& Y3\ EONIKO METZOBIO [IOAYTEXNEIO
Y W

> XOAH HAEKTPOAOI'ON MHXANIKOQON
KAI MHXANIKON YTIOAOTIZTON

TOMEAX TEXNOAOTIAE [IAHPO®OPIKHE KAI YIIOAOTIETON

%
S/

(¢]

T50
ey
& Ry
o E“ '
7 NpOMHOEYS .
JHI==E|

@‘\ |

ty

|

Forest Fire Detection with Wireless Sensor Networks

AITIAQMATIKH EPT'AXIA

Evayyelog N. Xipdmovrog

EmBiénov : I'ewpylog E. Owovopdrxog

Enikovpoc Kabnynmc E.M.II.

Anva, ZentéuPprog 2013

E®GNIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOI'ON MHXANIKOQON
KAI MHXANIKON YTIOAOTIZTON

TOMEAX TEXNOAOTIAE [IAHPO®OPIKHE KAI YIIOAOTIETON

N7
g’;e

[

" r
k(\
v
L -
NPOMHOBEV S
i
N VPPOPOS

Forest Fire Detection with Wireless Sensor Networks

AITIAQMATIKH EPT'AXIA

Evayyelog N. Xipdmovrog

EmBiénov : I'ewpylog E. Owovopdrxog

Enikovpoc Kabnynmc E.M.IIL.

EykpiOnke and v tpiuein eetaotikn emtponn v 4" ZentepPpiov 2013.

I'eopyrog Oucovopdkog Kuopdd Mexpeotln AnpTplog ZovvTpng
Enixovpog Kabnyntg E.M.II. Koabnynmg E.M.IL. Enikovpog Kabnyntig E.M.I1.

AbMva, ZentéuPplog 2013

Evayyelog N. Zipomovrog
Aumlopotovyog Hiektpordyoc Mnyavikog kot Mnyavikog Yrnoroyiotov E.ML.IL.

Copyright © Evéayyelog Zipdémovirog, 2013.
Me empOroén mavtoc dwarmdporoc. All rights reserved.

Amayopevetal 1 avIypar], amofnKevon Kot Slovour| TG Tapovcag epyaciog, €5 OAOKANPOL 1
TUALOTOC OVTNG, Yo EUTopkd okomd. Emitpémeton avotdnmon, amobfikevon Kot dtavoun yio
oKOTO U1 KEPOOGKOTIKO, EKTALOEVTIKNG 1| EPEVVITIKNG GUGNG, VIO TNV TPolmdOeom va avapépeTat
N Y TPoEAELONG Kot va dtatnpeital To mapov uivope. Epotiuata mov agopovv T xpnorn e
£PYOOING Y10 KEPOOGKOTIKO GKOTO TPETEL VO, ATeELHVVOVTOL TPOG TOV GLYYPOAPEQ.

Ol amOYELS KoL TOL CUUTEPAGLOT TOV TEPEXOVTUL GE QVTO TO £YYPAPO EKPPALOVY TOV GLYYPOPEN

Kol 0V wpémel vo. epunvevdel 0Tt avimpocwnevovy Tig emionueg Béoeilg tov EBvikod Metoofiov
TTohvteyveiov.

IMepiinyn

To kataveunuévo GLGTAHUATO VOl GLGTHUOTO VAIKOD KOl AOYIGUIKOV, GTO, OToio, GTot el
EVOOUOTOUEVO GE VIOAOYIOTEG, EMKOWVMOVOLV KOl GUVTOVILOLV TIC EVEPYELEC TOLG UE
avToAlayn TANpogopldv peTaEy Tovs. ‘Eva kotavepumuévo ocvotnuo umopel va
OVTILETOTIOTEL OG Eva TapAAANA0 cvotnue To omoio PacileTol oe VTOVOUN VTOAOYIGTIKA
uépn (pe evoopoatopévn CPU, amodnkeutikd ydpo, Tpo@odocia, SETaPES OIKTOOV KAT.)
ouvdedepéva og Eva dikTLo (ToTKO, gVpeiag TePLoyNg N To AladikTvo).

YKOTOG OTAG TNG OIMAMUOTIKNAG €pYaciag eivol 1 Be@pNTIKY] KATOOKELY] Kol TPOGOUOImo
™G Asrtovpyiog €vOg OIKTHOL OVTOVOU®MV VTOAOYIGTIKOV — HOVAOWV, OCVPUOTO
oVVOEdEUEVOV HETAED TOVG, He OTOYXO TNV TANPN TapakoAovONoM Kol TpooTacio UoG
daotkNg éktaong amd mupkaylEs. To diktvo avtd anoteAeitan amd PIKPEG LOVAOES, XOUNAOD
KOGTOVG KOl EVEPYELNKNG KATAVAAWGONG, HE EVoOUATOUEVOLS arcOntipec. Tétowa diktva
givalr yvootd ®g AcVppoto Aiktva AwOnmpov (WSN), ot koufor tewv omoiwv
ovopdlovton motes. Baoikn dopikr] povdda 0o amoteAécel 11 EVOOUATOUEVT] TAUTEOPLLOL
CM5000 tng Advanticsys, KOTOOGKEVUOUEVT] GE OVTIOTOLYIOL UE TNV TAOTQOPLO AVOLYTOD
Loyiopukov TelosB/Tmote Sky tov [averiotnuiov Berkeley. OhoxkAnpdveral yopw amd tov
pikpoeneEepyoot piktav onpdtov MSP430 tng Texas Instruments kot Tov mopmodEktn
CC2420 ¢ Chipcon, evd dwbétel evoopatopévovg ouctntipeg Oeppokpaciog, vypaciog
KOl QOTEWVOTNTOC.

O mpoypappatiopds tov motes Oa yiver pe t Pondewa tov TinyOS, evog Aettovpykod
OUGTHHOTOG OVOIKTOD KOOKO KOTOAANAO OYEOOGUEVOL YL TOV TPOYPOUUOTIGHO
EVOOUATOUEVOV CUOTNUATOV, YPUUUEVO GE L0 TTOPAAANYT] TNG YADGGOS TPOYPULUUATIGLOV
C, pe v ovopaocia nesC (network embedded systems C). To TinyOS 0o eyxatactofel o
wo dtavoun Linux. T Adyovg gukoriog ypriong Kot cvpufatdtnrog emhéyOnke 1n dtovoun
Ubuntu 13.04. T v mpocopoimon tng Agrtovpyiag tov diktvov Ba ypnotporombei o
npocopolmtic Cooja kat péow avtov o MSPSIm.

Aégarg Khewond: Karavepnuéva Zvomuata, Evoopoatopévo Zuotuarta, Acvppota
Aiktvo AreOnmpov, WSN, Aacikr| Extaon, [Mupkayid, HapakorovOnon, [Ipocopoiwon,
CM5000, TelosB, Mikpogieyktic Miktov Enquatog, MSP430, CC2420, TinyOS, nesC,
Cooja, MSPSim, Eclipse, Yeti 2

Abstract

Distributed systems are hardware and software systems, in which, components installed on
computers, communicate and coordinate their actions by exchanging information. A
distributed system can be seen as a system that relies on standalone computing parts (with
onboard CPU, storage space, power supply, network interfaces etc.) connected to a network
(local, wide area or the Internet).

The scope of this thesis is the theoretical construction and simulation of operation, of a
network of standalone computing units, wirelessly connected to each other, targeting the full
monitoring and protection of a forest area from fires. This network will be composed of
small, low cost and low power consuming modules with onboard sensors. Such networks
are known as Wireless Sensor Networks (WSN), the nodes of which are called motes. The
basic structural module will be the embedded platform CM5000 by Advanticsys, built in
accordance with the open source platform TelosB/Tmote Sky of the University of
California, Berkeley. It is built around the MSP430 mixed signal microprocessor by Texas
Instruments and the CC2420 transceiver by Chipcon, while it embeds temperature, humidity
and light sensors.

The programming of the motes will be done with the help of TinyOS, an open source
operating system, specifically designed to program embedded systems and written in a
dialect of the C programming language, called nesC (network embedded systems C).
TinyOS will be installed on a Linux distribution. For ease of use and compatibility reasons,
Ubuntu 13.04 was chosen. For the simulation of the network’s operation, the simulator
Cooja and within it MSPSim, will be used.

Keywords: Distributed Systems, Embedded Systems, Wireless Sensor Networks, WSN,
Forest Area, Fire, Monitoring, Simulation, CM5000, TelosB, Mixed Signal Microprocessor,
MSP430, CC2420, TinyOS, nesC, Cooja, MSPSim, Eclipse, Yeti 2

Acknowledgments

First and foremost, | would like to thank Prof. George Economacos for being my supervisor,
for his support and eagerness to help me and for our excellent cooperation throughout the
duration of this thesis.

| want to express my gratitude to the TinyOS and ContikiOS communities, and their
developers, with whom | had the pleasure to discuss many of the problems | faced.

Last, but by no means least, | would like to thank my mother for her silent but endless
support and encouragement throughout all these years of study.

TABLE OF CONTENTS

Chapter 1: INTrOQUCTIONoviiiiiiiiieieee e bbbt 15
1.1 INEFOTUCTION 1.t bbbttt b bbb e eneas 15
I\, T T 0] [oo OSSP 15
1.3 MOLES ANT SENSOIS....cviiiitieiiesieie sttt sttt ettt b e bbbt et et be st st sbesbeaneeneeneas 16
1.4 Wireless SeNSOr NEIWOIKS.c..viiiiieiiie ettt ee e 18

1.4 1 ENErgy EFfICIENCY ..ocueeiiiie ettt 18
O (o 1 | o USRS 19
I ST ol U 1 OSSPSR 20
1.5 OPErating SYSLEIMIS....cveeiieieiteeiteeeestee st eie st e ste et e te e te e e sbe e te e e e s reebeaneessaenseesnesreenseans 20
1.6 SIMUIALOTS. ...ttt b e bbb r e s e s 21

(08 T T] g 1Y, o] (-SSP OSPRRS 23
P20 A 111 0o 1 od 1 o] USSR 23
2.2 CommOn MOLE PIALFOIMS ..ot 23

2.2.1 Physical CharaCteriStiCS.couiiriiieieiesie sttt 24
2.2.2 ProcesSOr and IMEMOIYccoiiiieiiiieieie ettt bbbt 25
2.2.3 Communications Capabilities...........cccccveiieii i 25
2.2.4 SENSON SUPPOIT ..eiiieiieie ettt sttt sttt e e e e bbe e sbb e e bt e e s bb e e s beeesnbeeennseaeas 26
2.2.5 POWEr SPECITICALIONSovveiiieie et 27
2.2.8 PIICR ottt bbb bt 27
2.3 AAVANTICSYS CMB000c.eeeiieiteiiieiesieeeie ettt 27
2.3.1 Texas Instruments MSPA30F L1611cc.ooiiiiiieie e 29
2.3.2 Texas INStruments CC2420ccooieiieiiee e 31
2.3.3 SENSITION SHTLL ..ottt e reesre e aneenneas 32
2.3.4 Hamamatsu S1087 & S1087-01cccoeriiiiirieieiisieieieie e 33
2.3.5 EXEErNal FIaShccveiiieece s 35

Chapter 3: TINYOS & NESC ..ottt te e te e sne e s be e resreenres 36
K201 A 111 0o [od o] SRR SSRSRS 36
KT I)Y@ SO PRSPS 36
R - TP 37

3.3.1 Components and INtEIfaCESccviiiiiiiiiie e 38
3.3.2 An Example APPHCALIONcooiiiiic et 38
3.3.3 CommaNds aNd EVENLScoeiiiiiiieieiie e e 40
3.3.4 Tasks and Split-Phase OPEerationscccueiuieiieiiieeiie i see s esee e 43
3.3.5 Radio COMMUNICALION.......cciieiiiieieee et e e eeesneenneas 45
I 0o Lo - RS TTS T RO PSPPSRI 50
TSI 1Y =] o OSSPSR 53

3.6 Yeti 2 plugin fOr ECHIPSE IDEooiiiiiiiiiesieee et 54

ChaPLEr 42 WSIN 1.0 ...ttt b bbb 55
o I o T 13 Tox o] OO PR PRSP 56
4.2 Creating the MOLEcuiiiiieece e re e aenreas 56

O R T- o] o] 0T =LA o] ISR 56
4.2.2 POWET CONSUMPLION ..ottt 58
A.2.3 FITESENSE IMOTE ...ttt ettt nte e enes 63
4.2.4 BaSESLAION IMOLEoouiiiiieiiiee ettt 67
4.3 TeStING the WSN ... 67
AANMVSN L0 ittt a et st re e e nes 70
4.5 ENEIGY ANAIYSIS ...veeieeeieitieie ettt ettt e et et e e e re et eereenaenres 74

Chapter 5: WSN 2.0 ..ottt te ettt e e e s te e e e sneeste e teennennes 78
DL INTIO e r e neas 78
5.2 Friis TranSmisSioN EQUATTON...........ccoiiiiiiiiieie s 78
5.3 WS 2.0 1. ittt ettt et n e n ettt a et st reereere e e e eneas 80
5.4 ENEIGY ANAIYSIS ..ottt 82

5.4 L FITESENSE 2.0 1.ttt ettt bbb 82
5.4, 2 REBPBALET ... etie ettt ettt r e e nra s 86

Chapter 6: Conclusion & FULUIE WOTKc.ooiiiiiiiic e 89
LGB0 A0 Tod 1115 o 1 USRS 90
6.2 FULUIE WOTK ...ttt ettt et e areenreenneeneeaneenneeneenneas 91

RETEIBINCES ...ttt h e bbbt e b e et st e nbe e eees 92

F AN o] 01010 3 SRS 94

10

LIST OF FIGURES

Figure 1.2.1: Active monitoring (left) vs. passive monitoring (right)........c.ccocvevvvinivnnnnne. 16
Figure 1.2.2: Harvard’s volcano monitoring [8]cccvvivieiiiiriiiin i 16
Figure 1.3.1: TYPICAI MOEcviiviiieeie e 17
Figure 1.3.2: Typical mote architeCtureccooveiiiie i 17
Lo 0T o I T T o o (= 1 S S 19
Figure 1.4.2: PMG37 MICIOGENEIALONciuiiiiiiieiieieiesiestesiesieeie et 19
FIGUIE 1.5.1: TINYOS ... oottt sttt se et et esre e be et e s st e sneeneeenes 21
Figure 1.6.1: AVIOra SIMUIALOTcoiviiiiiieie et 21
Figure 1.6.2: C00Ja SIMUIALOTc.oiviiiiiiiiicieee s 22
Figure 2.2.1: TelosB/ Tmote Sky (left) & MicaZ (right) Motes..........ccccevvviveiieeieciieveeriene 23
Figure 2.2.2: SHIMMER (left) & IRIS (right) MOteSccvvveiiiiiiie e 24
Figure 2.3.1: Front and back of the TelosB/Tmote Sky module...........c.cccooveiveviiicinennene. 28
Figure 2.3.2: CM5000 Block diagram [14]c.covveiiiiieiieie e 29
Figure 2.3.3: TIMSPA30FL16LLccoooviiiiiiecieceeieiee ettt 29
Figure 2.3.4: CPU Frequency vs. Minimum supply VOItage ..o 30
Figure 2.3.5: Block diagram of the TI MSP430 microcontroller and its connection to other

peripherals in the TelosS MOAUIE ..o 30
Figure 2.3.6: SENSINON SHTLL......ooiiiiiiiieeee s 32
Figure 2.3.7: Maximal RH (left) and Temperature (right) tolerance [19]........ccccccvvevvennne. 33
Figure 2.3.8: HAMamMatSU SL1087cc.cccveiieiiiiieiieeie ettt 33
Figure 2.3.9: SPeCtral RESPONSEccviiieiieeiecie sttt sre e ens 34
Figure 2.3.10: S1087 (left) & S1087-01 equivalent Circuits [27]......c.ccoevvriveieereiiieieeiee 34
Figure 3.3.1: The nesC compilation model. ... 38
Figure 3.4.1: New SIimulation WIZardcceeeiiiniieiesieee e 51
Figure 3.4.2: Default PIUGINS.c.ooiiiiiiie s 52
Figure 3.4.3: EXtended PIUGINS.......c.ooiiiiiiiiiieee s 52
Figure 3.5.1: Standalone MSPSIM FUNNINGooiveriiiieie e 53
Figure 3.5.2: Output of the Profile command ina terminalccccoooiiieiieie e 53
Figure 3.6.1: Yeti2 Error DeteCtiON.........cccveiiiiiiieeie ettt 54
Figure 3.6.2: Yeti 2 Code COmMPIELiONcoviiiiiieece e 54
Figure 3.6.3: Yeti 2 neSC dOCUMENTALIONcuevuiiiiiiieiie e 54
Figure 3.6.4: Yeti 2 OULIING........ooiiie e 54
Figure 3.6.5: Yeti 2 Graph Creation.........cccccoviieieiiiise e 55
Figure 4.2.1: MOte’s OULPULooiiiiiieiic e 58
Figure 4.2.2: Simplified state machine of the Prototype mote............cccevvvviiiie e, 59
Figure 4.2.3: Command line statistics for the Prototype mote............ccccvveiiivie e, 60
Figure 4.2.4: Radio duty cycle for the Prototype Motecccoovvevieiiieiie e 60
Figure 4.2.5: MSP430 duty cycle for the Prototype mote..........cccovvviieeiie i, 61
Figure 4.2.6: Mote’s battery life vs. battery capacity (Prototype mote)..........ccccocvvriverennnnn. 62
Figure 4.2.7: Simplified state machine of the FireSense mote............cccoeovrivriininincinnnen, 63
Figure 4.2.8: Simplified state machine of the BaseStation moteccccvcvvniniviciiennnn 67

11

Figure 4.3.1:
Figure 4.3.2:
Figure 4.3.3:
Figure 4.3.4:
Figure 4.3.5:
Figure 4.4.1:
Figure 4.4.2:
Figure 4.4.3:
Figure 4.4.4:

depicts 29ms

Figure 4.4.5:
Figure 4.4.6:
mote to sink
Figure 4.5.1:
Figure 4.5.2:
Figure 4.5.3:
Figure 5.2.1:
Figure 5.3.1:
Figure 5.3.2:
Figure 5.4.1:
Figure 5.4.2:
Figure 5.4.3:
Figure 5.4.4:
Figure 5.4.5:
Figure 5.4.6:
Figure 6.1.1:

Network topology depiCted..........ceoiiiiiiiiiiiie e 68
FireSense onboard sensors’ duty CyCle.........ccovvvviiiiiiiiiiiiiiieic e 69
Radio duty cycle for the FIreSense Motescccooevveininnenne s 69
MSP430 duty cycle for the FireSense Motes.........ccocvvveveereiieie e, 69
Heavy radio traffic during FireSense motes’ operation...........ccccvvevivveesiveeenne 70
Normal radio traffic after code improvement.............ccccovveiviie i e, 71
BaseStation receives all FireSense motes’ packets during a sample period.... 72
Dummy mote PlaCeMENTc.oiiiiiieieeee e 72
Packets exchanged while forwarding a dummy mote’s packet. Vertical line

.. 73
BaseStation needs 5ms to forward a radio packet to its serial port 73
This is what 29ms look like as the WSN forwards the packet from dummy

