-stiffened building and equivalent simplified first-modal 

system analyzed (after Meek, 1978) 

 

 

 

Figure 1.11: Concept of PTED steel connection: (a) steel frame with PTED connections; (b) 

deformed configuration of exterior PTED connection (after Christopoulos, et al 2002) 

 

- 76 -



Metaplastic Response of Frame–Foundation Systems 

 

Figure 1.12: Experimental moment–rotation curve of a PTED connection (after 

Christopoulos, et al 2002) 

 

 

 

Figure 1.13: Idealized hysteretic behaviour of the PTED beam-to-column connection: 

(a) contribution of PT Bars; (b) contribution of ED bars; and (c) moment–rotation 

relationship of PTED connection (Christopoulos, et al 2002) 
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Figure 1.14:  Comparative results on the response of EP and FS4 systems under 130% of 
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Figure 1.16: Hysteretic response of various structural wall systems : (a) conventional system; 

(b) fully pre-stressed system; (c) partially prestressed “hybrid” concrete system 

 

 

  

Figure 1.17: Details of experimental Configuration of (a) the conventional precast reinforced 

wall and (b) of the “hybrid” system proposed by Holden el al, 2003. 
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Figure 1.18: a) Pier and deck geometrical data; b) SDOF Modeling (after Palermo et al, 2004) 

 

 

 

Figure 1.19: Experimentally deduced overturning moment vs. rocking angle of the 

foundation subjected to slow-cyclic lateral load: (a) assuming HD and (b) LD conditions  

(after: Negro et al, 2000) 

 

 

 

Figure 1.20: Experimental set up for vertical push, slow cyclic lateral push and dynamic 

loading tests  (after Gajan et al, 2005) 

(a) (b)
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Figure 1.21: Results for the slow cyclic lateral push test (case study: dry sand (Dr 80%), 

footing length 2.84 m, width 0.65 m, embedment 0.0 m, FS 6.7, lateral load applied at height 

4.9 m (after Gajan et al, 2005) 

 

 

Figure 1.22: Picture of the experimental set-up, including the test model (source: Paolucci et 

al, 2008) 
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Figure 1.23: Sketch of subsequent yielding phases of foundation–soil interaction as observed 

from shaking table experiments (after Paolucci, 2008) 

 

 

 

Figure 1.24: Snapshot of the experiment (source: Maugeri et al, 2000) 
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Figure 1.25: Displacement field beneath the foundation deduced from PIV analysis (source: 

Knappet et al, 2006) 
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Figure 1.26: (a) Problem definition: Rocking of a rigid block on a rigid base and (b) example 

result from Housner’s work; constant acceleration α of duration t1 required for overturning 

(case study of a rigid block excited by a sinusoidal acceleration) 

 

 

 

 
Figure 1.27: (a) Definition sketch of the Rocking Block and (b) typical result; domain of 

attraction of the four subharmonic orbits [case study: α=0.001, ν=0.925, β=2.5, ω=9.0], 

(after: Hogan, 1989)  

 

(a)

(b)
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Figure 1.28: Overturning Acceleration Spectra of Slender Block under One-Sine Pulse 

computed both with a Linear and Nonlinear formulation. [case study: p=2.14 rad/sec, α 

=0.25 rad and n=0.9], (after Zhang & Makris, 2001) 

 

 

 
 

Figure 1.29: Overturning Acceleration Spectra of Slender Block under One-Cosine Pulse 

computed both with a Linear and Nonlinear formulation. [case study: p=2.14 rad/sec, α 

=0.25 rad and n=0.9], (after Zhang & Makris, 2001) 
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Figure 1.30: Relationship between slenderness ratio and size parameter (1/p) required for 

the overturning of a rigid block. The continuous line corresponds to the result obtained 

when the excitation was the Duzce record, and the dotted line to the suitably “fitted” Ricker 

wavelet (after: Gerolymos et al, 2007) 

  

 

 

 
Figure 1.31: Problem Definition and pressure distribution under a rocking rigid slab (after: 

Biot, 2006) 
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Figure 1.32: Rocking block on (a) two-spring foundation and (b) Winkler foundation  

 

  
Figure 1.33: Flexible Structure supported on (a) a simple two-spring viscously damped 

foundation and (b) on a winkler type foundation (after Yim and Chopra (1984) and Chopra 

and Yim, 1985) 

 

 

 

Figure 1.34: (a) Winkler-foundation system below an inelastic shear wall and (b) ductility 

demand vs period allowing or preventing uplift (after: Nakaki and Hart, 1987) 
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Figure 1.35. Typical configuration of the “material” utilized by Harden et al, 2005 

 

 

 
Figure 1.36. Cyclic response curve for the nonlinear Allotey and El Naggar Winkler model. 

 

 

 
Figure 1.37. Comparison of computed results utilizing the Allotey and El Naggar Nonlinear 

Winkler model with experimental data in terms of moment–rotation and horizontal force–

displacement response, Case study: LD test, in the TRISEE 1-g experiment. 
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Figure 1.47: Hybrid modeling of soil-structure interaction problems (after Gupta and Lin, 

1982) 

 

 

 
Figure 1.48: Disretization of the far-field domain to infinitesimally small soil elements  

(after Gupta et al, 1980) 

 

 

 
Figure 1.49: Schematic Representation of the DRM Method as applied in a seismic 

propagation problem. The region under study is divided into two subdomains; (a) Ω
+
, which 

includes the seismic source, represented by nodal forces Pe, and (b) Ω, which contains the 

localized geological features. The two regions are partitioned explicitly across the interface Γ. 

(after Bielak et al, 2003) 
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Figure 1.50:  The model of the investigated structure in the work of Wolf & Oberhuber, 1985 

(top figure) and a typical result of their study: comparison of vertical soil reaction and 

overturning moment time histories by assuming both full contact conditions and by allowing 

foundation uplift (bottom).   

 
 

Figure 1.51:  (a) Outline of the spudcan footing analysed by Houlsby & Martin (2003), and (b) 

variation of the undrained shear strength with depth. 

 

 
Figure 1.52:  Typical Result from Bransby (2002): effect of preload consolidation on the V-H 

yield locus 
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Figure 1.53:  Finite Element Models utilized by Gourvenec, 2007 (top figure); produce failure 

envelopes (in normalized load space) for VHM loading  considering zero-tension interface 

(middle);  comparison of the failure envelopes when zero-tension and unlimited tension 

interfaces are assumed. 
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Figure 1.54: Overview of the finite element modeling : plane-strain conditions are assumed, 
taking account of material (soil and superstructure) inelasticity and geometric (uplifting and 
P-Δ effects) nonlinearities.  (after Anastasopoulos et al 2009) 
 

 
Figure 1.55:  Comparison of the response of the two alternatives subjected to a large 
intensity earthquake (Takatori, 1995), exceeding the design limits. (after Anastasopoulos et 
al 2009) 

Pier : Non-linear beam elements
(d = 3m, H =12 m)
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Seismic excitation :                                                  
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Figure 1.56: (top) Geometry of the semi-cylindrical canyon and the surrounding half-space 

studied by Trifunac, 1971. Surface displacement amplitudes for incident SH waves with  γ=0
ο
 

and γ=30
ο
(bottom). 

 

Figure 1.57: 2D model used in the numerical simulations and synthetic seismograms 

computed for vertical incident waves (after Jongmans and Campilo, 1993) 
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ωα/πβ 

Figure 1.58:  Incidence of a plane SV wave with incidence angle of 0". Frequency response 

for surface receivers equally spaced between x = - 1.25a and x = 0.0 at the surface of a 

shallow parabolic valley (Sanchez- Sésma et al, 1993). 

 

 

Figure 1.59:  Response of a high contrast type 2 valley with maximum depth 500 m and half 

width 5 km to a vertically incident P Ricker wavelet of characteristic period Tp = 1.40 sec. 

Left: the traces represent the horizontal and vertical displacements at the valley surface. 

Right: Diagrams showing the temporal and the spatial evolution of the surface displacement 

components. (after: Bard and Bouchon, 1980(b)) 
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Figure 1.60: Construction of the 4N image point sources contributing to motion at P(r, φ), for 

the case N = 3. One of the 4N ray paths is shown (SABCDP), together with its equivalent 

obtained by method of images (the straight line S'A'B'C'DP).(after: Paolucci et al, 1992) 

 

 

 

- 99 -



Chapter 1: Literature Review 

 

Figure 1.61:  Rayleigh waves at various sites for three basin materials; top: isotropic, 

middle:-bottom transversely isotropic with different levels of anisotropy; Two Rayleigh 

orbits are distinguished. It was concluded that anisotropy only slightly affects the formation 

of the scattered waveforms. 

 

 

(a) 

 

(b) 

Figure 1.62:  (a)Analytical model of a cliff with a soft layer and filled land and (b) 

Distributions of maximum horizontal and vertical surface displacements compared with 

results calculated by one-dimensional model (after Otsuki and Harumi, 1983) 
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Figure 1.63: Comparison of the studied valley models with Bard and Bouchon’s (1985) 

existence condition represented by the shape ratio-velocity contrast curve 

 

Figure 1.64: 2-dimensional basin models used to investigate the effects of basin complexity 

on the seismic response to a vertically incident SH waves. (Hill et al, 1990) 
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Figure 1.65: Total normalized kinetic energy of the seismic traces for the different basin 

models of the Salt Lake valley(Hill et al, 1990) 

 

 

 

Figure 1.66:  Comparison of simulated particle velocities at a depth of 300 m to recordings at 

the deepest borehole station (after Olsen et al, 2000) 
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Figure 1.67:  Maps of peak velocities in the Borrego Valley for a simulation of the M 4.9 

earthquake, superimposed with the depth contours of 0.05 km and 0.3 km for the iso-

surface of Vs =1 km/sec (after Olsen et al, 2000) 

 

 

 

Figure 1.68: (a) Three-dimensional geologic/structural model of the Santa Clara Valley that 

forms the basis for the 3D seismic-velocity and attenuation model utilized in Hartzell et al 

(2003) study.  
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squares stands for the locations of recording stations. The bottom figure compares 

(heavy trace) with the

of the Evergreen Basin for the specific 76

 

 

Figure 1.69: Simulation of event 76: 

ares stands for the locations of recording stations. The bottom figure compares 

(heavy trace) with the

of the Evergreen Basin for the specific 76

Simulation of event 76: 

ares stands for the locations of recording stations. The bottom figure compares 

(heavy trace) with the synthetic (lighter trace) velocities for stations along the eastern side 

of the Evergreen Basin for the specific 76

Simulation of event 76: black

ares stands for the locations of recording stations. The bottom figure compares 

synthetic (lighter trace) velocities for stations along the eastern side 

of the Evergreen Basin for the specific 76

black square denotes for the epicenter

ares stands for the locations of recording stations. The bottom figure compares 

synthetic (lighter trace) velocities for stations along the eastern side 

of the Evergreen Basin for the specific 76 (after: Hartzell et al, 

square denotes for the epicenter

ares stands for the locations of recording stations. The bottom figure compares 

synthetic (lighter trace) velocities for stations along the eastern side 

Hartzell et al, 2003)

Chapter 1: 

square denotes for the epicenter

ares stands for the locations of recording stations. The bottom figure compares 

synthetic (lighter trace) velocities for stations along the eastern side 

2003). 

Chapter 1: Literature Review

 

square denotes for the epicenter, while red 

ares stands for the locations of recording stations. The bottom figure compares 

synthetic (lighter trace) velocities for stations along the eastern side 

Literature Review 

, while red 

ares stands for the locations of recording stations. The bottom figure compares data 

synthetic (lighter trace) velocities for stations along the eastern side 
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Figure 1.70:  Cross sections of the simplified Salt Lakevalley velocity model showing the four 

kinematic source simulations modeled. The Salt Lake basin is modeled as homogeneous with 

a P- and S-wave velocity of 3.50 km/sec and 2.02 km/sec, respectively, while the basement is 

homogeneous with a P- and S-wave velocity of 6.10 km/sec and 3.52 km/sec, respectively. 

The four source simulations are: (a) a vertically incident plane wave, (b) a buried double-

couple, (c) a normal faulting earthquake that ruptures the surface, and (d) a buried normal 

faulting earthquake. 

 

 

 

 

Figure 1.71: Amplification ratios (AR) of valley-model A (a) for plane SH waves incident from 

the north with an incidence angle i = - 60 ° and (b) for the line source located to the north of 

the valley. On the AR obtained from the 2-D model are superimposed the AR of the 

corresponding 1-D model of each site across the valley (after Papageorgiou and Kim, 1991). 
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Figure 1.72: Acceleration, velocity, and displacement response for 12 stations along the 

cross section of the Marina District under investigation, to input motions recorded at the 

rock site PAC. (after Zhang and Papageorgiou, 1996) 

 

 

Figure 1.73:  Fourier Spectral Ratio as a function of the input frequency along the valley 

surface. Top: 2D simulation; Bottom: 1D simulation (after: Bielak and Ghattas, 1999) 
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Figure 1.74:  Pseudo acceleration Structural Response Spectra for 5% Critical Damping Using 

Ground Motion Synthetics from 1D and 2D Simulations: (a) Response Spectra for Three Sites 

in Kirovakan and One in Leninakan, Denoted by K and L, Respectively; (b)–(d) Response along 

Entire Valley of Kirovakan, for Three Different Natural Frequencies (after: Bielak and 

Ghattas, 1999) 

 

 

Figure 1.75: Working hypotheses for (a) basin and (b) wedge structures underneath the 

town of Puglia (after Puglia et al, 2007) 
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Figure 1.76:  (Solid) Observed spectral ratio between transverse components at NA2 and SBE 

for event 3. (Dashed) Spectral ratio determined from synthetics from 3D simulation. (Dot-

dashed) Spectral ratio determined from flat-layered (1D) model with vertically incident S 

wave. (after Frankel, 1994) 

 

 

Figure 1.77:  Spectral ratios obtained from the shot data for stations on Pliocene sediments, 

using the hard rock site as a reference station. Spectra were computed over (a) a 5.0 sec 

time interval windowing the direct S waves and (b) a time interval including the entire S-

wave trains and late arrivals (source: Malagnini et al, 1996) 
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Figure 1.78: Comparison of elasto-plastic responses, ductility demands, and force-

deformation hysteresis loops of a 2-second elasto-plastic oscillator corresponding to the first 

20 seconds and the entire record (after Safak, 2007)  
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 2 
 

Simplified Constitutive Model for Simulation of 

Cyclic Response of Shallow Foundations :  

Validation against Laboratory Tests  

 

 

2.1. Introduction 

The fundamental problem that has motivated this study is the seismic response of slender 

foundation−structure systems, for which P–Δ effects play a significant role. Under severe 

seismic shaking, the shallow foundations of these systems may experience detachment from 

the supporting soil due to the large overturning moments (arising from inertial and 

gravitational forces). The ensuing rotational uplift will, in most cases, lead to a large increase 

of the imposed stresses on the soil under the edge of the footing. Mobilization of bearing 
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capacity failure mechanism under the action of combined moment–shear–vertical, M–Q–N, 

loading is a possible outcome. 

But the occurrence of such an event does not necessarily imply failure ─ thanks to the 

cyclic and kinematic nature of the seismic excitation. As a result of the cyclic character of the 

motion, a bearing capacity “failure” mechanism may lead to only a small rotation before the 

direction of motion is reversed. If the next “pulse” of the ground motion is also strong, 

another bearing capacity “failure” mechanism will develop on the opposite side of the 

foundation. And so on, until the end of shaking. 

The kinematic character of seismic shaking (i.e. the loading in the form of dynamic 

displacement imposed at the base) distinguishes it from external loading in the form of force 

applied to the mass. Even if the base acceleration is larger than the critical (yield) 

acceleration Ac , the acceleration that  develops in the mass can not exceed Ac , and failure is 

not necessarily the consequence.  

Performance-based design in earthquake geotechnics (i.e., design on the basis of 

limiting the maximum and permanent displacements and rotations of facilities during the 

design earthquake) has its justification on the above consequences of the cyclic and 

kinematic character of motion. Thus, the concept of allowing significant foundation uplifting 

(implying a geometric nonlinearity) and mobilization of ultimate bearing capacity (implying 

material inelasticity) during strong shaking (Figure 2.1) has been suggested in recent years as 

a change from the prevailing conventional design philosophy [e.g., FEMA-356, 2000]. In fact, 

a growing body of evidence suggests that allowing such nonlinear-inelastic foundation 

response is not only unavoidable, but may even be beneficial [Paolucci, 1997; Pecker, 1998, 
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2003; Martin & Lam, 2000; Makris & Roussos, 2000; Comartin et al., 2000; Pecker & Pender, 

2000; Faccioli et al., 2001; Kutter et al., 2003; Gazetas et al., 2003; 2007; Gajan et al., 2005; 

Paolucci et al., 2008;  Kawashima et al., 2007; Gajan & Kutter, 2008; Chatzigogos et al., 2009 

; Anastasopoulos et al., 2009]. 

Despite the fact that the nonlinear load-displacement response of shallow foundations 

has been extensively studied [e.g. Bartlett, 1976; Taylor et al., 1981; Georgiadis & Butterfield 

1988; Butterfield & Gottardi, 1994; Faccioli et al. 2001; Gajan et al., 2005; Kutter, 1995; 

Houlsby & Puzrin, 1999; Allotey & El Naggar, 2003; 2008; Pecker, 2005; Harden et al., 2005; 

Pender, 2007; Gajan & Kutter 2008; Harden & Hutchinson, 2009], there is still quite a long 

way before such a major change in seismic design philosophy could be applicable in practice. 

Aside from reliability issues, a key prerequisite to render such concepts more attractive to 

engineers is the capability to realistically model the inelastic response of foundations. 

Although several advanced and sophisticated constitutive models have appeared in the 

literature [e.g., Prevost, 1981; Dafalias, 1986; Houlsby, 1986; Jefferies, 1993; Gajo & Wood, 

1999; Pestana, 1994; Pestana & Whittle, 1995; 1999; Jeremic et al., 1999; Puzrin & Houlsby, 

2001a; 2001b; 2001c; Einav et al., 2003; Dafalias & Manzari, 2004; Houlsby & Puzrin, 2006], 

the current state–of–the art in nonlinear analysis of foundations emphasizes the 

development of macro-element models [Paolucci, 1997; Cremer et al., 2001; 2002; Le Pape 

& Sieffert, 2001; Pecker, 2002; Paolucci et al., 2008]. This is not only because sophisticated 

constitutive models typically require extensive calibration of their numerous parameters. 

Being usually implemented in highly specialized finite element (FE) or finite differences (FD) 

codes, their use is also restricted to simple superstructures. Additionally, in most cases, such 
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models can only be applied by numerical analysis specialists, prohibiting their use in 

practice. On the other hand, macro-elements constitute a valid solution, but are also usually 

restricted (at least until today) to simple superstructures.       

In an attempt to overcome some of the above difficulties, this Chapter presents a 

simplified constitutive model for analysis of the cyclic response of shallow foundations. The 

model is based on a simple kinematic hardening constitutive model with Von Mises failure 

criterion, available in  commercial FE codes. As it will be discussed in the sequel, the model is 

modified to be applicable for sand, following a simplified procedure, and is encoded in the 

FE code ABAQUS through a simple user subroutine, hence formulating a numerical tool able 

to provide fully coupled solution to soil-structure interaction problems such as the ones 

examined herein. The model is validated against centrifuge tests performed at UC Davis and 

large-scale 1-g experiments under the EU program TRISEE. Despite its simplicity and lack of 

generality and rigor, for the particular type of problem investigated herein such a 

constitutive model yields quite reasonable results. Requiring calibration of two parameters 

only, and being (relatively) easy to implement in a commercial FE code, the developed 

model is believed to provide a practically applicable solution. By no means should this model 

be considered as a general purpose model, able to reproduce all aspects of complex soil 

behavior under static and dynamic loading. However, despite its limitations (discussed in the 

sequel), it may be utilizable to model different aspects of dynamic soil response.  
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2.2. Constitutive Relations 

As previously discussed, the constitutive model presented herein is based on a rather simple 

kinematic hardening model with Von Mises failure criterion, which is available in ABAQUS 

[2008]. Based on the work of Armstrong & Frederick [1966], the original model [Lemaitre & 

Chaboche, 1990] may be considered appropriate for clay, the behavior of which under 

undrained conditions is considered as normal-pressure-independent. Of course, phenomena 

such as pore-pressure buildup and dissipation cannot possibly be captured. However, for the 

key aspects of the investigated problem, given the rapid application of seismic loading the 

undrained behavior is considered as a reasonable simplification of reality. The model is 

modified, as described in the sequel, to be applicable for sands, as well. To provide a more 

concise presentation, the relevant constitutive relations for clay and sand are discussed 

together. 

An extended pressure-dependent Von Mises failure criterion (Figure 2.2a) is combined 

with nonlinear kinematic hardening and associated plastic flow rule. It is noted that this 

assumption is not valid for sand, the volumetric behavior of which largely depends on 

dilation. The evolution of stresses is defined as : 

οσ σ α= +      (2.1) 

where οσ
 

corresponds to the stress at zero plastic strain, and α is the “backstress”. The 

latter determines the kinematic evolution of the yield surface in the stress space. This is 

performed through a function F  which defines the yield surface :   

( )F f οσ α σ= − −       (2.2) 

where ( )f σ α− is the equivalent Mises stress with respect to the backstress α : 
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Given the associated plastic flow, the plastic flow rate 
plε& is :  

σ∂
∂

=
Fplpl εε &&       (2.3) 

where plε& the equivalent plastic strain rate. 

The evolution of stress is composed of two components : 

(a) an isotropic hardening component, which describes the change of the equivalent stress 

defining the size of the yield surface οσ as a function of plastic deformation, and  

(b) a nonlinear kinematic hardening component, which describes the translation of the 

yield surface in the stress space, and is defined by the superposition of a purely 

kinematic term and a relaxation term (which introduces the nonlinear behavior). 

The isotropic hardening component defines the evolution of the size of the yield 

surface as a function of the equivalent plastic strain 
plε : 

( )plε1 bQ eοσ σ −
0 ∞= + −     (2.4) 

where Q∞

 

and  b are model parameters, defining the maximum change of the size of the 

yield surface, and the rate of this change with plε , respectively. For Q∞  = 0 the size of the 

yield surface remains constant and the model reduces to a nonlinear kinematic hardening 

model. 

The evolution of the kinematic component of the yield stress is described by the 

expression : 

pl pl1
( )ε εC

ο

α σ α γα
σ

= − −& &&      (2.5) 
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where C is the initial kinematic hardening modulus [ 
y y 2(1 ) οC σ ε E ν G= = = + ] and γ is a 

parameter determining the rate of decrease of the kinematic hardening with increasing 

plastic deformation. The above equation is based on Ziegler’s [1959] kinematic hardening 

law, in which the "recall" term plεγα &  has been added to introduce the non-linearity in the 

evolution law [Lemaitre & Chaboche, 1990]. Figure 2.2b illustrates the evolution of the two 

hardening components (kinematic and isotropic) for multi-axial loading. According to the 

evolution law governing the kinematic hardening component, the "backstress" α must be 

contained within a cylinder of radius 2 3C γ . The bounding of the yield surface demands 

that all stress points lie within a cylinder of radius 2 3 yσ , where yσ  is the maximum yield 

stress at saturation. At large plastic strains, when σ approaches σy , the magnitude of α 

becomes equal to αs = C/γ and (σ–α) tends to σο (Figure 2.3a), which means that α&
 

(Eq. 5) 

tends to zero. 

For the case of clays, the undrained strength of which is not pressure dependent, the 

maximum yield stress can be defined as :  

uS3y =σ        (2.6) 

Since 
y 0Cσ γ σ= + , parameter γ  can be expressed as [Gerolymos et al., 2005] :  

03

C

σ
γ

−
=

uS
     (2.7) 

In the case of sand, the shear strength depends on the confining pressure and the 

friction angle φ. This pressure-dependency is incorporated in the model by defining the yield 

stress at saturation as a function of octahedral stress and the friction angle, as follows :   
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1 2 3
y 3 sin

3

σ σ σ
σ ϕ

+ + =  
 

    (2.8) 

where 
1σ ,

2σ , and
3σ the principal stresses. Accordingly, parameter γ  can be expressed as :                                                                                 

1 2 3
0

C

3 sin
3

γ
σ σ σ

ϕ σ
=

+ +  − 
 

    (2.9) 

Parameter σ
0 , which controls the initiation of the non-linear behaviour is defined as a 

fraction λ (typically ranging from 0.1 to 0.3) of the yield stress σy :  

σ
0
  = λ σy        (2.10) 

Figure 2.3a summarizes the parameters that are incorporated in the formulation of the 

proposed model, while Figure 2.3b vividly illustrates the effect of σο on material behavior (in 

terms of shear stress –shear strain loops) for two extremes. For σο = 0.1 σy , the material 

exhibits non-linear behavior even for very low amplitude strains. In contrast, for σο = 0.3 σy a 

considerable amount of shear strain is necessary to enter the non-linear regime. It should be 

clarified that the model, as presented herein, does not account for strain softening. Yet, in 

Figure 2.3a the more general case of strain softening soil is schematically illustrated just to 

define model parameters. 

Parameter C is the Young’s modulus for very small strains ; it determines the initial 

“elastic” stiffness at low strain amplitudes (Figure 2.3c). It can be directly computed on the 

basis of the measured shear wave velocity Vs , or estimated from empirical correlations [e.g. 

Hardin & Richart, 1963; Robertson & Campanella, 1983; 1983b; Seed et al., 1986; Mayne & 

Rix, 1993] and expressed as a function of the overburden stress σy :  

C = a σy        (2.11) 
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Based on such empirical correlations, the ratio a typically ranges from 150 to 1000 (i.e. E = 

300Su to 1800Su) for clays, and from 1000 to 10000 for sands. 

The modified kinematic hardening constitutive model is encoded in the ABAQUS [2008] 

finite element environment through a user-defined subroutine. As already alluded, model 

parameters can be easily calibrated, even with limited experimental or field data. In 

summary, the calibration requires the following data : (i) soil strength : Su for clay, φ for sand 

; (ii) small-strain stiffness : Go or Vs  (if measurement is not available, the aforementioned 

empirical correlations can be utilized) ; and (iii) G–γ curves : to calibrate parameter λ and the 

ratio a.  

For the purposes of the present study, model parameters were systematically 

calibrated for various levels of the overburden stress (for sands) and PI ratios (for clays), 

according to the experimental G–γ curves of Ishibashi & Zhang [1993] (see also Vucetic & 

Dobry, 1991). To this end, a numerical simulation of the cyclic simple shear test was 

conducted. Typical comparisons between experimental and computed G–γ and ξ–γ curves 

for sand are portrayed in Figure 2.4. For the soil materials investigated herein, λ = 0.1 was 

found to provide a reasonable fit to G–γ curves. For lower confining pressures (Figure 2.4a), 

the model slightly under-predicts the strength reduction at low to intermediate strains. The 

agreement is improved with increasing σvo (Figure 2.4b). As also seen in the FE computed τ–

γ (shear stress–shear strain) hysteresis loops of Figure 2.5 (corresponding to a typical sand), 

due to the adoption of the Masing criterion for loading-unloading, the model over-estimates 

the hysteretic damping for large shear strain amplitudes (γ ≈ 10
-2

). As expected, the 

reduction of λ leads to improvement of model accuracy. However, since σ0 essentially 
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defines the initiation of non-linear soil behavior, a great reduction of λ unavoidably leads to 

an increase of computational cost. Therefore, an initial sensitivity analysis was performed to 

estimate the optimum range of λ, which was found to range between 0.1 and 0.3. The 

results presented herein refer to λ = 0.1 (or σ0 = 0.1σy). Increasing λ to 0.3 leads to a 10% 

deviation from the presented results. Similarly, the value of a was calibrated so as to more 

effectively capture the initial part of the stress-strain curve. 

 

2.3. Model Validation for Clay 

The original constitutive model for clay will be validated first, making use of published UC 

Davis experimental results. 

2.3.1. Description of Tests  

Gajan et al. [2005] conducted experiments in the 9.1 m radius beam centrifuge at the Center 

of Geotechnical Modeling of the University of California, Davis. The tests were conducted at 

20 g centrifugal acceleration, comprising 40 models of shear wall footings imposed to cyclic 

and dynamic  loading. A comprehensive set of footing dimensions, depths of embedment, 

dead load, initial factor of safety against static bearing capacity failure, soil density, and soil 

types (dry sand and saturated clay) were parametrically investigated with respect to the 

nonlinear load-deformation foundation response. Four series of tests were conducted on dry 

sand (Dr ≈ 80 % and 60%) and one on saturated clay of  Su ≈ 100 kPa. The latter is selected for 

model validation.  

The structure had a weight of 364.8 kN, corresponding to an initial vertical factor of 

safety FSV = 2.8. The footing length was L = 2.672 m and its width B = 0.686 m (all dimensions 
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in prototype scale). The footing models were tested on a soil bed prepared in a rigid 

container. The material composing the clay layer consisted of remolded San Francisco Bay 

Mud, with Atterberg limits :  LL = 90 and PL = 38. Before spinning, the mud was consolidated 

on top of a dense sand layer. The final thickness of the consolidated clay layer was 1.7 m.  

The centrifuge model setup and the relevant instrumentation (for the tests 

investigated here : vertical push and slow cyclic lateral push) are displayed in Figure 2.6. 

Each test series included at least one concentric vertical push test to measure the bearing 

capacity of the soil and to confirm the undrained shear strength of the clay. This initial test 

was displacement controlled in order to mobilize the foundation capacity without 

developing excessive movement.  

The vertical push was followed by slow cyclic lateral push tests, during which 

displacement was applied through an actuator at a height of 4.75 m from the footing (which 

is close to the height of the center of gravity of the structure). The height of the structure 

tested was 10 m. Displacement was applied in packets of increasing amplitude, each one 

including three cycles of constant amplitude. Horizontal and vertical linear potentiometers 

were mounted at different positions on the wall and the footings to measure the 

displacements of the structure ; a load-cell attached on the actuator was measuring the 

force acting upon the wall. Detailed description of the experiments and the procedures 

followed are documented in Rosebrook & Kutter [2001a; 2001b; 2001c], Gajan et al. [2003a ; 

2003b], Kutter et al. [2003], and Phalen [2003].  
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2.3.2. Methodology of Numerical Analysis 

The problem is analyzed through 3-D finite element (FE) analysis. The developed 3D FE 

model, taking advantage of centrifuge model symmetry, is displayed in Figure 2.7. The soil is 

modeled with 8-noded hexahedral continuum elements. The same elements are used for the 

foundation. In contrast to the soil, their behavior is assumed linear elastic, and they are 

given the Young's modulus of aluminum (which was used in the centrifuge model tests). An 

initial sensitivity analysis revealed that the footing has to be discretized into at least 10 

elements to reproduce the mechanism of bearing capacity failure (for the vertical loading 

test) and the rocking behavior (for the lateral cyclic pushover test). The soil-foundation 

interface is modeled using special "gap" elements [ABAQUS, 2008], which allow the 

structure to slide on, or detach from the soil depending on the loading. These elements 

connect the nodes of the soil with the corresponding nodes (i.e. having the same 

coordinates) of the foundation, which are initially in contact but are allowed to separate 

when uplifting takes place. While being "infinitely" stiff in compression, the gap elements 

are tensionless allowing separation. In the horizontal direction, they follow Coulomb's 

friction law, allowing for sliding when the friction force is exceeded. In the analyses 

presented herein, the friction coefficient was set equal to 0.7. The shear wall was modeled 

with practically rigid 3-dimensional beam elements. Since the response is governed by 

foundation rocking, the flexural deformation of the shear wall may be assumed to be 

negligible. Hence, no attempt was made to model accurately the shear wall. Non-linear P−δ 

geometry effects were also taken into account.  
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Soil stiffness has been assumed to be constant with depth, which is a fair assumption 

for OC clays. In the absence of Vs or Go measurements, parameter C (i.e. the initial stiffness) 

of the constitutive model was calibrated exploiting the results of vertical push tests. Keeping 

all other parameters constant (Su = 100 kPa, Poisson’s ratio v = 0.3), C was parametrically 

varied from 300Su to 1800Su. The best fit was achieved for C = E = 600Su , which was adopted 

for the analysis of the slow cyclic lateral push sequence. No further calibration was 

conducted with respect to parameters λ and α : the already conducted calibration results for 

PI = 50 clay were utilized (Table 2.1). The comparison between the FE-computed ultimate 

vertical load and the experimental load-displacement curves (as measured by the two 

potentiometers on the footing) for the vertical loading is illustrated in Figure 2.8. 

