
Ευάγγελος Ν. Σιμόπουλος

Forest Fire Detection with Wireless Sensor Networks

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Γεώργιος Ε. Οικονομάκος

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Σεπτέμβριος 2013

Ευάγγελος Ν. Σιμόπουλος

Forest Fire Detection with Wireless Sensor Networks

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Γεώργιος Ε. Οικονομάκος

Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 4η Σεπτεμβρίου 2013.

Αθήνα, Σεπτέμβριος 2013

............................
Γεώργιος Οικονομάκος

Επίκουρος Καθηγητής Ε.Μ.Π.

............................
Κιαμάλ Πεκμεστζή

Καθηγητής Ε.Μ.Π.

............................
Δημήτριος Σούντρης

Επίκουρος Καθηγητής Ε.Μ.Π.

4

...................................

Ευάγγελος Ν. Σιμόπουλος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Ευάγγελος Σιμόπουλος , 2013.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

5

Περίληψη

Τα κατανεμημένα συστήματα είναι συστήματα υλικού και λογισμικού, στα οποία, στοιχεία

ενσωματωμένα σε υπολογιστές, επικοινωνούν και συντονίζουν τις ενέργειές τους με

ανταλλαγή πληροφοριών μεταξύ τους. Ένα κατανεμημένο σύστημα μπορεί να

αντιμετωπιστεί ως ένα παράλληλο σύστημα το οποίο βασίζεται σε αυτόνομα υπολογιστικά

μέρη (με ενσωματωμένη CPU, αποθηκευτικό χώρο, τροφοδοσία, διεπαφές δικτύου κλπ.)

συνδεδεμένα σε ένα δίκτυο (τοπικό, ευρείας περιοχής ή το Διαδίκτυο).

Σκοπός αυτής της διπλωματικής εργασίας είναι η θεωρητική κατασκευή και προσομοίωση

της λειτουργίας ενός δικτύου αυτόνομων υπολογιστικών μονάδων, ασύρματα

συνδεδεμένων μεταξύ τους, με στόχο την πλήρη παρακολούθηση και προστασία μιας

δασικής έκτασης από πυρκαγιές. Το δίκτυο αυτό αποτελείται από μικρές μονάδες, χαμηλού

κόστους και ενεργειακής κατανάλωσης, με ενσωματωμένους αισθητήρες. Τέτοια δίκτυα

είναι γνωστά ως Ασύρματα Δίκτυα Αισθητήρων (WSN), οι κόμβοι των οποίων

ονομάζονται motes. Βασική δομική μονάδα θα αποτελέσει η ενσωματωμένη πλατφόρμα

CM5000 της Advanticsys, κατασκευασμένη σε αντιστοιχία με την πλατφόρμα ανοιχτού

λογισμικού TelosB/Tmote Sky του Πανεπιστημίου Berkeley. Ολοκληρώνεται γύρω από τον

μικροεπεξεργαστή μικτών σημάτων MSP430 της Texas Instruments και τον πομποδέκτη

CC2420 της Chipcon, ενώ διαθέτει ενσωματωμένους αισθητήρες θερμοκρασίας, υγρασίας

και φωτεινότητας.

Ο προγραμματισμός των motes θα γίνει με τη βοήθεια του TinyOS, ενός λειτουργικού

συστήματος ανοικτού κώδικα κατάλληλα σχεδιασμένου για τον προγραμματισμό

ενσωματωμένων συστημάτων, γραμμένο σε μια παραλλαγή της γλώσσας προγραμματισμού

C, με την ονομασία nesC (network embedded systems C). Το TinyOS θα εγκατασταθεί σε

μια διανομή Linux. Για λόγους ευκολίας χρήσης και συμβατότητας επιλέχθηκε η διανομή

Ubuntu 13.04. Για την προσομοίωση της λειτουργίας του δικτύου θα χρησιμοποιηθεί ο

προσομοιωτής Cooja και μέσω αυτού ο MSPSim.

Λέξεις Κλειδιά: Κατανεμημένα Συστήματα, Ενσωματωμένα Συστήματα, Ασύρματα

Δίκτυα Αισθητήρων, WSN, Δασική Έκταση, Πυρκαγιά, Παρακολούθηση, Προσομοίωση,

CM5000, TelosB, Μικροελεγκτής Μικτού Σήματος, MSP430, CC2420, TinyOS, nesC,

Cooja, MSPSim, Eclipse, Yeti 2

6

7

Abstract

Distributed systems are hardware and software systems, in which, components installed on

computers, communicate and coordinate their actions by exchanging information. Α

distributed system can be seen as a system that relies on standalone computing parts (with

onboard CPU, storage space, power supply, network interfaces etc.) connected to a network

(local, wide area or the Internet).

The scope of this thesis is the theoretical construction and simulation of operation, of a

network of standalone computing units, wirelessly connected to each other, targeting the full

monitoring and protection of a forest area from fires. This network will be composed of

small, low cost and low power consuming modules with onboard sensors. Such networks

are known as Wireless Sensor Networks (WSN), the nodes of which are called motes. The

basic structural module will be the embedded platform CM5000 by Advanticsys, built in

accordance with the open source platform TelosB/Tmote Sky of the University of

California, Berkeley. It is built around the MSP430 mixed signal microprocessor by Texas

Instruments and the CC2420 transceiver by Chipcon, while it embeds temperature, humidity

and light sensors.

The programming of the motes will be done with the help of TinyOS, an open source

operating system, specifically designed to program embedded systems and written in a

dialect of the C programming language, called nesC (network embedded systems C).

TinyOS will be installed on a Linux distribution. For ease of use and compatibility reasons,

Ubuntu 13.04 was chosen. For the simulation of the network’s operation, the simulator

Cooja and within it MSPSim, will be used.

Keywords: Distributed Systems, Embedded Systems, Wireless Sensor Networks, WSN,

Forest Area, Fire, Monitoring, Simulation, CM5000, TelosB, Mixed Signal Microprocessor,

MSP430, CC2420, TinyOS, nesC, Cooja, MSPSim, Eclipse, Yeti 2

8

Acknowledgments

First and foremost, I would like to thank Prof. George Economacos for being my supervisor,

for his support and eagerness to help me and for our excellent cooperation throughout the

duration of this thesis.

I want to express my gratitude to the TinyOS and ContikiOS communities, and their

developers, with whom I had the pleasure to discuss many of the problems I faced.

Last, but by no means least, I would like to thank my mother for her silent but endless

support and encouragement throughout all these years of study.

9

TABLE OF CONTENTS

Chapter 1: Introduction ... 15

1.1 Introduction ... 15

1.2 Monitoring ... 15

1.3 Motes and Sensors ... 16

1.4 Wireless Sensor Networks ... 18

1.4.1 Energy Efficiency ... 18

1.4.2 Routing ... 19

1.4.3 Security ... 20

1.5 Operating Systems ... 20

1.6 Simulators .. 21

Chapter 2: Motes ... 23

2.1 Introduction ... 23

2.2 Common mote platforms ... 23

2.2.1 Physical Characteristics .. 24

2.2.2 Processor and Memory ... 25

2.2.3 Communications Capabilities ... 25

2.2.4 Sensor Support ... 26

2.2.5 Power Specifications .. 27

2.2.6 Price .. 27

2.3 Advanticsys CM5000 .. 27

2.3.1 Texas Instruments MSP430F1611 ... 29

2.3.2 Texas Instruments CC2420 .. 31

2.3.3 Sensirion SHT11 .. 32

2.3.4 Hamamatsu S1087 & S1087-01 ... 33

2.3.5 External Flash ... 35

Chapter 3: TinyOS & nesC ... 36

3.1 Introduction ... 36

3.2 TinyOS .. 36

3.3 nesC ... 37

3.3.1 Components and Interfaces .. 38

3.3.2 An Example Application .. 38

3.3.3 Commands and Events ... 40

3.3.4 Tasks and Split-Phase Operations .. 43

3.3.5 Radio Communication .. 45

3.4 Cooja ... 50

3.5 MSPSim ... 53

10

3.6 Yeti 2 plugin for Eclipse IDE .. 54

Chapter 4: WSN 1.0 .. 55

4.1 Introduction ... 56

4.2 Creating the mote .. 56

4.2.1 Sensor operation ... 56

4.2.2 Power Consumption ... 58

4.2.3 FireSense Mote ... 63

4.2.4 BaseStation Mote ... 67

4.3 Testing the WSN ... 67

4.4 WSN 1.0 .. 70

4.5 Energy Analysis .. 74

Chapter 5: WSN 2.0 .. 78

5.1 Intro ... 78

5.2 Friis Transmission Equation .. 78

5.3 WSN 2.0 .. 80

5.4 Energy Analysis .. 82

5.4.1 FireSense 2.0 .. 82

5.4.2 Repeater .. 86

Chapter 6: Conclusion & Future Work ... 89

6.1 Conclusion ... 90

6.2 Future Work .. 91

References ... 92

Appendix ... 94

11

LIST OF FIGURES

Figure 1.2.1: Active monitoring (left) vs. passive monitoring (right) 16

Figure 1.2.2: Harvard’s volcano monitoring [8] ... 16

Figure 1.3.1: Typical mote .. 17

Figure 1.3.2: Typical mote architecture .. 17

Figure 1.4.1: Heliomote [13] ... 19

Figure 1.4.2: PMG37 Microgenerator ... 19

Figure 1.5.1: TinyOS ... 21

Figure 1.6.1: Avrora simulator .. 21

Figure 1.6.2: Cooja simulator .. 22

Figure 2.2.1: TelosB/ Tmote Sky (left) & MicaZ (right) motes .. 23

Figure 2.2.2: SHIMMER (left) & IRIS (right) motes ... 24

Figure 2.3.1: Front and back of the TelosB/Tmote Sky module ... 28

Figure 2.3.2: CM5000 Block diagram [14] ... 29

Figure 2.3.3: TI MSP430F1611 .. 29

Figure 2.3.4: CPU Frequency vs. Minimum supply voltage ... 30

Figure 2.3.5: Block diagram of the TI MSP430 microcontroller and its connection to other

peripherals in the Telos module .. 30

Figure 2.3.6: Sensirion SHT11 .. 32

Figure 2.3.7: Maximal RH (left) and Temperature (right) tolerance [19] 33

Figure 2.3.8: Hamamatsu S1087 ... 33

Figure 2.3.9: Spectral Response .. 34

Figure 2.3.10: S1087 (left) & S1087-01 equivalent circuits [27].. 34

Figure 3.3.1: The nesC compilation model. .. 38

Figure 3.4.1: New Simulation wizard ... 51

Figure 3.4.2: Default plugins ... 52

Figure 3.4.3: Extended plugins .. 52

Figure 3.5.1: Standalone MSPsim running ... 53

Figure 3.5.2: Output of the Profile command in a terminal .. 53

Figure 3.6.1: Yeti2 Error Detection ... 54

Figure 3.6.2: Yeti 2 Code Completion .. 54

Figure 3.6.3: Yeti 2 nesC documentation .. 54

Figure 3.6.4: Yeti 2 Outline ... 54

Figure 3.6.5: Yeti 2 Graph Creation .. 55

Figure 4.2.1: Mote’s Output .. 58

Figure 4.2.2: Simplified state machine of the Prototype mote .. 59

Figure 4.2.3: Command line statistics for the Prototype mote .. 60

Figure 4.2.4: Radio duty cycle for the Prototype mote ... 60

Figure 4.2.5: MSP430 duty cycle for the Prototype mote ... 61

Figure 4.2.6: Mote’s battery life vs. battery capacity (Prototype mote)................................ 62

Figure 4.2.7: Simplified state machine of the FireSense mote .. 63

Figure 4.2.8: Simplified state machine of the BaseStation mote .. 67

12

Figure 4.3.1: Network topology depicted .. 68

Figure 4.3.2: FireSense onboard sensors’ duty cycle .. 69

Figure 4.3.3: Radio duty cycle for the FireSense motes ... 69

Figure 4.3.4: MSP430 duty cycle for the FireSense motes ... 69

Figure 4.3.5: Heavy radio traffic during FireSense motes’ operation 70

Figure 4.4.1: Normal radio traffic after code improvement .. 71

Figure 4.4.2: BaseStation receives all FireSense motes’ packets during a sample period 72

Figure 4.4.3: Dummy mote placement .. 72

Figure 4.4.4: Packets exchanged while forwarding a dummy mote’s packet. Vertical line

depicts 29ms .. 73

Figure 4.4.5: BaseStation needs 5ms to forward a radio packet to its serial port 73

Figure 4.4.6: This is what 29ms look like as the WSN forwards the packet from dummy

mote to sink ... 73

Figure 4.5.1: Mote’s battery life vs. battery capacity (FireSense mote, 30sec period) 75

Figure 4.5.2: Mote’s battery life vs. battery capacity (FireSense mote, 60sec period) 76

Figure 4.5.3: Mote’s battery life vs. battery capacity (FireSense mote, 90sec period) 77

Figure 5.2.1: CC2420 ideal radio range vs. current consumption ... 80

Figure 5.3.1: BaseStation receives all FireSense 2.0 motes’ packets during a period 81

Figure 5.3.2: WSN 2.0 network topology ... 81

Figure 5.4.1: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 30sec period) ... 83

Figure 5.4.2: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 60sec period) ... 84

Figure 5.4.3: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 90sec period) ... 85

Figure 5.4.4: Mote’s battery life vs. battery capacity (Repeater mote, 30sec period)........... 87

Figure 5.4.5: Mote’s battery life vs. battery capacity (Repeater mote, 60sec period)........... 88

Figure 5.4.6: Mote’s battery life vs. battery capacity (Repeater mote, 90sec period)........... 89

Figure 6.1.1: Logarithmic diagram of all examined motes’ lifetime (60sec period) 90

13

LIST OF TABLES

Table 2.2.1: Physical characteristics of common mote platforms [3] 24

Table 2.2.2: Microprocessor & memory specifications [3] ... 25

Table 2.2.3: Radio chip specifications [3] ... 26

Table 2.2.4: Radio chip power consumption [3] ... 26

Table 2.2.5: Cost per mote .. 27

Table 2.3.1: Current draw during Active and Sleep modes [15] ... 31

Table 2.3.2: CM5000 radio transceiver’s specifications [16] ... 32

Table 2.3.3: Sensirion SHT11 operational parameters .. 32

Table 2.3.4: SHT11 supply characteristics .. 33

Table 2.3.5: S1087 & S1087-01 specifications ... 34

Table 2.3.6: ST M25P80 power states [14] ... 35

Table 3.3.1: Commonly used types in nesC [10] .. 46

Table 4.2.1: d1 and d2 in relation to VDD and ADC bits of operation 57

Table 4.2.2: c1, c2 and c3 for 8 or 12bit ADC [19] .. 57

Table 4.2.3: Duty cycle and current consumption of all components in a Prototype mote .. 61

Table 4.2.4: Prototype mote’s battery life for various battery capacities 62

Table 4.5.1: Duty cycle and current consumption of all components in a FireSense mote

(30sec period) .. 74

Table 4.5.2: FireSense mote’s battery life for various battery capacities (30sec period) 75

Table 4.5.3: Duty cycle and current consumption of all components in a FireSense mote

(60sec period) .. 75

Table 4.5.4: FireSense mote’s battery life for various battery capacities (60sec period) 76

Table 4.5.5: Duty cycle and current consumption of all components in a FireSense mote

(90sec period) .. 77

Table 4.5.6: FireSense mote’s battery life for various battery capacities (90sec period) 77

Table 5.2.1: PA_LEVEL, output power and current consumption in relation to ideal radio

range .. 79

Table 5.4.1: Duty cycle and current consumption of all components in a FireSense 2.0 mote

(30sec period) .. 82

Table 5.4.2: FireSense 2.0 mote’s battery life for various battery capacities (30sec period) 82

Table 5.4.3: Duty cycle and current consumption of all components in a FireSense 2.0 mote

(60sec period) .. 83

Table 5.4.4: FireSense 2.0 mote’s battery life for various battery capacities (60sec period) 84

Table 5.4.5: Duty cycle and current consumption of all components in a FireSense 2.0 mote

(90sec period) .. 85

Table 5.4.6: FireSense 2.0 mote’s battery life for various battery capacities (90sec period) 85

Table 5.4.7: Duty cycle and current consumption of all components in a Repeater mote

(30sec period) .. 86

Table 5.4.8: Repeater mote’s battery life for various battery capacities (30sec period) 86

Table 5.4.9: Duty cycle and current consumption of all components in a Repeater mote

(60sec period) .. 87

14

Table 5.4.10: Repeater mote’s battery life for various battery capacities (60sec period) 88

Table 5.4.11: Duty cycle and current consumption of all components in a Repeater mote

(90sec period) .. 88

Table 5.4.12: Repeater mote’s battery life for various battery capacities (90sec period) 89

15

Chapter 1: Introduction

“I’m not sure what solutions we’ll find to deal with all

our environmental problems, but I’m sure of this: They

will be provided by industry; they will be products of

technology. Where else can they come from?

George M. Keller, Nation’s Business

12 June 1988 (S&S)

1.1 Introduction

In times where technology evolves on a daily basis, new inexpensive solutions can be

created. These new tools overcome the existing ones by requiring less work while achieving

better results and offering more functionality. These new technologies also allow the

conception of new tools to previously unsolvable problems.

Wireless Sensor Networks (WSN) are wireless networks formed by small low cost

autonomous devices called motes, with the ability to sense the surrounding environment. An

extension to WSN that adds the ability to act besides sensing over the environment is called

Wireless Sensor and Actor Networks (WSAN). Both WSAN and WSN are possible

solutions for several problems. Their main characteristics are easy deployment and low cost,

while having the ability to sense and act without human intervention makes their usage

highly attractive in many applications. They are being adopted in several fields of work.