... 73
Mote’s battery life vs. battery capacity (FireSense mote, 30sec period)......... 75
Mote’s battery life vs. battery capacity (FireSense mote, 60sec period)......... 76
Mote’s battery life vs. battery capacity (FireSense mote, 90sec period)......... 77
CC2420 ideal radio range vs. current CONSUMPLION........cccoverererereniesieeennes 80
BaseStation receives all FireSense 2.0 motes’ packets during a period........... 81
WSN 2.0 Network topologycccveveieiiiiiiiiisesee s 81
Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 30sec period) ... 83
Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 60sec period) ... 84
Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 90sec period)... 85
Mote’s battery life vs. battery capacity (Repeater mote, 30sec period)........... 87
Mote’s battery life vs. battery capacity (Repeater mote, 60sec period)........... 88
Mote’s battery life vs. battery capacity (Repeater mote, 90sec period)........... 89
Logarithmic diagram of all examined motes’ lifetime (60sec period) 90

12

LIST OF TABLES

Table 2.2.1: Physical characteristics of common mote platforms [3]ccocviiiiiiiciennn, 24
Table 2.2.2: Microprocessor & memory specifications [3]........ccccvverviieiieericiieseeie e 25
Table 2.2.3: Radio chip Specifications [3].......ccccviiiiiieiiiie e 26
Table 2.2.4: Radio chip power consumption [3]cccooviiriieiiiieieese e 26
Table 2.2.5: COSt PEI MOLEeeiveeiice et reere e e sbe e beaneesnes 27
Table 2.3.1: Current draw during Active and Sleep modes [15].......cccoeviiiiiniininicicen, 31
Table 2.3.2: CM5000 radio transceiver’s specifications [16]ccccervrreriieresieenieenesiennennn 32
Table 2.3.3: Sensirion SHT11 operational Parameters...........ccoveveieiererenenesese e 32
Table 2.3.4: SHT11 supply CharaCteriStiCs.........covuvrrieriiriiiiesieieeee e 33
Table 2.3.5: S1087 & S1087-01 SPECITICALIONS........ccveieiiieiieie e 34
Table 2.3.6: ST M25P80 POWEr StAteS [14]ccovieiiiieeiecie e 35
Table 3.3.1: Commonly used types in NESC [L0]covvevviiieiieieeie e 46
Table 4.2.1: d; and d2 in relation to VDD and ADC bits of operation............c.ccocvvvvvivenenn. 57
Table 4.2.2: c1, c2 and c3 for 8 or 12bit ADC [19] ...cvoviiiiiiiiiiiieeeee e 57
Table 4.2.3: Duty cycle and current consumption of all components in a Prototype mote .. 61
Table 4.2.4: Prototype mote’s battery life for various battery capacities.........cocevvurriueeninnns 62
Table 4.5.1: Duty cycle and current consumption of all components in a FireSense mote
(10T =Tol o= AT o) ISR T PSP PP PSPPSR 74
Table 4.5.2: FireSense mote’s battery life for various battery capacities (30sec period) 75
Table 4.5.3: Duty cycle and current consumption of all components in a FireSense mote
(10 T=T ol o L=T o) I USSR 75
Table 4.5.4: FireSense mote’s battery life for various battery capacities (60sec period) 76
Table 4.5.5: Duty cycle and current consumption of all components in a FireSense mote
(L0 =To o 1= AT o) ISP P PP PR PRSPPI 77
Table 4.5.6: FireSense mote’s battery life for various battery capacities (90sec period) 77
Table 5.2.1: PA_LEVEL, output power and current consumption in relation to ideal radio

(5 00T TP TRR 79
Table 5.4.1: Duty cycle and current consumption of all components in a FireSense 2.0 mote
01 T=Tol o T=T £ oo) ISR 82

Table 5.4.2: FireSense 2.0 mote’s battery life for various battery capacities (30sec period) 82
Table 5.4.3: Duty cycle and current consumption of all components in a FireSense 2.0 mote
(L0 =To o 1= g oo) IS SR P PP PR PR PR PR 83
Table 5.4.4: FireSense 2.0 mote’s battery life for various battery capacities (60sec period) 84
Table 5.4.5: Duty cycle and current consumption of all components in a FireSense 2.0 mote
(OIS Tol o< [o) ISP RURSPRSP 85
Table 5.4.6: FireSense 2.0 mote’s battery life for various battery capacities (90sec period) 85
Table 5.4.7: Duty cycle and current consumption of all components in a Repeater mote

(G0 LLTol 0T [o) ISP RURSPRSPN 86
Table 5.4.8: Repeater mote’s battery life for various battery capacities (30sec period)....... 86
Table 5.4.9: Duty cycle and current consumption of all components in a Repeater mote

(L0 T=T ol o L=1 o) SRR 87

Table 5.4.10: Repeater mote’s battery life for various battery capacities (60sec period).....
Table 5.4.11: Duty cycle and current consumption of all components in a Repeater mote

(L0 =To o L= AT o) ISP PSP P PR PR PRPRRO
Table 5.4.12: Repeater mote’s battery life for various battery capacities (90sec period).....

14

Chapter 1: Introduction

“I’m not sure what solutions we’ll find to deal with all
our environmental problems, but I’m sure of this: They
will be provided by industry; they will be products of
technology. Where else can they come from?

George M. Keller, Nation’s Business
12 June 1988 (S&S)

1.1 Introduction

In times where technology evolves on a daily basis, new inexpensive solutions can be
created. These new tools overcome the existing ones by requiring less work while achieving
better results and offering more functionality. These new technologies also allow the
conception of new tools to previously unsolvable problems.

Wireless Sensor Networks (WSN) are wireless networks formed by small low cost
autonomous devices called motes, with the ability to sense the surrounding environment. An
extension to WSN that adds the ability to act besides sensing over the environment is called
Wireless Sensor and Actor Networks (WSAN). Both WSAN and WSN are possible
solutions for several problems. Their main characteristics are easy deployment and low cost,
while having the ability to sense and act without human intervention makes their usage
highly attractive in many applications. They are being adopted in several fields of work.
Some examples include: creating effective irrigation systems, fire alarms, structure health
monitoring and medical or military applications. Throughout this thesis we will deal with
WSNs for forest fire detection. Our exact purpose will be to design a WSN to monitor a
forest area, acquire readings from appropriately placed sensors and transmit these readings
over-the-air so as to detect a fire when it starts and prevent it from spreading.

1.2 Monitoring

Monitoring can be defined as the act of continuously observing something. It generally
means to be aware of the state of a system. Environmental monitoring describes the
processes and activities that need to take place to characterise and monitor the quality of the
environment.

When we refer to monitoring we can differentiate two types: active and passive. The
difference between these two types is that while active monitoring necessarily involves
human presence, being performed through field visits to the monitored environment, passive
monitoring is done by autonomous systems not requiring human intervention. In this case,

15

the monitoring system is placed in the environment, automatically acquiring data and either
storing it locally for later retrieval or sending it to a remote system.

. Al A "-.'_'f"“_!

e

e

Figure 1.2.1: Active monitoring (left) vs. passive monitoring (right)

Several applications of WSNs in monitoring exist such as animal monitoring used by
biologists to study animals in the wild, structure health monitoring used to ensure buildings
or bridges condition, volcano monitoring used to study the seismic activity of volcanic areas
and obviously forest monitoring mainly used for forest fire detection.

1) Earthquake or eruption occurs
2) Nodes detect seismic event

3) Each node sends event report
to base station

23

GPS receiver
for time sync

Base station : FreeWave

at observatory) Long-distaiice radio modem
g radio link (4km)

Figure 1.2.2: Harvard’s volcano monitoring [8]

1.3 Motes and Sensors

We will cover the motes in more detail in Chapter 2 but an introduction here is necessary, as
they are the basic building block of a WSN. A sensor node (also known as mote) may be
described as a small low-cost device with the ability to perform some processing, gather
sensory information and communicate with other connected nodes in the network [12]. A
mote is a node but a node is not always a mote. Its main components are a microcontroller,

16

transceiver, external memory, power source and one or more sensors. A typical mote can be
seen in the picture below.

Figure 1.3.1: Typical mote

The microcontroller and memory provide computational power and storage space
respectively, while the power source — usually a battery — provides energy supply to the
mote, making it autonomous. The mote captures data through the acquisition system
composed of a set of sensors. These may be embedded directly in the mote or a separate
sensor board connected to the mote via its 1/0 ports. Sensors of any type (e.g. temperature,
humidity, light, acceleration etc.) can be connected depending on the type of data we intend
to capture. Using a transceiver, the communication module allows data to be wirelessly
transmitted and received between nodes. The typical architecture of a mote is depicted
below [12]. Again, more on this in Chapter 2.

Transceiver

Micro-controller

DINOS 1004

|

External Memory

Figure 1.3.2: Typical mote architecture

17

1.4 Wireless Sensor Networks

Wireless sensor networks (WSN) are wireless networks formed by motes. The wireless and
routing technologies in motes allow them to be deployed creating a WSN, where each node
may capture environmental information and share it with all other motes. The system’s cost
can be highly reduced by avoiding cabling and instead use wireless technology. This also
allows both a more flexible deployment and lower maintenance costs.

WSNss intend to provide a low cost solution to problems such as monitoring large areas,
difficult access or hazardous environments. These networks can replace expensive active
monitoring with cost effective passive monitoring. It is possible to set the motes to capture
data for a certain period of time and transmit it to be stored in a central node called sink,
where a person could be in order to access and monitor the captured information. The
biggest challenges that WSN designers are faced with nowadays are energy efficiency,
routing and security [11]. They are presented in more detail below.

1.4.1 Energy Efficiency

Energy management and consumption are critical challenges for WSNs as motes require
energy to operate each of their composing parts and be autonomous. The main objective of
studies conducted in this field is to maximize the motes' lifetime. All motes' components
require a certain amount of energy to operate even when it comes to small amounts. The
connection of motes to a power source such as a power socket, implies the use of cables,
thus nullifying the benefits of wireless technology.

Most motes nowadays are battery powered, allowing them to be autonomous and wireless
but also limiting their lifetime. What WSN designers can do to maximize a mote's lifetime is
to minimize its hardware energy consumption. The power usage can be reduced by putting
motes into sleep mode - a state where all mote's activity is stopped and all of its composing
parts are switched off - or even by putting a single component to sleep when not in use (e.g.
switch off the radio transceiver), thus reducing its duty cycle - the percentage of time during
which a device is working.

18

Research is being done to find alternative or complementary power sources to batteries.
Environmental energy harvesting methods are being studied as they allow the mote to
collect energy from the environment. Two of the aforementioned methods include solar
cells, that allow the conversion of sunlight to electricity through solar panels, and
piezoelectric ceramic materials that convert environment vibrations to electricity. The use of
energy harvesting techniques turns everlasting mote lifetime into a possibility. Some
commercially available products already exist, such as the
Heliomote. As will be shown in Chapter 2, the mote that will be used
for this thesis is powered by a pair of batteries. We will not go into
the process of dealing with alternative power sources for two
reasons. In order to use a solar cell a mote has to be put under direct
sunlight, which means on top of a tree. But doing so, i) increases the
distance of the mote from the ground and because a fire always starts
from the ground up, the mote gets slower in detecting changes in
light flux or temperature, thus increasing the duration of the crucial
Figure 1.4.2: PMG37 first time detection, and ii) may cause the mote and its sensors to

Microgenerator overheat during the hot summer months and provide false sensor
readings. Piezoelectric generators do not apply to our case too, as they are best suited to
seismic oriented applications.

1.4.2 Routing

Routing collected information between sensor nodes in WSNs presents several challenges.
The different kinds of network topologies and their requirement for different routing
protocols, the possibility that nodes are randomly deployed or large in quantity are some of
the faced problems. Energy and computation constraints also impose new requirements to
routing algorithms. A system failure or power shortage may turn off nodes, requiring new

19

routes to be calculated so as to maintain network connectivity between the rest operating
nodes.

Requirements such as low energy and memory consumption mean limited routing tables and
new algorithms. Several routing protocols have been specifically designed for WSNs in
order to appropriately fulfill these special needs. The existing routing protocols are
categorized according to the network structure in which they operate and the protocol
operation. Depending on the network structure they can be classified as flat, hierarchical or
location-based routing. Depending on their operation they can be multipath-based, query-
based, negotiation-based, QoS -based or coherent-based [11].

1.4.3 Security

The use of wireless technology in WSNs has numerous benefits but it also introduces
several security threats that need to be considered. Motes' characteristics of limited
computing power and low energy resources represent a challenge in producing an effective
security solution.

Attacks against WSNs are divided into two types: attacks against the security mechanisms
and against basic mechanisms. Some of the common WSN attacks are denial of service
(DoS), attacks on information in transit, blackhole/sinkhole attacks, hello flood attacks or
wormhole attacks. Most of those are caused when a malicious node sends false information
to other nodes thus compromising the system. Detecting mechanisms to solve these attacks
are still being developed.

1.5 Operating Systems

Due to specific requirements and constraints of sensor nodes and wireless sensor networks,
operating systems have been created specifically targeting embedded platforms, their needs
and objectives. Reconfiguration, energy awareness and optimization, self-configuration,
multi-hop communications, memory and computation power constraints, are some of the
requirements these operating systems need to address.

Some of the most popular operating systems used, are Nano-RK [21] developed at Carnegie
Mellon University, SOS [22] developed at University of California Los Angeles, MANTIS
[23] developed at the University of Colorado, BTNut [24] developed at ETH Zurich,
Contiki [25] at Swedish Institute of Computer Science and, the most widely used, as well as
the one that will be used in this thesis, TinyOS [9] created at the University of California
Berkeley.

20

#include <Timer.h>
#include "BlinkToRadio.h"

module BlinkToRadioC {
uses interface Boot;
uses interface Leds:;
uses interface Timer<TMilli> as TimeroO;

implementation {
uintié t counter = 0;

event wvoid Boot.booted()
call TimerO.startPeriodic(TIMER PERIOD MILLI):;

event void TimerO.fired()
counter++;

T 1 T

call Leds.set (counter):;

Figure 1.5.1: TinyOS

TinyOS is an open source operating system featuring a component-based architecture
minimizing memory usage and providing an event-driven execution model allowing fine-
grained power management and scheduling flexibility. Software programs developed in
TinyOS are programmed using nesC, an extension to the C programming language. We will
examine both TinyOS and nesC, in depth, in Chapter 3.

1.6 Simulators

Simulators are software platforms specifically designed to simulate a WSN's or even a
single mote's behavior. These platforms allow testing a developed program without having
to install the software in the actual motes or, as in our case, without even having any
physical sensor node. Simulators are immensely time-saving when one needs to examine the
characteristics and operational parameters of a WSN involving hundreds or thousands of
motes, prior to its installation.

0 72595584 22.00.FF.FF.01.00.3F.06.00.23.CE.BB 0.660 ms
: € .22.00.FF.FF.01.00. 0.660 ms
0 .22.00.FF.FF.01.00. 0.660 ms
2 .22.00.FF.FF.01.00. 0.660 ms

Simulated time: 73728000 cycles
Time for simulation: 4.348 seconds
Total throughput: 50.85859 mhz
Throughput per node: 16.952862 mhz
=={ Packet monitor results }

Node sent (b/p) recv (b/p) corrupted (b) lostinMiddle (p)
0 756 / 36 1491 /71 0 0
1 756 / 36 1491 /71 0 0
2 735 / 35 1491 / 71 0 0

Figure 1.6.1: Avrora simulator

21

Using a simulator, it is possible to monitor and analyze every single mote in a simulated
network and its response during its life cycle. Energy consumption, packets received, sent or
dropped and the mote's LEDs status are some of the variables usually observed. A large
number of simulators exist, some of them are: TOSSIM the native simulator from TinyOS,
Avrora [26] developed at the University of California Los Angeles, Cooja originally created
at the Swedish Institute of Computer Science as a Contiki simulator but now able to
simulate nodes programmed in the TinyOS operating system as well [1], and MSPSim, a
MSP430 simulator [5], also developed at SICS.

2] My simulation - Cooja: The Contiki Network simulator PEE
File Simulation Motes Tools Settings Help
=] Network —ox | & Simulation control EEEI| [~V (=)Dl
View Zoom Run_ Speed limit Enter notes herd
@ start (Poupe) step [Reload
A Time: 00:24.371
Speed: 180.51%
<§ }'P‘
=) Mote output =ax)
O} ~+®) || File Edit View
‘@ A@ Time ms | Mote | Message |
21886 ID:5 Data received on port 1234 from ... A
21906 ID:2 Data received on port 1234 from ...
24025 ID:5 Sending broadcast
24066 ID:3 Data received on port 1234 from ...
24070 ID:7 Data received on port 1234 from ...
24117 ID:8 Data received on port 1234 from ...
24157 ID:2 Data received on port 1234 from ...
@) 24170 ID:6 Data received on port 1234 from ... |¥
- Timeline showing & motes =Ex
File Edit View Zoom Events Motes
‘‘‘‘‘ ——— e ——y
1 "
2
3 "
4 .
<X >0

Figure 1.6.2: Cooja simulator

22

Chapter 2: Motes

2.1 Introduction

The term "mote" was coined by researchers in the Berkeley NEST (now WEBS and CENS
projects) to refer to spatially distributed autonomous devices which use sensors to
cooperatively monitor physical and/or environmental conditions (e.g. temperature, sound,
pressure, vibration) at different locations. Practical WSN nodes, henceforth "motes”,
currently range in size from disc-shaped boards having diameters less than 1 cm to enclosed
systems with typical dimensions less than 5 cm square.

Each mote is composed of a microcontroller, transceiver, memory, power source and one or
more sensors, either embedded or external to the sensor board. The motes function within a
WSN and typically fulfil one of two purposes: either data logging, processing (and/or
transmitting) sensor information from the environment or acting as a gateway in the adhoc
wireless network formed by all the motes to pass data back to a, usually but not necessarily
unique, collection point.

In this chapter we present a brief review of several frequently used WSN motes, compared
and contrasted under a number of different parameters. Then, we will delve into the details
of Advanticsys CM5000 [27], a TelosB/Tmote Sky based mote, examining each of its
structural components and explaining why it is our mote of choice for this thesis.

2.2 Common mote platforms
TelosB/Tmote Sky: Wireless sensor modules developed from research carried out at

University of California Berkeley and currently available in similar form factors from
Crossbow and Advanticsys.

Figure 2.2.1: TelosB/ Tmote Sky (left) & MicaZ (right) motes

23

MicaZ: Second and third generation wireless sensor networking mote family from
Crossbow.

SHIMMER: (Sensing Health with Intelligence, Modularity, Mobility and Experimental
Reusability) is a wireless sensor platform designed to support wearable applications and is
mainly used in the medical field.

http://www.eecs.harvard.edu/~mdw/proj/codeblue

Figure 2.2.2: SHIMMER (left) & IRIS (right) motes

IRIS: The latest wireless sensor network module from Crossbow. Incudes several
improvements over the Mica2/MicaZ family of products. Improvements include increased
transmission range.

2.2.1 Physical Characteristics

The first parameter which may dictate mote selection for a given application is physical
size. Table 2.2.1 provides an overall comparison of the physical dimensions of the motes in
the previous section. This table also lists the motes' weight, which can be a decisive factor
when choosing a certain WSN, especially in applications where the motes are components
of a mobile unit or are integrated into wearable health monitoring solutions.