The FE computed bearing capacity under undrained conditions was pult = 560 kPa, 

which corresponds to a static factor of safety FSv = 2.87. This compares satisfactorily with the 

experimentally measured bearing capacity p’ult = 546 kPa (i.e. FSv = 2.8), and is, 

understandably, slightly higher than the theoretical Prandtl [1921] solution for plane-strain :  

p'ult = (π+2)Su = 514 kPa     (2.11) 

Having partially calibrated the model using the results of the vertical push test 

(parameter C only), we now proceed to the simulation of the slow cyclic lateral pushover 

sequence. The FE model was subjected to 3 displacement-controlled loading packets (each 

one consisting of three load cycles) of increasing amplitude. Loading during the experiment 

was applied slowly, with the period of each cycle being equal to 200 seconds. In the 

numerical simulation, the displacement was applied quasi-statically.  
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Figures 2.9 to 2.11 compare the FE computed with the measured results in terms of : 

(a) moment–rotation response, and (b) settlement–rotation response of the foundation. 

More specifically : 

First Loading Packet 

Some uplifting can be traced in the moment-rotation loops predicted by the numerical 

model during the first loading packet (Figure 2.9a), something which is not observed to the 

same extent in the experiment. The latter are indicative of increased plastic straining of the 

soil underneath the footing, hence resulting to higher dissipation of energy as elucidated by 

the area included within the experimental hysteresis loops. The analysis slightly over-

predicts the maximum moment of the system during loading to the east direction (negative 

values in the diagram), while the discrepancy becomes larger to the opposite direction.  

The experimentally measured hysteresis loops systematically reveal a rather rapid 

decrease of the moment (by about 30%) at every maximum moment attainment, which is 

not followed by a respective decrease in footing rotation (in both loading directions). This is 

clearly demonstrated by the almost vertical segments of the loop immediately upon 

initiation of unloading and, in turn, results in substantial growth of the area of the M–θ loop. 

This may be the product of localized plastification underneath the footing edges, which 

could be attributed to reduced strength of the soil in these areas (due either to earlier cycles 

of shearing, or to soil inhomogeneities, or to details of the experimental procedure, which 

are not precisely known and/or cannot be reproduced with the numerical model).  

The model reliably reproduces the experimental settlement-rotation curve (Figure 

2.9b) both in terms of settlement per cycle and total settlement. Admittedly, however, apart 
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from the general agreement, it is worth noting that the numerical analysis predicts an 

uplifting–dominated response (indicated by the steep edges of the settlement–rotation plot) 

as opposed to the sinking–dominated response observed in the experiment. This 

discrepancy could also be attributed to localized plastification underneath the footing edges. 

Second Loading Packet 

During the 2
nd

 loading-unloading packet, both the experiment and the analysis show that a 

large area is enclosed within the hysteresis loops (Figure 2.10a), revealing the dissipation of 

a substantial amount of energy at the footing–soil interface. Experimental measurement and 

model prediction show that the ultimate moment capacity Mult of the system has been 

attained. Its value is of the order of 300kNm. The deviation of the experimental 

measurement from this value when the footing is loaded to the east (negative values) is 

tentatively attributed to some experimental asymmetry, or, as before, soil inhomogeneity. 

As shown in Figure 2.10b, with the exception of a slight underprediction of the 

settlement by the numerical analysis, the comparison in terms of settlement–rotation 

response is quite satisfactory.  

 

Third Loading Packet 

Excessive plastification is evident in both the experimental results and the numerical 

prediction (Figure 2.11a). The hysteresis loops reveal a highly non-linear response of the 

system. The curve now conspicuously manifests the mobilization of the ultimate capacity 

(Mult ≈ 300 kNm) : increase of rotation for constant moment. Still though, the non-symmetric 

behavior (different values of the ultimate moments in the east and west direction) 
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demonstrated by the experimental curve cannot be precisely captured with the numerical 

analysis. 

The numerical prediction is quite successful in terms of the settlement–rotation 

response (Figure 2.11b). According to Gajan et al. [2005], foundation rocking during large 

amplitude lateral loading leads to (permanent) loss of contact between the soil and the 

footing. The generated gap at the uplifted side is associated with a drastic reduction of the 

effective width of the foundation, leading to extensive soil yielding at the opposite side, 

further increasing the detached area of the foundation (see also Figure 2.7b). This is clearly 

betrayed by the sharp edges of the settlement–rotation curves. 

Generally, it is concluded that experiment and analysis confirm that the moment–

rotation plot does not reveal any appreciable reduction in moment capacity with increasing 

number of cycles, or rotation amplitude ; but it does demonstrate a degradation of 

rotational stiffness with increasing rotation amplitude. Moreover, the model realistically 

reproduces the accumulation of permanent settlement underneath the footing. The analysis 

confirms the experimental conclusion that, as the number of cycles increases, the rate of 

increase in settlement per cycle of rotation decreases. This is normally attributed to the 

increase of soil vertical stiffness due to soil densification. However, as seen in the model 

description (Eq. 4-10), the model is not capable of reproducing such increase of soil stiffness 

with settlement (i.e. the effect of soil densification). Nevertheless, as evidenced by the 

results, the systemic behavior is captured within acceptable engineering accuracy. This is 

attributed to the fact that as the footing settlement increases, soil plastification has to 

propagate deeper into the soil, and hence an increasing number of elements must be 
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contained within the failure mass. As the number of elements that must reach failure for the 

footing to settle increases, the rate of settlement will unavoidably decrease. Hence, 

although at the element level the model is not capable of capturing dynamic densification 

effects, the systemic behavior is captured correctly. At least for the specific problem, it 

seems that such systemic effects are probably more important.  

It is noteworthy that although the model predicts the settlement quite accurately, the 

energy dissipation prediction is not as successful. As can be seen in the rotation-settlement 

plots of Fig. 2.9 to 2.11, the model tends to underpredict foundation uplifting as the loading 

packets increase. Although the total settlement is predicted with reasonable engineering 

accuracy, the settlement per loading cycle is underpredicted. For example (Figure 2.11b), 

during the first cycle of the third packet the measured settlement (at the center of the 

footing) reduces from its initial value of -52 mm to about -28 mm, due to uplifting. The 

numerical prediction is a mere -40 mm, which means that foundation uplifting is 

substantially underpredicted. The same observation applies to all subsequent loading cycles. 

This underprediction of uplifting, which is the main mechanism of energy dissipation in such 

systems [e.g. Housner, 1963; Gottardi and Butterfield, 1995; Gajan et al, 2003; Gajan & 

Kutter, 2008] apparently leads to the observed underprediction of energy dissipation. On the 

other hand, as the model is able to correctly predict the soil ultimate strength (Figure 2.11a), 

the total soil settlement is correctly predicted. Naturally, such effects are more obvious in 

the third loading packet, during which the uplifting is more intense.  
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2.4. Model Validation for Sand 

The model for sand will be validated making use of the TRISEE large-scale (1g) geotechnical 

experiments, conducted in ELSA facility in ISPRA, Italy. 

 

2.4.1. Description of Tests  

A series of slow cyclic and dynamic tests were performed on an isolated footing resting on 

saturated sand. Loading of the structure was stemming from the application of cycles of 

horizontal (shear) force and (overturning) moment simulating the inertial loading 

transmitted onto the foundation from the superstructure. The soil properties were varied to 

model a high Density (HD) and a Low Density (LD) sand. The measured relative densities 

were Dr = 85% for the HD tests, and  Dr = 45% for the LD tests.  

As schematically illustrated in Figure 2.12 [after Faccioli  et al., 1999], the experimental 

prototype consisted of a concrete caisson, filled with coarse-to-medium Ticino sand [Bellotti 

et al., 1996], and a rigid slab, representative of a typical concrete shallow footing. The sand-

box dimensions were 4.6 m by 4.6 m in plan and 4 m in height. The foundation was 1 m by 

1m in plan. The sand-box lateral boundaries were rigid and impermeable. It must be noted 

that the response of the foundation may have been influenced by its proximity to the 

caisson lateral boundaries. The interface of the slab with the soil was made of concrete in 

order to achieve a high friction coefficient. The foundation was placed at 1 m depth in a 

trench of sand, to obtain an overburden pressure of about 20 kPa ; a 1 m high steel 

formwork was placed around the foundation to retain the sand. 
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An air cushion system was transmitting a constant vertical load throughout the test. 

The design values for the vertical load were 300 kN and 100 kN for the High Density (HD) and 

Low Density (LD) sand specimens, respectively (typical values of current design pressure 

levels for shallow foundations). In both cases, the design vertical load was considerably 

lower than the system’s bearing capacity. A hydraulic actuator set at 0.9 m above the 

foundation level for the HD case and at 0.935 m for the LD case, was used to impose to the 

foundation the prescribed horizontal displacement time history.  

Before initiation of the slow cyclic tests, a vertical load (which was simulating the 

structure load and hence was maintained throughout the test) was applied on the 

foundation. This was followed by three series of horizontal slow cyclic loading (slow 

application of horizontal displacements), of which only the third one is being modeled here. 

During the first phase, small-amplitude force-controlled cycles were applied to the structure. 

Phase II consisted of the application of a typical earthquake time-history providing a base 

shear similar to that of a four-storey reinforced concrete building designed according to 

Eurocode 8. 

During the third phase (which constitutes the validation target), the top of the 

structure was subjected to sine-shaped displacement cycles of increasing amplitude, until 

mobilization of the ultimate lateral foundation capacity. To achieve this capacity while 

avoiding excessive displacements, the test was displacement-controlled. The time history of 

the applied horizontal displacement is displayed in Figure 2.13 for the HD (high density) and 

the LD (high density) test. After application of the initial vertical loading, the settlement 

experienced by the foundation was around 7 mm for dense sand, and 16 mm for loose sand. 
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2.4.2. Methodology of Numerical Analysis  

The 3-D FE model shown in Figure 2.14 was developed to analyze the TRISEE experiment. 

The adopted numerical analysis methodology is the same with the one discussed in the 

previous section. The prescribed displacement was applied at the beam node at a height of 

0.9 m and 0.935 m above the foundation level for the HD and the LD tests, respectively. The 

part of the soil below the foundation level was saturated (degree of saturation ranging from 

80 to 90%) while the overburden soil layers were dry. The two soil states were modeled 

assuming a different unit weight : while the overlying dry sand was modeled with its dry unit 

weight γdry , the saturated unit weight γsat was assumed for the saturated sand layer. This 

way, the effective stresses were taken into account in the analysis. It is noted that such 

analysis cannot possibly capture the development of transient pore pressure and its effect 

on soil response. 

Similarly with the tests on clay, initial sensitivity analyses were performed to calibrate 

the initial stiffness (parameter C of the constitutive model). The best match was achieved for 

C = 8500σy and 6000σy for the HD and the LD tests, respectively (Table 2.1). A parabolic 

distribution of C with depth was assumed –a reasonable (but certainly not accurate) 

assumption for sand deposits. The initial static Factor of Safety (FSv) was not directly 

measured but has been calculated by various researchers [Negro et al., 2000; Faccioli et al., 

2001; Kutter et al., 2003; Gajan et al., 2005]. All researchers agree that the FSv  for the HD 

tests was about 5. This is consistent with the S–shaped M–θ curve of the HD test : such a 

shape has been linked to intense uplifting of foundations (a characteristic of relatively high 

FSv). Utilizing the strength parameters proposed by Belloti et al. [1998] and  Ahmadi et al. 
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[2005], for Ticino sand of Dr = 85% (peak friction angle φp = 43
ο
 ; constant volume friction 

angle φcv = 35
ο
), the analysis also produced an initial factor of Safety FSv

anal
 ≈ 5.  For the LD 

case however, the FSv as calculated by the aforementioned researchers ranges 

(astonishingly) from 2 to 7 ! Negro et al. [2000] report FSv = 5, and Faccioli et al. [2001] 

estimated an FSv = 7 based on bearing capacity formulae, with the theoretical strength of the 

Ticino Sand. However the oval shape of the LD M–θ curves is indeed a feature of low FSv 

conditions (i.e. lower than 5). Allottey & El Naggar [2008] after back calculations of the FSv  

based on (a) moment capacity equations and (b) the Butterfield & Gottardi [1994] bounding 

surface, recommend that the actual factor of safety for the specific LD tests ranges between 

2 and 2.85. Therefore, two strength scenaria are considered in the calculations, taking 

account of the Allottey & El Naggar [2008] recommendation that the peak friction angle of 

the Ticino sand achieved in the LD experiment ranges between 30
o
 and 35

o
. :  

(a) the FSv ≈ 5 scenario, assuming φp = 35
ο
 , and 

(b) the FSv ≈ 3 scenario, assuming φp = 30
ο
.  

 

2.4.3. Comparison of Numerical Prediction with Experimental Results  

Dense Sand (HD Test) 

A remarkable agreement is observed between the measured and the calculated hysteresis 

loops produced during slow cyclic tests (Figure 2.15a). Both loops evolve quite 

symmetrically. The numerical analysis effectively reproduces the lateral capacity of the 

system : Mult ≈ 100 kNm. The analysis captures with sufficient accuracy both the initial 

stiffness of the system, and the gradual degradation of rotational stiffness with increasing 
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rotation amplitude. Analysis and experiment produce an S-shaped moment−rotation curve, 

which clearly manifests an uplifting–dominated  response. As the amplitude of imposed 

rotation increases, the numerical model slightly overpredicts the dissipation of energy during 

cyclic loading.  

A relatively good agreement between the numerical prediction and the experiment is 

also achieved in terms of horizontal force versus horizontal displacement of the footing 

(Figure 2.15b). The experimental loop (dashed line) is slightly asymmetric, in that the 

maximum horizontal displacement is rather higher in the negative direction (6 mm) 

compared to that in the positive direction (5 mm). The numerically calculated loop (solid 

line), despite capturing the observed behaviour does not accurately predict the higher 

displacement in the negative direction (δ
anal

 = 5.5 cm).  

 

Loose Sand (LD Test) 

Contrary to the uplifting behavior of the footing on HD sand, the foundation on loose sand is 

obviously subjected to substantial irrecoverable sinking within the soil. This is justified by 

both the numerical model and the experimental results, which show clearly larger energy 

dissipation in the loose sand for both FSv scenarios (Figure 2.16 for the FSv ≈ 3 scenario and 

Figure 2.17 for the FSv ≈ 5 scenario). The loops produced during the LD tests are obviously 

asymmetric due to the irregularity of the input displacement time-history which contained a 

permanent negative horizontal displacement. This intense irregularity has not been captured 

by the analysis. Still though, a very good agreement is observed between the measured and 

the calculated hysteresis loops for the low FSv ≈ 3 scenario, while in the high FSv ≈ 5 case the 
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hysteresis exhibits moderately S-shaped loops, which are (as already discussed) indicative of 

uplifting. Both the initial stiffness of the system, as well as its stiffness during loading are 

successfully predicted. For the higher amplitudes of rotation though, both scenarios predict 

a stiffer behavior.  

The analysis has been successful in simulating the experimentally observed 

mobilization of the foundation capacity. In very good accord with the measured value, the 

predicted ultimate moment of the system is Mult ≈ 40 kNm in the negative loading direction. 

However, the φ = 35
ο
 scenario leads to overestimation of the calculated moment capacity, 

while for the φ = 30
ο
 case the capacity is rather accurately predicted.   

In terms of horizontal force versus horizontal displacement, the φ = 30
ο
 scenario 

predicts lager displacements than the φ = 35
ο
 case. Admittedly, however, none of the two 

scenarios are capable to capture the intensity of asymmetric sliding (towards the negative x-

axis direction). 

 

Cyclic Foundation Settlement (HD and LD Test) 

The comparison of the evolution of vertical displacements for the HD and LD tests is 

displayed in Figure 2.18. The recorded trend is almost linear in both cases, probably due to 

the progressive squeezing of sand underneath the plate toward the sides during the sinking 

of the foundation [as suggested by Faccioli et al., 2001].  

In all cases, settlements are accumulated underneath the footing, reaching ultimate 

values of about 20 mm and 70 mm for dense and loose sand respectively. These values are 

slightly overpredicted by the analysis for the HD test : s
anal 

= 25 mm. While a cumulative 
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settlement trend is macroscopically obvious in the HD case, the footing undergoes reversible 

settlement-uplifting cycles within each set of loading-unloading series. The numerical model 

indeed predicts the general trend, while it matches the seesawing shape of settlement-

uplifting cycles during each series (Figure 2.18b), but results in (slightly) higher settlement.  

For the LD case (Figure 2.18c) both scenarios lead to reasonable predictions of the 

settlement : 59 mm for the FSv ≈ 5 scenario ; 84 mm for the FSv ≈ 3 scenario. The predicted 

evolution of cyclic foundation settlement agrees reasonably with the experimental 

measurements. Observe that during the final stages of the LD test, the vertical 

displacements reveal some uplifting of the foundation : this is effectively captured by the 

numerical model when the FSv ≈ 5 scenario is considered (φ = 35
o
). 

 

2.5. Summary and Conclusions 

This chapter has dealt with the presentation of a simplified but fairly comprehensive 

constitutive model of clays and sands for analysing the cyclic response of shallow 

foundations undergoing strong rocking oscillations, involving uplifting and mobilization of 

bearing-capacity “failure” mechanisms. Having as basis a simple kinematic hardening 

constitutive model, readily available in commercial FE codes, a simple modification was 

implemented to render the model applicable for sand. The model was encoded in ABAQUS 

through a rather simple user subroutine, and thoroughly validated against centrifuge (UC 

Davis) and large scale 1-g (TRISEE) experimental results.   

The key conclusions and limitations can be summarized as follows :  
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(1) The Von Mises failure criterion of the constitutive model can be considered 

appropriate for clay under undrained conditions. Phenomena such as pore-pressure 

buildup and dissipation cannot be captured. For the key aspects of the problem 

investigated herein, given the rapid application of seismic loading, undrained behavior 

is considered as a reasonable simplification of reality. 

(2) The extended normal-pressure-dependent Von Mises failure criterion, employed to 

render the model applicable to sand, constitutes a simplified approximation of real 

sand behavior. By no means, can it be considered as accurate or rigorous. The 

assumption of an associated plastic flow rule is also a "gross" simplification, not valid 

for sand, the volumetric behavior of which largely depends on dilation. Hence, the 

volumetric behavior of sand cannot be reproduced.   

(3) Despite the above drawbacks, for the problem of interest (i.e. the nonlinear response 

of shallow foundations) the proposed simplified model has been shown to yield quite 

reasonable results. Through the validation presented herein, the model was found 

capable of capturing with reasonable engineering accuracy :  

• the response of shallow foundations subjected to vertical loading, both in terms of 

FSv and load-settlement response ;  

• the lateral capacity of the shallow foundations, as expressed through Mult ;  

• the lateral cyclic performance of the foundation, both in terms of moment−rotation 

and load−displacement response ; and 

• the accumulation of foundation settlement due to lateral cyclic loading.  
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(4) Some discrepancies (small in general) between numerical predictions and experimental 

results can be attributed to the approximate nature of the model, and several 

experimental details (such as the exact strength and stiffness profiles, soil 

inhomogeneities, slight but possibly important asymmetries, etc.) that are either 

unknown or cannot be captured numerically.     

(5) Having knowledge of soil strength (Su for clays and φ for sand) and small-strain stiffness             

(Go or Vs ), the model requires calibration of two parameters only (λ and ratio a), which 

has been shown to be simple and straightforward : it is conducted on the basis of G–γ 

curves.  

(6) Easily implemented in commercial FE codes (as done here through a simple user 

subroutine in ABAQUS), the model is believed to provide a practically applicable 

solution, not restricted to simple superstructures, and not to be solely used by 

numerical analysis specialists.  
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Figure 2.1. Mobilization of the ultimate capacity of the

soil–foundation system. Schematic of a foundation subjected to

combined horizontal and vertical loading, and bending moment : (a)

when uplifting is critical (SFv ≥ 2) ; (b) when the bearing capacity

failure mechanism is prevailing (SFv < 2).
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Figure 2.2. Simplified constitutive model : (a) representation of the extended

pressure-dependent Von Mises failure criterion in the principal stress space

(hashed shape) together with the Von-Mises (light grey shape) and the Mohr

Coulomb failure criterion (dark grey shape), (b) projection of the failure surface

at pressure p = (σ1 + σ2 + σ3)/3 on the π-plane.
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(a)

Figure 2.7. (a) The 3D finite element half-model utilized for

the numerical analyses of the UC Davis centrifuge

experiments ; (b) snapshot of deformed mesh with

superimposed plastic strain contours. Note the gap

formulation on the left side of the footing where it

detaches from the underlying ground, and the plastic strain

concentration at both edges.

(b)
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Figure 2.10. Model validation against UC Davis Centrifuge Tests – second packet of loading. Comparison of FE
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Figure 2.10. Model validation against UC Davis Centrifuge Tests – second packet of loading. Comparison of FE

computed with experimental : (a) moment–rotation response, and (b) settlement–rotation response.
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Figure 2.14. The 3D finite element half-model utilized for the

numerical analyses of the TRISEE large scale tests.
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Chapter 3: Rocking Isolation of Frame Structures 

 

 

 

3 
 

Rocking Isolation of Frame Structures Founded 

on Separate Footings  

 

 

3.1. Introduction  

Seismic design of structures has recognised that inelastic material response is unavoidable 

under the strongest probable earthquake. Thus, ductility levels of the order of 3 or more are 

allowed to develop under strong seismic shaking, implying that the strength of a number of 

structural elements will be fully mobilized. In the prevailing structural terminology, plastic 

hinging is allowed as long as the overall stability is maintained. Accepting that a limited 

amount of structural damage is unavoidable and realizing that increasing structural strength 

is not always associated with enhanced safety levels, lead to the development of modern 
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seismic design principles, which aim to control damage rather than attempting to avoid 

it―ductility and capacity design. While ductility design ensures (through proper 

reinforcement detailing) that critical structural members can sustain loads that reach their 

capacity without collapsing, capacity design focuses on "guiding" failure to structural 

members that are not crucial for safety (beams instead of columns) and to non-brittle 

mechanisms (bending instead of shearing) [Park & Paulay, 1976]. 

In marked contrast, a crucial goal of current seismic foundation design, particularly as 

entrenched in codes, is to avoid full mobilisation of strength in the foundation. In other 

words, capacity design applied to foundations guides plastification and failure to the 

superstructure. In structural terminology, plastic “hinging” is restricted to the 

superstructure, and is not allowed to develop in the foundation soil. In simple geotechnical 

terms, the designer must ensure that the below-ground (difficult to inspect) support system 

will not even reach a number of “thresholds” that would statically imply failure. Thus, 

mobilisation of the bearing-capacity failure mechanism, severe foundation uplifting sliding, 

or any relevant combination are prohibited. To ensure that such mechanisms will not 

develop, over-strength factors and (explicit or implicit) factors of safety larger than 1 are 

introduced against each of those “failure” modes.  

However, thanks to the cyclic and kinematic nature of the seismic excitation, 

mobilization of the bearing capacity failure mechanism under severe seismic shaking does 

not necessarily imply failure. In fact, recent research suggests that soil–foundation plastic 

yielding under seismic excitation may be advantageous, and should be seriously considered 

in analysis and perhaps allowed in design [Paolucci, 1997; Pecker, 1998, 2003; FEMA-356, 
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2000; Martin & Lam, 2000; Makris & Roussos, 2000; Comartin et al., 2000; Pecker & Pender, 

2000; Kutter et al., 2001, Faccioli et al., 2001; Kutter et al., 2003; Gazetas et al., 2003; 2007; 

Gajan et al., 2005; Harden et al., 2006; Hutchinson et al., 2006; Paolucci et al., 2008; 

Kawashima et al., 2007; Gajan & Kutter, 2008; Chatzigogos et al., 2009]. It should be noted 

that several critically–important structures could not have been designed against severe 

ground motions if “plastic hinging” was not allowed in the foundation. The 2.5 km long Rion-

Antirrion cable-stayed bridge in Greece constitutes one of the best such examples : its 90 m 

in diameter and 80 m in height foundation piers, have been designed allowing for full 

mobilisation of foundation bearing capacity mainly in the form of sliding [Pecker, 2005]. 

The time is therefore ripe for soil–foundation–structure interaction (SFSI) philosophy 

to also move from imposing “safe” limits on forces and moments acting on the foundation 

(aiming at avoid pseudo-static “failure”) to performance–based design in which all possible 

conventional “failure” mechanisms are allowed to develop, to the extent that maximum and 

permanent displacements and rotations are kept within acceptable limits. Such a new 

seismic design philosophy, in which soil failure is used as a safety fuse for the superstructure 

(i.e. plastic "hinging" is moved from the superstructure to the foundation soil, exactly the 

opposite of conventional capacity design) has been developed by Anastasopoulos et al. 

[2010a]. Using a simple 1-dof bridge structure as an example, it was shown that such new 

design philosophy may provide substantially larger safety margins (i.e. avoidance of collapse) 

for seismic motions that exceed the design limits, at the cost of increased foundation 

settlement (mainly).  
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This paper investigates the potential effectiveness of such new design philosophy for 

the case of frame structures, which are more representative for buildings. Since foundation 

plastic "hinging" is mainly in the form of foundation rocking and uplifting, the new design 

concept is termed rocking isolation. The idea of isolation through rocking is not a novelty to 

structural engineers. However, in the framework of the idea proposed herein rocking-

isolation refers to foundation rather than structural members rocking.  It is defined as the 

intentional under-design of the footings of the frame so that they will respond to ground 

shaking by uplifting and mobilization of soil-failure mechanisms, thereby limiting the 

acceleration transmitted onto the superstructure. To illuminate the potential effectiveness 

of the rocking isolation concept to frame structures, an idealized simple but realistic 2-storey 

building is used herein.    

 

3.2. Problem Statement and Design Considerations 

The problem analyzed herein is depicted in Figure 3.1. It refers to a fairly typical urban 

residential structure founded on a stiff clay layer (of Su = 150 kPa). This is a simple 1-bay 2-

storey reinforced concrete frame with a span of 5 m, ground floor height of 4 m, and first 

floor height of 3m. The dimensions of structural members of the frame are summarized in 

Table 3.1.  

Figures 3.1a and 3.1b compare schematically the differences between conventional 

capacity design and rocking isolation design. In the first case, the design dictates that the 

footings are large enough to ensure sufficient fixity of the columns at their base (i.e. their 
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ultimate moment capacity is larger than that of the columns). Hence, the structure will 

respond to seismic loading through flexural distortion. Whenever the earthquake demand 

tends to be larger than the bending moment capacity of the column, a plastic hinge develops 

at the base of the column. Figure 3.1c illustrates the moment-curvature curve of the 

reinforced concrete column, designed according to EC8 (ductile design). The curvature 

ductility of the column is defined as [Priestley et al., 2007] : 

μφ = Cu / Cy       (3.1) 

where Cy is the yield curvature of the reinforced concrete section (corresponding to the 

development of the maximum bending moment and the initiation of plastic hinging) and Cu  

its ultimate curvature (corresponding to initiation of failure). For the well-reinforced column 

of the frame investigated herein, μφ ≈ 10. 

In the case of rocking isolation, the design of the superstructure follows exactly the 

same principles, but the capacity design for the foundation is reversed : the footings are 

under-designed to have a lower moment capacity than that of the corresponding column. 

Therefore, whenever the earthquake demand tends to exceed the capacity of the 

foundation, the latter "yields" through a combination of uplifting and soil failure 

mechanisms, thus limiting the inertia transmitted onto the superstructure. The moment–

rotation response of the footing (for combined axial and shear force at a constant lever arm) 

resting on a stiff clay layer (of Su = 150 kPa) is depicted in Figure 3.1d, demonstrating the 

effect of reduction of its width b. In accord with theoretical expectations, the decrease of 

the footing width leads to reduced moment capacity Mu and ultimate toppling rotation θu. 
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Since the ductility of the system is now more directly associated with foundation rotation 

rather than superstructure plastic hinging, a rotational ductility μθ can be defined : 

μθ = θu / θy       (3.2)  

where θu the ultimate toppling rotation of the footing, and θy the yield rotation at the 

initiation of uplifting. For both foundations, μθ is of the order of 50. Note that since μθ is 

defined on the basis of rotation, it may be qualitatively similar to μφ , but it is not equivalent. 

The two ductilities can be rendered equivalent if converted to displacement ductilities, 

following the definition of Priestley et al. [1996; 2000]. However, as will be shown in the 

sequel, the overall response and ductility of the soil–foundation–structure system is quite 

complicated, and cannot be analyzed just with reference to the ductility of one member.  

Before proceeding, note that the effectiveness of rocking isolation concept depends on 

the nature of the system. While it may be effective for relatively slender systems the 

response of which is rocking-dominated (such as the one analyzed herein), it may not be as 

effective for squatty structures the response of which is dominated by shear. Hence, 1-

storey frames are not examined herein, although if they are unusually tall they experience 

bending-dominated response (e.g. industrial buildings, airport hangars, etc.). On the other 

hand, multi-storey frames are likely to conspicuously demonstrate the effectiveness of this 

approach.  

 

Conventional Design  

Geometry and member properties of the frame structure are shown in Figure 3.2. The 

structure is designed in accordance to the Seismic Eurocode EC8 [2000] and the Greek 
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Reinforced Concrete Code (EKOS 2000), for a design acceleration Ad = 0.36 g, and a behavior 

factor q = 3.5. The adopted dead and live loads (g = 1.3 kN/m
2
 and q = 2 kN/m

2
) are typical 

values for residential buildings. The structure was analysed and designed with a 

conventional structural analysis software. Table 3.1 summarizes the computed internal 

forces of all members of the frame. The resulting reinforcement (applying capacity design), 

along with the bending moment capacities M
RD

 of the structural members, are outlined in 

Table 3.2. 