Some examples include: creating effective irrigation systems, fire alarms, structure health

monitoring and medical or military applications. Throughout this thesis we will deal with

WSNs for forest fire detection. Our exact purpose will be to design a WSN to monitor a

forest area, acquire readings from appropriately placed sensors and transmit these readings

over-the-air so as to detect a fire when it starts and prevent it from spreading.

1.2 Monitoring

Monitoring can be defined as the act of continuously observing something. It generally

means to be aware of the state of a system. Environmental monitoring describes the

processes and activities that need to take place to characterise and monitor the quality of the

environment.

When we refer to monitoring we can differentiate two types: active and passive. The

difference between these two types is that while active monitoring necessarily involves

human presence, being performed through field visits to the monitored environment, passive

monitoring is done by autonomous systems not requiring human intervention. In this case,

16

the monitoring system is placed in the environment, automatically acquiring data and either

storing it locally for later retrieval or sending it to a remote system.

Figure 1.2.1: Active monitoring (left) vs. passive monitoring (right)

Several applications of WSNs in monitoring exist such as animal monitoring used by

biologists to study animals in the wild, structure health monitoring used to ensure buildings

or bridges condition, volcano monitoring used to study the seismic activity of volcanic areas

and obviously forest monitoring mainly used for forest fire detection.

Figure 1.2.2: Harvard’s volcano monitoring [8]

1.3 Motes and Sensors

We will cover the motes in more detail in Chapter 2 but an introduction here is necessary, as

they are the basic building block of a WSN. A sensor node (also known as mote) may be

described as a small low-cost device with the ability to perform some processing, gather

sensory information and communicate with other connected nodes in the network [12]. A

mote is a node but a node is not always a mote. Its main components are a microcontroller,

17

transceiver, external memory, power source and one or more sensors. A typical mote can be

seen in the picture below.

Figure 1.3.1: Typical mote

The microcontroller and memory provide computational power and storage space

respectively, while the power source – usually a battery – provides energy supply to the

mote, making it autonomous. The mote captures data through the acquisition system

composed of a set of sensors. These may be embedded directly in the mote or a separate

sensor board connected to the mote via its I/O ports. Sensors of any type (e.g. temperature,

humidity, light, acceleration etc.) can be connected depending on the type of data we intend

to capture. Using a transceiver, the communication module allows data to be wirelessly

transmitted and received between nodes. The typical architecture of a mote is depicted

below [12]. Again, more on this in Chapter 2.

Figure 1.3.2: Typical mote architecture

18

1.4 Wireless Sensor Networks

Wireless sensor networks (WSN) are wireless networks formed by motes. The wireless and

routing technologies in motes allow them to be deployed creating a WSN, where each node

may capture environmental information and share it with all other motes. The system’s cost

can be highly reduced by avoiding cabling and instead use wireless technology. This also

allows both a more flexible deployment and lower maintenance costs.

WSNs intend to provide a low cost solution to problems such as monitoring large areas,

difficult access or hazardous environments. These networks can replace expensive active

monitoring with cost effective passive monitoring. It is possible to set the motes to capture

data for a certain period of time and transmit it to be stored in a central node called sink,

where a person could be in order to access and monitor the captured information. The

biggest challenges that WSN designers are faced with nowadays are energy efficiency,

routing and security [11]. They are presented in more detail below.

1.4.1 Energy Efficiency

Energy management and consumption are critical challenges for WSNs as motes require

energy to operate each of their composing parts and be autonomous. The main objective of

studies conducted in this field is to maximize the motes' lifetime. All motes' components

require a certain amount of energy to operate even when it comes to small amounts. The

connection of motes to a power source such as a power socket, implies the use of cables,

thus nullifying the benefits of wireless technology.

Most motes nowadays are battery powered, allowing them to be autonomous and wireless

but also limiting their lifetime. What WSN designers can do to maximize a mote's lifetime is

to minimize its hardware energy consumption. The power usage can be reduced by putting

motes into sleep mode - a state where all mote's activity is stopped and all of its composing

parts are switched off - or even by putting a single component to sleep when not in use (e.g.

switch off the radio transceiver), thus reducing its duty cycle - the percentage of time during

which a device is working.

19

Figure 1.4.1: Heliomote [13]

Research is being done to find alternative or complementary power sources to batteries.

Environmental energy harvesting methods are being studied as they allow the mote to

collect energy from the environment. Two of the aforementioned methods include solar

cells, that allow the conversion of sunlight to electricity through solar panels, and

piezoelectric ceramic materials that convert environment vibrations to electricity. The use of

energy harvesting techniques turns everlasting mote lifetime into a possibility. Some

commercially available products already exist, such as the

Heliomote. As will be shown in Chapter 2, the mote that will be used

for this thesis is powered by a pair of batteries. We will not go into

the process of dealing with alternative power sources for two

reasons. In order to use a solar cell a mote has to be put under direct

sunlight, which means on top of a tree. But doing so, i) increases the

distance of the mote from the ground and because a fire always starts

from the ground up, the mote gets slower in detecting changes in

light flux or temperature, thus increasing the duration of the crucial

first time detection, and ii) may cause the mote and its sensors to

overheat during the hot summer months and provide false sensor

readings. Piezoelectric generators do not apply to our case too, as they are best suited to

seismic oriented applications.

1.4.2 Routing

Routing collected information between sensor nodes in WSNs presents several challenges.

The different kinds of network topologies and their requirement for different routing

protocols, the possibility that nodes are randomly deployed or large in quantity are some of

the faced problems. Energy and computation constraints also impose new requirements to

routing algorithms. A system failure or power shortage may turn off nodes, requiring new

Figure 1.4.2: PMG37

Microgenerator

20

routes to be calculated so as to maintain network connectivity between the rest operating

nodes.

Requirements such as low energy and memory consumption mean limited routing tables and

new algorithms. Several routing protocols have been specifically designed for WSNs in

order to appropriately fulfill these special needs. The existing routing protocols are

categorized according to the network structure in which they operate and the protocol

operation. Depending on the network structure they can be classified as flat, hierarchical or

location-based routing. Depending on their operation they can be multipath-based, query-

based, negotiation-based, QoS -based or coherent-based [11].

1.4.3 Security

The use of wireless technology in WSNs has numerous benefits but it also introduces

several security threats that need to be considered. Motes' characteristics of limited

computing power and low energy resources represent a challenge in producing an effective

security solution.

Attacks against WSNs are divided into two types: attacks against the security mechanisms

and against basic mechanisms. Some of the common WSN attacks are denial of service

(DoS), attacks on information in transit, blackhole/sinkhole attacks, hello flood attacks or

wormhole attacks. Most of those are caused when a malicious node sends false information

to other nodes thus compromising the system. Detecting mechanisms to solve these attacks

are still being developed.

1.5 Operating Systems

Due to specific requirements and constraints of sensor nodes and wireless sensor networks,

operating systems have been created specifically targeting embedded platforms, their needs

and objectives. Reconfiguration, energy awareness and optimization, self-configuration,

multi-hop communications, memory and computation power constraints, are some of the

requirements these operating systems need to address.

Some of the most popular operating systems used, are Nano-RK [21] developed at Carnegie

Mellon University, SOS [22] developed at University of California Los Angeles, MANTIS

[23] developed at the University of Colorado, BTNut [24] developed at ETH Zurich,

Contiki [25] at Swedish Institute of Computer Science and, the most widely used, as well as

the one that will be used in this thesis, TinyOS [9] created at the University of California

Berkeley.

21

Figure 1.5.1: TinyOS

TinyOS is an open source operating system featuring a component-based architecture

minimizing memory usage and providing an event-driven execution model allowing fine-

grained power management and scheduling flexibility. Software programs developed in

TinyOS are programmed using nesC, an extension to the C programming language. We will

examine both TinyOS and nesC, in depth, in Chapter 3.

1.6 Simulators

Simulators are software platforms specifically designed to simulate a WSN's or even a

single mote's behavior. These platforms allow testing a developed program without having

to install the software in the actual motes or, as in our case, without even having any

physical sensor node. Simulators are immensely time-saving when one needs to examine the

characteristics and operational parameters of a WSN involving hundreds or thousands of

motes, prior to its installation.

Figure 1.6.1: Avrora simulator

22

Using a simulator, it is possible to monitor and analyze every single mote in a simulated

network and its response during its life cycle. Energy consumption, packets received, sent or

dropped and the mote's LEDs status are some of the variables usually observed. A large

number of simulators exist, some of them are: TOSSIM the native simulator from TinyOS,

Avrora [26] developed at the University of California Los Angeles, Cooja originally created

at the Swedish Institute of Computer Science as a Contiki simulator but now able to

simulate nodes programmed in the TinyOS operating system as well [1], and MSPSim, a

MSP430 simulator [5], also developed at SICS.

Figure 1.6.2: Cooja simulator

23

Chapter 2: Motes

2.1 Introduction

The term "mote" was coined by researchers in the Berkeley NEST (now WEBS and CENS

projects) to refer to spatially distributed autonomous devices which use sensors to

cooperatively monitor physical and/or environmental conditions (e.g. temperature, sound,

pressure, vibration) at different locations. Practical WSN nodes, henceforth "motes",

currently range in size from disc-shaped boards having diameters less than 1 cm to enclosed

systems with typical dimensions less than 5 cm square.

Each mote is composed of a microcontroller, transceiver, memory, power source and one or

more sensors, either embedded or external to the sensor board. The motes function within a

WSN and typically fulfil one of two purposes: either data logging, processing (and/or

transmitting) sensor information from the environment or acting as a gateway in the adhoc

wireless network formed by all the motes to pass data back to a, usually but not necessarily

unique, collection point.

In this chapter we present a brief review of several frequently used WSN motes, compared

and contrasted under a number of different parameters. Then, we will delve into the details

of Advanticsys CM5000 [27], a TelosB/Tmote Sky based mote, examining each of its

structural components and explaining why it is our mote of choice for this thesis.

2.2 Common mote platforms

TelosB/Tmote Sky: Wireless sensor modules developed from research carried out at

University of California Berkeley and currently available in similar form factors from

Crossbow and Advanticsys.

Figure 2.2.1: TelosB/ Tmote Sky (left) & MicaZ (right) motes

24

MicaZ: Second and third generation wireless sensor networking mote family from

Crossbow.

SHIMMER: (Sensing Health with Intelligence, Modularity, Mobility and Experimental

Reusability) is a wireless sensor platform designed to support wearable applications and is

mainly used in the medical field.

Figure 2.2.2: SHIMMER (left) & IRIS (right) motes

IRIS: The latest wireless sensor network module from Crossbow. Incudes several

improvements over the Mica2/MicaZ family of products. Improvements include increased

transmission range.

2.2.1 Physical Characteristics

The first parameter which may dictate mote selection for a given application is physical

size. Table 2.2.1 provides an overall comparison of the physical dimensions of the motes in

the previous section. This table also lists the motes' weight, which can be a decisive factor

when choosing a certain WSN, especially in applications where the motes are components

of a mobile unit or are integrated into wearable health monitoring solutions.

Mote Platform WxLxH [cm] Weight w/o batt [g] Weight with batt [g]

TelosB/Tmote Sky 3.2 x 6.6 x 0.7 14.93 63.05

MicaZ 3.2 x 5.7 x 0.6 15.70 63.82

SHIMMER 2 x 4.4 x 1.3 4.87 10.36

IRIS 3.2 x 5.7 x 0.6 21.29 69.40

Table 2.2.1: Physical characteristics of common mote platforms [3]

The SHIMMER platform's advantage is obvious. Its small dimensions and low weight make

it much more suitable than the other in medical oriented applications. When a mote has to

be part of a wearable application, its size and weight are of the utmost importance. Its low

weight also minimizes the effect of the mote’s inertial mass when using the mote's

25

embedded accelerometer. In our case, weight and size is not going to be a deciding factor as

the motes will be stationary and placed on trees.

2.2.2 Processor and Memory

Table 2.2.2 reviews the microprocessor specifications (bus width and processor clock speed)

for each of the respective motes examined. It also provides information on available on-

board memory for each mote platform. There is a variety here in available memory sizes,

possibly a reflection of their different application spaces.

Mote

Platform

Microprocessor Bus

[bits]

Clock

[MHz]

RAM

[KB]

Flash

[KB]

EEPROM

TelosB/

TmoteSky

Texas

Instruments

MSP430F1611

16 4 10 48 1M

MicaZ Atmel Atmega

128L

8 8 4 128 512K

SHIMMER Texas

Instruments

MSP430F1611

16 8 10 48 none

IRIS Atmel Atmega

1281

8 8 8 640 4K

Table 2.2.2: Microprocessor & memory specifications [3]

In addition to these on-board memory capabilities, some sensor nodes also allow the option

of saving data to additional external non-volatile memory.

2.2.3 Communications Capabilities

The TelosB/Tmote Sky, MicaZ and SHIMMER motes, employ the 802.15.4 compatible

CC2420 radio chip from Texas Instruments, while the IRIS Mote uses (again a 802.15.4

compatible chip) Atmel's AT86RF230. These two radios are packet level radios, with a

maximum packet length of 127 bytes. In addition to the CC2420, the SHIMMER mote also

contains a second radio chip, a class 2 Bluetooth radio compatible with the Mitsumi WML-

C46 series. Table 2.2.3 lists the operating specifications of the three radios and Table 2.2.4

gives the power consumption of each radio in sleep mode/switched off, idle/receive mode

and when transmitting at a specified power level.

26

Radio

Module

Frequency

[MHz]

Modulation Data Rate Tx Power

[dBm]

Rx

Sensitivity

[dBm]

TI CC2420 2400 - 2483.5 QQPSK 250 Kbps -24 - 0 -95

Atmel

AT86RF230

2405 - 2480 QQPSK 250 Kbps -17 - 3 -101

Mitsumi

WML-C46

2400 - 2483.5 GFSK 721 Kbps -6 - 14 -82

Table 2.2.3: Radio chip specifications [3]

The CC2420 is a very popular chip for use on wireless sensor nodes, being used on three of

the motes considered here. The CC2420 was the first 802.15.4 radio chip to be widely

available in the market. 802.15.4 is very suitable for use in WSNs due to its very low power

and flexibility. A feature of the CC2420 lacking on the other radios, is its support for

encryption using AES 128. This feature can greatly reduce the cost, both in terms of power

and latency, of securing WSN communications.

Radio Module Sleep [μA] Idle/Rx [mA] Tx [mA]

TI CC2420 1 - 426 18.8 17.4

Atmel AT86RF230 0.02 15.5 16.5

Mitsumi WML-C46 50 - 1400 40 60

Table 2.2.4: Radio chip power consumption [3]

The WML-C46 is a class 2 Bluetooth radio, with a range of approximately 10 meters.

WSNs were not considered as a target for Bluetooth when it was being designed and as a

result it is not ideally suited for use with them, being overly complex for most applications.

However, the presence of Bluetooth allows it to address a current problem faced by

802.15.4 devices, which is interoperability with existing devices. For many applications a

Bluetooth enabled mobile phone or laptop can be a very convenient device to use for data

aggregation or network querying.

2.2.4 Sensor Support

The TelosB/Tmote Sky offers a versatile set of onboard sensors, namely humidity,

temperature and light sensors. In addition to the onboard sensors, the TelosB/Tmote Sky

provides access to 6 ADC inputs, a UART and I2C bus and several general purpose ports.

The MicaZ motes do not have onboard sensors. However, Crossbow offers an extensive set

of sensor boards that connect directly to the MicaZ mote and are capable of measuring light,

humidity, temperature, pressure etc. Additionally, actuators such as relays and buzzers can

be attached too, in case of a WSAN. Intel's SHIMMER mote incorporates a 3 axis

accelerometer and allows connection of other sensors through its expansion board. As in

MicaZ, more types of sensors (most of them medically oriented) are available. The IRIS

mote, in Crossbow tradition, does not offer any embedded sensor capabilities. However, it is

27

equipped with a 51-pin expansion connector that existing MicaZ compatible, Crossbow

sensor boards can be connected to.

2.2.5 Power Specifications

Both the TelosB and Tmote Sky boards are typically powered from an external battery pack

containing two AA batteries. AA cells may be used in the operating range of 2.1 to 3.6V

DC, however the voltage must be at least 2.7V when programming the microcontroller flash

or external flash. MicaZ and IRIS motes are also powered by a set of two AA batteries in an

attached battery pack. The SHIMMER mote is powered by a rechargeable 450mAh Li-Ion

battery. The Shimmer design also includes a Texas Instruments BQ-24080 Smart Li Charger

for battery management.

2.2.6 Price

Current (August 2013) pricing information for a single mote is shown in Table 2.2.5.

Mote Platform Price

TelosB/Tmote Sky 77 €

MicaZ 77 €

SHIMMER 199 €

IRIS 87 €

Table 2.2.5: Cost per mote

2.3 Advanticsys CM5000

Taking into consideration the analysis done in section 2.2 we make the decision to use the

TelosB/Tmote Sky platform for our purpose. In order to design and simulate our WSN, we

will be using more than 10 motes. SHIMMER is the easiest one to leave out because of its

high price and medically oriented field of applications. IRIS is another mote we won't

consider. We can see from Table 2.2.4 that its radio transceiver may be the most frugal in

terms of power consumption, but only by a little and as will be shown in Chapter 4, our

application will not be using the radio for long periods of time. The motes will operate

mostly in sleep mode, except when they wake up, sample their sensors and send their

readings using their radio. That means that the microprocessor's behavior has to be taken

into consideration as well, and by doing that, the IRIS's advantage over a TelosB mote turns

into a drawback, if we consider that when active, the Atmega 128 microprocessor draws

7.6mA of current instead of 1.8mA of a MSP430, and when idle, 3.3mA instead of 5.1μA of

a MSP430 [3]. The same applies in the case of the MicaZ mote. Tmote Sky uses the same

radio chip as Micaz but the latter is equipped with an Atmega 128 instead of a MSP430. The

Atmega is a faster processor so it is best suited to more CPU intensive applications.