Mote Platform WxLxH [cm] Weight w/o batt [g] Weight with batt [g]
TelosB/Tmote Sky 3.2x6.6x0.7 14.93 63.05
MicaZ 3.2x5.7x0.6 15.70 63.82
SHIMMER 2x44x1.3 4.87 10.36
IRIS 3.2x5.7x0.6 21.29 69.40

Table 2.2.1: Physical characteristics of common mote platforms [3]

The SHIMMER platform's advantage is obvious. Its small dimensions and low weight make
it much more suitable than the other in medical oriented applications. When a mote has to
be part of a wearable application, its size and weight are of the utmost importance. Its low
weight also minimizes the effect of the mote’s inertial mass when using the mote's

24

embedded accelerometer. In our case, weight and size is not going to be a deciding factor as
the motes will be stationary and placed on trees.

2.2.2 Processor and Memory

Table 2.2.2 reviews the microprocessor specifications (bus width and processor clock speed)
for each of the respective motes examined. It also provides information on available on-
board memory for each mote platform. There is a variety here in available memory sizes,
possibly a reflection of their different application spaces.

Mote Microprocessor Bus Clock RAM Flash EEPROM
Platform [bits] | [MHZz] [KB] [KB]
TelosB/ Texas 16 4 10 48 iM
TmoteSky Instruments
MSP430F1611
MicaZ Atmel Atmega 8 8 4 128 512K
128L
SHIMMER Texas 16 8 10 48 none
Instruments
MSP430F1611
IRIS Atmel Atmega 8 8 8 640 4K
1281

Table 2.2.2: Microprocessor & memory specifications [3]

In addition to these on-board memory capabilities, some sensor nodes also allow the option
of saving data to additional external non-volatile memory.

2.2.3 Communications Capabilities

The TelosB/Tmote Sky, MicaZ and SHIMMER motes, employ the 802.15.4 compatible
CC2420 radio chip from Texas Instruments, while the IRIS Mote uses (again a 802.15.4
compatible chip) Atmel's AT86RF230. These two radios are packet level radios, with a
maximum packet length of 127 bytes. In addition to the CC2420, the SHIMMER mote also
contains a second radio chip, a class 2 Bluetooth radio compatible with the Mitsumi WML-
C46 series. Table 2.2.3 lists the operating specifications of the three radios and Table 2.2.4
gives the power consumption of each radio in sleep mode/switched off, idle/receive mode
and when transmitting at a specified power level.

25

Radio Frequency | Modulation | Data Rate Tx Power Rx
Module [MHz] [dBm] Sensitivity
[dBm]
T1 CC2420 | 2400 - 2483.5 QQPSK 250 Kbps -24 -0 -95
Atmel 2405 - 2480 QQPSK 250 Kbps -17-3 -101
AT86RF230
Mitsumi 2400 - 2483.5 GFSK 721 Kbps -6-14 -82
WML-C46

Table 2.2.3: Radio chip specifications [3]

The CC2420 is a very popular chip for use on wireless sensor nodes, being used on three of
the motes considered here. The CC2420 was the first 802.15.4 radio chip to be widely
available in the market. 802.15.4 is very suitable for use in WSNs due to its very low power
and flexibility. A feature of the CC2420 lacking on the other radios, is its support for
encryption using AES 128. This feature can greatly reduce the cost, both in terms of power
and latency, of securing WSN communications.

Radio Module Sleep [pA] Idle/Rx [mA] Tx [mA]
TI1 CC2420 1-426 18.8 17.4
Atmel AT86RF230 0.02 155 16.5
Mitsumi WML-C46 50 - 1400 40 60

Table 2.2.4: Radio chip power consumption [3]

The WML-C46 is a class 2 Bluetooth radio, with a range of approximately 10 meters.
WSNs were not considered as a target for Bluetooth when it was being designed and as a
result it is not ideally suited for use with them, being overly complex for most applications.
However, the presence of Bluetooth allows it to address a current problem faced by
802.15.4 devices, which is interoperability with existing devices. For many applications a
Bluetooth enabled mobile phone or laptop can be a very convenient device to use for data
aggregation or network querying.

2.2.4 Sensor Support

The TelosB/Tmote Sky offers a versatile set of onboard sensors, namely humidity,
temperature and light sensors. In addition to the onboard sensors, the TelosB/Tmote Sky
provides access to 6 ADC inputs, a UART and 12C bus and several general purpose ports.
The MicaZ motes do not have onboard sensors. However, Crossbow offers an extensive set
of sensor boards that connect directly to the MicaZ mote and are capable of measuring light,
humidity, temperature, pressure etc. Additionally, actuators such as relays and buzzers can
be attached too, in case of a WSAN. Intel's SHIMMER mote incorporates a 3 axis
accelerometer and allows connection of other sensors through its expansion board. As in
MicaZ, more types of sensors (most of them medically oriented) are available. The IRIS
mote, in Crossbow tradition, does not offer any embedded sensor capabilities. However, it is

26

equipped with a 51-pin expansion connector that existing MicaZ compatible, Crossbow
sensor boards can be connected to.

2.2.5 Power Specifications

Both the TelosB and Tmote Sky boards are typically powered from an external battery pack
containing two AA batteries. AA cells may be used in the operating range of 2.1 to 3.6V
DC, however the voltage must be at least 2.7V when programming the microcontroller flash
or external flash. MicaZ and IRIS motes are also powered by a set of two AA batteries in an
attached battery pack. The SHIMMER mote is powered by a rechargeable 450mAh Li-lon
battery. The Shimmer design also includes a Texas Instruments BQ-24080 Smart Li Charger
for battery management.

2.2.6 Price

Current (August 2013) pricing information for a single mote is shown in Table 2.2.5.

Mote Platform Price
TelosB/Tmote Sky 77 €
MicaZ 77 €
SHIMMER 199 €
IRIS 87 €

Table 2.2.5: Cost per mote

2.3 Advanticsys CM5000

Taking into consideration the analysis done in section 2.2 we make the decision to use the
TelosB/Tmote Sky platform for our purpose. In order to design and simulate our WSN, we
will be using more than 10 motes. SHIMMER s the easiest one to leave out because of its
high price and medically oriented field of applications. IRIS is another mote we won't
consider. We can see from Table 2.2.4 that its radio transceiver may be the most frugal in
terms of power consumption, but only by a little and as will be shown in Chapter 4, our
application will not be using the radio for long periods of time. The motes will operate
mostly in sleep mode, except when they wake up, sample their sensors and send their
readings using their radio. That means that the microprocessor's behavior has to be taken
into consideration as well, and by doing that, the IRIS's advantage over a TelosB mote turns
into a drawback, if we consider that when active, the Atmega 128 microprocessor draws
7.6mA of current instead of 1.8mA of a MSP430, and when idle, 3.3mA instead of 5.1pA of
a MSP430 [3]. The same applies in the case of the MicaZ mote. Tmote Sky uses the same
radio chip as Micaz but the latter is equipped with an Atmega 128 instead of a MSP430. The
Atmega is a faster processor so it is best suited to more CPU intensive applications.

Another important drawback shared by the MicaZ and IRIS motes, is their lack of onboard
sensors. This, not only adds to the platform the cost of separate sensor boards, but it makes

27

them harder to program, pack and simulate as well. Modern simulators may be easier to
calibrate and configure than it was in the past, but in order to do so, a programmer needs to
be acquainted not only with TinyOS and nesC but possibly Java (in the case of Avrora and
Cooja) and Python (in the case of TOSSIM) too.

None of the things mentioned above will be a problem in the case of a Tmote Sky mote. It is
equipped with onboard sensors, making it the cheapest to buy, and has the lowest
microprocessor power consumption, thus prolonging the mote's life expectancy. Its sensors
are also perfectly suited to our case, as temperature, humidity and light are crucial variables
to be measured when trying to detect a forest fire. The mote also works perfectly (expect for
a small sensor misbehavior) with the Cooja and MSPSim simulators that we will be using.

The Advanticsys CM5000, based on the original open-source TelosB/Tmote Sky, will be
our mote of choice.

y Humidity
Photosynthetically Temperature
Sensor (optional)

®
LB

(-3
H
0.

[

mote:v,

USB Receive LED

o Radio Antenna

JTAG Digital switch
connector Isolating USB from Conr_lecbr
microcontrolier (optional)
Texas Instruments
MSP430 F1611 48-bit siicon

2-pin SVS
connector

mumedlef
e G e

i i
Sr-71@H

z
|
f

&
z
LY
e
el
Y
jas)
~

Figure 2.3.1: Front and back of the TelosB/Tmote Sky module

28

It has the following general characteristics [27]:
[] Embedded Antenna

e Texas Instruments MSP430F1611 Microcontroller (MCU) |

e Texas Instruments CC2420 Radio Transceiver % e

e Sensirion SHT11 Temperature & Humidity Sensor 5 Logger

e Hamamatsu S1087 & S1087-01 Light Sensors fg;’] F'Ias" ;

e User & Reset Buttons g in TR

e 3xLEDs (RGB) L. el | m

e USB Interface iﬁ?%#y” Digtal o | *~

e 2 x AA Battery Holder :;: J -

e TinyOS & ContikiOS compatible i) e

O Connector ®

2.3.1 Texas Instruments MSP430F1611 Figure 2.3.2: CM5000 Block

diagram [14]
The low power operation of the TelosB module is due to the ultra-low power Texas
Instruments MSP430F1611 microcontroller featuring 10kB of RAM, 48kB of program flash
memory and 128B of information storage. This 16-bit RISC processor features extremely
low active and sleep current consumption that permits Telos to run for months on a single
pair of AA batteries.

The MSP430 includes three clock sources [15]:
e LFXTICLK: Low frequency/high frequency
oscillator that can be used either with low
frequency 32768Hz = 32KHz watch crystals, or

standard crystals or resonators in the 450KHz t0 8 Figure 2.3.3: T1 MSP430F1611
MHz range.

e XT2CLK: Optional high frequency oscillator that can be used with standard crystals,
resonators, or external clock sources in the 450KHz to 8MHz range.

e DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics.

There are three clock signals available. The one that we are interested in is the Master Clock
(MCLK). MCLK is software selectable and is derived from one of LFXT1CLK, XT2CLK
or DCOCLK. It is used by the CPU and the system. By default it is sourced from DCOCLK
and its default operating frequency in the case of a TelosB mote is 4.15MHz, while it may
operate up to 8MHz. In order to achieve frequencies higher than 4.15MHz, a certain
minimum amount of supply voltage is necessary. Figure 2.3.4 shows the connection
between operating frequency and minimum supply voltage.

29

f(MHz) 4

8.0 MHz _E@@r:oﬁag_e EnEe_ -
'F15x/16x/161x, during ?Fﬂ';ﬂﬁ:;?g?i range,
program execution \\\\‘\\\\\l\ during flash memory programming
Y\
‘\\
415 MHzT— — k)

Supply Voltage - V
Figure 2.3.4: CPU Frequency vs. Minimum supply voltage

Although it is software configurable, we will not modify the MCLK from its default value,
because of the non CPU-intensive nature of our application. If one would like to do so and
provided they are using TinyOS, the necessary component to look for [15] would be
MSP430ClockC and more specifically its MSP430ClockInit interface. Operating the mote at
higher frequencies might be necessary for CPU-intensive programs, but doing so increases
the mote’s power consumption, while our main objective is to keep it as low as possible.

32kHz
Oscillator ALK Flash || 12-bit ADC || 12-bit DAC ||I/0 Port 1/2 || 1/0 Port 3/4 ||1/O Port 5/6
System) 8 Channels || 2 Channels 16 1/0s 161/0s 81/0s
Clock » SMCLK RAM <10us Conv Interrupts
MCLK
v
H 16-bit bus
CPU
16 bit
l6reg DMA Watchdog || Timer A TimerB ||Comparator|| USARTO USART1
multiply Controller Timer 3CCreg 7 CCreg A UART UART
3 Channels 15/16 bit SPI SPI
12c
CC2420 Radio
Interrupts & SPI
PC
UART via USB

Figure 2.3.5: Block diagram of the TI MSP430 microcontroller and its connection to other peripherals
in the Telos module

30

The DCO may be turned on from sleep mode in 6us, however 292ns is typical at 20°C.
When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. In
addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC ports. The
internal ports may be used to read the internal thermistor or monitor the battery voltage. A
variety of peripherals are available including SPI, UART, digital 1/0 ports, Watchdog timer
and Timers with capture and compare functionality. The F1611 also includes a 2-port 12-bit
DAC module, Supply Voltage Supervisor and 3-port DMA controller.

The MSP430 has one active mode and five software selectable modes of operation. An
interrupt event can wake up the device from any of the five low-power modes, service the
request, and restore back to the low-power mode on return from the interrupt program. As
developers, we will not have to worry about MCU management at all in most situations.
TinyOS handles everything for us automatically. The low-power modes range from LPMO,
which disables only the CPU and main system clock, to LPM4, which disables the CPU, all
clocks and the oscillator, expecting to be woken by an external interrupt source. The power
parameters of the MSP430F1611 MCU can be seen below (computed at 3.0V supply
voltage):

State Current draw [pA]
Active 1800
Sleep [LPM3] 5.1

Table 2.3.1: Current draw during Active and Sleep modes [15]

2.3.2 Texas Instruments CC2420

The CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver designed
for low-power and low-voltage wireless applications. CC2420 includes a digital direct
sequence spread spectrum baseband modem providing an effective data rate of 250Kbps.
The CC2420 provides extensive hardware support for packet handling, data buffering, burst
transmissions, data encryption, data authentication, clear channel assessment, link quality
indication and packet timing information. These features reduce the load on the host
controller and allow CC2420 to interface low-cost microcontrollers. It is based on
Chipcon’s SmartRF — 03 technology in 180nm CMOS.

The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port and a
series of digital 1/O lines and interrupts. The radio may be put to sleep for low power duty
cycled operation. The transceiver also has software configurable output power, which the
transmission range is obviously dependent on. We will examine this in more detail in later
chapters, where we deal with different network topologies and where transmission range
will be a critical parameter in reducing overall power consumption. Its main features are
summarized below

31

Frequency Band | 2400 ~ 2483.5MHz IEEE 802.15.4 Compliant

Sensitivity -90dBm(min), -95dBm(typ) | Receive Sensitivity

Transfer Rate 250Kbps IEEE 802.15.4

RF Power -25dBm ~ 0dBm Software Configurable

Range ~100m (outdoor), Longer range possible with optional
20~30m (indoor) SMA antenna attached

Current Draw Receive mode: 18.8mA

Transmit mode: 17.4mA 0dBm

Idle Mode: 426pA Oscillator & Voltage Regulator On

Power Down mode: 20pA Voltage Regulator On

Off mode: 1pA Voltage Regulator Off

RF Power supply | 2.1V ~ 3.6V CC2420 Input Power

Antenna Dipole Antenna/
PCB Antenna

Encryption Hardware MAC encryption
AES-128

Buffer 128(RX) + 128(TX) data
buffering

Table 2.3.2: CM5000 radio transceiver’s specifications [16]

2.3.3 Sensirion SHT11

The SHT11 is a relative humidity and temperature sensor
manufactured by Sensirion AG. The sensor integrates sensor
elements plus signal processing on a tiny footprint and
provides a fully calibrated digital output. The calibration
coefficients are stored in the sensor’s onboard EEPROM. A
unique capacitive sensor element is used for measuring
relative humidity while temperature is measured by a band-

gap sensor. SHT11 is produced using a CMOS process and
is coupled with a 14-bit A/D converter [19] [27].

Figure 2.3.6: Sensirion SHT11

Temperature

Operating Range -40 - +123.8°C

Accuracy +0.4°C Typical
Resolution 0.01°C Typical
Humidity

Operating Range 0-100% RH

Accuracy +3% RH Typical
Resolution 0.05% RH Typical

Table 2.3.3: Sensirion SHT11 operational parameters

32

The maximal accuracy limits for relative humidity and temperature are depicted below:

20

30 40 50

60

70 80 90 100
Relative Humidity (% RH)

-40

-20

0

20

40

60 80 100
Temperature (°C)

Figure 2.3.7: Maximal RH (left) and Temperature (right) tolerance [19]

The power characteristics can be seen below:

Parameter | Conditions | min typ max Units
Power 24 3.3 5.5 \Y
Supply
Suool measuring 0.55 1 mA
PPYY average 2 28 A
Current
sleep 0.3 1.5 HA

Table 2.3.4: SHT11 supply characteristics

The average is calculated at one 12 bit measurement per second [19]. In the case of a
TelosB mote running on 2 x AA batteries, at a 3V voltage, the current drawn when the
sensor is measuring has to be a little less than 0.55mA (measured at 3.3V). We can only
make an assumption here, but due to the current value being small and its active duration
being equally small, it is safe to assume a 0.5mA current consumption when measuring,
without loss in accuracy.

2.3.4 Hamamatsu S1087 & S1087-01

The integrated light sensors S1087 and S1087-01 are ceramic
package photodiodes that offer low dark current. The ceramic
package used is light-impervious, so no stray-light can reach the
photosensitive area from the side or backside. This allows reliable
optical measurements in the visible to infrared range, over a wide
dynamic range from low light levels to high light levels. The
S1087 senses photosynthetically active radiation while the S1087-

01 senses the entire visible spectrum including infrared [20].

33

Figure 2.3.8: Hamamatsu

51087

(Typ. Ta=25°G)

0.7
NPs

06 S1087.014 _.* A
g 05— o \ A\
N : QE=100 %
= r
= N / \
> 2 A
E 0.4 X /
(7] e
& o3 o 4
o R 7\
= ayZm\
= ’
o 02~ 7 s1087
T .
. / \(\

NV '

0 ‘l' y‘.
200 400 600 800 1000

WAVELENGTH (nm)

Figure 2.3.9: Spectral Response

The photodiodes are directly connected to the microcontroller’s ADC and create a current
through a 100kQ2 resistor.

ADC4 ADC5
D2 D3
! 51087 Photodiode $1087-01 Photodiode
R11 g R12
100k 1% 100k 1%

Figure 2.3.10: S1087 (left) & S1087-01 equivalent circuits [27]

S1087 (T = 25°C)

Spectral Response Range 320 — 730nm

Peak Sensitivity 560 nm

Wavelength

Dark Current 10pA

Short Circuit Current 160nA 100Ix

S$1087-01 (T=25°C)

Spectral Response Range 320 —1100nm

Peak Sensitivity 960nm

Wavelength

Dark Current 10pA

Short Circuit Current 1.3pA 100Ix

Table 2.3.5: S1087 & S1087-01 specifications

Apart from some minimal leakage current, the light sensors consume essentially no power.

34

2.3.5 External Flash

TelosB uses the ST M25P80 40Mhz serial code flash for external data and code storage.
The flash holds 1024kB of data and is decomposed into 16 segments, each 64kB in size.
The flash shares SPI communication lines with the CC2420 transceiver, so care must be
taken when reading or writing to flash.

ST M25P80 (3V)

Active Current (Read) 4mA
Active Current (Write/Erase) 20mA
Standby Current 8uA
Deep Power Down Current 1pA

Table 2.3.6: ST M25P80 power states [14]

We can see that using the external flash can take its toll on power consumption. We will not
be using the external flash but there is something worth mentioning. The ST M25P series of
code flash always start in the standby state. For low power applications, the flash must be
sent a command at boot time to place it in the deep power down mode. Fortunately, if using
TinyOS, the flash is automatically put into deep power down mode, but during the mote’s
power analysis we have to include the 1pA current into our calculations nonetheless.