The footings are designed according to current Seismic Codes. Obeying the principle of 

capacity design, the moment capacity of the foundation is calculated as : 

MFd = MV + aCD ME      (3.3) 

where MFD is the foundation moment capacity ; MV and ME the moment due to non-seismic 

(G + 0.3Q) and seismic (E) loads (of the seismic load combination), respectively ; and aCD an 

over-strength factor, defined as follows : 

aCD = 1.20 MR/M
C

E – MV/ME    (3.4) 

where MR is the actual (as designed) moment capacity of the column ; and M
C

E the moment 

due to the seismic loads (always for the seismic load combination). The same calculations 

are performed for the design shear and axial forces on the footings (Table 3.3a).  

Most codes (and the current state of practice) require that the eccentricity e (due to 

the combined action of bending moment M and axial force N) does not exceed one third of 

te footing width, B/3. The minimum allowable safety factors for static and seismic loading 

are SF
S 

≥ 3 and SF
E 

≥ 1, respectively. Taking account of the above provisions, the width of the 

square footing is conventionally computed as B = 1.7 m. As summarized in Table 3.4, with 
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the limitation on eccentricity being the controlling factor, the resulting safety factors for 

static and seismic loading turn out to be quite large: SF
S
 = 8 and SF

E
 = 1.93, respectively. 

 

Rocking-isolation Design 

In the spirit of rocking isolation design, by relaxing the eccentricity criterion the footing can 

be intentionally under-designed to be allowed to uplift, "guiding" the plastic hinge below the 

foundation base (instead of the base of the column). When the earthquake demand on the 

footing exceeds its capacity the soil ultimate resistance is fully mobilized and the response is 

dominated either by uplifting or sinking. To reduce settlement and foundation rotation, SF
S 

has to be greater than 3 [Kutter et al., 2001 ; Faccioli et al.,  2001; Gajan et al., 2005 ; Pecker 

& Pender, 2005; Paolucci et al., 2007 ;  Kawashima et al., 2007 ; Gajan & Kutter, 2008 ; 

Chatzigogos et al., 2009]. Based on this criterion, Table 3.4 summarizes the acceptable 

footing widths, along with their corresponding moment capacities Mult [calculated according 

to Gourvenec, 2007], the safety factors SF
S
 and SF

E
, and the Capacity Reduction Factor (CRF). 

The latter is defined as :  

CRF = M
RD

/Mult     (3.5) 

and represents the under-strength of the foundation relative to the capacity of the column.  

Large values of CRF imply reduced foundation capacity, and hence more substantial 

rocking (which will hopefully result in more drastic cutoff of inertia forces transmitted onto 

the superstructure). For B = 1.0 m, CRF = 2.7, which is still acceptable in terms of SF
S
 and SF

E
. 

Still, increased rocking is unavoidably associated with increased foundation rotation, and 

hence rotation-induced drift. On the other hand, when CRF tends to 1.0 (as for B = 1.6 m), 

- 164 -



Chapter 3: Rocking Isolation of Frame Structures 

 

not only the effectiveness of rocking isolation is expected to be diminished, but the risk (due 

to the unavoidable uncertainties in the estimation of soil and superstructure properties) of 

Mult becoming larger than M
RD

, is also augmented substantially. In other words, a trade-off 

exists between isolation effectiveness and rotation-induced drift.  

Before proceeding, it should be noted that the whole rocking-isolation concept relies 

on foundation under-design, i.e. reduction of its width B. As previously discussed, this is 

feasible for the typical frame analyzed simply because the eccentricity criterion is critical. For 

a short structure (such as a 1-storey frame), the response of which is shear-dominated, in 

the absence of substantial moment M acting on the footing, the e ≤ B/3 criterion may not be 

the one controlling foundation design. In such cases, the safety factor may be critical and the 

rocking-isolation concept might be less applicable.  

 

3.3. Analysis Methodology 

Assuming plane-strain soil conditions, a representative equivalent (as described in detail in 

the sequel) plane-strain "slice" (Figure 3.2a) of the soil−structure system is analyzed 

employing the finite element (FE) method, taking account of material (soil and 

superstructure) and geometric (uplifting and P-Δ effects) nonlinearities. As shown in Figure 

3.3, while the soil and footings are modeled with nonlinear quadrilateral plane strain 

continuum elements, nonlinear beam elements are used for superstructure members. The 

soil-foundation interface is modeled using special interface elements which allow both 

detachment and sliding. The latter obeys Coulomb’s friction law, with detachment and 

uplifting arising from the tensionless interface behavior. Free-field boundaries are used at 
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the two lateral boundaries of the model, and the dynamic response of the system is 

analyzed through nonlinear dynamic time history analysis, applying the seismic excitation 

(i.e. acceleration time history) at the base of the model. The left and right side nodes of the 

model (on the same height) are connected by means of kinematic horizontal constraints, 

while vertical boundaries are imposed on all the bottom and side nodes of the model. 

 

Soil Modeling 

Nonlinear soil behavior is modeled through a simple kinematic hardening model with Von 

Mises failure criterion, and associated flow rule. The model can be considered appropriate 

for clay under undrained conditions. Although phenomena such as pore-pressure buildup 

and dissipation cannot be captured, for the key aspects of the problem analyzed herein, 

undrained behavior may be considered a reasonable simplification. The model has been 

validated against centrifuge model tests in Anastasopoulos et al. [2010b], and modified to be 

also applicable for sands (extended pressure-dependent Von Mises). Although the 

associated flow rule is not valid for sand, the model was shown to predict with adequate 

realism the cyclic response of footings in sand, as well. The model is briefly described in the 

sequel, focusing on clay. More detailed model description and calibration can be found in 

Anastasopoulos et al. [2010b].   

According to the Von Mises failure criterion, the pressure-independent yield surface of 

the model is defined through the following  function F :   

0( )= - -F f σ α σ       (3.6) 

where σο is the stress at zero plastic strain, and α the backstress, which defines the 
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kinematic evolution of the yield surface in the stress space. Parameter σο controls the 

initiation of non-linear behaviour, and is defined as a fraction λ (typically ranging from 0.1 to 

0.3) of the yield stress σy :  

=o yσ λσ       (3.7) 

For clay under undrained conditions, the yield stress σy  is defined as :   

=y 3 uσ S       (3.8) 

The associated plastic flow rule of the model is defined as follows :  

σ∂

∂
=

Fplpl εε &&       (3.9) 

where 
plε& is the plastic flow rate, and

plε& the equivalent plastic strain rate. The evolution 

law of the model consists of a nonlinear kinematic and an isotropic hardening component. 

The evolution of the kinematic component of the yield stress is described as follows : 

( ) & &&

0

= - -pl pl1
ε εα C σ α γα

σ
    (3.10) 

where = y yC σ ε is the Young’s modulus for very small strains, and γ a parameter that 

determines the rate of decrease of the kinematic hardening with the increase of plastic 

strain.  

C can be directly computed from shear wave velocity Vs (if measured), or estimated 

through empirical correlations [e.g. Hardin & Richart, 1963; Robertson & Campanella, 1983; 

1983b; Seed et al., 1986; Mayne & Rix, 1993] as a function of σy :  

= yC α σ       (3.11) 
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where a ranges from 150 to 1000 for clays (i.e. E = 300Su to 1800Su). Since = +y οσ C γ σ , 

parameter  γ  can be expressed as [Gerolymos et al., 2005] :  

03
=

-

C

u

γ
S σ

     (3.12) 

In summary, and as described in mire detail in the aforementioned publication, model 

calibration is quite simple, requiring the following data : (a) Su to compute the yield stress σy 

; (b) Go or Vs to estimate the small-strain stiffness C ; and (c) G–γ curves to calibrate 

parameters λ and α. In this study, published G–γ curves [Vucetic & Dobry, 1991; Ishibashi & 

Zhang, 1993] we utilized to calibrate model parameters. Detailed results can be found in 

Anastasopoulos et al. [2010b]. 

 

Superstructure Modeling 

The same constitutive model is used, after proper adaptation [Gerolymos et al., 2005], to 

simulate the nonlinear moment–curvature response of the superstructure reinforced 

concrete (RC) members. For each member, the moment–curvature relationship is computed 

through static section analysis employing the X-tract 2000 [Imbsen Assoc. & Chadwell, 2004] 

software. Then, model parameters are calibrated against these target moment–curvature 

relationships. For a rectangular RC member of width db and height dh , the yield stress σy can 

be defined as : 

2
=

y

y

b h

4M
σ

d d
      (3.13) 
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The small strain modulus C is equal to the Young's modulus of reinforced concrete. The 

residual bending moment of each RC section is assumed equal to 30% of the bending 

moment capacity [Vintzilaiou et al., 2007], and is attained for a curvature 3 times larger than 

the ultimate curvature cu . To capture such softening response, a user subroutine is encoded 

in the finite element code ABAQUS. Since the structure was designed following the 

provisions of modern seismic codes, the hoop reinforcement justifiably presumed to prevent 

strength degradation due to cyclic loading [Vintzileou et al., 2007]. Therefore, this effect has 

been neglected in the concrete modeling. Parameters λ and α of the model are calibrated 

through numerical simulation of the static pushover test. 

Figure 3.4 portrays the results of model calibration against monotonic moment-

curvature response calculated through RC section analysis, and FE results for cyclic loading 

of gradually increasing amplitude. As expected, and according to the principles of capacity 

design, the strength of the columns is larger than that of the corresponding beam members. 

The column curvature ductility, μφ = 10, corresponds to medium ductility class according to 

Eurocode EC8 for moment resisting frames. 

 

Equivalence of 2D with 3D analysis  

As previously discussed, the analysis is conducted under plane-strain conditions, considering 

a representative equivalent "slice" of the soil−structure system. Although the real problem is 

definitely 3 dimensional, modeling the whole system in 3D is computationally too 

demanding for a parametric study, especially considering the severe constraints with respect 

to mesh refinement. To render the 2D numerical model equivalent to the 3D problem, the 
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Meyerhof 1967 shape factor of 1.2 (square foundation) was employed to the soil "slice" of 

the model (i.e the out of plane dimension of foundation elements was 1.2 times higher than 

that of the underlying soil elements). To verify the validity of such equivalence, two smaller 

FE models were developed focusing on one footing only : a 3D and an equivalent 2D model, 

employing the 1.2 shape factor. 

Typical results are presented for the B = 1.7 m footing bearing a vertical load N = 200 

kN, subjected to cyclic loading. Figure 3.5 compares the results of the two models 

(equivalent 2D vs. 3D) in terms of moment−rotation and settlement−rotation response of 

the footing, for two idealized soils : a stiff clay of Su = 150 kPa, and a soft clay of Su = 50kPa. 

In accord with experimental evidence [Allotey & El Naggar, 2003; Kutter et al, 2003;  Gajan 

et. al., 2005; Paolucci et al., 2008; Gajan & Kutter, 2008], when the static safety factor is 

relatively large (as with the stiff clay of Su = 150 kPa where SF
s
 > 3) the response of the 

footing is uplifting−dominated (Figure 3.5a) ; for relatively small safety factors (as with the 

soft clay of Su = 50 kPa where SF
s
 < 2) the response is dominated by accumulating settlement 

(Figure 3.5b). In the first case (stiff soil), the equivalent 2D model reproduces with 

reasonable accuracy the results of the 3D FE model; the latter has been thoroughly validated 

in Anastasopoulos et al. [2010b]. In the case of soft soil, the equivalent 2D model barely 

under-predicts (by less than 10%) the cyclic loading induced settlement, while the ultimate 

moment Mult is slightly over-predicted (by less than 5%). The overall hysteretic damping is 

captured quite effectively in both cases. The same result holds true for the footing rotations. 

Overall, it may be concluded that the equivalent 2D approach reproduces the key aspects of 
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the 3D problem very effectively, and may thus be adopted for the parametric dynamic 

analyses in the sequel, which refer to the case of the stiff soil layer (Su = 150kPa). 

 

3.4. Static Pushover Analysis : Insights on the Rocking Behavior of Frames  

The rocking response of frame structures deviates substantially from that of 1-dof systems, 

such as the one discussed in the previous section. To gain insights on the mechanisms 

controlling the response of frame structures, the model frame is first subjected to static 

displacement−controlled pushover loading. The analysis is conducted by imposing onto the 

frame a monotonically increasing lateral displacement, taking P−δ effects into account. 

Figure 3.6 compares the response of the conventional system (with over-designed  B = 1.7 m 

footings), with two rocking-isolation alternatives (under-designed, B = 1.4 m and 1.2 m 

footings). System response can be divided into three characteristic phases : (a) an initial 

phase, in which column bending dominates ; (b) an intermediate phase, in which both 

column bending and foundation rocking take place, and (c) the ultimate phase, which is 

dominated by foundation rocking. 

In the initial phase, the frame responds to the imposed lateral loading mainly through 

flexural deformation (bending). The conventional system (with larger capacity footings) 

develops slightly larger resisting force P compared to the two rocking-isolation alternatives. 

Hence, decreasing B leads to a decrease of the capacity of the system. The maximum lateral 

force takes place when the beams reach their bending moment capacity M
RD

 (or 

equivalently their yield curvature cy ―Point A in the diagram). With increasing displacement 

δ the beams finally reach their ultimate curvature cu (when their ductility capacity has just 
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been consumed). This behavior clearly mirrors the capacity design principles, according to 

which the beams should fail before the columns (weak beam−strong column design). 

During the intermediate phase, the columns of the conventional design (B = 1.7 m) are 

pushed beyond their yield curvature cy (point A' in the diagram), and continue being 

subjected to inelastic deformation until reaching cu when their ductility capacity is 

completely expended (point B in the diagram). After this point, all structural members of the 

conventionally designed system have exhausted their ductility capacity and collapse is 

imminent. On the other hand, the rocking−isolation alternatives  (B = 1.4 and 1.2 m) respond 

to increasing δ with footing detachment, uplifting and substantial rotation : since the 

moment capacity Mult of the foundations is lower than the M
RD

 of the columns, the plastic 

"hinge" develops in the foundation-soil system, thereby providing a "shield" to the columns. 

But, although the columns are protected, the beams keep accumulating plastic deformation 

until reaching their residual strength (point C in the diagram).  

Finally, in the ultimate phase, since the beams have already reached their residual 

strength (assumed to be constant –an  unavoidable at this stage of analysis but not 

necessarily realistically safe simplification), the rocking−isolated system reduces from its 

initial state (frame structure) to two idealized 1-dof systems connected with each other 

through the 2 hinged beams. Further increase of the imposed displacement δ leads to a 

decrease of P (due to P−δ effects), until it reaches zero and the structure topples. Observe 

that the displacement δ (which is directly related to footing rotation) that leads to toppling 

of the system is larger for the B = 1.4 m footing (point D in the diagram), compared to the 

even smaller one (B = 1.2 m, point D'). This observation is of the utmost importance for the 
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design of the rocking−isolation concept : increasing B does not only increase the footing 

moment capacity Mult, but also − and most importantly − the ultimate footing rotation θult . 

In other words, the increase of CRF may lead to more effective rocking isolation (in terms of 

limitation of the transmitted inertia forces), but reduces the ductility of the system. 

However, as it will be shown in the sequel, θult is not only a function of B, but also depends 

on the combination of the axial load N acting on the footing, and the M/Q (moment-shear 

force) ratio, which fluctuate substantially during seismic loading and pushover loading. The 

influence of such effects on system performance is elucidated in the following sections, 

making use of the results of static pushover analysis.     

 

The effect of Axial Load Fluctuation on Footing Response 

Figure 3.7a displays the evolution of the axial loads N of the two frame columns with 

imposed displacement δ, with due reference to the three previously identified phases of 

system response. During the initial phase, the increase of δ leads to increase of N on the 

right column and an equal decrease on the left, while of course their sum is maintained 

constant and equal to the total vertical load of the superstructure. This reflects the frame 

reaction to the imposed lateral loading through development of a pair of axial forces on the 

columns, in addition to bending moments M and shear forces Q. In the subsequent 

intermediate phase, during development of plastic hinging in the beams, frame action is 

gradually reduced and both columns tend to "retreat" towards their initial static N value of 

150 kN. In fact, the assumption of a non-zero and constant residual moment capacity of 

beams is the only reason why N is not becoming exactly equal to its original value : since a 
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small bending moment will still be transmitted, some frame action keeps taking place. The 

axial column load is maintained constant throughout the ultimate phase, during which no 

change in system response takes place. 

Figure 3.7b illustrates the effect of N on the Μ−θ (moment−rotation) response of the          

B = 1.4 m footing (rocking-isolation alternative). As expected [Houlsby & Puzrin, 1999; 

Bransby, 2001; Taiebat & Carter, 2002; Gourvenec, 2007], since the static safety factor SF
s
 of 

the footing is substantially larger than 2, Mult increases with increasing N. Yet, however 

paradox it may appear, in the context of rocking−isolation design such an increase of Mult is 

not desirable as it amplifies the risk of increasing the amount of bending moment that may 

be transmitted by the footing onto the column hence jeopardizing the structural integrity of 

the latter. Therefore, in the process of the previously discussed selection of the optimum 

CRF, such effects must be carefully investigated. 

 

Effect of M/Q Fluctuation on Foundation Response 

Figure 3.8a displays the evolution of the M/Q ratio versus the imposed lateral displacement 

δ, with reference again to the three phases of system response. In the initial phase, as the 

frame is still “undamaged” (no plastic hinging has yet developed), M/Q varies between 

about 1.9 and 2.5―quite a similar result to that of a conventional pseudostatic analysis of 

the frame (Table 3.1, seismic load combination, ground floor columns : M
E
 = 101 kNm, Q

E
 =        

41 kN).  

During the intermediate phase, as already discussed the system tends to reduce from 

its initial state (frame structure) to two idealized 1-dof oscillators interconnected with the 2 
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hinged beams. The center of mass of these equivalent 1-dof systems will naturally coincide 

with the center of mass of the whole structure, i.e. at an elevation of 4.82 m. Quite 

interestingly, during this phase and as the beams gradually reach their residual moment 

capacity, M/Q is asymptotically approaching this value (of 4.82m), but without actually 

reaching it. This is endorsed to the fact that the column-beam connection never actually 

reduces to an ideal hinge, since the residual strength of the beam does not vanish.  

In the ultimate phase the M/Q ratio diminishes again. At this stage, the footing has 

reached its moment capacity Mult and the corresponding column bending moment cannot 

possibly further enlarge. But this is hardly the case with the shear force: since the lateral 

horizontal capacity of the footing has not yet been reached, the column base shear may 

increase further to undertake the additional imposed lateral loading. Therefore, since the 

moment acting on the footing remains constant (Mult) while the shear force keeps 

increasing, the M/Q ratio unavoidably recedes. Note that the rate of decrease is steeper for 

the left column (Column 1), whose shear force Q increases more rapidly than that of the 

right column. 

The effect of the M/Q ratio is of particular significance for rocking−isolation design: it 

affects the rotation capacity θult of the footing and consequently the overall ductility of the 

system. As depicted in Figure 3.8b for the B = 1.4 m alternative and assuming constant   N = 

150 kN (equal to the initial static value), θult (and, hence, system ductility) decreases 

substantially with increasing M/Q : while for M/Q = 2.5 (initial phase, frame still undamaged) 

θult ≈ 0.25, with M/Q = 4.5 (ultimate phase, fully developed plastic hinges in the beams)     

θult ≈ 0.13 (i.e. an almost 50% decrease). On the other hand, at least for the cases examined 
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herein, the capacity of the footing, Mult, is quite insensitive to M/Q. This is in contrast to the 

previously discussed high sensitivity of Mult to the variations in N.  

 

3.5. Existence of Response Envelope : Equivalent 1-dof Systems  

The two mechanisms presented and extensively analysed in the previous section take place 

simultaneously and interactively during lateral loading (static or dynamic), further 

complicating the behavior of the frame. Figure 3.9 compares the Μ−θ response of the two                      

B = 1.4 m footings (left and right) in static pushover analysis of the frame. During the initial 

phase, M increases with θ for both footings. However, as the frame develops the previously 

discussed pair of axial forces, M on the left footing is subjected to a rather pronounced 

decrease as N drops from 150 kN to 70 kN (see also Figure 3.7). At the same time, M on the 

right footing manifests an increased rate of augmentation as N rises from 150 kN to 230 kN. 

Subsequently, in the intermediate phase, as N on both footings tends to "retreat" to the 

initial static value, M of the left footing rises (as N increases form 70 kN to 125 kN, recall 

Figure 3.7), while that of the right footing is reduced (as N decreases form 230 kN to 175 

kN). During the ultimate phase, the response of both footings is affected by the transition of 

M/Q from 2.5 (intact frame) to 4.5 (behavior as a 1-dof system).   

In an attempt to further clarify the response of the system, two roughly equivalent           

1-dof systems are perceived, each one of them representing two extreme phases of system 

response (Figure 3.9) :  
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(a)  Type A : a 1-dof system with mass m = Nmax/g ≈ 2.3 Mg, (corresponding to Nmax = 230 

kN) at height h = 2.4 m (which is the average lever arm, or M/Q ratio, observed during 

the initial phase), and  

(b)  Type B : a 1-dof system with mass m = N
G+0.3Q

/g ≈ 1.5 Mg, (corresponding to N
G+0.3Q

 = 

150 kN, as computed for the seismic load combination) at height h = 4.6 m (which 

corresponds the average M/Q ratio observed during the ultimate rocking-dominated 

phase).  

As illustrated in the figure, the behavior of the two footings of the frame is successfully 

enveloped by the two idealized 1-dof systems. The first one, Type A, provides a conservative 

(upper bound) estimate of Mult , but yields an unconservative estimate θult (which is directly 

associated with system ductility). In contrast, Type B provides a conservative estimate of θult, 

but is un-conservative in terms of Mult .  

The two “equivalent” 1-dof systems are equally successful in capturing the M−θ 

response of the two frame footings under seismic shaking. As shown in Figure 3.10, the M−θ 

response of the frame (from dynamic time history analysis (under moderately strong and 

very strong seismic shaking) is bounded between the monotonic M−θ curves of the two 

idealized 1-dof systems. Hence, although none of the two 1-dof systems constitutes an 

accurate representation of the frame, their combination provides a useful interpretation of 

the nature of the response.  
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3.6. Dynamic Analysis : Comparison of Conventional with Rocking-Isolated 

System 

The seismic performance of the two design alternatives (conventional, B = 1.7 m ; rocking− 

isolated, B = 1.4 m) is further elucidated through a series of nonlinear dynamic time history 

analyses in which the FE model is subjected to a wide range of seismic motions: 24 

earthquake records of worldwide historic events. Given in Figure 3.11 along with their 

acceleration (SA) and velocity (SV) elastic response spectra, these selected records can 

broadly be categorized into moderately strong and very strong seismic motions. They cover 

a wide range of strong-motion parameters such as PGA, PGV, SA, SV, frequency range, 

number of strong-motion cycles, duration; near source (directivity and fling-step) effects are 

embodied in many of these records. 

The seismic performance of the two alternatives is first compared in detail for two 

characteristic cases : (a) moderately strong seismic shaking, utilizing the El Centro 1940 

record, which is close to but always less than the frame design spectrum; and (b) very strong 

seismic shaking, utilizing the Takatori (Kobe 1995) record, which substantially exceeds the 

design spectrum of the frame. In the first case, the objective is to explore the performance 

of the two alternatives, mainly in terms of serviceability after a design level seismic shaking. 

In the latter case, the focus is on safety in case of an “unanticipated” event that substantially 

exceeds the design. Results for the complete set of motions are then shown in summary for 

each alternative. 
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Performance in Moderately Strong Seismic Shaking 

The two design alternatives are subjected to the El Centro record of the Ms 7.2 Imperial 

Valley 1940 earthquake [Trifunac, 1972]. As illustrated in Figure 3.11, this seismic motion 

may be considered roughly equivalent to the "design earthquake". The comparison of the 

two alternatives is portrayed in Figure 3.12 in terms of : (a) column bending moment–

curvature (M–c) response (revealing the "consumption" of superstructure ductility); (b) 

foundation moment–rotation (M–θ) response (revealing the "consumption" of foundation 

ductility); (c) foundation settlement–rotation (w–θ) response; and (d) time history of ground 

floor drift δ. The latter, as sketched at the top of the figure, consists of two components: (i) 

the "flexural drift" δc (i.e. the lateral displacement of the structure due to flexural distortion 

of its structural members), and (ii) the "rocking drift" δR= θh (i.e. the lateral displacement at 

height h due to foundation rocking of angle θR). The flexural drift δc is obviously a direct 

indicator of damage inflicted on reinforced concrete frame elements (i.e. columns and 

beams). On the other hand, the overall differential (top-to-base) displacement of the 

structure (and, hence, the damage of non-structural members) is more directly related to 

the total drift δ.  

As revealed by the column M–c response (Figure 3.12a), both structures react almost 

elastically. Also (essentially) elastic is the response of the foundations of both alternatives 

(Figure 3.12b). The B = 1.4 m footings of the rocking-isolated alternative experience slightly 

more intense uplifting than those of the conventional system, but the rotation θ is 

maintained at essentially the same (very low) levels. The same applies to the shaking-

induced settlement w, which in both cases remains well within serviceability limits (Figure 
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3.12c). Nevertheless, the unconventionally designed footing responds mostly by uplifting, 

contrary to the bending–dominated behavior of the conventional frame. This can me 

appreciated in Fig. 3.12d: although the maximum total drift δ is practically the same for the 

two alternatives, a significant discrepancy may be observed in the contribution of the two 

drift-generating mechanisms (i.e. flexural distortion and rocking). In the conventional 

system, the response is dominated by flexural distortion, with δ being predominantly related 

to δc; in the rocking-isolated alternative δR contributes much more than δc in the 

development of the total drift δ.  

 

Performance in Very Strong Seismic Shaking 

The Takatori record [Fukushima et al., 2000] of the Ms 7.2 Kobe 1995 earthquake is utilized 

to explore the performance of the two alternatives well beyond the limits of the design. As 

shown in Figure 3.11, with a PGA of 0.70 g, PGV of 169 cm/s, and encompassing the effect of 

forward rupture directivity and soil amplification, this record is considered as one of the 

worst seismic motions ever recorded. In terms of SA, it exceeds the design by a factor of at 

least 2 over the whole period range.  

As depicted in Figure 3.13a, the conventionally designed system cannot withstand this 

level of ground shaking. Plastic hinges first develop at the beams, and later in the two 

columns. The ensuing sever accumulation of plastic curvatures, expends the available 

column ductility (Figure 3.13b), and the frame is unavoidably led to collapse. In stark 

contrast, the rocking−isolated alternative succeeds in surviving such tremendous seismic 

shaking, with its columns behaving almost elastically : since the moment capacity of the 
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footing is lower than the bending moment capacity of the column, foundation yielding 

(mainly through uplifting and some very limited mobilization of soil failure mechanisms) 

protects the column from failing.  

Naturally, in terms of foundation M−θ response the picture is reversed (Figure 3.13c) : 

in the conventional system, the large B = 1.7 m footing never reaches its ultimate capacity as 

it is "protected" by column plastic hinging ; after the columns have failed (i.e. their ductility 

capacity has been reached), θ increases "infinitely" due to the collapse of the structure. In 

contrast, in the case of the rocking−isolated alternative the smaller (B = 1.4 m) footing 

reaches its moment capacity several times during seismic shaking, being subjected to 

intense uplifting and rocking. But its rotation θ remains well below its ultimate capacity θult 

and toppling is avoided. While the large footings of the conventional alternative are 

subjected to limited rocking oscillation and uplifting, the smaller footings of the 

rocking−isolated structure develop larger rotations and are subjected to noticeable uplifting 

(Figure 3.13d). The seismic settlement w is large for the rocking-isolated alternative, but 

should not be of concern since it does not exceed 0.5 cm.   

Although thanks to rocking isolation, column failure and subsequent frame collapse 

may be avoided, structural damage is inevitable. As shown in Figure 3.13e, footing rotation 

results in quite substantial interstorey drift : during rocking δ reaches 50 cm, implicating very 

intense distortion of the superstructure. Yet, the residual δ of the ground floor is limited to 

no more than 5 cm, corresponding to a drift ratio δ/h ≈ 2% (where h is the height of the 

storey). It should be noted though that the aforementioned drift is mainly due to rocking 

drift δR (i.e. due to foundation rotation) rather than flexural δC. Hence, the structural 
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integrity of frame columns (which is associated with δC) is not jeopardized (as for the 

conventionally designed system), but severe damage to beams (which consume all their 

ductility capacity) and to non-structural elements (such as infill walls, etc.) cannot be 

avoided.  

 

3.7. Rocking Isolation of 1-bay Frames: Synopsis and Conclusions 

The performance of the two design alternatives is summarized in Figure 3.14 for all 

investigated earthquake scenarios (24 seismic excitations). Key performance indicators are 

plotted against the peak spectral pseudo-velocity, maxPSV of the seismic excitation 

(undoubtedly far more representative than PGA or PSA for inelastic systems). Following 

Priestley et al. (2007), three limit states may be defined regarding the performance of the 

frame, related to the flexural drift ratio (δc / h) : 

(a)  The Serviceability Limit State, for δc / h ≤ 1%, in which the structure can be fully 

functional after the earthquake, without the need for significant remedial measures ; 

(b) The Damage Control Limit State, for 1% < δc/h ≤ 2%, in which the structure is expected to 

sustain repairable damage, but the cost of repair should be substantially lower than the 

cost of replacement ; and 

(c) The Survival Limit State, for larger δc / h, in which the collapse of the structure may be 

marginally avoided, although structural damage will be excessive and replacement will 

be unavoidable.  

Figures 3.14a and b outlines the performance of the two systems in terms of ground 

floor column "ductility consumption" ratio μdemand/μcapacity and the flexural drift ratio δc / h. As 
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previously discussed, the available ductility of the RC column is cu/cy ≈ 10 (see also Figure 

3.1b). Naturally, the damage to columns of the conventional system lies within the 

serviceability limits only for moderately strong seismic motions that do not exceed the design 

limits (e.g. El Centro). As seismic shaking gets stronger, column damage falls within damage 

control (e.g. Lefkada 2003, Erzincan), or survival (e.g. JMA, Tabas) limit states. For even 

stronger seismic shaking, clearly in excess of the design (such as Takatori-000, Jensen-292) 

column failure is inevitable and frame collapse almost certain. In such cases, μdemand may be 

even an order of magnitude larger than μcapacity .  

The performance of the rocking−isolated alternative is definitely superior, with column 

damage being within the serviceability limit state for almost 50% of the seismic excitations 

investigated herein, and within damage control for the rest. In other words, for the 24 

seismic excitations examined, the vast majority of which exceeds the design, the column 

damage is maintained within repairable limits. In contrast, for the conventional design, 

although collapse takes place in only 3 out of 24 cases examined (admittedly for extreme 

seismic motions, substantially in excess of design), column damage is practically irreparable 

in most cases (even for some motions that fall within the limits of design). By no means 

should such performance be interpreted as a shortcoming of conventional capacity design. 

In fact, this is totally consistent with the whole philosophy of current seismic design, 

according to which the superstructure is designed to sustain extensive plastic hinging, 

possibly leading to irreparable damage, but avoiding collapse and serious foundation 

damage.  

- 183 -



Metaplastic Response of Frame–Foundation Structures 

 

Figures 3.14b and 3.14c compare the performance of the two design alternatives in 

terms of total δ/h and flexural δc/h ground floor drift ratios. In all cases, the two design 

schemes display similar behavior in terms of total δ/h, with the rocking−isolated system 

performing marginally better and with less scatter about a mean line. The picture is 

conspicuously different in terms of δc/h: while the drift of the rocking−isolated structure is 

mainly due to foundation rotation and flexural drift δc / h is limited, the conventional 

behavior is diametrically different. However, since the total drift ratio δ/h is practically the 

same, damage of beams and of non-structural elements is practically similar for the two 

structures.  