Another important drawback shared by the MicaZ and IRIS motes, is their lack of onboard

sensors. This, not only adds to the platform the cost of separate sensor boards, but it makes

28

them harder to program, pack and simulate as well. Modern simulators may be easier to

calibrate and configure than it was in the past, but in order to do so, a programmer needs to

be acquainted not only with TinyOS and nesC but possibly Java (in the case of Avrora and

Cooja) and Python (in the case of TOSSIM) too.

None of the things mentioned above will be a problem in the case of a Tmote Sky mote. It is

equipped with onboard sensors, making it the cheapest to buy, and has the lowest

microprocessor power consumption, thus prolonging the mote's life expectancy. Its sensors

are also perfectly suited to our case, as temperature, humidity and light are crucial variables

to be measured when trying to detect a forest fire. The mote also works perfectly (expect for

a small sensor misbehavior) with the Cooja and MSPSim simulators that we will be using.

The Advanticsys CM5000, based on the original open-source TelosB/Tmote Sky, will be

our mote of choice.

Figure 2.3.1: Front and back of the TelosB/Tmote Sky module

29

It has the following general characteristics [27]:

 Texas Instruments MSP430F1611 Microcontroller (MCU)

 Texas Instruments CC2420 Radio Transceiver

 Sensirion SHT11 Temperature & Humidity Sensor

 Hamamatsu S1087 & S1087-01 Light Sensors

 User & Reset Buttons

 3 x LEDs (RGB)

 USB Interface

 2 x AA Battery Holder

 TinyOS & ContikiOS compatible

2.3.1 Texas Instruments MSP430F1611

The low power operation of the TelosB module is due to the ultra-low power Texas

Instruments MSP430F1611 microcontroller featuring 10kB of RAM, 48kB of program flash

memory and 128B of information storage. This 16-bit RISC processor features extremely

low active and sleep current consumption that permits Telos to run for months on a single

pair of AA batteries.

The MSP430 includes three clock sources [15]:

 LFXT1CLK: Low frequency/high frequency

oscillator that can be used either with low

frequency 32768Hz = 32KHz watch crystals, or

standard crystals or resonators in the 450KHz to 8

MHz range.

 XT2CLK: Optional high frequency oscillator that can be used with standard crystals,

resonators, or external clock sources in the 450KHz to 8MHz range.

 DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type

characteristics.

There are three clock signals available. The one that we are interested in is the Master Clock

(MCLK). MCLK is software selectable and is derived from one of LFXT1CLK, XT2CLK

or DCOCLK. It is used by the CPU and the system. By default it is sourced from DCOCLK

and its default operating frequency in the case of a TelosB mote is 4.15MHz, while it may

operate up to 8MHz. In order to achieve frequencies higher than 4.15MHz, a certain

minimum amount of supply voltage is necessary. Figure 2.3.4 shows the connection

between operating frequency and minimum supply voltage.

Figure 2.3.2: CM5000 Block

diagram [14]

Figure 2.3.3: TI MSP430F1611

30

Figure 2.3.4: CPU Frequency vs. Minimum supply voltage

Although it is software configurable, we will not modify the MCLK from its default value,

because of the non CPU-intensive nature of our application. If one would like to do so and

provided they are using TinyOS, the necessary component to look for [15] would be

MSP430ClockC and more specifically its MSP430ClockInit interface. Operating the mote at

higher frequencies might be necessary for CPU-intensive programs, but doing so increases

the mote’s power consumption, while our main objective is to keep it as low as possible.

Figure 2.3.5: Block diagram of the TI MSP430 microcontroller and its connection to other peripherals

in the Telos module

31

The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at 20oC.

When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. In

addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC ports. The

internal ports may be used to read the internal thermistor or monitor the battery voltage. A

variety of peripherals are available including SPI, UART, digital I/O ports, Watchdog timer

and Timers with capture and compare functionality. The F1611 also includes a 2-port 12-bit

DAC module, Supply Voltage Supervisor and 3-port DMA controller.

The MSP430 has one active mode and five software selectable modes of operation. An

interrupt event can wake up the device from any of the five low-power modes, service the

request, and restore back to the low-power mode on return from the interrupt program. As

developers, we will not have to worry about MCU management at all in most situations.

TinyOS handles everything for us automatically. The low-power modes range from LPM0,

which disables only the CPU and main system clock, to LPM4, which disables the CPU, all

clocks and the oscillator, expecting to be woken by an external interrupt source. The power

parameters of the MSP430F1611 MCU can be seen below (computed at 3.0V supply

voltage):

State Current draw [μΑ]

Active 1800

Sleep [LPM3] 5.1

Table 2.3.1: Current draw during Active and Sleep modes [15]

2.3.2 Texas Instruments CC2420

The CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver designed

for low-power and low-voltage wireless applications. CC2420 includes a digital direct

sequence spread spectrum baseband modem providing an effective data rate of 250Kbps.

The CC2420 provides extensive hardware support for packet handling, data buffering, burst

transmissions, data encryption, data authentication, clear channel assessment, link quality

indication and packet timing information. These features reduce the load on the host

controller and allow CC2420 to interface low-cost microcontrollers. It is based on

Chipcon’s SmartRF – 03 technology in 180nm CMOS.

The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port and a

series of digital I/O lines and interrupts. The radio may be put to sleep for low power duty

cycled operation. The transceiver also has software configurable output power, which the

transmission range is obviously dependent on. We will examine this in more detail in later

chapters, where we deal with different network topologies and where transmission range

will be a critical parameter in reducing overall power consumption. Its main features are

summarized below

32

Frequency Band 2400 ~ 2483.5MHz IEEE 802.15.4 Compliant

Sensitivity -90dBm(min), -95dBm(typ) Receive Sensitivity

Transfer Rate 250Kbps IEEE 802.15.4

RF Power -25dBm ~ 0dBm Software Configurable

Range ~100m (outdoor),

20~30m (indoor)

Longer range possible with optional

SMA antenna attached

Current Draw

Receive mode: 18.8mA

Transmit mode: 17.4mA 0 dBm

Idle Mode: 426μΑ Oscillator & Voltage Regulator On

Power Down mode: 20μΑ Voltage Regulator On

Off mode: 1μΑ Voltage Regulator Off

RF Power supply 2.1V ~ 3.6V CC2420 Input Power

Antenna Dipole Antenna/

PCB Antenna

Encryption Hardware MAC encryption

AES-128

Buffer 128(RX) + 128(TX) data

buffering

Table 2.3.2: CM5000 radio transceiver’s specifications [16]

2.3.3 Sensirion SHT11

The SHT11 is a relative humidity and temperature sensor

manufactured by Sensirion AG. The sensor integrates sensor

elements plus signal processing on a tiny footprint and

provides a fully calibrated digital output. The calibration

coefficients are stored in the sensor’s onboard EEPROM. A

unique capacitive sensor element is used for measuring

relative humidity while temperature is measured by a band-

gap sensor. SHT11 is produced using a CMOS process and

is coupled with a 14-bit A/D converter [19] [27].

Temperature

Operating Range -40 - +123.8oC

Accuracy ± 0.4oC Typical

Resolution 0.01oC Typical

Humidity

Operating Range 0 – 100% RH

Accuracy ± 3% RH Typical

Resolution 0.05% RH Typical

Table 2.3.3: Sensirion SHT11 operational parameters

Figure 2.3.6: Sensirion SHT11

33

The maximal accuracy limits for relative humidity and temperature are depicted below:

Figure 2.3.7: Maximal RH (left) and Temperature (right) tolerance [19]

The power characteristics can be seen below:

Parameter Conditions min typ max Units

Power

Supply

 2.4 3.3 5.5 V

Supply

Current

measuring 0.55 1 mA

average 2 28 μΑ

sleep 0.3 1.5 μΑ

Table 2.3.4: SHT11 supply characteristics

The average is calculated at one 12 bit measurement per second [19]. In the case of a

TelosB mote running on 2 x AA batteries, at a 3V voltage, the current drawn when the

sensor is measuring has to be a little less than 0.55mA (measured at 3.3V). We can only

make an assumption here, but due to the current value being small and its active duration

being equally small, it is safe to assume a 0.5mA current consumption when measuring,

without loss in accuracy.

2.3.4 Hamamatsu S1087 & S1087-01

The integrated light sensors S1087 and S1087-01 are ceramic

package photodiodes that offer low dark current. The ceramic

package used is light-impervious, so no stray-light can reach the

photosensitive area from the side or backside. This allows reliable

optical measurements in the visible to infrared range, over a wide

dynamic range from low light levels to high light levels. The

S1087 senses photosynthetically active radiation while the S1087-

01 senses the entire visible spectrum including infrared [20].

Figure 2.3.8: Hamamatsu

S1087

34

Figure 2.3.9: Spectral Response

The photodiodes are directly connected to the microcontroller’s ADC and create a current

through a 100kΩ resistor.

Figure 2.3.10: S1087 (left) & S1087-01 equivalent circuits [27]

S1087 (T = 25oC)

Spectral Response Range 320 – 730nm

Peak Sensitivity

Wavelength

560 nm

Dark Current 10pA

Short Circuit Current 160nA 100lx

S1087-01 (T=25oC)

Spectral Response Range 320 – 1100nm

Peak Sensitivity

Wavelength

960nm

Dark Current 10pA

Short Circuit Current 1.3μΑ 100lx

Table 2.3.5: S1087 & S1087-01 specifications

Apart from some minimal leakage current, the light sensors consume essentially no power.

35

2.3.5 External Flash

TelosB uses the ST M25P80 40Mhz serial code flash for external data and code storage.

The flash holds 1024kB of data and is decomposed into 16 segments, each 64kB in size.

The flash shares SPI communication lines with the CC2420 transceiver, so care must be

taken when reading or writing to flash.

ST M25P80 (3V)

Active Current (Read) 4mA

Active Current (Write/Erase) 20mA

Standby Current 8μΑ

Deep Power Down Current 1μΑ

Table 2.3.6: ST M25P80 power states [14]

We can see that using the external flash can take its toll on power consumption. We will not

be using the external flash but there is something worth mentioning. The ST M25P series of

code flash always start in the standby state. For low power applications, the flash must be

sent a command at boot time to place it in the deep power down mode. Fortunately, if using

TinyOS, the flash is automatically put into deep power down mode, but during the mote’s

power analysis we have to include the 1μA current into our calculations nonetheless.

36

Chapter 3: TinyOS & nesC

3.1 Introduction

This chapter aims to provide an introduction to the software that will be used in this thesis.

At first we will give a high-level overview of TinyOS and the nesC language. Then we will

go into a level sufficient for writing applications. An overview of the Cooja and MSPSim

simulators will follow and the chapter will conclude with a brief presentation of the Yeti 2

plugin for the Eclipse IDE. While this chapter will be more thorough than a plain tutorial,

the diversity and complexity of the examined software leaves several topics outside its

scope. Should the reader, after reading this chapter, be interested to learn more, there are

several sources covering the abovementioned software in greater detail [7] [10].

3.2 TinyOS

TinyOS is a free software and open source software component-based operating system and

platform targeting wireless sensor networks. It started as a collaboration between the

University of California, Berkeley in cooperation with Intel Research and Crossbow

Technology and has since grown to be an international consortium, the TinyOS Alliance.

TinyOS differs from most other operating systems in that its design focuses on ultra-low-

power operation. Rather than a fully-fledged processor, TinyOS is designed for the small,

low-power microcontrollers, motes have. Furthermore, it has very aggressive systems and

mechanisms for saving power. It defines a concurrent execution model, so developers can

build applications out of reusable services and components without having much to worry

about unforeseen interactions. TinyOS runs on over a dozen generic platforms and its

structure makes it reasonably easy to port to new ones.

TinyOS applications and systems, as well as the OS itself, are written in the nesC language.

nesC is a C dialect with features to reduce RAM and code size, enable significant

optimizations and help prevent low-level bugs like race conditions. At a high level, TinyOS

provides three things to make writing systems and applications easier:

 A component model, which defines how to write small, reusable pieces of code and

compose them into larger abstractions.

 A concurrent execution model, which defines how components interleave the

computations as well as how interrupt and non-interrupt code interact.

 Application programming interfaces (APIs), services, component libraries and an

overall component structure that simplify writing new applications and services.

The component model is grounded in nesC. It allows us to write pieces of reusable code

which explicitly declare their dependencies. For example a generic user button component

37

that tells us when a button is pressed sits on top of an interrupt handler. The component

model allows the button implementation to be independent of which interrupt that is, so that

it can be used on many different hardware platforms without requiring complex callbacks or

magic function naming conventions. We will examine the basic component model later on

in this chapter.

The concurrent execution model enables TinyOS to support many components needing to

act at the same time while requiring little RAM. First, every I/O call in TinyOS is split-

phase [7]. That means, rather than block until completion, a request returns immediately and

the caller gets a callback when the I/O completes. Since the stack isn’t tied up waiting for

I/O calls to complete, TinyOS only needs one stack and doesn’t have threads. Instead, as we

will explain later on, TinyOS uses tasks, which are lightweight deferred procedure calls.

Any component, can post a task, which TinyOS will run sometime later. Because low-

power devices must spend most of their time asleep, they have low CPU utilization and so

in practice, tasks tend to run as soon as they are posted (within a few milliseconds).

Furthermore, because tasks can’t preempt each other, task code doesn’t need to worry about

data races.

Finally, TinyOS itself has a set of APIs for common functionality, such as sending packets,

reading sensors and responding to events. It also provides a component structure and

component libraries. For example, Hardware Abstraction Architecture (HAA) defines how

to build up from low-level hardware (e.g. a radio chip) to a hardware-independent

abstraction (e.g. sending packets). This part lies beyond the scope of this thesis though. As

far as the installation is concerned, there are several installation guides available online for

all modern operating systems. We will be using TinyOS version 2.1.2, installed on a

machine running Ubuntu 13.04. Both of these versions are the latest as of July 2013.

3.3 nesC

nesC (network embedded systems C), pronounced “NES-see”, is a component-based,

event-driven programming language used to build applications for the TinyOS platform.

Program structure is the most essential and obvious difference between C and nesC. C

programs are composed of variables, types and functions defined in files that are compiled

separately and then linked together. nesC programs are built out of components that are

connected (“wired”) by explicit program statements; the nesC compiler connects and

compiles these components as a single unit. The nesC compiler loads and reads in nesC

components, which it compiles to a C file. This C file is passed to a native C compiler,

which generates a mote binary [7].

38

Figure 3.3.1: The nesC compilation model. The nesC compiler loads and reads in nesC components,

which it compiles to a C file. This C file is passed to a native C compiler, which generates a mote binary.

3.3.1 Components and Interfaces

Whereas C programs are composed of functions, nesC programs are built out of components

that implement a particular service (e.g. change the state of an LED). Furthermore, C

functions typically interact by calling each other directly, while the interactions between

components are specified by interfaces. Components define two scopes: one for their

specification which contains the names of their interfaces, and a second scope for their

implementation. A component provides and uses interfaces. The provided interfaces are

intended to represent the functionality that the component provides to its user in its

specification. The used interfaces represent the functionality the component needs, to

perform its job in its implementation.

Interfaces are bidirectional: they specify a set of commands, which are functions to be

implemented by the interface’s provider, and a set of events, which are functions to be

implemented by the interface’s user. In other words, the interface’s user makes requests

(calls commands) on the interface’s provider and the provider makes callbacks (signals

events) to the interface’s user. Commands and events themselves are like regular functions

(they can contain arbitrary C code); calling a command or signaling an event is just a

function call. For a component to call the commands in an interface, it must implement the

events of that interface. A single component may use or provide multiple interfaces and

multiple instances of the same interface. The set of interfaces which a component provides,

together with the set of interfaces that a component uses is considered that component’s

signature [10].

There are two types of components in nesC: modules and configurations. Modules provide

the implementations of one or more interfaces. Configurations are used to assemble other

components together, connecting interfaces used by components to interfaces provided by

others. Every nesC application is described by a top-level configuration that wires together

the components inside.

3.3.2 An Example Application

Let’s try to clear things up with a very basic example application: Example. We will enrich

it with more elements step by step. This application turns on an LED as soon as the mote

39

powers up. It is composed of two components: a module, called “ExampleC.nc” and a

configuration, called “ExampleAppC.nc”. Remember that all applications require a top-

level configuration file, which is typically named after the application itself. In this case,

ExampleAppC is the configuration file for the Example application and the source file that

the nesC compiler uses to generate an executable file. ExampleC, on the other hand, actually

provides the implementation of the Example application. Or, to put it simply, ExampleAppC

is used to wire (using interfaces) the ExampleC component (module) to other components

that the Example application requires.

The reason for the distinction between modules and configurations is to allow a system

designer to build applications out of existing implementations. For example, a designer

could provide a configuration that simply wires together one or more modules, none of

which they actually designed. Likewise, another developer can provide a new set of library

modules that can be used in a range of applications. It should also be mentioned that while

one could name an application’s implementation module and associated top-level

configuration anything, to keep things simple, it is common naming convention to name the

module file after the application name, ending with the letter C, and the configuration file

ending with the letters AppC. If there are more than one modules or configuration files,

there are several conventions used in TinyOS specified in TinyOS Enhancement Proposal

(TEP) 3 [9].