35

Chapter 3: TinyOS & nesC

3.1 Introduction

This chapter aims to provide an introduction to the software that will be used in this thesis.
At first we will give a high-level overview of TinyOS and the nesC language. Then we will
go into a level sufficient for writing applications. An overview of the Cooja and MSPSim
simulators will follow and the chapter will conclude with a brief presentation of the Yeti 2
plugin for the Eclipse IDE. While this chapter will be more thorough than a plain tutorial,
the diversity and complexity of the examined software leaves several topics outside its
scope. Should the reader, after reading this chapter, be interested to learn more, there are
several sources covering the abovementioned software in greater detail [7] [10].

3.2 TinyOS

TinyOS is a free software and open source software component-based operating system and
platform targeting wireless sensor networks. It started as a collaboration between the
University of California, Berkeley in cooperation with Intel Research and Crossbow
Technology and has since grown to be an international consortium, the TinyOS Alliance.

TinyOS differs from most other operating systems in that its design focuses on ultra-low-
power operation. Rather than a fully-fledged processor, TinyOS is designed for the small,
low-power microcontrollers, motes have. Furthermore, it has very aggressive systems and
mechanisms for saving power. It defines a concurrent execution model, so developers can
build applications out of reusable services and components without having much to worry
about unforeseen interactions. TinyOS runs on over a dozen generic platforms and its
structure makes it reasonably easy to port to new ones.

TinyOS applications and systems, as well as the OS itself, are written in the nesC language.
nesC is a C dialect with features to reduce RAM and code size, enable significant
optimizations and help prevent low-level bugs like race conditions. At a high level, TinyOS
provides three things to make writing systems and applications easier:

e A component model, which defines how to write small, reusable pieces of code and
compose them into larger abstractions.

e A concurrent execution model, which defines how components interleave the
computations as well as how interrupt and non-interrupt code interact.

e Application programming interfaces (APIs), services, component libraries and an
overall component structure that simplify writing new applications and services.

The component model is grounded in nesC. It allows us to write pieces of reusable code
which explicitly declare their dependencies. For example a generic user button component

36

that tells us when a button is pressed sits on top of an interrupt handler. The component
model allows the button implementation to be independent of which interrupt that is, so that
it can be used on many different hardware platforms without requiring complex callbacks or
magic function naming conventions. We will examine the basic component model later on
in this chapter.

The concurrent execution model enables TinyOS to support many components needing to
act at the same time while requiring little RAM. First, every 1/O call in TinyOS is split-
phase [7]. That means, rather than block until completion, a request returns immediately and
the caller gets a callback when the I/O completes. Since the stack isn’t tied up waiting for
I/O calls to complete, TinyOS only needs one stack and doesn’t have threads. Instead, as we
will explain later on, TinyOS uses tasks, which are lightweight deferred procedure calls.
Any component, can post a task, which TinyOS will run sometime later. Because low-
power devices must spend most of their time asleep, they have low CPU utilization and so
in practice, tasks tend to run as soon as they are posted (within a few milliseconds).
Furthermore, because tasks can’t preempt each other, task code doesn’t need to worry about
data races.

Finally, TinyOS itself has a set of APIs for common functionality, such as sending packets,
reading sensors and responding to events. It also provides a component structure and
component libraries. For example, Hardware Abstraction Architecture (HAA) defines how
to build up from low-level hardware (e.g. a radio chip) to a hardware-independent
abstraction (e.g. sending packets). This part lies beyond the scope of this thesis though. As
far as the installation is concerned, there are several installation guides available online for
all modern operating systems. We will be using TinyOS version 2.1.2, installed on a
machine running Ubuntu 13.04. Both of these versions are the latest as of July 2013.

3.3 nesC

nesC (network embedded systems C), pronounced ‘“NES-see”, is a component-based,
event-driven programming language used to build applications for the TinyOS platform.
Program structure is the most essential and obvious difference between C and nesC. C
programs are composed of variables, types and functions defined in files that are compiled
separately and then linked together. nesC programs are built out of components that are
connected (“wired”) by explicit program statements; the nesC compiler connects and
compiles these components as a single unit. The nesC compiler loads and reads in nesC
components, which it compiles to a C file. This C file is passed to a native C compiler,
which generates a mote binary [7].

37

nesC Native C
compiler compiler

Figure 3.3.1: The nesC compilation model. The nesC compiler loads and reads in nesC components,
which it compiles to a C file. This C file is passed to a native C compiler, which generates a mote binary.

3.3.1 Components and Interfaces

Whereas C programs are composed of functions, nesC programs are built out of components
that implement a particular service (e.g. change the state of an LED). Furthermore, C
functions typically interact by calling each other directly, while the interactions between
components are specified by interfaces. Components define two scopes: one for their
specification which contains the names of their interfaces, and a second scope for their
implementation. A component provides and uses interfaces. The provided interfaces are
intended to represent the functionality that the component provides to its user in its
specification. The used interfaces represent the functionality the component needs, to
perform its job in its implementation.

Interfaces are bidirectional: they specify a set of commands, which are functions to be
implemented by the interface’s provider, and a set of events, which are functions to be
implemented by the interface’s user. In other words, the interface’s user makes requests
(calls commands) on the interface’s provider and the provider makes callbacks (signals
events) to the interface’s user. Commands and events themselves are like regular functions
(they can contain arbitrary C code); calling a command or signaling an event is just a
function call. For a component to call the commands in an interface, it must implement the
events of that interface. A single component may use or provide multiple interfaces and
multiple instances of the same interface. The set of interfaces which a component provides,
together with the set of interfaces that a component uses is considered that component’s
signature [10].

There are two types of components in nesC: modules and configurations. Modules provide
the implementations of one or more interfaces. Configurations are used to assemble other
components together, connecting interfaces used by components to interfaces provided by
others. Every nesC application is described by a top-level configuration that wires together
the components inside.

3.3.2 An Example Application

Let’s try to clear things up with a very basic example application: Example. We will enrich
it with more elements step by step. This application turns on an LED as soon as the mote

38

powers up. It is composed of two components: a module, called “ExampleC.nc” and a
configuration, called “ExampleAppC.nc”. Remember that all applications require a top-
level configuration file, which is typically named after the application itself. In this case,
ExampleAppC is the configuration file for the Example application and the source file that
the nesC compiler uses to generate an executable file. ExampleC, on the other hand, actually
provides the implementation of the Example application. Or, to put it simply, ExampleAppC
is used to wire (using interfaces) the ExampleC component (module) to other components
that the Example application requires.

The reason for the distinction between modules and configurations is to allow a system
designer to build applications out of existing implementations. For example, a designer
could provide a configuration that simply wires together one or more modules, none of
which they actually designed. Likewise, another developer can provide a new set of library
modules that can be used in a range of applications. It should also be mentioned that while
one could name an application’s implementation module and associated top-level
configuration anything, to keep things simple, it is common naming convention to name the
module file after the application name, ending with the letter C, and the configuration file
ending with the letters AppC. If there are more than one modules or configuration files,
there are several conventions used in TinyOS specified in TinyOS Enhancement Proposal
(TEP) 3[9].

module ExampleC { configuration ExampleAppC {
}

implementation {

uses interface Boot;
uses interface Leds;
}
implementation {
event void Boot.booted() {
call Leds.ledlOn();

components MainC;
components ExampleC;
components LedsC;

ExampleC.Boot -> MainC.Boot;
ExampleC.Leds -> LedsC.Leds;

The nesC compiler compiles a nesC application when given the file containing the top-level
configuration. Let’s start with that. The first thing to notice is the keyword configuration,
which indicates that this is a configuration file. Within the first pair of empty braces, it is
possible to specify uses and provide clauses or as we defined earlier, the component’s
signature. There is no need to do that in this configuration. A configuration can use and
provide interfaces, or said another way, not all configurations are top-level applications.

The actual configuration is described within the pair of curly brackets following the
keyword implementation. The components lines specify the set of components that this
configuration references. In this case those components are MainC, ExampleC and LedsC.
There should be no confusion here; the ExampleAppC component is not the same as the
ExampleC component. Rather, the ExampleAppC component (configuration) is composed
of the ExampleC component (module) along with MainC and LedsC.

39

The remainder of the ExampleAppC configuration consists of connecting (wiring) interfaces
used by components to interfaces provided by others. An interface is denoted by the form
Component.Interface. The last two lines wire interfaces that the ExampleC component uses
to interfaces that the MainC and LedsC components provide. The MainC.Boot interface is
part of TinyOS’s boot sequence and enables the mote to be initialized. The LedsC.Leds
interface gives the user control over the mote’s LEDs. nesC uses arrows to bind interfaces to
one another. The right arrow A -> B means “A wires to B”. The left side of the arrow (A) is
a user of the interface, while the right side of the arrow (B) is the provider. A full wiring is
A.a -> B.b which means that the interface a of component A is wired to interface b of
component B. Naming the interface is important when a component uses or provides
multiple instances of the same interface as we will see later on. When a component only has
one instance of an interface, we can elide the interface name. For example, the interface
name Leds doesn’t have to be included in LedsC:

The direction of a wiring arrow is always from a user to a provider. If the provider is on the
left side, we can use a left arrow. For ease of reading, however, most wirings are left to
right. To sum up, the ExampleC.Leds -> LedsC.Leds line wires the Leds interface used by
the ExampleC component to the Leds interface provided by the LedsC component. The
ExampleC.Boot interface is wired accordingly.

3.3.3 Commands and Events

If we take a look at the ExampleC module’s signature, we can see that it uses the Leds and
Boot interfaces. This means that ExampleC may call any command declared in the
interfaces it uses and must also implement any events declared in those interfaces. Let’s take
a look at those interfaces:

. interface Boot {

1

! event void booted();
1

1

40

interface Leds {

// Turn LED n on, off, or toggle its present state.
async command void 1edOOn () ;

async command void 1ledQOff ();

async command void ledOToggle() ;

1

1

1

1

1

1

1

|

i async command void ledlOn () ;

i async command void ledlOff ();

i async command void ledlToggle();
1 async command void led20n () ;

i async command void 1led20ff();

| async command void led2Toggle() ;
|
1
1
1
1
1
1
1
1
1
1
1

/* Get/Set the current LED settings as a bitmask. Each bit
corresponds to whether an LED is on; bit 0 is LED 0, bit 1 is LED
1, etc.

*/

async command uint8 t get();

async command void set (uint8 t wval);

The first thing to notice is that the Leds interface does not include any events, so ExampleC
doesn’t need to implement any in order to call the Leds commands. Additionally, ExampleC
must implement a handler for the Boot.booted() event. So here is what the last two lines of
the ExampleC code do: when the mote boots, or better, when the event Boot.booted()
occurs, or even better, when the component that provides the Boot interface (MainC), makes
a callback (signals the booted() event) to the component that uses the Boot interface
(ExampleC), then the LED1 of the mote is being turned on, or better, the command
Leds.led1On is called, or even better, the component that uses the Leds interface
(ExampleC), makes a request (calls the led1On command) to the component that provides
the Leds interface (LedsC). The keywords event and call help us understand, where an event
is signaled or a command is called, in our code.

Now let’s make our application a bit more interesting. We will modify it so that when the
mote boots up, LEDO and LED1 will start flashing periodically with a period of 1 and 2
seconds respectively:

module ExampleC {
uses {
interface Boot;
interface Leds;
interface Timer<TMilli> as Timerl;
interface Timer<TMilli> as Timer2;

41

implementation {
event void Boot.booted() {
call Timerl.startPeriodic (512);
call Timer2.startPeriodic (1024) ;
}

call Leds.ledOToggle() ;
}

event void Timer2.fired() {

1

1 1
1 1
1 1
| 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| 1
1 1
! |
! event void Timerl.fired() { |
1 1
1 1
| 1
1 1
1 1
! |
1 1
! call Leds.ledlToggle(); '
| 1
1 1
1 1
1 1
1 1

configuration ExampleAppC {
}
implementation {
components MainC, LedsC;
components ExampleC as App;
components new TimerMilliC() as TimerA;

App.Boot -> MainC;
App.Leds -> LedsC;
App.Timerl -> TimerA;

1 |
I 1
I 1
| 1
| 1
| 1
| 1
I 1
1 |
I 1
I 1
| 1
| 1
| 1
| 1
| components new TimerMilliC() as TimerB; '
1 1
1 1
| 1
| 1
1 |
1 |
1 |
1 1
1 1
1 1
1 , , I
1 —_ . 1
! App.Timer2 -> TimerB; !
| 1
I 1
1 1

Starting with the configuration we can see a couple of changes. First of all, the components
MainC and LedsC are declared with the same components keyword, separated by a comma.
That’s practical for reducing the number of lines of code. Then we see the declaration of
two instances of a timer component called TimerMilliC which will be referenced as TimerA
and TimerB. This is accomplished via the as keyword which denotes simply an alias. We
also created an alias of the ExampleC module, called App and we used it to do the wiring a
few lines below. In general, the as keyword can be used both for components and interfaces
and makes the signature a bit clearer to the reader by using appropriately named aliases. In
the case of ExampleC, it was optional, but in the case of TimerMilliC it was mandatory as
we instantiated it twice.

Before checking the wiring, we should take a look at the ExampleC module. We used a set
of brackets after the uses keyword, and declared all the interfaces inside. That helps up to
avoid the repeated typing of the uses keyword. The ExampleC module uses two instances of
the interface Timer<TMilli>, provided by the TimerMilliC component, using the names
Timerl and Timer2. The <TMilli> syntax simply denotes that Timer is a generic interface,
that is, it takes a single type as a parameter which defines what type of timer it is. This one
in particular is a timer that takes its parameter expressed in milliseconds. Since the

42

ExampleC module uses the Timer interface more than once, its signature must use the as
keyword.

Back to the wiring, it is obvious that we elided the interface names on the right side of the
arrow. As the TimerMilliC components each provide a single instance of Timer, it does not
have to be included in the wirings. However, as ExampleC has two instances of Timer,
eliding the name on the user side (left) would be a compile-time error, as the compiler
would not know which instance of Timer is being wired. Looking over the ExampleC’s
implementation, we can see that since ExampleC uses the Timer interface, it must
implement handlers for the Timer.fired() event. So what happens in this application is this:
when the mote is powered up, two periodic timers are being initiated: Timerl with a period
of 0.5sec and Timer2 with a period of 1 sec. The periods are the numbers passed on as
parameters to the startPeriodic command (1 sec = 1024ms) [7]. When Timerl fires (i.e.
every 0.5sec) the state of LEDO is toggled from off to on and vice versa. That means, LEDO
blinks every 1 second and similarly, LED1 blinks every 2 sec.

3.3.4 Tasks and Split-Phase Operations

All of the code we’ve looked at so far is synchronous. It runs in a single execution context
and does not have any kind of preemption. That is, when synchronous code starts running, it
does not relinquish the CPU to other code until it completes. This simple mechanism allows
the TinyOS scheduler to minimize its RAM consumption and keeps sync code very simple.
However, it means that if one piece of sync code runs for a long time, it prevents other sync
code from running, which can adversely affect system responsiveness. For example, a long
running piece of code can increase the time it takes for a mote to respond to a packet.

So far, the code we have seen uses direct function calls. System components such as the
boot sequence or timers, signal events to a component, which takes some action (perhaps
calling a command) and returns. In most cases, this programming approach works well.
Because sync code is non-preemptive, however, this approach does not work well for large
computations. A component needs to be able to split a large computation into smaller parts,
which can be executed one at a time. Also, there are times when a component needs to do
something, but it is fine to do it a little later. Giving TinyOS the ability to defer the
computation until later can let it deal with everything else that’s waiting first.

Tasks enable components to perform general-purpose “background” processing in an
application. A task is a function which a component tells TinyOS to run later, rather than
now, and is declared in the implementation module using the syntax:

o+
Q
]
s
<
o
vl
o
ot
Q
]
o
5
Q
3
™

43

where taskname() is whatever symbolic name we want to assign to the task. Tasks must
return void and may not take any arguments. To dispatch a task for (possibly later)
execution, we can use the syntax:

A component can post a task in a command, an event, or even another task. The post
operation places the task in an internal task queue which is processed in FIFO order. When a
task is executed, it runs to completion before the next task is run. Therefore, a task should
not run for long periods of time. Tasks do not preempt each other, but a task can be
preempted by hardware interrupts. If one needs to run a series of long operations, they
should dispatch a separate task for each operation, rather than using one big task. The post
operation returns an error_t, whose value is either SUCCESS or FAIL. A post fails if and
only if the task is already pending to run (it has been posted successfully and has not been
invoked yet).

Another worth-mentioning characteristic of nesC is Split-Phase Operations. Because nesC
interfaces are wired at compile time, callbacks (events) in TinyOS are very efficient. In C,
and in most C-like languages, callbacks have to be registered at run-time with a function
pointer. This can prevent the compiler from being able to optimize code across callback call
paths. Since they are wired statically in nesC, the compiler knows exactly what functions
are called where and can optimize heavily.

The ability to optimize across component boundaries is very important in TinyOS, because
it has no blocking operations. Instead, every long-running operation is split-phase. In a
blocking system, when a program calls a long-running operation, the call does not return
until the operation is complete. The program therefore, blocks. In a split-phase system,
when a program calls a long-running operation, the call returns immediately and the called
abstraction issues a callback when it completes. This approach is called split-phase because
it splits invocation and completion into two separate phases of execution. Here is a simple
example of the difference between the two:

Blocking Split-Phase
If (send() == SUCCESS) { send();
sendCount++;

} void sendDone(error_t val) {

if (val == SUCCESS) {
sendCount++;
}
}

Split-phase code is often a bit more complex than sequential code. But it has several
advantages. First, split-phase calls do not tie up stack memory while they are executing.

44

Second, they keep the system responsive; there is never a situation when an application
needs to take an action but all of its threads are tied up in blocking calls. Third, it tends to
reduce stack utilization, as creating large variables on the stack is rarely necessary.

The command Timer.startOneShot is an example of a split-phased call. This command starts
a timer that will fire only once, sometime in the future. The user of the Timer interface calls
the command which returns immediately. Sometime later (specified by the argument), the
component providing Timer, signals the Timer.fired event. To execute the same code in a
system with blocking calls, a program might use sleep instead.

Blocking Split-Phase
state = WAITING,; state = WAITING,;
operationl1(); operationl();
sleep(512); call Timer.startOneShot(512);
operation2();
state = RUNNING; event void Timer.fired() {

operation2();

state = RUNNING;

by

We will not be especially mentioning them, but tasks and split-phase operations are going to
be present throughout our code. This section’s goal was to get the reader accustomed to
these concepts.

3.3.5 Radio Communication

Radio communication between motes is the fundamental and most important aspect of our
application. Although we are going to examine the radio operation of our motes in the next
chapter, we think it is necessary to make an introduction here, due to the importance of it.