In terms of settlement (Figure 3.14d), the performance of the two design alternatives 

is quite similar, with the rocking−isolated system performing marginally worse. This differs 

substantially from what was concluded for 1-dof systems [Anastasopoulos et al., 2010a], in 

which case the rocking−isolated system was found to sustain substantially increased 

foundation settlement. This key difference is attributable to the relatively large static safety 

factor (SF
s
 = 5.3, for B = 1.4 m) of the system examined herein, which promotes uplifting 

rather than “sinking” behavior of the footing.  

In conclusion : 

• For moderately strong seismic excitations, within the design limits, the performance of 

both design alternatives is acceptable : they would both survive the earthquake, 

sustaining acceptable structural damage. With conventional design, structural damage 

would be repairable (flexural cracking of beams and columns), but not necessarily within 

the serviceability limits (i.e. the structure may not be utilizable after the earthquake). In 
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contrast, the rocking−isolated structure would suffer rather minor structural damage 

(flexural cracking of beams), and could −most probably− be utilizable immediately after 

the earthquake.   

• For very strong seismic shaking, well in excess of the design limits, the performance of 

the rocking−isolated system is quite advantageous. While the conventionally designed 

frame may collapse (in roughly 13% of the seismic scenarios examined) or sustain non-

repairable damage (to its beams and columns). By contrast, the rocking−isolated frame 

would survive, sustaining repairable but non-negligible damage to its beams and non-

structural elements (infill walls, etc.). In any case, for such extreme seismic shaking, for 

which avoidance of collapse is the main objective, the rocking−isolation philosophy 

seems to lead to a robust design. For the studied cases in particular, in which the static 

bearing capacity safety factor of even the under-designed footings is quite large (SF
s
 > 5), 

seismic settlements are hardly a serious issue.  

 

3.8. Insights into the applicability of the Rocking-Isolation Concept 

3.8.1. The effect of Safety Factor 

The previous chapter investigated the validity of the proposed concept for the case of 

under-designed footings of width B=1.40 m, yielding a static Safety Factor SFV = 5.31 (Table 

3.4). The analysis revealed that the proposed concept constitutes a fail-safe design in case of 

extreme earthquake events exceeding the design strength of the structure by ensuring that 

the latter responds to the strong shaking through increased footing rotation, thus avoiding 

intense flexural deformation. It has been implied that decreasing the footing Safety Factor, a 

- 185 -



Metaplastic Response of Frame–Foundation Structures 

 

larger rotation (and subsequently enhanced distortion) will be developed by the footing in 

order to sustain the imposed loading. In order to quantify the consequences of adopting an 

increased safety factor, the analyses have been repeated using footings of dimensions B= 

1.20 m instead of 1.4 m, i.e. adopting an SFV = 3.84. The results of the two alternatives are 

compared in detail in Figures 3.15-3.18 for the lower intensity El Centro record and in 

Figures 3.19-3.22 for the very devastating Takatori record, while the collective plots for both 

Safety Factors are plotted in Figure 3.23. As can be verified by the settlement - rotation plot 

of Figure 3.20 for the case of the intense Takatori record, the B=1.20m footing is subjected 

to several cycles of uplifting (due to its lower moment capacity) thus further reducing the 

amount of inertia transmitted to the column (Fig. 3.19). Indeed, the analyses revealed the 

very beneficial effect of the further reduction of the footings dimensions in terms of column 

stressing as expressed by the μdemand/μavailable ratio (Fig. 3.23). It is worthy of notice that the 

lower values of the ductility consumption ratio are only accompanied by minor increase of 

the total drift ratio of the frames (in a limited number of cases), while the flexural part of the 

observed drift ratio is maintained lower for the B = 1.20m alternative than for the B = 1.40m 

case.  

Limiting Condition: Footings with SFv≈ 3 

A further investigation of the validity of the concept has been attempted in this final 

paragraph of the Section, driving the Safety Factor of the frame footings to the limiting 

condition of SFV ≈ 3. It is reminded that this is practically the lower bound value of the Static 

Safety Factor; SFV values of lower than 3 are hardly ever applicable in practice. 
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This value of SFV is being implemented rather by reducing the undrained soil strength to 

Su=85 than through a further reduction of the footing dimension which is maintained at 

B=1.4 m, in order to explore whether the decreased soil strength could provoke soil failure 

underneath the foundation. Results between SFV = 5.31 and SFV = 3 are compared in detail 

for the Takatori record in Figures 3.24-3.25. Once more, it is shown that the rocking isolation 

concept prevents the consumption of available column ductility even for the limiting 

condition of the lowest acceptable value of SFV . Of course, as anticipated even instinctively, 

the non structural distortion of the frame members is augmented as the Factor of Safety 

reduces but interestingly, the latter is not only the consequence of footing rotation due to 

intense uplifiting but rather that of considerable soil plastification underneath it, (due to the 

lower soil strength). Therefore, the footing clearly manifests a sinking dominated response 

with significant uplifting experienced only during the main pulse of the time history. This 

results to an accumulation of soil plastification-induced rotation of the footing which 

subsequently brings about irrecoverable permanent rotational drift of the order of 15 cm as 

opposed to 10cm when SFV = 5.31 (Fig.3.25a). The flexural drift however remains practically 

unchanged (i.e. less than 2%). This valuable finding further corroborates similar observations 

of Kutter et al. 2003, who have correlated the uplifting potential of a footing with 

maintaining its Factor of Safety above the value of 3. Conclusively, it may be noted that 

although the collapse is avoided through either of the two identified mechanisms, uplifting is 

definitely preferable than soil yielding since the latter may result in unacceptable residual 

deformation of the structure. Comparative collective results for both foundation scenario 

analyzed (SFV = 5.31 and SFV = 3) are displayed in Figure 3.26. 
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3.8.2. The effect of Soil Strength 

Frames with footings of the Same FS but different Moment Capacity 

The aforementioned analyses have attempted to shed light on the effect of the Safety Factor 

(SFv) value on the applicability of the proposed concept. Yet, a reduced SF value may be the 

outcome of either decreased footing dimensions or lower undrained soil strength Su. In an 

attempt to manifest the extent to which the soil strength modifies the response of footings 

of equal Safety Factors, this section investigates the dynamic response of the frame when 

SFv = 4. The latter is implemented via the following two alternatives: 

a. Footings of B=1.20 m, when the soil is characterized by strength Su = 150 kPa  

b. Footings of B=1.60 m, with soil strength Su = 85 kPa  

The frames are initially subjected to the two extreme earthquake scenaria presented during 

the previous discussion (Intense Takatori record (Kobe, 1995) and moderate El Centro record 

(1940).  

When shaken by the moderate earthquake scenario, the discrepancies in the behavior of the 

two alternatives are practically negligible (Figures 3.27-3.28). Therefore, the following 

argumentation focuses on the results of the extreme event, where, in accord with the above 

expectation, the lower SF
S
 = 4 scenario produces higher displacement demand in both 

frames than the previously examined SF
S
 = 5.31. Both the B=1.2 m and the B=1.6m frame 

develop maximum footing rotations (Fig.3.30b) of practically the same magnitude: θ1.2 = 0.07 

rad, θ1.6 =0.08 rad. Yet, the increased value of rotation in case of B=1.6m, is not just the pure 

consequence of uplifting but also owes to the contribution of footing settlement and 

subsequent rotation due to soil plastification.  
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Similarly, the maximum total ground floor drift ratios reach the values of δ = 9.35% for B=1.2 

m and δ = 10% for the B=1.6 m footing respectively (Fig. 3.29a) Although both values are 

extreme and indicative of significant distortion it is reminded that the latter is expected to 

be focused to non-structural members of the structure in case of rocking isolated frames. 

Indeed, the flexural drift ratio (i.e. due purely to bending of the columns) is maintained at δc 

= 2% for B=1.6m and merely δc = 0.85% when B=1.2m (Fig. 3.29a), demonstrating a clearly 

superior behavior for the B=1.2m footing. This conclusion is also evident in terms of residual 

flexural drift ratios (thin black line in the Fig 3.30a plots). Although the total drift ratios in 

both rocking-isolated systems are comparable, the B=1.6m footing allows a larger inertial 

loading to be transmitted to the column (Fig. 3.30a) a fact definitely attributable to its higher 

Moment Capacity compared to B=1.2m. Indeed as evidenced by the overturning moment-

rotation curves of the two systems, the ultimate moment reaches Mult
B=1.6

 ≈ 110 kNm for 

B=1.6m compared to a mere Mult
B=1.2

 = 75 kNm for B=1.2; a noteworthy discrepancy 

certainly, which undeniably justifies the results.  

Detailed results for all cases analyzed are displayed in the Appendix. 
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3.9. Application of the Rocking–Isolation Approach in case of 2-bay Frames  

Following the preceding investigation of the dependence of the effectiveness of the 

proposed technique on the Safety Factor, this section explores the applicability of the 

unconventional foundation design approach on a slightly more complex 2 bay 2-storey 

frame structure. The foundation is accomplished by means of isolated square footings. The 

geometry of the structure under study is displayed on Figure 3.31.  

The superstructure conventional design followed exactly the same procedure described in 

the previous, utilizing the computer code ETABS. The design ground acceleration a
E
 and the 

behavior coefficient q have maintained their values of 0.36g and 3.5 respectively.  

According to the Greek Code, the minimum acceptable footing dimension is B
C
 = 1.80 m, 

while the unconventional design (naturally neglecting the eccentricity criterion), implements 

footings of dimensions B = 1.30 m. 

Initially, the 2-bay frame behavior is compared to that of the 1-bay frame while the 

effectiveness of the new design approach is then evaluated through comparison of the 

conventionally and the unconventionally designed frame behavior to dynamic loading. 

3.9.1. Response to Push-Over and Dynamic Loading: 2-bay vs 1 bay Frames 

The response to Push-Over Loading is illustrated in Figure 3.32 for both the conventionally 

and the unconventionally designed frames. Naturally, the reaction force P developed in the 

2-bay frame is substantially higher than the corresponding 1-bay (although a minimal 

portion of this difference can be attributed to the slightly bigger footing dimension): 165 kN 

instead of 90 kN, at the same level of imposed displacement for the conventional solution. In 
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the unconventional systems, the difference in the ultimate displacement (δ
topl

) value is only 

owing to the lower footing dimension (1.30m instead of 1.40 m). Likewise, the divergence 

between the peak reaction force developed in the conventionally and the unconventionally 

designed systems is higher for the 2-bay frame than for the 1-bay case since the difference 

between the respective footings dimensions is increased in the 2-bay case. The previously 

identified fluctuation of the axial load and the M/Q ratio is also identifiable in case of the 2-

bay frame (Fig. 3.33b,c), while their effect on the Μ-θ response of the footings are evident in 

Figure 3.33a. Note that although the two side columns demonstrate exactly the same 

behavior for both frame types in terms of axial load fluctuation, the middle column 

maintains a constant N ≈ 280 kN throughout the duration of the push-over test. Other than 

these minor observations, the two frames response to push-over loading is similar.  

On the other hand, the comparison of the response to dynamic loading between the 1-bay 

and the 2-bay frames has highlighted a number of discrepancies summarized in Figures 3.34-

3.37. The main difference is, as expected, due to the existence of the middle column which, 

bearing a substantially higher axial load than the two lateral ones, encompasses increased 

bending moment capacity. Therefore, the central column is stressed more than the columns 

of the 1-bay structure, while the side columns less in both alternatives (Figures 3.34 and 

3.36). The total drift is lower for the 2-bay frame in both design alternatives; this is definitely 

attributed to the limited flexibility of the 2-bay frame (see also Fig. 3.32). The flexural drift 

however is of the same order of magnitude in both alternatives. The slightly higher 

settlements generally observed in the 2-bay frame is the effect of increased axial load in the 

middle column reduced rather than of the structural system. 
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3.9.2. Effectiveness of Rocking isolation in 2-bay frames 

Figures 3.38 and 3.39 compare the response of the conventionally versus the 

unconventionally designed 2-bay frame systems subjected to the recorded time-histories 

database referred to in the previous sections. In terms of μdemand /μcapacity ratio apparently 

the unconventional alternative has safely sustained all examined earthquake scenaria. In 

both cases the central column experiences more intense loading but the ratio fluctuates 

around only 0.1 (i.e a safety factor of about 10 may be assumed), while for the conventional 

system the ratio averages around 0.5 (Fig. 3.38). Note that ratios exceeding the value of 1 

are indicative of failure. The lateral columns are generally less distorted even in the 

conventionally designed frame, but still, a substantial portion of their available ductility is 

consumed during strong earthquake scenaria. In stark contrast, for the case of the under-

designed foundation the μdemand /μcapacity ratio never exceeds 0.1 for the side columns. A 

similar conclusion may be drawn by comparison of the drift ratios examined. The flexural 

portion of the drift ratio is systematically lower for the under-designed alternative both in 

terms of maximum and residual value (Fig.3.39). As seen before, the total drift ratios are 

comparable for the two cases and therefore the non-structural distortion should not be 

considered as avoidable. Similarly, both alternatives develop comparable settlements, with 

the under-designed alternative demonstrating a marginally inferior behavior (Fig. 3.39). Still 

though, the settlements magnitude is of minor importance for the structural integrity of the 

frame. 
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Table 3.1. Structural member dimensions of the idealized typical frame, and

synopsis of computed internal forces for static and seismic load combinations.

Structural Member

Dimensions 

(cm)

Static Combination    Seismic Combination                      

1.35G + 1.5Q Vertical Loading : G+0.3Q Earthquake Loading : ± E

Mst : kNm Qst : kN Nst : kN M : kNm Q : kN N : kN ME : kNm QE : kN NE : kN

Ground floor Columns – base
40 x 40 13 10 243 8 6 150 101 41 54

Ground floor Columns – base
40 x 40 13 10 243 8 6 150 101 41 54

1st floor Columns – base
40 x 40 68 51 153 40 30 96 26 25 19

Ground floor Beam – edges
20 x 50 71 117 0 41 68 0 80 35 0

1st floor Beam – edges
20 x 50 61 117 0 35 68 0 45 19 0
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Table 3.2. Seismic capacity design of the superstructure : target moment capacity

(Mtarget) of structural members, resulting longitudinal reinforcement, and final

(achieved) Moment Capacity (MRD).

Structural Member Location Mtarget: kNm Reinforcement MRD : kNm

Ground floor Columns 
top 119 8Ø20 165

bottom 146 8Ø20 165

1st floor Columns 
top 104 8Ø20 165

bottom 105
1 floor Columns 

bottom 105 8Ø20 165

Ground floor Beam
edges 119 5Ø16 120

middle 64 3Ø14 67

1st floor Beam
edges 79 4Ø14 80

middle 74 4Ø14 80
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Table 3.3. Forces acting on the footing for Static and Seismic load combinations. 

Static  Combination Seismic  Combination

1.35G + 1.5Q G + 0.3Q ± E EAK 2000* (aCD = 1.78)

M : kNm 13 8 100 186M : kNm 13 8 100 186

Q : kN 10 6 41 78

N : kN 322 151 54 247

* : according to conventional capacity design, following

- 197 -



Table 3.4. Alternative footing configurations : footing width B, resulting safety

factor for static SFS and seismic SFE loading, eccentricity e/B, moment capacity

(computed analytically according to Gourvenec, 2007), and corresponding Capacity

Reduction Factor (ratio of footing capacity Mult to the column capacity MRD).

Observe that according to conventional capacity design, B = 1.7 m is the minimum

acceptable square footing (to comply with code provisions relevant to the

maximum allowable eccentricity of B/3).

Footing width               

B (m)
SFS SFE Eccentricity e/B              

Mult  for N=151 kN

(G + 0.3 Q)

Mult for N=247 kN                                

(EAK 2000)

Capacity Reduction 

Factor

1.7 7.96 1.93 0.34 136 197 N.A.

1.6 7.01

Not Applicable for 

Conventional Foundation 

Capacity Design

125 180 1.32

1.5 6.13 113 163 1.46

1.4 5.31 101 147 1.63

1.3 4.54 91 131 1.81

1.2 3.84 81 115 2.04

1.1 3.19 71 100 2.32

1.0 2.6 61 84 2.70
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B B

No foundation uplift 

allowed :

e < B/3

Plastic “hinging” 

of column base

Rocking Isolation Design

b < B

Mobilization of 

foundation bearing 

capacity : Plastic 

“hinging” in the soil

(a) (b)

Plastic “hinging” 

of beams

Plastic “hinging” 

of beams

b < B

Figure 3.1. (a) Conventional Capacity Design compared with (b) Rocking–Isolation Design. (c) Conventional

Capacity Design : moment–curvature curve of the reinforced concrete column (ductile design, according to

EC8). (d) Rocking–Isolation Design : moment–rotation curve (for combined axial and shear force at a constant

lever arm) of the under-designed square footing, illustrating the effect of the reduction of width b.
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Figure 3.2. Geometry and member properties of the idealized typical frame 

structure analyzed : (a) plan view, and (b) cross-section A-A’. 
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Figure 3.3. Finite element model : assuming plane-strain conditions, the soil-structure

system is modeled with due consideration to material (soil and superstructure) and

geometric (uplifting and P-δ effects) nonlinearities.

Seismic excitation

- 201 -



-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

monotonic

F.E. prediction

(a)  Column 40x40 (8Φ20) 

M
 (

k
N

m
)

Curvature c (1/m)

(b) Ground floor Beam 20x50 (5Φ16)

40

60

80

100

120

140

Section Analysis

F.E. prediction

0

40

80

120

160

200

0 0.1 0.2 0.3 0.4

Section Analysis

F.E. prediction

P

-60

-20

20

60

100

140

P

Curvature  c (1/m)

M
 (

k
N

m
)

monotonic loading

monotonic loading cyclic loading

cyclic loading

analysis

analysis

cyclic F.E

(c) 1st floor Beam 20x50 (4Φ14)

0

20

0 0.05 0.1 0.15 0.2 0.25

0

15

30

45

60

75

90

0.00 0.10 0.20 0.30

Section Analysis

F.E. prediction

Figure 3.4. Calibration of the superstructure F.E. model against moment–curvature response calculated

through reinforced–concrete section analysis under monotonic loading (left column), and FE model

response under cyclic loading (right column) : (a) columns (40x40, 8Φ20), (b) ground floor beam (20x50,

5Φ16), and (c) 1st floor beam (20x50, 4Φ14).

-90

-50

-10

30

70

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

Monotonic

F.E. prediction

-140

-100

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

monotonic

F.E. prediction

P

P

Curvature  c (1/m) Curvature  c (1/m)

Curvature c (1/m) Curvature  c (1/m)

M
 (

k
N

m
)

monotonic loading cyclic loading

cyclic F.E

cyclic F.E

- 202 -



-200

-150

-100

-50

0

50

100

150

200

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

3D

2D

M
 (

k
N

m
)

10 0

-0.01 -0.005 0 0.005 0.01

Rotation θ (rad)Rotation θ (rad)

-150

-100

-50

0

50

100

150

-0.01 -0.005 0 0.005 0.01

3D

2D

(a) Stiff Clay : Su = 150 kPa (b) Medium - Soft Clay : Su = 50 kPa

-2

0

2

4

6

8

10

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

3D

2DS
e

tt
le

m
e

n
t 

 w
(c

m
)

-8

-7

-6

-5

-4

-3

-2

-1

0

3D

2D

uplift

settlement

settlement
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Figure 3.27: The effect of soil strength. Two footing alternatives both of FSv = 4.0 are

compared : Footings of B=1.6 m on a Su = 85 kPa ground (left column) and footings of

B=1.2 m on a Su = 150 kPa ground (right column). Results are presented in terms of

(a) Moment – curvature loops and (b) Overturning Moment - footing rotation loops

when the frames are subjected to the moderate El Centro record (1940).
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Figure 3.28: The effect of soil strength. Two footing alternatives both of FSv = 4.0 are

compared : Footings of B=1.6 m on a Su = 85 kPa ground (left column) and footings of

B=1.2 m on a Su = 150 kPa ground (right column). Results are presented in terms of

(a) time history og ground floor drift and (b) settlement-footing rotation loops when

the frames are subjected to the moderate El Centro record (1940).
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Figure 3.29: The effect of soil strength. Two footing alternatives both of FSv = 4.0 are

compared : Footings of B=1.6 m on a Su = 85 kPa ground (left column) and footings of

B=1.2 m on a Su = 150 kPa ground (right column). Results are presented in terms of

(a) time history og ground floor drift and (b) settlement-footing rotation loops when

the frames are subjected to the moderate El Centro record (1940).
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Figure 3.30: The effect of soil strength. Two footing alternatives both of FSv = 4.0 are

compared : Footings of B=1.6 m on a Su = 85 kPa ground (left column) and footings of

B=1.2 m on a Su = 150 kPa ground (right column). Results are presented in terms of (a)

Moment – curvature loops and (b) Overturning Moment - footing rotation loops when

the frames are subjected to the very strong Takatori000 record (Kobe, 1995).
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Damage level is indicated with reference to Response Limit States (Priestley et al.,

1996).
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Figure 3.35: Comparative response of 2-bay (left column) and 1-bay frames (right

column) both designed conventionally under earthquake loading in terms of (a) Total

drift ratio for the ground floor δ/h (where h is the height of the ground floor), (b)

Flexural drift ratio δC / h , and (c) Settlement w.
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column) both designed following the rocking isolation concept under earthquake
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ductility capacity). Damage level is indicated with reference to Response Limit

States (Priestley et al., 1996).
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Figure 3.37: Comparative response of 2-bay (left column) and 1-bay frames (right

column) both designed following the rocking isolation concept under earthquake

loading in terms of (a) Total drift ratio for the ground floor δ/h (where h is the height

of the ground floor), (b) Flexural drift ratio δC / h , and (c) Settlement w.
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Figure 3.38. Summary of the response of the two design alternatives when applied to 2-bay frames

as a function of Column curvature ductility ratio (i.e. ductility demand over ductility capacity).

Damage level is indicated with reference to Response Limit States (Priestley et al., 1996)
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Chapter 4: Simplified Method for the Design of Rocking-isolated Frames 

 

 

4 
 

Simplified Method for Foundation Design 

 of Rocking−isolated Frames  

 

 

4.1. Introduction 

Due to the kinematic and cyclic nature of earthquake loading, uplifting and mobilization of 

foundation bearing capacity under severe seismic shaking do not necessarily lead to failure 

[Pecker, 1998; Makris & Roussos, 2000; Pecker & Pender, 2000; Kutter et al., 2003; Gajan et 

al., 2005; Harden & Hutchinson, 2006; Paolucci et al., 2008; Kawashima et al., 2007]. In fact, 

recent research suggests that such strongly nonlinear mechanisms may be beneficial and 

should be taken into account for the seismic design and retrofit of structures [Martin & Lam, 
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2000; Pecker, 2003; FEMA-356, 2000; Kutter et al. 2001; Gazetas et al., 2003; Gajan et al., 

2005; Mergos & Kawashima, 2005; Gajan & Kutter, 2008; Gajan et al., 2008].  

Taking advantage of the above, a new seismic design philosophy was introduced in 

Anastasopoulos et al. [2010a], guiding the plastic "hinge" from the superstructure to the 

soil-foundation interface (i.e., exactly the opposite of conventional capacity design). This 

way, instead of over-designing the foundation to ensure that inertia forces can be 

transmitted to the superstructure, the foundation is intentionally under-designed to yield, 

mainly in the form of foundation rocking and uplifting, acting as “rocking isolation”. Using a 

simplified bridge structure as an illustrative example, it was shown that such design 

philosophy may provide increased safety levels (i.e. avoidance of collapse), with the price to 

pay being mainly in the form of increased dynamic settlement.  

The effectiveness of such rocking isolation design philosophy was further investigated 

in the previous Chapter for a simplified 2-storey 1-bay frame (Figure 4.1). The seismic 

performance of a conventionally designed structure (with larger over-designed footings, 

Figure 4.1a) was compared to a rocking-isolation alternative (with smaller under-designed 

footings, Figure 4.1b). Through static pushover and nonlinear dynamic time-history analysis 

(using an ensemble of 24 strong motion records), the performance of the rocking−isolated 

alternative was found to be advantageous for very strong seismic shaking, well in excess of 

the design limits. In contrast to the conventionally designed structure, which collapsed in 3 

out of 24 earthquake scenarios and sustained irreparable damage in all other cases, the 

rocking−isolated structure survived all seismic excitations sustaining minor to repairable 

column damage, but non-negligible damage to its beams and non-structural elements (infill 
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walls, etc.). Interestingly, (at least for the cases examined) dynamic settlement was shown 

not to be an issue, provided that the static safety factor of the under-designed footing is 

adequately large : SF
s
 > 5. 

While in conventional capacity design (Figure 4.1a) the footings have to be large 

enough so that their moment capacity Mult is larger than that of the columns M
RD

, in the 

case of rocking isolation (Figure 4.1b) they are under-designed so that Mult < M
RD

. The under-

strength of the foundation will depend on the Capacity Reduction Factor (CRF), which is 

defined as :  

CRF = Mult /M
RD

      (4.1) 

For a given structure, the increase of CRF leads to a reduction of Mult, and hence, more 

effective rocking isolation. But, unfortunately, such increased isolation effectiveness is 

directly associated with a decrease of the static safety factor SF
s
 , thus leading to increased 

foundation rotation and risk of toppling. On the other hand, the decrease of CRF is not only 

reducing the effectiveness of rocking isolation, but also increases the risk of Mult actually 

becoming larger than M
RD

. Such risk is not only associated with the uncertainties in the 

estimation of soil and superstructure strength, but also with dynamic footing overstregths 

[Gelagoti et al., 2010]. Hence, the optimum footing width will have to ensure an adequately 

large CRF (i.e. adequately reduced foundation capacity) so that Mult < M
RD

, while maintaining 

an adequate margin of safety against toppling.  

To this end, this section develops a simplified procedure to estimate the range of 

optimum (or acceptable) footing width. 
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4.2. Problem Definition and Analysis Methodology 

As depicted in Figure 4.2a, the problem investigated herein refers to an idealized 5 m wide 

and 7 m high 2-storey reinforced concrete building. The structure was designed with a 

conventional structural analysis software, in accordance with EC8 [2000] and the Greek 

Seismic code [EAK 2000], for design acceleration ad = 0.36 g and behavior factor q = 3.5. The 

geometric characteristics and main member properties are shown in Figure 4.2a. More 

details can be found in the previous chapter discussion.  

For conventional capacity design, the footings would have to be over-designed so that 

Mult > M
RD

, achieving safety factors for static and seismic loading SF
S 

≥ 3 and SF
E 

≥ 1, 

respectively, and eccentricity e < B/3 (where B is the footing width). As already discussed, 

with e being critical, the conventionally required footing width is B = 1.7 m and the resulting 

safety factors SF
S
 = 8 and SF

E
 = 1.93. In the case of rocking isolation design, the footing is 

intentionally under-designed to uplift, "guiding" the plastic hinge from the base of the 

column to the soil−foundation interface. While the eccentricity criterion is relaxed (i.e. e > 

B/3 is allowed) and SF
E
 < 1 is pursued, the static factor SF

S 
has to be greater than 3 so that 

the footing is not subjected to sinking but uplifting response. The latter is definitely 

preferable, since the dynamic settlement is substantially reduced [Kutter et al., 2001; Pecker 

& Pender, 2005; Chatzigogos et al., 2009].  

Based on the above design criteria, Table 4.1 summarizes the allowable footing widths, 

along with their corresponding moment capacities Mult [calculated according to Gourvenec, 

2007], static safety factor SF
S
, and capacity reduction factor CRF. Since the column axial load 

N fluctuates substantially during seismic loading due to frame action [Gelagoti et al., 2010], 
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all of the above are computed for the static column axial load N = 151 kN, and its maximum 

value (computed through static pushover analysis) Nmax = 232 kN. According to the above, 

the allowable footing width B ranges from 1.6 m (with SF
S
 = 7 and CRF ranging from 1.2 to 

1.6) to 1.1 m (with SF
S
 = 3.2 and CRF ranging from 2.4 to 3.3).   

Before proceeding, it should be noted that the whole rocking-isolation concept relies 

on foundation under-design, i.e. reduction of its width B. As previously discussed, this is 

feasible for the typical frame analyzed simply because the eccentricity criterion is critical. For 

a short structure (such as a 1-storey frame), the response of which is shear-dominated, in 

the absence of substantial moment M acting on the footing, the e ≤ B/3 criterion may not be 

the one controlling foundation design. In such cases, the safety factor may be critical and the 

rocking-isolation concept will not be applicable. 

The problem is analyzed through the finite element (FE) method. Assuming plane-

strain conditions, a representative equivalent "slice" of the soil−structure system is analyzed, 

with due consideration to material (soil and superstructure) and geometric (uplifting and P-Δ 

effects) nonlinearities. Although the problem is definitely 3 dimensional, 3D modeling would 

be computationally inefficient. Hence, the 2D numerical model is rendered equivalent to the 

3D problem through application of a shape factor of 1.2 (square foundation) to the soil 

"slice" of the model. The validity of such equivalence has been demonstrated in the 

preceding. Soil and footings are modeled with quadrilateral plane strain continuum 

elements, nonlinear and elastic, respectively. Nonlinear beam elements are used for the 

superstructure, which is connected to the soil through an interface, which allows 

detachment and sliding. Free-field boundaries are used at the two lateral boundaries of the 
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model, allowing for realistic kinematic soil response. The dynamic response of the system is 

analyzed through nonlinear dynamic time history analysis, applying the seismic excitation at 

the base of the model.  

Soil behavior is modeled through a kinematic hardening model with Von Mises failure 

criterion and associated flow rule. In Anastasopoulos et al. [2010b], the model was modified 

to be applicable for sands (extended pressure-dependent Von Mises), and validated against 

centrifuge and large scale tests. Despite its simplicity, the model was shown to predict well 

the cyclic response of footings in clay and sand. The model is breifly described in the sequel, 

while more details can be found in Anastasopoulos et al. [2010b].   

The pressure-independent yield surface of the model is defined through the following  

function F :   

0( )= - -F f σ α σ      (4.2) 

where σο is the stress at zero plastic strain, and α the backstress, which defines the 

kinematic evolution of the yield surface in the stress space. σο controls the initiation of non-

linear behaviour, and is defined as a fraction λ of the yield stress σy :  

=o yσ λσ       (4.3) 

For clay under undrained conditions, σy can be defined as follows :   

=y 3 uσ S        (4.4) 

The evolution law of the model consists of a nonlinear kinematic and an isotropic hardening 

component. The evolution of the kinematic component is described as : 

( ) & &&

0

= - -pl pl1
ε εα C σ α γα

σ
    (4.5) 
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where 
plε& the equivalent plastic strain rate, = y yC σ ε is the small strain Young’s modulus, 

and γ a parameter that determines the rate of decrease of the kinematic hardening with the 

increase of plastic strain.  