The nesC compiler compiles a nesC application when given the file containing the top-level

configuration. Let’s start with that. The first thing to notice is the keyword configuration,

which indicates that this is a configuration file. Within the first pair of empty braces, it is

possible to specify uses and provide clauses or as we defined earlier, the component’s

signature. There is no need to do that in this configuration. A configuration can use and

provide interfaces, or said another way, not all configurations are top-level applications.

The actual configuration is described within the pair of curly brackets following the

keyword implementation. The components lines specify the set of components that this

configuration references. In this case those components are MainC, ExampleC and LedsC.

There should be no confusion here; the ExampleAppC component is not the same as the

ExampleC component. Rather, the ExampleAppC component (configuration) is composed

of the ExampleC component (module) along with MainC and LedsC.

configuration ExampleAppC {

}

implementation {

 components MainC;

 components ExampleC;

 components LedsC;

 ExampleC.Boot -> MainC.Boot;

 ExampleC.Leds -> LedsC.Leds;

}

module ExampleC {

 uses interface Boot;

 uses interface Leds;

}

implementation {

 event void Boot.booted() {

 call Leds.led1On();

 }

}

40

The remainder of the ExampleAppC configuration consists of connecting (wiring) interfaces

used by components to interfaces provided by others. An interface is denoted by the form

Component.Interface. The last two lines wire interfaces that the ExampleC component uses

to interfaces that the MainC and LedsC components provide. The MainC.Boot interface is

part of TinyOS’s boot sequence and enables the mote to be initialized. The LedsC.Leds

interface gives the user control over the mote’s LEDs. nesC uses arrows to bind interfaces to

one another. The right arrow A -> B means “A wires to B”. The left side of the arrow (A) is

a user of the interface, while the right side of the arrow (B) is the provider. A full wiring is

A.a -> B.b which means that the interface a of component A is wired to interface b of

component B. Naming the interface is important when a component uses or provides

multiple instances of the same interface as we will see later on. When a component only has

one instance of an interface, we can elide the interface name. For example, the interface

name Leds doesn’t have to be included in LedsC:

Because ExampleC only uses one instance of the Leds interface, this line should also work:

The direction of a wiring arrow is always from a user to a provider. If the provider is on the

left side, we can use a left arrow. For ease of reading, however, most wirings are left to

right. To sum up, the ExampleC.Leds -> LedsC.Leds line wires the Leds interface used by

the ExampleC component to the Leds interface provided by the LedsC component. The

ExampleC.Boot interface is wired accordingly.

3.3.3 Commands and Events

If we take a look at the ExampleC module’s signature, we can see that it uses the Leds and

Boot interfaces. This means that ExampleC may call any command declared in the

interfaces it uses and must also implement any events declared in those interfaces. Let’s take

a look at those interfaces:

interface Boot {

 event void booted();

}

 ExampleC -> LedsC.Leds; // Same as ExampleC.Leds -> LedsC.Leds

ExampleC.Leds -> LedsC; // Same as ExampleC.Leds -> LedsC.Leds

41

The first thing to notice is that the Leds interface does not include any events, so ExampleC

doesn’t need to implement any in order to call the Leds commands. Additionally, ExampleC

must implement a handler for the Boot.booted() event. So here is what the last two lines of

the ExampleC code do: when the mote boots, or better, when the event Boot.booted()

occurs, or even better, when the component that provides the Boot interface (MainC), makes

a callback (signals the booted() event) to the component that uses the Boot interface

(ExampleC), then the LED1 of the mote is being turned on, or better, the command

Leds.led1On is called, or even better, the component that uses the Leds interface

(ExampleC), makes a request (calls the led1On command) to the component that provides

the Leds interface (LedsC). The keywords event and call help us understand, where an event

is signaled or a command is called, in our code.

Now let’s make our application a bit more interesting. We will modify it so that when the

mote boots up, LED0 and LED1 will start flashing periodically with a period of 1 and 2

seconds respectively:

module ExampleC {

 uses {

 interface Boot;

 interface Leds;

 interface Timer<TMilli> as Timer1;

 interface Timer<TMilli> as Timer2;

 }

}

interface Leds {

// Turn LED n on, off, or toggle its present state.

async command void led0On();

async command void led0Off();

async command void led0Toggle();

async command void led1On();

async command void led1Off();

async command void led1Toggle();

async command void led2On();

async command void led2Off();

async command void led2Toggle();

/* Get/Set the current LED settings as a bitmask. Each bit

corresponds to whether an LED is on; bit 0 is LED 0, bit 1 is LED

1, etc.

*/

async command uint8_t get();

async command void set(uint8_t val);

}

42

Starting with the configuration we can see a couple of changes. First of all, the components

MainC and LedsC are declared with the same components keyword, separated by a comma.

That’s practical for reducing the number of lines of code. Then we see the declaration of

two instances of a timer component called TimerMilliC which will be referenced as TimerA

and TimerB. This is accomplished via the as keyword which denotes simply an alias. We

also created an alias of the ExampleC module, called App and we used it to do the wiring a

few lines below. In general, the as keyword can be used both for components and interfaces

and makes the signature a bit clearer to the reader by using appropriately named aliases. In

the case of ExampleC, it was optional, but in the case of TimerMilliC it was mandatory as

we instantiated it twice.

Before checking the wiring, we should take a look at the ExampleC module. We used a set

of brackets after the uses keyword, and declared all the interfaces inside. That helps up to

avoid the repeated typing of the uses keyword. The ExampleC module uses two instances of

the interface Timer<TMilli>, provided by the TimerMilliC component, using the names

Timer1 and Timer2. The <TMilli> syntax simply denotes that Timer is a generic interface,

that is, it takes a single type as a parameter which defines what type of timer it is. This one

in particular is a timer that takes its parameter expressed in milliseconds. Since the

configuration ExampleAppC {

}

implementation {

 components MainC, LedsC;

 components ExampleC as App;

 components new TimerMilliC() as TimerA;

 components new TimerMilliC() as TimerB;

 App.Boot -> MainC;

 App.Leds -> LedsC;

 App.Timer1 -> TimerA;

 App.Timer2 -> TimerB;

}

implementation {

 event void Boot.booted() {

 call Timer1.startPeriodic(512);

 call Timer2.startPeriodic(1024);

 }

 event void Timer1.fired() {

 call Leds.led0Toggle();

 }

 event void Timer2.fired() {

 call Leds.led1Toggle();

 }

}

43

ExampleC module uses the Timer interface more than once, its signature must use the as

keyword.

Back to the wiring, it is obvious that we elided the interface names on the right side of the

arrow. As the TimerMilliC components each provide a single instance of Timer, it does not

have to be included in the wirings. However, as ExampleC has two instances of Timer,

eliding the name on the user side (left) would be a compile-time error, as the compiler

would not know which instance of Timer is being wired. Looking over the ExampleC’s

implementation, we can see that since ExampleC uses the Timer interface, it must

implement handlers for the Timer.fired() event. So what happens in this application is this:

when the mote is powered up, two periodic timers are being initiated: Timer1 with a period

of 0.5sec and Timer2 with a period of 1 sec. The periods are the numbers passed on as

parameters to the startPeriodic command (1 sec = 1024ms) [7]. When Timer1 fires (i.e.

every 0.5sec) the state of LED0 is toggled from off to on and vice versa. That means, LED0

blinks every 1 second and similarly, LED1 blinks every 2 sec.

3.3.4 Tasks and Split-Phase Operations

All of the code we’ve looked at so far is synchronous. It runs in a single execution context

and does not have any kind of preemption. That is, when synchronous code starts running, it

does not relinquish the CPU to other code until it completes. This simple mechanism allows

the TinyOS scheduler to minimize its RAM consumption and keeps sync code very simple.

However, it means that if one piece of sync code runs for a long time, it prevents other sync

code from running, which can adversely affect system responsiveness. For example, a long

running piece of code can increase the time it takes for a mote to respond to a packet.

So far, the code we have seen uses direct function calls. System components such as the

boot sequence or timers, signal events to a component, which takes some action (perhaps

calling a command) and returns. In most cases, this programming approach works well.

Because sync code is non-preemptive, however, this approach does not work well for large

computations. A component needs to be able to split a large computation into smaller parts,

which can be executed one at a time. Also, there are times when a component needs to do

something, but it is fine to do it a little later. Giving TinyOS the ability to defer the

computation until later can let it deal with everything else that’s waiting first.

Tasks enable components to perform general-purpose “background” processing in an

application. A task is a function which a component tells TinyOS to run later, rather than

now, and is declared in the implementation module using the syntax:

task void taskname() { ... }

44

where taskname() is whatever symbolic name we want to assign to the task. Tasks must

return void and may not take any arguments. To dispatch a task for (possibly later)

execution, we can use the syntax:

A component can post a task in a command, an event, or even another task. The post

operation places the task in an internal task queue which is processed in FIFO order. When a

task is executed, it runs to completion before the next task is run. Therefore, a task should

not run for long periods of time. Tasks do not preempt each other, but a task can be

preempted by hardware interrupts. If one needs to run a series of long operations, they

should dispatch a separate task for each operation, rather than using one big task. The post

operation returns an error_t, whose value is either SUCCESS or FAIL. A post fails if and

only if the task is already pending to run (it has been posted successfully and has not been

invoked yet).

Another worth-mentioning characteristic of nesC is Split-Phase Operations. Because nesC

interfaces are wired at compile time, callbacks (events) in TinyOS are very efficient. In C,

and in most C-like languages, callbacks have to be registered at run-time with a function

pointer. This can prevent the compiler from being able to optimize code across callback call

paths. Since they are wired statically in nesC, the compiler knows exactly what functions

are called where and can optimize heavily.

The ability to optimize across component boundaries is very important in TinyOS, because

it has no blocking operations. Instead, every long-running operation is split-phase. In a

blocking system, when a program calls a long-running operation, the call does not return

until the operation is complete. The program therefore, blocks. In a split-phase system,

when a program calls a long-running operation, the call returns immediately and the called

abstraction issues a callback when it completes. This approach is called split-phase because

it splits invocation and completion into two separate phases of execution. Here is a simple

example of the difference between the two:

Blocking Split-Phase

If (send() == SUCCESS) {

 sendCount++;

}

send();

void sendDone(error_t val) {

 if (val == SUCCESS) {

 sendCount++;

 }

}

Split-phase code is often a bit more complex than sequential code. But it has several

advantages. First, split-phase calls do not tie up stack memory while they are executing.

post taskname();

45

Second, they keep the system responsive; there is never a situation when an application

needs to take an action but all of its threads are tied up in blocking calls. Third, it tends to

reduce stack utilization, as creating large variables on the stack is rarely necessary.

The command Timer.startOneShot is an example of a split-phased call. This command starts

a timer that will fire only once, sometime in the future. The user of the Timer interface calls

the command which returns immediately. Sometime later (specified by the argument), the

component providing Timer, signals the Timer.fired event. To execute the same code in a

system with blocking calls, a program might use sleep instead.

Blocking Split-Phase

state = WAITING;

operation1();

sleep(512);

operation2();

state = RUNNING;

state = WAITING;

operation1();

call Timer.startOneShot(512);

event void Timer.fired() {

 operation2();

 state = RUNNING;

}

We will not be especially mentioning them, but tasks and split-phase operations are going to

be present throughout our code. This section’s goal was to get the reader accustomed to

these concepts.

3.3.5 Radio Communication

Radio communication between motes is the fundamental and most important aspect of our

application. Although we are going to examine the radio operation of our motes in the next

chapter, we think it is necessary to make an introduction here, due to the importance of it.

TinyOS provides a number of interfaces to abstract the underlying communications services

and a number of components that provide these interfaces. All of these interfaces and

components use a common message buffer abstraction, called message_t, which is

implemented as a nesC struct (similar to a C struct). The message_t struct is defined as [7]:

Before examining the message_t struct, we should take a look at the variable types used in

nesC. Rather than the standard C names of int, long or char, TinyOS code uses more explicit

typedef nx_struct message_t {

 nx_uint8_t header[sizeof(message_header_t)];

 nx_uint8_t data[TOSH_DATA_LENGTH];

 nx_uint8_t footer[sizeof(message_footer_t)];

 nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

46

types, which declare their size. In reality, these map to the basic C types, but do so

differently for diferent platforms. TinyOS code avoids using int for example because it is

platform specific. For example, on Mica and TelosB motes, int is 16 bytes long, while on

the IntelMote2, it is 32 bits. Additionally, TinyOS code often uses unsigned values heavily,

as wraparounds to negative numbers can often lead to very unintended consequences. The

commonly used types are summarized below:

 8 bits 16 bits 32 bits 64 bits

Signed int8_t int16_t int32_t int64_t

Unsigned uint8_t uint16_t uint32_t uint64_t

Table 3.3.1: Commonly used types in nesC [10]

There is also a bool type. We can use the standard C types, but doing so might raise cross-

platform issues. Most platforms support floating point numbers (float almost always, double

sometimes).

Returning to the message_t struct, we see that it is composed of 4 fields. The nx_ prefix is

specific to the nesC language and denotes a network type. Network types have the same

representation on all platforms. The nesC compiler generates code that transparently

reorders access to nx_ data types and eliminates the need to manually adjust endianness and

alignment (e.g. extra padding in structs present on some platforms). The header, footer and

metadata fields are all opaque and must not be accessed directly. It is important to access the

message_t fields only through Packet, AMPacket and other such interfaces, as will be

shown. There are a number of interfaces and components that use message_t as the

underlying data structure. Let’s take a look at some of those, to familiarize ourselves with

the general functionality of the communications system:

 Packet: provides the basic accessors for the message_t abstract data type. This

interface provides commands for clearing a message’s contents, getting its payload

length and getting a pointer to its payload area.

 Send: provides the basic address-free message sending interface. This interface

provides commands for sending a message and canceling a pending message send.

The interface provides an event to indicate whether a message was sent successfully

or not. It also provides convenience functions for getting the message’s maximum

payload as well as a pointer to the message’s payload area.

 Receive: provides the basic message reception interface. This interface provides an

event for receiving messages. It also provides, for convenience, commands for

getting a message’s payload length and getting a pointer to the message’s payload

area.

Since it is very common to have multiple services using the same radio to communicate,

TinyOS provides the Active Message (AM) layer to multiplex access to the radio. The term

“AM type” refers to the field used for multiplexing. AM packets also include a destination

47

field, which stores an “AM address” to address packets to particular motes. Additional

interfaces were introduced to support the AM services:

 AMPacket: similar to Packet, it provides the basic AM accessors for the message_t

abstract data type. This interface provides commands for getting a node’s AM

address, an AM packet’s destination, and an AM packet’s type. Commands are also

provided for setting an AM packet’s destination and type, and checking whether the

destination is the local node.

 AMSend: similar to Send, it providesthe basic Active Message sending interface.

The key difference between AMSend and Send is that AMSend takes a destination

AM address in its send command.

Let’s suppose that we want to create and send a message over the radio, and that our

message’s payload is composed of two fields of data. Rather than directly writing and

reading the payload area of the message_t with this data, we will use a structure to hold

them and then use structure assignment to copy the data into the message payload area.

Using a structure allows reading and writing the message payload much more conveniently

when our message has multiple fields or multi-byte fields, like uint16_t or greater, because

we can avoid reading and writing bytes from/to the payload area using e.g. indices and then

shifting and adding. Even for a message with a single field, a designer should get used to

using that structure because if they ever add more fields to the message or move any of the

fields around, they will need to manually update all of the payload position indices if they

read and write the payload at a byte level. The following defines a message structure with a

uint16_t data1 field and a uint32_t data2 field in the payload:

Instead of rewriting our Example application, we will walk through the steps necessary to

send the message over the radio, mentioning the code lines that need to be added in each

step. We will use the AMSend interface to send packets as well as the Packet interface to

access the message_t abstract data type. We also need an interface to start the radio, so we

will use the SplitControl interface, provided by the ActiveMessageC component. Our

module’s (ExampleC) signature is modified like this:

module ExampleC {

 ...

 uses interface Packet;

 uses interface AMSend;

 uses interface SplitControl as RadioControl;

}

typedef nx_struct ExampleRadioMsg {

 nx_uint16_t data1;

 nx_uint32_t data2;

} ExampleRadioMsg_t;

48

Note that the SplitControl interface has been renamed to RadioControl. SplitControl is a

general interface used for starting and stopping components, but creating an alias with the

name RadioControl is a good way to remind us that this particular instance of SplitControl

is used to control the radio, or in other words the ActiveMessageC component.

We need a message_t to hold our data for transmission. The declaration needs to be added in

the implementation block of ExampleC:

Next we need to handle the initialization of the radio. It is our choice to start the radio when

the system boots so we must call the RadioControl.start command, inside the Boot.booted

event. Now there is something worth mentioning. We plan to send the message over the

radio every time Timer2 fires (i.e. every 1 sec) but the radio can’t be used until it has

completed starting up. Due to the split-phase nature of TinyOS, when the program calls the

RadioControl.start command, the call returns immediately, but the radio signals that it has

completed starting through the RadioControl.startDone event. To ensure that we don’t start

using the radio before it is ready, we need to postpone starting Timer2 until after the radio

has completed starting. That means moving the call to start Timer2, which is now inside the

Boot.booted event, to RadioControl.startDone. So the Boot.booted event looks like this:

Inside the module’s implementation we also have to implement the RadioControl.startDone

and RadioControl.stopDone event handlers, which have the following bodies:

event void RadioControl.startDone(error_t err) {

 if (err == SUCCESS) {

 call Timer2.startPeriodic(1024);

 }

 else {

 call RadioControl.start();

 }

}

event void RadioControl.stopDone(error_t err) {

}

 event void Boot.booted() {

 call Timer1.startPeriodic(512);

 call RadioControl.start();

 }

implementation {

 message_t pkt;

 ...

