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ITepinyn

H Me¢bodog tov Bonbntwkev Inyov (MAS) eivat pia npooeyytotiki) pebodog
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Abstract

The Method of Auxiliary Sources (MAS) is an approximate method for the
solution of scattering problems. In the case of interest in the present thesis, that of
scattering by an acoustically soft sphere, excited externally, one assumes MxN
fictitious sources of acoustic field (to be referred to here as "MAS currents’) located
on an auxiliary spherical surface inside the sphere-scatterer, for finite M,N. The
‘MAS currents” are such that the boundary condition of the vanishing acoustic field
is satisfied on MxN collocation points on the soft scatterer. A [(P-1) Q]x[(M-1) N]
system of linear algebraic equations thus results. Once the MAS currents are found
and calculated, the acoustic field (‘MAS field’) due to them can be easily
determined.

What is shown in the numerical investigations of this thesis (by means of
MATLAB) is that, in the case of 3-D problems, for the placement of the mentioned
auxiliary sources in a certain area (which is found in this thesis and determined by a
‘critical’ radius), the auxiliary currents may oscillate, but we obtain a convergent
field despite these oscillations; furthermore the oscillations are neither due to
round-off nor matrix ill-conditioning. It is also demonstrated that, as M and N go to
infinity, it is possible to have a “‘MAS field” convergent to the true, correct field (for
all points outside the sphere) together with divergent ‘"MAS currents’.

The thesis describes therefore a difficulty (namely oscillations) associated
with the implementing of ‘MAS’. The main advantages of illustrating a difficulty
via a simple problem are two: (1) if the difficulty occurs in a simple problem, it is
also likely to occur in more complicated problems and (2) it is less likely to confuse
the said difficulty with other difficulties (namely, effects due to round-off, matrix
ill-conditioning or shape elongation).

Keywords

Method of Auxiliary Sources, Convergence of numerical methods, acoustic
scattering problems, boundary value problems, solvability.
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Chapter 1

Introduction to Acoustic Wave
Scattering theory

In this chapter we follow the textbook of [3], which unifies the theories of acoustic, electro-
magnetic and elastic waves and discusses the many physical and geometric aspects of their
interactions with obstacles (one of which we will study in our problem later in the next chap-
ters). According to this, we will make an introduction to scattering theory, giving the main
differential equations, boundary conditions and physical interpretations of problems about
scattering within acoustics.

This book also contains discussions on low frequency scattering in particular as well as a
significant number of results previously unpublished. We will not present such details here,
but the extended bibliography included in this textbook can be used as reference for any
researcher.

1.1 DEFINITION OF THE ACOUSTIC WAVE

In this work, the quantity which we are interested in is the excess acoustic pressure field.
An acoustic wave in an irrotational, homogeneous, isotropic, compressible fluid medium is
characterized by a variation in the ambient pressure field. This variation is what is called
“the excess acoustic pressure field” and is denoted by U(r,t), a scalar function of position
r = (z1, 9, x3) and time ¢. In cartesian coordinates r = (x,y, z) and in spherical (which we
are going to constantly use in the following chapters) r = (7,6, ¢). The excess pressure is
measured in units of force per unit area.

The velocity of propagation of an acoustic wave is denoted by V(r,t), a vector valued
function of position and time.

1.2 THE ESTABLISHMENT OF THE WAVE EQUATION FOR
ACOUSTIC WAVES

Supposing that the propagation of sound waves we are studying is linearized, the basic equa-
tions which relate the above defined quantities &/ and V are:



u-—tvv (1.1)
gl

pV = —VU 4 6VV -V (1.2)

where a dot over a letter indicates differentiation with respect to t.

Equation of continuity and the equation of state are merged to produce equation
(1.1): it demonstrates the physical principle that the material flow out of any volume element
will reduce the pressure, and the divergence of the velocity field is proportional to the rate
of the pressure change (for small compression). The proportionality constant % is called
the compressibility modulus, while 7 is called the mean compressibility and expresses
relative volume reduction per unit increase in surface pressure. The parameter v is measured
in units of inverse pressure.

Equation ([1.2)) is the irrotational part of the linearized Navier-Stokes equation of a fluid.

e p: this positive real constant p is the mass density

e 0: the non-negative real constant ¢ is the compressional viscosity which describes
the rate of change of mass per unit length and respresents the losses, the conversion of
mechanical energy to heat.

— 0 = 0: for lossless media while

— 0 > 0: characterizes lossy media

Introducing (1.1) into (1.2 leads to the equation:

pV = —VU — ~6VU (1.3)

which, when substituted into the time derivative of (|1.1]), yields the equation that governs
sound wave propagation:

J

. 1 )
U=-—VU+-VUu (1.4)
P p
In the case of lossless media, we obtain the classical wave equation:
L8,
U= ;V U (1.5)

Besides, the time derivative of ((1.2)) by means of (1.1)) leads to

! S .
V:%V(V-V)Jr;V(V-V) (1.6)

Due to our irrotational medium:

VxV=0 (1.7)

so we can assume the existence of a scalar velocity potential ®(r,¢) (time dependent func-
tion) such that
V=Vo (1.8)



also:
V(V-V)= V2V (1.9)

The physical meaning of the velocity potential ® is the rate of change of the area. Introducing

(1.8) into (|1.6)) yields

L1 S ..
V=—V*V+-V*V (1.10)
7P p
With the use of (1.8]), (1.10)) is trasformed to
. 1 5 ..
Vo=V (—v% - —v%) (1.11)
P P

Any function independent of position r may be added to the velocity potential, as it is a

function not uniquely defined. Under the assumption that the appropriate function is added
so that not only is ((1.11)) satisfied but also that

o
P
Therefore one can observe the obvious similarity in the equation fulfilled by the excess pressure,

velocity and velocity potential (nearly the same equation: (1.4]), (1.10) and (1.12))). Substi-
tuting ([1.1)) equation to (|1.8)) we obtain the relation between velocity and excess pressure:

d = iv% + -V (1.12)
ol

U= —%V% (1.13)

Supposing that all field quantities have a harmonic time dependence with angular or circular
frequency w:

Ur,t) = u(r) - e ™ (1.14)
V(r,t) =v(r) - e (1.15)
O(r,t) = ¢(r) - e (1.16)

where U, V, ® take on complex values dependent of r and w but not of t. The above definitions
require some further clarification based on the fact that the physical quantities, pressure U
and velocity V, are real whereas in — are defined as complex valued functions.
Throughout this thesis we follow the widely accepted convention of working with the complex
pressure, velocity and velocity potential with the understanding that physical quantities will
correspond to the real parts, e.g. Re{U }=Re{u - e ™!},

Substituting (1.14]) and (1.16)) into (1.12)) we find the governing field equations
(V2 +&?) {Z} —0 (1.17)

where

2
o P (1.18)
1 —dw~é

By ([1.18]) the parameter & is defined as the wave number or the propagation constant, yet
it is needed to specify the branch of the complex square root (respecting physical conventions).

3



What is more, this relation is called the dispersion or characteristic relation for the
medium of propagation. For the case of a plane wave u propagating in the direction k, the
complex time-dependent field is expressed as

Z/{(I',t) — eikl;-rfiwt

= exp {2 (12 r— Reﬁk}t) Re{k} — k-1 Im{k} (1.19)

For increasing r in the direction of propagation, we see from that the appropriate branch
of the square root of to be chosen is Im{k} > 0 so that physically the wave decreases
in intensity as it traverses through the lossy medium (in the opposite case it would grow as
it transverses a medium). Thus the Im{k} is related to power measuring and particularly it
demonstrates the rate at which energy is attenuated. Equation is also used to define
phase velocity as follows:

k-r t = const (1.20)

w

Re{k}
The phase fronts are defined to be the surfaces of constant phase which are planes (therefore
plane waves) having k as unit normal to the phase front. If we differentiate ((1.20) with
respect to time, k - ;—xr, we receive the velocity with which the front moves in the direction of

the normal:
~ dr w

“dt  Refky °

where the quantity c is called the phase velocity. By virtue of ([1.18)), the phase velocity
may be rewritten as

(1.21)

1 2(1 + w?624?) (192)
Cc = .
VPN 1+ /14 w2022
1

== (1.23)

for lossless media. The angular frequency w is related to the temporal period T' by

which is simplified to:

2
= — 1.24
= (1.24)

The spatial period or wavelength A is the distance the phase front travels in one time

period and is acquired by:
2me 2m

L= = Reiy (1.25)
Generalizing, for time harmonic waves:
U(r;t) = |U(r; )| e it (1.26)
The surfaces obtained by:
O(r) — wt = constant (1.27)



are the phase fronts with unit normal vector the VO/ |VO|. The phase velocity ¢, the velocity
in the direction of the normal, is acquired by differentiating with respect to time

do dr
— = 1.2
i \Y%C) 5 v (1.28)
hence vo d
r w
- .= _Z 1.29
“TIvel at Ve (1.29)
Suppressing the time factor in ((1.13)) we get
. 1,
iwu = ;V o) (1.30)

which, combined with (1.17)) and ([1.18)) yields the following equation for excess pressure and
velocity potential

u= —1—iw§7¢: w—7¢ (1.31)

_ Ll wing, (1.32)

Having derived the field equations in a homogeneous isotropic medium, we now consider the
case in which waves propagate in a region consisting of two such media. We assume that the
field quantities in both media have the same harmonic time dependence. This is possible since
the material parameters of both media are taken to be independent of time.

The scattering problem we will examine in the next chapters belongs to a class of problems
which concern the manner in which a bounded obstacle, denoted by V'~ with boundary S =
OV ~, perturbs an acoustic wave originating in V*, the unbounded exterior of V- =V~ U S.
The obstacle V'~ is a nonempty bounded open set, not necessarily simply connected, with
boundary S sufficiently smooth so as to allow the applicability of the Gauss-Green theorems
and the existence of boundary values of field quantities in the classical sense. When the
scattering obstacle is

e impenetrable: the acoustic field exists only in V' and the boundary conditions must be
imposed on S

e penetrable: we consider it to be another homogeneous fluid characterized by different
constitutive parametres p, 0 and vy as well as the derived expressions, ¢ and k.

Note: We will affix superscripts 4+ or — to these parametres as well as to the field quantities
to distinguish between those in V' and those in V~. One notable exception is the wave
number of the exterior V* which, because it appears so often, will remain the unsuperscripted
k. Moreover, the medium in V' is considered to be lossless, i.e.

5T =0 (1.33)



hence we have in VT

k =k =wy/ytpt >0 (1.34)

ut =iwptot (1.35)
1

v = - +Vu+ (1.36)
iwp

and the Helmholtz equation is satisfied by both velocity potential and excess pressure:
2 o Jut
(V2 + k) o+ (=0 (1.37)
The medium in V'~ is, in general, not assumed to be lossless. Hence

5 >0 (1.38)

We introduce the dimensionless relative index of refraction 7 to be the ratio of wave

numbers in V'~ and V* L .
-
=—= 1.39
TR Ty VT -
where the choice of the branch of the square root is such that Im{n} > 0 and Im{k~} > 0.
For relatively small dissipation, ([1.39)) implies that

. oS
n= | L (1 L 0T > L O((67)2), 6~ = 0 (1.40)
P 2
while for lossless scattering (6~ = 0)
[P~ _ "
= = 1.41
=\ T e (1.41)

Now we write the governing equations in V'~ as

(V2 + n2k?) {Z:} —0 (1.42)
iw
u = ﬁqﬁ (1.43)
and o
o — 1 —‘zwéi RERVAS (1.44)
wp
Of course, the case of lossless scatterers corresponds to 6~ = 0.

In summary the governing field equations are the wave equation in the time domain:

i(r, 1) %V%l(r,t) + gz;f(r,t) (1.45)




and the Helmholtz equation in the frequency or spectral domain

<v2 + %) u(r) =0 (1.46)

and the same equations hold for the velocity potential as well as each Cartesian component
of the velocity. The relation between frequency, wave number and constitutive parametres is
given by the dispersion relation which may also be obtained by substituting the time harmonic
plane wave, e***=! into equation . In the following study of this thesis we will mainly
consider the excess pressure u in the frequency domain although every relation involving u
may be straight interpreted into a relatioon involving ¢ through or into a relation for

v through (1.32)).

1.3 BOUNDARY CONDITIONS

The class of scattering problems we are concerned with involves the determination of how
V'~ perturbs some known incident wave. We denote this incident wave by u’ and its precise
nature is discussed below. The total excess pressure field that exists in V' is denoted by
uT. When V'~ consists of another fluid medium there will also be a field in V'~ denoted
by u~. The conditions relating v+ and v~ on S are called transmission conditions and
they are discussed in the next section. When no field exists in V'~ we say that the scatterer
is impenetrable and a variety of boundary conditions on S are used to model situations in
which the effect of the incident field in not felt in V~. We confine attention to three different
boundary conditions:

e The Dirichlet or soft or pressure release surface:

ut(r)=0,res (1.47)
e The Neumann or hard surface:
aﬁnu*(r) =0,res (1.48)

where E% denotes the derivative in the direction of the normal on S into V.

e The Robin or impedance surface:

0 | wp\ Lo
(% +z?> u(r)=0,res (1.49)

where Z* is the acoustic impedance measured in units of pressure per unit velocity.

Equation (1.49) may also be written:

0
(8_71 + ik’l/) ut(r)=0,res (1.50)
where the dimensionless parameter v is given by
1 /p*



These boundary conditions have the following translation: The function u* denotes the excess
pressure field of the medium surrounding the scatterer.

e A soft surface offers no resistance to pressure; thus the scatterer yields in such a way as
to maintain zero pressure on its boundary, whereas

e a hard surface admits no local displacements and therefore the normal component of the
velocity field (being proportional to n - Vu,y ) should vanish.

e Finally, a surface with finite impedance has an intermediate behaviour between the soft
and the hard surface. In fact, the impedance boundary condition can be written as

79 (,“+ ) = —ut (1.52)

on \iwpt
or, using
Zth Vot = —u* (1.53)
or
Ztut = —ut (1.54)

where v, stands for the normal component of the velocity field on S. Relation
indicates that the normal velocity is proportional to the decrease of pressure at any point
on S, the proportionality constant being the coefficient of acoustic impedance. Hence,
an impedance boundary condition describes a balance between the pressure and the
normal velocity field. In other words the surface stress, caused by the normal velocity,
compensates for the excess pressure.

In fact, the physical meaning of the acoustic impedance is:

€XCess pressure

7 = (1.55)

normal velocity

and hence it is measured in units of pressure per unit velocity.

As Z* — 0 the normal velocity is incapable of producing any pressure on the surface,
which is therefore a ‘soft’ surface. On the other hand, as 1/ZT — 0 the pressure produces
no normal velocity, i.e. the surface undergoes no local displacements and therefore is a ‘hard’
surface.

1.4 TRANSMISSION CONDITIONS

When the disturbance or incident wave in V't is transmitted in to V'~ the scatterer is penetrable
and the excess pressure u~, the velocity potential ¢~ and the velocity are governed by relations
—. However, the two fluids meet at the boundary S and the conditions relating the
excess pressure in V' and V'~ at S, the transmission conditions, are

u(r)=u(r), Tes (1.56)
o ... ,0 _
ot (r) = Ba—nu (r),re S (1.57)



where § is complex for lossy and real for lossless scatterers. Condition ([1.56)) states that the
excess pressure field is continuous across S. Condition ({1.57)) results from requiring continuity
of the normal component of the velocity field across S. This may be seen from the expressions

relating velocity and excess pressure ([1.36]) and ((1.44), as follows

1 0 1 —iwdy~ 0
A~ . + — . + — A~ . — — . —
n-v Topt 5l =0V R Y= o Y (1.58)
g ., 0 _
where
Pt .
p= pe (1—iwd ") (1.60)

is a dimensionless constant.