TinyOS provides a number of interfaces to abstract the underlying communications services
and a number of components that provide these interfaces. All of these interfaces and
components use a common message buffer abstraction, called message t, which is
implemented as a nesC struct (similar to a C struct). The message_t struct is defined as [7]:

typedef nx struct message t {
nx uint8 t header[sizeof (message header t)];
nx_uint8 t data[TOSH DATA LENGTH];
nx uint8 t footer[sizeof (message footer t)];
nx uint8 t metadata[sizeof (message metadata t)];
} message t;

Before examining the message _t struct, we should take a look at the variable types used in
nesC. Rather than the standard C names of int, long or char, TinyOS code uses more explicit

45

types, which declare their size. In reality, these map to the basic C types, but do so
differently for diferent platforms. TinyOS code avoids using int for example because it is
platform specific. For example, on Mica and TelosB motes, int is 16 bytes long, while on
the IntelMote2, it is 32 bits. Additionally, TinyOS code often uses unsigned values heavily,
as wraparounds to negative numbers can often lead to very unintended consequences. The
commonly used types are summarized below:

8 bits 16 bits 32 bits 64 bits
Signed int8_t intl6_t int32_t int64_t
Unsigned uint8_t uintl6_t uint32_t uinté4_t

Table 3.3.1: Commonly used types in nesC [10]

There is also a bool type. We can use the standard C types, but doing so might raise cross-
platform issues. Most platforms support floating point numbers (float almost always, double
sometimes).

Returning to the message _t struct, we see that it is composed of 4 fields. The nx_ prefix is
specific to the nesC language and denotes a network type. Network types have the same
representation on all platforms. The nesC compiler generates code that transparently
reorders access to nx_ data types and eliminates the need to manually adjust endianness and
alignment (e.g. extra padding in structs present on some platforms). The header, footer and
metadata fields are all opaque and must not be accessed directly. It is important to access the
message_t fields only through Packet, AMPacket and other such interfaces, as will be
shown. There are a number of interfaces and components that use message t as the
underlying data structure. Let’s take a look at some of those, to familiarize ourselves with
the general functionality of the communications system:

e Packet: provides the basic accessors for the message_t abstract data type. This
interface provides commands for clearing a message’s contents, getting its payload
length and getting a pointer to its payload area.

e Send: provides the basic address-free message sending interface. This interface
provides commands for sending a message and canceling a pending message send.
The interface provides an event to indicate whether a message was sent successfully
or not. It also provides convenience functions for getting the message’s maximum
payload as well as a pointer to the message’s payload area.

e Receive: provides the basic message reception interface. This interface provides an
event for receiving messages. It also provides, for convenience, commands for
getting a message’s payload length and getting a pointer to the message’s payload
area.

Since it is very common to have multiple services using the same radio to communicate,

TinyOS provides the Active Message (AM) layer to multiplex access to the radio. The term
“AM type” refers to the field used for multiplexing. AM packets also include a destination

46

field, which stores an “AM address” to address packets to particular motes. Additional
interfaces were introduced to support the AM services:

e AMPacket: similar to Packet, it provides the basic AM accessors for the message_t
abstract data type. This interface provides commands for getting a node’s AM
address, an AM packet’s destination, and an AM packet’s type. Commands are also
provided for setting an AM packet’s destination and type, and checking whether the
destination is the local node.

e AMSend: similar to Send, it providesthe basic Active Message sending interface.
The key difference between AMSend and Send is that AMSend takes a destination
AM address in its send command.

Let’s suppose that we want to create and send a message over the radio, and that our
message’s payload is composed of two fields of data. Rather than directly writing and
reading the payload area of the message_t with this data, we will use a structure to hold
them and then use structure assignment to copy the data into the message payload area.
Using a structure allows reading and writing the message payload much more conveniently
when our message has multiple fields or multi-byte fields, like uint16_t or greater, because
we can avoid reading and writing bytes from/to the payload area using e.g. indices and then
shifting and adding. Even for a message with a single field, a designer should get used to
using that structure because if they ever add more fields to the message or move any of the
fields around, they will need to manually update all of the payload position indices if they
read and write the payload at a byte level. The following defines a message structure with a
uintl6_t datal field and a uint32_t data2 field in the payload:

typedef nx struct ExampleRadioMsg {
nx uintl6 t datal;
nx uint32 t data2;

} ExampleRadioMsg t;

Instead of rewriting our Example application, we will walk through the steps necessary to
send the message over the radio, mentioning the code lines that need to be added in each
step. We will use the AMSend interface to send packets as well as the Packet interface to
access the message_t abstract data type. We also need an interface to start the radio, so we
will use the SplitControl interface, provided by the ActiveMessageC component. Our
module’s (ExampleC) signature is modified like this:

module ExampleC {
uses interface Packet;

uses interface AMSend;
uses interface SplitControl as RadioControl;

47

Note that the SplitControl interface has been renamed to RadioControl. SplitControl is a
general interface used for starting and stopping components, but creating an alias with the
name RadioControl is a good way to remind us that this particular instance of SplitControl
is used to control the radio, or in other words the ActiveMessageC component.

We need a message _t to hold our data for transmission. The declaration needs to be added in
the implementation block of ExampleC:

implementation {
message t pkt;

Next we need to handle the initialization of the radio. It is our choice to start the radio when
the system boots so we must call the RadioControl.start command, inside the Boot.booted
event. Now there is something worth mentioning. We plan to send the message over the
radio every time Timer2 fires (i.e. every 1 sec) but the radio can’t be used until it has
completed starting up. Due to the split-phase nature of TinyOS, when the program calls the
RadioControl.start command, the call returns immediately, but the radio signals that it has
completed starting through the RadioControl.startDone event. To ensure that we don’t start
using the radio before it is ready, we need to postpone starting Timer2 until after the radio
has completed starting. That means moving the call to start Timer2, which is now inside the
Boot.booted event, to RadioControl.startDone. So the Boot.booted event looks like this:

event void Boot.booted() {
call Timerl.startPeriodic (512);
call RadioControl.start();

Inside the module’s implementation we also have to implement the RadioControl.startDone
and RadioControl.stopDone event handlers, which have the following bodies:

i event void RadioControl.startDone (error t err) {
' if (err == SUCCESS) {

i call Timer2.startPeriodic (1024) ;
| }

i else {

i call RadioControl.start();

! }

C)

|

1

1

1

1

1

1

event void RadioControl.stopDone (error t err) {

48

If the radio is started successfully, RadioControl.startDone will be called with the error_t
parameter set to a value of SUCCESS. Then it is appropriate to start the timer. If, however,
the radio does not start successfully, then it obviously cannot be used so we try again to start
it. This process continues until the radio starts, and ensures that the node software doesn't
run until the key components have started successfully. If the radio doesn't start at all, a
human operator might notice that the LEDs are not blinking as they are supposed to, and
might try to debug the problem. For simplicity reasons, we will not use the
RadioControl.stop command, so the stopDone event is never going to happen, that’s why
there is no code in this block.

Since we want to transmit our message every time Timer2 fires, we need to add some code
to the Timer2.fired event handler:

event void TimerO.fired () {

i
i

1

| -

i ExampleRadioMsg t* exmplpkt = (ExampleRadioMsg t*) (call
' Packet.getPayload (&pkt, sizeof (ExampleRadioMsg t)));

i exmplpkt->datal = DATA;

' exmplpkt->data2 = DATA;

i call AMSend.send (AM BROADCAST ADDR, &pkt,

' sizeof (ExampleRadioMsg t);

1

1

1

This code gets the packet’s payload portion and casts it to a pointer to the previously
declared ExampleRadioMsg type. It can now use this pointer to initialize the packet’s fields,
and then send the packet by calling the AMSend.send command. The packet is sent to all
nodes in range by specifying AM_BROADCAST_ADDR as the destination address.

There is one more event we need to worry about, AMSend.sendDone. This event is signaled
after a message transmission attempt. We’ll toggle LED2 if the transmission was successful:

i event void AMSend.sendDone (message t* msg, error t err) {
| if (err == SUCCESS) {

1

! call Leds.Led2Toggle();

1

1

1

1

1

Returning to the configuration ExampleAppC, we have to declare new components and wire
the provided with the used interfaces. ActiveMessageC is a singleton component that is
defined once for each type of hardware platform. AMSenderC is a generic parameterized
component. The new keyword indicates that a new instance of AMSenderC will be created.
The AM_RADIO parameter indicates the AM type of the AMSenderC. We can define this
parameter along with others, in the accompanying header file as we will see in the next
chapter. The implementation block of the ExampleAppC configuration file now looks like
this:

49

implementation {

components ActiveMessageC;
components new AMSenderC (AM RADIO) ;

App.Packet -> AMSenderC;
App.AMSend -> AMSenderC;
App.RadioControl -> ActiveMessageC;

Receiving a message over the radio works similarly. This, along with other parameters of
the radio operation will be examined in the next chapter.

3.4 Cooja

Cooja is a java-based simulator initially developed for simulations of sensor nodes running
the Contiki operating system, but now able to simulate TinyOS motes as well [1]. Cooja
simulates networks of sensor nodes where each node can be of a different type, differing not
only in on-board software, but also in the simulated hardware. Cooja is flexible in that many
parts of the simulator can be easily replaced or extended with additional functionality.

A simulated node in Cooja has three basic properties: its data memory, the node type and its
hardware peripherals. The node type may be shared between several nodes and determines
properties common to all these nodes. For example, nodes of the same type run the same
program code on the same simulated hardware peripherals. Nodes of the same type are
initialized with the same data memory, except for the node ID. During execution however,
the data memories of the nodes will eventually differ after reacting to external stimuli.

By clicking on File -> New Simulation the new simulation wizard starts up. Here the user
can adjust some basic simulation settings, namely the preferred radio medium which
determines the radio surrounding behavior, the mote startup delay which is the time
difference between the startup of the first and last mote, and the random seed which controls
the random behavior such as various delays, node positions etc.

The wireless messages can be sent on different radio mediums; the simulator proposes four
wireless channels that are: No Radio Traffic, Unit Disk Graph Medium (UDGM) — Constant
Loss, Unit Disk Graph Medium (UDGM) — Distance Loss, and Directed Graph Radio
Medium (DGRM) [1].

e No Radio Traffic does not permit the radio communication on the channel and
therefore cannot be employed to simulate WSNSs.

e UDGM - Constant Loss is a wireless channel model where the transmission range is
modelled as an ideal disc where all nodes outside of it do not receive packets, while
those within receive all messages. The predefined maximum transmission range is

50

multiplied by the ratio of the current output power to the maximum output power of
the simulated device and the resulting transmission power is compared to the
distance in the simulation. For example, if the transmission range of the mote is
200m and the current output power is half of the maximum, the disc has a radius of
100m.

e UDGM - Distance Loss is a radio medium similar to the previous one but it extends
it in two ways. First, the interferences are now considered and, in case of interfered
packets, they are lost due to the interference range which is larger than the
transmission range. Second, the success ratio of the transmission and reception can
be set: a packet is transmitted or received on the basis of two probabilities,
SUCCESS_RATIO _TX (if unsuccessful, no device receives the packet) and
SUCCESS_RATIO_RX (if unsuccessful, only the destination of the packet does not
receive it).

e DGRM is a model that creates the topology of nodes through edges. It lets the
programmer fully customize the mote-to-mote relations.

Eile Simulation Motes Tools Settings Help

Create new simulation

] g
Simulation name \

Advanced settings

Radio medium | Unit Disk Graph Medium (UDGM): Distance Loss ||

Mote startup delay (ms) 1,000
Random seed 123,456

New random seed on reload =

Cancel

Figure 3.4.1: New Simulation wizard

The configuration of Cooja is flexible so that many parts of the simulator can be replaced or
extended with additional functionality. Example parts are the radio mediums just described,
the interfaces and plugins. The interfaces represent some properties of the node such as the
position, the serial port and the user button state. The plugins are used to interact with a
simulation. They often provide the user with a graphical interface to observe something of
interest in the simulation.

51

File Simulation Motes Tools Settings Help

(=] Network ek =) Simulation control (_](3)(x] Notes [](=1 (€3]
Wiew Zoom Run speed limit Enter notes here
Start | Pause | Step | Reload
Time: 00:00.000
Speed: —
=] Mote output [®[=]E3]
File Edit View
Time ms | Mote | Message
Filter:
[+ Timeline B2@a
File Edit View Zoom Events Motes
! .
.
9
v
Al =

Figure 3.4.2: Default plugins

The default plugins are the Network Visualizer, the Timeline, the Mote Output, the
Simulation Control and the Notes. The Network Visualizer simply lets us configure the
network’s topology. The user can drag and drop the nodes, change the transmission and
interference range and show mote information such as LED states, position, mote IDs etc.
The Timeline displays the radio state for each mote through different colors: on (grey), off
(no color), packet transmission (blue), packet reception (green) and interference (red). It
also displays the LED state of each mote. The Mote Output displays the log output for all
simulated motes. The Simulation Control controls starts, pauses, stops and reloads the
simulation, and changes the simulation speed.

File Simulation Motes Tools Settings Help

(£3] Network
View Zoom

E] Simulation control Q@@

Run Speed limit

PowerTracker: 10 motes =oIx)

| Radio on (%) | Radio TX (%) | Radio RX (%) |

Start Pause Step Reload

Time: 00:10.453
Speed: -

E] Mote output E]@@

File Edit Wiew

Time ms | Mote | Message

53.99% 0.66%
i 0.42%
54.10% 0.78% 2.42%

51.36% 0.40% 0.83%
53.96% 0.62% 1.62%
49.11% 0.12% 0.44%
54.09% 0.48% 1.42%
48.80% 0.02% 0.00%
53.98% 0.72% 1.11%
53.98% 0.40% 0.62%
52.76% 0.46% 1.07%

(vJMote Interface ... (_)O)(x]
Select interface:| Sky LED

(xJMote Interface V... (=)O)(x]

Select interface:| Sky LED &

e o o
[+

v

Filter:

|_Print to console/Copy to clipboard || Reset

-
(=JMate Interface vi... (-)[@)(x]
i

File Edit View Zoom Events Motes

= Timeline showing 10 motes [B[=E)[+]

-
Radio messages: 135 messages seen 238

File Edit Analyzer Payload

{—u - cld | Time | From | To | Data |
M R ISCEE pay T URAIEE2AZZ UUFFFFUL UBTEUEIY JUuusIey BU
< 10443 21: 0x41883122 0OFFFFO3 003FO600 06180810 4000SDFA 34
3 10446 21: 0x41881922 OOFFFFOA OO3FO600 0618D810 400GSDFI 24
4 10448 [3d] 21: 0x41881022 OOFFFFO2 O03FAG00 0618DE10 4000SD29 6E
5 10451 [3 d] 21: 0x41882822 OOFFFFOL 0O3FOS00 0S18DS10 4000SDCE 90
6 10457 [3d] 21: 0x41882122 OOFFFFO7 QO3FO600 0618DS10 4000SDED 37
7 10458 21: 0x41881A22 DOFFFFOA OO3FO600 0618D810 4000SDES 14
8 A 10462 [3 d] 21: 0x41882822 OOFFFFOS 003FO500 O6LBDELO 4000SDAL AS
9
10
9
ki
T AL

Figure 3.4.3: Extended plugins

52

We will also be using the Radio Messages and PowerTracker plugins. The Radio Messages
plugin displays all radio messages exchanged between motes along with the contents of the
message. The PowerTracker is extremely useful and is essentially a mote radio duty cycle,
showing a list of all motes, along with Radio On, Radio RX and Radio TX percentages.

3.5 MSPSim

44e2:03 43 MOV.W #0, R3

44e4:03 43 MOV.W #0, R3

44e6:2 93 51 12 CMP.B #$ffff, &SchedulerBasicP_m_head
44ea:77 27 JEQ $feee

44ec:b0 12 2e 48 CALL SchedulerBasicP__popTask.part.79
44f0:4b 4f MOV.B R15, R1l

442:7f 93 CMP.B #$ffff, RIS

Debug On

| 44f4:72 27 JEQ $feed
| Single Step 4476:4f 4a MOV.B R1O, R1S

44f8:b0 12 CALL _ nesc_atomic_end i
4afc:af 4b MOV.B R11, RIS StackjMonitor,

44fe:ho 12 CALL SchedulerBasicP_ TaskBasic__runTask | ﬂ [_\
(Stack Trace 4502:67 3f IMP $fece /\ | /\
4504:32 dO BIS.W #§00f0, SR [j
4508:fd 3f WP §fffa £ \
450a:30 40 MOV.W #§6c3e, PC |
Show Source 450e:0b 12 PUSH.W R11; RandomMlcgC__Random__rand16 "
|

4510:0a 12 PUSH.W R10

4512:09 12 PUSH.W R9 0230 0245 0300 0315 03:30 0345 0400 0415
4514:08 12 PUSH.W R8 Time

|$44e0 $38fe $00d8 $0000 $0000 $5a08 $0000
$5fd3 $0000 $0001 $0004 $00f9 $0000 $00d8 — Max Stack — Stack

Profile Dump

#++ Serial mon for MSPsim Duty Cycle

o
0230 0245 0300 0315 0330 0345 0400 0415
Time

—LEDS — Listen —Transmit — CPU

Figure 3.5.1: Standalone MSPsim running

MSPSim [5] is a cycle-accurate Java based simulator of the MSP430 microcontroller. It is
able to simulate all motes that embed an MSP430 MCU. It can be run from a terminal or
from within Cooja by right clicking a mote and choosing MSP Cli. During startup MSPSim
is composed of five windows showing a picture of the mote, the duty cycle of various
components, the serial output, a stack monitor and a main control window.

LedsP__Led2__set 38 1 38
LedsP__Led1__set 38 1 38
CC2420ReceiveP__reset_state 26 al 26
RealMainP__Scheduler__ runNextTask 12 2 24
OneWireMasterC__Pin__makeOutput 10 2 20
hhkkhhkhkhhd Proftle IRQ hhkkhhkhhhhhhhhddhhhddhhhdd sk

Vector Average Calls Tot.Cycles

0o e 5] 5]

01 (] 5] 5]

02 e 5] 5]

03 (] [} [}

04 1654 al, 1654

05 58 262 15196

06] [} [}

a7 6] [} [}

08] [} [}

09 382 112 42837

10 (] 5] 5]

alal, 6] [} [}

12 461 50 23090

13 955 33 31537

14 (] [} [}

15 e 5] 5]

mspsim=J

Figure 3.5.2: Output of the Profile command in a terminal

53

Several commands can be given in the terminal as well, giving the user the opportunity to
observe the duty cycle of the radio and the MCU (in numbers), several variables during
program execution and information on various mote components. When run from within
Cooja, a single window appears which essentially works like a terminal.

3.6 Yeti 2 plugin for Eclipse IDE

The TinyOS 2.x Plugin for Eclipse, nicknamed “Yeti 2”, was developed by the Distributed
Computing Group at ETH Zurich [28]. The plugin aims to provide developers with all the
convenient functions expected from a modern development environment. It can be a very
useful tool when building an application from scratch or when analyzing existing code.

Its main features include:

Error detection, for example syntactical errors
or errors that occur when wiring interfaces
and components.

Code completion which can be activated by
pressing Ctrl + Space. The plugin internally
builds a model of each file. That model tells
where and what is available at different
locations.

nesC documentation which is :

activated when the mouse rests
over an item. A hover pops up and
shows the nesC documentation
associated with that element.