The small strain Young’s modulus C can be directly computed from shear wave velocity 

Vs , or estimated through empirical correlations [e.g. Hardin & Richart, 1963; Seed et al., 

1986; Mayne & Rix, 1993] as a function of σy :  

= yC α σ        (4.6) 

where a ranges from 150 to 1000 for clays (i.e. E = 300Su to 1800Su). Since = +y οσ C γ σ , 

parameter  γ  can be expressed as [Gerolymos et al., 2005a] :  

03
=

-

C

u

γ
S σ

      (4.7) 

The nonlinear moment–curvature response of reinforced concrete (RC) members is 

modeled employing the same constitutive model, after proper adaptation [Gerolymos et al., 

2005a]. To this end, the moment–curvature response of superstructure members is first 

computed through static section analysis employing the X-tract 2000 software [Imbsen 

Assoc. & Chadwell, 2004]. Then model parameters are calibrated to match the target 

moment–curvature response. For a rectangular RC member of width db and height dh , the 

yield stress σy can be defined as : 

2
=

y

y

b h

4M
σ

d d
       (4.8) 

The residual bending moment is assumed equal to 30% of the bending moment capacity 

[Vintzilaiou et al., 2007]. To capture this softening response, a user subroutine was encoded 
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in ABAQUS. Parameters λ and α of the model are calibrated through numerical simulation of 

the static push-over test. Figure 4.2b illustrates the monotonic and dynamic pushover 

response of ground floor columns and beams. Evidently, according to the principles of 

capacity design, column strength is larger than that of beams. The column curvature ductility 

μφ = 10, corresponds to the medium ductility class according to the EC8, as shown in the 

previous Chapter. 

 

4.3. Insight on the Seismic Behavior of the Rocking-Isolated Structure 

As summarized in Table 4.1, taking into account of the necessity for SFS ≥ 3 (to ensure 

uplifting−dominated response), the footing width B may range from 1.6 m to 1.1 m (further 

reduction will result in unacceptable SFS). However, as previously discussed, two 

contradicting criteria need to be simultaneously satisfied : (i) the footing width B needs to be 

small enough, so that its moment capacity Mult is adequately smaller than the corresponding 

capacity of the column M
RD

 (taking account of uncertainties in estimation of soil and 

superstructure strength, and dynamic footing overstregths) ; and (ii) the footing width B has 

to be large enough, so that an adequate margin of safety against toppling is achieved. In 

other words, there exists a lower-bound and an upper-bound of footing width B, which will 

be critical to satisfy the aforementioned criteria. This is further elaborated in the ensuing. 

 

4.3.1. Estimation of the Upper-Bound of the Footing Width 

The upper-bound refers to the larger possible B that satisfies the criterion of the footing 

moment capacity Mult being adequately smaller than the column capacity M
RD

. As 
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investigated in detail already, Mult and the whole M−θ (moment-rotation) response largely 

depend on dynamic fluctuations of the axial force N and the M/Q (moment to shear) ratio 

acting on the footings. Such fluctuations are related to the dynamic frame response, and 

have to be taken carefully into account to define the upper-bound of the width B.  

Figure 4.3 illustrates the effect of such fluctuations on foundation M–θ response (for 

the frame with B = 1.4 m footings). As shown in Figure 4.3a, initially both footings 

experience equal vertical loads No = 151 kN, due to the dead load of the superstructure. As 

the imposed lateral displacement δ increases, due to the developing frame response, the 

axial force N acting on footing 1 (left) decreases to Nmin = 70 kN, while the one acting on 

footing 2 (right) increases to Nmax = 231 kN. As illustrated in Figure 4.3b, this fluctuation of N 

has a significant effect in enhancing the moment capacity of footing 2 from its theoretical 

(i.e. static) value of 101 kNm (for No = 150 kN) to Mult,max
 
 = 147 KNm (for Nmax = 231 kN), 

while it tends to slightly reduce its ultimate rotation θult ; at the same time, the moment 

capacity of footing 1 is reduced to Mult,min = 90 KNm due to the decrease of the 

corresponding axial load (to Nmin = 70 kN). However paradox as it may appear, the 

enhancement of Mult is detrimental in the context of rocking isolation, since it increases the 

amount of bending moment that may be transmitted to the superstructure.  

 

As summarized in Table 4.1, due to the developing frame response and the associated 

increase of N, for the investigated frame the maximum moment capacity Mult,max of the 

footing may exceed by up to 40% the moment capacity Mult calculated considering the initial 

axial load No. Hence, the upper bound B should be estimated on the basis of Mult,max (i.e. for 

- 247 -



Metaplastic Response of Frame–Foundation Systems 

Nmax) and not assuming  Mult (i.e. for No , ignoring frame response), something that can be 

achieved through static pushover analysis of the structure. In other words, to ensure 

rocking-isolation effectiveness, the footing has to be small enough so that its Mult,max is 

adequately lower than the moment capacity M
RD

 of the corresponding column. This means 

(at least for the frame investigated herein) that the capacity reduction factor CRF should be 

at least equal to 2 (see also Table 4.1), so that the actual CRFmax (i.e. the capacity reduction 

factor computed on the basis of Mult,max) is at least equal to 1.4, a value which allows a 

reasonable safety margin for the aforementioned uncertainties.   

An additional complication may arise from the fluctuation of the M/Q ratio with 

imposed lateral displacement δ (Figure 4.3c). Initially, before the development of plastic 

hinging, M/Q ≈ 2.4 being roughly equivalent to what would be computed on the basis of 

conventional elastic pseudostatic analysis of the frame. Then, with the increase of δ and 

plastic hinging taking place at the two beams, M/Q asymptotically approaches 4.8, and then 

(for δ > 0.5 m) it decreases again. As depicted in Figure 4.3d, while foundation moment 

capacity is practically insensitive to the increase of M/Q from 2.4 to 4.8 (in accord with 

foundation failure envelopes, see Gourvenec [2007]), a rather dramatic effect may be 

observed for the rotation capacity θult of the foundation, which is reduced from 0.25 (for 

M/Q = 2.4) to 0.13 (for M/Q = 4.5). While this may be of particular significance for the 

overall ductility of the system, it may be concluded that fluctuation of M/Q is of trivial 

importance to the determination of the upper bound of the footing width B.   
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4.3.2. Estimation of the Lower-Bound of the Footing Width 

Based on the previous discussion, a straight-forward procedure can be developed to 

estimate the upper-bound of the footing width B (i.e. the larger footing B that satisfies the 

design criteria). Notice that in conventional design no such upper-bound exists. On the other 

hand, the lower-bound refers to the smallest possible footing width B that provides an 

adequate margin of safety against toppling. As it can be seen in Table 4.1, in terms of SFs the 

footing width could be reduced to B = 1.0 m, a solution that would yield a CRF of the order 

of 3 (i.e. Mult roughly 3 times lower than M
RD

. However, as Mult reduces, the rotation it 

develops to sustain the same amount of earthquake demand will unavoidably increase. In 

addition, the decrease of B and consequently of Mult is unavoidably associated with a 

reduction of θult , meaning that system ductility will also be reduced. Naturally, the lower 

bound of B is not only associated with strength (as was the case for its upper bound), but is 

also a function of earthquake demand.    

Figure 4.4a depicts the Μ−θ response of the two (B = 1.4 m) frame footings subjected 

to pushover analysis. The response of the system can be broadly categorized in two distinct 

phases :  

1)  Frame−dominated Response (θ ≤ 0.05 rad)  

During this first phase, the response of the system is dominated by frame action. Initially (for 

θ < 0.005 rad), M increases with θ for both footings. As the imposed lateral displacement δ 

increases (for 0.005 < θ ≤ 0.02 rad), the frame develops column axial forces leading to a 

decrease of M on footing 1 (due to a corresponding decrease of N) and an increase of M on 

footing 2 (due to a corresponding increase of N). Then, during an intermediate phase (for 
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0.02 < θ ≤ 0.05 rad), with the development of plastic hinges on beams and the consequent 

reduction of N to its initial static value No (due to beam plastic hinging, frame action is 

practically cancelled), M on footing 1 rises again (because N increases, going back to No) and 

M on footing 2 is reduced (because N decreases, going back to No) : the previously discussed 

effect of the fluctuation of N. At this stage, since Mult < M
RD

 frame response is governed by 

footing uplifting. The beams experience extensive plastic hinging and finally reach their 

ductility capacity. During this frame−dominated phase, M/Q ≈ 2.4 (see also Figure 4.3c) and 

the response of each footing can be approximated with an equivalent 1-dof system, of mass 

mf/2 (i.e. half of the total frame mass) at height h1
m

 = 2.4 m (Figure 4.4b).  

2)  Rocking−dominated Response (θ > 0.05 rad)  

During this ultimate phase (for θ > 0.05 rad), the beams have failed and the response of the 

system is dominated by rocking. The response of the two footings is mainly affected by the 

aforementioned increase of M/Q from 2.5 for the intact frame (see frame-dominated 

response) to 4.5. At this phase, with frame beams having reached their residual strength 

(assumed equal to 30% of their M
RD

), the system can be seen to reduce from a frame to two 

idealized 1-dof systems connected with each other with the 2 hinged beams. Hence, the 

response of each footing can be approximated with an equivalent 1-dof system, of mass 

mf/2 (i.e. half of the total frame mass) at height h2
m

 = 4.5 m (Figure 4.4b).  

The two equivalent 1-dof systems, each one of them representing two extreme phases 

of system response, can be seen to provide a response envelope for the pushover response 

of the studied frame (Figure 4.4a). Evidently, the ultimate rotation θult is a function of the 

footing width B and the lever arm (i.e. M/Q) : observe in Figure 4.4a the difference in θult 
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between the two idealized 1-dof systems. Hence, the estimation of the lower bound footing 

width requires combined knowledge of : (a) footing M-θ response (for a specific M/Q), which 

determines its rotation capacity θult ; and (b) earthquake demand in terms of footing 

rotation θdem , which can be expressed directly through the earthquake displacement 

demand δdem. Since δdem is impossible to be known a priori and the exact M-θ footing 

response greatly depends on the active lever arm, which constantly fluctuates during 

shaking as elucidated earlier (see the effect of M/Q), a simplified approach is sought for to 

facilitate the estimation of the lower bound footing width in a conservative though 

practically applicable manner.  

 

4.4. Simplified Method to Estimate the Lower-bound of the Footing Width  

The methodology presented herein focuses on the state of the frame during the ultimate  

phase described above, when toppling is incipient. During that stage, frame behavior may be 

enveloped by the two previously discussed idealized 1-dof systems (Figure 4.4). Apparently, 

both idealized systems are intrinsically incapable to predict with accuracy the response of 

the structure, since they both refer to a hinged system rather than a frame. Moreover, 

neither of them is able to accurately capture the observed critical toppling rotation θult . Yet, 

notwithstanding these significant limitations, as shown in Figure 4.4b such simplified 

approximation may indeed provide a rational estimate for the upper and lower bounds of 

θult . The validity of such an approach is examined in the sequel.  
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4.4.1. Rigid−Block on Rigid−Base Approximation 

As already shown, at this ultimate phase the response of the structure is dominated by 

rocking, and the flexural drift δc (i.e. the lateral displacement of the structure due to flexural 

distortion of its structural members) may be considered negligible compared to the rocking 

drift δr (i.e. the lateral displacement due to foundation rocking). Hence, it is considered 

reasonable to approximate the response of the equivalent 1-dof system to that of a rigid-

block of the same geometric characteristics (i.e., same width and center of mass). Moreover, 

since the footings of the frame are designed for uplifting-dominated response (SFs ≥ 3), the 

approximation of the foundation soil with a rigid-base could may also be considered 

reasonable.  

The validity of such rigid-block on rigid-base approximation is verified through static 

pushover analysis of the two systems: (i) the equivalent 1-dof system lying on a homogenous 

clayey soil of undrained shear strength Su , and (ii) the equivalent rigid-block resting on a 

rigid-base. For this purpose, the two systems are analyzed in 3D, taking account of material 

(for the first case only) and geometric (i.e., uplifting and P−δ effects) nonlinearities. Besides 

from the three-dimensional nature of this simulation (8-noded hexahedral brick elements, 

instead of 4-noded quadrilateral plane strain elements), the analysis methodology is in 

accordance with the one previously discussed.  

Comparative results are presented in Figure 4.5 for a 1-dof system with B = 1.4 m and 

h1
m

 = 2.4 m and its equivalent rigid-block on rigid-base. To investigate the effect of SFs, two 

cases are examined varying the undrained shear strength Su from 80 kPa (yielding SFs = 2.0) 

to 150 kPa (yielding SFs = 4.5). Evidently, the M−θ (moment−rotation) response of the rigid-
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block on rigid-base reasonably approximates that of the 1-dof system with SFs = 4.5 (in which 

case the response is clearly uplifting-dominated). Naturally, the approximation is invalidated 

as the safety factor reduces (see results for SFs = 2.0), and the response becomes less 

dominated by uplifting. In general, and based on additional results not shown herein, the 

rigid-block on rigid-base approximation may be considered reasonable for SFs ≥ 3, which is in 

any case the lower allowable limit for all practical purposes.  

 

4.4.2. Conservative Estimate of the Toppling Potential of a Seismic Motion  

As previously discussed, the estimation of the lower bound footing width requires combined 

knowledge of its rotation capacity θult and earthquake demand, i.e. the amount of rotation 

or displacement it will have to undertake. Assuming that θult can be estimated on the basis 

of the rigid-block on rigid-base approximation, the problem reduces to establishing a 

procedure to obtain a conservative estimate of the maximum rotation demand θdem of a 

seismic motion.   

For a rigid-block of width B = 2b and height H = 2h (Figure 4.6), toppling will take place 

when the imposed rotation exceeds a critical value θult (Figures 4.6a and 4.6b):   

θult = tan
-1

(b/h) ≈ b/h     (4.9) 

The critical toppling rotation θult may be converted to critical toppling displacement δult 

(imposed at the center of mass of the rigid-block) as follows : 

δult ≈ b = B/2      (4.10) 
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Observe that the effective period T of the system changes continuously with the imposed 

displacement δ, asymptotically tending to infinity when δ approaches δult (Figure 4.6c). For 

the specific example (B = 1.4 m, H = 4.8 m), this is observed for δ → δult ≈ 0.7 m. 

The issue of earthquake-induced rocking of rigid blocks on rigid base has been studied 

very thoroughly over the last decades [Housner, 1963; Ishiyama, 1980; Psycharis & Jennings, 

1983; Koh et al., 1986; Makris & Roussos, 2000; Zhang & Makris, 2001; Gazetas et al., 2003; 

Gerolymos et al., 2005b; Apostolou et al. 2007], revealing the sensitive nonlinear nature of 

the problem. Most researchers [e.g. Zhang & Makris, 2001; Apostolou et al., 2007] conclude 

that the overturning (or toppling) of such structures is quite unpredictable − if not chaotic − 

even for simplified cycloidal pulses. Hence, attempting to accurately quantify the toppling 

potential of a seismic motion (for a given rigid block) within the framework of the present 

study would be overly optimistic. Instead, the present study seeks for a conservative upper-

bound of earthquake displacement demand δdem, for which toppling will not take place. This 

conservative estimate, in combination with the capacity of the footing δult (Eq. 10), may 

provide the criterion to define the lower-bound of the footing width B.  

Taking account of the above limitations, the peak spectral displacement SDmax is 

proposed as a conservative measure of the upper bound displacement demand. Although 

the spectral displacement may appear as a reasonable measure, it is well known that 

response spectra are applicable to 1-dof oscillators of a specific period T. So, it would 

probably be more straight-forward to set as measure the spectral displacement SD(Teff) for 

the effective period Teff of the system, and not the peak SDmax. However, as previously 

discussed (see Figure 4.6c), and in accord with the relevant bibliography [e.g. Makris & 
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Roussos, 2000; Apostolou et al., 2007], Teff of a rocking system constantly changes during 

shaking, rising from zero (in the case of a rigid block) to infinity once the toppling condition 

has been met. Hence, Teff cannot be known a-priori and consequently SD(Teff) cannot be 

easily defined. Although Priestley et al. [1978] had proposed an iterative simplified method 

to compute Teff and estimate the rotation θ of a rocking system on the basis of SD, Makris & 

Konstantinidis [2003] have shown that rocking response cannot be approximated by               

1-dof oscillator−based methodologies, as the two systems are fundamentally different 

(stiffness, damping, and restoring mechanisms).  

No such attempt is made here. SDmax is simply treated as a conservative index of 

seismic displacement demand. The  aforementioned Teff , for which SD(Teff) = SDmax , may or 

may not be approached during seismic shaking, depending on the characteristics of the 

seismic motion and the response of the system. And even if it did, it would only be 

momentary. Hence, SDmax will not necessarily develop during seismic shaking, and can only 

be seen as the worst-case scenario. The validity and limitations of such approximation are 

investigated in the following sections : (i) for a rigid-block on a rigid-base, and (ii) for the 

frame structure on nonlinear soil. 

 

4.5. Validation of the Simplified Approach for a Rigid block on Rigid Base    

With reference to the case of a rigid-block on a rigid-base, the validity of SDmax as a 

conservative upper-bound estimate of earthquake demand is investigated : (a) for cycloidal 

(sinus and cosine) pulses, and (b) for Ricker wavelets.  
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4.5.1. Rigid block subjected to sinus and cosine pulses  

Zhang & Makris [2001] investigated the transient rocking response of free-standing rigid 

blocks subjected to trigonometric (sine and cosine pulses) base excitation. Having derived 

analytical expressions for the dynamic horizontal and vertical reactions at the pivot point of 

a rocking block, they showed that under one-cycle cycloidal excitation the block may topple 

either after one impact (mode 1), or without impacts at all (mode 2). As a consequence, a 

‘‘safe region’’ exists between the two modes, implying that while the block may topple after 

one impact (mode 1) for a certain level of shaking, it may remain standing for a larger 

amplitude, and finally topple without impact (mode 2) for even higher levels of shaking. 

These rigorous analytical results are used herein as a yardstick to investigate the validity of 

the previously discussed simplified methodology.  

A rigid block of width B = 2b and height H = 2h (Figure 4.6a) is characterized by its 

slenderness ratio α = tan
-1

(b/h) and the frequency parameter p : 

= 3 4p g R       (4.11) 

The latter can be seen as a measure of the dynamic characteristics of the block, decreasing 

with the size of the block (i.e. a larger structure will have a smaller characteristic frequency). 

Two rigid blocks are studied, following Zhang & Makris [2001] : a larger block of  p = 2.0 

rad/s and α = 0.35 rad, and a smaller one of p = 2.14 rad/s and α = 0.25 rad. Both are 

subjected to one-cycle sinus and cosine pulses of amplitude a and cyclic frequency ωp . The 

acceleration amplitude required to cause overturning of the block is defined as the toppling 

acceleration ap.  
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Figure 4.7 compares the simplified SDmax approach with the rigorous analytical solution 

of Zhang & Makris [2001]. The non-dimensional toppling acceleration ap/αg is plotted as a 

function of non-dimensional excitation frequency ωp/p for sinus (left column) and cosine 

pulses (right column). The shaded areas in Figures 4.7a and 4.7b depict the overturning 

areas of the two rigid blocks. Evidently, the non-dimensional toppling acceleration ap/αg 

increases exponentially with the increase of ωp/p, and with the size of the block (expressed 

through the frequency parameter p). The simplified approach is employed to compute the 

pulse acceleration amplitude ap
SD

 (for a given frequency ωp) required to produce a 

displacement spectrum with SDmax equal to the toppling displacement δult of each block : δult 

= 40 cm for the large block (p = 2.0 rad/s) ; δult = 63 cm for the smaller one (p = 2.14 rad/s). 

By no means, should this be viewed as an attempt of capturing such complex phenomena. 

For the sinus pulse, the simplified approach provides a conservative estimate of ap for the 

whole frequency range. However, for the cosine pulse it can be seen to provide a 

conservative estimate for lower (ωp/p ≤ 1.8) and higher (ωp/p ≥ 4.3) values of ωp/p, 

becoming marginally unconservative for intermediate frequencies (1.8 < ωp/p < 4.3).  

The effectiveness of the simplified approach is better quantified in Figure 4.7c, where 

the Safety Factor SF, defined as the ratio of the rigorous toppling acceleration ap
rigorous

 over 

the predicted toppling acceleration ap
SD 

(SF = ap
rigorous

/ap
SD

), is plotted as a function of the 

dimensionless frequency ωp/p. While for the sinus pulse SF is always greater than or equal to 

1.0 (which means that it is always on the conservative side), for the cosine pulse SF may be 

as low as 0.76 (for 1.8 < ωp/p < 4.3), which means that the simplified approach may under-

predict ap by as much as 26%. For practical purposes, a Factor of Safety of the order of 1.5 
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should be applied on SDmax-based estimates to wipe out such discrepancies. Going back to 

Eq. 10, this suggests that the lower-bound footing width should be increased accordingly, so 

that  b = B/2 = 1.5 SDmax (for the design seismic motion).  

4.5.2. Rigid block subjected to Ricker pulses  

Although the preceding analysis has yielded quite encouraging results, the simplified SDmax 

approach needs to be further validated against more realistic – yet still idealized – pulses. To 

this end, SDmax predictions are compared to rigorous numerical analysis results, referring to 

the overturning of rigid blocks subjected to Ricker pulses. Gerolymos et al., [2005], based on 

validated numerical analysis results, employed artificial neural networks to derive closed-

form analytical expressions for predicting the overturning acceleration ap of a rigid block, as 

a function of its geometric properties and excitation characteristics. The present study 

utilizes three characteristic example cases in order to explore the applicability of the 

proposed simplified method : (i) a small-size block of p = 3.38 rad/s and α = 0.16 rad, 

simulating a cemetery tomb ; (ii) a medium-size block of p = 3.14 rad/s and α = 0.25 rad, 

simulating an electrical transformer ; and (iii) a large-size block of  p = 0.76 rad/s and α = 0.30 

rad, simulating a slender building.  

Figure 4.8 depicts the comparison of the simplified SDmax-based prediction with the 

more rigorous analytical solution of Gerolymos et al., [2005]. The toppling acceleration ap is 

plotted as a function of excitation frequency fE (i.e., the characteristic frequency of the 

Ricker pulse). The shaded areas represent the overturning regions of the three rigid blocks, 

according to the aforementioned rigorous solution. As for the cycloidal (sinus and cosine) 

pulses, the toppling acceleration ap increases exponentially with the increase of the 
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frequency (fE in this case), and with the size of the rigid block. As for the previous case, the 

simplified approach is employed to compute the Ricker pulse acceleration amplitude ap
SD

 

(for a given frequency fE) required to produce a displacement spectrum with SDmax equal to 

the toppling displacement δult of each block. Interestingly, for this more realistic pulse type, 

the prediction of the simplified approach is nearly always conservative. In this case, although 

not necessary, the application of a factor of safety (as described in the previous section) 

would still be recommended for design purposes. 

 

4.6. Validation of Simplified Approach for the 2-Storey Frame on Inelastic Soil   

In the previous sections, the SDmax approach was validated for rigid blocks on a rigid base, 

subjected to idealized pulses. Although the rigid-block on rigid-base has been shown to be a 

reasonable approximation of the more complex reality, the effectiveness of the simplified 

approach needs to be verified for the actual problem. For this purpose, the SDmax approach 

is employed for the 2-storey frame structure resting on nonlinear soil, subjected to Ricker 

pulses and real seismic records. SDmax predictions are compared with numerical analysis 

results of the investigated frame structure.  

The analysis is conducted for the frame with B = 1.10 m footings : the minimum 

allowable footing dimension based on the SFs > 3 criterion (Table 4.1). As previously 

discussed, at the stage of incipient toppling the frame has been reduced to two 1-dof 

structures connected with each through the hinged beams (Figure 4.10a), something which 

is clearly evidenced by the numerical analysis of the frame subjected to static pushover 

(Figure 4.10b). According to the M–θ response of the two frame footings (Figure 4.10c), the 
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most conservative estimate of the toppling rotation would be that of footing 1 (left), which 

yields θult = 0.143 rad. This corresponds to δult = 71 cm (at the center of mass of the frame), 

which, according to the simplified approach should be equal to the peak spectral 

displacement SDmax of the design ground motion. Hence, the validation of the simplified 

approach will consist of applying to the frame (i.e., at the base of the finite element model) 

seismic excitations whose SDmax is equal to the toppling displacement δult of the frame.  

In order to investigate the safety margins provided by the SDmax approach, the applied 

seismic excitations are scaled in such a way so that their SDmax is equal to : (a) 1.1δult = 78 

cm, denoted SD
+
 (i.e. 10% larger than the toppling displacement δult) ; and (b) 0.9δult = 63 

cm, denoted SD
− 

 (i.e. 10% lower than δult).  

4.6.1. Ricker Pulses 

Ricker pulses of seven different characteristic frequencies fE = 0.4, 0.5, 0.65, 0.85, 1.0, 1.25, 

and 1.5 Hz are utilized to investigate the effectiveness of the simplified approach. According 

to the simplified SDmax approach, all pulses are scaled so that their SDmax is equal to SD
+
 = 

1.1δult = 78 cm, or SD
− 

= 0.9δult = 63 cm (Figure 4.11a). This way, their scaled (to yield SDmax) 

acceleration amplitude (which ranges from 0.34 g for fE = 0.4 Hz, to 4.83 g for fE = 1.5 Hz) is 

equal to the predicted toppling acceleration ap
SD

  of the system.  

The validity of this prediction is verified through dynamic nonlinear time-history 

analysis of the frame, employing the previously described FE analysis methodology. The 

system is subjected to the seven Ricker pulses, their amplitude being progressively increased 

until failure (i.e. toppling of the frame structure). The minimum acceleration amplitude of 

each pulse which provokes failure constitutes the actual (rigorously computed) toppling 
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acceleration ap of the frame. In Figure 4.11b, ap (isolated markers) is plotted as a function of 

non-dimensional frequency ωp/p of the system, and compared to the predicted ap
SD

 toppling 

acceleration (solid lines). Evidently, throughout the whole frequency, the simplified 

approach yields a reasonably conservative prediction. For such pulse-type seismic 

excitations, it provides a substantial margin of safety in the estimation of ap . This margin of 

safety increases with the increase of the non-dimensional frequency ωp/p, in accord with 

what was previously discussed for the rigid−block on rigid−base. 

4.6.2. Real Records  

Although the simplified SDmax approach has been shown to yield conservative estimates of ap 

for idealized pulse-type excitations, it needs to be further verified for real seismic 

excitations. To this end, an ensemble of 18 recorded earthquake time histories (from the US, 

Europe, and Asia) are utilized as seismic excitation. During their selection, emphasis was 

given in creating a collection of records covering a wide range of periods, and enabling us to 

capture the consequences of various characteristics of real seismic motions, such as PGA and 

PGV, SA and SD, frequency content, duration, number of strong motion cycles, and 

directivity effects.  

As for the Ricker pulses, to apply the simplified SDmax approach all records are scaled to 

SD
+
 = 78 cm, or SD

− 
= 63 cm. The resulting, scaled to SD

+
 = 78 cm, time histories are shown in 

Figure 4.12. In most cases (Figure 4.12a), the original records had to be scaled up 

substantially to yield SD
+
 = 78 cm. Only in a few exceptions, were they scaled down to match 

the required SD
+ 

(Figure 4.12b). The resulting displacement SD and acceleration SA response 

spectra are displayed in Figures 4.12c and 4.12d. In most cases, the resulting SA of the scaled 
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accelerograms overly exceeds the design spectrum of the frame. The scaled (to yield SDmax) 

acceleration amplitude of the records constitutes the predicted toppling acceleration ap
SD

  of 

the system.  

The validity of the prediction is verified through dynamic nonlinear time-history 

analysis of the frame, subjected to the records scaled at : (i) SD
+
 = 78 cm, and (ii) SD

− 
= 63 

cm. For all cases examined, toppling is avoided for the SD
− 

scaled records. In other words, for 

a value just 10% lower (SD
− 

= 0.9δult) than the toppling displacement of the B = 1.1 m 

footings (δult = 71 cm), the frame will not overturn. Hence, in contrast to what was previously 

concluded for the rigid−block on rigid−base subjected to cosine excitation, a Factor of Safety 

of the order of 1.1 may be considered adequate for real seismic motions, suggesting that the 

lower-bound footing width does not have to be increased to b = B/2 = 1.5 SDmax , but to 

merely 1.1SDmax . This marked difference between real seismic motions and the cosine pulse 

may be attributed to the unrealistic (for a seismic motion) nature of the latter (which is 

initiating and ending with maximum acceleration).  Quite encouragingly, even for the SD
+ 

scaled seismic motions (SD
+
 = 1.1δult), in most cases the frame does not topple (experiencing 

quite an increased distortion though). Yet, in 2 cases (bold in Table 4.2) out of the 18 records 

examined, the SD
+ 

scaled ground motion results to toppling of the frame. Although this 

observation does not question the applicability of the simplified approach (since the 

imposed SD is 10% higher than the toppling displacement δult) a more detailed insight into 

the factors affecting the toppling potential of a seismic excitation is attempted in the 

following sections. 
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4.7. Insight on Ground Motion Toppling Potential   

The most fundamental condition that needs to be met for a seismic motion to have the 

potential of provoking overturning, is that it exceeds the yield acceleration ayield of the 

system. In the context of rocking isolation, ayield is a function of the capacity of the under-

designed footings, and can thus be computed by dividing the design spectral acceleration 

SA
D
 of the frame (computed according to EC8 or the corresponding seismic code) with the 

capacity reduction factor CRF of its foundation system :  

ayield = SA
D
/CRF      (4.12) 

Obviously, the above consideration intrinsically assumes that once the capacity of the 

system is exceeded (in terms of imposed acceleration), its foundation will yield (mainly 

through uplifting) and will be subjected to inelastic rotation. Consequently, increasing the 

acceleration amplitude (i.e. the PGA) of the seismic excitation is expected to lead to 

increased foundation rotation, thus augmenting the risk of toppling. Naturally, PGA is not 

the only factor determining the toppling potential of a ground motion : observe, for 

example, in Table 4.2 that while the scaled Lucerne-000 record with a PGA of 1.48 g does 

not lead to toppling, the scaled JMA-000 with a PGA of 1.4 g does.  

A number of factors affect the toppling potential of a seismic motion. While its 

dominant frequency has been shown to play a crucial role [e.g. Zhang & Makris, 2001], its 

kinematic characteristics (asymmetry, existence of large velocity directivity pulses, and 

sequence of strong motion cycles) are equivalently important [e.g. Makris & Roussos, 2000; 

Apostolou et al., 2007]. Aiming to better quantify the toppling potential of a ground motion, 

a destructiveness measure is defined, termed as the maximum impact pulse velocity : 
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( )= = −∫,max

0

max max
tott

imp imp yieldV V a a dt    (4.13) 

where ttot is the total duration of the ground motion, and a the acceleration. This measure is 

believed to provide a more accurate measure of the toppling potential of strong motions 

containing large velocity pulses. The role of the aforementioned parameters and the 

applicability of Vimp,max is investigated in the sequel. 