Note that for lossless scatterers only, 5 represents the ratio of the mass densities. Nevertheless,
for both lossy and lossless scatterers embedded in a lossless medium the product of 3 and n?
is always real and it represents the ratio of mean compressibilities as follows

+ — —
2P R P
=2 (1-iws
& p*( weT )p+’y+(1—iw5*7*)
— z_+ (1.61)

We remark that if the exterior medium were lossy, then this ratio would no longer be real and
B3 would also have to be redefined. However, we always consider V' to be lossless.

If the transmission conditions ([1.57)) and ([1.56|) are written in terms of the velocity potential
¢, then they read as follows

Bo(r)=¢ " (r), rES (1.62)
o .. . 0,
%¢ (r) = %Qﬁ (r), res (1.63)

Consequently, the excess pressure is continuous across S but its normal derivative is continu-
ous.

Remark: The general transmission problem is a two-parametre problem involiving 5 and
n. For lossless scatterers, the special cases of equal densities, where § = 1, or equal wave
numbers, where 7 = 1, or equal compressibilities, where 3n? = 1 furnish one-parametre trans-
mission problems. Of course, if both § =1 = 1, then the medium exhibits no discontinuity in
its physical parametres and therefore no scattering occurs.

Observe that parametre S occurs in the trasmission conditions and . We now
discuss the limiting cases when 8 — 0,00 or p~ — 00,0. Rewriting equation which
relates excess pressure and velocity potential in V'~ with the help of as

iwp™

U = N 1.64
3 (1.64)
we observe that if we assume that ¢~ is bounded in V'~ (no sources in V™), then
lim v~ =0, in V"~ (1.65)
B—o0



On the other hand, under the assumption that = is bounded in V' ~, we infer that:

lim¢~ =0, in V™~ (1.66)
B—0
In the limiting case as f — oo (or p~ — 0), 1} implies that u~ — 0 and the boundary
conditions ([1.56)), (1.57)), (1.62)) and (|1.63]) become

ut=0,¢"=0o0n S (1.67)
o _ o . o _

where we have assumed that ¢~ and the normal derivative of u* remain bounded on S as
B — oo. Therefore, the problem of determining u* or ¢t in V' becomes one of solving
an exterior Dirichlet problem for the total field u™ or ¢*. While v~ = 0 in V', the velocity
potential ¢~ is nonzero. This interior velocity potential is the solution of the interior Helmholtz
equation ([1.42)) with boundary condition

0 0
%(bi = %(]§+ on S (169)

1.5 RADIATION CONDITIONS

Scattering problems always involve an unbounded domain which has infinity as part of its
boundary. Any condition on that particular part of the boundary has to be given in an
asymptotic form, as r — oo, where r is the magnitude of the position vector, r = |r|. For
the development of the acoustic scattering problem we use the following condition, due to
Sommerfeld (1912):

lim 7 (%u(r) — iku(r)) =0, # € S5? (1.70)

r—00

where u stands for the scattered pressure field and the convergence is taken to be uniform over
all directions # = r/r. The set S? denotes the surface of the unit ball in R. The Sommerfeld
radiation condition specifies the appropriate geometric attenuation of the scattered field
and imposes the outgoing character of the scattered wave. It provides necessary condition
when formulating the scattering problem as a well-posed exterior boundary value problem.
The velocity potential and all Cartesian components of the velocity field satisfy the same
radiation condition as the excess pressure.

1.6 INCIDENT FIELDS AND THE FUNDAMENTAL SOLUTION

The incident field in a scattering problem is the field that would exist in R? if there were
no scatterer present. We consider incident fields which are plane waves or point sources or
superpositions of plane waves and/or point sources. Let A C V't be a bounded domain which
contains all point sources. If there are no point sources, then A is empty. All incident fields,
u’, that we consider are solutions of

(V*+ k) u'(r) =0, reR’\4 (1.71)
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In particular a plane incident field will be a wave of the form

u'(r) = T reR3 (1.72)

which propagates in the direction of k.

Plane waves satisfy the Helmholtz equation at all points in R? but they do not satisfy
the radiation condition (1.70). On the other hand the field due to a point source at ry will
satisfy the radiation condition but will be a solution of the Helmholtz equation only in R3\r.
Such a field will be a function of two points: G(r,ry) and is a fundamental solution of the
Helmholtz equation. Explicitly:

eik|r—r0|

G(r,rg) = =h(k|r —ro|) (1.73)

ik |r — 1o

where h = h((]l) is the spherical Hankel function of the first kind and order zero. This function
is a solution of the equation

(V2 + k%) G(r,r9) = ——0(r — 1) (1.74)

where 0 denotes the Dirac point measure. The reason for considering this particular form
of GG is that is coincides with the spherical Hankel function hél) but, even more importantly,
because it fulfills the radiation condition and moreover defines a dimensionlesss fundamental
solution. Note that the dimensions of the Dirac measure are considered to be inverse volumes
so that its volume integral is dimensionless.

All the acoustic incident fields considered in this thesis are of the form (1.72) or (1.73) or
a linear combination of such fields for different incident directions k or source locations ro.

Remark that
ikrg—iktg-r 1
Glr.ry) = 6—+0( )

1kro r3
1
= h(krg)e *T L O <—2> , (1.75)
o
As
e T — lim ikroe "G (r, ro) (1.76)
70—>00

we may consider the plane wave propagating in the direction —ty as a modified point
source at ry as 7yg — 0.

1.7 THE BASIC SCATTERING PROBLEMS

Here we enumerate the outcomes of the previous sections and define the basic mathematical
problems encountered in acoustic scattering. The physical meaning of the parametres involved
has been explained in preceding sections and is not repeated here. In all the following problems

11



we specify an incident field u* with an exterior wave number k& and a surface S which bounds
the scatterer, V. Additionally, we seek functions ™ and u, the total and scattered fields
respectively, related by

w=ut—u in V" (1.77)

where the function u fulfills the Helmholtz equation

(VP4 k) u(r) =0, in V*F (1.78)
and the radiation condition
. 0 , : a2
Tlg(r)lor <§u(r) — zku(r)) =0, uniformly in ¥ € S (1.79)

In addition, one of the following conditions must be satisfied:

e The Dirichlet problem:

u(r)=0,res (1.80)
e The Neumann problem:
aﬁnzﬁ(r) =0,res (1.81)

where % denotes the derivative in the direction of the normal on S into V.

e The Robin problem: For a given v
0 + 1k Tr)=0,res (1.82)
— + kv | u = :
on ’

e The transmission problem For given 1 and 3, in addition to u™ we need to find u~
which fulfills the Helmholtz equation:

(VP+En)u(r)=0, reV" (1.83)
with boundary conditions:
u(r)=u(r), res (1.84)
o . o _

Here we have formulated the problems in terms of excess pressure. Equivalent mathematical
formulations in terms of the velocity potential may be obtained easily using the expressions
relating v and v. All four of these problems are well-posed boundary valued problems for any
C?-surface S, i.e. each one possesses a unique and stable classical solution (Colton and Kress,
1983, Jones 1986).

By classical solutions we mean

1. ut € C2(VT)NC%(VT US) for the Dirichlet problem
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2. ut e CHVT)NCHVTUS) for the Neumann and Robin problems
.ut e CPVHNCHVTUS), um € C3(V-)NCYV~US) for the transmission problem

For surfaces with a finite number of corners and edges an additional condition of local finite
energy must be imposed. This is written as an energy condition:

/Q (IVu(r)[® + |ku(r)[?) dv(r) < +oo (1.86)

where ) is a bounded subdomain of V* (Meixner 1949). Condition ((1.86)) replaces the as-
sumption of differentiability up to the boundary and all the boundary conditions involving
differentiation on the boundary can be applied only when these normal derivatives exist (i.e.
almost everywhere). More about this can be found in Van Bladel (1995) and the references
therein.
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Chapter 2

The Method of Auxiliary Sources
(MAS)

2.1 INTRODUCTION

According to [5] the Method of Auxiliary Sources (MAS) is an advanced and highly promising
numerical technique for solving elliptic boundary-value problems. It constitutes a powerful
alternative to the standard surface integral-equation formulation, and possesses significant
advantages concerning numerical stability, computational accuracy, and ease of implementa-
tion. These features make it attractive for the numerical solution of problems occurring in
electromagnetic (EM) scattering analysis, antenna modeling, waveguide structures, etc. MAS
was introduced, named, and developed by several researchers in the Republic of Georgia.
It is important to emphasize that the same method has been independently developed by
other research groups, elsewhere in the world, under different names, such as the “Current
Model Method” or the “Discrete Singularity Method”. This has been mainly for treating
EM-scattering problems. The common basic concept of all these methods is that the EM
boundary-value problem is not formulated in terms of continuous equivalent surface currents
flowing on the surfaces - where the corresponding boundary conditions are enforced - but in
terms of discrete fictitious currents, the “auxiliary sources” (ASs), located at some distance
away from the physical boundaries.

It is true that in typical integral-equation techniques, by applying the equivalence principle,
the EM field inside a homogeneous, 48 isotropic, and linear regionidomain of the structure
under investigation can be expressed in terms of a known impressed field (the excitation) and
unknown equivalent electric and magnetic continuous currents distributed over its boundary
surface. These are employed in order to model the field discontinuity across this boundary
surface. Then, by expressing the corresponding boundary conditions in terms of the impressed
field and the equivalent continuous currents, different types of surface integral equations are
obtained, which, in the general case, are numerically solved via the Method of Moments
(MOM). Unlike MOM, MAS does not account for currents that yield field discontinuities on
the boundaries. Instead, it directly constructs the unknown EM fields in each domain with the
assistance of fictitious, equivalent point sources, the auxiliary sources, displaced with respect
to the boundaries. These auxiliary sources are chosen so that their fields are elementary
analytical solutions to the boundary-value problem. The actual EM fields in each domain
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are then expressed as weighted superpositions of these analytical solutions, and the unknown
expansion coefficients are determined through point-wise invocation of the relevant boundary
conditions. It should be noted that the concept of field approximation by means of a linear
combination of analytically known field functions is not unique to the MAS approach, alone.
The thin-wire approximation, where the current is modeled as a filament flowing along the
axis of the wire, as well as the classical Mie solution for a sphere, with the unknowns being
discrete multipole sources at the center of the sphere, have conceptual similarities to MAS.

These two methods are restricted to specific geometries. The innovation that enables ap-
plication to general geometries is the use of multiple origins. The idea has been successfully
employed for years in electrostatics. It is known as “the Charge Simulation Method”, accord-
ing to which fictitious, discrete, line charges are distributed at multiple origins outside the
region where the electrostatic field is to be computed. The potentials of the fictitious charges
are particular solutions of the Laplace and Poisson equations, and their magnitudes are de-
termined by satisfying the boundary conditions at a discrete set of points on the boundary.
Accordingly, in electrodynamics, various numerical methods -which are based on the “Ex-
tended Boundary Condition Method” (EBCM), and are often known as “Generalized Multi-
pole Techniques” (GMTs) or “Multiple Multipole Techniques” (MMTs) - simulate EM fields
by means of cylindrical- and spherical-wave multipole functions, up to some specified order,
centered at multiple origins, for treating two-dimensional (2D) and three-dimensional (3D)
problems, respectively. The theoretical background of the GMT was established by Kupradze
and Vekua, and independently by Yasuura. Although having independently evolved, MAS
could, in a sense, be considered as a special case of the GMT in which only poles of zero order
are activated, forming a set of fictitious, but otherwise physically interpretable and analyti-
cally simpler, sources. However, it is sometimes considered preferable to over-determine the
linear system of equations.

physical

surface S \

Ho, €

Figure 2.1: A PEC scatterer with a smooth surface S illuminated by a known external field E¢
inside an infinite homogeneous and linear space with dielectric permittivity € and magnetic
permeability pp.
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2.2 FUNDAMENTALS

In what we discuss below, we will call as “standard” MAS the most widely used version of MAS.
In this method, the radiating auxiliary sources are chosen to be either current filaments for two
dimensional problems, generating fields proportional to a Hankel function (two-dimensional
Green’s function), or pairs of elementary dipoles for three-dimensional problems, generating
fields proportional to the three-dimensional Green’s function. The members of each pair are
perpendicular to each other and, simultaneously, tangential to the auxiliary surface, to account
for the magnetic-field discontinuity across the auxiliary surface. In a standard MAS formu-
lation, the auxiliary sources are homogeneously distributed on auxiliary surfaces, conformal
to the physical boundaries. The EM fields in each domain are expressed as weighted super-
positions of the EM fields generated by all the auxiliary sources. These superpositions have
unknown expansion coefficients, to be determined by point-matching the relevant boundary
conditions at a discrete set of collocation points (CPs) on the physical boundaries. The dis-
tribution of the collocation points is, again, homogeneous, and their number is usually equal

to the number of auxiliary sources.

infinite
homogeneous
mathematical ___ space
’ ~
suface S 7 Tve-o_
! ‘l "'..___ \‘ 3
’l .~ ‘ ' '
. S A
Einc Py -
—w—p 7 o } |
/ I |
] '.“.‘ . !
\ " ]
\\ .\.\.\ : ’l s inc
\ 4 Q J IJ E + E
1 .-‘-"'....._ .M‘-"""'I---...... I /
auxiliary -~ __] "f" Hs + Hinc
surface S° He +H
ASs

Figure 2.2: MAS model equivalent to (2.1): the PEC scatterer does not exist. The auxiliary
sources radiate inside an infinite homogeneous and linear space. They are located on an
auxiliary surface S’ enclosed by the fictitious physical surface S. The collocation points at
which the boundary condition is satisfied are located on the fictitious surface S.

For a better understanding of the fundamentals of standard MAS, two generalized problems
of EM scattering of an external known electric field, E™¢, by a perfect electric conductor
(PEC) and by a homogeneous isotropic dielectric scatterer are considered. The corresponding

geometries are shown in Figures (2.1)) and ({2.2)), respectively.
In the first problem, the PEC, with a smooth external surface S, is located inside an

infinite homogeneous isotropic and linear space with dielectric permittivity ¢ and magnetic
permeability po (Figure (2.1))). The auxiliary sources radiate, in the absence of the PEC,
inside an infinite homogeneous isotropic and linear space with dielectric permittivity e and
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magnetic permeability po. They are located on an auxiliary surface, S’ enclosed by the (ficti-
tious) physical surface, S (Figure (2.2))). Then, the unknown scattered field, E*, is described
by

E'=) E =) G,-a, (2.1)

where E? denotes the electric field of the nth auxiliary source, the G,, are the known ana-
lytic solutions of the corresponding wave equation, and the a,,, are the unknown coefficients,
to be determined. (Equation , as well as Equations and , are given in the most
general format of the three-dimensional problem, where the unknown coefficients are vectors
and the known analytic solutions of the wave equation (Green’s functions) are dyadics.) By
imposing the satisfaction of the boundary condition (a vanishing total electric field tangential
to S) at a discrete set of collocation points on the (fictitious) physical surface S, a system of
linear equations is derived in terms of a,,. The solution of this system yields the unknown co-
efficients and, consequently, the unknown scattered field, E’. Existence and uniqueness issues
of the MAS solution have been explicitly addressed in relevant literature [5].

physical region |
surface S Hor &g

\

E'mc
A .