111
117

The elements of every file whether

54

or| Component graph | Pi

roblems &

event void Boot.booted() {
uints t i; - .

for (1 =0; 1

uartQueueli]
uartln = uart
uartBusy = FAY
uartFull = TR

radioQueue[i] = &radioQueu
radioIn = radioCut = 0;
radicBusy = FALSE;
radioFull = TRUE;

=0 *demo2.h =0 Demo.nc &

1 interface Demo<typesf]
2 command void work(type arg);

3}

[

Editor| Component graph | Preprocessor

=0 DemoC.nc &

1 configuration DemoC{

2 uses interface Demo<int> as Demolnt;

3 provides interface Demo=float= as DemoFloat;
4}
5 implementation{

a5 .= g
71 the generic parameters of the interfaces do not match

Press 'F2' for focus|

Figure 3.6.1: Yeti2 Error Detection

event void Boot.booted()

call TimerO.startPeriodic(250 J; a
call Timerl.startPeriodic(S00 }; =
call Timer2.st

¥ " startOneShotAt - startOneShotAt{unsigned long,unsigne g

C .
et wend Tamsnl startOneShot - startOneShot(unsigned long) - void

@° startPeriodicAt - startPeriodicAt(unsigned long,unsigned
dbg("Blinkc",
call Leds.ledg .

} @° stop - stop() - void

@° startPeriodic - startPeriodic{unsigned long) - void

% storage_addr_t - unsigned long

event void Timer % storage_cookie_t - unsigned long

R e I % storage_len_t - unsigned long

El Conso|+] |

¥ Pk

Figure 3.6.2: Yeti 2 Code Completion

void failBlink() {
call Leds.led2Toggle();

SE Outline £3 laz =7
~ P
oF booted() -vo| v & Parameters
Signaled when the| % precision
assume the syste

need to be started

@see StdControl v e

O divider : int

Specification

@sea SplitConrol » (D Init
@see TEP 107: Be » (D Alarm
for (i = 0; i < RADIO QUEUE| > @ Counter

» &3 Timer (HplAtm12ETimer)

» 3 TimerCtrl (HplAtm128TimerCtrig)

» i3 compare (Hplatm128Compare)

» @ Timerasync (HplAtm128TimerAsync)

v & Implementation

Figure 3.6.3: Yeti 2 nesC documentation

» O t0: uint32_t
» O dt:uint3z_t
» O base : uint32_t
v ¥ enum
& MINDT : 2
& MAXT : 230
@f Init.initl) - error_t

@ setOcrO(uint8 t) - void

Figure 3.6.4: Yeti 2 Outline

it is a component or an interface, get represented in the Outline.

The plugin can also show the contents of a file as a graph.

@ MainC =l

Eoot = Boot

D RealMainP =

@ Plaforminitini() - error_t
& Softwarelnit.nit{) - error_t

&F Bootboated() - void

!
oftwareinit = Softyvarelnit ™ S\Checlu\er -= Scheduler
4
! ;)
a . Platforminit -= Init 2
9 Softwarelnit (Init) ' @ TinySchedulerC =]

i (D) TaskBasic
@ PlatformC (D Scheduler
askBasic = TaskBasi|

Scheduler #'Scheduler

| (@ Sched (SchedulerBasicP)
T

| McuSleep -= McuSleep

¥
| D Sleep (McuSleepC)

Figure 3.6.5: Yeti 2 Graph Creation

Chapter 4: WSN 1.0

55

4.1 Introduction

This is the chapter in which we actually build our application. We will start by
programming motes that perform simple but fundamental tasks. Then we will combine a
number of these tasks to create motes that operate as a WSN and after a series of
measurements and observations we will try to extend and enhance our code, so as to make
the network’s operation more efficient.

4.2 Creating the mote
4.2.1 Sensor operation

The most important attribute of a mote functioning in a forest fire detecting WSN, is its
ability to utilize the sensors attached to it. In our case the CM5000 mote is equipped with
three onboard sensors, as described in Chapter 2: two light sensors and a
temperature/relative humidity sensor. Let’s start with the light sensors first.

The Hamamatsu S1087 and S1087-01 sensors provide visible and infrared light values
respectively. We are only going to use the first one as it adequately fits our needs. As shown
in figure 2.3.10 the photodiode is directly connected to the microcontroller’s ADC and
creates a current through a 100k< resistor.

SENIOT

"~ 100000

VW

According to the graph provided by Hamamatsu (fig. 2.3.9), we can deduct a formula,
which is essentially an approximation at a specific operating temperature, to linealyze the
output current vs. the incident light level. The temperature of 25°C is a good theoretical
operating temperature of the WSN, but if we wanted to be more accurate we would have to
extract the most appropriate constant in the range or ranges that the sensors are going to be
working; the only available graph in the datasheet was the one drawn at the above
mentioned temperature and since it suits us we will proceed with that. The incident light
level is measured in lux and the output current in A.

V.
£x=D.625><105><!><1D3=D.625><1D9><%=6250><V

SENIOT

The Vsensor Value must be calculated by first of all obtaining the raw ADC count value of the
sensor. This value can vary depending on the microcontroller’s configuration. The default
TinyOS-2.x configuration assumes the following values for a TelosB/Tmote Sky platform:

v — ADCL‘E:HE

FENS0T 4096 Vr‘af

56

Vrer IS the voltage level of the internal reference voltage generator [27]; it is software
configurable, its default value is 2.5V and it is defined (and can be adjusted) in the
MSP430ADC12.h header file, located in the /tos/platform/msp430 folder in the TinyOS
installation directory. Substituting to the equation above we obtain:

ADCL‘E:HE
lx = 6250 % 4— ¥ 2.5 =3.815 x ADC

a9g velusa

Moving to the Sensirion SHT11 things are simpler. According to the datasheet [19], the raw
readings can be converted to Sl units as follows:

e Temperature

T=d,+d, X507

Vop | di(°C) | d1(°F) SOt | d2(°C) | d2(°F)
5V | -40.1 | -40.2 14bit | 0.01 | 0.018
4Vv | -39.8 | -39.6 12bit | 0.04 | 0.072
3.5V | -39.7 | -39.5
3V | -39.6 | -39.3
25V | -394 | -38.9
Table 4.2.1: d1 and dz in relation to VDD and ADC bits of operation

For TelosB motes the sensor is coupled with a 14-bit converter and in our case it is powered
by 2xAA batteries connected in series, providing a supply voltage Vpp = 3V. SOt is the raw
ADC value of the sensor. Thus the formula is:

'=-396+001X50;
e Relative Humidity

RH =c¢, + ¢, X S50g + c3 X 50g,°

SORH C1 C2 C3
12bit -2.0468 0.0367 -1.5955E-6
8bit -2.0468 0.5872 -4.0845E-4

Table 4.2.2: c1, ¢z and c3 for 8 or 12bit ADC [19]

The default value for a CM5000 mote is 12bits [14], and SOrn is the raw output of the
sensor, so the formula is:

RH = —2.0468 + 0.0367 X 50z, — 1.5955 X 107° X 50g,°

57

To test the equations above, we program and simulate a mote, which periodically samples
its sensors, converts the raw data to SI units and sends these values to its serial port. This is
what the output looks like in Cooja:

Time ms | Mote | Message

5457 ID:1 Current light is 381
5472 ID:1 Current temp is 24

5497 ID:1 Current humidity is 150
5433 ID:1 Current light 1s 354
5449 ID:1 Current temp 1s 24

6473 ID:1 Current humidity is 150
7410 ID:1 Current light 1s 328
7426 ID:1 Current temp is 24

7450 ID:1 Current humidity is 150
8387 ID:1 Current light 1s 301
8402 ID:1 Current temp 1s 24

8426 ID:1 Current humidity is 150
9363 ID:1 Current light 1s 274
9379 ID:1 Current temp is 24

9403 ID:1 Current humidity is 150

Figure 4.2.1: Mote’s Output

Temperature is at a stable 24°C, relative humidity is also stable at 150% and light intensity
is decreasing at a rate of 27lux/sec, until it reaches zero, then starts from 977lux all the way
down to zero again. There are no actual sensors to gather data from, and Cooja uses
parameters defined in its source code. One could modify these predefined values by
modifying Cooja’s source code, but that would set the modified values valid for the whole
simulation. In other words, as of the latest version of Cooja included in Contiki 2.6, it is not
possible to adjust the default sensor values just for a subsection of the simulation area, but
only for the area as a whole. As will be shown later, this will not prevent us from simulating
the WSN’s operation, as we will use “dummy motes” with predefined sensor values. What
we wanted to examine through this test was whether our formulas produced values within
an acceptable range. The value of relative humidity is acceptable too. Relative humidity
measures the current absolute humidity relative to the maximum for that temperature, so a
value of 150%, although large, is possible. We will not use it for the rest of this thesis
though, as in the case of a fire, temperature is quicker to change and that should be enough.
One could use the relative humidity measurement to acquire a scope for the forest area as a
whole, but since we have no physical motes and Cooja produces only stable values, we will
leave it out.

4.2.2 Power Consumption
The typical operation of a fire-detecting mote as part of a WSN, would include sampling its

sensors, sending the sensor data over the radio and receiving data from nearby motes to
retransmit it to other nearby motes. Let’s create a mote that samples its sensors once every

58

minute and sends a message containing the sensor data, while having its radio always on
listening to other motes and retransmitting their messages. A simplified state machine of
this Prototype mote is depicted in figure 4.2.2. The mote boots and starts listening. It
periodically samples its sensors and sends the data over the radio. In the event of a received
message from another mote, it forwards the message to other nearby motes. In order to
calculate the expected battery life of this (and any) mote, we must first measure each
component’s duty cycle in all possible power states.

listen

message received

@ boot

send data

message forwarded

sample sensors

Figure 4.2.2: Simplified state machine of the Prototype mote

The simulation was run for 30 minutes; adequate time for the duty cycle to reach a steady
value. The only parameter not clearly visible in Cooja is the sensors’ duty cycle, but there is
a good workaround to obtain it [2]. When the program calls the command to start sampling
the sensors, we turn on LED 0, and when the sampling is completed and the packet is about
to be sent, we turn it off. The LEDs are generally visible in Cooja’s Timeline plugin, which
apart from showing the LED and radio states, has the ability to print statistical simulation
facts, to the console. The light sensor’s current consumption is negligible so only the
temperature sensor contributes to the power consumed. So, printing the statistics in the
command line we get:

59

[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]

INFO [AWT-EventQueue-8] (TimeLine.java:791) - 1 nr_logs @
led red 1003428 us 0.055688759658682634 %

led green @ us 0.0 %

led blue ® us 0.0 %

radio_on 1797381546 us 99.7519998773084 %
radio_tx 23605 us 0.0013100423465791302 %
radio_rx @ us 0.0 %

radio_int @ us 0.0 %

AVERAGE nr_logs 8

AVERAGE led red 1883428 us ©.855688759658682634 %
AVERAGE led green ® us 0.0 %

AVERAGE led blue 0 us 0.0 %

AVERAGE radio_on 1797381546 us 99.7519990773084 %
AVERAGE radio_tx 23605 us 0.0013100423465791302 %
AVERAGE radio_rx @ us 0.0 %

AVERAGE radio_int ® us 0.0 %

Figure 4.2.3: Command line statistics for the Prototype mote

Wy

Furthermore, because this mote is simulated alone, radio transmission happens only once
every 30 seconds and its duty cycle as seen in figure 4.2.4, is less than 0.01%, so Cooja’s
PowerTracker plugin calculates the transmit-state duty cycle to be actually 0.00% and the
receive-state to be 100.00%. In general, we are going to use two decimal digits for duty
cycle values so in this particular example we will consider the transmit-state (TX) duty
cycle to be zero.

~) PowerTracker: 1 motes (=3

Mote | Radio an (%) | Radio TX (%) | Radio RX (%) |
100.00% 0.00% 0.00%

AVERAGE 100,00% 0,00% 0,00%

Figure 4.2.4: Radio duty cycle for the Prototype mote

As far as the MCU is concerned, by right-clicking on the mote and choosing the Msp CLI
option we can actually run MSPSim inside Cooja. The command:

prints the duty cycle of all power states of the MSP430 microprocessor X times/sec [1]. Its
output looks like this:

60

Msp CLI {1}

8=a8

= duty 1 MSP430

0240000009

o o o Y o v o o Y o N Y
L e T i e T e T e - e s e
i I Vo Y T T o o TV O Vi i L

0
0
0
0
0
0
0
0
0
0
0
0
0
0

e e - e Y e e i e s e Y e e
[LN O SN L I L LN L I L I I I R T L
Lok 0 Iy T Oy O 0y O W B T R) I
e e - e Y e e i e s e Y e e

00
00,
000,
00
00
00
00
00
00
00,
000,
00
00
00
00

0,26 0.0 0,000 99,

OCICIQQ?&lCICI

Figure 4.2.5: MSP430 duty cycle for the Prototype mote

The first column represents the active state, the second is the power-off state and the next
four are the low-power modes, from LPMO to LPM4 [1]. We see that the MCU spends all of
its time either in active mode, or LPM3.

Gathering all the data, we are able to create the table below [4]:

Component Current [mA] Duty Cycle [%0] Total current [mA]

MSP430 MCU

Active 1.8 0.25 0.0045

Sleep 0.0051 99.75 0.00508725

CC2420 Tranceiver

Receive 18.8 100 18.8

Transmit 17.4 0 0

Sleep 0.001 0 0

SHT11 Temp. Sensor

Measuring 0.5 0.06 0.0003

Sleep 0.0003 99.94 0.00029982

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
18.8112

Table 4.2.3: Duty cycle and current consumption of all components in a Prototype mote

Now to calculate the mote’s expected battery life in relation to its battery capacity, we
simply have to divide the battery’s mAh by the total current consumption as calculated

above:

61

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 26.58 1.11 0.04
1000 53.16 2.21 0.07
1500 79.74 3.32 0.11
2000 106.32 4.43 0.15
2500 132.90 5.54 0.18
3000 159.48 6.64 0.22
3500 186.06 7.75 0.26
4000 212.64 8.86 0.30
4500 239.22 9.97 0.33
5000 265.80 11.07 0.37

Table 4.2.4: Prototype mote’s battery life for various battery capacities

The most important part of a mote’s power consumption is now obvious. The radio
transceiver operation represents approximately 99.94% of the mote’s total power
consumption. A good quality alkaline battery has an effective capacity of 2000mAh, so
connecting two of those in series, gives us about 4000mAh of battery capacity [6]. Under
these circumstances, a prototype mote like this would only run for about 9 days before its
batteries ran out. This is definitely not a good case when a WSN composed of 50 or more of
those motes monitors a forest area. Having to replace the batteries of each mote every 9
days is not a good example of an autonomous WSN. We now see that the first thing a
designer has to do, in a non CPU intensive application like this, is to limit the power-on time
of the radio chip.

Life Time vs. Battery Capacity

12.00
10.00
8.00
6.00

4.00

Battery Life [days]

2.00

0.00
0 1000 2000 3000 4000 5000 6000

Battery Capacity [mAh]

Figure 4.2.6: Mote’s battery life vs. battery capacity (Prototype mote)

62

4.2.3 FireSense Mote

Moving on and based on the results we obtained from the previous section, we will try to
extend the prototype mote into one that would perform better in terms of power
consumption. We will name this mote FireSense and its simplified state machine is this:

message received
message forwarded

listen put to sleep

sleep

@ boot

send data

wake up

sample sensors

Figure 4.2.7: Simplified state machine of the FireSense mote

What’s different than the first mote is that this one can (and will) spend most of its time
sleeping. More specifically, we will program this mote to turn on its radio acting as a
forwarder for messages coming from other motes, then sample its sensors to send their
readings, then act as a forwarder again, and finally sleep for a certain amount of time. What
sleep mode does is actually put every component in its lowest power state possible. The
second listening period, after the sensor sampling, is necessary because the motes in a WSN
do not start operating at exactly the same time, so for instance, when a mote sends its sensor
readings over the radio, we have to make sure there is another one listening to forward the
message. But even if there were a number of people, each one adjacent to every mote and all
of them programmed and started the motes at the same time, this would create very heavy
radio traffic (as we will see) that the network could not handle.

We will not present the mote’s code in full, as some of its parts have already been examined
in detail in Chapter 3. We will just present a few code snippets that show how this mote
actually works. At first we have to create a header file that works the same way as a C
header file. It defines constants and type structures and provides a comfortable way of
quickly modifying applications.

63

#ifndef FIRE SENSE H
#define FIRE SENSE H

enum {
MAX SENSORS = 2, AM RADIO = 1, LISTEN DURATION 1 = 1000,
LISTEN DURATION 2 = 1000, SLEEP DURATION = 28000};

typedef nx struct FireSenseMsg ({
nxuintlé t node id;
nxuintl6é t temperature;
nxuintlé t luminance;

} FireSenseMsg t;

#endif /* FIRE_SENSE H */

In this case, several constants have been defined. The MAX_SENSORS constant determines
the number of sensors we are using, in our case 2 (SHTI11’s temperature and S1087’s
luminance). The AM_RADIO is an id that will be used to discriminate between different
kinds of messages. LISTEN_DURATION _1 and 2 represent the duration that the mote will
have its radio on before and after sampling its sensors respectively. SLEEP_DURATION is
pretty straightforward. The next lines define our message structure with three data fields
storing the mote’s ID, temperature and luminance measured, in the payload.

Moving on the module, which we named FireSenseC we have to declare a number of
variables first:

uint8 t numsensors; |
bool radio busy = FALSE;

bool sensor data packet = FALSE; |
message t packet; |
FireSengeMsg_t data; |

The packet variable’s role has been explained in Chapter 3. data is a FireSenseMsg structure
used to store our data to be sent. radio_busy indicates whether the radio is being used and
sensor_data_packet indicates whether the message sent is another mote’s readings being
forwarded or the mote’s own sensor readings. We will show the numsensors use in a while.

event void Boot.booted() {
post startListening();
}

task void startListening() {

call RadioControl.start () ;

call Timerl.startOneShot (LISTEN DURATION 1);
}

event message t * Receive.recelve (message t *msg, void *payload, uint8 t

len) {
if (len == sizeof (FireSenseMsg t) && (radio busy == FALSE)) {
FireSenseMsg t * incomingPacket = (FireSenseMsg t *) payload;
FireSenseMsg t * outgoingPacket;
outgoingPacket = (FireSenseMsg t *) call Packet.getPayload (&packet,
sizeof (FireSenseMsg t));
outgoingPacket -> node id = incomingPacket -> node id;

outgoingPacket -> temperature = incomingPacket -> temperature;
outgoingPacket -> light = incomingPacket -> light;

if (call AMSend.send(AM BROADCAST ADDR, é&packet,
sizeof (FireSenseMsg t)) == SUCCESS) ({

radio busy = TRUE;

sensor data packet = FALSE;

}

return msg;

}

event void Timerl.fired() {

1

1

1

1

1

1

1

1

1

1

1

1

:

| }
1

1

1

1

1

1

1

:

1

' post startSensing();
1
1

When the mote boots, it dispatches the startListening task, which turns on the radio to
forward received messages, and starts a timer (not periodic, but a single-shot) to indicate
when the mote will dispatch the startSensing task, i.e. sample its sensors. The
Receive.receive event, is signaled whenever the mote receives a packet. At first, this code
checks if the radio is free and if the packet received is one to be forwarded. The latter is
actually a security check and a simple way to prevent interference from unwanted sources
with our WSN. It then gets the packet’s payload portion and casts it to the incomingPacket
pointer, a pointer to the previously declared FireSenseMsg type. It then creates the
outgoingPacket pointer for the message to be sent. A simple copy of the incoming packet
fields to the outgoing ones is the final step towards creating the outgoing message. The rest
is the same as in Chapter 3. When the AMSend.send command is called, radio_busy is set to
TRUE and sensor_data packet is set to FALSE, since it’s not the mote’s own packet but a
forwarded one.

task void startSensing () {
numsensors = 0;
//call Leds.led0OOn () ;
call TempRead.read();
call LightRead.read()

’

}

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| event void TempRead.readDone (error t result, uintl6 t val) { '
! data.temperature = val; '
! if (++numsensors == MAX SENSORS) {

! post sendReadings () ; !
! //call Leds.ledQOff (); !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

}

event void LightRead.readDone (error t result, uintlé t wval) {
data.luminance = val;
if (++numsensors == MAX SENSORS)
{

post sendReadings () ;
//call Leds.ledOOff () ;

What startSensing does is simply call two read commands, one for the light sensor and one
for the temperature sensor. When the sensor value has been read, the corresponding event is

65

being signaled, that puts the values in the appropriate fields in the data variable defined
earlier. When both sensors have been sampled, the sendReadings task is being dispatched.
Note that we have commented out the commands that toggle LEDO. It is something we use
to assist us with the simulation and not something a designer should include in their code
when programming a physical mote, as LED operation increases power consumption [2][4].