}

49

If the radio is started successfully, RadioControl.startDone will be called with the error_t

parameter set to a value of SUCCESS. Then it is appropriate to start the timer. If, however,

the radio does not start successfully, then it obviously cannot be used so we try again to start

it. This process continues until the radio starts, and ensures that the node software doesn't

run until the key components have started successfully. If the radio doesn't start at all, a

human operator might notice that the LEDs are not blinking as they are supposed to, and

might try to debug the problem. For simplicity reasons, we will not use the

RadioControl.stop command, so the stopDone event is never going to happen, that’s why

there is no code in this block.

Since we want to transmit our message every time Timer2 fires, we need to add some code

to the Timer2.fired event handler:

This code gets the packet’s payload portion and casts it to a pointer to the previously

declared ExampleRadioMsg type. It can now use this pointer to initialize the packet’s fields,

and then send the packet by calling the AMSend.send command. The packet is sent to all

nodes in range by specifying AM_BROADCAST_ADDR as the destination address.

There is one more event we need to worry about, AMSend.sendDone. This event is signaled

after a message transmission attempt. We’ll toggle LED2 if the transmission was successful:

Returning to the configuration ExampleAppC, we have to declare new components and wire

the provided with the used interfaces. ActiveMessageC is a singleton component that is

defined once for each type of hardware platform. AMSenderC is a generic parameterized

component. The new keyword indicates that a new instance of AMSenderC will be created.

The AM_RADIO parameter indicates the AM type of the AMSenderC. We can define this

parameter along with others, in the accompanying header file as we will see in the next

chapter. The implementation block of the ExampleAppC configuration file now looks like

this:

event void AMSend.sendDone (message_t* msg, error_t err) {

 if (err == SUCCESS) {

 call Leds.Led2Toggle();

 }

}

event void Timer0.fired() {

 ...

 ExampleRadioMsg_t* exmplpkt = (ExampleRadioMsg_t*) (call

 Packet.getPayload(&pkt,sizeof(ExampleRadioMsg_t)));

 exmplpkt->data1 = DATA;

 exmplpkt->data2 = DATA;

 call AMSend.send(AM_BROADCAST_ADDR, &pkt,

 sizeof(ExampleRadioMsg_t);

}

50

Receiving a message over the radio works similarly. This, along with other parameters of

the radio operation will be examined in the next chapter.

3.4 Cooja

Cooja is a java-based simulator initially developed for simulations of sensor nodes running

the Contiki operating system, but now able to simulate TinyOS motes as well [1]. Cooja

simulates networks of sensor nodes where each node can be of a different type, differing not

only in on-board software, but also in the simulated hardware. Cooja is flexible in that many

parts of the simulator can be easily replaced or extended with additional functionality.

A simulated node in Cooja has three basic properties: its data memory, the node type and its

hardware peripherals. The node type may be shared between several nodes and determines

properties common to all these nodes. For example, nodes of the same type run the same

program code on the same simulated hardware peripherals. Nodes of the same type are

initialized with the same data memory, except for the node ID. During execution however,

the data memories of the nodes will eventually differ after reacting to external stimuli.

By clicking on File -> New Simulation the new simulation wizard starts up. Here the user

can adjust some basic simulation settings, namely the preferred radio medium which

determines the radio surrounding behavior, the mote startup delay which is the time

difference between the startup of the first and last mote, and the random seed which controls

the random behavior such as various delays, node positions etc.

The wireless messages can be sent on different radio mediums; the simulator proposes four

wireless channels that are: No Radio Traffic, Unit Disk Graph Medium (UDGM) – Constant

Loss, Unit Disk Graph Medium (UDGM) – Distance Loss, and Directed Graph Radio

Medium (DGRM) [1].

 No Radio Traffic does not permit the radio communication on the channel and

therefore cannot be employed to simulate WSNs.

 UDGM – Constant Loss is a wireless channel model where the transmission range is

modelled as an ideal disc where all nodes outside of it do not receive packets, while

those within receive all messages. The predefined maximum transmission range is

implementation {

 ...

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);

 ...

 App.Packet -> AMSenderC;

 App.AMSend -> AMSenderC;

 App.RadioControl -> ActiveMessageC;

}

51

multiplied by the ratio of the current output power to the maximum output power of

the simulated device and the resulting transmission power is compared to the

distance in the simulation. For example, if the transmission range of the mote is

200m and the current output power is half of the maximum, the disc has a radius of

100m.

 UDGM – Distance Loss is a radio medium similar to the previous one but it extends

it in two ways. First, the interferences are now considered and, in case of interfered

packets, they are lost due to the interference range which is larger than the

transmission range. Second, the success ratio of the transmission and reception can

be set: a packet is transmitted or received on the basis of two probabilities,

SUCCESS_RATIO_TX (if unsuccessful, no device receives the packet) and

SUCCESS_RATIO_RX (if unsuccessful, only the destination of the packet does not

receive it).

 DGRM is a model that creates the topology of nodes through edges. It lets the

programmer fully customize the mote-to-mote relations.

Figure 3.4.1: New Simulation wizard

The configuration of Cooja is flexible so that many parts of the simulator can be replaced or

extended with additional functionality. Example parts are the radio mediums just described,

the interfaces and plugins. The interfaces represent some properties of the node such as the

position, the serial port and the user button state. The plugins are used to interact with a

simulation. They often provide the user with a graphical interface to observe something of

interest in the simulation.

52

Figure 3.4.2: Default plugins

The default plugins are the Network Visualizer, the Timeline, the Mote Output, the

Simulation Control and the Notes. The Network Visualizer simply lets us configure the

network’s topology. The user can drag and drop the nodes, change the transmission and

interference range and show mote information such as LED states, position, mote IDs etc.

The Timeline displays the radio state for each mote through different colors: on (grey), off

(no color), packet transmission (blue), packet reception (green) and interference (red). It

also displays the LED state of each mote. The Mote Output displays the log output for all

simulated motes. The Simulation Control controls starts, pauses, stops and reloads the

simulation, and changes the simulation speed.

Figure 3.4.3: Extended plugins

53

We will also be using the Radio Messages and PowerTracker plugins. The Radio Messages

plugin displays all radio messages exchanged between motes along with the contents of the

message. The PowerTracker is extremely useful and is essentially a mote radio duty cycle,

showing a list of all motes, along with Radio On, Radio RX and Radio TX percentages.

3.5 MSPSim

Figure 3.5.1: Standalone MSPsim running

MSPSim [5] is a cycle-accurate Java based simulator of the MSP430 microcontroller. It is

able to simulate all motes that embed an MSP430 MCU. It can be run from a terminal or

from within Cooja by right clicking a mote and choosing MSP Cli. During startup MSPSim

is composed of five windows showing a picture of the mote, the duty cycle of various

components, the serial output, a stack monitor and a main control window.

Figure 3.5.2: Output of the Profile command in a terminal

54

Several commands can be given in the terminal as well, giving the user the opportunity to

observe the duty cycle of the radio and the MCU (in numbers), several variables during

program execution and information on various mote components. When run from within

Cooja, a single window appears which essentially works like a terminal.

3.6 Yeti 2 plugin for Eclipse IDE

The TinyOS 2.x Plugin for Eclipse, nicknamed “Yeti 2”, was developed by the Distributed

Computing Group at ETH Zurich [28]. The plugin aims to provide developers with all the

convenient functions expected from a modern development environment. It can be a very

useful tool when building an application from scratch or when analyzing existing code.

Its main features include:

Error detection, for example syntactical errors

or errors that occur when wiring interfaces

and components.

Code completion which can be activated by

pressing Ctrl + Space. The plugin internally

builds a model of each file. That model tells

where and what is available at different

locations.

nesC documentation which is

activated when the mouse rests

over an item. A hover pops up and

shows the nesC documentation

associated with that element.

The elements of every file whether

Figure 3.6.1: Yeti2 Error Detection

Figure 3.6.2: Yeti 2 Code Completion

Figure 3.6.3: Yeti 2 nesC documentation

Figure 3.6.4: Yeti 2 Outline

55

it is a component or an interface, get represented in the Outline.

The plugin can also show the contents of a file as a graph.

Figure 3.6.5: Yeti 2 Graph Creation

Chapter 4: WSN 1.0

56

4.1 Introduction

This is the chapter in which we actually build our application. We will start by

programming motes that perform simple but fundamental tasks. Then we will combine a

number of these tasks to create motes that operate as a WSN and after a series of

measurements and observations we will try to extend and enhance our code, so as to make

the network’s operation more efficient.

4.2 Creating the mote

4.2.1 Sensor operation

The most important attribute of a mote functioning in a forest fire detecting WSN, is its

ability to utilize the sensors attached to it. In our case the CM5000 mote is equipped with

three onboard sensors, as described in Chapter 2: two light sensors and a

temperature/relative humidity sensor. Let’s start with the light sensors first.

The Hamamatsu S1087 and S1087-01 sensors provide visible and infrared light values

respectively. We are only going to use the first one as it adequately fits our needs. As shown

in figure 2.3.10 the photodiode is directly connected to the microcontroller’s ADC and

creates a current through a 100kΩ resistor.

According to the graph provided by Hamamatsu (fig. 2.3.9), we can deduct a formula,

which is essentially an approximation at a specific operating temperature, to linealyze the

output current vs. the incident light level. The temperature of 25oC is a good theoretical

operating temperature of the WSN, but if we wanted to be more accurate we would have to

extract the most appropriate constant in the range or ranges that the sensors are going to be

working; the only available graph in the datasheet was the one drawn at the above

mentioned temperature and since it suits us we will proceed with that. The incident light

level is measured in lux and the output current in A.

The Vsensor value must be calculated by first of all obtaining the raw ADC count value of the

sensor. This value can vary depending on the microcontroller’s configuration. The default

TinyOS-2.x configuration assumes the following values for a TelosB/Tmote Sky platform:

57

Vref is the voltage level of the internal reference voltage generator [27]; it is software

configurable, its default value is 2.5V and it is defined (and can be adjusted) in the

MSP430ADC12.h header file, located in the /tos/platform/msp430 folder in the TinyOS

installation directory. Substituting to the equation above we obtain:

Moving to the Sensirion SHT11 things are simpler. According to the datasheet [19], the raw

readings can be converted to SI units as follows:

 Temperature

VDD d1(oC) d1(oF) SOT d2(oC) d2(oF)

5V -40.1 -40.2 14bit 0.01 0.018

4V -39.8 -39.6 12bit 0.04 0.072

3.5V -39.7 -39.5

3V -39.6 -39.3

2.5V -39.4 -38.9

Table 4.2.1: d1 and d2 in relation to VDD and ADC bits of operation

For TelosB motes the sensor is coupled with a 14-bit converter and in our case it is powered

by 2xAA batteries connected in series, providing a supply voltage VDD = 3V. SOT is the raw

ADC value of the sensor. Thus the formula is:

 Relative Humidity

SORH c1 c2 c3

12bit -2.0468 0.0367 -1.5955E-6

8bit -2.0468 0.5872 -4.0845E-4

Table 4.2.2: c1, c2 and c3 for 8 or 12bit ADC [19]

The default value for a CM5000 mote is 12bits [14], and SORH is the raw output of the

sensor, so the formula is:

58

To test the equations above, we program and simulate a mote, which periodically samples

its sensors, converts the raw data to SI units and sends these values to its serial port. This is

what the output looks like in Cooja:

Figure 4.2.1: Mote’s Output

Temperature is at a stable 24oC, relative humidity is also stable at 150% and light intensity

is decreasing at a rate of 27lux/sec, until it reaches zero, then starts from 977lux all the way

down to zero again. There are no actual sensors to gather data from, and Cooja uses

parameters defined in its source code. One could modify these predefined values by

modifying Cooja’s source code, but that would set the modified values valid for the whole

simulation. In other words, as of the latest version of Cooja included in Contiki 2.6, it is not

possible to adjust the default sensor values just for a subsection of the simulation area, but

only for the area as a whole. As will be shown later, this will not prevent us from simulating

the WSN’s operation, as we will use “dummy motes” with predefined sensor values. What

we wanted to examine through this test was whether our formulas produced values within

an acceptable range. The value of relative humidity is acceptable too. Relative humidity

measures the current absolute humidity relative to the maximum for that temperature, so a

value of 150%, although large, is possible. We will not use it for the rest of this thesis

though, as in the case of a fire, temperature is quicker to change and that should be enough.

One could use the relative humidity measurement to acquire a scope for the forest area as a

whole, but since we have no physical motes and Cooja produces only stable values, we will

leave it out.

4.2.2 Power Consumption

The typical operation of a fire-detecting mote as part of a WSN, would include sampling its

sensors, sending the sensor data over the radio and receiving data from nearby motes to

retransmit it to other nearby motes. Let’s create a mote that samples its sensors once every

59

minute and sends a message containing the sensor data, while having its radio always on

listening to other motes and retransmitting their messages. A simplified state machine of

this Prototype mote is depicted in figure 4.2.2. The mote boots and starts listening. It

periodically samples its sensors and sends the data over the radio. In the event of a received

message from another mote, it forwards the message to other nearby motes. In order to

calculate the expected battery life of this (and any) mote, we must first measure each

component’s duty cycle in all possible power states.

0 1 2

3

listen

boot

message received

sample sensorssend data

message forwarded

Figure 4.2.2: Simplified state machine of the Prototype mote

The simulation was run for 30 minutes; adequate time for the duty cycle to reach a steady

value. The only parameter not clearly visible in Cooja is the sensors’ duty cycle, but there is

a good workaround to obtain it [2]. When the program calls the command to start sampling

the sensors, we turn on LED 0, and when the sampling is completed and the packet is about

to be sent, we turn it off. The LEDs are generally visible in Cooja’s Timeline plugin, which

apart from showing the LED and radio states, has the ability to print statistical simulation

facts, to the console. The light sensor’s current consumption is negligible so only the

temperature sensor contributes to the power consumed. So, printing the statistics in the

command line we get:

60

Figure 4.2.3: Command line statistics for the Prototype mote

Furthermore, because this mote is simulated alone, radio transmission happens only once

every 30 seconds and its duty cycle as seen in figure 4.2.4, is less than 0.01%, so Cooja’s

PowerTracker plugin calculates the transmit-state duty cycle to be actually 0.00% and the

receive-state to be 100.00%. In general, we are going to use two decimal digits for duty

cycle values so in this particular example we will consider the transmit-state (TX) duty

cycle to be zero.

Figure 4.2.4: Radio duty cycle for the Prototype mote

As far as the MCU is concerned, by right-clicking on the mote and choosing the Msp CLI

option we can actually run MSPSim inside Cooja. The command:

prints the duty cycle of all power states of the MSP430 microprocessor X times/sec [1]. Its

output looks like this:

duty X MSP430

61

Figure 4.2.5: MSP430 duty cycle for the Prototype mote

The first column represents the active state, the second is the power-off state and the next

four are the low-power modes, from LPM0 to LPM4 [1]. We see that the MCU spends all of

its time either in active mode, or LPM3.

Gathering all the data, we are able to create the table below [4]:

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 MCU

Active 1.8 0.25 0.0045

Sleep 0.0051 99.75 0.00508725

CC2420 Tranceiver

Receive 18.8 100 18.8

Transmit 17.4 0 0

Sleep 0.001 0 0

SHT11 Temp. Sensor

Measuring 0.5 0.06 0.0003

Sleep 0.0003 99.94 0.00029982

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 18.8112

Table 4.2.3: Duty cycle and current consumption of all components in a Prototype mote

Now to calculate the mote’s expected battery life in relation to its battery capacity, we

simply have to divide the battery’s mAh by the total current consumption as calculated

above:

62

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 26.58 1.11 0.04

1000 53.16 2.21 0.07

1500 79.74 3.32 0.11

2000 106.32 4.43 0.15

2500 132.90 5.54 0.18

3000 159.48 6.64 0.22

3500 186.06 7.75 0.26

4000 212.64 8.86 0.30

4500 239.22 9.97 0.33

5000 265.80 11.07 0.37

Table 4.2.4: Prototype mote’s battery life for various battery capacities

The most important part of a mote’s power consumption is now obvious. The radio

transceiver operation represents approximately 99.94% of the mote’s total power

consumption. A good quality alkaline battery has an effective capacity of 2000mAh, so

connecting two of those in series, gives us about 4000mAh of battery capacity [6]. Under

these circumstances, a prototype mote like this would only run for about 9 days before its

batteries ran out. This is definitely not a good case when a WSN composed of 50 or more of

those motes monitors a forest area. Having to replace the batteries of each mote every 9

days is not a good example of an autonomous WSN. We now see that the first thing a

designer has to do, in a non CPU intensive application like this, is to limit the power-on time

of the radio chip.