Figure 2.3: A homogeneous isotropic and linear dielectric scatterer with dielectric permittivity
€, magnetic permeability ;o and a smooth surface S illuminated by a known external field
E™¢ in free space.

In the second problem, a homogeneous isotropic and linear dielectric scatterer, with dielec-
tric permittivity € and magnetic permeability po and a smooth external surface S, is located in
free space (Figure ) Now, two sets of auxiliary sources are required for the MAS formu-
lation. One is a set of auxiliary sources radiating in free space in the absence of the dielectric
scatterer, and located on an auxiliary surface, S, enclosed by the (fictitious) physical surface,
S (Figure ) The second is a set of auxiliary sources radiating again in the absence of the
dielectric scatterer, but inside an infinite space filled by the material of the dielectric scatterer,
and located on an auxiliary surface, S” | enclosing the (fictitious) physical surface, S (Figure
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(2.5)). Then, the unknown scattered field, E*, in Region I is described as a sum of the fields
of the first set of auxiliary sources,

E'=) E; =) G -a] (2.2)

where E® denotes the electric field of the nth auxiliary source of the first set, with the a/
being unknown coefficients to be determined, and the G being known analytic solutions of
the wave equation for E. The unknown field, E/, in Region II is described as a sum of the
fields of the second set of auxiliary sources,

B =S B! =3 Gl all (2.3)

where E!! denotes the electric field of the nth auxiliary source of the second set, with the
all being unknown coefficients to be determined, and the G being known analytic solutions
of the wave equation for E//. By imposing the satisfaction of the boundary conditions for the
total EM field tangential to S at discrete collocation points on the (fictitious) physical surface
S, a coupled system of linear equations is derived in terms of al and al’. The solution to this
system of equations yields the unknown coefficients and, consequently, the unknown fields, E*
and a'l.

It is worth highlighting that MAS can improve in terms of efficiency and accuracy based
on its attribute of the non-vanishing distance between source and observation points (i.e.,
between auxiliary sources and collocation. points). This displacement with respect to the
boundaries practically eliminates the Green’s-function singularity problem of a typical MOM
kernel, forming a set of smooth functions on the boundaries. Moreover, the implementation of
the technique is conceptually very simple: by choosing a finite number of auxiliary sources and
matching the boundary conditions at a discrete set of collocation points, a matrix equation
is automatically derived instead of an integral equation, avoiding the necessity of any MOM
transformations. Furthermore, since each solution in the set is analytically known, there is no
need to integrate currents in order to determine fields at any stage of the solution (i.e., filling
the kernel, checking the results, calculating near and far fields, etc).

Finally, in terms of complexity, it can be proven that MAS exhibits a very low computa-
tional cost in terms of CPU time, due to the associated extremely rapid matrix filling. De-
pending on several parameters (geometry, electrical size and shape, integration order, etc.), the
complexity of MAS may be much lower than the complexity of MOM. If the radiator/scatterer
is such that thc MAS discretization required for convergence is less or equally dense as for
MOM, then MAS is always much more efficient. Even if this is not the case however - i.e., when
the MAS discretization should be denser - there exists, in general, a threshold in geometry size
under which MAS is computationally less costly than MOM. A detailed operation count for
a particular scattering problem, stating the conditions under which MAS is computationally
less intense than MOM, is presented in [5].
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Figure 2.4: The MAS model equivalent to the situation in (2.3)) for describing the scattered
field in Region I. The dielectric scatterer does not exist, the auxiliary sources radiate in free
space, and they are located on an auxiliary surface S’ enclosed by the (fictitious) physical

surface S. The collocation points, at which the boundary conditions are satisfied, are located

on (fictitious) S.
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the (fictitious) physical surface S. The collocation points, at which the boundary conditions

are satisfied, are located on the (fictitious) S.
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Chapter 3

Two Types of Convergence in the
Method of Auxiliary Sources: 2-D
Electromagnetics

3.1 INTRODUCTION

Following the work of professor G. Fikioris in [4] we are introducing a study on the MAS on
a two dimension scattering problem on electromagnetics. Specifically, we use the geometry of
an infinitely long PEC cylinder illuminated by an infinite electric current filament.

The Method of Auxiliary Sources (MAS) is an approximate method for the solution of
electromagnetic scattering problems. In the case of interest in the problem of this chapter,
that of scattering by a closed, smooth, perfect electric conductor (PEC), illuminated externally,
one assumes electric and/or magnetic currents (to be referred to here as “MAS currents”) on N
fictitious sources located on an auxiliary surface inside the PEC (which is assumed to possess
an interior region). The MAS currents are such that the boundary condition of vanishing
tangential electric field on IV collocation points on the PEC scatterer is satisfied. A N x N
system of linear algebraic equation thus results. Once the MAS currents are found, the field
(“MAS field”) due to them can be easily determined. The aforementioned method is often
referred to by names other than MAS; our use of the term MAS is consistent with the recent
article [5], which is an overview of MAS. There, the origins of MAS are discussed, as are
variations of MAS and relations of MAS to other methods. Such discussions can also be found
in the comprehensive works [3] and [4].

For a growing N, one hopes for convergence of the MAS field to the true field. Furthermore,
when the auxiliary surface is smooth and closed (this is usually the case in the literature), it
is natural to anticipate that—when properly normalized—the MAS currents should remain
unchanged. As N grows, that is, one hopes for a better approximation to the field with only
small changes in the corresponding normalized MAS currents. In other words, one hopes that
the normalized MAS currents converge to corresponding (i.e. electric or magnetic) surface
current densities.

We demonstrate in this chapter that it is possible for the MAS field to converge to the
true field without having the normalized MAS currents converge. We show this through
a study of a simple two-dimensional problem, in which the scatterer is an infinitely long,
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PEC circular cylinder illuminated by an infinitely long, constant-current line source. The
electric MAS currents are equispaced and lie on a circle, and so do the N collocation points.
For this simple case, the matrix in the N x N system of algebraic equations is circulant
and an analytical, explicit solution for the MAS currents and fields can be obtained. Our
main conclusions then follow by examining the limit of currents and fields as N — oo. Very
helpful to us is the “continuous version” of MAS, in which an unknown surface current density,
located on the auxiliary surface, is determined from an integral equation arising from the exact
satisfaction of the relevant boundary condition; like the aforementioned circulant system,
for our simple problem the integral equation can be solved explicitly. The fact that two-
dimensional, cylindrical PEC cylinders and equispaced MAS currents and collocation points
lead to explicit MAS solutions has been exploited in a number of recent works referenced in
[]. Circulant matrices and explicit solutions also arise in refs., which discuss the accuracy of
moment-method solutions in the context of a simple scattering problem like ours. As we point
out in the main body of this work, some of our intermediate results (including results about
the “continuous” version of MAS) are consistent with, or can be viewed as consequences of,
theorems on the behavior of MAS solutions for general geometries (referenced in [4]. But we
do not rely on such theorems. Rather, we derive all our results from first principles, using
relatively simple mathematics and (apart from a brief reference to the notion of non-radiating
currents) only fundamental concepts from electromagnetic theory. This approach enables us to
shed light on various aspects of our problem, including certain similarities/differences between
MAS and its continuous version.

3.2 ADDITION THEOREM AND ASYMPTOTIC APPROXIMA-
TIONS

We will make use of the following identities, large-n approximations of some functions and
formulas:

HY <\/m% + 23 — 2x124 COS 0) = Z Jp(min {z, 25 }) HY (max {21, 25} )e™? (3.1)

Jn(z) = (=1)"J_p(z) ~ \/217T_n (%)n, n — 0o (3.2)
HO(z) = (“1)"H_,(2) ~ —i\/i_n (%)*n n— 00 (3.3)
di W () = ( 1)"%&”(@ —12—7;’& (%)7” n — oo (3.4)

3.3 THE SCATTERING PROBLEM AND ITS EXACT SOLU-
TION

The geometry is pictured in Fig. (3.1). Our scatterer is an infinitely long, PEC cylinder
surrounded by free space, with axis along the z-axis and radius pey; let (peyi, ¢eyr) denote the
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polar coordinates of a point on the PEC surface. The source is an electric current filament
I, on the z-axis, with polar coordinates (pyy,0); it is located outside the cylinder so that
Pfit > Peyi- Let (Pobs, Pobs) denote the polar coordinates of the observation point. We will use
the notation R4 p to denote the distance from the point (pa, $4) to the point (pp, ¢p); for
example,

Ryitey = \/ P+ P2 — 20fiPeyt COS Pyl (3.5)

The electric field is z-directed, E = zF,, and the exact solution outside the PEC cylinder
(pobs > pcyl) 1s

=X T (ke VD (kp s
E, = H(gl)(kail,obs) _ Z ( P yl) ( ,Ofl)

Hé”(k:pobs)em‘z’obs (3.6)
S—— H" (kpya)

critical

PEC cylinder
surface
filament [/
9

Region 2

position

of image

in

magnetostatics
Region 3

p eyl p cri

A J

Pri

Figure 3.1: Geometry and the three regions of our scattering problem

In the RHS of (3.6)), the overall factor —k*I /(4weg), which is unimportant for our purposes,
has been omitted. Formula (3.6 is readily verified: The first term of the RHS is the incident
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field. The second term, the scattered field, is a Fourier series, each term of which satisfies the
wave equation (in the cylindrical coordinate system (pops, dobs, 2)), as well as the outgoing-
wave condition. Furthermore, the (total) field £, vanishes on the PEC surface. This is seen

by applying the addition theorem (3.1)) to the H (k:RobS 1) in (3.6) and combining the two

resulting series. For pops < pri, the result is

= HV(kpga)

n=—oo

o Inkpans) Hn (peyt) = Jupe) Ha' (ko)
HS)(k’pcyl)
X ezn¢obs7 (pobs < ple> (37)

The form in (3.7) obviously vanishes when pops = peyi- For pops < pra, (3.7) is a useful
alternative to (3.6)).
We will be more concerned with the derivative with respect to pops viz.:

8Ez 0 — kpc l (kple)
- kR il,0bs E Y
apObS 8p0b8 e b n=-—oo H(1)<kl)cy )
H(l) k obs MPobs 38
G H (k) (39

A particularly simple expression can be obtained on the surface of the cylinder (pops = peyi)
by differentiating (3.7)) and using the Wroskian relation [[I], 9.1.16] to obtain:

. (Pops = po 3.9
T~ a2 (o = ) (39)

aEZ _ —2 niojo H (kpfll) znqﬁob9
= ooH (kpcyl)

3.4 ANALYTIC CONTINUATION OF THE EXACT SOLUTION

Convergence of the series in (3.6]) (for the scattered electric field) can be examined by using
(3.2) and (3.3). For large |n|, the nth term is seen to behave like (1/n)(peri/ pops) ™ ei™%ers
with the distance p.; defined by:

ngl
Pfil
Thus, the n-th term of the series in behaves like the n-th term of the Taylor series
for In(1+ ) a series which converges for |x| < 1 and diverges for |x| > 1. Therefore, the series
in converges for all pyps > peri and diverges for all pops < peri-
Because of (3.4)—(3.2), the n-th term of the series in (3.8)) (for the scattered electric field
derivative) behaves like %, i.e. like that of a geometric series. Therefore, the series
in (3.8) also converges Whén Pobs > Peri and diverges when pops < pPeri-

Peri = (310)
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The “critical” radius pe,; is smaller than the radius p.y, of the PEC cylinder. Also, in the
magnetostatic limit, the meaning of p..; is well known: It is the distance from the origin—
measured along the segment joining origin and filament—where the image (with current —1)
must be located, as shown in Fig. 2. This is true because for any point (pey, ¢cyr) on the
PEC cylinder, the distance from (peri, 0) t0 (peyis Peyi) is a constant multiple of Ry cy1, and this
amounts to a constant magnetostatic potential on the surface of the PEC cylinder.

The series solution , originally found for points peps > peyi (Region 3 of Fig. (3.1), is
thus also convergent and meaningful inside the PEC surface, until the critical radius (pops >
Peri)- We have thus extended our solution to Region 2 of Fig. . Since we found that
the derivative of is also well-defined until the critical radius, the extended solution
is in fact the analytic continuation (with respect to the single complex variable ps) of the
original solution.

3.5 CONTINUOUS MAS

Our first auxiliary source is a continuous cylindrical source radius py.., located in the inside
of the PEC surface, so that pgus < peyi- It carries a z-directed electric surface current density
J*(¢auz) (to be precise the electric surface current density is found by multiplying J*(¢gaus) by
I), which is to be determined from the boundary condition on E,. (Other auxiliary sources,
which include a magnetic surface current density, are also suitable.) With a normalization

consistent with (3.6]), the (total) field E, is:
Ez - H(()l) (kail,obs) + paum/ H(()l) (kRaux,obs)Js<¢auz)d¢aux (311)

where, as in (3.6]), the first term is the incident field. The second term, the scattered field, is
the field due to our auxiliary source, expressed as an integral involving the Green’s function.
By enforcing the boundary condition £, = 0 when (pobs; Pobs) = (Peyt, Peyt), (3.11) gives

1
/ 7TH(()1)(kRaux,cyl)Js(¢aum)d¢aux = - H(gl) (kail,cyl)a

auxr

which is a Fredholm integral equation of the first kind with unknown J*(¢4,.) and kernel
HY (kRaus obs)- Si
0 aux,obs ). DIICE

Raux,cyl = \/p?zum + ngz - Qpauxpcyl COs (¢aux - ¢cyl) (313)

the kernel is a “difference kernel”, i.e. it depends only on the difference ¢qyz — ¢cyi 0f the two
variables, not the two variables separately; we denote it by K (¢quz — Peyr). Furthemore, K (¢)
is a periodic function of ¢ with period 2.
The solution to integral equations of the above type is found in closed form in relevant theory.
The solution is given as the Fourier series

J(9) = = e’ (3.14)



in which the coefficients involve the Fourier-series coefficients K, g, of the kernel K(¢) and
the RHS g(¢cy). Both these latter coefficients can be found immediately from the addition

theorem (3.1)), because

K(8) = B (k)0 + P21 = 2piape c050) (3.15)

and

9(feg) = ———H" <k\//)?%z + P2 — 2P g Peyt COS ¢cyl> (3.16)

We thus find the solution to (3.12) to be

o0

1 Jn(k‘pcyl)HT(?l)(k:pflO em¢aum

J8(¢auz) =
27Tpauac n=—o00 Jn(kpauz>H7(11) (kpcyl)

(3.17)

Note that this current density is not well-defined when J,,(pauz) = 0 for some n, i.e., in
cases where the electrical radius of the auxiliary source coincides with a zero of any Bessel
function. These are exceptional cases. It is natural that J,(kpau.) appears in the denominator,
because the corresponding J(¢aus) = €%eu= is identically zero.

Excluding the aforementioned exceptional cases, when does the Fourier series in
converge? Use of and shows that, for large |n|, the nth term behaves like

(Peri Pana) ™ €1

with p..; defined in (3.10). Thus, the series in behaves a geometric series.

It converges when peri < pauz < Peyi (Where the latter inequality was assumed to start
with) or when the auxiliary cylindrical surface lies within Region 2 of figure (3.1), [4] ; it
diverges when the auxiliary surface lies within Region 1 of the same figure (pauz < peri)-

Conversely, if the field of an auxiliary cylindrical current source is to cancel the incident
field at pops = peyi, the radius of the auxiliary source must be larger than the critical radius pey;.
This result is consistent with general theorems referenced in [4] which state that the auxiliary
surface must envelope all singularities for the integral equation to be solvable.