The sendReadings task is similar to the process described in Chapter 3. The only thing
worth mentioning is the way data passed to the packet to be sent.

——

| aux -> node id = TOS_NODE_ID; i
| aux -> temperature = data.temperature; '
| aux -> luminance = data.luminance; '
L

TOS_NODE_ID is unique to each mote and represents its 1D [10]; it is configured during
the programming of the mote, but since we are using Cooja we can easily define it when
creating the simulation. aux is an auxiliary pointer for sending the packet. When the packet
has been sent the AMSend.sendDone event is signaled:

event void AMSend.sendDone (message t *msg, error t error) {
radio busy = FALSE;
if (sensor data packet == TRUE) ({
call Timer2.startOneShot (LISTEN DURATION 2);

It sets the radio free and notifies the mote that the packet sent contained its own sensor
readings, so the mote continues to act as a forwarder for the duration specified in Timer2.
When this timer fires, it’s time to put the mote to sleep.

event void Timer2.fired() {
call RadioControl.stop();
}

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
| event void RadioControl.stopDone (error t error) { !
! call Timer3.startOneShot (SLEEP DURATION) ; 1

- 1
! 1
1 } 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

event void Timer3.fired() {
post startListening();

The radio is turned off and when this happens, the mote sleeps for a duration defined in
Timer3. When this timer fires, the startListening task is called; the mote wakes up and starts
its operation all over again.

66

4.2.4 BaseStation Mote

A WSN consisting of FireSense motes alone would not be any good if there wasn’t a base
station where all the information would be gathered. A BaseStation node does exactly that;
it is a CM5000 mote, connected via its USB port to a computer where it prints the sensor
readings it has received from the FireSense motes. It is not necessary for the user to
constantly read the values. If the mote receives an abnormal reading it notifies us by turning
on its LEDs. The green LED means that everything is fine, the blue LED signifies a slightly
abnormal value and the red LED a dangerously abnormal value. Before printing the values,
the BaseStation mote is responsible for converting the raw data values in the received
packets, to Sl units, using the formulas we introduced in section 4.2.1. We didn’t program
the FireSense motes to do that, as we wanted to avoid putting even the slightest unnecessary
CPU load; battery life is top priority in FireSense motes but it doesn’t concern us in
BaseStation motes as they are powered through their USB port.

listen

message received

@ boot

message printed

temp/light

blink leds
abnormal

Figure 4.2.8: Simplified state machine of the BaseStation mote

4.3 Testing the WSN

It is time to simulate a WSN consisting of the motes created above. The outdoor range of
the CC2420 radio chip, using the embedded antenna, is according to TelosB specs, around
100m, while the indoor range is about 20-30m. A forest area lies somewhere in the middle;
it can’t be considered indoors but it’s not an outdoor area either as there exist trees and other
land obstructions that decrease the outdoor range. We will consider a worst-case scenario,
because it’s preferable that the actual WSN operates better than the simulated one, than the
opposite, so the default range will be set equal to 50m which we think it’s close to what the
real one should be [6]. Changing the default radio range in Cooja is as simple as right-
clicking anywhere in the Network Visualizer and changing the value. The wireless channel
chosen is UDGM — Distance Loss as it’s the most realistic. The interference range is set to
70m. Furthermore, the FireSense motes will be randomly placed as there is no guarantee

67

that a forest area will provide conditions for symmetrical mote placement. The motes
vertical position has been randomly selected between 2 and 3 meters.

A large number of motes is not necessary as the delay between the reception of a packet and
its forwarding is minimal as we will show. The WSN will consist of 15 FireSense motes and
1 BaseStation mote. The BaseStation mote will just print the packets as they arrive, for the
time being. Turning on its LEDs will be better executed when we include a dummy mote.
The motes will listen for 1 second before and after sampling their sensors, and they will be
put into sleep mode for 58 seconds; thus they will operate periodically with a period of
1min. Moreover, the Mote Delay option in Cooja will be set equal to 1000ms. This means
that the time difference between the first and last mote to boot, is 1 second.

(™) MNetwork (=3
YWiew Zoom
@
__©
= -Epmry
X/%/’f () m\:_\j_ -
100.0% b
s (e
[- __lD].E"I-'Ex1|
I-I 'Ihl c@m @— J,'I _?
e ¢ 9 4 9
o

Figure 4.3.1: Network topology depicted

Motes 1-15 are FireSense motes, while mote 16 is the BaseStation. Mote 15’s radio and
interference range is depicted as an example. The gridlines correspond to a length of 10m,
so the WSN covers an area ~160m x 130m = 20800m?.

We ran the simulation for 30min to ensure stable duty cycles [2][4]. The results may be

disappointing, but quite interesting. The sensors’ (i.e. the LEDOQ’s) average duty cycle as
printed in the command line is this:

68

AVERAGE led red 1763059819 us 99.90593435927727 %
AVERAGE led_green 0 us 0.0 %
AVERAGE led blue © us 0.8 %

Figure 4.3.2: FireSense onboard sensors’ duty cycle

while the PowerTracker bears no good results either:

Maote | Radio on (%) | Radio TX (%) | Radio RX (%) |
99, 76% 0.159% 0, 44%

Sky 12 86,90% 0,20% 0,54%

Sky 13 95,51% 0,21% 0, 44%

Sky 14 54,81% 0,11% 0,16%

Sky 15 283.69% 0,22% 0,62%

Sky 16 99, 74% 0,00% 0,31%

ANVERAGE 85,10% 0,17% 0,41% |T

| Print to console/Copy to clipboard || Reset |

Figure 4.3.3: Radio duty cycle for the FireSense motes

Choosing a random mote, e.g. 11, and getting its MCU’s duty cycle, we get:

-

Msp CLI {11) (=)

0,24 0,000009975 0.0
0,24 0,000009975 0.0
0.2300000089977 0.0
0,24 0,0 00009975 0.0
0,24 0,000 0,089975 0.0

34,01 000,86 006512 0.0
28,74 0,0 0,84 0.0 70,42 0.0
24,12 0,0 0,97 0.0 54,91 0.0
34,99 0,0 1.07 0.0 83,95 0.0
35.28000900638300

32,94 0,0 0,91 0.0 66,15 0.0
34,32 0,0 1.05 0.0 54,63 0.0
34,05 0.0 0,97 0.0 54,98 0.0
3719 0,00,99 0,0 61.81 0.0

Figure 4.3.4: MSP430 duty cycle for the FireSense motes

7| x|

We expected the mote’s MCU duty cycle to be higher than that of the Prototype mote’s,
because it now operates in a network where it has to process and forward several incoming
messages but this is definitely not a good sign.

Fortunately, Cooja makes finding the cause of this easy. If we take a look at the Timeline,

we see this:

69

1WWMWWWMWMWWWMWWWWWNWWW
ekl bl ol 0 Wl]] Ll L el W)L A)l ot LA Ll oL L AL, LI
BHWWWWWWWWWWW
el UL L AL (L LS L UL LU LY (ST AN LA S LA R LA UL ML ML L L T
[LR R TR B A B B TR A T, B L A D B LR, A
eI M P L L L L P L L UL UL L

7 LA LAY UL RS B B (L Ll L) LU ML ol LBl MRS Ll e L L
B—IMW ekl bl lonhlcol el bl kb ol o)] Ao e L A A b Tl Wl
QMWMMWHIWHMWWWWWW
bl Ul ol ol el bl LRSS o el ol ML Rk I LU LU

1 1—mwummmw‘mwwm
12 UL L (LA LI UL L S L L U LLLALIRLAN ol SN UL)L UL UL L
13—MWWWWHHMHWWHUI“MHHWI
14MWWWWWMWW
15 b UL AR LA B B o U i, BT L L A S T L LI L L PR s R L PR L, L
B 8 = ——

Figure 4.3.5: Heavy radio traffic during FireSense motes’ operation

That is an immense amount of radio traffic. It is caused by continuous retransmission of the
same packet. Let’s take an example. Suppose that Mote 15, transmits its sensor readings.
Motes 7 and 13 do a good job of forwarding the packet to the sink node, but they are
actually broadcasting the message to all motes within range who are listening. So motes 3,
4, 5 and 6 receive the packet as well, and broadcast it to motes 9, 10, 11 and 12 who in turn,
broadcast the packet to motes 1, 2, 8 and 14 who broadcast the message back in the
direction of the sink node again. The result is that the first packet to be broadcast, actually
chokes the entire network leaving very little available space for other packets to be
transmitted, and this is very well depicted in the figure above. The higher duty cycle of the
MCU is a direct consequence of that: the constant receiving and transmitting of a packet is
indeed, apart from radio intensive, a CPU intensive process as well.

Another interesting deduction can be made by noticing that the average radio duty cycle is
85.10%, even though motes were programmed to sleep for 58 out of 60 seconds. That’s a
very good way to demonstrate what the split-phase nature of TinyOS can result in, if the
code is not written properly. When one of the motes above is listening and it’s time to
dispatch a task, it is actually so busy receiving and sending packets, that it postpones
dispatching the task, to a time when the radio traffic has decreased; the radio traffic is very
high all the time though, so the TinyOS scheduler postpones the dispatching of tasks and
keeps the mote listening indefinitely [7].

4.4 WSN 1.0

It is obvious that if we want to materialize our WSN, we need to find a way to reduce its
radio traffic. One solution would be to reduce each mote’s neighboring motes. That creates
two other problems though: first, the accuracy of the WSN as a whole is reduced because
each mote would be responsible for a larger area, and second: a mote’s break down, would
limit the alternative routes of a travelling packet. Another solution, would be to manually
assign addresses to the motes and program each mote to transmit to certain destinations, but

70

that would make it difficult to modify the network once it has been set up. For example, if
we wanted to expand it or add new motes in the same area, we would have to reprogram
every mote to include the addresses of the new motes. A good and viable solution is at the
same time, the simplest. Every time a mote boots, it will create and initialize to zero a one-
dimensional array, the length of which, will be equal to the number of motes in the WSN.
The actual size of it will be NUMBER_OF MOTES + 1, because the first element in an
array in nesC (and C) is array[0], and there is no mote with a zero ID. We could also
increase the length of the array to make room for additional motes.

The first time, in a listening period, that a mote receives and forwards a packet from mote
X, it will set the element array[X] equal to 1. If sometime later in the same period, the mote
receives the same packet, recycled in the network, it will check the value of array[X]. If it
isn’t equal to zero, it will not transmit it. When the mote is put to sleep, the array is set to
zero again. The timeline’s output looks like this now:

1 = S SRR b SENLEL
> L SR
3_ L St [N U A1 RLRI 0] g EILELRE
5 N £ b R SRR
6 L e s, S
7 et 8 -k bt S
g =t = o) = S
..... e f
%g TS SUTRERERN N duix nd SENEE!
12 Akt s RN IR s ot & LN
13 i) S chlalt
Al B gt TARETE
%g‘ e R AR S B R S S SRERE B EAURRER SLINE
16 E—

Figure 4.4.1: Normal radio traffic after code improvement

Things are looking good now. Radio traffic is greatly reduced. Five lines of code can make
that big a difference. We can clearly distinguish separate radio traffic times in this picture,
every time a mote samples its sensors and broadcasts the readings (right after the red LED
turns off). There still exist some packets that have been interfered (marked by red dots
above the grey line) so in order to determine if we have compromised the WSN’s
effectiveness in transmitting all packets over the radio we check the serial output of the
BaseStation mote:

71

53992
54041
54059
54138
54186
541591
54250
54262
54353
54412
54493
54499
54665
54687
54728

ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:
ID:

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:
Mote:

11 Temperature:

G Temperature:
2 Temperature:
4 Temperature:
1 Temperature:
7 Temperature:

15 Temperature:
14 Temperature:
10 Temperature:
12 Temperature:

9 Temperature:
S Temperature:

13 Temperature:

3 Temperature:
8 Temperature:

24 Luminance:

24 Luminance:
24 Luminance:
24 Luminance:
24 Luminance:
24 Luminance:

24 Luminance:
24 Luminance:
24 Luminance:
24 Luminance:

24 Luminance:
24 Luminance:

24 Luminance:

24 Luminance:
24 Luminance:

328
328
328
328
328
328

328

328

328

328
328
328

328
328
328

Filter

Figure 4.4.2: BaseStation receives all FireSense motes’ packets during a sample period

The columns from left to right stand for: the time the output was printed (in ms), the ID of
the mote that gives the output (we have given BaseStation the MotelD: 16) and the mote’s
printed message. The BaseStation mote prints the readings of all FireSense motes in a

sampling period, so the WSN works as expected.

To test the WSN’s response time in case of an abnormal reading and to test the LED
operation of the BaseStation mote we create a “dummy mote”. That is actually a FireSense
mote in which we have predefined its sensor readings to be abnormal. The dummy mote has
been programmed to send a packet only when we press its button. We are going to measure
how much time it takes for a packet containing sensor samples to reach the sink mote. Let’s
suppose a measured temperature of 50°C. The dummy mote has been given the ID: 16 and

the BaseStation is now number 17.

a Metwork EEB
View Zoom
ol
° S
®) i
®
ng%ﬁ
@ . ~ 1
o | @ 0 L
(o
) e P

Figure 4.4.3: Dummy mote placement

72

The BaseStation mote turns its green LED on when it boots, to indicate the user that it’s
working. Since 50°C is a very high temperature, we expect the red LED to turn on. We press
the button on the dummy mote 16 at precisely 34341ms simulation time. The BaseStation
mote receives the packet at 34370ms. The radio packet covers a distance of more than 200m
in only 29ms. That is practically real time information and the WSN’s response time is
excellent.

-—=
Figure 4.4.4: Packets exchanged while forwarding a dummy mote’s packet. Vertical line depicts 29ms

The mote needs 5 more milliseconds to turn on its red LED as seen in the picture above
(lower right corner), and forward the packet to its serial port:

| 34375 ID:17 Mote: 16 Temperature: 50 Luminance: 499

Filter;
Figure 4.4.5: BaseStation needs 5ms to forward a radio packet to its serial port

@

@

iy
Figure 4.4.6: This is what 29ms look like as the WSN forwards the packet from dummy mote to sink
73

We consider the WSN’s behavior a success. The source code of the FireSense mote along
with the BaseStation mote can be found in the Appendix. It’s now time to examine our
motes’ energy characteristics.

4.5 Energy Analysis

We saw from the previous tests that two seconds of listening time (1sec before and 1 sec
after sampling) are adequate for forwarding all motes’ packets to the sink mote. We will not
try to decrease that time as doing so might increase the chances of lost packets. We will
adjust the SLEEP_DURATION constant though, in order to examine the way in which the
WSN’s sampling frequency affects the motes’ battery life. The chosen values for the WSN’s
sampling period are 30sec, 60sec, and 90sec, so SLEEP_DURATION will be set to 28, 58
and 88 seconds respectively. We are also going to use the same procedure as in section

4.2.2.

e Sampling period: 30sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 1.18 0.02124

Sleep 0.0051 98.82 0.00503982

CC2420 Tranceiver

Receive 18.8 7.08 1.33104

Transmit 17.4 0.04 0.00696

Sleep 0.001 92.88 0.0009288

SHT11 Temp. Sensor

Measuring 0.5 1.69 0.00845

Sleep 0.0003 98.31 0.00029493

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
1.3750

Table 4.5.1: Duty cycle and current consumption of all components in a FireSense mote (30sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 363.65 15.15 0.51
1000 727.30 30.30 1.01
1500 1090.95 45.46 1.52
2000 1454.59 60.61 2.02
2500 1818.24 75.76 2.53
3000 2181.89 90.91 3.03
3500 2545.54 106.06 3.54
4000 2909.19 121.22 4.04

74

4500

3272.84

136.37

4.55

5000

3636.49

151.52

5.05

Table 4.5.2: FireSense mote’s battery life for various battery capacities (30sec period)

6.00

5.00

4.00

3.00

2.00

Battery Life [months]

1.00

0.00

Life Time vs. Battery Capacity

1000 2000

3000 4000

Battery Capacity [mAh]

5000 6000

Figure 4.5.1: Mote’s battery life vs. battery capacity (FireSense mote, 30sec period)

e Sampling period:

60sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.67 0.01206

Sleep 0.0051 99.33 0.00506583

CC2420 Tranceiver

Receive 18.8 3.46 0.65048

Transmit 17.4 0.02 0.00348

Sleep 0.001 96.52 0.0009652

SHT11 Temp. Sensor

Measuring 0.5 0.86 0.0043

Sleep 0.0003 99.14 0.00029742

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
0.6776

Table 4.5.3: Duty cycle and current consumption of all components in a FireSense mote (60sec period)

75

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 737.85 30.74 1.02
1000 1475.69 61.49 2.05
1500 2213.54 92.23 3.07
2000 2951.38 122.97 4.10
2500 3689.23 153.72 5.12
3000 4427.07 184.46 6.15
3500 5164.92 215.20 7.17
4000 5902.77 245.95 8.20
4500 6640.61 276.69 9.22
5000 7378.46 307.44 10.25

Table 4.5.4: FireSense mote’s battery life for various battery capacities (60sec period)

Life Time vs. Battery Capacity

12.00

10.00

8.00

6.00

4.00

Battery Life [months]

2.00

0.00
1000

2000

3000 4000

Battery Capacity [mAh]

5000 6000

Figure 4.5.2: Mote’s battery life vs. battery capacity (FireSense mote, 60sec period)

Sampling period: 90sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]
MSP430 Microprocessor

Active 1.8 0.41 0.00738
Sleep 0.0051 99.59 0.00507909
CC2420 Tranceiver

Receive 18.8 2.29 0.43052
Transmit 17.4 0.01 0.00174
Sleep 0.001 97.7 0.000977
SHT11 Temp. Sensor

Measuring 0.5 0.53 0.00265
Sleep 0.0003 99.47 0.00029841

76

ST M25P80 Flash

Active 20 0 0
Sleep 0.001 100 0.001
0.4496
Table 4.5.5: Duty cycle and current consumption of all components in a FireSense mote (90sec period)
Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 1111.99 46.33 154
1000 2223.98 92.67 3.09
1500 3335.97 139.00 4.63
2000 4447.96 185.33 6.18
2500 5559.95 231.66 7.72
3000 6671.94 278.00 9.27
3500 7783.93 324.33 10.81
4000 8895.92 370.66 12.36
4500 10007.91 417.00 13.90
5000 11119.90 463.33 15.44

Table 4.5.6: FireSense mote’s battery life for various battery capacities (90sec period)

18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

Battery Life [months]

Life Time vs. Battery Capacity

0 1000 2000
Battery Capacity [mAh]

3000 4000

5000 6000

Figure 4.5.3: Mote’s battery life vs. battery capacity (FireSense mote, 90sec period)

77

Chapter 5: WSN 2.0

5.1 Intro

Building upon our experience and gathered data from the previous chapter, we aim to
further enhance the designed WSN, increasing its motes’ lifetime without sacrificing spatial
or temporal accuracy. To achieve this, we are going to examine a different network
topology that divides the motes in terms of the operation they execute: fire sensing and
packet forwarding. But to do that, we first need to examine the effect the supply current has
on radio range.