Figure 4.2.6: Mote’s battery life vs. battery capacity (Prototype mote)

63

4.2.3 FireSense Mote

Moving on and based on the results we obtained from the previous section, we will try to

extend the prototype mote into one that would perform better in terms of power

consumption. We will name this mote FireSense and its simplified state machine is this:

0 1

2

3

listen

boot

message received

sample sensorssend data

message forwarded

4

put to sleep

wake up

sleep

Figure 4.2.7: Simplified state machine of the FireSense mote

What’s different than the first mote is that this one can (and will) spend most of its time

sleeping. More specifically, we will program this mote to turn on its radio acting as a

forwarder for messages coming from other motes, then sample its sensors to send their

readings, then act as a forwarder again, and finally sleep for a certain amount of time. What

sleep mode does is actually put every component in its lowest power state possible. The

second listening period, after the sensor sampling, is necessary because the motes in a WSN

do not start operating at exactly the same time, so for instance, when a mote sends its sensor

readings over the radio, we have to make sure there is another one listening to forward the

message. But even if there were a number of people, each one adjacent to every mote and all

of them programmed and started the motes at the same time, this would create very heavy

radio traffic (as we will see) that the network could not handle.

We will not present the mote’s code in full, as some of its parts have already been examined

in detail in Chapter 3. We will just present a few code snippets that show how this mote

actually works. At first we have to create a header file that works the same way as a C

header file. It defines constants and type structures and provides a comfortable way of

quickly modifying applications.

64

In this case, several constants have been defined. The MAX_SENSORS constant determines

the number of sensors we are using, in our case 2 (SHT11’s temperature and S1087’s

luminance). The AM_RADIO is an id that will be used to discriminate between different

kinds of messages. LISTEN_DURATION_1 and 2 represent the duration that the mote will

have its radio on before and after sampling its sensors respectively. SLEEP_DURATION is

pretty straightforward. The next lines define our message structure with three data fields

storing the mote’s ID, temperature and luminance measured, in the payload.

Moving on the module, which we named FireSenseC we have to declare a number of

variables first:

The packet variable’s role has been explained in Chapter 3. data is a FireSenseMsg structure

used to store our data to be sent. radio_busy indicates whether the radio is being used and

sensor_data_packet indicates whether the message sent is another mote’s readings being

forwarded or the mote’s own sensor readings. We will show the numsensors use in a while.

event void Boot.booted() {

 post startListening();

}

task void startListening() {

 call RadioControl.start();

 call Timer1.startOneShot(LISTEN_DURATION_1);

}

event message_t * Receive.receive(message_t *msg, void *payload, uint8_t

len) {

 if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE)) {

 FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload;

 FireSenseMsg_t * outgoingPacket;

 outgoingPacket = (FireSenseMsg_t *) call Packet.getPayload(&packet,

 sizeof(FireSenseMsg_t));

 outgoingPacket -> node_id = incomingPacket -> node_id;

uint8_t numsensors;

bool radio_busy = FALSE;

bool sensor_data_packet = FALSE;

message_t packet;

FireSenseMsg_t data;

#ifndef FIRE_SENSE_H

#define FIRE_SENSE_H

enum {

 MAX_SENSORS = 2, AM_RADIO = 1, LISTEN_DURATION_1 = 1000,

 LISTEN_DURATION_2 = 1000, SLEEP_DURATION = 28000};

typedef nx_struct FireSenseMsg {

 nxuint16_t node_id;

 nxuint16_t temperature;

 nxuint16_t luminance;

} FireSenseMsg_t;

#endif /* FIRE_SENSE_H */

65

When the mote boots, it dispatches the startListening task, which turns on the radio to

forward received messages, and starts a timer (not periodic, but a single-shot) to indicate

when the mote will dispatch the startSensing task, i.e. sample its sensors. The

Receive.receive event, is signaled whenever the mote receives a packet. At first, this code

checks if the radio is free and if the packet received is one to be forwarded. The latter is

actually a security check and a simple way to prevent interference from unwanted sources

with our WSN. It then gets the packet’s payload portion and casts it to the incomingPacket

pointer, a pointer to the previously declared FireSenseMsg type. It then creates the

outgoingPacket pointer for the message to be sent. A simple copy of the incoming packet

fields to the outgoing ones is the final step towards creating the outgoing message. The rest

is the same as in Chapter 3. When the AMSend.send command is called, radio_busy is set to

TRUE and sensor_data_packet is set to FALSE, since it’s not the mote’s own packet but a

forwarded one.

What startSensing does is simply call two read commands, one for the light sensor and one

for the temperature sensor. When the sensor value has been read, the corresponding event is

task void startSensing() {

 numsensors = 0;

 //call Leds.led0On();

 call TempRead.read();

 call LightRead.read();

}

event void TempRead.readDone(error_t result, uint16_t val) {

 data.temperature = val;

 if (++numsensors == MAX_SENSORS) {

 post sendReadings();

 //call Leds.led0Off();

 }

}

event void LightRead.readDone(error_t result, uint16_t val) {

 data.luminance = val;

 if (++numsensors == MAX_SENSORS)

 {

 post sendReadings();

 //call Leds.led0Off();

 }

}

 outgoingPacket -> temperature = incomingPacket -> temperature;

 outgoingPacket -> light = incomingPacket -> light;

 if (call AMSend.send(AM_BROADCAST_ADDR, &packet,

 sizeof(FireSenseMsg_t)) == SUCCESS) {

 radio_busy = TRUE;

 sensor_data_packet = FALSE;

 }

 }

 return msg;

}

event void Timer1.fired() {

 post startSensing();

}

66

being signaled, that puts the values in the appropriate fields in the data variable defined

earlier. When both sensors have been sampled, the sendReadings task is being dispatched.

Note that we have commented out the commands that toggle LED0. It is something we use

to assist us with the simulation and not something a designer should include in their code

when programming a physical mote, as LED operation increases power consumption [2][4].

The sendReadings task is similar to the process described in Chapter 3. The only thing

worth mentioning is the way data passed to the packet to be sent.

TOS_NODE_ID is unique to each mote and represents its ID [10]; it is configured during

the programming of the mote, but since we are using Cooja we can easily define it when

creating the simulation. aux is an auxiliary pointer for sending the packet. When the packet

has been sent the AMSend.sendDone event is signaled:

It sets the radio free and notifies the mote that the packet sent contained its own sensor

readings, so the mote continues to act as a forwarder for the duration specified in Timer2.

When this timer fires, it’s time to put the mote to sleep.

The radio is turned off and when this happens, the mote sleeps for a duration defined in

Timer3. When this timer fires, the startListening task is called; the mote wakes up and starts

its operation all over again.

event void Timer2.fired() {

 call RadioControl.stop();

}

event void RadioControl.stopDone(error_t error) {

 call Timer3.startOneShot(SLEEP_DURATION);

}

event void Timer3.fired() {

 post startListening();

}

event void AMSend.sendDone(message_t *msg, error_t error) {

 radio_busy = FALSE;

 if (sensor_data_packet == TRUE) {

 call Timer2.startOneShot(LISTEN_DURATION_2);

 }

}

aux -> node_id = TOS_NODE_ID;

aux -> temperature = data.temperature;

aux -> luminance = data.luminance;

67

4.2.4 BaseStation Mote

A WSN consisting of FireSense motes alone would not be any good if there wasn’t a base

station where all the information would be gathered. A BaseStation node does exactly that;

it is a CM5000 mote, connected via its USB port to a computer where it prints the sensor

readings it has received from the FireSense motes. It is not necessary for the user to

constantly read the values. If the mote receives an abnormal reading it notifies us by turning

on its LEDs. The green LED means that everything is fine, the blue LED signifies a slightly

abnormal value and the red LED a dangerously abnormal value. Before printing the values,

the BaseStation mote is responsible for converting the raw data values in the received

packets, to SI units, using the formulas we introduced in section 4.2.1. We didn’t program

the FireSense motes to do that, as we wanted to avoid putting even the slightest unnecessary

CPU load; battery life is top priority in FireSense motes but it doesn’t concern us in

BaseStation motes as they are powered through their USB port.

0 1 2

3

listen

boot

message received

temp/light
abnormal

blink leds

message printed

Figure 4.2.8: Simplified state machine of the BaseStation mote

4.3 Testing the WSN

It is time to simulate a WSN consisting of the motes created above. The outdoor range of

the CC2420 radio chip, using the embedded antenna, is according to TelosB specs, around

100m, while the indoor range is about 20-30m. A forest area lies somewhere in the middle;

it can’t be considered indoors but it’s not an outdoor area either as there exist trees and other

land obstructions that decrease the outdoor range. We will consider a worst-case scenario,

because it’s preferable that the actual WSN operates better than the simulated one, than the

opposite, so the default range will be set equal to 50m which we think it’s close to what the

real one should be [6]. Changing the default radio range in Cooja is as simple as right-

clicking anywhere in the Network Visualizer and changing the value. The wireless channel

chosen is UDGM – Distance Loss as it’s the most realistic. The interference range is set to

70m. Furthermore, the FireSense motes will be randomly placed as there is no guarantee

68

that a forest area will provide conditions for symmetrical mote placement. The motes

vertical position has been randomly selected between 2 and 3 meters.

A large number of motes is not necessary as the delay between the reception of a packet and

its forwarding is minimal as we will show. The WSN will consist of 15 FireSense motes and

1 BaseStation mote. The BaseStation mote will just print the packets as they arrive, for the

time being. Turning on its LEDs will be better executed when we include a dummy mote.

The motes will listen for 1 second before and after sampling their sensors, and they will be

put into sleep mode for 58 seconds; thus they will operate periodically with a period of

1min. Moreover, the Mote Delay option in Cooja will be set equal to 1000ms. This means

that the time difference between the first and last mote to boot, is 1 second.

Figure 4.3.1: Network topology depicted

Motes 1-15 are FireSense motes, while mote 16 is the BaseStation. Mote 15’s radio and

interference range is depicted as an example. The gridlines correspond to a length of 10m,

so the WSN covers an area ~160m x 130m = 20800m2.

We ran the simulation for 30min to ensure stable duty cycles [2][4]. The results may be

disappointing, but quite interesting. The sensors’ (i.e. the LED0’s) average duty cycle as

printed in the command line is this:

69

Figure 4.3.2: FireSense onboard sensors’ duty cycle

while the PowerTracker bears no good results either:

Figure 4.3.3: Radio duty cycle for the FireSense motes

Choosing a random mote, e.g. 11, and getting its MCU’s duty cycle, we get:

Figure 4.3.4: MSP430 duty cycle for the FireSense motes

We expected the mote’s MCU duty cycle to be higher than that of the Prototype mote’s,

because it now operates in a network where it has to process and forward several incoming

messages but this is definitely not a good sign.

Fortunately, Cooja makes finding the cause of this easy. If we take a look at the Timeline,

we see this:

70

Figure 4.3.5: Heavy radio traffic during FireSense motes’ operation

That is an immense amount of radio traffic. It is caused by continuous retransmission of the

same packet. Let’s take an example. Suppose that Mote 15, transmits its sensor readings.

Motes 7 and 13 do a good job of forwarding the packet to the sink node, but they are

actually broadcasting the message to all motes within range who are listening. So motes 3,

4, 5 and 6 receive the packet as well, and broadcast it to motes 9, 10, 11 and 12 who in turn,

broadcast the packet to motes 1, 2, 8 and 14 who broadcast the message back in the

direction of the sink node again. The result is that the first packet to be broadcast, actually

chokes the entire network leaving very little available space for other packets to be

transmitted, and this is very well depicted in the figure above. The higher duty cycle of the

MCU is a direct consequence of that: the constant receiving and transmitting of a packet is

indeed, apart from radio intensive, a CPU intensive process as well.

Another interesting deduction can be made by noticing that the average radio duty cycle is

85.10%, even though motes were programmed to sleep for 58 out of 60 seconds. That’s a

very good way to demonstrate what the split-phase nature of TinyOS can result in, if the

code is not written properly. When one of the motes above is listening and it’s time to

dispatch a task, it is actually so busy receiving and sending packets, that it postpones

dispatching the task, to a time when the radio traffic has decreased; the radio traffic is very

high all the time though, so the TinyOS scheduler postpones the dispatching of tasks and

keeps the mote listening indefinitely [7].

4.4 WSN 1.0

It is obvious that if we want to materialize our WSN, we need to find a way to reduce its

radio traffic. One solution would be to reduce each mote’s neighboring motes. That creates

two other problems though: first, the accuracy of the WSN as a whole is reduced because

each mote would be responsible for a larger area, and second: a mote’s break down, would

limit the alternative routes of a travelling packet. Another solution, would be to manually

assign addresses to the motes and program each mote to transmit to certain destinations, but

71

that would make it difficult to modify the network once it has been set up. For example, if

we wanted to expand it or add new motes in the same area, we would have to reprogram

every mote to include the addresses of the new motes. A good and viable solution is at the

same time, the simplest. Every time a mote boots, it will create and initialize to zero a one-

dimensional array, the length of which, will be equal to the number of motes in the WSN.

The actual size of it will be NUMBER_OF_MOTES + 1, because the first element in an

array in nesC (and C) is array[0], and there is no mote with a zero ID. We could also

increase the length of the array to make room for additional motes.

The first time, in a listening period, that a mote receives and forwards a packet from mote

X, it will set the element array[X] equal to 1. If sometime later in the same period, the mote

receives the same packet, recycled in the network, it will check the value of array[X]. If it

isn’t equal to zero, it will not transmit it. When the mote is put to sleep, the array is set to

zero again. The timeline’s output looks like this now:

Figure 4.4.1: Normal radio traffic after code improvement

Things are looking good now. Radio traffic is greatly reduced. Five lines of code can make

that big a difference. We can clearly distinguish separate radio traffic times in this picture,

every time a mote samples its sensors and broadcasts the readings (right after the red LED

turns off). There still exist some packets that have been interfered (marked by red dots

above the grey line) so in order to determine if we have compromised the WSN’s

effectiveness in transmitting all packets over the radio we check the serial output of the

BaseStation mote:

72

Figure 4.4.2: BaseStation receives all FireSense motes’ packets during a sample period

The columns from left to right stand for: the time the output was printed (in ms), the ID of

the mote that gives the output (we have given BaseStation the MoteID: 16) and the mote’s

printed message. The BaseStation mote prints the readings of all FireSense motes in a

sampling period, so the WSN works as expected.

To test the WSN’s response time in case of an abnormal reading and to test the LED

operation of the BaseStation mote we create a “dummy mote”. That is actually a FireSense

mote in which we have predefined its sensor readings to be abnormal. The dummy mote has

been programmed to send a packet only when we press its button. We are going to measure

how much time it takes for a packet containing sensor samples to reach the sink mote. Let’s

suppose a measured temperature of 50oC. The dummy mote has been given the ID: 16 and

the BaseStation is now number 17.

Figure 4.4.3: Dummy mote placement

73

The BaseStation mote turns its green LED on when it boots, to indicate the user that it’s

working. Since 50oC is a very high temperature, we expect the red LED to turn on. We press

the button on the dummy mote 16 at precisely 34341ms simulation time. The BaseStation

mote receives the packet at 34370ms. The radio packet covers a distance of more than 200m

in only 29ms. That is practically real time information and the WSN’s response time is

excellent.

Figure 4.4.4: Packets exchanged while forwarding a dummy mote’s packet. Vertical line depicts 29ms

The mote needs 5 more milliseconds to turn on its red LED as seen in the picture above

(lower right corner), and forward the packet to its serial port:

Figure 4.4.5: BaseStation needs 5ms to forward a radio packet to its serial port

Figure 4.4.6: This is what 29ms look like as the WSN forwards the packet from dummy mote to sink

74

We consider the WSN’s behavior a success. The source code of the FireSense mote along

with the BaseStation mote can be found in the Appendix. It’s now time to examine our

motes’ energy characteristics.

4.5 Energy Analysis

We saw from the previous tests that two seconds of listening time (1sec before and 1 sec

after sampling) are adequate for forwarding all motes’ packets to the sink mote. We will not

try to decrease that time as doing so might increase the chances of lost packets. We will

adjust the SLEEP_DURATION constant though, in order to examine the way in which the

WSN’s sampling frequency affects the motes’ battery life. The chosen values for the WSN’s

sampling period are 30sec, 60sec, and 90sec, so SLEEP_DURATION will be set to 28, 58

and 88 seconds respectively. We are also going to use the same procedure as in section

4.2.2.