Remark: Note that Region 2 shrinks as the filament approaches the PEC cylinder and
grows as the filament moves to infinity so that, for an incident plane wave, there is a
convergent J*(¢guz) for any p®™* with 0 < paus < peyi, using the previous definition (see
also the figure below):

2
pcyl

Pfil

Peri =

The aforementioned divergence of the Fourier series and the ensuing nonsolvability of
(13.12) when puu. < peri reminds us of a situation encountered in center-driven linear antennas
of infinite length and specifically, in Hallen’s integral equation with the approximate kernel
and the delta-function generator: One seeks a solution in the form of a Fourier transform,
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Figure 3.2: Geometry and the three regions of our scattering problem

only to find that the Fourier inversion integral diverges [4]. Therefore, that integral equation
is nonsolvable [4], as is (3.12]) when puuz < peri-

Let us return to our PEC cylinder and focus on the case pei < paue < peyi, Where the
continuous auxiliary source is meaningful. Since J*(¢4,.) was derived solely from the condition
that E, vanishes on the surface of the PEC cylinder, it is of interest to verify that J*(¢aus)
- as given in - yields the correct field everywhere. This can be done by using (3.1)) to

re-write (3.11)) as

Ez = H(gl)(kail,obs) + Paux Z Jn(kpau:p>Hy(Ll)(kpobs)

n=—oo

« einPobs / e~ e 15V dPaue (3.18)

—T

and recognizing the integral in (3.18]) as 27 times the nth Fourier-series coefficient of J*(¢auz ).
When this coefficient is found from (3.17)) and substituted into (3.18)), the result is found to
be independent of p,,, and precisely equal to the RHS of (3.6]).
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When peri < Paue < Peyi; the auziliary surface current density yields the true electric
field at all points outside the PEC cylinder (pops > peyi) and its analytic continuation - as
defined in section - for all points between the auxiliary surface and the PEC cylinder
(paux < Pobs < pcyl)-

In fact, the above statement gives physical significance to the aforementioned analytic
continuation: The analytic continuation is actually a field produced by a current - namely,
the exterior (pobs > paus) field produced by the surface current density J*(¢pgy.) of radius pauz-
The analytic continuation therefore satisfies Maxwell’s equations for all pops > pauz, Something
not obvious beforehand.

The auxiliary surface is not backed up by a perfect conductor and the (total) electric
field on the auxiliary surface is nonzero. This is seen by setting pops = pPaus N . One
can also determine the field at all points interior to the surface pgy,. Without showing this
calculation in detail, let us mention that the interior field also turns out to be nonzero. This
is not surprising: As explained by means of the equivalence principle in [4], to produce a
zero interior field, one should generally choose a J*(¢4..) equal to the tangential magnetic
field (proportional, in our case, to ) together with an auxiliary magnetic surface current
density equal to the tangential electric field (given here by or ) Our choice, which
consists solely of the electric surface current density Jg(¢quz), is different.

Nor is J*(Pguz) In equal to the tangential magnetic field, compare to (3.8). But in
the limiting case pauz — Peyi, the J*(daus) in does reduce to the tangential magnetic
field in , compare to the specialized expression in . In other words, as the
auziliary surface approaches the PEC cylinder, the auxiliary surface current density J*(aus)
reduces to the true surface current density on the scatterer.

3.6 DISCRETE MAS

2ml
Rauz,obs = Rl,obs :\/p?zux + pgbs - 2pau:}cpobs COS ((bobs - N >;
1=0,1,2,....N—1 (3.19)

With a normalization consistent with the previous sections, the (total) field E., is:

N-1
B, = H{Y (kRpions) + > LH" (kR obs) (3.20)
=0

Here, the scattered field has been written as a sum over the N MAS currents.

We now take N equispaced collocation points on the PEC cylinder. Collocation point #p
is located at (pey, 2mp/N); for simplicity, the angles are the same as those of the auxiliary
sources.

By enforcing the boundary condition £, = 0 when (pobs, Gobs) = (peyis 20/ N),

yields:
N—

H

H (kb)) = —HV (kd,), p=0,1,2,...,N -1 (3.21)

=0
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where

2r(p — 1
bp,l - bl,p = \/pguax + szl - 2pau:cpcyl cos %7 pal =0,1,2,...,N-1 (322)

is the distance between auxiliary filament [ and collocation point p, and

27
dy; =d, = \/pfcil + P2y — 20 filPeyl COS Wp, p=0,1,2,...,N—1 (3.23)

is the distance between filament I and collocation point p.

Equation is N x N system of linear algebraic equatoins with unknowns the MAS
currents I;. The matrix on the LHS is circulant. That is, each row is a cyclic permutation of
the first row, while the last element of each row is the first element of the next row; These
facts are a consequence of the equalities b,; = by, and by v = boy (g integer).

The integral equation of the previous section was solved using Fourier series; in an analo-
gous manner, a system lioke with a circulant matrix can be solved in closed form using
discrete Fourier transforms (DFTs). Although ths is very well known (see references of [4], we
derive the relevant formulas below in summary: In a circulant system with periodic sequence:

B =B,N, [=0,+1,4+2, ... (3.24)
in the form:
N—1
B_,5y, =D, p=012...,N-1 (3.25)
1=0
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we introduce the expression (by [4]):

1 —i2mtmp

D(m) —_ Dpe N
N =

PO Le 5 (3.26)
N <

Note: We stress here that a closed-form solution is possible because the MAS currents are
equispaced and so are the collocation points. In view of the importance of the spacing of
collocation points to the convergence of collocation methods, some of the results that follows
might only hold for equispaced points)

Using the above relations (3.24)-(3.26]), the solution to (3.21) is:

N-1
L= 1me2m/N =012 .. N-1 (3.27)
m=0
where m)
" 1 D™
m = LT (3.28)
with
| Nl
Bm) v Hél)(kbojl)e—ilem/N’
1=0
m=0,1,2,..., N —1 (3.29)
and
| V-l
D(m) — _N H(()l (k}d ) 7127rpm/N’

I
o

p

m=0,1,2,...,N -1 (3.30)

The quantity given by (13.28)) is the DFT of the solution, while the quantities given by
and (| are the DFTs of the RHS vector and first row of the matrix respectively
Useful expressmns for the latter two quantities are obtained by substituting and (3.23 -

into and ([3.30) , respectively applying the addition theorem (3.1]) to the resulting Hankel
functions, interchanging the order of summation, and using the identity from the first section:

N-1

(3.31)

i2mp(n—m)/N _ N, it n —m = multiple of N
0, otherwise.

p=0
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The results are given by the convergent series

B™ — Z JqNer(kpaux)HéJl\;er(kpcyz)

q=—00

m=0,1,2,...,N—1 (3.32)

and

D™ = 3" Junim(kpeg) HN-son (Epsia)

q=—00

m=0,1,2,...,N—1 (3.33)

Note from (3.32) and (3.33) that D™ = DW=m) and B(™ = BN=m) g0 that (3.28)) implies

1 D™

Jm) — (N=—m) _
N Bm™

(3.34)

In what follows we assume for simplicity that N is odd. In that case, (3.27) can be replaced
by

mlm
=19 492 mZ::l I cos v
1=0,1,2,...,N — 1(Nodd) (3.35)

3.7 BEHAVIOUR OF MAS CURRENTS: A LARGE NUMBER
OF SOURCES

Together with (3.32)-(3.34)), (3.35) is an explicit expression for the N discrete MAS currents.
We now determine the asymptotic behaviour of this expression in the limit N — oo; in this
limit, the discrete MAS currents become a surface current density Jj, . (Gauz). FOr Gouz =
27l /N, J} it (Gauz) €quals the limit of the ratio of the MAS current [; to the arc-length distance
between adjacent currents. That is

Jlimit(¢aux) = ]\}I—I}loo 27Tp <¢aux = W) (336)

In what follows, the N quantities NI;/(27pau:) | = 0,1,..., N — 1 will be referred to as
“normalized MAS currents”. In view of the results of section (3.5)) one should expect the limit

in (3.36) to:

e case 1: exist when the discrete sources lie within Region 2 of Fig. (3.1), [4], (peri <
Pauz < pcyl)v glVIDg Jlsimit(anu:c) = Js(¢aux)a and

e case 2: diverge when the discrete sources lie within Region 1 (paus < peri)
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Note: One should also expect divergence in the aforementioned exceptional cases J,,(kpauz)
for some n.

We continue to assume that N is odd (the formulation for N even is similar). Because of
(3:2), (3-2) and the fact that 0 < m < (N — 1)/2 in the RHS of (3.35), in the limit N — oo,
only the ¢ = 0 term in each sum and needs to be kept. Note: two terms (¢ = 0
and ¢ = —1) must be kept when m = N/2 and this is why the case N=even is slightly more
complicated.

For N odd, therefore, (3.32)-(3.34) give:

oy _ L Julbkpen) Hi (kpga)

J (kpaue) H ﬂibl (kp y)
N -1
m:O,l,Z,,T, (N-)OO) (337)

With (3.35) and (3.37) we can immediately calculate the limit in (3.36) as follows:

1| Jolkpey) B (kpra)
27Tpauz JO(kpaux)H(()l (kpcyl)
) .

+ 9 Z kpcyl (kple
kpaux) (kpcyl>

Because the coefficients of cos (m@qu,) in this expression are even in m, J, .. is equal to
Jii, the surface current density in (3.17). Therefore, we have verified what we started out
to show. In particular, we have divergence when pgu: < peri-

Jlsimit (¢aux) = -

08 (Mauz) | - (3.38)

3.8 MAS FIELD: BEHAVIOUR FOR A LARGE NUMBER OF
SOURCES

Using the relations ((3.24)-(3.26]), for finite N, one can find a convenient expression for the
electric field E., to be referred to as “MAS field”: Apply (3.1]) to the second Hankel function

in 3.20, interchange the order of summation and introduce the expression (3.26)), for the
DFT I™. The result is:

E. = Hy" (kRgim) + N Z I T (kpaue) X HS (kpans)e™ %, (pons > paus)-  (3.39)

n=—oo

Note that the quantities I were originally defined in for n between 0 and N — 1;
when n does not lie within these limits, the 1™ in (3.39) must be understood as the periodic
extension, with period N, of the original 1™, This implies, in particular, that I¢-" = 1™ (as
also seen from ([3.34])).

Equation ((3.39)) is exact. We determin its asymptotic behaviour as N — oo, irrespective

of whether pguz < peri or not. All 1™’s in (3.39) can be replaced by the large-N forms in
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(3.37). When this is done, the factor J,,(kpau.) cancels out and one is left with

0 (1)
" Tn(kpeyt) Hy (kpgir)
EzNHO (kRobs,fil)_ z : Hl(ll)(k?p l)
e oo n cy

¢ HO (ki pops )™= (N = 00) (3.40)

n

which is presicely (3.6). From section ({3.4) it is known that series in (3.40|) converges when
and diverges when .
We can distinguish the following cases:

o Case 1 peri < Pauz < Peyi: We have found the expected result that the limit as
N — oo of the MAS field is the

o true (exact) field (3.6 (just as we caclulated analytically) outside the PEC
cylindrical surface (pobs € (Peyi, 00)) and

o its analytic continuation between the auxiliary surface and the PEC cylinder
(pobs € (pauasa pcyl))-

o Case 2 pour < peri: This case is much more interesting from its theoretical aspect:
If the MAS currents are placed within this region, then the limit of the MAS field:

o case 2.1: exists and is the true field for pops € (peyi, 00)

o case 2.2: exists and is the analytic continuation of the true field for p,s €
(Pcmpcyz)

o case 2.3: does not exist in the portion of the region exterior to the auxiliary
sources pPops € (Pauzs Peri). This is the only case in which the series in (3.40)
diverges.

Below follow some remarks on the behaviour of the field:

[. For Case 2, we found in section that the limit of the normalized MAS currents
does not exist. Case 2.1 shows that it is possible, in the l#msit, to obtain the true
electric field without having the normalized MAS currents converge to a
surface current density. The analytic, explicit demonstration of this phenomenon is
one of the main objectives of this section.

IT. Tt is well known that fields behave smoothly away from their sources, so it may seem
peculiar that the “field” in Case 2 behaves abruptly across the critical surface, i.e., as
Pobs becomes less than p..; and one moves from Case 2.2 to Case 2. But this “field” is
not a field produced by a current; it is merely a mathematical limit as N — oo, of the
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field of N sources. There is no reason for this field to obey Maxwell’s equations. For
any finite N (however large), the field is a true field satisfying Maxwell’s equations and
does not behave abruptly.

3.9 DISCUSSIONS ON NUMERICAL RESULTS

Below are demonstrated some numerical results which show the main conclusions of this
chapter. The quantities we have calculated are:

o In the figures (3.4)-(3.7), the continuous surface current density J*(¢q..) has been cal-
culated from ([3.17))’s series using a large enough number of terms.

o The MAS currents [; have been calculated by solving the system of linear equations (3.21))
using a standard package routine. For clarity, a continuous curve has been obtained by
joining the values NI;/(27pau.) of normalized MAS current by straight lines.

In Fig. furthermore, to facilitate comparison with J*(¢4u.), the continuous variable
Gauz (rather than [) is shown on the horizontal axis, with the quantity N1I;/(27pgu.) appearing
at Gaur = 27l/N. The “exact” scattered electric field F¢** is calculated from the infinite
sum in the RHS of using a sufficiently large number of terms, while the MAS scattered
electric field EX4% is found from the finite sum in the RHS of (3.20), with the MAS currents
I; determined by solving our linear system as described previously. In all results that follow,
kpcyl = 2.1 and kpfil =3 s0 that, kpcri = 1.47.

Fig. shows the real and imaginary parts of J*(dquz) for k paus = 1.9 together with
the corresponding continuous curves of normalized MAS currents when N = 70. The two sets
of curves coincide. Here, peri < pauz < Peyi, S0 that the coincidence of the two curves is simply
an illustration of the convergence of the normalized MAS currents to J*(¢au.) (as studied in
the two previous sections).

In our numerical investigations, we noticed that the aforementioned convergence was, gen-
erally, very rapid as N increased. It is worth providing a partial explanation of this, based
on the fact that the system of linear equations can be viewed as a very efficient dis-
cretization of the integral equation (3.11)): If we approximate the integral on the LHS of
by the rectangular rule mentioned in [4] and then satisfy the resulting equation at the
quadrature points (i.e., points p., located at integer multiples of 27 /N), a system of linear
equations for the normalized MAS currents NI;/(27pay,) results, which is precisely (3.21)).
Similar observations are made in relevant literature of [4].

Fig. (3.5) shows the normalized MAS currents when N = 70 (as in Fig. 5), but with
k paue = 1.3. This time, pgur < peri and, by the discussion in the previous sections, there is
no meaningful J*(¢a,,) to which the normalized MAS currents can be compared. One sees a
smooth imaginary part, but a real part that oscillates rapidly near ¢oue = 0 and Ggur = 27.
The initial values rmRe{ly}, Re{l,},... alternate in sign. If N is increased to 100, the first
oscillating value Re{/y} = —152 of Fig. 6 in [4], becomes Re{ly} = —963. These results mean
that the normalized MAS currents do not converge, just as we have predicted theoretically
(Case 2 of previous section).