Figure 4.13 compares the Lucerne-000 record (Landers, 1992) with the GIC-090 record 

(San Salvador, 1986), both scaled at SD
+
 = 78 cm. Although the Lucerne record contains a 

tremendous number of strong motion cycles that exceed the yield acceleration ayield (Figure 

4.13a), it  does not contain a large impact velocity pulse Vimp,max (Figure 4.13b), and is 

therefore not leading to appreciable foundation rotation (Figure 4.13c). In stark contrast, 

despite having a significantly smaller number of strong motion cycles (and duration), the San 

Salvador record is characterized by a substantially larger Vimp,max (2.04 m/s compared to 0.78 

m/s of Lucerne), thus leading to large foundation rotation and finally inciting toppling of the 

structure. The time histories of Vimp can be seen to reveal the key disparity between the two 

records. A well distinguished pulse produces a pronounced "impact" on the structure, 

forcing it out of its equilibrium position. Depending on the intensity of this velocity impact 

pulse, this instability may become irrecoverable, leading to toppling of the structure. This 

effect is brightly reflected on the time history of footing rotation θ for the San Salvador 

record : the large impact velocity pulse at t = 1.4 s leads to a rather pronounced θ of the 

order of 0.08 rad. Although this rotation is substantially lower than the toppling rotation θult 

= 0.186 rad, the deviation from the equilibrium position is irrecoverable, with subsequent 
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strong motion cycles generating further accumulation of θ and finally leading to toppling. 

The Lucerne record is dramatically different. Despite containing a multitude of strong 

motion cycles substantially exceeding ayield, none of them has the kinematic characteristics 

(asymmetry and low frequency, i.e. large duration) to produce a large enough Vimp. As a 

result, the produced footing rotation θ fluctuates around the zero axis, while the residual 

rotation remains relatively small. 

The previous comparative example suggests that Vimp,max may reveal certain 

characteristics of a seismic motion, mainly related to the existence of impact velocity pulses. 

However, as it will be shown in the sequel through a different example, Vimp,max alone is not 

sufficient to describe the toppling potential of a strong motion. For this purpose, the JMA-

000 record (Kobe, 1995) is compared with a Ricker 1 pulse (i.e. fE = 1 Hz). As shown in Figure 

4.14a, the Ricker 1 pulse (scaled with respect to PGA) matches quite well with the prevailing 

strong motion pulse of the JMA record. Quite interestingly, the two motions also match very 

well in terms of acceleration response spectra (Figure 4.14b), despite the obvious 

differences of their time histories (the JMA record contains a substantial number of strong 

motion cycles, and much larger duration).  

In the context of the SDmax approach, the two ground motions are scaled to SD
+
 = 78 

cm. As shown in Figure 4.15a, Ricker 1 needs larger PGA (2.2 g) to achieve the same SD with 

the JMA record (1.4 g). Despite containing a substantially larger impact pulse velocity Vimp,max 

= 2.1 m/s (Figure 4.15b), in contrast to the SD
+
 scaled JMA record (of Vimp,max = 1.87 m/s) 

which leads to toppling of the structure, Ricker 1 is clearly inadequate to provoke toppling. 

As shown in Figure 15c, the first pulse of Ricker 1 generates a rotation θ of the order of 0.09 
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rad, which is, however, recovered during the next (of opposite direction) cycle of motion. 

Due to the lack of subsequent strong motion pulses, the generated instability does not lead 

to toppling. Dramatically different is the observed system response for the JMA record. 

While its prevailing strong motion cycle (at t = 8 s) generates footing rotation θ of similar 

magnitude to Ricker 1, its subsequent strong motion cycles which exceed ayield produce 

gradual accumulation of θ ultimately resulting to toppling.  

This implies that the number of strong motion cycles that exceed  ayield , or equivalently 

the total duration of the record tyield for which ayield is exceeded, should also be taken into 

account to estimate the toppling potential of a seismic motion. However, the JMA record is 

substantially different than the previously discussed case of the Lucerne record (Figure 

4.13). While both contain several strong motion cycles clearly exceeding ayield , the one (JMA) 

leads to toppling and the other (Lucerne) does not. Quite interestingly, Lucerne contains a 

substantially larger amount of strong motion cycles than JMA. The key difference between 

the two lies in their impact pulse velocity : Vimp,max = 1.87 m/s for JMA, compared to merely 

0.78 m/s for Lucerne. This implies that both factors (i.e. Vimp,max and tyield) are important and 

should be combined to assess the toppling potential of a seismic motion.  

Based on the above, a destructiveness index in terms of toppling potential of a ground 

motion may be defined :  

TPi = Vimp,max x tyield      (4.14) 

Table 4.3 summarizes the two factors (Vimp,max and tyield) affecting the toppling potential of a 

record, along with their product (i.e. TPi), for the frame structure under study subjected to 

the 18 SD
+
 scaled records. Toppling occurs for two records only (GIC-090, San Salvador 1986 ; 
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and JMA-000, Kobe 1995), for which TPi > 15. Although no correlation has been attempted 

between TPi and footing rotation θ or superstructure displacement δ, for the cases 

examined herein such an index yields reasonable results, at least qualitatively. 

4.7.1. The Paradox of the Chi-Chi Record 

The preceding discussion focused on the safety margin provided by the simplified SDmax 

approach, revealing that a Factor of Safety of the order of 1.1 may be considered adequate 

for real seismic motions, and suggesting that a lower-bound footing b = B/2 = 1.1SDmax may 

be adequate for the design of rocking-isolated systems. For this purpose, all seismic motions 

were scaled to a specific value of SDmax (= 1.1δult). Yet, to achieve such SDmax some of the 

records had to be un-realistically scaled by factors as high as 7 (Table 4.2). In reality, 

however, such tremendous seismic motions (e.g. the devastating JMA record scaled up at 1.4 

g) have never been recorded and cannot possibly be considered realistic, especially for 

design purposes. Figure 4.16a depicts the original displacement spectra of all ground 

motions examined, aiming to reveal their real toppling potential. Observe that despite the 

fact that all ground motions have been recorded during devastating seismic events, in most 

cases their SDmax lies well below the toppling displacement δult = 71 cm of the B = 1.1 m 

footings. In fact, only three records (Takatori-000, Jensen-292, and Tabas) exceed δult and 

had to be scaled-down. This observation is of particular importance, since it implies that 

toppling can be quite improbable for real seismic motions, even in case of occurrence of 

extremely strong earthquakes (such as the ones deliberately selected for analysis), and even 

for extremely under-designed footings (B = 1.1 m).  
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Although the selected records cover a wide range of seismic motions, none of them is 

characterized by fling-step effects ─ a different category of near-source effects, associated 

with large permanent displacement rather than a large velocity pulse. As shown in the 

examples of Figure 4.16b, such ground motions are characterized by excessively large 

spectral displacements. For example, the TCU-068 records (Chi-Chi, Taiwan 1999) yield SDmax 

of the order of several meters, i.e. almost an order of magnitude larger than δult . With such 

large SDmax , it would be expected that the structure would easily be lead to toppling. To 

unravel the response of the system when subjected to this special category of near-source 

seismic motions, additional analyses are conducted utilizing the original records of Figure 

4.16b (without any scaling). Quite remarkably, even for the very extreme case of the TCU-

068(NS) record (Figure 4.17a), the footing experiences almost negligible rotation θ (Figure 

4.17b), and the structure is not toppling.  

As paradox as this may appear, it is explainable on the basis of the acceleration time 

history. Despite the large SDmax, the yield acceleration ayield is only slightly exceeded, and not 

for a long duration. This means that both Vimp and tyield , and consequently TPi , are not large 

enough to provoke toppling. This implies that the long-period (almost quasi-static) 

component of the seismic motion, which is responsible for the excessive SDmax , is not really 

exceeding ayield and, therefore, cannot lead to toppling. As clearly seen in Figure 4.17a, the 

acceleration pulses that do exceed ayield are of much higher frequency, and are not 

associated with the large SDmax of the record. This example reveals the notable conservatism 

of the simplified approach, for such special cases of near source seismic motions 

characterized by fling-step effects.  
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4.8. Summary and Conclusions 

The present study has investigated the applicability of a simplified procedure to estimate the 

range of acceptable footing width B for rocking−isolated frame structures. In this context, 

the foundation is under-designed so that its moment capacity Mult is lower than the 

corresponding column capacity M
RD

. Two contradicting criteria need to be simultaneously 

satisfied : (i) B needs to be small enough, so that Mult is adequately smaller than M
RD

 ; and (ii) 

B has to be large enough, so that an adequate margin of safety against toppling is achieved. 

In other words, there exists an upper-bound (Bmax) and a lower-bound (Bmin) footing width, 

which will define the range of allowable footing width Bmin ≤  B < Bmax to simultaneously 

satisfy the aforementioned criteria.  

With respect to the upper-bound, Bmax should be small enough so that the footing 

capacity is at least 40% lower than the corresponding column capacity M
RD

. In exactly the 

opposite sense to conventional capacity design (where an over-strength factor of 1.4 is 

typically applied), an under-strength factor of the same magnitude is required to account for 

uncertainties related to soil and superstructure strength. Bmax should be estimated on the 

basis of Mult,max (i.e. for the maximum axial force Nmax that may develop during seismic 

shaking) and not assuming Mult (i.e. for the initial axial load No). Nmax can be computed 

through conventional static pushover analysis, rendering the proposed procedure straight-

forward to apply. For the 2-storey frame investigated herein, Mult,max was found to exceed 

Mult  by up to 40%, implying that the capacity reduction factor CRF (= Mult/M
RD

) should be at 
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least equal to 2, to have a reasonable safety margin for the aforementioned uncertainties 

and the dynamic footing overstrength (due to generation of Nmax). 

On the other hand, the estimation of the lower-bound Bmin, required to achieve 

acceptable safety against toppling, is not equally straight-forward. A simplified approach was 

developed, according to which Bmin is estimated on the basis of the displacement spectrum. 

The peak spectral displacement SDmax is proposed as a conservative measure of the upper 

bound of displacement demand. The validity and limitations of such approximation were 

investigated for a rigid-block on rigid-base, utilizing rigorous solutions from the bibliography 

; and for the frame structure on nonlinear soil, by conducting nonlinear dynamic time history 

analysis. While in the first case the seismic excitation consisted of cycloidal and Ricker 

pulses, in the latter case an ensemble of 18 records (covering a wide range of devastating 

seismic motions), was utilized. With the exception of the unrealistic (for a seismic motion) 

cosine pulse, the simplified SDmax approach was shown to provide reasonably conservative 

estimates of the toppling acceleration ap . Based on the results of the conducted analyses, 

and at least for the cases examined herein, it is concluded that Bmin = 2.5SDmax may provide 

adequate margins of safety against toppling. 

In an attempt to gain insight on the toppling potential of a ground motion, a 

destructiveness index TPi = Vimp,max x tyield was defined, combining the effects of the 

"maximum impact pulse velocity" Vimp,max (see Eq. 13), with the total duration tyield of the 

record for which the yield acceleration of the system ayield is exceeded. While Vimp,max is 

characteristic of strong motions containing large velocity pulses, tyield can be seen to capture 
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the effects of the number of strong motion cycles. It was shown, that for the (admittedly 

limited) cases examined herein, such an index may yield qualitatively reasonable results. 
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Footing width               

B (m)
SFS Mult  

for N = 151 kN

Mult,max  

for Nmax = 231 kN

CRF

for N = 151 kN

CRFmax

for Nmax = 231 kN

1.6 7.01 125 180 1.60 1.17

1.5 6.13 113 163 1.76 1.29

1.4 5.31 101 147 1.97 1.42

Table 4.1. Alternative footing configurations : footing width B, resulting safety

factor SFS for static loading, moment capacity (computed analytically according to

Gourvenec, 2007) for the initial (N = 151 kN) and the maximum value of column

axial load (Nmax = 232 kN), and corresponding Capacity Reduction Factor (CRF :

ratio of footing capacity Mult to column capacity MRD).

1.4 5.31 101 147 1.97 1.42

1.3 4.54 91 131 2.19 1.60

1.2 3.84 81 115 2.46 1.81

1.1 3.19 71 100 2.81 2.03

1.0 2.6 61 84 3.27 2.43
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Table 4.2. Scale factors applied to each record to achieve the required peak spectral displacement SD, and

summary of analysis results (toppling or not).

Record Earthquake
Original 

PGA (g)

for SD– = 63 cm for SD+ = 78 cm 

Scale 

Factor

Scaled 

PGA (g)
Toppling

Scale 

Factor

Scaled 

PGA (g)
Toppling

Treasure-Island Loma Prieta, 1989 0.08 5.47 0.44 NO 7.00 0.56 NO

Kalamata Kalamata, Greece, 1986 0.25 3.50 0.88 NO 4.48 1.12 NO

ElCentro000 ElCentro, 1940 0.31 2.35 0.73 NO 3.00 0.93 NO

GIC090 San Sanvaldor, 1986 0.69 1.99 1.38 NO 2.55 1.76 YES

Lucerne000 Landers, 1992 0.68 1.70 1.16 NO 2.18 1.48 NO

Izmit Kocaeli, 1999 0.22 1.42 0.31 NO 1.82 0.40 NO

JMA000 Kobe, 1995 0.82 1.34 1.09 NO 1.71 1.40 YES

Duzce-Bolu000 Duzce, 1999 0.73 1.22 0.89 NO 1.56 1.14 NO

Erzincan-ew Erzincan, 1992 0.49 1.09 0.53 NO 1.39 0.68 NO

Rinaldi218 Northridge, 1994 0.83 1.02 0.84 NO 1.30 1.08 NO

Sylmar Olive view-090 Northridge, 1994 0.6 1.02 0.61 NO 1.30 0.78 NO

Jensen Filtration Plant-292 Northridge, 1994 0.59 0.80 0.47 NO 1.02 0.60 NO

Pacoima Dam254 San Fernado, 1971 1.22 0.78 0.95 NO 1.00 1.22 NO

Takatori000 Kobe, 1995 0.61 0.53 0.32 NO 0.67 0.41 NO

Tabas-LN Iran, 1978 0.84 0.47 0.39 NO 0.60 0.50 NO

Duzce000 Duzce, 1999 0.35 0.42 0.15 NO 0.54 0.19 NO

Lucerne275 Landers, 1992 0.7 0.38 0.27 NO 0.49 0.34 NO

Duzce270 Duzce, 1999 0.54 0.38 0.20 NO 0.48 0.26 NO

Mwtaplastic Response of Frame-Foundation Systems
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Table 4.3. Summary of analysis results : toppling potential with respect to the impact pulse velocity                 

Vimp, max , the total duration tyield for which ayield is exceeded, and the toppling index TPi.

Record
Scaled PGA 

(g)

Vimp, max

(m/s)

tyield

(s)

TPi = Vimp, max  x  tyield

(m)

No toppling

Jensen Filtration Plant-292 0.6 0.71 1.1 0.78

Duzce000 0.19 0.036 0.84 0.03

Duzce270 0.26 0.16 1.28 0.20

Tabas-LN 0.5 0.32 1.125 0.36

Lucerne275 0.34 0.147 2.66 0.39

Izmit 0.4 0.2 6.09 1.22

Erzincan-ew 0.68 0.62 3.96 2.46

Sylmar Olive view-090 0.78 0.7 4.86 3.40

Takatori000 0.41 0.61 7.96 4.86

Kalamata 1.12 0.8 6.11 4.89

Duzce-Bolu000 1.14 0.66 8.33 5.50

Pacoima Dam254 1.22 0.78 7.08 5.52

Treasure-Island 0.56 1.18 5.75 6.79

ElCentro000 0.93 0.63 17.12 10.79

Lucerne000 1.48 0.78 15.92 12.42

Rinaldi218 1.08 1.608 8.2 13.19

Toppling

GIC090 1.76 2.04 7.56 15.42

JMA000 1.4 1.87 10.58 19.78
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Conventional  Capacity  Design

Plastic “hinging” 

Rocking Isolation Design

Rocking isolation 

prevents column 

failure : plastic 

Plastic “hinging” 

at beams

Under strong seismic  

shaking plastic 

“hinging” of beams is

unavoidable

B B

No foundation uplift 

allowed :

e < B/3

Plastic “hinging” 

at column base

b < B

failure : plastic 

“hinging” is guided to 

the foundation

(a) (b)

b < B

Figure 4.1. (a) Conventional Capacity Design compared with (b) Rocking–Isolation Design. 
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Figure 4.2. (a) Geometry, member properties, and outline of finite element (FE) model. A typical “slice”

of the frame is analyzed in plane-strain, taking account of material (soil and superstructure) and

geometric (uplifting and P-δ effects) nonlinearities. (b) FE model response under dynamic loading for

ground floor columns (left) and beam (right).
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Figure 4.3. Illustration, through static pushover analysis, of the effect of fluctuation of column

axial load N and M/Q ratio on foundation moment–rotation (M–θ) response : (a) evolution of

column axial load N with imposed lateral displacement δ, and (b) its effect on foundation M–θ
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Chapter 5: Seismic Wave Propagation in a very Soft Alluvial Valley 

  

 

 

5 
 

Seismic Wave Propagation in a Very Soft 

Alluvial Valley : Sensitivity to Soil Nonlinearity,  

Generation of Parasitic Vertical Component 

 

 

5.1 Introduction 

Although  the surface response of 2D alluvial valley formations has been extensively 

investigated in the literature, research interest has mostly focused on valleys of idealized 

geometry (cosine-shaped, circular, elliptical, trapezoidal, etc.) subjected to idealized 

seismic motions (e.g., harmonic excitation or to simple wavelets), assuming elastic soil 

response. Such analyses have provided deep understanding of the complicated wave 

propagation phenomena. Among various valuable insights and findings, it was concluded  

that surface waves generated at the valley boundaries (Love waves when the excitation is 

SH waves ; Rayleigh waves in case of SV and P waves) propagate back and forth along the 

valley surface resulting to significant amplifications [Trifunac, 1971; Wong & Trifunac, 

1974; Bard & Bouchon, 1980; Harmsen & Harding, 1981; Othuki & Harumi, 1983; Aki, 

1988; Todorovska & Lee, 1991; Fishman & Ahmad, 1995]. Hereafter, the term 
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aggravation will be used to indicate the severity of amplification of the motion above 

what the 1D theory would predict.    

Although the research on the subject has been extended to 3D valley response 

[Sánchez-Sesma et al., 1989; Sánchez-Sesma & Luzón, 1995; Bao et al., 1996; Bielak et al., 

1999; 2000], the effects of soil nonlinearity have received limited attention. In a 

pioneering study, Zhang & Papageorgiou [1996] studied with the non-linear response of 

the Marina District during the Loma Prieta earthquake, and showed that wave focusing 

effects and lateral interferences gradually diminish with increasing soil nonlinearity. 

Lately, the critical issue of capturing the real aggravation mechanisms and the 

necessity to confirm the theoretical results has led to the development of fully 

instrumented test-sites, which serve as large scale natural laboratories. The Euroseistest 

in the Volvi basin in Greece [Pitilakis, 2004; Chavez-Garcia et al., 2000; Raptakis et al., 

2000; Makra et al., 2001; 2005], the Japanese seismograph arrays in Ashighara Valley 

[Ohtsuki & Harumi, 1983; Ohtsuki et al., 1984]  and Ohba Valley [Tazoh et al., 1988; 

Gazetas et al., 1993], the alluvial Valley of Parkway in New Zealand [Chavez-Garcia et al., 

1998], the Coachella Valley in California [Field, 1996], and the Valley of Nice in France 

[Sanchez-Sesma et al., 1988], are some of the best known test sites. Their merits include : 

(i) the high density of the installed  accelerograph arrays, (ii) the detailed knowledge of 

subsoil geometry and soil mechanical properties, and (iii) the accumulation of records. 

Site response analysis confirmed the importance of 2D geometry effects, clearly 

suggesting that 1D soil amplification phenomena may be significantly contaminated 

(aggravated) by laterally propagating surface waves. Although such studies have offered 

valuable insights, in most cases only weak ground motions have been recorded so far.  
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Despite the extensive bibliography on the subject, most of the research conducted 

until now has focused on elastic soil response and idealized input motions. The scope of 

this chapter is to gain further insight on the sensitivity of 2D wave effects to crucial 

parameters, such as : (a) the frequency content of the input motion, (b) the details of the 

input motion (duration, number of cycles, frequency content, etc.), and (c) soil non-

linearity. A numerical study is conducted, utilizing the Ohba Valley (Japan) as an 

illustrative example. In addition, emphasis is given to the generation of parasitic vertical 

component, the effects of which may be detrimental for overlying structures, a 

phenomenon which has so far received scarce attention. 

 

5.2 Problem Definition and Analysis Methodology 

5.2.1 The Ohba Valley 

Situated close to Fujisawa City in Japan, the Ohba Valley is an extremely–soft alluvial 

basin. The valley is crossed by a 600 m – long road bridge: Ohba Ohashi. The geometry of 

the valley and the soil profile are shown in Fig. 5.1 [adapted from Tazoh et al., 1984]. The 

top layers (20 to 25 meters) consist of extremely soft Holocene alluvium (organic layers 

of humus and clay). Despite the extensive soil improvement that was conducted for the 

construction of the bridge, the NSPT values of the standard penetration test are very close 

to zero, while the shear wave velocity, VS, measured through down-hole tests, ranges 

between 40 and 65 m/s.  

The underlying substratum consists of Pleistocene diluvial deposits with NSPT values 

greater than 50 and VS  around 400 m/s. The ground water table is almost at the ground 

surface, while the water content of the top layers by far exceeds 100 %. The latter are 
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also characterized by large plasticity index (PI in excess of 150), and therefore it is likely 

to exhibit elastic behaviour even under strong seismic shaking [Vucetic & Dobry, 1991]. 

For more details see Tazoh et al. [1984]. 

 

5.2.2 Numerical Analysis Method 

The problem is analyzed in the time domain employing the finite element (FE) method, 

assuming plane-strain conditions. The idealized geometry of the valley and the 

associated configuration of the FE model are depicted in Figure 5.2. The soil is modeled 

with quadrilateral continuum elements, with a very fine discretization to ensure realistic 

representation of the propagating waves. The valley deposit is assumed homogeneous 

with VS = 60 m/s, while the shear wave velocity of the substratum is significantly higher : 

VS = 400 m/s. With mass densities of 1.4 and 1.9 Mg/m
3
, respectively, the impedance 

contrast between soil and base, ����� �����⁄  is about 10). 

Reflections at the base of the formation are avoided by utilizing absorbing 

boundaries. Free-field boundaries responding as shear beams are placed at each lateral 

boundary of the model, to simulate the motion produced by in–plane vertically incident 

SV waves.  

Three different types of analysis are conducted : (i) visco-elastic analysis, utilizing 

the finite element code ABAQUS [2008]; (ii) equivalent-linear analysis, utilizing the code 

QUAD4M [Idriss et al, 1993; Hudson et al., 1994]; and (iii) nonlinear analysis with 

ABAQUS, employing a kinematic hardening constitutive model. By comparing the results 

of visco-elastic with nonlinear (equivalent linear and fully nonlinear) analyses, the effects 

of soil nonlinearity can be quantified. 
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5.2.3 Soil Constitutive Modeling 

For the nonlinear analyses, a nonlinear kinematic hardening constitutive model is 

employed. The evolution law of the model consists of two components : a nonlinear 

kinematic hardening component, which describes the translation of the yield surface in 

the stress space (defined through the backstress α, a parameter which describes the 

kinematic evolution of the yield surface in the stress space), and an isotropic hardening 

component, which describes the change of the equivalent stress controlling the size of 

the yield surface οσ as a function of plastic deformation.  

The model incorporates a Von Mises failure criterion, considered adequate to 

simulate the undrained response of clayey materials, with an associative plastic flow rule 

[Anastasopoulos et al., 2009]. The evolution of stresses is described by the relation : 

� 	  �
 �  �     (5.1) 

The evolution of the kinematic component of the yield stress is described as follows : 

plpl εε)(
1

&&& γαασ
σ

α −−=
0

C     (5.2) 

where C the initial kinematic hardening modulus (
y yC σ ε E= = ) and γ a parameter 

that determines the rate of  kinematic hardening decrease with increasing plastic 

deformation.  

Model parameters are calibrated against G–γ curves of the literature, as described in 

Gerolymos et al. [2005]. Figure 5.3 illustrates the results of one such calibration (through 

finite element simulation of the simple shear test) against the G–γ curves of Ishibashi and 

Zhang [1993].  
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5.2.4 Validation against Recorded Response 

The numerical analysis methodology employed herein has been extensively validated 

against recorded seismic response in Tazoh et al. [1988], Fan et al. [1994] and 

Psarropoulos et al. [2007]. Among a number of recorded seismic events, two 

earthquakes were selected for analysis : (a) an earthquake of MJMA = 6.0 at 81 km 

epicentral distance, with recorded PGA = 0.03 g at the ground surface, referred to as 

earthquake A ; and  (b) the MJMA = 6.0 earthquake at 42 km epicentral distance, with 

recorded PGA = 0.12 g at the ground surface, referred to as earthquake B.  

A comparison between the FE computed ground motion at the valley surface with 

the recorded is reproduced in Figure 5.4, in terms of elastic acceleration response 

spectra SA. Given the relatively small acceleration amplitude of both earthquakes (0.029 

to 0.114 g), the shaking-induced shear strains within the soil will not be large enough to 

generate any substantial soil nonlinearity. In fact, the alluvial layers of the valley are 

characterized by large plasticity indexes (in excess of 100), and are thus expected to 

behave almost linearly, even for larger imposed strains. Hence, the problem was 

analyzed assuming elastic soil response with damping ratio ξ = 1 % and ξ = 3%, 

respectively. Evidently, for both earthquakes the comparison is quite satisfactory, 

capturing most of the features of valley response. Note that these features could not 

possibly be captured through 1-D soil response analysis (i.e. ignoring  2-D wave effects).   

 

5.3 The Effect of Frequency Content 

To investigate the frequency-dependent scattering phenomena, Ricker wavelets are first 

utilized as seismic excitations [Ricker, 1960]. The displacement time history of these 

wavelets is given by : 
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( ) ( )22
( ) 1 2 ob t t

ou t b t t e
− − = − −      (5.3) 

where the parameter  is defined as : 2

ob fπ= , of the characteristic frequency of the 

pulse, and �� the time for which ( )u t is maximized. In the sequel, three characteristic 

frequencies are used to illuminate the effects of frequency content on the dynamic 

response of the valley:  

• a high-frequency Ricker 3 (with of = 3 Hz), 

• a low-frequency Ricker 0.5 (with of = 0.5 Hz), and 

• an intermediate Ricker 1 (with of = 1 Hz) .  

Fig. 5.5 depicts the acceleration time histories of the three idealized wavelets (all scaled 

to 0.20 g), along with their corresponding response spectra.  

The following sections go through the key findings of this analysis. Results are 

shown in terms of peak ground acceleration (PGA) and wavefield patterns. 

 

5.3.1 Spatial Distribution of Peak Ground Acceleration (PGA)  

Figure 5.6 depicts the spatial distribution of the aggravation factor �� 	  ��� ���⁄  

(defined as the ratio of peak ground accelerations from the 2-D and 1-D analyses) along 

the valley surface for the three Ricker wavelets. All results refer to elastic analysis with a 

damping ratio ξ = 2 %.  

In the case of the high-frequency Ricker 3 wavelet (Fig. 5.6a), 1-D soil amplification 

is clearly prevailing at the central part of the valley (AG ≈ 1), while strongly 2-D 

phenomena are localized near the edges. At those areas, trapping of obliquely incident 

body waves tends to amplify the motion experienced near the edges, resulting in 

appreciable aggravations (AG ≈ 1.3). Such focusing effects have been addressed, among 
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others, by Sanchez-Sesma et al. [1988]. This particular aggravation pattern is reminiscent 

of the distribution of damage observed in several earthquakes : in Caracas, for example, 

the high concentration of damage in the area of Palos Grandes during the 1967 

earthquake was attributed to the steep slope of the underlying bedrock at the northern 

boundary of the   3 km wide sendimentary valley [Papageorgiou & Kim, 1991], rather 

than simply to the large thickness of the soil deposit and the ensuing 1-D wave 

amplification. 

As shown in Fig. 5.6b, the decrease of the dominant frequency of the input seismic 

motion (Ricker 1 : of = 1 Hz) leads to a different distribution of AG along the valley 

surface, with the maximum AG (of the order of 1.7) being observed closer to the center 

of the valley. Observe also the rapid fluctuations of AG from point to point along the 

surface. Evidently, 2D phenomena associated with multiply reflected waveforms at the 

slope of the bedrock, which were dominant in the case of the high-frequency Ricker 3 

seismic excitation, are now absorbed: the length of the wave has become too large to be 

affected by the topographic anomaly (i.e., the slope of the supporting bedrock). Hence, 

such effects are clearly overshadowed by the laterally propagating surface waves, leading 

to a shift of the location of the maximum AG towards the center of the valley. Conversely, 

the AG factor drops even below 1.0 close to the valley edges. 

 Figure 5.6c depicts the distribution of AG along the valley surface for the low-

frequency Ricker 0.5 wavelet. In this case, basin-induced waves strongly contaminate the 

1-dimensional valley response triggering a strongly 2-dimensional behaviour along the 

whole valley length. The maximum observed aggravation reaches 1.4 at the center of the 

valley. Observe that the distribution of AG is quite similar to the previous case (Ricker 1), 

with the main difference being the absence of the previously discussed fluctuations : the 
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increase of the wavelength has apparently increased the distance between those 

anomalies and in effect smoothened them significantly.    

It is believed that the maximum aggravation in the middle of the valley is the result 

of the constructive interference of Rayleigh waves, generated at the valley edges and 

propagating horizontally along the surface in opposite directions. Furthermore, the 

interference of the directly arriving vertically propagating SV wave pulse with the 

horizontally propagating Rayleigh waves is responsible for the observed peak values at    

x = ±  130 m. The absence of conspicuous focusing effects is hardly surprising, given the 

large wavelength of the incident SV waves [of the order of 60 (m/s) / 0.75 (s
-1

) = 80 m] 

compared to the dimensions of the bedrock irregularity. The above remarks will be 

further justified in the sequel by means of seismogram synthetics.  

It must be generally noted that the symmetrical shape of the valley undoubtedly 

plays a significant role, as the diffracted waves reach the middle of the valley in phase. 

Any potential asymmetry of the valley geometry may significantly modify the aggravation 

pattern.  

 

5.3.2 Wavefield Patterns : Seismogram Synthetics 

To get a deeper insight into the aggravation generation mechanisms, a useful numerical 

diagnostic tool is the seismogram synthetics. Figs. 5.7 and 5.8 depict the synthetics of 

horizontal and vertical acceleration, respectively, along the valley surface.  

In the case of the high-frequency Ricker 3 seismic excitation (Figs. 5.7a and 5.8a), 

one can clearly observe the generation of laterally induced Rayleigh waves which 

propagate towards the middle part of the valley with their amplitude gradually 
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decreasing due to damping. Recall that in this case the aggravation factor in the central 

part of the valley, is indeed equal to about 1.0 (no Rayleigh wave interference). 

For the intermediate Ricker 1 seismic excitation the resulting wavefield patterns are 

presented in Figs. 5.7b and 5.8b. All the different waveforms are clearly depicted : body 

waves (SV), refracted inclined waves (Ca), and two different modes of Rayleigh waves (R1 

and R2 respectively). The first mode (denoted R1 in the figure) travels at 120 m/s and is 

believed to be the mode with the significant horizontal component. The mode with the 

prevailing vertical behavior (clearly seen in the seismograph synthetic of the vertical 

motion Fig. 5.8b) propagates with significantly lower velocity (65 m/s); an observation 

which agrees completely with theoretical expectations. The refracted inclined waves 

propagate along the horizontal x axis with an apparent propagation velocity Ca defined 

as : 

�� 	  ��
���� � � 60 0.287 � 209  # �⁄⁄   (5.4) 

where Vs = 60 m/s and tanψ = 24/80 the slope inclination. This theoretical value of 

velocity agrees fairly well with the one graphically measured (≈ 200 m/s). 