 Sampling period: 30sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 1.18 0.02124

Sleep 0.0051 98.82 0.00503982

CC2420 Tranceiver

Receive 18.8 7.08 1.33104

Transmit 17.4 0.04 0.00696

Sleep 0.001 92.88 0.0009288

SHT11 Temp. Sensor

Measuring 0.5 1.69 0.00845

Sleep 0.0003 98.31 0.00029493

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 1.3750

Table 4.5.1: Duty cycle and current consumption of all components in a FireSense mote (30sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 363.65 15.15 0.51

1000 727.30 30.30 1.01

1500 1090.95 45.46 1.52

2000 1454.59 60.61 2.02

2500 1818.24 75.76 2.53

3000 2181.89 90.91 3.03

3500 2545.54 106.06 3.54

4000 2909.19 121.22 4.04

75

4500 3272.84 136.37 4.55

5000 3636.49 151.52 5.05

Table 4.5.2: FireSense mote’s battery life for various battery capacities (30sec period)

Figure 4.5.1: Mote’s battery life vs. battery capacity (FireSense mote, 30sec period)

 Sampling period: 60sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.67 0.01206

Sleep 0.0051 99.33 0.00506583

CC2420 Tranceiver

Receive 18.8 3.46 0.65048

Transmit 17.4 0.02 0.00348

Sleep 0.001 96.52 0.0009652

SHT11 Temp. Sensor

Measuring 0.5 0.86 0.0043

Sleep 0.0003 99.14 0.00029742

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.6776

Table 4.5.3: Duty cycle and current consumption of all components in a FireSense mote (60sec period)

76

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 737.85 30.74 1.02

1000 1475.69 61.49 2.05

1500 2213.54 92.23 3.07

2000 2951.38 122.97 4.10

2500 3689.23 153.72 5.12

3000 4427.07 184.46 6.15

3500 5164.92 215.20 7.17

4000 5902.77 245.95 8.20

4500 6640.61 276.69 9.22

5000 7378.46 307.44 10.25

Table 4.5.4: FireSense mote’s battery life for various battery capacities (60sec period)

Figure 4.5.2: Mote’s battery life vs. battery capacity (FireSense mote, 60sec period)

 Sampling period: 90sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.41 0.00738

Sleep 0.0051 99.59 0.00507909

CC2420 Tranceiver

Receive 18.8 2.29 0.43052

Transmit 17.4 0.01 0.00174

Sleep 0.001 97.7 0.000977

SHT11 Temp. Sensor

Measuring 0.5 0.53 0.00265

Sleep 0.0003 99.47 0.00029841

77

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.4496

Table 4.5.5: Duty cycle and current consumption of all components in a FireSense mote (90sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 1111.99 46.33 1.54

1000 2223.98 92.67 3.09

1500 3335.97 139.00 4.63

2000 4447.96 185.33 6.18

2500 5559.95 231.66 7.72

3000 6671.94 278.00 9.27

3500 7783.93 324.33 10.81

4000 8895.92 370.66 12.36

4500 10007.91 417.00 13.90

5000 11119.90 463.33 15.44

Table 4.5.6: FireSense mote’s battery life for various battery capacities (90sec period)

Figure 4.5.3: Mote’s battery life vs. battery capacity (FireSense mote, 90sec period)

78

Chapter 5: WSN 2.0

5.1 Intro

Building upon our experience and gathered data from the previous chapter, we aim to

further enhance the designed WSN, increasing its motes’ lifetime without sacrificing spatial

or temporal accuracy. To achieve this, we are going to examine a different network

topology that divides the motes in terms of the operation they execute: fire sensing and

packet forwarding. But to do that, we first need to examine the effect the supply current has

on radio range.

5.2 Friis Transmission Equation

The Friis transmission equation is used in telecommunications engineering, and gives the

power received by one antenna under idealized conditions given another antenna some

distance away transmitting a known amount of power. In its simplest form, the Friis

transmission equation is as follows. Given two antennas, the ratio of power available at the

input of the receiving antenna, Pr, to output power to the transmitting antenna, Pt, is given

by [18]:

where Gt and Gr are the antenna gains of the transmitting and receiving antennas

respectively, λ is the wavelength and R is the distance between the antennas. The equation

in this form, is of little use to us. The antenna gains, in our case, are expressed in decibels,

so the equation is slightly modified to [18]:

where gain has units in dB, and power has units in dBm.

TelosB motes come equipped with an internal antenna that is an Inverted-F microstrip

protruding from the end of the board away from the battery pack. The Inverted-F antenna is

a wire monopole where the top section is folded down to be parallel with the ground plane.

It has been examined in detail, in Texas Instrument’s Design Note 7 [17], where its gain has

been measured in the XY, XZ and YZ plane. We won’t go into such detail in this thesis, so

we will take into consideration only the horizontal XY plane in our calculations. This has

been measured to be 1.1dB. We also know from Chapter 2 that the receiving power of

TelosB is -90dBm at minimum.

79

Let’s restructure the equation above so that we can express R in terms of power:

c is the speed of light (3x108 m/s) and f is the frequency of the signal (2.4 GHz).

As we have mentioned is Chapter 2, the CC2420 has programmable output power. It is

adjusted by specifying a parameter called PA_LEVEL in the code’s makefile [7], when

programming a mote. In order to gain an understanding of the relation between range and

input power, we will consider two motes. One is transmitting and the other is receiving.

Both motes’ antenna gain is 1.1dB and the receiver mote’s power is -90dBm [16]. In the

table below we present typical PA_LEVEL values and their corresponding current

consumption and output power. In the fourth column we have calculated the maximum

theoretical distance between a mote transmitting with the corresponding output power and a

receiver mote.

PA_LEVEL Output Power [dBm] Current Consumption [mA] Range [m]

31 0 17.4 405.31

27 -1 16.5 361.23

23 -3 15.2 286.93

19 -5 14 227.92

15 -7 12.5 181.04

11 -10 11 128.17

7 -15 9.9 72.07

3 -25 8.5 22.79

Table 5.2.1: PA_LEVEL, output power and current consumption in relation to ideal radio range

We see that that the range at output power equal to 0dBm (the default value) is more than 3

times higher than the one given in the TelosB datasheet. This shouldn’t worry us because

the calculations above don’t take into account the dimensional parameters of a mote or

interferences in the radio medium, and also assume idealized conditions. A more in-depth

analysis has been done in Texas Instruments Design Note 18 [18], in which ground

reflections and environmental noise have been accounted for. This is not our purpose

though, as through this theoretical calculation we wanted to examine the relation between

output power, current consumption and range, in order to adjust the default radio range we

assumed in the previous chapter. We notice, that halving the radio chip’s supply current,

from 17.4 to 8.5mA brings radio range down to about 1/18th of its value.

80

Figure 5.2.1: CC2420 ideal radio range vs. current consumption

5.3 WSN 2.0

Based on the results obtained from the previous section, we aim to reconstruct the topology

of our WSN, by dividing each mote in regard to the work it does. The WSN we designed in

Chapter 4 was an ad-hoc network. We now want to move towards an “access point”

orientation. To achieve this we have to, in a way, split the FireSense mote in half. We will

name the first mote FireSense 2.0 and the second one Repeater. FireSense 2.0 will now be

responsible only for taking temperature and luminance measurements and transmitting

them. It will neither keep its radio on for 2 seconds, nor listen to any other mote’s packets.

In fact we will entirely strip FireSense 2.0 mote off its Receive interface. The Repeater

mote’s operation is actually implied by its name: it doesn’t use any of its sensors, rather it

only turns on to listen to radio traffic and forward it to other Repeater motes. Adding the

operations of the two motes together, creates the original FireSense mote.

We will create our WSN in teams of four: one access point (Repeater) assigned to four peers

(FireSense 2.0). We have four access points in total, so 16 peers. The access points will

communicate with each other at default radio power (0dBm), but the peers will not have to

use their full power obviously. We aim to a range of about 15-16m, which is roughly 32%

of the full power mode. Going back to Table 5.2.1 we see that, 32% of the original power

corresponds to 129.6m. The output power closer to that value is -10dBm which corresponds

to a PA_LEVEL value of 11 and a current consumption of 11mA. Putting these parameters

into Cooja, we obtain a range of about 17m which is acceptable. The WSN operates

properly. Radio traffic is very low, the response time is lower than in that in the last chapter

and the BaseStation mote prints all messages in a period.

81

Figure 5.3.1: BaseStation receives all FireSense 2.0 motes’ packets during a sample period

Figure 5.3.2: WSN 2.0 network topology

Nodes 1-16 are FireSense 2.0 motes, 17-20 are Repeater motes and 21 is the BaseStation.

The two outer circular lines are the 0dBm transmission and interference ranges respectively.

The source code of the FireSense 2.0 and Repeater motes can be found in the Appendix.

82

5.4 Energy Analysis

5.4.1 FireSense 2.0

Following the same procedure as in Chapter 4, we will consider three sampling periods:

30sec, 60 sec and 90sec.

 Sampling period: 30sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.27 0.00486

Sleep 0.0051 99.73 0.00508623

CC2420 Tranceiver

Receive 18.8 0.03 0.00564

Transmit 11 0 0

Sleep 0.001 99.97 0.0009997

SHT11 Temp. Sensor

Measuring 0.5 1.71 0.00855

Sleep 0.0003 98.29 0.00029487

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.0264

Table 5.4.1: Duty cycle and current consumption of all components in a FireSense 2.0 mote (30sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 18917.32 788.22 26.27

1000 37834.65 1576.44 52.55

1500 56751.97 2364.67 78.82

2000 75669.29 3152.89 105.10

2500 94586.62 3941.11 131.37

3000 113503.94 4729.33 157.64

3500 132421.27 5517.55 183.92

4000 151338.59 6305.77 210.19

4500 170255.91 7094.00 236.47

5000 189173.24 7882.22 262.74

Table 5.4.2: FireSense 2.0 mote’s battery life for various battery capacities (30sec period)

83

Figure 5.4.1: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 30sec period)

 Sampling period: 60sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.26 0.00468

Sleep 0.0051 99.74 0.00508674

CC2420 Tranceiver

Receive 18.8 0.01 0.00188

Transmit 11 0 0

Sleep 0.001 99.99 0.0009999

SHT11 Temp. Sensor

Measuring 0.5 0.88 0.0044

Sleep 0.0003 99.12 0.00029736

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.0183

Table 5.4.3: Duty cycle and current consumption of all components in a FireSense 2.0 mote (60sec period)

84

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 27256.87 1135.70 37.86

1000 54513.74 2271.41 75.71

1500 81770.61 3407.11 113.57

2000 109027.47 4542.81 151.43

2500 136284.34 5678.51 189.28

3000 163541.21 6814.22 227.14

3500 190798.08 7949.92 265.00

4000 218054.95 9085.62 302.85

4500 245311.82 10221.33 340.71

5000 272568.69 11357.03 378.57

Table 5.4.4: FireSense 2.0 mote’s battery life for various battery capacities (60sec period)

Figure 5.4.2: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 60sec period)

 Sampling period: 90sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.25 0.0045

Sleep 0.0051 99.75 0.00508725

CC2420 Tranceiver

Receive 18.8 0.01 0.00188

Transmit 11 0 0

Sleep 0.001 99.99 0.0009999

85

SHT11 Temp. Sensor

Measuring 0.5 0.55 0.00275

Sleep 0.0003 99.45 0.00029835

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.0165

Table 5.4.5: Duty cycle and current consumption of all components in a FireSense 2.0 mote (90sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 30274.59 1261.44 42.05

1000 60549.18 2522.88 84.10

1500 90823.77 3784.32 126.14

2000 121098.36 5045.77 168.19

2500 151372.95 6307.21 210.24

3000 181647.54 7568.65 252.29

3500 211922.13 8830.09 294.34

4000 242196.72 10091.53 336.38

4500 272471.31 11352.97 378.43

5000 302745.91 12614.41 420.48

Table 5.4.6: FireSense 2.0 mote’s battery life for various battery capacities (90sec period)

Figure 5.4.3: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 90sec period)

86

5.4.2 Repeater

 Sampling period: 30sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.44 0.00792

Sleep 0.0051 99.56 0.00507756

CC2420 Tranceiver

Receive 18.8 6.74 1.26712

Transmit 17.4 0.02 0.00348

Sleep 0.001 93.24 0.0009324

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 1.2858

Table 5.4.7: Duty cycle and current consumption of all components in a Repeater mote (30sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 388.85 16.20 0.54

1000 777.71 32.40 1.08

1500 1166.56 48.61 1.62

2000 1555.42 64.81 2.16

2500 1944.27 81.01 2.70

3000 2333.12 97.21 3.24

3500 2721.98 113.42 3.78

4000 3110.83 129.62 4.32

4500 3499.69 145.82 4.86

5000 3888.54 162.02 5.40

Table 5.4.8: Repeater mote’s battery life for various battery capacities (30sec period)

87

Figure 5.4.4: Mote’s battery life vs. battery capacity (Repeater mote, 30sec period)

 Sampling period: 60sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.35 0.0063

Sleep 0.0051 99.65 0.00508215

CC2420 Tranceiver

Receive 18.8 3.43 0.64484

Transmit 17.4 0.01 0.00174

Sleep 0.001 96.56 0.0009656

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.6602

Table 5.4.9: Duty cycle and current consumption of all components in a Repeater mote (60sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 757.31 31.55 1.05

1000 1514.63 63.11 2.10

1500 2271.94 94.66 3.16

2000 3029.26 126.22 4.21

2500 3786.57 157.77 5.26

3000 4543.89 189.33 6.31

3500 5301.20 220.88 7.36

4000 6058.52 252.44 8.41

88

4500 6815.83 283.99 9.47

5000 7573.14 315.55 10.52

Table 5.4.10: Repeater mote’s battery life for various battery capacities (60sec period)

Figure 5.4.5: Mote’s battery life vs. battery capacity (Repeater mote, 60sec period)

 Sampling period: 90sec

Component Current [mA] Duty Cycle [%] Total current [mA]

MSP430 Microprocessor

Active 1.8 0.3 0.0054

Sleep 0.0051 99.7 0.0050847

CC2420 Tranceiver

Receive 18.8 2.32 0.43616

Transmit 17.4 0 0

Sleep 0.001 97.68 0.0009768

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

 0.4489

Table 5.4.11: Duty cycle and current consumption of all components in a Repeater mote (90sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

89

500 1113.78 46.41 1.55

1000 2227.56 92.82 3.09

1500 3341.34 139.22 4.64

2000 4455.12 185.63 6.19

2500 5568.90 232.04 7.73

3000 6682.68 278.45 9.28

3500 7796.46 324.85 10.83

4000 8910.24 371.26 12.38

4500 10024.02 417.67 13.92

5000 11137.80 464.08 15.47

Table 5.4.12: Repeater mote’s battery life for various battery capacities (90sec period)

Figure 5.4.6: Mote’s battery life vs. battery capacity (Repeater mote, 90sec period)

Chapter 6: Conclusion & Future Work

90

6.1 Conclusion

In this thesis we presented a cost-effective and autonomous solution for passively

monitoring forest areas. The first chapter served as an introduction to Wireless Sensor

Networks and their field of applications. In Chapter 2, the reader was presented with the

basic building block of a WSN, namely the mote. A few of the most popular mote types

were examined, in search of a mote suited to the needs of an application like this. The

operating system that made all this possible, TinyOS, along with step-by-step examples and

a variety of tools that aided our efforts, are introduced and examined in Chapter 3. Chapters

4 and 5 present what is the main objective of this thesis: the answer to the question “Can an

area be efficiently monitored for a time long enough, without the presence of a single person

involved in it?”

It is said that a picture is worth a thousand words:

Figure 6.1.1: Logarithmic diagram of all examined motes’ lifetime (60sec period)

In short, yes it can. But since we wanted to be more thorough, we studied two different

network topologies trying to figure out which one would perform better. An ad-hoc network

type and one that uses access points. Looking at the figure above, the answer seems logical.

A FireSense 2.0 mote, may run up to 380 months (that’s 32½ years), sampling its sensors

and sending the readings over the radio every minute, before its batteries run out. That’s all

in theory of course, since batteries have an expiration date and the mote’s actual lifetime

would be around 5 or 6 years [4]. But what matters is that we have actually designed a WSN

whose fire sensing motes’ energy specification outlasts their batteries’ lifetime.

That is not the only criterion we should consider though. The ad-hoc WSN is more flexible

in its deployment and its “resistance” in case of a mote malfunction or end of life. In the

WSN 2.0 however, in case of a Repeater mote failing to operate, the number of peers that

91

broadcast to it go down as well. What’s more, it is not always certain that the physical

characteristics of an area will allow for an effective access point distribution. A FireSense

WSN on the other hand, works as a plug-and-play network, because the motes that compose

it provide a combination of sensing and packet forwarding.

In the end, it all depends on the needs specific to each case. The first WSN is better suited to

easily accessible areas with irregularities in its physical formation, and when performing

maintenance every 10 months is not a problem. WSN 2.0 is better for remote and

inaccessible areas, in which the motes’ lifetime is the top priority.

6.2 Future Work

The most important enhancement to this thesis would be to test the written source code, on

real motes. We would like to see whether our simulated results correspond to real mote

operation. Having a physical mote at hand would enable an engineer to perform tasks that

are unable to be done in simulation, such as location and time awareness via a GPS

expansion card or utilization of additional sensors via external sensor boards. Software wise,

it would enable us to utilize several TinyOS components that a simulator couldn’t use, such

as the Msp430InternalVoltageC component that gives us the real supply voltage of the

mote, or the CC2420Config interface that allows us to change the radio range over the air.

Another proposal would be to examine the behavior and responsiveness of a mote under

heavy CPU load. The maximum duty cycle value of the MCU, that we encountered, was

about 37% during the first attempt to program the FireSense mote (Section 4.3), but that was

not a good example of CPU performance; rather an example of how very heavy radio traffic

can take its toll on the CPU. One could create a CPU intensive scenario by e.g. connecting a

mote to a camera that takes pictures of an area, compresses them and transmits them.