To ensure that the results in Fig. are free of roundoff error—and, in particular, free
of effects of matrix ill-conditioning—we have obtained coincident results by an independent
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Figure 3.4: Real (top) and imaginary (bottom) parts of auxiliary surface-current density
J*(¢auz), together with the corresponding continuous curves of normalized MAS currents
S kpey = 2.1, kppig = 3, and kpgus = 1.9; N = 70 for the normalized MAS currents.

27rpauz

The two sets of continuous curves coincide.

way, specifically from eqns. —. (The fact that matrix ill-conditioning is important
in MAS has been well-documented further in [4] and supported by our previous remark: We
saw that the system can be viewed as a discretization of (3.11)).)

In Fig. , we saw that the imaginary part appears smooth whereas the real part presents
rapid oscillations, believed not to be due to roundoff error. Strikingly similar phenomena
occur when solving Hallen’s equation with the approximate kernel, for the antenna of infinite
length center-driven by a delta-function generator (see [4] for more details). This similarity is
mentioned to reinforce the belief that the results in Fig. 6 have nothing to do with roundoff
errors/matrix ill-conditioning.

Needless to say, the EMAS obtained from the MAS currents of Fig. 5 is close to the exact
field E=t. But this remains true even for the EMAS obtained from the MAS currents of
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Figure 3.5: Real (top) and imaginary (bottom) parts of normalized MAS currents 2ﬂ£i —

function of element number [. Parameters as in previous Fig. (3.4)) except that kpgu, = 1.3.
(Here, there is no meaningful J*(¢gay,) to show.)

I; as

Fig. (3.5). This is illustrated in Fig. (3.6)), at a distance k pops = 10 (pobs > peyi; Case 2.1
of previous section) and in Fig. 8 at a distance k pops = 1.8 (peri < pobs < peyi; Case 2.2 of
previous section). EMAS coincides with £ in both cases.

In conclusion, E¢*<t is the

O true field in Fig. 7, and the
[] analytic continuation of the true field in Fig. 8.

> We should underline here that these “correct” results for the field are obtained from the
“abnormal” MAS currents of Fig. (3.5)); this is precisely what the discussion in previous
section predicts.

The small field values in Figs. (3.6 and (3.7]), where N = 70, are free of roundoff errors.
Those values are obtained, via the summation (3.20)), from the large, oscillating currents I;.
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Figure 3.6: Real (top) and imaginary (bottom) parts of exact scattered field ESX** when
kpeyi = 2.1, kpga = 3, and kpeps = 10, together with corresponding curves of MAS scattered
field EMAS when kpg, = 1.3 and N = 70. Thus, EMAS is obtained from the oscillating
currents of Fig. The two sets of curves coincide.

For larger values of N, the values I; grow and the summation becomes increasingly
susceptible to roundoff. Thus—in any computer, whose wordlength is necessarily finite—
increasing N will eventually produce results corrupted by roundoff errors.

Finally, the field obtained at a distance k pops = 1.4 (so that pgus < pobs < peri, third case
2.3 of previous section) is shown in Fig. . Here, there is no exact field to compare to, but
oscillations are apparent (at least in the imaginary part), indicating the divergence of EMAS
as N — oo.

To sum up, the main conclusions in this chapter are:

* When the auxiliary surface is located in Region 2 of Fig. (3.1]), the continuous problem
has a meaningful solution (surface current density) J*(¢auz). The field obtained from
J*(¢auz) 1s the true field (or its analytic continuation) for all observation points outside

37



" '//\/\\

Re{ES®t} and Re{E!PS)
S
%]

¢obs

Im{E==ct } and Im{E?S)
o
b o
p—
e ——

¢obs

Figure 3.7: Like (3.6]) (so that EMAS is obtained from the oscillating currents of Fig. 6), except
that kp.s = 1.8. Once again, the two sets of curves coincide.

the auxiliary source. As N — oo, the limit of the normalized, discrete MAS currents
A (1 =0,1,...,N — 1) exists, and is equal to J*(¢auz)-

27rpa,uz'

* When the auxiliary surface is located in Region 1 of Fig. , the continuous problem
has no solution, i.e., there is no meaningful surface current density J*(¢au,) that will
satisfy the boundary condition. For any finite IV, one can find the discrete MAS currents
I; (in Region 1) and, from the I;, subsequently determine the electric field. In the limit
N — oo, the normalized MAS currents diverge, while the electric field does converge
to the correct electric field. Numerical results obtained by two independent methods
showed that the divergence appears as oscillations near [ = 0 and [ = N — 1 in the plot
of I, (that is, at points closest to the filament I). These oscillations are consistent with
the analytical study and similar to the oscillations observed when numerically solving
Hallén’s equation with the approximate kernel and the delta-function generator. Thus
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Figure 3.8: MAS scattered field EMAS. Like Fig. (3.6]), but with kp,s = 1.4. (Here, there is

zSs
no meaningful E&?* to show.)

the oscillations are almost certainly not due to roundoff errors or matrix ill-conditioning
(it might be possible to further investigate this point, as discussed in Section V). Despite
the oscillations, one still obtains the true field (or its analytic continuation) for all
observation points in Region 3 (or Region 2, respectively). When the observation point
is in Region 1, however—still beyond the auxiliary surface—the electric field obtained
as described above diverges. The abrupt behavior of the limiting value of the field—as
the observation point moves from Region 2 into Region 1—is not peculiar, because this
limiting value is not a true field satisfying Maxwell’s equations.

We summarize the above in the following table:
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Pauz 10ca- | Continuous Solu- | Normalized Series Term (“Cur- | Disrete MAS Field
tion tion of Integral | rent”) I, as solution to the linear | FMAS
Equation  with | (MAS) system
J*(Pauz)
Pave > | exists 27]:;?;1 Noeo, I (auz) it exists and con-
Peri verges to the
true exact field:
EMAS(N)_>Eexc‘
Pauz < | does not exist for N — oo: does not converge, | it exists and con-
Peri it oscillates rapidly as N grows | verges to the
and takes large absolute values true exact field:

EMAS(N) —y Fexc,
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Chapter 4

Point Source Scattering by an
Acoustically Soft Sphere: Solution by
the MAS

4.1 3D PROBLEM STATEMENT AND GEOMETRY

We use the spherical coordinate system as our problem concerns a spherical geometry.
As mentioned in [I0], in this system the position of a point is specified by three numbers:
the radial distance of that point from the origin (r), its polar angle () measured from a
fixed zenith direction and the azimuth angle (¢) of its orthogonal projection on a reference
plane that passes through the origin and is orthogonal to the zenith, measured from a fixed
reference direction on that plane. These coordinate symbols are illustred in figures .The
radial distance is also called the radius or radial coordinate. The polar angle may be called
colatitude, zenith angle, normal angle or inclination angle.

Our spherical scatterer looks like the sphere of figure (4.1) and we can see some planes
intersecting it on figures (a constant z-plane and two constant ¢-planes).

To convert spherical coordinates to cartesian ones, the following formulae can be used:

r=\/x%+y?+ 22

6 = arccos (E>

r

¢ = arctan (%)

4.2 THE SCATTERING PROBLEM AND ITS EXACT SOLU-
TION

A soft spherical scatterer V' of radius rgp;, is excited by a time-harmonic spherical acoustic
wave, generated by a point-source located in the exterior of V. The field u”", radiated by this
point-source under the assumptions that the sphere is absent (and that R3 is filled by the
material of V'), constitutes the primary field of the Sommerfeld’s method [7], [8]. Suppressing
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Figure 4.1: Spherical Coordinates

Volume element
dV=r?sin® do do dr

X

(a) figure 1 (b) figure 2

Figure 4.2: Spherical coordinate systems and planes

the harmonic time dependence exp(—iwt) and using the normalization of [2] and [6], the
primary spherical field at the location of the observation vector r., is given by:

exp(ik|Tops — T'ps))

T — 1 Tops € R\ {1, ], (4.1)
obs ps

UP" (T ops) = Tps €Xp(—ikrps)

so that it reduces to a plane wave with unit amplitude and direction of propagation that
of the unit vector —#,,, when the point-source recedes to infinity, i.e.

lm  uP"(rops) = exp(—ikTps - Tobs), (4.2)
Tps—+00
where rp=|r,|.
We select the spherical coordinate system (7,ps,00ps,00bs) With the origin O at the centre
of V, so that the point-source lies at 7,ps=rps, Oops=0, with position vector r,s = (0,0, 7,s),
therefore it is located in the exterior of V', on z-axis. Thus, the primary and the scattered
field are axisymmetric. Then, the primary field is expressed as in [6]:
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;o (43)

uP" (T0b57 Qobs) -

1 Yoo 020 A 1) Gn(krps) Ry (K7 obs ) Pr(€OS Oops )y Tobs > Tps
ho(kryps) >0 020+ 1) hy (krps) jn (kT obs ) Pr(COS Oobs ) s Tobs < Tps

where j,, and h,, are the n-th order spherical Bessel and Hankel function of the first kind
and P, is a Legendre polynomial.

The generated scattered field, due to the presence of the sphere, is denoted by u*¢ and is
expressed as follows:

U (Tobs; Oobs) = kr Z (2n 4 1) ap by (krops) Po(cos Oobs)s  Tobs > Tsph - (4.4)
ps —0

Applying Sommerfeld’s method, (see e.g. [6]), the total spherical field u!, in the exterior of
the scatterer is defined as the superposition of the primary and the scattered fields, as follows:

uix<r0b5) - U (rObS) + usc(robs>7 Tobs > Tsph,y Tobs 7é Tps . (45)

On the surface of the soft sphere, the total field must satisfy the Dirichlet boundary
condition as described in Chapter 1:

uéxc(robs) = 07 Tobs = Tsph - (46)

By imposing the latter boundary condition and using the field expressions (4.3) and ( .,
we obtain:

hn(krps)jn<krsph)

a, = — 4.7
hn(lﬂ"sph) ( )
and hence, the exact expression of the scattered field is:
1 - R (k7ps) jn (kT spn)
U (Tops, Oops) = — 2n+1 P P
(Fobo: Bote) ho(kTps) ;0( ) B (KT sp)
X hnU{?TObs)Pn(COS Gobs), Tobs > Tsph - (48)

So, by (4.1)) and (4.8)), the exact solution of the total field in (4.5)) may be expressed as:

hn(krps>jn(krsph)
hn<k'7’sph)

X hn(krobs)Pn<COS 90b8)7 Tobs > 705}0h ) Tobs 7£ rps . (49)
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4.3 CONVERGENCE OF THE SCATTERED FIELD’S SERIES

4.3.1 Spherical Bessel/Hankel functions and asymptotic approximations

Convergence of the scattered field series in (4.8)) can be examined by using the large-n asymp-
totic approximations of the spherical Bessel and Hankel functions. To this end, we remind that
the spherical Bessel and Hankel functions are related to the cylindrical ones via the following

identities:
. T
Jnlz) = % Jn+%(m) , (4.10)

hn(2) = WD (z) = \/% Hfjj%(x) , (4.11)

while the cylindrical Bessel J,, and Hankel H,(Ll)(m) = Ju(z) 4+ iY,(x) functions have the
following large-n asymptotic approximations [see e.g. [1], section 9.3]:

Jo(2) = (=1)" Jn(z) ~ \/;T_n (55)" nes oo, (4.12)

HO(2) = (=1)" HY (2) ~ —z\/% (%) oot (4.13)

4.3.2 Derivative of Hankel functions

Differentiating (4.13), we obtain:

d d 2n 1 rex\—"
CHD) = (=1 —HW ()~ /22
dxH" (x) = (—1) dxH,n(x) i ( ) , n— +o00. (4.14)

T x \2n

Thus, the derivative of the spherical Hankel function becomes:

= dH(l) )
dx nts 2x dx

So, be means of (4.13)) and (4.14]) we obtain:
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or

w0 =i () R () e

Furthermore, the Legendre polynomial function has the following large-n asymptotic ex-
pression (see e.g. (3.9) of [9]):

P,(cosf) ~ 2_ cos (<n+ %) 0 — %) , 0€(0,m), n— +oo. (4.16)

nmsin 6

Now, by substituting (4.10)) and - to - we get:

R (k7 ps) 3n (k7 spn)
2 1 £ & hn k obs Pn 00 s) —
(2n+1) o (ko) (k7 ops) P (cOS Ops)
2krps n-‘r k’T’ps \/ 2kr ph n+ kTSPh T
(2n+1) 5% H,. (krobs)Pn(cos Oops) -
ooy Hn 1 (krgpn) Tobs

4.3.3 Convergence

Next, by using the large-n asymptotic approximations (4.12)-(4.16) we obtain the following
approximation of the n-th term of the series (4.8)):
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"0 (20 4 1) \/%Q\E RG] (2(’”5) ¢2ﬂén+%) (2("+%

(ekrps>_(n+é> (ekrsph>(n+é)
2 1 —1 2n 2n

= (2 1)— .

e ey (e,mph>_(n+;)

2n
2

ekrops ~(n+3) oS n—f—l 0 _ m
2n nmsin 6 2 4

Therefore the n-th term of the series (4.8]) behaves like:

20 rgn | 2
- — b, , 4.17
k rpsrops V msind ( )

where the sequence b,, is defined by:

Teri \ 1 1 T
b, = (Tobs) \/; cos ((TH— 5) 6 — Z) : (4.18)

while the critical radius r..; is defined by:

2
oy = Loo)” (4.19)
Tps
Note that the critical radius is smaller than the radius of the soft sphere.
Now, we have that:
b, = ¢, +d, (4.20)

where

e = 1 Teri \/Iej((mr;)e—g)
2 \ Tobs n




and for the sequence ¢, holds:

n n—oo | Feri

n+1

Cn+1 Terd

(4.21)

Cp T'obs T'obs

Similarly, the same relation is found for d,,.
By the Cauchy ratio test we have that the power series >

o0

o
e Cns D meng dn converge for

Teri Teri

> 1. Hence, by (4.20) we conclude

all 7., with < 1 and diverge for all 7., with

Tobs obs

that the power series Ef;no b, converges for rq,s > r.; and diverges for ro,s < r.;. By means
of the latter conclusion holds also for the convergence of the scattered field series .
This means that the series solution , originally found for points laying outside the sphere,
is also convergent and meaningful inside the sphere, and until the critical radius.

4.4 ANALYTIC CONTINUATION OF THE SCATTERED FIELD’S

SERIES

We are studying now the convergence of the derivative of the scattered acoustic field’s series.