In case of low-frequency Ricker 0.5 (Figs. 5.7c and 5.8c), Rayleigh waves generated 

at both edges of the valley and propagating towards its center are clearly illustrated 

(denoted R1 in the figure). Their graphically measured velocity is equal to about 100 m/s, 

which is in good accord with the theoretical value calculated based on the dispersion 

curve of Ohtsuki & Harumi [1983]. Only one vibrating mode is stimulated. Note also the 

collision of the opposite propagating Rayleigh waves at the center of the valley. This fact 

confirms our former assumption that the high aggravations around the valley center are 

attributed to Rayleigh wave constructive interference. 
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5.4 The Effect of the Details of the Seismic Excitation 

In the previous section, some insights on the prevailing role of frequency content to the 

resulting wave scattering phenomena were investigated and discussed. The objective 

here is to examine whether, and to what extent, the largely unpredictable details of the 

seismic excitation (duration, number of cycles, frequency content, etc.) influence the 2D 

valley response.  

To this end, the valley is subjected to real earthquake records. It is worth 

mentioning that in their majority the seismic motions used in the analysis have been 

recorded at the surface of soil deposits, and therefore do not necessarily constitute 

realistic bedrock excitations. However, the scope of this analysis is not to predict the 

surface response of the examined formation for a given seismic motion. Our intention is 

a systematic investigation of the problem, in order to delineate which input motion 

characteristics are responsible for the significant aggravation. 

Three time histories will be analyzed, each corresponding to a characteristic 

frequency range : (a) the Kede record of the 1999 Ms 5.9 Athens (Greece) earthquake 

[Papadopoulos et al., 2000; Gazetas et al., 2002], (b) the record of the 2003 Ms 6.4 

Lefkada (Greece) earthquake [Benetatos et al., 2005; Gazetas et al., 2005], and (c) the 

Yarimca record of the 1999 Mw 7.4 Kocaeli (Turkey) earthquake [Elnashai, 2000]. Because 

of the complexity of wave scattering phenomena with real records, seismogram 

synthetics are inadequate for the specific analyses. Therefore the results will be 

presented solely in terms of peak ground accelerations.  

 

 

 

- 305 -



Metaplastic Response of Frame–Foundation Systems 

 

5.4.1 High-frequency Seismic Excitation : Kede, (Greece) 1999 

Figure 5.9a compares the time history of acceleration and the elastic response spectra of 

the Kede record with the Ricker 3 wavelet (both high frequency seismic excitations). 

Evidently, the comparison between the real record and the idealized pulse is quite 

favorable. Apart from certain irregularities observed in the record, the time history and 

the frequency content (see SA) of the two motions are rather similar.  

The distribution of the aggravation factor AG along the ground surface for the two 

motions are compared in Figure 5.9b. At the valley edges, the agreement between real 

record and Ricker pulse is quite remarkable. Not only the distribution pattern, but also 

the peak values of AG are practically the same. However, moving towards the center of 

the valley, the two distributions start exhibiting significant discrepancies: two more peaks 

of AG (at x ≈ ± 200 m and ± 150 m) appear with the Kede record ; these are not observed 

with the Ricker 3 excitation.  Still though, the behaviour in the central part of the valley is 

in both cases practically 1-dimensional, with the maximum AG being about 1.0.  

 

5.4.2 Intermediate Seismic Excitation : Lefkada (Greece) 2003 

With a rather large number of strong motion cycles (of the order of 8), it could be argued 

that the record of the Lefkada 2003 earthquake is one of the worst seismic motions ever 

recorded in Greece. The acceleration time history of the record (characterized as an 

intermediate seismic excitation) is compared in Figure 5.10a with the idealized fitted 

Ricker 1.5 pulse, which exhibits practically the same frequency content. 

The results of the numerical analysis (always in terms of distribution of AG along the 

valley surface) are summarized in Figure 5.10b. Observe that the AG for the Lefkada 2003 

record is significantly higher compared to Ricker 1.5, despite the similarity in frequency 
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content. Notice also that while the Ricker 1.5 generates a single rather distinct peak of 

AG (at x ≈ ± 130 m), the real record is characterized by a large number of fluctuations : 

peaks at x ≈ ± 75 m and ± 20 m.  

Interestingly, the response of the real record agrees fairly well with that of the 

idealized pulse close to the valley edges. The irregularities of the record do not affect the 

response at the valley edges, where focusing effects are dominant, but make an 

important difference towards the center of the valley, where horizontally propagating 

Rayleigh waves seem to be in control. While the single pulse of the Ricker wavelet 

creates a single Rayleigh wave, the multiple strong motion pulses of the record are 

responsible for the development of a multitude of surface waves. Obviously, the increase 

of the number of such waves, increases the probability of constructive interference at 

different locations, as they travel towards the center of the valley.  

 

5.4.3 Low-frequency Seismic Excitation : Yarimca (Kocaeli) 1999 

At a distance of only 3 km from the North Anatolian fault (responsible for the Kocaeli 

1999 earthquake), the Yarimca record is characterized by both forward-rupture 

directivity and fling-step effects [Garini et al., 2009]. Once the directivity and fling pulses 

are unveiled, the record (Fig. 5.11a) appears to be comparable with the Ricker 0.5 

wavelet in terms of frequency content. The comparison is certainly not perfect in terms 

of SA, but Ricker 0.5 can be seen to reasonably fit the (first at least) hidden low-

frequency acceleration pulse of the record (see acceleration time histories). Naturally, 

the record is in addition characterized by subsequent low-frequency pulses and multiple 

higher-frequency perturbations, which are also evident in the elastic response spectra, 

(observe the higher-frequency peaks). 
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As shown in Fig. 5.11b, despite the substantial differences between the record and 

Ricker 0.5, the agreement among the distributions of AG is quite remarkable. Some 

discrepancies between the record and the idealized pulse do exist, but the general trend 

is quite similar. The record yields slightly higher maximum AG, and is characterized by a 

more irregular distribution. It could be claimed that the aforementioned hidden low-

frequency acceleration pulse of the record yields a distribution of AG almost identical to 

that of the Ricker 0.5, while the higher-frequency irregularities are responsible for the 

observed fluctuations :  

• constructive interference of Rayleigh surface waves at the areas of AG local peaks          

(x ≈ ± 200 m and ± 100 m) ; 

• destructive interference at the areas of AG local troughs (x ≈ ± 250 m and ± 160 m).  

At this point, it should be noted that the comparison between Ricker pulses (i.e. narrow 

band seismic motions) and real records (i.e., broadband seismic motions) would not 

necessarily be equally acceptable if the soil was not homogeneous.  

 

5.5 The Effect of Soil Nonlinearity 

The role of nonlinear soil response is investigated in three different ways : (i) with 

viscoelastic analyses, in which a small degree of  soil nonlinearity is partially accounted 

for through increased damping ξ ; (ii) with equivalent-linear analysis (in which a 

moderate degree of soil nonlinearity is taken into account through an iterative procedure 

according to which the soil stiffness G and the damping ratio ξ are made consistent with 

the shear strain level) ; and (iii) with fully nonlinear analysis, in which strongly nonlinear 
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soil response is taken into account with the aforementioned kinematic hardening 

constitutive model.  

 

5.5.1 The Influence of Damping Ratio 

All of the results shown until now referred to elastic analysis with ξ = 2%, an assumption 

which can be considered valid for (very) small magnitude seismic excitation and / or very 

stiff soil.  At such low shear strain amplitudes, the secant shear modulus G is very close to 

the initial (elastic) shear modulus Gmax. However, with stronger seismic motions, the soil 

will behave nonlinearly:  G will decrease with increasing amplitude of shear strain, and 

the damping ratio will increase. The scope of this section is to reveal whether and to 

what extent material damping influences the dynamic response of the valley. For this 

purpose, the analyses are repeated, with parametrically varying ξ between 2% and 10%. 

To keep comparisons simple, results are discussed for the three idealized Ricker pulses 

only.  

Figure 5.12 summarizes the results in terms of AG distribution along the valley 

surface.  A general conclusion is that the increase of the damping ratio ξ mainly 

influences surface wave propagation. Observe that the local peaks towards the center of 

the valley, which are related to Rayleigh wave interferences, decrease substantially with 

the increase of ξ. In contrast, the increase of ξ does not appear to have any effect on AG 

at the valley edges. Hence, for the high-frequency Ricker 3 (Fig. 5.12a), the increase of ξ 

does not appear to have any effect on the distribution of AG. Recall that in this case the 

aggravation is purely related to focusing effects, which are the result of multiple wave 

reflections at the ground surface and the sloping bedrock. This mechanism, the direct 

result of geometry, is naturally not affected by the damping ratio. On the other hand, the 
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aggravation due to surface waves requires that these waves, generated at the edges, 

propagate and reach the center of the valley. Hence, since the increase of ξ tends to 

substantially dampen their propagation, the related aggravation unavoidably decays as 

well.  

This phenomenon becomes more evident in the case of the intermediate Ricker 1 

wavelet (Fig. 5.12b), in which case AG at x = 0 m (which is clearly related to constructive 

interference of surface waves) reduces from 1.65 for ξ = 2 % to roughly 1.0 for ξ = 10 %. 

Observe that the geometry-related AG at the valley edges is again insensitive to 

increasing ξ. The conclusions are qualitatively similar for the low-frequency Ricker 0.5 

(Fig. 5.12c). Analyses with real records, not shown here for the shake of brevity, lead 

practically to the same conclusions.    

 

5.5.2 Equivalent Linear versus fully Nonlinear Analysis 

In this section, the results of equivalent linear analysis (using the numerical code 

QUAD4M) are compared with those of a fully nonlinear analysis employing a kinematic 

hardening constitutive model (see detailed description above). In the first case, the 

analysis is practically elastic, but soil nonlinearity is taken into account through an 

iterative procedure according to which the soil stiffness G and the damping ratio ξ are 

made consistent with the shear strain level. In the latter case, nonlinear soil response is 

modeled with an increased degree of realism. For the equivalent linear analysis, the G–γ 

curves of Ishibashi & Zhang [1993] for PI = 50 have been utilized. For the nonlinear 

analysis, the same curves are employed for calibration of constitutive model parameters 

(see Fig. 5.3). As in the previous section, results are shown for the three Ricker wavelets, 

all scaled at PGA = 0.2g.  
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The comparison is summarized in terms of distribution of AG along the valley 

surface in Figure 5.13. Although the general trends can be claimed to be comparable, the 

generic conclusion is that the two methods may yield different results.  

In the case of the high-frequency Ricker 3 (Figure 5.13a), although the maximum AG         

(≈ 1.4) predicted by the two methods is quite similar, their distributions have noticeable 

discrepancies. It is interesting to notice the shift in the location of the maximum AG : 

from x ≈ ± 250 m for the equivalent linear analysis (denoted with the grey line) to x ≈ ± 

220 m for the nonlinear analysis. Going back to the elastic analysis (see Fig. 5.12a), it 

becomes clear that both the location and the amplitude of maximum AG produced by 

the equivalent linear analysis is almost the same with that of the elastic analysis. This is 

attributable to the high frequency of the seismic excitation, due to which the developed 

shear strain is not enough to mobilize a large degree of nonlinearity.  

Conversely, in case of both the intermediate Ricker 1 (Fig. 5.13b) and the low-

frequency Ricker 0.5 (Fig. 5.13c) the induced non-linearity practically eliminates the 2D 

aggravation phenomena previously attributed to Rayleigh waves. This trend is captured 

by both the equivalent linear and the fully non-linear model, with the former predicting 

quite higher values of AG. 

Figure 5.14 compares the distribution of peak horizontal accelerations along the 

valley surface (for the case of Ricker 1 excitation) computed by means of equivalent 

linear and fully non-linear analysis, in order to demonstrate the very good agreement of 

the two methods at the central part of the valley, where the response is dominated by 

1D soil amplification. Any differences are localized at valley edges, where 2D wave 

scattering phenomena determine the response. Results are similar for all three Ricker 

wavelets. 
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5.5.3 Fully Nonlinear versus Elastic Analysis 

Having investigated the differences between equivalent linear and nonlinear analysis, the 

latter is employed in this section to investigate the role of soil nonlinearity for real 

seismic excitations.  

The comparison of elastic (ξ = 2%) with nonlinear analysis is shown in Fig. 5.15 in 

terms of distribution of AG along the valley surface. Quite interestingly, and contrary to 

the common expectation, it appears that soil nonlinearity does not always cause AG to 

reduce. In fact, for the high-frequency Kede (Athens 1999) seismic excitation (Fig. 5.15a), 

AG at the valley edges increases with soil nonlinearity (from roughly 1.25 to 1.6). At the 

valley center there is practically no difference.  

The same observation is valid for the intermediate Lefkada 2003 (Fig. 5.15b) and the 

low-frequency Yarimca (Fig. 5.15c): AG at the valley edges increases when soil 

nonlinearity is modeled. To explain this observation, the following hypothesis is made: 

soil plastification near the soil-rock interface, leads to the formation of a very soft 

plastified zone. In the case of the single pulse Ricker wavelets, soil plastification acted as 

a damping mechanism, leading to reduction of AG. But in the case of real seismic 

excitations, which contain a large number of strong motion cycles, the picture is altered : 

the zone of plastification is generated by the first arriving waves (due to the initial strong 

motion cycles), and then acts as a trap for forthcoming (due to the subsequent strong 

motion cycles) inciting waves. The latter are trapped in a narrow band between the 

plastic zone and the surface, and are thus generating larger AG.  

If the above hypothesis holds true, then this phenomenon should become more 

evident with the increase of strong motion cycles. Indeed, the difference between elastic 

and nonlinear analysis (always referring to valley edges) is larger for the Lefkada 2003 
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and the Yarimca seismic excitations which contain several strong motion cycles : AG ≈ 

1.65 for the nonlinear analysis compared to roughly 1 (no amplification) for elastic 

analysis. 

In the case of the intermediate frequency and multi-cycle Lefkada 2003 seismic 

excitation, the fluctuations of AG towards the valley center practically disappear with soil 

inelasticity. The nonlinearity increases the effective damping (which is of hysteretic 

nature in this case), reducing the aggravation related to laterally propagating surface 

waves (similarly to the previously discussed observations referring to the increase of the 

damping ratio).  

 

5.6 Generation of Parasitic Vertical Component 

In the previous sections, the aggravation due to 2D valley effects has been investigated, 

focusing on the prevailing horizontal component of the seismic motion. However, due to 

the geometry of the bedrock slope, a purely horizontal seismic motion will unavoidably 

generate a parasitic vertical component. A first attempt to address such phenomena is 

presented in the sequel, focusing on real records.  

Figure 5.16 depicts the results for the high-frequency Kede seismic excitation. The 

analysis is conducted subjecting the valley to the horizontal component of the record 

only (bottom). As revealed by the distribution of the ratio (maxAv / maxAh) of the valley-

generated parasitic vertical component Av to the horizontal component Ah (middle of the 

figure), a significant parasitic vertical component is developed which, close to the valley 

edges may even exceed Ah. Moreover, since the parasitic valley-generated Av is the result 
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of geometry, it is totally correlated with Ah (see produced surface acceleration time 

histories at the top of the figure).  

Figure 5.17 compares the natural recorded vertical component time history and 

spectrum with the parasitically generated ones at the valley surface. Observe that the 

vertical component of the Kede record (Fig. 5.17c), is of higher frequency compared to 

the horizontal one. As with most real records, such high-frequency vertical component 

may not really have any substantial effect on the performance of structures, even if 

completely correlated with the horizontal motion [e.g. Fardis et al., 2003]. On the other 

hand, the frequency content of the parasitic vertical component (Fig. 5.17a and 5.17b) is 

practically the same with that of the horizontal component, while its amplitude is 

dramatically higher than that of the natural component. Hence, in stark contrast to the 

natural vertical component, which is the result of P-waves, the valley-generated parasitic 

vertical component can be detrimental for overlying structures. 

For the intermediate Lefkada 2003 (Figs. 5.18 and 5.19) and the low-frequency 

Yarimca (Figs. 5.20 and 5.21) seismic excitations the results are not as intense (the ratio 

does not exceed 0.65), but the key conclusion remains. Being mainly the result of 

geometry (or focusing) effects, the parasitic vertical component almost disappears at the 

center of the valley. 

Figure 5.22 investigates the effect of non-linearity on the generated parasitic 

vertical component. For the high-frequency Kede seismic excitation (Fig. 5.22a), the 

Av/Ah ratio remains unaffected by the induced non-linearity. For the intermediate 

Lefkada 2003 case (Fig. 5.22b) and the low-frequency Yarimca (Fig. 5.22c), the soil non-

linearity, while not altering the general trend, modifies the Av/Ah ratio especially in the 

- 314 -



Chapter 5: Seismic Wave Propagation in a very Soft Alluvial Valley 

  

valley edges. The ratio appears even higher in the non-linear case in these regions. This 

increase is rather the result of decreased Ah than increased Av.  

 

5.7 Conclusions 

A numerical study has been conducted, utilizing a shallow soft valley as a test case, to 

gain insights on the sensitivity of 2D valley response on parameters, such as the 

frequency content of the input motion, its details, and soil non-linearity. The numerical 

methodology employed herein has been validated against recorded seismic response. 

The following conclusions have emerged : 

1) The dynamic response of the valley was shown to be strongly two-dimensional, and 

cannot possibly be captured through 1-D soil response analysis.  

2) Wave focusing at the valley edges and surface waves originating at the corners of the 

valley are responsible for substantial aggravation (AG) of the seismic motion. 

3) In the case of high-frequency seismic excitation, 1D soil amplification is prevailing at 

the central part of the valley (AG ≈ 1), while strongly two–dimensional phenomena 

are restricted at the corners, where trapping of obliquely incident body waves 

amplifies the motion, resulting to aggravation of (AG ≈ 1.3). 

4) For low-frequency seismic excitations, the wavelength becomes too large to be 

affected by the topographic anomaly (i.e. the slope of the supporting bedrock), and 

focusing effects are overshadowed by the horizontally propagating surface waves, 

leading to a shift of the location of the maximum AG towards the center of the valley. 

5) For elastic response, the details of the seismic excitation do make a difference in the 

development of surface waves, responsible for the aggravation at the valley center 
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while they do not affect to the same extent focusing effects at valley edges (which 

are geometry related). The increase of the number of strong motion cycles increases 

the probability of constructive interference of surface waves traveling towards the 

center of the valley, thus increasing the resulting AG. 

6) The increase of damping ξ mainly influences surface wave propagation, reducing AG  

towards the center of the valley. Yet, it does not appear to have any effect on AG at 

valley edges.  

7) Soil nonlinearity may modify the 2D valley response to a substantial extent. The 

equivalent linear method can capture parts of the problem, but will not yield the 

same results as a fully nonlinear analysis.  

8) For idealized single-pulse (Ricker) seismic excitations, soil nonlinearity in general 

reduces AG, mainly at the center of the valley (where the role of surface waves is 

dominant). At the valley edges, where the response is controlled by the geometry, 

the differences are not as pronounced.   

9) The details of real seismic excitations complicate things further, and quite remarkably 

lead to an increase in AG at the valley edges as soil nonlinearity increases. Soil 

plastification near the soil-rock interface at valley edges, leads to development of a 

very soft plastified zone : this is generated by the first arriving waves, which act as a 

trap for incident waves, which are captured between the plastic zone and the surface, 

thus generating larger AG.  

10) The 2D geometry of the valley (excited by exclusively-horizontal waves) generates a 

parasitic vertical component. Compared to the natural vertical component of an 

earthquake, which is the result of P-waves and is usually of very high frequency 

content to pose a serious threat to structures, this  valley-generated parasitic vertical 
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component can be detrimental for overlying structures: being a direct result of 

geometry, it is fully correlated and of practically the same dominant period as the 

horizontal component.  
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Figure 5.2. (a) Idealized cross-section of the Ohba Valley modeled in the paper; and (b) finite element

discretization, along with zoomed view at the edge of the valley.
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Fig. 5.3. Nonlinear kinematic hardening constitutive soil model

calibrated against published G–γ curves from the literature.
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Figure 5.4. Validation of numerical analysis method against observations :

comparison of spectral accelerations response SA derived from the accelerograms

recorded at the ground surface (point S) and the base stiff soil (point B) with those

derived from the FE computation (assuming viscoelastic soil response). Two

different earthquake motions (as recorded at B) were used as excitation

[Psarropoulos et al., 2007].
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Figure 5.5. The three Ricker wavelets used as seismic excitations : (a) the high-frequency Ricker, fo = 3 Hz ; (b)
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Figure 5.6. The effect of frequency content on the response along the ground surface :

elastic analysis with soil hysteretic damping ξ = 2 %. Distribution of the aggravation factor AG

for : (a) the high frequency Ricker 3 wavelet, (b) the intermediate Ricker 1, and (c) the low

frequency Ricker 0.5.
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Figure 5.7. The effect of frequency content on ground motion synthetics. Elastic analysis

with soil hysteretic damping ξ = 2 %. Wavefields of horizontal acceleration at the ground

surface of the valley for : (a) the “high frequency” Ricker 3 wavelet, (b) the

“intermediate” Ricker 1, and (c) the “low frequency” Ricker 0.5.
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Figure 5.8. The effect of frequency content on ground motion synthetics. Elastic analysis

with soil hysteretic damping ξ = 2 %. Wavefields of vertical acceleration at the ground

surface of the valley for : (a) the “high frequency” Ricker 3 wavelet, (b) the

“intermediate” Ricker 1, and (c) the “low frequency” Ricker 0.5.
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Figure 5.9. The effect of the “details” of the seismic excitation. Elastic analysis with soil hysteretic damping

ξ = 2%. (a) Acceleration time histories and elastic response spectra of the Kede (Athens, 1999) record,

compared with a “fitted” idealized Ricker wavelet (fo = 3 Hz) ; (b) comparison of the aggravation factor AG

along the ground surface of the valley for the Kede (Athens, 1999) record and the idealized Ricker wavelet
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Figure 5.14. Comparison of equivalent linear with fully nonlinear analysis:

distributions of horizontal peak ground acceleration for the Ricker 1 wavelet
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Chapter 6: Valley Effects on the Seismic Response of Frames 

 

 

6 
 

Influence of Valley-Affected Ground Motion  

on the Seismic Response of 

 Moment-Resisting Frame Structures  

 

 

6.1. Introduction 

The current Chapter attempts to: 

a. Generalize the validity of the conclusions drawn during the preceding analysis of 

the Ohba valley  

b.  Investigate the response of a simple frame structure subjected to valley 

contaminated ground motion. Emphasis is given on a realistic modeling of the 

foundation-structure system which will be able to capture inelastic and non-linear 

response. 
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6.2. Generalization of Results and Dimensional Analysis 

The previous Chapter presented a study on the sensitivity of 2D wave effects to crucial 

parameters, such as : (a) the frequency content of the input motion, (b) the “details” of 

the input motion, and (c) soil non-linearity. A numerical study has been conducted, 

utilizing the Ohba Valley (Japan) as an illustrative example. In addition, emphasis has 

been given on the generation of parasitic vertical component, the effects of which may 

be detrimental for overlying structures. The latter  

The main results of the preceding study were that: 

• The 2d wave effects are a highly frequency dependant problem and the intensity 

of the valley effects (i.e. spatial distribution and amplitude of the observed 

aggravation AG, surface waves generation and propagation towards the valley 

center, and wave focusing phenomena near its edges) is controlled by the relative 

ratio of the incoming wavelengths to the dimensions of the valley. 

• When the response is elastic, the increase of the number of strong motion cycles 

increases the probability of constructive interference of surface waves traveling 

towards the center of the valley, thus increasing the resulting AG. 

• Soil nonlinearity may modify the 2-D valley response to a substantial extent. For 

idealized single-pulse monochromatic seismic excitations, soil nonlinearity most 

often reduces AG, mainly at the valley center (where the role of surface waves is 

dominant), while differences are not as pronounced at the valley edges, where 

response is controlled by geometry. The details of recorded seismic excitations 

may further complicate the response, and quite remarkably lead to an increase in 

AG at the valley edges.  
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• A Parasitic Vertical Acceleration is generated by the refracted waves at the valley 

inclined boundaries which may be as high as the horizontal component, is in 

phase and of similar frequency content with it and thus it is believed to be of 

extreme importance for structures founded at the valley edges [ reference to the 

BSSA paper where results are referred to a specific valley formation of an 

extremely soft alluvial valley, of high impedance contrast between the soil and 

the underlying bedrock and thus can by no means be generalized] 

In order to increase the generalization potential of the preceding conclusions before 

examining their effects on the seismic response of a frame structure, the following 

section attempts to  

a. investigate the dependence of the previous outcomes on the soil stiffness and 

strength while maintaining the valley geometry and, 

b. if possible, to perform a dimensional analysis considering both elastic and non-

linear soil response in order to take account of the effect of the valley geometry.   

 

6.3. Numerical Analysis Method 

The problem is analyzed in the time domain employing the finite element (FE) method, 

assuming plane-strain conditions. The soil is modeled with quadrilateral continuum 

elements, with a very fine discretization to ensure realistic representation of the 

propagating wavelengths.  

Reflections at the base of the formation are avoided by utilizing absorbing 

boundaries. "Free-field" boundaries responding as shear beams are placed at each lateral 
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boundary of the model, to reproduce the motion produced by in–plane vertically incident 

SV waves..  

Two different types of analysis are conducted : (i) visco-elastic analysis (Rayleigh 

Damping),; and (ii) nonlinear analysis utilizing the finite element code ABAQUS [2008], 

employing a kinematic hardening constitutive model. The numerical analysis 

methodology employed herein has been extensively validated against recorded seismic 

response in Tazoh et al (1988), Fan et al (1992) and Psarropoulos et al. [2007].  

 

6.4. Soil Constitutive Modeling 

For the nonlinear analyses, this study employs the nonlinear kinematic hardening 

constitutive model described in Chapter 2. The evolution law of the model consists of 

two components : a nonlinear kinematic hardening component, which describes the 

translation of the yield surface in the stress space (defined through the "backstress" α, a 

parameter which defines the kinematic evolution of the yield surface in the stress space), 

and an isotropic hardening component, which describes the change of the equivalent 

stress defining the size of the yield surface οσ as a function of plastic deformation 

(Figure 6.1a).  

 The model incorporates a Von Mises failure criterion, considered adequate to 

simulate the undrained response of clayey materials, with an associative plastic flow rule 

(Anastasopoulos et al 2010). The evolution of stresses is described by the relation : 

οσ σ α= +      (6.1) 

The evolution of the kinematic component of the yield stress is described as follows : 
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plpl εε)(
1

&&& γαασ
σ

α −−=
0

C      (6.2) 

where C the initial kinematic hardening modulus ( y yC σ ε E= = ) and γ a parameter 

that determines the rate of  kinematic hardening decrease with increasing plastic 

deformation.  

 Model parameters are calibrated against G–γ curves of the literature. Figure 6.1b 

illustrates the results of one such calibration (through finite element simulation of the 

simple shear test) against the G–γ curves of Ishibashi and Zhang [1993].  

 

6.5. Effect of Soil Stiffness and Strength on the Elastic Dynamic Response of a 

Trapezoidal Valley   

In order to highlight the effect of shear wave velocity on the elastic dynamic response of 

the valley, this section compares the response of three homogeneous valleys of the same 

geometry but of varying Shear wave velocities Vs so as to model: a very soft valley 

(Vs1=100 m/s), a medium with Vs2=150 m/s and a stiff one of Vs3=200 m/s while the shear 

velocity of the substratum is significantly higher : VS = 400 m/s. The impedance contrast 

between soil and base, ρz, vsz/ρ, Vs1 ranges between 2 and 4. The idealized geometry of 

the valley and the associated configuration of the FE model are depicted in Figure 6.2. 

The models have been subjected to Ricker pulses (Fig.6.3) of varying frequency, so that 

the valley response is not biased by the produced wavelengths. The PGA=1g at the 

bedrock for all cases to ensure that soil non-linear response is mobilized.  
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Response to Ricker-1 wavelet 

As expected, when the stiff valley (Vs=200 m/s) is excited by the relatively low frequency 

Ricker 1 pulse, the valley response, as revealed by the spatial distribution of peak 

horizontal acceleration AH (Fig.6.4a) is practically 1 dimensional. Hence, a higher 

response is observed in the central area of the valley, while a smooth transition occurs 

towards the valley boundaries due to the contrast between the soil shear wave velocity 

and that of the outcropping rock. The wavelengths generated in this stiff valley may be 

assumed to range between roughly λ≈50 and λ≈200 m for the Ricker1 wavelet. It is hence 

apparent that the valley geometry, whose largest convex dimension is H=24m, is 

inadequate to cause notable wave refractions, consequently maintaining the produced 

Aggravation Factors close to unity (Fig.6.4b). Correspondingly, as the valley soil stiffness 

reduces (Vs2=150 m/s, Vs1=100 m/s), thus generating waves of smaller length, the 

geometry of the valley becomes more perceptible to the incoming waves and the 

trapping of waves within the valley wedge now produces multiple reflections, which in 

turn are mirrored in the increased aggravation factors (Fig.6.4b). It is noteworthy, that as 

the soil formation softens, the 2D effects take place not only in the narrow area of the 

valley sloping boundary but are indeed detectable along the whole valley surface. The 

steep peak observed in the very center of the valley should be attributed to the 

intereference of oppositely propagating Rayeigh waves (Bard and Bouchon, 1980(a,b); 

Harmsen and Harding, 1981; Papageorgiou and Kim, 1991; Scrivner & Helmberger, 1999;  

Cornou et al, 2003). 

 The above phenomena are even more conspicuous in terms of the parasitically 

generated vertical acceleration (Fig.6.4c). Since the parasitic vertical component is the 

result of refracted waves only, this can practically only appear when the wavelength is 
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adequately small thus being able to capture the topographic relief which is responsible 

for the generation of wave refractions. In accord with this theoretical expectation, in the 

case of the stiff formation (bold black line), the lack of refractions results in negligible 

“parasitic” vertical acceleration (not exceeding 10% of the input horizontal motion in 

amplitude). On the other hand, as the soil profile softens, the presence of the parasitic 

vertical component is ample along even the whole length of the valley surface (Fig.6.4c).  

 As the Ricker3 is a higher frequency wavelet than the previously examined Ricker1, 

the generated wavelengths are naturally smaller and therefore able to detect an 

increased amount of relief details. Despite that fact though, for the stiff soil case 

(Vs=200), the ground motion is de-amplified instead of being enhanced in the area of the 

valley wedge (Fig.6.5a). This should most probably be attributed to the low impedance 

ratio (King and Tucker, 1984; Olsen et al, 1995; Ciliz et al, 2007). As the soil profile softens 

(Vs=150 m/s) some de-amplification is still present close to the valley edges but the 

aggravation factor now tends to AG=1.2 within the wedge, mirroring a clear amplification 

of the ground motion. Likewise, in accord with any potential speculative expectation, a 

further reduction of the shear wave velocity to the value of Vs=100 m/s will result in 

enhanced amplification due to multiple wave refractions within the soil wedge, reflected 

on the increased value of the Aggravation Factor, AG=1.4 (Fig.6.5a). Contrary to the 

horizontal AG distribution, the parasitically generated vertical component reaches 

surprisingly high values even for the stiffer soil profiles (Vs = 150 and Vs = 200 m/s).  