92

References

[1] J.Eriksson; F. Osterlind; N. Finne; N. Tsiftes; A.Dunkels; T.Voigt, “COOJA-MSPSim:

Interoperability Testing for Wireless_Sensor Networks”, Swedish Institute of Computer

Science, 2004

[2] O. Landsiedel; K. Wehrle; S. Goetz, “Accurate Prediction of Power Consumption in

Sensor Networks”, University of Tuebingen, Germany, 2006

[3] M. Johnson; M. Healy; P. vd Ven; M. Hayes; J. Nelson; T. Newe; E. Lewis, “A

Comparative Review of Wireless Sensor Network Mote Technologies”, IEEE Sensors

Conference, 2009

[4] A. Somov; I. Minakov; A. Simalatsar; G. Fontana and R. Passerone, “A Methodology

for Power Consumption Evaluation of Wireless Sensor Networks”

[5] J.Eriksson; A. Dunkels; N. Finne; F. Osterlind; T. Voigt, “MSPSim – an Extensible

Simulator for MSP430-equipped Sensor Boards”, Swedish Institute of Computer Science,

2004

[6] G. Kucuk; B. Kosucu; A. Yavas; S. Baydere, “FireSense: Forest Fire Prediction and

Detection System using Wireless Sensor Networks”, 2008

[7] P. Levis; D. Gay, “TinyOS Programming”, Cambridge University Press, 2009

[8] G. Lorincz and M. Welsh, “Deploying a Wireless Sensor Network on an Active

Volcano”, IEEE Computer Society, 2006

[9] TinyOS, a free and open source component-based operating system and platform

targeting wireless sensor networks, available at www.tinyos.net

[10] C. Merlin, “A tutorial for Programming in TinyOS”, University of Rochester, 2009

[11] J.P. Carneiro, “Environmental Monitoring in Wind Farms based on WSANs”, Instituto

Superior Tecnico, 2009

[12] http://en.wikipedia.org/wiki/Sensor_node

[13] K. Lin; J. Yu; J. Hsu; S. Zahedi; D. Lee, “Heliomote: Enabling Long-Lived Sensor

Networks through Solar Energy Harvesting”, UCLA, 2005

[14] TelosB datasheet, Available at http://www.memsic.com

[15] TI MSP430F1611 Datasheet, Available at http://www.ti.com

[16] CC24240 Datasheet, Available at http://www.ti.com/lit/ds/swrs041c/swrs041c.pdf

[17] Design Note 007, Available at http://www.ti.com/lit/an/swru120b/swru120b.pdf

[18] Design Note 018, Available at http://www.ti.com/lit/an/swra169a/swra169a.pdf

[19] SHT11 Datasheet, Available at http://www.sensirion.com/en/products/humidity-

temperature/humidity-sensor-sht11/

[20] S1087&S108701 Datasheet, Available at http://www.hamamatsu.com/resources/pdf/

ssd/s1087_etc_kspd1039e02.pdf

[21] Nano-RK, http://www.nanork.org/projects/nanork

[22] SOS, https://projects.nesl.ucla.edu/public/sos-2x/doc/

[23] Mantis, http://mantisos.org/index/tiki-index.php.html

[24] BTNut, http://www.btnode.ethz.ch/static_docs/doxygen/btnut/

[25] Contiki, http://www.contiki-os.org/

[26] Avrora Simulator, http://compilers.cs.ucla.edu/avrora/

93

[27] CM5000 specs, http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

[28] Yeti2 project, http://tos-ide.ethz.ch/wiki/index.php

94

Appendix

FireSense source code

FireSenseC.nc

#include "FireSense.h"

module FireSenseC

{

 uses

 {

 //General Interfaces

 interface Boot;

 interface Timer<TMilli> as Timer1;

 interface Timer<TMilli> as Timer2;

 interface Timer<TMilli> as Timer3;

 interface Leds;

 //Sensor Interfaces

 interface Read<uint16_t> as TempRead;

 interface Read<uint16_t> as LightRead;

 //Radio Interfaces

 interface Packet;

 interface AMSend;

 interface SplitControl as RadioControl;

 interface Receive;

 }

}

implementation

{

 uint8_t numsensors;

 bool radio_busy = FALSE;

 bool sensor_data_packet = FALSE;

 message_t packet;

 FireSenseMsg_t data;

 uint8_t array[NUMBER_OF_MOTES+1] = {0};

 task void startListening();

 task void startSensing();

 task void sendReadings();

 event void Boot.booted()

 {

 post startListening();

 }

 task void startListening()

 {

 call RadioControl.start();

 call Timer1.startOneShot(LISTEN_DURATION_1);

 }

 event void RadioControl.startDone(error_t error)

 {

 if (error == FAIL)

 {

 call RadioControl.start();

 }

 }

95

 event void Timer1.fired()

 {

 post startSensing();

 }

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)

 {

 if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE))

 {

 FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload;

 if (array[incomingPacket -> node_id] == 0)

 {

 FireSenseMsg_t * outgoingPacket;

 outgoingPacket = (FireSenseMsg_t *) call

Packet.getPayload(&packet, sizeof(FireSenseMsg_t));

 outgoingPacket -> node_id = incomingPacket -> node_id;

 outgoingPacket -> temperature = incomingPacket -> temperature;

 outgoingPacket -> luminance = incomingPacket ->

luminance;

 if (call AMSend.send(AM_BROADCAST_ADDR, &packet,

sizeof(FireSenseMsg_t)) == SUCCESS)

 {

 radio_busy = TRUE;

 sensor_data_packet = FALSE;

 array[outgoingPacket -> node_id] = 1;

 }

 }

 }

 return msg;

 }

 event void AMSend.sendDone(message_t *msg, error_t error)

 {

 radio_busy = FALSE;

 if (sensor_data_packet == TRUE)

 {

 call Timer2.startOneShot(LISTEN_DURATION_2);

 }

 }

 task void startSensing()

 {

 numsensors = 0;

 radio_busy = TRUE;

 call Leds.led0On();

 call TempRead.read();

 call LightRead.read();

 }

 event void TempRead.readDone(error_t result, uint16_t val)

 {

 data.temperature = val;

 if (++numsensors == MAX_SENSORS)

 {

 post sendReadings();

 call Leds.led0Off();

 }

 }

 event void LightRead.readDone(error_t result, uint16_t val)

 {

 data.luminance = val;

 if (++numsensors == MAX_SENSORS)

 {

 post sendReadings();

 call Leds.led0Off();

96

 }

 }

 task void sendReadings()

 {

 FireSenseMsg_t * aux;

 aux = (FireSenseMsg_t *) call Packet.getPayload(&packet,

sizeof(FireSenseMsg_t));

 aux -> node_id = TOS_NODE_ID;

 aux -> temperature = data.temperature;

 aux -> luminance = data.luminance;

 if (call AMSend.send(AM_BROADCAST_ADDR, &packet, sizeof(FireSenseMsg_t)) ==

SUCCESS)

 {

 radio_busy = TRUE;

 sensor_data_packet = TRUE;

 array[aux -> node_id] = 1;

 }

 }

 event void Timer2.fired()

 {

 call RadioControl.stop();

 }

 event void RadioControl.stopDone(error_t error)

 {

 call Timer3.startOneShot(SLEEP_DURATION);

 memset(array,0,sizeof(array));

 }

 event void Timer3.fired()

 {

 post startListening();

 }

}

FireSenseAppC.nc

configuration FireSenseAppC{ }

implementation

{

 //General

 components FireSenseC as App; //Main module file

 components MainC; //Boot

 components new TimerMilliC() as TimerA;

 components new TimerMilliC() as TimerB;

 components new TimerMilliC() as TimerC;

 components LedsC;

 App -> MainC.Boot;

 App.Timer1 -> TimerA;

 App.Timer2 -> TimerB;

 App.Timer3 -> TimerC;

 App.Leds -> LedsC;

 //Radio Communication

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);

 components new AMReceiverC(AM_RADIO);

 App.Packet -> AMSenderC;

 App.AMSend -> AMSenderC;

 App.RadioControl -> ActiveMessageC;

97

 App.Receive -> AMReceiverC;

 //Temperature components

 components new SensirionSht11C() as TempSensor;

 App.TempRead -> TempSensor.Temperature;

 //Light components

 components new HamamatsuS1087ParC() as LightSensor;

 App.LightRead -> LightSensor;

}

FireSense.h

#ifndef FIRE_SENSE_H

#define FIRE_SENSE_H

enum

{

 NUMBER_OF_MOTES = 15,

 MAX_SENSORS = 2,

 AM_RADIO = 1,

 LISTEN_DURATION_1 = 1024,

 LISTEN_DURATION_2 = 1024,

 SLEEP_DURATION = 28672

};

typedef nx_struct FireSenseMsg

{

 nx_uint16_t node_id;

 nx_uint16_t temperature;

 nx_uint16_t luminance;

} FireSenseMsg_t;

#endif /* FIRE_SENSE_H */

Makefile

COMPONENT=FireSenseAppC

include $(MAKERULES)

FireSense 2.0 source code

FireSense2C.nc

#include "FireSense2.h"

module FireSense2C

{

 uses

 {

 //General Interfaces

 interface Boot;

 interface Timer<TMilli> as Timer;

 interface Leds;

 //Sensor Interfaces

 interface Read<uint16_t> as TempRead;

 interface Read<uint16_t> as LightRead;

 //Radio Interfaces

98

 interface Packet;

 interface AMSend;

 interface SplitControl as RadioControl;

 }

}

implementation

{

 uint8_t numsensors;

 message_t packet;

 FireSenseMsg_t data;

 task void startSensing();

 task void sendReadings();

 event void Boot.booted()

 {

 post startSensing();

 }

 task void startSensing()

 {

 numsensors = 0;

 call Leds.led0On();

 call TempRead.read();

 call LightRead.read();

 }

 event void TempRead.readDone(error_t result, uint16_t val)

 {

 data.temperature = val;

 if (++numsensors == MAX_SENSORS)

 {

 post sendReadings();

 call Leds.led0Off();

 }

 }

 event void LightRead.readDone(error_t result, uint16_t val)

 {

 data.luminance = val;

 if (++numsensors == MAX_SENSORS)

 {

 post sendReadings();

 call Leds.led0Off();

 }

 }

 task void sendReadings()

 {

 FireSenseMsg_t * aux;

 aux = (FireSenseMsg_t *) call Packet.getPayload(&packet,

sizeof(FireSenseMsg_t));

 aux -> node_id = TOS_NODE_ID;

 aux -> temperature = data.temperature;

 aux -> luminance = data.luminance;

 call RadioControl.start();

 }

 event void RadioControl.startDone(error_t error)

 {

 if (error == FAIL)

 {

 call RadioControl.start();

 }

 else

99

 {

 call AMSend.send(AM_BROADCAST_ADDR, &packet, sizeof(FireSenseMsg_t));

 }

 }

 event void AMSend.sendDone(message_t *msg, error_t error)

 {

 call RadioControl.stop();

 }

 event void RadioControl.stopDone(error_t error)

 {

 if (error == FAIL)

 {

 call RadioControl.stop();

 }

 else

 {

 call Timer.startOneShot(PERIOD);

 }

 }

 event void Timer.fired()

 {

 post startSensing();

 }

}

FireSense2AppC.nc

configuration FireSense2AppC

{

}

implementation

{

 //General

 components FireSense2C as App; //Main module file

 components MainC; //Boot

 components new TimerMilliC() as Timer;

 components LedsC;

 App -> MainC.Boot;

 App.Timer -> Timer;

 App.Leds -> LedsC;

 //Radio Communication

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);

 App.Packet -> AMSenderC;

 App.AMSend -> AMSenderC;

 App.RadioControl -> ActiveMessageC;

 //Temperature components

 components new SensirionSht11C() as TempSensor;

 App.TempRead -> TempSensor.Temperature;

 //Light components

 components new HamamatsuS1087ParC() as LightSensor;

 App.LightRead -> LightSensor;

}

100

FireSense2.h

#ifndef FIRE_SENSE2_H

#define FIRE_SENSE2_H

enum

{

 MAX_SENSORS = 2,

 AM_RADIO = 1,

 PERIOD = 28672

};

typedef nx_struct FireSenseMsg

{

 nx_uint16_t node_id;

 nx_uint16_t temperature;

 nx_uint16_t luminance;

} FireSenseMsg_t;

#endif /* FIRE_SENSE2_H */

Makefile

COMPONENT=FireSense2AppC

CFLAGS += -DCC2420_DEF_RFPOWER=11

include $(MAKERULES)

Repeater source code

RepeaterC.nc

#include "Repeater.h"

module RepeaterC

{

 uses

 {

 //General Interfaces

 interface Boot;

 interface Timer<TMilli> as Timer1;

 interface Timer<TMilli> as Timer2;

 //Radio Interfaces

 interface Packet;

 interface AMSend;

 interface SplitControl as RadioControl;

 interface Receive;

 }

}

implementation

{

 bool radio_busy = FALSE;

 message_t packet;

 FireSenseMsg_t data;

 uint8_t array[NUMBER_OF_MOTES+1] = {0};

 task void startListening();

 event void Boot.booted()

101

 {

 post startListening();

 }

 task void startListening()

 {

 call RadioControl.start();

 call Timer1.startOneShot(LISTEN_DURATION);

 }

 event void RadioControl.startDone(error_t error)

 {

 if (error == FAIL)

 {

 call RadioControl.start();

 }

 }

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)

 {

 if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE))

 {

 FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload;

 if (array[incomingPacket -> node_id] == 0)

 {

 FireSenseMsg_t * outgoingPacket;

 outgoingPacket = (FireSenseMsg_t *) call Packet.getPayload(&packet,

sizeof(FireSenseMsg_t));

 outgoingPacket -> node_id = incomingPacket -> node_id;

 outgoingPacket -> temperature = incomingPacket -> temperature;

 outgoingPacket -> luminance = incomingPacket -> luminance;

 if (call AMSend.send(AM_BROADCAST_ADDR, &packet,

sizeof(FireSenseMsg_t)) == SUCCESS)

 {

 radio_busy = TRUE;

 array[outgoingPacket -> node_id] = 1;

 }

 }

 }

 return msg;

 }

 event void AMSend.sendDone(message_t *msg, error_t error)

 {

 radio_busy = FALSE;

 }

 event void Timer1.fired()

 {

 call RadioControl.stop();

 }

 event void RadioControl.stopDone(error_t error)

 {

 call Timer2.startOneShot(SLEEP_DURATION);

 memset(array,0,sizeof(array));

 }

 event void Timer2.fired()

 {

 post startListening();

 }

}

102

RepeaterAppC.nc

configuration RepeaterAppC{}

implementation

{

 //General

 components RepeaterC as App; //Main module file

 components MainC; //Boot

 components new TimerMilliC() as TimerA;

 components new TimerMilliC() as TimerB;

 App -> MainC.Boot;

 App.Timer1 -> TimerA;

 App.Timer2 -> TimerB;

 //Radio Communication

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);

 components new AMReceiverC(AM_RADIO);

 App.Packet -> AMSenderC;

 App.AMSend -> AMSenderC;

 App.RadioControl -> ActiveMessageC;

 App.Receive -> AMReceiverC;

}

Repeater.h

#ifndef REPEATER_H

#define REPEATER_H

enum

{

 NUMBER_OF_MOTES = 16,

 LISTEN_DURATION = 2048,

 SLEEP_DURATION = 30720,

 AM_RADIO = 1

};

typedef nx_struct FireSenseMsg

{

 nx_uint16_t node_id;

 nx_uint16_t temperature;

 nx_uint16_t luminance;

} FireSenseMsg_t;

#endif /* REPEATER_H */

Makefile

COMPONENT=RepeaterAppC

include $(MAKERULES)

103

BaseStation source code

BaseStationC.nc

#include "BaseStation.h"

#include <stdio.h>

#include <string.h>

module BaseStationC

{

 uses

 {

 //General Interfaces

 interface Boot;

 interface Leds;

 //Radio Interfaces

 interface Packet;

 interface AMSend;

 interface SplitControl as RadioControl;

 interface Receive;

 interface Timer<TMilli> as Timer;

 }

}

implementation

{

 uint8_t array[NUMBER_OF_MOTES+1] = {0};

 uint16_t celsius;

 uint16_t lux;

 event void Boot.booted()

 {

 call Timer.startPeriodic(TIMER_RESET);

 call RadioControl.start();

 call Leds.led1On();

 }

 event void RadioControl.startDone(error_t error)

 {

 if (error == FAIL)

 {

 call RadioControl.start();

 }

 }

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)

 {

 FireSenseMsg_t *incomingPacket = (FireSenseMsg_t *) payload;

 if (array[incomingPacket -> node_id] == 0)

 {

 uint16_t val1 = incomingPacket -> temperature;

 uint16_t val2 = incomingPacket -> luminance;

 uint16_t val3 = incomingPacket -> node_id;

 celsius = -39.6 + 0.01 * val1;

 lux = 3.815 * val2;

 printf("Mote: %d Temperature: %d Luminance: %d \n", val3, celsius,

lux);

 array[val3] = 1;

 if (((celsius >= 40) && (celsius <= 45)) || ((lux >= 600) && (lux <=

300)))

 {

 call Leds.led2On();

 }

104

 else if ((celsius >= 45) || ((lux >= 800) && (lux <= 100)))

 {

 call Leds.led0On();

 }

 }

 return msg;

 }

 event void Timer.fired()

 {

 memset(array,0,sizeof(array));

 call Leds.led0Off();

 call Leds.led2Off();

 }

 event void RadioControl.stopDone(error_t error)

 {

 }

 event void AMSend.sendDone(message_t *msg, error_t error)

 {

 }

}

BaseStationAppC.nc

configuration BaseStationAppC

{

}

implementation

{

 components BaseStationC as App;

 components MainC;

 components LedsC;

 components new TimerMilliC();

 App -> MainC.Boot;

 App -> LedsC.Leds;

 App -> TimerMilliC.Timer;

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);

 components new AMReceiverC(AM_RADIO);

 App.Packet -> AMSenderC;

 App.AMSend -> AMSenderC;

 App.RadioControl -> ActiveMessageC;

 App.Receive -> AMReceiverC;

 components SerialPrintfC;

}

BaseStation.h

#ifndef BASE_STATION_H

#define BASE_STATION_H

enum

{

 NUMBER_OF_MOTES = 15,

105

 AM_RADIO = 1,

 TIMER_RESET = 30720

};

typedef nx_struct FireSenseMsg

{

 nx_uint16_t node_id;

 nx_uint16_t temperature;

 nx_uint16_t luminance;

} FireSenseMsg_t;

#endif /* BASE_STATION_H */

Makefile

COMPONENT = BaseStationAppC

PFLAGS += -I$(TOSDIR)/lib/printf

include $(MAKERULES)