(upr (Tobsa eobs) + usc (Tobsa eobs ))

0 1

ut (Tobsa eobs) -

a Tobs arobs

= uP” (Tobs ) eobs)

B 87“obs a a"nobs hO(krps>
Y @n+1) (Ko )in(RTopn) -y b o B) (4.22)
"0 hn<k7ﬂsph)

The series in (4.22)) is:

1 > P (K7 ) G (KT s
S @n+1) <hn(]);nsih) )

0 R (K7 ops ) P (€08 Oops) (4.23)

a T'obs

(97”01;5 usc(rObS’ 9055) = -

and its n-th term behaves as follows:

P (k7 ps) g (KT spn) O
hn (krsph) afr‘obs

(2n+1) B (k7 ops ) P (€S O,ps)

Qk:ps Hn+% (krps) m n+%(k708ph) o

T or
\/ Zkropn Hpyp1 (K7 spn) obs

=(2n+1) P (k7 obs ) Pr (COS Ops)
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1 1 T 1
iV 2n +1 ™ 2 T'ps

Tsph ( ekr?ph )”
Tps * (Qn -+ 1) Tps * (2n + 1)
—n 1 -n
ay 1 6k)7’0b51 4+ \/5 (n + 2) ekrobsl
\/5(]{:700115)2 2 (n _'_ 5) (krObS)?) 2 (TL + 5)
2 i 1 o_ s
n sin 6 oS 2 4
1 1 [ 1
Von +1 ﬁ 2k Tps
9 n
) T'sph . ( Tsph > .
[rps - (2n+1) \7ps - (2n+1)
. 1 T obs o . (n + %) ( Tobs )_n
ay +iV2
(e (550) w2 s (5

2 CoS n+1 H—E
nmsin @ 2 4

1 1 T 1
van +1 ™ 2 T'ps

rsph . ( Tgph )n .
Tps - (27’1, + 1) T'psT obs
, 1 . (2n+1)
. +1
\/§ (k”'ﬂobs)2 2(]{77“0[)3)3

) rsph . ( T?ph )n .
\ Tps (2n + 1) T'psT obs
1
. + 2n+1 )
\/5(]{?7“01)5)% < V krobs ( )

2 _|_1 Q_E
V nrsinf o’ " 2 4
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2 n
Tsph ( Tsph )
Tps * (2n + 1) T'psT obs

Tsph
\/2n+ V2k \/ “(2n+1
() 1) .‘/ ’ Ny 7
(rpsrobs) V2(kros)z V nmsind cos{\" "3 f 4

Using the same arguments about convergence as in the previous chapter, we observe that

Tobs

the above power series converges for all r.,,, with ‘””‘ < 1 and diverges for all r,s with

:CZ’ > 1. By means of (4.17)) the latter conclusion holds also for the convergence of the series
l-

) and (4.22) . This means that the series solution (4.9)), originally found for points laying
outside the sphere, is also convergent and meaningful inside the sphere, and until the critical
radius.

Since we verified the convergence of the derivative of the scattered field, we conclude:

> Not only have we extended our original solution (4.9) to the region 7 < Tops < Tsph, i
the previous section, but also this extension is in fact its analytic continuation .

4.5 FIELD DERIVATIVE WITH RESPECT TO r,; ON THE SUR-
FACE OF THE SPHERE

On the surface of the sphere (for r,ps = r5n) We obtain:
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0
t
o u (r0b57 Qobs) - P
robs Tobs

B aTObS hO k:rps Z 2n +1 kTPS)]n(krobs)Pn(COS Qobs)

(upr(rob& Qobs) + usc(robsa Qobs))

n=0

o) 1 P (K7 ps) i (K7 )
—— ) 2n+1) P Py (K7 ops ) P (€OS O,ps)
OTobs ho(krps) 2 B (k7 spn)
0 1 > hn(kﬂ“ s)jn(krabs)hn(krs h)
= (2n+1) L P22Y P (cos Ogys)
O obs ho(KTps) ;} hy, (k;rsph)
= k’?" s)jn(krs h)
2 P P hn k obs Pn 80 S
87’01,8 To(kryy) krps ; T gy Krobs) P05 Bt
a 1 - ]n(kTobs>hn(krsph> - jn(kTsph>hn<kTobs>
= 2n + 1) - hy,(kr,s P, (cos O,
aff’obs h0<krps> <n2%( ) ( P ) h (krsph) ( ’ )
o0 djn(krobs) y dhn(krobs)
k Thn(krsph) — ]n(krsph)T
— 204 1) - oy (o) — 2o 2 P, (08 Oons
o (krps) ;( n 1) - hi(krps) T (ko) (cos Oops)
k oo
= 2 1) - h,(kry,
ho(k”l“ps) ;)( n+ ) ( TP )
d - . d
m.]n(krobs) . hn(krsph) - .]n(krsph) . mhn(lmﬂobs) Pn<COS QObS)
hn(krsph)
The calculations on the above fraction are as follows:
<:>>.].7L,(k5r0bs)hn(k‘rsph) - jn(krsph)hn,(krobs)
hn(k:rsph)
_ jn,(krobs)(jn(krsph) + iyn(kvrsph)) - jn(krsph)(jn(krobs) + Z.yn(kj?ﬂobs))/
hn(k”l“sph)
_ jnl<krobs>jn<krsph) + ijnl(krobs)yn(krsph) - jn(krsph>jn/<krobs) - ijn(krsph)yn,<krobs)
hn(lﬁ”sph)

But, because we have taken the condition for rys = 75,,, we obtain:

Jn' (KTobs )jn(Krsph) + n’ (k7obs)Yn (k7 sph) — jn(KPsph)jn’ (KPobs) — 4 (k7 spn) Yn' (kT obs )
P (K7 sph)
In (KT obs) Yn (KT spn) = Jn(kTspn) Yn' (KT obs)
ho (k7 spn)
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Using [1], [10.1.6] about the Wronskian of bessel spherical functions of fractional order, we
obtain:

2
8 k-1 > - (k-rsp )
U (Tobss Oobs) |rope=rapn = ! Z(?n +1) - hy(krps) =22 P, (cOS Ops)

O obs ho(krps) £ B (k7 spn)
i > R (K7ps)

= — E n+1) ——P2 P (cos O, 4.24

k12 ho(krys) n:o( ) B (KT spn) (cos0oss)  (4:24)

This is the condition satisfied on the surface of the sphere.

4.6 DISCRETE MAS

4.6.1 Definition and Geometry: Placement of Discrete Auxiliary Sources

In the discretized version of the Method of the Auxiliary Sources (MAS), the auxiliary sources
(ASs) are M x N discrete point-sources generating spherical acoustic waves. Their unknown
amplitudes will be determined by approximately satisfying the boundary condition , as
described below. The amplitude of the field radiated by the (m,n)-AS will be denoted by
Upnn, m=0,1,.... M -1, n=20,1,...,N — 1. We will also use the term “currents” within
quotes, due to the resemblance to the electromagnetic problem.

exp(ik|rops — T'ps|)

‘ Tops — rps |

U/pr(robs) = Tps eXp(_ikTps) ) Tops € RS\{rPS}

The ASs lie on the surface of an auxiliary sphere of radius r,,, in the interior of the soft
one; thus 0 < rgue < repp.

S NS S NN
O

<
KN
[T

Figure 4.3: Partitioning of a Sphere

More precisely, the (m,n)-AS is located at:

(Fauzs Oy &) = (Fawgy —— ——),  m=1,....M—=1 n=1,...,N (4.25)



and hence the M x N ASs are equi-angled.

We denote by Ropsmn the distance between the (m,n)-AS and the observation point,

namely:
Robs,mn = |robs - rmn| 5
where
Tops = (Tobs Sin(‘gobs) COS(Qbobs)a T'obs Sin<90bs) Sin(¢obs>7 Tobs COS(Qobs)) )
and

Tron = (Tauz SIN(0m) €0S(Pn), Taus SIN(0,,) SIN(Pp ), Tauz €0S(0r)) -

Hence, we get:

Robs mn

= \/ T2 4 120 — 27 auaTobs[SI(Oops) SIN(O1,) COS(Pobs — D) + cOS(Oops) cOS(6y)]

4.6.2 Discrete MAS - Total Acoustic Field

(4.26)

(4.27)

(4.28)

(4.29)

The total acoustic field is the superposition of the primary field and the fields generated by

all the AS’s:

u?\f[AS (T0b57 Qobsa ¢obs) - (

M—-1N-—

Z Umn h((jl) (kRobs,mn)

m=0 n=

summing pressure contributions
of each point source

[y

u?\/[AS(robSa Oobss Pobs) = U (Tobs) + Uy a5 (Tobs)

M-1N-1

< UI;MAS(robsa eobsa d)obs) = ul" (robs) + Z Z uaux(Robs,mn)

m=0 n=0

.31)

m=0 n=0

23

= u§\4AS(r0bsv 901)87 (bobs) - upr(robéh eobs) + Z Z Umn h((jl)(kRobs,mn> .

(4.30)

(4.31)

(4.32)

(4.33)



Figure 4.4: Spherical Coordinates

4.6.3 Collocation Points and Boundary Condition

Next, we take P x ) equi-angled collocation points (CP’s) on the soft sphere-surface. As shown
in Fig. 2, the (p, q)-CP is located at (74, 7, 2Qiq), where p=1,2,...,.P—1land¢=1,2,...,Q.
By enforcing the boundary condition:

TP 27q
u§\4AS(T0bsa eobsy (bobs) =0 ) (robsy 90b37 ¢obs) = (Tsphy epa ¢q) = (rspha ?7 ?) ’ (434>
from Eq. (4.33) we get forp=1,2,...,P—1land ¢=1,2,...,Q
M—-1N-1 )
exp(tkR,,
U B (R pg.n) = =" (pn, 0,) = —T'ps exp(—ikrps)M (4.35)
m=0 n=0 RP(LTPS
where:
qu,mn = p,qg,m,n

= \/fr’gph + 12, — 2 spnTaue[SIN(0,) sin(6,,,) cos(¢, — ¢n) + cos(8,) cos(6,,)]
N i (Y sim (Y cos (270 _ 2 DY o (T
\/Tsph+7“aw 27 sphT aus [SIH<P>SIH<M>COS< 0 N —I—COS<P>COS<M> ,

forp=1,2,...,P—-land ¢=1,2,...,Q,
m=12,...,. M —1andn=1,2,...,N, as well as
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RP‘LTps

dpg = \/rgph + Tgs — 27 gpnTps[sin(6,) sin(0) cos(¢, — ¢n) + cos(6,) cos(0)]

T
— \/szh + 72— 2 gnTps COS <Fp>

fOl"p:LQ,...,P—landq:1’27_”7Q’
m=12,... M—1landn=1,2,... N.

d,. (4.37)

°

4.6.4 Formulation of the Linear System to be solved in terms of the amplitudes
Umn

Therefore, the linear system of equations to be solved with unknowns the amplitudes of the

point sources (“MAS currents” U, ) is given by (4.35)), using (4.36)) and (4.37), as:

M—-1N-1

ikd
3 U () = 1yl —iry) “PUD). (438)
m=0 n=0 P
Using the above relation we form a linear system
A-x=g, (4.39)

with an “A” square matrix of dimensions (P — 1)Q x (M — 1)N :

[ h(()l)(kb1,1,1,1) . h(()l)(kbl,m,N) . h(()l)(kbl,l,M—l,l) - hél)<kbl,l,Mfl,N) |
h(()ll)(kbl,Q,Lﬂ . héll)(k?bl,Q,l,N) . h(()ll)(k?bl,Q,M—l,l) e héll)(kbl,Q,M—Lm
h(() )(ka,l,l,l) P h(() )(kbg’]_y]_’]\[) P h(() )(ka,l,Mfl,l) ce h’é )<kb2717M71’N)
e (kbogan) - P (kbagag) oo B (kbagaro1n) oo by (Rbagariw)

b (kbpoaann) o b (Rbpian) o A (Rbpiaan) o hg (kbpaaan)

_h[()l)(kafI,QJJ) - hgl)(kbpfl,Q,LN) = hgl)%bel,Q,Mfl,l) e hél)(ka*LQ’M*LN)-

where the unknowns are the U,,,, “MAS currents” and their vector is:

_ T
xr = (U1,17 U1,27 U1,37 ey Ul,N*l? U2,17 U2,27 U2,37 ey UM*l,l) UM*LZ) ey UM*l,N*l)

Also:

95



exp(tkdy) exp(ikdy)
dl PARER) dl )

g = —Tps exp(—ikrys)(
exp(ikdy) exp(ikdy)

a0 s d—27
exp(ikdp_1) exp(ikdp_1) T
T d

where the dots indicate a number of () terms in total. Note that for each pair of values
(po,mo), if Q=N, it holds that

o b

Po,q,™mo,n

=b

'po,q—n,m0,0 —

b

P0,0,m0,g—n

=b

Po;n—q,mo,0"

Hence, the MAS matrix is composed of (M — 1) x (P — 1) circulant blocks, where each
block is a () x N matrix.
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Chapter 5

Numerical Results and Discussion

This chapter contains representative numerical results and the main conclusion drawn from
them. Included are studies of the effects of changing the main paremetres of the problem.

5.1 PARTITIONING OF THE SPHERICAL SURFACE

There are four fundamental parameters that we investigated using our programme:

> M: the number of sources for each constant ¢ (and varying 0)
> N: the number or sources for each constant € (and varying ¢)
> Treue: the radius of the surface containing the auxiliary sources
> 7spp: the radius of the spherical acoustic scatterer

> 7ps: the position of the point source of the primary field

We have used a quite simple partitioning of the spherical surface in (M — 1) x (N — 1)
regions, by placing M x N points on it as seen in figure (5.1]).

AR
A

™
]
X

M8z
Wl
W

Figure 5.1: Partitioning a Spherical surface

The problem has a ¢-symmetry and the reason for this is the placement of the point source:
it is located on position rps = (z,y, 2) = (0,0, 7,), on the z-axis.
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5.2 VALIDATION OF THE NUMERICAL CODE

We have developed a numerical code and have tested it by means of the following two checks:

I. Weselected a set of points, called “median collocation points” (midCPs), on the auxiliary
surface r4,,. They are placed between the collocation points mentioned in the previous
chapter, in section “1.4.3. Collocation points and boundary condition”, i.e. at points

™m 2T

0 = (Pougs — —), m=1,2,.... M —1,
(r,0,¢0) = (r N) m
n=12...,N—1

We tested to see whether the norm of the “currents” U is less than a very small threshold
and found that this is indeed the case.

IT. We tested and finally verified that the exact field obtained from the respective formula
of the previous chapter

1 > hon(k7ps) jn (kT spn)
s e— 2n+1 b P
ho(krps) nzzo( ) B (kT spr)

X hn<k'7“obs)Pn(COS Qobs), Tobs > Tsph,  Tobs 7é Tps - (51)

uiz (Tops) = uP" (Tops)

coincides with the MAS field calculated in the same chapter

M—-1N-1

UIEWAS(robsa eobm Qbobs) = upr (Tobsa eobs) + Z Z Umn hél)(kRObS,mn> : (52>

m=0 n=0

5.3 MAS “CURRENTS”

5.3.1 Changing the radius-parameter: r,,,

Writing some functions in version 7.10.0.499 (R2010a) Matlab with double precision arithmetic
for solving the linear system of equations

AX=g (5.3)

of the previous chapter, we can plot the discrete MAS “currents” U,,, (that is the ampli-
tudes of the acoustic waves radiated by the point sources located on the auxiliary spherical
surface), where:

AS 12, sinlu, AOAG 12, sin 0,17 QW”
In the curves that appear on figures (5.2)-(5.3]) the discrete points have been joined by
straight lines. Besides, the horizontal axis is expressed by the serial number #(m,n) of each

source.
We consider the following placings of the auxiliary point-sources:

(5.4)
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o Case 1: Touz € (Feriy rspn) In the figures (5.2), (5.3), (5.4), (5.5), (5.6), (5.7) where

2
Teri = (T;ph) . (55)
ps

the parameters have been set as follows:

= 1.47

definition

krps =3.0
k7que = 1.80
#sources : M x N =37 x 14

k Tsph = 2.1 critical radius
_— k cri

Flotting real part of all currents |

Pq
forr. =18 r =3 r =21 #sources=37x14, cond numb="1.807552+006
aux ps sph
01 T T T | T

Re {amplitude [}

-0.7

08

09 | i ! i
0 100 200 300 400 500 500

order number of auxiliary source

Figure 5.2: Real part of “Currents”

In the pair of figures (5.2)-(5.3) are shown the real and the imaginary parts (in each
figure respectively) of normalized MAS “currents” U, , as function of element number
(m,n).