Although the horizontal acceleration is slightly de-amplified inside the wedge, the vertical 

component even exceeds 0.8g at the same area. The amplitude of the vertical motion is 

further augmented when the profile becomes softer, although it is only detectable in a 

narrow area close to the valley boundary. 
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 It is noteworthy, that as the shear wave velocity decreases (Fig.6.5b) the location of 

the maximum observed valley-contaminated ground motion gradually shifts towards the 

valley edges. This shift must again be attributed to the relative dimensions between the 

valley and the wavelength. As the wavelength decreases (i.e. shear wave velocity 

decreases), the wave refractions towards the convex borders of the wedges are 

augmented since their geometry becomes increasingly perceptible by the incoming 

waves. The entrapment of multiply refracting waves within the wedge naturally amplifies 

the vertical component in that area hence transferring the location of the peak towards 

the valley boundaries. Conversely, as the wavelength increases, the refractions mainly 

materialize away from the valley edge.  

 

6.6. Effect of Soil Non-linearity on the dynamic Response of a trapezoidal 

Valley   

6.6.1. Response to Idealized Pulses 

The influence of non-linear soil response on valley effects has been extensively examined 

in literature utilizing numerous methods of varying degree of sophistication (i.e. elastic 

analyses with high Rayleigh-type damping values, equivalent linear routines or even 

complicated non-linear soil constitutive models (Zhang and Papageorgiou, 1996; Olsen et 

al, 2000; Kamiyama and Matsukawa, 2002; Kamiyama and Fukuchi, 2007; Puglia et al, 

2007).  

 Most of the relevant studies agree that the effect of soil nonlinearity is detrimental 

for the induced valley phenomena: quite invariably they tend to diminish. In a number of 

cases some amplification may be apparent close to the valley edges but still the AG 

values are significantly lower than those observed when neglecting soil inelasticity; 
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moreover the late arrivals of waves are essentially filtered out. This is certainly true when 

the valley is excited by motions generating wavelengths that are comparable or smaller 

than the dimension of the oblique sides of the valley and thus produce significant 2D 

amplifications in the elastic case. Such a response may be observed in Figure 6.6, 

summarizing the numerical results of the dynamic analysis of a relatively soft valley 

formation (Vs=100m/s) excited by a high frequency Ricker3 pulse. It is worth mentioning 

that in terms of AG values, the induced non-linearity results in decreased valley 

amplification at the valley corners (AG drops from 1.4 to 1.2), while a “shadow area” (Fig. 

6.6a) is formed where the experienced motion at the valley surface is de-amplified 

compared to the acceleration values that would take place in the respective 1-d 

formation (AG values even below unity). As we move to the valley center the response 

becomes essentially 1-dimensional. In terms of the parasitically generated vertical 

acceleration, high values are concentrated close to the valley edges in both the elastic 

and the non-linear case. Certainly, the absolute Av values in the elastic case are higher 

than in the non-linear, since the original horizontal acceleration is greater. However, the 

presence of the parasitic vertical acceleration is constrained in the area of the valley 

wedge (contrary to the elastic case when a significant vertical acceleration component is 

evident along an extended area on the valley surface); refracted waves travelling towards 

the valley center are filtered out resulting in the observed smoothening of the peak 

vertical acceleration distribution (Fig. 6.6b).  

 The most surprising outcome of the present study though is that soil non-linearity 

may, under appropriate conditions, even enhance the valley amplification phenomena. 

Figure 6.7 demonstrates an example referring to the stiff valley (Vs=200m/s) excited by a 

relatively low frequency pulse. Observe that when the non-linear soil response is 
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considered the produced AG is higher than in the elastic case: due to the induced soil 

softening with increasing strain, the soil stiffness drops from its original Go value (elastic 

case) to a lower secant Gsec value which in turn corresponds to significantly lower shear 

wave velocity. For this specific case this decrease in the actual Vs value produces lower 

wavelengths and, subsequently enhances the 2D valley effects compared to the elastic 

case (when the produced wavelengths were too high to perceive the bedrock geometric 

irregularity). These 2D effects are more pronounced for the parasitically produced 

vertical motion.  The latter is systematically higher in the non-linear case along the whole 

valley length, while its maximum value (Av=0.5g), acquired close to the valley edges is 5 

times higher than the respective elastic value.  

 

6.6.2. Response to Recorded Accelerograms 

In order to extend the validity of the previous observations, the medium stiffness valley 

formation (Fig.6.1) has been subjected to an ensemble of quite rich in frequency content 

recorded acceleration time histories (Fig. 6.8). They range in number of important cycles, 

duration and amplitude so as to avoid the generation of biased conclusions. Results are 

displayed collectively in the plots of Figure 6.9 and are briefly outlined below: 

• In the elastic soil case, the valley response especially in terms of Aggravation 

Factors distribution is essentially non-predictable for both the horizontal and the 

vertical acceleration components. Areas of accumulated amplification are 

interchanged with areas of unimportant amplification in a totally volatile pattern; 

a finding consistent with the outcomes of the previous Chapter.  

• Soil Non-linearity drastically simplifies the observed response. In all cases 

examined, valley amplification (if any) is localized within the valley wedges 
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(shaded areas) i.e. either at x>180 or x<-1480 m. It is noteworthy that very close 

to the valley edges, the amplification may even be higher than in the elastic case.  

• Results are even more interesting when considering the parasitic vertical 

acceleration. It is clear that even in the non-linear case, the geometry-induced 

parasitic vertical acceleration component, should not be expected to vanish; on 

the contrary, it may even exceed the corresponding 1-dimensional horizontal 

acceleration value! 

 

6.7. Dimensional Analysis  

In all the preceding analyses the valley geometry has been kept constant. In order to 

examine the extent to which the above results may be generalized, this section attempts 

a dimensional analysis of the valley. The valley geometries and the excitation time 

histories utilized during the process of this analysis are summarized in Figure 6.10. It is 

expected that when soil non-linearity is neglected, dimensionless results can be 

produced when the x=λ/D (wavelength over valley depth) ratio is constant, which causes 

the ratio of the dominant frequency of the soil profile over the excitation frequency to 

remain constant in turn: 

�
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�  
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�  
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    (6.3) 

 This will enable capturing both the effect of wave propagation (since the produced 

wavelength depends on the valley length) and the 1-d soil amplification since the 

Texcitation/Tprofile ratio remains constant. Physically, the dimensionless parameter x is an 

index of the generated waves “ability” to capture the valley geometry. In this context, 

lower x values are indicative of low wavelengths compared to the valley dimensions 
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which in turn results to a more perceptible valley geometry and therefore increased 

number of wave reflections.  

 Figures 6.11 and 6.12 display the spatial distribution of peak horizontal accelerations 

and the horizontal and vertical acceleration time histories respectively in dimensionless 

terms highlighting the effectiveness of the procedure. Despite the generally excellent 

coincidence of the analyses results in both terms, some slight discrepancies may be 

observed as we move to lower x values. These should most probably be attributed to the 

use of Rayleigh damping during the numerical analyses. The latter drastically increases 

the numerical stability of the solution but results in a rather “inhomogeneous” damping 

ratio distribution with frequency. Hence, although the damping ratio around the 

dominant frequency of the excitation is accurately captured, some high or low 

frequencies may experience increased damping. Indeed, the higher the excitation 

frequency the higher the sensitivity of the response to potential discrepancies between 

the required and the finally achieved damping ratio. Gelagoti et al (2010) have shown 

that the surface waves responsible for the amplified vertical acceleration component 

close to the valley center may be too sensitive to damping fluctuations. This observation 

explains the reason why the most important deviations are concentrated in the central 

area of the valley (and not at its edges) and are more pronounced for the Type 1 valley 

geometry which for a given value of the dimensionless ratio x is excited with the highest-

frequency-motion. Note, (Figure 6.12) that in order to achieve the best match in terms of 

time histories of the produced ground motion (horizontal and vertical) the time must be 

divided by the dominant period of the excitation TE. Naturally, as the time histories refer 

to valleys of different dimensions, the dimensionless duration of the time history for the 
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Type-1 valley is longer than that of the Type-3 valley since the former has been excited 

by the higher frequency Ricker 1 pulse while the latter by the low frequency Ricker 0.5.  

 When soil non-linearity must be captured, the response is expected to depend not 

only on the geometric proportionality but must also be taking account of the soil 

strength. Therefore the Su1/Su2 ratio (i.e. the ratio of strength parameters between the 

two “equivalent” valleys) must be equal to the ratio of their dimensions D1/D2. 

Dimensionless results for the non-linear soil case are plotted in Figures 6.13 and 6.14 in 

terms of spatial distribution of peak horizontal accelerations and the horizontal and 

vertical acceleration time histories respectively, revealing the accuracy of the adopted 

procedure.  

 

6.8. Free Field Response: Conclusions 

The previous analyses have focused on the effects of soil stiffness and non-linearity on 

the amplification of ground motion due to 2d wave effects, visibly demonstrating that in 

both the elastic and the non-linear case, valley effects are strongly dependent upon the 

shear wave velocity, and, maybe more importantly, that the non-linear behavior of soil is 

not always detrimental for the valley-induced amplification. In most cases though, soil 

non-linearity causes the 2d-effects to vanish to multiply reflecting waves near the edges 

of the valley. The most notable conclusion has to do with the generation of the parasitic 

vertical component of ground motion which, being a result of valley geometry only, has 

been proven to be less sensitive to soil non-linearity maintaining a rather high amplitude 

even in positions where the horizontal component is de-amplified. This observation could 

be of vital importance when designing surface foundations of structures, as the 
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synchronous vertical acceleration may intensify the footing’s seismically-induced 

distortion. In the process of exploring the validity of this statement, the next sections 

investigate the seismic response of a frame structure funded on the surface of alluvial 

valleys near the areas of high-amplitude parasitic vertical component of motion. 

 

6.9.  Response of Frames subjected to valley-affected ground motion: 

Problem Definition  

To gain insight into the effect of the parasitic vertical acceleration component on surface 

foundations of typical structures, a realistically simple frame has been modeled which is 

assumed to lie on the surface of an alluvial valley close to its edges where the parasitic 

component has been observed to be maximum (Fig.6.15a).  

The analysis is conducted in two stages:  

(i) The first stage calculates the free field response on the valley surface when 

subjected to horizontal shaking at the bedrock  

(ii) The produced horizontal and parasitic vertical acceleration time histories of the 

first stage are applied as input excitation of the de-coupled model presented in Figure 

6.15b. 

In order to isolate the effect of each component of the ground motion, the following sets 

of analyses have been performed: 

a. Non-linear dynamic analyses of the decoupled model model subjected to the 

quasi 1-dimensional ground motion AFF (Fig. 6.15a) recorded at the central part of 

the valley  (i.e. not affected by the valley geometry) 
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b. Non-linear dynamic analyses of the model subjected to the horizontal component 

only (AH) of the valley affected ground motion (Fig. 6.15a) recorded at the valley 

model surface (i.e. ignoring the parasitic vertical component of the motion) 

c. Non-linear dynamic analyses of the model simultaneously subjected to the 

horizontal and vertical components (AH and AV) of the valley affected ground 

motion recorded at the valley model surface 

 

6.9.1. Frame Geometry and Modelling 

The problem analyzed is displayed in Figure 6.16. It consists of a fairly typical 2-storey 

concrete urban residential structure of 5m span. The ground floor height is 4 m while the 

first floor has a height of 3m. The dimensions of the structural members of the frame are 

displayed in Table 6.1. 

Superstructure Design 

The structure has been designed according to the Greek Reinforced Concrete Code (EKOS 

2000) and the Greek Aseismic Code (EAK2000). In order to adopt a quite conservative 

earthquake scenario which would dictate a grave earthquake design strength, the 

structure’s location has been assumed in Seismic Hazard Zone III, i.e. the design 

earthquake PGA was equal to ad=0.36g. The behavior factor is q = 3.5. The dead and live 

loads adopted (g = 1.3 kN/m
2
 and q = 2 kN/m

2
) are typical values for residential structures 

provided by EC8 and the Greek Codes. 

Finite Element Model Description 

The finite element model of the frame structure resting on clay is displayed in Figure 

6.16b. The soil is modeled with 4-noded quadrilateral plane strain continuum elements. 

Vertical displacement boundaries have been applied at the bottom nodes of the model. 
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The acceleration time history is applied at the model base nodes and propagates through 

the soil layer to its surface. An initial sensitivity analysis revealed that the footing has to 

be discretized into at least 12 elements to reproduce the mechanism of bearing capacity 

failure and the rocking behavior. The soil-foundation interface is modeled using special 

interface elements which allow the structure to slide or detach from the soil depending 

on the loading. The sliding obeys Coulomb’s friction law, with detachment and uplifting 

arising from the tensionless interface behavior. The structural elements were modeled 

utilizing nonlinear beam elements whose properties have been calculated as described in 

the ensuing. Non-linear P-δ geometry effects were also taken into account.  

 As expected, the strength of the columns is larger than that of the corresponding 

beam members according to the principles of capacity design. The column curvature 

ductility is μφ = 10, corresponding to the medium ductility class according to the 

provisions of EC8 for the case of Moment Resisting Frames. 

Concrete Modeling 

The constitutive model presented in Chapter 2 after proper adaptation [Gerolymos et al., 

2005], is calibrated to match the superstructure reinforced concrete (RC) members 

response in the macroscopic moment–curvature level.  

 For each member, the moment–curvature relationship is computed through static 

section analysis employing the X-tract 2000 [Imbsen Assoc. & Chadwell, 2004] software. 

Then, model parameters are calibrated against these target moment–curvature 

relationships. For a rectangular RC member of width db and height dh , the yield stress σy 

can be defined as : 

2
=

y

y

b h

4M
σ

d d
     (6.4) 
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The small strain modulus C is equal to the Young's modulus of reinforced concrete. The 

residual bending moment of each RC section is assumed equal to 30% of the bending 

moment capacity [Vintzilaiou et al., 2007], and is attained for a curvature 3 times larger 

than the ultimate curvature cu . To capture such softening response, a user subroutine is 

encoded in the finite element code ABAQUS. Since the structure was designed following 

the provisions of modern seismic codes, the hoop reinforcement justifiably presumed to 

prevent strength degradation due to cyclic loading. Therefore, this effect has been 

neglected in the concrete modeling. Parameters λ and α of the model are calibrated 

through numerical simulation of the static pushover test. Figure 6.17 depicts the results 

of model calibration for the pier against moment–curvature relation of the reinforced 

concrete section calculated through section analysis as stated above.  

 

6.10. Response of Frames subjected to valley-affected ground motion taking 

account of the parasitic vertical acceleration 

As already described, the valley presence has the double effect of amplifying the ground 

motion (close to its edges) and generating a parasitic vertical acceleration due to the 

refraction of the incoming waves. The latter may be synchronous with the horizontal 

acceleration component provided that the incoming wavelength is appropriate. The 

following paragraphs outline the effect of each component of the excitation to the 

dynamic response of the frame. Only non-linear soil has been considered in this study 

since it has been shown [Gelagoti et al, 2010) that ignoring soil non-linearity 

unrealistically enhances the valley amplification effect.  
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6.10.1. Effect of the valley-generated parasitic vertical component: Response to the 

Ricker 1 excitation 

This section compares the behavior of the frame when subjected to the horizontal 

component only to that of the frame under combined horizontal and vertical 

acceleration action. For the sake of comparison, the results of the analysis of the frame 

located at “free field” are also presented in selected cases. The pulse-type Ricker1 

excitation (PGA = 1g) has been used as input ground motion of the two characteristic 

valley models displayed in Figure 6.10: the shallow valley-1 and the deep valley-3 

models. The original base excitation as well as the resulting horizontal and vertical 

components on the surface (near the edge of the valley) are displayed in Fig. 6.18 for the 

shallow valley-1 model. The analyses have revealed two main mechanisms that 

luminously demonstrate the detrimental effect of the parasitic vertical acceleration. 

These consist of either increasing or decreasing the vertical load of the footings which is 

transmitted to them through the axial load of the columns. Both phenomena are 

expected to only affect the frame response when the vertical component is synchronous 

with the horizontal one (see previous section Free Field).  

 

6.10.2. Effect of Vertical Acceleration: Increase of Axial Load  

Figures 6.19 to 6.21 compare the behavior of the frame when subjected to combined 

horizontal and vertical acceleration to that of the frame subjected to the horizontal 

component only. The mechanism is briefly outlined in the contours plot of Figure 6.19. In 

the absence of vertical component, the frame responds to the strong ground shaking 

through foundation rocking, which restricts the loading that may be transmitted from the 

ground to the superstructure through the footing. Hence, a strong horizontal 
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acceleration pulse results in rotation of both footings which, in turn, creates distortion to 

the superstructure. On the other hand, when the strong horizontal pulse is accompanied 

by a synchronous vertical acceleration pulse, which substantially increases the vertical 

load of the foundation, the latter is prevented from uplifting, hence being forced to 

assume the imposed loading through bending. The above mechanism is clearly mirrored 

in the moment curvature-plots of the two columns presented in Figure 6.20 for the 

shallow-case valley (Fig. 6.18a) subjected to the Ricker1 pulse. The figures compare the 

response of the frame in all three different cases (a,b,c see section 6.9) identified 

previously. As can be deduced from the figure, the valley amplification effect for this 

specific case in terms of column stressing is not so important if the parasitic vertical 

acceleration is ignored. The increase in column curvature because of the horizontal 

component only is less than 10% for both columns. Hence, the effect of the valley on the 

frame response would be misleadingly unimportant were the parasitic vertical 

component totally ignored. The picture as to the valley effect is indeed completely 

reversed due exactly to that action. Focusing on the right column’s curvature time history 

plots displayed in Figure 6.20a, it may be observed that in case of simultaneous 

horizontal and vertical components the curvature displays a striking increase at time 

4.8s. Most of the curvature developed at that instant is irrecoverable afterwards, i.e. the 

curvature time history during the subsequent cycles of shaking oscillates around the 

remarkably high value of c = 4.7. Note that the residual average curvature on the same 

column in case of horizontal component only is c =1.5. The mechanism may be further 

clarified by analyzing the footing rotations time histories (Fig. 6.21). As already evidenced 

by various researchers for foundations with large factors of safety against vertical loads 

(e.g. Kutter 2003; Pecker 2001; Gelagoti et al 2010b), once the earthquake-induced 
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bending moment exceeds the footing’s moment capacity, the latter is forced to uplift 

hence limiting the inertia that may be transmitted to the superstructure. Indeed, 

although the right footing does uplift under the action of the horizontal component only 

as seen in Fig. 6.21b (black line), at the instant t=3.8s the action of the synchronous 

vertical acceleration produces a dramatic increase in the right column’s axial force 

(compared to that under the horizontal component only) (Fig. 6.21), which drastically 

limits its capacity to uplift. At that very instant, the right footing rotation drops by almost 

80% (Fig. 6.21a) compared to the no vertical acceleration case, confirming the 

foundation’s inability to uplift. Consequently, the mechanism of uplifting being 

prevented all the inertial forces on the right column must be undertaken through its 

bending which, in turn, results to an increase of almost three times of the developed 

curvature compared to the case when the vertical acceleration is neglected.  

 

6.10.3. Effect of Vertical Acceleration: Decrease of Axial Load  

The effect of positive vertical acceleration is better demonstrated in Figures 6.22 to 6.24 

which refer to the deep valley-3 model. They compare the behavior of the frame when 

subjected to combined horizontal and vertical acceleration to that of the footing 

subjected to the horizontal component only. The mechanism is briefly outlined in the 

contours plot of Fig. 6.22. The main effect of a synchronous positive vertical acceleration 

pulse accompanying the strong horizontal pulse is the potential loss of contact between 

the footing and the ground which, as discussed previously, may result in a kinematically-

induced permanent deformation of the column.  

 During the main horizontal pulse, the left footing whose vertical load is already 

reduced due to the frame rocking-deformation, (Fig. 6.23a) is subjected to a strong 
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positive vertical acceleration pulse which if only momentarily leads it to loss of contact 

with the ground. Hence, the new position of the footing upon reattachment with the 

ground, is slightly translated (to the left) as to its initial position (while the right footing 

has remained in it) resulting to an irrecoverable deformation of the column (Fig. 6.23b), 

reflected in its residual negative curvature (Fig. 6.23c). During the subsequent cycles of 

shaking the curvature oscillates around that value. The increased stressing of the left 

column is also confirmed by its moment-curvature plot (Fig. 6.24a) and the significantly 

higher drift ratio produced (Fig. 6.24b). 

 

6.10.4. Effect of Frame Positioning along the valley  

The previous discussion refers to the frame being positioned on the left edge of the 

valley (Fig. 6.25a) and hence the parasitic vertical component is positive at the instant of 

peak horizontal displacement (i.e. at the critical instant of maximum inertial force acting 

on the frame) hence detrimentally increasing the axial load on the column. Were the 

frame positioned on the opposite end of the valley, geometry dictates that the vertical 

acceleration time history polarity would be reversed. Indeed, in this case (Fig 6.25a) the 

peak pulse of the vertical acceleration is negative at the instant of maximum inertial 

demand due to horizontal shaking (t=3s) but is positive during the previous lower pulse, 

provoking substantial deviations from the response of the no-vertical component 

scenario in both columns. The effect on the right column (which is subjected to the 

higher earthquake demand) is not as dramatic as previously in terms of column stressing. 

The peak curvature (Fig. 6.25b) is still increased, yet the instant of peak curvature 

occurrence does not coincide with the instant of peak horizontal acceleration, as 

reflected in the substantially reduced footing rotation at t = 3s (Fig. 6.21a): the negative 
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vertical acceleration during the very first (and of lower amplitude) loading cycle 

augments the column axial load hence limiting its ability to uplift and, in turn, increases 

its bending-induced deformation which is conspicuously demonstrated by its increased 

curvature (Fig. 6.21b). On the contrary, during the main horizontal shaking pulse, the 

vertical acceleration component is negative, thus enhancing the right footing’s uplifting 

as mirrored in the rotation time history plot (Fig. 6.25c). 

 

6.11. Effect of the valley-generated parasitic vertical component: Response to 

recorded Earthquake Time Histories 

The last section of the investigation of the Frame response subjected to valley-

contaminated ground motions explores the effects of recorded accelerograms on the 

typical structure. Three characteristic time histories have been used as input excitations 

on the valley bedrock:  

a. A moderate earthquake time history recorded during the Kalamata, Greece 

earthquake. This record may be regarded as corresponding to the “design 

earthquake” of the structure under study 

b. A moderately strong time history recorded during the El Salvador (1985) 

earthquake. 

c. A very strong time history, recorded in the Tabas (Iran, 1981) earthquake. 

The non-linear analyses methodology follows the pattern described in the previous 

sections, comparing the results of the case with and without vertical acceleration 

component, while in most cases the frame has also been subjected to the free field 

ground motion in order to quantify the valley effect on its behavior. 
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6.11.1. Response to Moderate Time History 

Figure 6.26 plots the spatial distribution of peak accelerartion values and the recorded 

time histories on the valley surface when the model is subjected to the mild Kalamata 

(Greece 1986) record. The horizontal acceleration is maintained within the frame design 

limits (Fig 6.26c) and is therefore not expected to pose a serious threat to the structure, 

while the amplitude of the vertical acceleration is lower (of the order of 50% of that of 

the horizontal).  By comparison of the response of the two columns (Fig. 6.27a) it 

becomes evident that the frame has behaved practically elastically (as expected) and that 

the presence of the mild although synchronous with the horizontal, vertical component 

has not modified its response. The produced ground floor drift ratios (Fig. 6.27b) are 

acceptable. 

6.11.2. Response to Strong Earthquake Scenario  

When the input excitation is the devastating GIC-090 record (San Salvador 1986), the 

produced surface acceleration time histories are remarkably more intense both in terms 

of peak values and time histories (Figure 6.28). The consequence of the high horizontal 

accelerations is more pronounced on the Moment-Curvature plots of the two columns 

(Fig. 6.29a-black line) which develop substantially high curvature, although foundation 

uplifting protects them from failure. The presence of the synchronous vertical 

acceleration however although barely affecting the observed footings uplifting (Fig. 

6.29b– grey lines), does produce a significant increase in the curvature developed in both 

columns (Fig. 6.29a). Observe (Fig. 6.30) that the valley-contaminated horizontal 

component brings about insignificant discrepancies in the frame response compared to 

its response when subjected to the free-field horizontal ground motion only. Although 
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the imposed shaking is different both in terms of time history and spectral values (Fig. 

6.30a), the response in terms of column stressing (Fig. 6.30b) is practically equivalent 

although the produced maximum drift ratio is augmented in case of the valley-

contaminated input motion (Fig. 6.30c). It is therefore pointed out that, were the 

parasitic vertical acceleration neglected, the valley effect would have been unrealistically 

considered as minimal. 

6.11.3. Response to Very Strong Earthquake Scenario  

The detrimental effect of the parasitic vertical acceleration is exaggerated in case of the 

devastating Tabas (Tabas, Iran, 1981) record (Fig. 6.31a) which produces a tremendous 

0.83g peak horizontal and 0.62 g peak vertical acceleration (Fig. 6.31c). In the absence of 

vertical acceleration both footings develop significant rotation (Fig. 6.32b), hence being 

able to sustain the imposed shaking with only limited distortion. Yet, the presence of the 

vertical acceleration pulses results to dramatically enhanced plastification in the left 

column (Fig. 6.32a), despite the increased value of the developed curvature (Fig. 6.32b). 

The effect is less spectacular for the right column. The phenomenon results, as expected, 

to irrecoverable accumulation of drift which reaches values indicative of total failure (Fig. 

6.32c).  

 Finally, for the sake of completeness, Figure 6.33 compares the response of the 

frame subjected to simultaneous action of horizontal and parasitic vertical acceleration 

to that of the frame under horizontal and natural (recorded) vertical component. The 

plots are self explanatory: the quite high frequency natural vertical component hardly 

modifies the response of the frame even for the case of the examined devastating long-

duration Tabas record.  

- 366 -



6Figures of  Chapter 





Table 6.1. Structural member dimensions of the idealized typical frame, and

synopsis of computed internal forces for static and seismic load combinations.

Structural Member

Dimensions 

(cm)

Static Combination    Seismic Combination                      

1.35G + 1.5Q Vertical Loading : G+0.3Q Earthquake Loading : ± E

Mst : kNm Qst : kN Nst : kN M : kNm Q : kN N : kN ME : kNm QE : kN NE : kN

Ground floor Columns – base
40 x 40 13 10 243 8 6 150 101 41 54

1st floor Columns – base
40 x 40 68 51 153 40 30 96 26 25 19

Ground floor Beam – edges
20 x 50 71 117 0 41 68 0 80 35 0

1st floor Beam – edges
20 x 50 61 117 0 35 68 0 45 19 0
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Figure 6.2. (a) Geometry and Properties of the Valleys utilized for the parametric studies; and (b) finite

element discretization, along with zoomed view at the edge of the valley.
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Figure 6.6. Effect of Soil-Nonlinearity on the valley dynamic response : Spatial

distribution of (a) Aggravation Factor and (b)maximum values of

parasitically generated vertical acceleration along the valley surface. (Case

study: Relatively soft valley (Vs = 100 m/s) excited by the high frequency

Ricker 3 pulse)
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Figure 6.11. Dimensionless analysis results Spatial distribution of peak

horizontal and vertical acceleration along the valley surface (viscoelastic soil

response when ξ = 2 % is considered)
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Figure 6.15. (a) First stage: The free field valley response when subjected to

horizontal shaking at the bedrock is calculated initially and (b) second stage: the

produced horizontal and parasitic vertical acceleration time histories of the first stage

are applied as input excitation of the de-coupled model that includes the frame.
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analyzed and (b) finite element model assuming plane-strain conditions: the soil-structure

system is modeled so as to consider both material (soil and superstructure) and geometric

(uplifting and P-δ effects) nonlinearities.
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Figure 6.18. (a) Geometry and properties of the Valley utilized for the Valley-Frame
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Figure 6.19. Frame response when excited by (a) solely horizontal acceleration

and (b) combined horizontal and vertical acceleration (parasitically generated at

the valley surface) : Vertical acceleration is associated with increased axial load in

the frame column.
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both columns , (b) curvature time-history (case study: frame founded on a stiff valley

formation and excited by a Ricker 1 pulse).
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Figure 6.21 Frame response when excited by combined horizontal and vertical acceleration

(grey line) and when subjected to horizontal acceleration only (bold black line). For

comparison reasons the frame response when excited by the free-field accelation (black line)

is plotted together: (a) Rotation time-histories at both footings, (b) time-histories of axial load

at the base of the frame columns and (c) ground floor drift ratio time history (case study:

frame founded on a stiff valley formation and excited by a Ricker 1 pulse).
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Figure 6.22. Frame deformation when subjected to (a) the valley-contaminated horizontal

only component of ground motion and (b) the valley-contaminated horizontal and parasitic

vertical component of ground motion with the latter causing a decrease of the column axial

load. Case study: Valley 3 (assuming Su=85 kPa) is excited by Ricker1 at 1g.
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Figure 6.23. Frame response when excited by combined horizontal and vertical
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the left colum (case study: frame founded on a relatively stiff valley formation (Su=85
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Figure 6.26. Valley Type-1 subjected to a moderate earthquake scenario (Kalamata earthquake,

Greece, 1986) : (a) input motion and elastic response spectrum, (b) spatial distribution of horizontal

and vertical parasitic acceleration and (c) acceleration time histories at the location where the

strongest vertical motion is observed. The outcome of this free-field analysis will serve as input in

the subsequent analysis of the decoupled model that involves the frame structure.
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Figure 6.28. Valley Type-1 subjected to a strong earthquake scenario (GIC-090 record, San Salvador

earthquake, 1986) : (a) input motion and elastic response spectrum, (b) spatial distribution of

horizontal and vertical parasitic acceleration and (c) acceleration time histories at the location

where the strongest vertical motion is observed. The outcome of this free-field analysis will serve as

input in the subsequent analysis of the decoupled model that involves the frame structure.
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Figure 6.29. Frame subjected to the modified (due to valley) GIC-090 record (San

Salvador, 1986). Black lines denote the case when the frame is excited only by horizontal

component and the grey line the case when both horizontal and parasitic vertical

components are considered: (a) Moment-curvature loops at the bases of each column,

(b) time histories of footing rotations and (c) evolution of ground floor drift ratio.
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Figure 6.30. “Valley effects” when the parasitic vertical component is ignored: (a) frame

excited by the valley-contaminated horizontal acceleration time history (black line) and

frame subjected to the free-field horizontal motion (grey line), (b) Moment-curvature

loops at the base of each column and (c) evolution of ground floor drift ratio.
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3.   Very Strong earthquake Scenario – Tabas earthquake (Tabas-LN record)
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Figure 6.31. Valley Type-1 subjected to a very strong earthquake scenario (Tabas record from Tabas

earthquake, Iran 1978) : (a) input motion and elastic response spectrum, (b) spatial distribution of

horizontal and vertical parasitic acceleration and (c) acceleration time histories at the location

where the strongest vertical motion is observed. The outcome of this free-field analysis will serve as

an input in the subsequent analysis of the decoupled model that involves the frame structure.
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Histories (c) Ground Floor Drift ratio Time Histories
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