From the beginning of each curve, we observe that every 14 “currents” have the same
value (the curve is “flat” for every 14 values). This is due to the problem’s ¢-symmetry
We recall that N is the number of sources for constant 6 (varying ¢); we will clarify
later (in Section that there is no need to increase this number, because, as will be

29



Plotting imaginary part of all currents |
forr. =181 =3 r =21, #sources=237x14, cond numb=1.80755e+006
aux ps sph
35 T T T T |

a5kl ................. ................. ................. ................ _

Im {amplitude I}

i i | I I
] 100 200 300 400 500 600
order number of auxliary source

Figure 5.3: Imaginary part of “Currents”

Plotting real part of lpq fora=90°,
wherer =18 r =3 r =21 #sources=37x14, cond numb=1.380755e+006
AU ps sph
0.0295 ) T ! T T !

00205k ............... ............... ............... .............. ............. _
00295 .............. .............. .............. .............. i

00795 _ .............. .............. .............. .............. .............. .............. |

00295 oo .............. .............. ............... ............... ............... ............. .

Re famplitude I}

00295 kF e ............... ............... ............... ............... ............... ............. i
00295k ............... ............... ............... .............. ............. _

00295 e .............. .............. .............. .............. _

00295 1 i i i ; 1
0
AUH

Figure 5.4: Real part of “Currents”

seen in figure ((5.42) below, for 14 sources (N = 14) the exact and MAS field are found
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Flotting imaginary part of |pq fore=90",
wherer =18 r =3 r =21 #sources=37x14, cond numb=180755e+006
aux ps sph
—001 11 T T T T T T

0014 L AR S S S S R 1
00111 Lo T — A A A— T— 1

00 b T S SO AR T S |

Im famplitude [}

0011k .............. ............... ............... .............. ............. _

0011 b e S S S S |

00111 | i i i i i
]

Figure 5.5: Imaginary part of “Currents”

to coincide.

Moreover, in figures (5.4))-(5.5) we see the “current” values across a ring of a fixed 0
value, that is, as a function of variable ¢4,

We observe that these values are very close, verifying in more detail the currents’ inde-
pendence of ¢ coordinate.

Figures — show the normalized MAS “current” values as function of 0, (the
horizontal axis is expressed by the continuous variable 0,,). The continuous curve
shown has resulted by connecting all values by straight line segments. We can see that
this curve is smooth, therefore adjacent currents have close values. As we will see, the
scattered acoustic field resulting from these currents, according to the previous chapter’s
formula about the MAS field, is created with great accuracy and as the number of sources
increases, this accuracy will increase (see next subsection [5.3.2)).

> Such stable behaviour of the currents is certainly to be expected from a valid
numerical method.
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Re famplitude [}

Im Jamplitude [}

Plotting the real part of |__for ¢ = 25.7143°,

wherer =18 r =3 r =21 #sources=37x14, cond numb=1.80755e+006
AU ps sph

01 T T T T T T

0

-0.1

-0.2

1
=
o

=
-

|
o
o

1
=
o

1
o
—

08

09 i i i i i i
Figure 5.6: Real part of “Currents”

Flotting the imaginary part of lpq for ¢ = 25.7143%,

wherer. =18 r =3 r =21 #sources=3T7x14, cond numb=180755e+006
aux ps sph

35 T T T T T T

05 1 15 2 25 3 35

aux

Figure 5.7: Imaginary part of “Currents”
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e Case 2: rgy, € (0,74;) In this case, we choose the parametres:

k Tsph = 2.1 critical radius
f} k Teri = ]_47
k rps =30 definition

k7Tour = 1.25
#sources : M x N =25 x 14

Here, in the case of r,,, being less than the critical radius, we solve the linear system
(5.3) again and obtain these MAS currents as solution. We choose to place again no
more than 14 sources on each ring of every fixed 6. In figures — we have again
all normalized MAS currents presented as function of element number (m,n).

Flotting real part of all currents Ipq,
forr. =125 71 =3 r =21, #sources=25x14, cond numb=6.83854e+011
aux ps sph
40 T T T T T T

agk- | TR ............... ............... ............... ............. i

Re {famplitude I}
L]

Aok b

1) 0 OO0 O ISR e _______________ _______________ S ]

-30

A0 | i | 1 I i
] a0 100 150 200 250 300 350

order number of auxliary source

Figure 5.8: Real part of all “Currents”

Observing (5.10)-(5.11)), we can verify again the ¢-symmetry in this problem., because
all currents in each ring of constant 6 have the same values (they are 14 in number in
cach ring).

In the pair (5.10)-(5.11) of figures showing the normalized MAS currents on a fixed 6, all
currents should be equal (we should observe horizontal lines in the real and imaginary
part) due to the ¢-symmetry . However there are some small differences beyond the
fourth significant digit, which we can consider negligible and are due to round-off errors
in solving the linear system of equations . In other words, the horizontal scale in

figures ([5.10)-(5.11)) is very fine.
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Plotting imaginary part of all currents |
forr. =125, r =3 =21, #sources=25x14, cond numb=6.83854e+011
aux ps sph
300 ! ! ! T T T

0L ............... .............. .............. .............. .............. _

100 _ .............. .............. .............. .............. .............. .............. |

Im {famplitude I}
L]

~100 _..”“.“.? ............. ; ............... ; ............... ; ............... ; ............... é ............. _

00k ............... ............... .............. ............. i

-a00 i i I 1 I i
0 50 100 150 200 250 300 350

order number of auxliary source
Figure 5.9: Imaginary part of all “Currents”
Plotting real part of lpq fora=90°,

where rau}(:'l 25, rps=3, rsph=2.1 C#sources=25x14, cond numb=6.83854e+011
047?2 T T T T T T

AR I S — — o — -
N — — o - o N
s I S e A S S
N L o b R e ]
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Re famplitude I}

0ATT2 oo .............. ............ ............ o 4
O47T2 ke ............. 000 OO ............. ............ ............. 4
04773k BV N N TN T S ]

047'?2 oo ............. .............. .............. TN s ............. .

04772 3 3 3 5 3 5
0
aux

Figure 5.10: Real part of all “Currents”

— In comparison with the case of 74, > 7¢ of (5.6)-(5.7)), we can observe in (5.12))-
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Flotting imaginary part of |pq fore=90",
wherer_ =125 =3 r =21 #s0urces=25x14, cond numb=6 83854a+011
aux ps sph
—25164 T T T T T T

-25164

-2.5164

-2.5184

-25164

-2.5164

Im famplitude [}

-2.5184

-2.5164

-2.5164

-25164

-2.5164
]

Figure 5.11: Imaginary part of all “Currents”

Flotting the real part of Ipq for ¢ = 25.7143°,

wherer =125 =3 r =21 #s0urces=25x14, cond numb=6.83854e+011
aux ps sph

40 T T T T T T

30

20

10

Re {famplitude I}
L]

aux

Figure 5.12: Real part of all “Currents”

(5.13) that in each adjacent pair, the normalized MAS currents are now oscillating
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Flotting the imaginary part of Ipq for ¢ = 25.7143%,

wherer_ =125 =3 r =21 #s0urces=25x14, cond numb=6 83854a+011
aux ps sph

300 T T T T T T

200

100

Im famplitude I}
L]

-100

-200

300 ; | ; ; i i
0 . . .
alx
Figure 5.13: Imaginary part of all “Currents”

between positive and negative values. This leads to one of the most important
conclusions of this work:

The values Re{Ui,}, Re{Us,}, Re{Us,}, ..., as well as the Im{U;,}, Im{Ui,},
Im{Ulvn},

e have significantly large absolute values, compared with the values in (/5.6)-(5.7)
e alternate in sign

indicating that the normalized MAS “currents” do not converge (if we choose to increase
the number of sources, so that M — 00).
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5.3.2 Changing the parameter M (number of auxiliary sources on constant ¢)

In the following figures for both cases 74y > 7eri and 14y, < 7o We demonstrate the variation
with M (total number of point sources on radius ru,,). We choose to increase this number
only with respect to 6 variable and keep N = 14 sources on each spherical ring.

o Case 1: Tauy € (Teris Tspr) When rey < raue < rspn, we expect the normalized MAS cur-
rents on the auxiliary surface (5.4) to converge all to a true limit for M — oco. That
is:

. Umn 75
o Ag = (5:8)

> Although we do not have an explicit formula for J; (as we did in chapter 3) we will
provide numerical evidence for the validity of (5.8)).

In the figures shown, the parameters have been set as follows:

k Teri = 1.47

definition

k TSPh =21 critical radius
_—
krps =3.0
k7gue = 1.80
#sources : M x N =27 x 14

Flotting real part of all currents |
forr. =18 r =3 r =21 #sources=27x14, cond numb=81086
aux ps sph

01 ! ! ! ! ! ! !

Re famplitude [}

ggE= | I i | I i I
] 50 100 150 200 250 300 350 400

order number of auxliary source

Figure 5.14: Real part of all “currents”
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Plotting imaginary part of all currents |
forr. =181 =3 r =21, #sources=27x14, cond numb=81086
aux ps sph

Im {amplitude I}

05 i i I I I i i
0 50 100 150 200 250 300 350 400

order number of auxliary source
Figure 5.15: Imaginary part of all “currents”

Plotting real part of lpq fora=90°,
wherer =18 r =3 r =21 #sources=27x14, cond numb=581086
AU ps sph
0.0287 ! ! ! ! ! !

. S — S T PR T |
00287 koo .............. .............. .............. ............... ............... ............. _
A — — S — SR W |

00287 oo SRR IR AU S AR S 1

Re famplitude I}

0027 b T RS Ro— R— S 1
00287 b A— H— A— T T— A— 1
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0.0287 | | | i | i
]
aux

Figure 5.16: Real part of all “currents”

We observe that as we add more sources, the curve showing the normalized “currents”
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Im {amplitude I}

(compare the pair (5.14)-(5.15)) and (5.20)-(5.21])) becomes smoother and seems to ap-

-3 whersr =18 r =3 r =21 #sources=27«14, cond numb=81086
w10 aux ps sph
-5.8435 T T I T | |
O BAAE b _
T A _
LB ARG b .
_88435_ ............................................................................................................................... -
_88435_ ................................................................................................................................ -
-8 8435 | | i | | |
0 1 2 3 4 5 B 7
=10k
Figure 5.17: Imaginary part of all “currents”
Plotting the real part of | for ¢ = 25.7143",
wherer. =18 =3 r =21 #sources=27x14, cond numb=581086
aux ps sph
0.1 T ) T T ! !
P
=)
=
=
=
S,
I
(0

Flotting imaginary part of Ipq fora=a0"

aux

Figure 5.18: Real part of all “currents”
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Flotting the imaginary part of Ipq for ¢ = 25.7143%,
wherer_ =18 r =3, r =21 #sources=27x14, cond numb=810386
aux ps sph
3 T T T T T T

Im {famplitude I}

0s ; ; ; ; ; ;
] 05 1 15 2 25 3 35

aux

Figure 5.19: Imaginary part of all “currents”

proach a limit J* of (5.8)), which is the curve of the continuous MAS problem.

We cannot increase the number of sources above the threshold that the condition number
Teond Of our square matrix A (of our linear system) dictates (no more than 10%6 as
discussed in section (5.4)) below. If we do, then ill-conditioning in solving our system
appears and the consequent round-off errors may spoil our conclusions.

k T's =21 critical radius
o theal radius, oy s = 1.47
k Tps = 3.0 definition
krous = 1.80
#sources : M x N =47 x 14
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Re {amplitude [}

Im {famplitude I}

Flotting real part of all currents |
forr =18,r =3, r =21 #sources=47x14, cond numb=3 25265e+007
aux ps sph
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Figure 5.20: Real part of all “currents”
Flotting imaginary part of all currents |

Py
forr. =181 =3 r_ =21, #sources=47x14, cond numb=3 25265e+007
aux ps sph
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Figure 5.21: Imaginary part of all “currents”
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Im {amplitude [}
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Plotting real part of | fora=90°,
wherer. =18 r =371 =21 #sources=47x14, cond numb=3 25265e+007
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Figure 5.22: Real part of all “currents”

Flotting imaginary part of | ; for e =907,
wihere rau}{:'l 3, rpS:3, rsph:2.1 JHsources=47x14, cond numb=3 25265e+007
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Figure 5.23: Imaginary part of all “currents”
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Re famplitude [}

Im Jamplitude [}

Plotting the real part of Ip for ¢ = 25.7143°,

wherer. =18 r =3 r =21 #sources=47x14, cond numb=3 25265e+007
AU ps sph
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Figure 5.24: Real part of all “currents”

Flotting the imaginary part of |p for ¢ = 25.7143%,

wherer. =18 r =3 r =21 #sources=47x14, cond numb=3 25265e+007
aux ps sph
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Figure 5.25: Imaginary part of all “currents”
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e Case 2: rgy, € (0,74;) In this case, that the auxiliary surface of the discrete sources lies
within the region of (0,7..), we should expect that the limit of ([5.4]), which is:

lim Uran _ lim Uran (5.11)

M—oo AS  M—oor2 sin QGWﬁ%

for M — oo diverges. We provide numerical evidence for this in figures (5.30)-(5.31)),
(5-36)-(-37).

Our parametres are:

k Teri = 1.47

definition

krps =3.0
k7ous = 1.25
#sources : M x N =17 x 14

k T'sph = 21} critical radius
_—

Plotting real part of all currents ||
forr. =125 =3,r =21 #sources=17x14, cond numb=8.70051e+008
aux ps sph

Re {amplitude [}
o]

10 | i 1 1
0 50 100 150 200 250

order number of awdliary source

Figure 5.26: Real part of all “currents”

Figures (5.32)),(5.33)),(5.36]),(5.37)),(5.34)),(5.35) are believed to be free of ill-conditioning
effects. It is not possible to increase M much more, because the condition numbers
become prohibitively large.
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Re {famplitude I}

Plotting imaginany part of all currents Ipq
forr =125 =3, r =21 #s0urces=17x14, cond numb=8.70051e+008
aux ps sph
g0 T T T T

Im{amplitude I}

_B0 | i 1 ]
0 50 100 150 200 250

order number of audliary source

Figure 5.27: Imaginary part of all “currents”

Plotting real part of Ipq fora =907,
whers raux:'l 25, rpS:S, rsph:2.1 Jtsources=17x14, cond numb=8.70051e+0085

01792 T | ! ! | J

OATSB|
OATSBL
01792

01792

01792

SR N S W NS W
o

7

Figure 5.28: Real part of all “currents
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Im{amplitude [}

Plotting imaginary part of | fora=90°,
where rau}(:'l 25, rp8=3, rsph=2.1 J#sources=17x14, cond numb=8 70051e+003

-0.5525 : ; ! ! : !
85 SO - S S S —
52|
T IR SN SN SN B SN SO
-05525 . - . | |
-0.5525
-0.5525
-05525
-0.5525
-05525 : ;
0550s | i i

a 1 2 3 4 5 5] 7

eaux

Figure 5.29: Imaginary part of all “currents”

Flotting the real part of |p for ¢ = 25.7143°,
wihere raux:'l 25, rpS:S, rsph:2.1 J#sources=17x14, cond numb=3.70051e+008

Re {famplituds I}

aux

Figure 5.30: Real part of all “currents”

76



Im famplituds [}

Flotting the imaginary part of Ipq for ¢ = 25.7143°,

wherer =125 =2 r =21 #sources=17x14, cond numb=8 70051e+008
aux ps sph

60 T T T T T

Figure 5.31: Imaginary part of all “currents”
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Now, we increase the number of the sources to the largest possible value, so that the
condition number does not imply any matrix ill-conditioning. Parametre setting is:

k Teri = 1.47

definition

k rSph =21 critical radius
_—
krps =3.0
kToue = 1.25
#sources : M x N =27 x 14

Plotting real part of all currents Ipq,
forr. =125, =3 r_ =21, #sources=27x14, cond numb=2 30395e+012
AU ps sph
60 T ; T ! T ; ;

40

a0 _ ........... ............. ............. ............. ............. ............. ............ _

Fe {famplitude I}
L]

220 _ ........ ............. ............. ........... |

_40__ ............ ............ ............ ............ ............ ............ ........... _

B0 i i I ! I i i
] 50 100 150 200 250 300 350 400
order number of auxliary source

Figure 5.32: Real part of all “currents”

We observe that the MAS currents present an abnormal behaviour as the number of

sources for varying 6 grows (compare (5.26)-(5.27)) and (5.32)-(5.33)): They oscillate

more and more rapidly and at the same time they increase in value for both their real
and imaginary part.

> It is worth mentioning that, according to (5.30)-(5.31)) and (5.36)-(5.37) this phe-

nomenon appears more for # = 0 (close to the ‘North pole’, where our point source
is located).

Besides, the initial values Re{l,,}, Re{ls,}, Re{ls,}, ... etc, as well as Im{I;,},
Im{l5,}, Im{I5,}, ... etc alternate in sign and, also, grow in absolute value (compare
(5.30)-(5.31) and ((5.36)-(5.37))).
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Re {famplitude I}

Plotting imaginary part of all currents |
forr. =125, =3 r =21, #sources=27x14, cond numb=2 30395e+012
aux ps sph
400 T T T T T T T

300 |- ............. ............. ........... _
200k ............ ............ ............ ............ ............ ............ ........... _

100_ .......... ............. ............. ............ ............ ............ ............ i

Im {famplitude I}
L]
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200 k- T ............. R TP SSTRSRRRIIE O ]
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_A00 i i I I I i i
] 50 100 150 200 250 300 340 400
order number of auxliary source

Figure 5.33: Imaginary part of all “currents”

Plotting real part of lpq fora=90°,
wherer =125 =3 r =21 #sources=27x14, cond numb=3 303952+012
aux ps sph
'04062 T T T T T T

-0.4062

-0.4082

-0.4062

-0.4062

-0.4082

063 S S
0

Figure 5.34: Real part of “currents”
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Im famplitude [}

3.6909 ! ! ! ; ! ;
36909
36909

56909 | i i i i i
0

Re {famplitude I}

Flotting imaginary part of |pq fore=90",
whers raux:'l 25, rpS:S, rsph:2.1 Jtsources=27x14, cond numb=3.30395e+012

aux

2

Figure 5.35: Imaginary part of “currents

Flotting the real part of Ipq for ¢ = 25.7143°,
where rau}(:'l 25, rps=3, rsph=2.1 JH#sources=27x14, cond numb=3 303952+012
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40
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=20
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Figure 5.36: Real part of “currents
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Flotting the imaginary part of Ipq for ¢ = 25.7143%,

wherer_ =125 =3 r =21 #50urces=27x14, cond numb=3.303952+012
aux ps sph

400 T T T T T T

200

200

100

Im famplitude I}
L]

-100

-200

-300

-400
0

aux

Figure 5.37: Imaginary part of “currents”

— Therefore, the normalized MAS currents do not converge for increasing M (ideally we
should demostrate this for M — oo, but we cannot increase M indefinitely, because
of round-off errors).
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Further evidence for the divergence of the limit in (5.11]) is presented in figures (5.38)) and
(5.38]). In these figures, the parameters have been set as follows:

k - T's =21 critical radius
o tical radius, g = 1.47
k- Tps = 3.0 definition
k- res = 1.80
#sources : M x N, where N = 14, M is assigned increasing values

It is seen that the curves remain almost the same as M increases.

Plotting real part of I'gq for ¢ = 25.7143°

04 T T T T T

T
#sources=16:x14
#sources=26x14

: : ; : #sources=36x14

024 : : : : #sources=46x14 H

. : : : #sources=56x14
#sources=66x14

|
fa=l
%1

o
i

Re {amplitude I}

-08

081

R i i I I i I
0 05 1 15 2 25 3 35
6 forr_ =181 =31 =21 condnumb=627336e+010

U AUx ps sph

a

Figure 5.38: Plottings 1
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Im {amplitude [}

05
0

Plotting imag part of Ipq for ¢ = 257143°

T
#sources=16x14
#sources=26x14
#sources=36x14
fsources=46x14
#sources=56x14
#sources=66x14

i

05 1 15 2 25
a forr. =187 =3r_ =21, cond numh=6.27936e+010
aux aux ps sph

Figure 5.39: Plottings 1
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5.4 BEHAVIOUR OF THE CONDITION NUMBER

5.4.1 Changing the number of sources

A measure of possible ill-conditioning of the linear system Ax = g is the condition number
defined as reong = || A|| || A|| ™!, where || A|| denotes the two-norm condition number (particuarly
in our Matlab implementation we have used the function “cond(X)”, which returns as 2-norm
condition number: the ratio of the largest singular value of X to the smallest). It is a quantity
that measures the sensitivity of the solution of a system of linear equations to errors in the
data. It gives an indication of the accuracy of the results from matrix inversion and the linear
equation solution. Values of cond(X) near 1 indicate a well-conditioned matrix, but, if too
high, they imply that the linear system solution will suffer from poor accuracy.

In figure , we can observe the behaviour of the condition number of our linear
system as a function of the number of sources (we increase the M sources for varying 6
variable (constant ¢) and we keep N = 14 for a placing of sources in 74y, = 1.80 > 7. It is
obvious that for a small number of sources (from M = 3 to M = 30 ) the logarithmic curve
of the condition number approximates a straight line. That means that the condition number
increases quite rapidly (exponentially) as the number of MAS sources increases linearly.

When the number of sources increases beyond M = 130 , the condition number increases
beyond the value 10*® which can be considered as a threshold for the accurate solution of our
system for our implementation in version 7.10.0.499 (R2010a) Matlab with double precision
arithmetic. In all of our numerical experiments we make sure that the number or discrete
auxiliary sources we impose is such that the condition number remains significantly lower
than this threshold.

In figure (5.41)) we set rqu. = 1.25 < r.;. We observe that the condition-number stops
being linear above the threshold of 10'7.

Again, while experimenting with the case of r,,, < 1. and plotting the MAS currents, we
should make sure that the number of sources is such that the condition number of our matrix
remains less than this threshold.
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Condition Mumber of the linear system's square matrix (logarithmic)

Plotting condition number as a function of increasing M,
forr. =181 =3 r_ =21, #sources for &= constant N =14
18 aux ps zph

10 T T

0 50 100 150

W number of sources for ¢ = constant

Figure 5.40: Condition Number 1
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Condition Mumber of the linear system's square matrix {logarithrmic)

Flotting condition number as a function of increasing M,
for rau}{:1 25, rpS:S, rsph:Q.'l fsources for 8 = constant M = 14

0 10 20 an 40 50 &0
W number of sources for ¢ = constant

Figure 5.41: Condition Number 2
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5.5 COMPARING EXACT vs DISCRETE SOLUTION OF THE
SCATTERED FIELD

The exact scattered pressure field u’, is obtained by the infinite series of the previous chapter
retaining a large number of terms On the other hand, the MAS scattered component of the
acoustic field uf ¢ is taken from the finite sum in the same chapter where the MAS “currents”
(amplitudes) U,,, are found from the solution of our linear system (5.3 .

o Case 1: Tauy € (Teris Tspn)

In the figures shown, the parameters have been set as follows:

krspn =2.1
kry,s =3.0

krou: = 1.80

#sources : M x N =17 x 14

} Zerty kerg,: = 1.47

Flotting real part of 'u' field as a function of r o fora . =1.0472,
ohservation obs
wherer =181 =2 r =21 #sources=17x14, cond numb=272077
AU ps sph
04 T | T T T T T T
g g ; alx_sourced_scat_fisld_comp
D2 B Pl anahtic_scat_field_comp M

T N S N
R e Y PP PP S _
=]
&z
S DA e i
8
o
= T AP i
O
[

1
=
(=]

T
i

e P S PSP N
T O S S _
_-14 | | | | | | | |

robs

Figure 5.42: Real Part of field u

o It is seen that the analytical and MAS Fields coincide. This is an expected result.
The corresponding relative errors are shown in figure (5.44]).
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Relative Error

Flotting imaginary part of 'u' field as a function of M ohservation' for eobs =1.0472,
where rau}{:1 g, rpS:S, rsph:2.1 JHsources=17x14, cond numb=272077

06 T T T T T T T
: : : aux_sourced scat_field _comp
: : analtic_scat field _com

0_4_ .......... ........... .......... : : Y‘t — — : bl D

0z
=
o
= 0
L
™
(=]
[iy]
= -02
E

-04

06

s | | | | | | | |

0 2 4 5] 8 10 12 14 16 18
robs
Figure 5.43: Imaginary Part of field u
Difference of MAS & Exact fields over Exact Field (error between calcul. fislds),
y 10-3 whers raux:1 8, rpS:S, rsph:2.1 J#sources=17x14, cond numb=272077

e P S S PP o
L o
a I 1 I | i I | I
0 2 4 B 8 10 12 14 16 18
rohs

Figure 5.44: Error between Exact and MAS Field
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o Case 2: rayy € (0,70)

Here, the parametres are chosen as follows:

k-rspn =21\ ,
. Ty oy = 147
k-rps=3.0

k-7oue = 1.25
#sources : M x N =25 x 14

Flotting real part of 'u' field as a function of M obseration” far eobs =1.0472,
where raux:'l 25, rpS:S, rsph:Q.‘l JHsources=25x14, cond numb=6.83854e+011

04 1 T T T T I T
g ; aux_sourced_scat_field_comp
02 ........... ........... .......... ana|wic_5cat_ﬁe|d_comp H
ol N TR W I |
e D2 e ................................. i
= :
2 :
E T e e .................................. a
[l .
3 :
= 06 _ ................................. a
2 :
T B PP ................................. _
I T SO DU OO PSP PUSROD SO .................................. i
B T O P ................................. i
_14 | | | | | I | |
0 2 4 5 3 10 12 14 16 13
robs

Figure 5.45: Real part of fields

This case of 744 < 7o is the most interesting of the two, because as is illustrated by
figures ([5.45))-(5.46]) the MAS-acoustic field, in the limit of M — oo

o exists for 7,5 > rspn. Besides, on the above figures (5.45)-(5.46]) we can see that
the MAS field produced by a small number of sources coincides with the exact field
Ueg-

¢ has been generated by the diverging and oscillating acoustic currents of figures
(5.30)-(5.31),(5.36)-(5.37). Thus, the correct and exact field is obtained from the

abnormal MAS “currents”.
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Relative Error

oo
4]

[#5]

2
4]

Flotting imaginary part of 'u' field as a function of M ohservation' for eobs =1.0472,
whera raux:'l 25, rpS:S, rsph:Q.I Hsources=25x14, cond numb=5.83854e+011

Figure 5.47: Error between fields
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Figure 5.46: Imaginary part of fields
Difference of MAS & Exact fields over Exact Field (error between calcul. fislds),
- wherer_ =125 r =3 r_ =271 #sources=25x14, cond numb=6 §3854de+011
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We summarize the most important conclusions in the following table:

Tausr location | Normalized Series Term (“Current”) | MAS Field u}, 44
(Upn.n) as solution to the linear (MAS)
system
Tauz = Teri = Sin[(](;zzx)lzl SNy *(Oauz, Pauz) | it converges
/ e uhras(M, N) -
Uhras = Uy
Tauw < Teri - sin[(]éZ:z)ﬁ = does not converge for | it converges
N — o0, it oscillates rapidly and hav- Uyras(M, N) -
ing large absolute values Uiras = Uey

where u® is the true (exact) field.

5.6 DISCUSSION ABOUT DIFFERENT GEOMETRIES AND GEN-
ERALIZATION OF THE CONCLUSIONS

In the above problem, we have applied the MAS to a soft spherical scatterer which was
illuminated externally. We have seeked to approximately satisfy the boundary condition on
the soft surface using (M — 1) x N auxiliary sources located inside it (rguz < 7spn). We
expect that our conclusions about the divergence of the normalized “current” density on this
auxiliary surface and the convergence of the acoustic field (both in the case of the (rgu. < remi),
with r..; defined above) remain valid in more complicated geometries. Therefore, if we study
a scattering problem with a geometry not allowing knowledge of the solution a priori, it is
possible that use of MAS leads to “abnormal” oscillations or divergence of the solution, which
may or may not be due to round-off. It is important that one verifies (by means of numerical
methods) if this abnormal behaviour is a result of matrix ill-conditioning or not. Similar
“abnormal” phenomena are likely to happen in more complicated geometries. It is important
to distinguish between the abnormal results herein and abnormal results due to round-off error:
Results due to matrix ill-conditioning can possibly be overcome by more powerful computers,
while oscillations discussed in this thesis cannot.
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Chapter 6

Conclusions and Prospect

6.1 CONCLUSIONS FROM THE 3D PROBLEM

The three main conclusions drawn from the numerical results in this diploma thesis are, for
the case of 3-D problems, new (to the best of our knowledge). A “MAS” user should be

considerate of where to place the auxiliary surface of sources (a spherical one, of radius rauz,

in our case) with reference to the critical spherical surface (defined by re; = % ). According

to what has been studied thoroughly in the previous section, the conclusions are:
¢ the auxiliary “currents” may oscillate;
¢ these oscillations are not due to roundoff or matrix ill-conditioning; and
¢ we obtain the correct acoustic field despite the oscillations.
Specifically:

* When the auxiliary surface is located in the region 74y, € (7, rspn), the field obtained
from the “MAS currents” is the true field (or its analytic continuation) for all observation
points outside the auxiliary source. As M, N — oo, the limit of the normalized, discrete
MAS currents

lim Unn _ im Urn
M,N—oco AS M,N—00 rgu:p

exists.

* When the auxiliary surface is located in area 74, € (0,74), for any finite M, N, one

can find the discrete MAS “currents” U, ,, and, from these, subsequently determine the
acoustic field. In the limit M, N — oo, the normalized MAS currents diverge, while the
electric field does converge to the correct electric field.
Numerical results showed that the divergence appears as oscillations near § = 0 in the
plot of U,,,, (that is, at points closest to the point source). The oscillations are almost
certainly not due to roundoff errors or matrix ill-conditioning Despite the oscillations,
one still obtains the true field for all observation points outside the sphere (in the area
(rspn; 00)).
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The thesis therefore describes a difficulty (namely, oscillations) associated with MAS. The
main advantages of illustrating a difficulty via a simple problem are two:

> If the difficulty occurs in a simple problem, it is also likely to occur in more complicated
problems.

> It is less likely to confuse the said difficulty with other difficulties (namely, effects due
to roundoff, matrix ill-conditioning, or shape elongation).

6.2 FUTURE WORK

For future work in our scattering boundary value problem there remains the “continuous”
MAS version to be studied. Also, one can study the same geometry, but different type of
boundary conditions (i.e. trasmission conditions, as described in chapter 1). Finally, an
interesting work could be done on the 3D vectorial problem: the electromagnetic version of
our scattering problem.
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