5.2 Friis Transmission Equation

The Friis transmission equation is used in telecommunications engineering, and gives the
power received by one antenna under idealized conditions given another antenna some
distance away transmitting a known amount of power. In its simplest form, the Friis
transmission equation is as follows. Given two antennas, the ratio of power available at the
input of the receiving antenna, Pr, to output power to the transmitting antenna, Pt, is given
by [18]:

P A
=G, XG, X (—)
P, 4R

where Gt and Gr are the antenna gains of the transmitting and receiving antennas
respectively, A is the wavelength and R is the distance between the antennas. The equation
in this form, is of little use to us. The antenna gains, in our case, are expressed in decibels,
so the equation is slightly modified to [18]:

A
P.=P.+G, 4G +20logy, (ﬁ)

where gain has units in dB, and power has units in dBm.

TelosB motes come equipped with an internal antenna that is an Inverted-F microstrip
protruding from the end of the board away from the battery pack. The Inverted-F antenna is
a wire monopole where the top section is folded down to be parallel with the ground plane.
It has been examined in detail, in Texas Instrument’s Design Note 7 [17], where its gain has
been measured in the XY, XZ and YZ plane. We won’t go into such detail in this thesis, so
we will take into consideration only the horizontal XY plane in our calculations. This has
been measured to be 1.1dB. We also know from Chapter 2 that the receiving power of
TelosB is -90dBm at minimum.

78

Let’s restructure the equation above so that we can express R in terms of power:

e % 10Pe+ G+ G—Fr)/20

4 f

4R
Eﬂlnglu(m) =P, +G, +G.— B, =R=

c is the speed of light (3x108 m/s) and f is the frequency of the signal (2.4 GHz).

As we have mentioned is Chapter 2, the CC2420 has programmable output power. It is
adjusted by specifying a parameter called PA_LEVEL in the code’s makefile [7], when
programming a mote. In order to gain an understanding of the relation between range and
input power, we will consider two motes. One is transmitting and the other is receiving.
Both motes’ antenna gain is 1.1dB and the receiver mote’s power is -90dBm [16]. In the
table below we present typical PA_LEVEL values and their corresponding current
consumption and output power. In the fourth column we have calculated the maximum
theoretical distance between a mote transmitting with the corresponding output power and a
receiver mote.

PA LEVEL Output Power [dBm] Current Consumption [mA] Range [m]
31 0 174 405.31

27 -1 16.5 361.23

23 -3 15.2 286.93

19 -5 14 227.92

15 -7 12.5 181.04

11 -10 11 128.17

7 -15 9.9 72.07

3 -25 8.5 22.79

Table 5.2.1: PA_LEVEL, output power and current consumption in relation to ideal radio range

We see that that the range at output power equal to 0dBm (the default value) is more than 3
times higher than the one given in the TelosB datasheet. This shouldn’t worry us because
the calculations above don’t take into account the dimensional parameters of a mote or
interferences in the radio medium, and also assume idealized conditions. A more in-depth
analysis has been done in Texas Instruments Design Note 18 [18], in which ground
reflections and environmental noise have been accounted for. This is not our purpose
though, as through this theoretical calculation we wanted to examine the relation between
output power, current consumption and range, in order to adjust the default radio range we
assumed in the previous chapter. We notice, that halving the radio chip’s supply current,
from 17.4 to 8.5mA brings radio range down to about 1/18th of its value.

79

Range vs. Current Consumption
450.00
400.00
350.00
300.00
250.00

200.00

Range [m]

150.00
100.00
50.00
0.00

8 9 10 11 12 13 14 15 16 17 18
Current [mA]

Figure 5.2.1: CC2420 ideal radio range vs. current consumption

5.3 WSN 2.0

Based on the results obtained from the previous section, we aim to reconstruct the topology
of our WSN, by dividing each mote in regard to the work it does. The WSN we designed in
Chapter 4 was an ad-hoc network. We now want to move towards an “access point”
orientation. To achieve this we have to, in a way, split the FireSense mote in half. We will
name the first mote FireSense 2.0 and the second one Repeater. FireSense 2.0 will now be
responsible only for taking temperature and luminance measurements and transmitting
them. It will neither keep its radio on for 2 seconds, nor listen to any other mote’s packets.
In fact we will entirely strip FireSense 2.0 mote off its Receive interface. The Repeater
mote’s operation is actually implied by its name: it doesn’t use any of its sensors, rather it
only turns on to listen to radio traffic and forward it to other Repeater motes. Adding the
operations of the two motes together, creates the original FireSense mote.

We will create our WSN in teams of four: one access point (Repeater) assigned to four peers
(FireSense 2.0). We have four access points in total, so 16 peers. The access points will
communicate with each other at default radio power (0dBm), but the peers will not have to
use their full power obviously. We aim to a range of about 15-16m, which is roughly 32%
of the full power mode. Going back to Table 5.2.1 we see that, 32% of the original power
corresponds to 129.6m. The output power closer to that value is -10dBm which corresponds
to a PA_LEVEL value of 11 and a current consumption of 11mA. Putting these parameters
into Cooja, we obtain a range of about 17m which is acceptable. The WSN operates
properly. Radio traffic is very low, the response time is lower than in that in the last chapter
and the BaseStation mote prints all messages in a period.

80

54566 ID:21 Mote: 15 Temperature: 24 Luminance: 328
54537 ID:21 Mote: 3 Temperature: 24 Luminance: 328
54201 ID:21 Mote: 8 Temperature: 24 Luminance: 328
54912 ID:21 Mote: 11 Temperature: 24 Luminance: 328
54963 ID:21 Mote: 2 Temperature: 24 Luminance: 328
64977 ID:21 Mote: & Temperature: 24 Luminance: 328
G3038 ID:21 Mote: 4 Temperature: 24 Luminance: 328
63112 ID:21 Mote: 1 Temperature: 24 Luminance: 328
55149 ID:21 Mote: 7 Temperature: 24 Luminance: 328
63167 ID:21 Mote: 14 Temperature: 24 Luminance: 328
65212 ID:21 Mote: 16 Temperature: 24 Lumilnance: 328
63279 ID:21 Mote: 10 Temperature: 24 Luminance: 328
65325 ID:21 Mote: 12 Temperature: 24 Luminance: 328
55438 ID:21 Mote: 9 Temperature: 24 Luminance: 328
65462 ID:21 Mote: S Temperature: 24 Luminance: 328
63615 ID:21 Mote: 13 Temperature: 24 Luminance: 328

Figure 5.3.1: BaseStation receives all FireSense 2.0 motes’ packets during a sample period

D) @
]
/T e/ ®
illn'

o 4

Y

\ N
L e

Figure 5.3.2: WSN 2.0 network topology

Nodes 1-16 are FireSense 2.0 motes, 17-20 are Repeater motes and 21 is the BaseStation.
The two outer circular lines are the 0dBm transmission and interference ranges respectively.
The source code of the FireSense 2.0 and Repeater motes can be found in the Appendix.

81

5.4 Energy Analysis

5.4.1 FireSense 2.0

Following the same procedure as in Chapter 4, we will consider three sampling periods:

30sec, 60 sec and 90sec.

e Sampling period: 30sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.27 0.00486

Sleep 0.0051 99.73 0.00508623

CC2420 Tranceiver

Receive 18.8 0.03 0.00564

Transmit 11 0 0

Sleep 0.001 99.97 0.0009997

SHT11 Temp. Sensor

Measuring 0.5 1.71 0.00855

Sleep 0.0003 98.29 0.00029487

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001

0.0264
Table 5.4.1: Duty cycle and current consumption of all components in a FireSense 2.0 mote (30sec period)
Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]

500 18917.32 788.22 26.27
1000 37834.65 1576.44 52.55
1500 56751.97 2364.67 78.82
2000 75669.29 3152.89 105.10
2500 94586.62 3941.11 131.37
3000 113503.94 4729.33 157.64
3500 132421.27 5517.55 183.92
4000 151338.59 6305.77 210.19
4500 170255.91 7094.00 236.47
5000 189173.24 7882.22 262.74

Table 5.4.2: FireSense 2.0 mote’s battery life for various battery capacities (30sec period)

82

300.00

250.00

200.00

150.00

100.00

Battery Life [months]

50.00

0.00
0

Life Time vs. Battery Capacity

1000 2000

3000 4000

Battery Capacity [mAh]

5000 6000

Figure 5.4.1: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 30sec period)

e Sampling period: 60sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.26 0.00468

Sleep 0.0051 99.74 0.00508674

CC2420 Tranceiver

Receive 18.8 0.01 0.00188

Transmit 11 0 0

Sleep 0.001 99.99 0.0009999

SHT11 Temp. Sensor

Measuring 0.5 0.88 0.0044

Sleep 0.0003 99.12 0.00029736

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
0.0183

Table 5.4.3: Duty cycle and current consumption of all components in a FireSense 2.0 mote (60sec period)

83

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 27256.87 1135.70 37.86
1000 54513.74 2271.41 75.71
1500 81770.61 3407.11 113.57
2000 109027.47 4542.81 151.43
2500 136284.34 5678.51 189.28
3000 163541.21 6814.22 227.14
3500 190798.08 7949.92 265.00
4000 218054.95 9085.62 302.85
4500 245311.82 10221.33 340.71
5000 272568.69 11357.03 378.57

Table 5.4.4: FireSense 2.0 mote’s battery life for various battery capacities (60sec period)

400.00
350.00
300.00
250.00
200.00
150.00

100.00

Battery Life [months]

50.00

0.00

Life Time vs. Battery Capacity

1000 2000

3000 4000

Battery Capacity [mAh]

5000

6000

Figure 5.4.2: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 60sec period)

e Sampling period: 90sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]
MSP430 Microprocessor

Active 1.8 0.25 0.0045

Sleep 0.0051 99.75 0.00508725
CC2420 Tranceiver

Receive 18.8 0.01 0.00188

Transmit 11 0 0

Sleep 0.001 99.99 0.0009999

84

SHT11 Temp. Sensor

Measuring 0.5 0.55 0.00275

Sleep 0.0003 99.45 0.00029835

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
0.0165

Table 5.4.5: Duty cycle and current consumption of all components in a FireSense 2.0 mote (90sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 30274.59 1261.44 42.05
1000 60549.18 2522.88 84.10
1500 90823.77 3784.32 126.14
2000 121098.36 5045.77 168.19
2500 151372.95 6307.21 210.24
3000 181647.54 7568.65 252.29
3500 211922.13 8830.09 294.34
4000 242196.72 10091.53 336.38
4500 272471.31 11352.97 378.43
5000 302745.91 12614.41 420.48

Table 5.4.6: FireSense 2.0 mote’s battery life for various battery capacities (90sec period)

Life Time vs. Battery Capacity

Battery Life [month
]
=
(=]
=
[an]

0 1000 2000 3000 4000 5000 6000
Battery Capacity [mAh]

Figure 5.4.3: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 90sec period)

85

5.4.2 Repeater

e Sampling period: 30sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.44 0.00792

Sleep 0.0051 99.56 0.00507756

CC2420 Tranceiver

Receive 18.8 6.74 1.26712

Transmit 17.4 0.02 0.00348

Sleep 0.001 93.24 0.0009324

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
1.2858

Table 5.4.7: Duty cycle and current consumption of all components in a Repeater mote (30sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 388.85 16.20 0.54
1000 777.71 32.40 1.08
1500 1166.56 48.61 1.62
2000 1555.42 64.81 2.16
2500 1944.27 81.01 2.70
3000 2333.12 97.21 3.24
3500 2721.98 113.42 3.78
4000 3110.83 129.62 4.32
4500 3499.69 145.82 4.86
5000 3888.54 162.02 5.40

Table 5.4.8: Repeater mote’s battery life for various battery capacities (30sec period)

86

6.00

5.00

4.00

3.00

2.00

Battery Life [months]

1.00

0.00

Life Time vs. Battery Capacity

1000 2000

3000

4000

Battery Capacity [mAh]

5000

6000

Figure 5.4.4: Mote’s battery life vs. battery capacity (Repeater mote, 30sec period)

e Sampling period: 60sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.35 0.0063

Sleep 0.0051 99.65 0.00508215

CC2420 Tranceiver

Receive 18.8 3.43 0.64484

Transmit 17.4 0.01 0.00174

Sleep 0.001 96.56 0.0009656

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
0.6602

Table 5.4.9: Duty cycle and current consumption of all components in a Repeater mote (60sec period)

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m]
500 757.31 31.55 1.05
1000 1514.63 63.11 2.10
1500 2271.94 94.66 3.16
2000 3029.26 126.22 4.21
2500 3786.57 157.77 5.26
3000 4543.89 189.33 6.31
3500 5301.20 220.88 7.36
4000 6058.52 252.44 8.41

87

4500 6815.83 283.99 9.47
5000 7573.14 315.55 10.52
Table 5.4.10: Repeater mote’s battery life for various battery capacities (60sec period)
Life Time vs. Battery Capacity
12.00
_10.00
z
S 800
E
£ 6.00
>
T 400
g
2.00
0.00
0 1000 2000 3000 4000 5000 6000

Battery Capacity [mAh]

Figure 5.4.5: Mote’s battery life vs. battery capacity (Repeater mote, 60sec period)

e Sampling period: 90sec

Component Current [mA] | Duty Cycle [%] | Total current [mA]

MSP430 Microprocessor

Active 1.8 0.3 0.0054

Sleep 0.0051 99.7 0.0050847

CC2420 Tranceiver

Receive 18.8 2.32 0.43616

Transmit 17.4 0 0

Sleep 0.001 97.68 0.0009768

SHT11 Temp. Sensor

Measuring 0.5 0 0

Sleep 0.0003 100 0.0003

ST M25P80 Flash

Active 20 0 0

Sleep 0.001 100 0.001
0.4489

Table 5.4.11: Duty cycle and current consumption of all components in a Repeater mote (90sec period)

Battery Capacity [nAh] | Battery Life [n] | Battery Life[d] | Battery Life [m] |

88

500 1113.78 46.41 1.55
1000 2227.56 92.82 3.09
1500 3341.34 139.22 4.64
2000 4455.12 185.63 6.19
2500 5568.90 232.04 7.73
3000 6682.68 278.45 9.28
3500 7796.46 324.85 10.83
4000 8910.24 371.26 12.38
4500 10024.02 417.67 13.92
5000 11137.80 464.08 15.47

Table 5.4.12: Repeater mote’s battery life for various battery capacities (90sec period)

18.00
16.00
14.00
12.00
10.00

8.00

6.00

Battery Life [months]

4.00
2.00
0.00

Life Time vs. Battery Capacity

1000

2000

3000

4000

Battery Capacity [mAh]

5000

6000

Figure 5.4.6: Mote’s battery life vs. battery capacity (Repeater mote, 90sec period)

Chapter 6: Conclusion & Future Work

89

6.1 Conclusion

In this thesis we presented a cost-effective and autonomous solution for passively
monitoring forest areas. The first chapter served as an introduction to Wireless Sensor
Networks and their field of applications. In Chapter 2, the reader was presented with the
basic building block of a WSN, namely the mote. A few of the most popular mote types
were examined, in search of a mote suited to the needs of an application like this. The
operating system that made all this possible, TinyOS, along with step-by-step examples and
a variety of tools that aided our efforts, are introduced and examined in Chapter 3. Chapters
4 and 5 present what is the main objective of this thesis: the answer to the question “Can an
area be efficiently monitored for a time long enough, without the presence of a single person
involved in it?”

It is said that a picture is worth a thousand words:

1000.00
w
S 100.00
2
: .
= FireSense
z
= FireSense 2.0
oM
w 10.00 Repeater
z
=)
=

1.00
0 1000 2000 3000 4000 5000

Battery Capacity [mAh]

Figure 6.1.1: Logarithmic diagram of all examined motes’ lifetime (60sec period)

In short, yes it can. But since we wanted to be more thorough, we studied two different
network topologies trying to figure out which one would perform better. An ad-hoc network
type and one that uses access points. Looking at the figure above, the answer seems logical.
A FireSense 2.0 mote, may run up to 380 months (that’s 32 years), sampling its sensors
and sending the readings over the radio every minute, before its batteries run out. That’s all
in theory of course, since batteries have an expiration date and the mote’s actual lifetime
would be around 5 or 6 years [4]. But what matters is that we have actually designed a WSN
whose fire sensing motes’ energy specification outlasts their batteries’ lifetime.

That is not the only criterion we should consider though. The ad-hoc WSN is more flexible
in its deployment and its “resistance” in case of a mote malfunction or end of life. In the
WSN 2.0 however, in case of a Repeater mote failing to operate, the number of peers that

90

broadcast to it go down as well. What’s more, it is not always certain that the physical
characteristics of an area will allow for an effective access point distribution. A FireSense
WSN on the other hand, works as a plug-and-play network, because the motes that compose
it provide a combination of sensing and packet forwarding.

In the end, it all depends on the needs specific to each case. The first WSN is better suited to
easily accessible areas with irregularities in its physical formation, and when performing
maintenance every 10 months is not a problem. WSN 2.0 is better for remote and
inaccessible areas, in which the motes’ lifetime is the top priority.

6.2 Future Work

The most important enhancement to this thesis would be to test the written source code, on
real motes. We would like to see whether our simulated results correspond to real mote
operation. Having a physical mote at hand would enable an engineer to perform tasks that
are unable to be done in simulation, such as location and time awareness via a GPS
expansion card or utilization of additional sensors via external sensor boards. Software wise,
it would enable us to utilize several TinyOS components that a simulator couldn’t use, such
as the Msp430InternalVVoltageC component that gives us the real supply voltage of the
mote, or the CC2420Config interface that allows us to change the radio range over the air.

Another proposal would be to examine the behavior and responsiveness of a mote under
heavy CPU load. The maximum duty cycle value of the MCU, that we encountered, was
about 37% during the first attempt to program the FireSense mote (Section 4.3), but that was
not a good example of CPU performance; rather an example of how very heavy radio traffic
can take its toll on the CPU. One could create a CPU intensive scenario by e.g. connecting a
mote to a camera that takes pictures of an area, compresses them and transmits them.

91

References

[1] J.Eriksson; F. Osterlind; N. Finne; N. Tsiftes; A.Dunkels; T.Voigt, “COOJA-MSPSim:
Interoperability Testing for Wireless Sensor Networks”, Swedish Institute of Computer
Science, 2004

[2] O. Landsiedel; K. Wehrle; S. Goetz, “Accurate Prediction of Power Consumption in
Sensor Networks”, University of Tuebingen, Germany, 2006

[3] M. Johnson; M. Healy; P. vd Ven; M. Hayes; J. Nelson; T. Newe; E. Lewis, “A
Comparative Review of Wireless Sensor Network Mote Technologies”, IEEE Sensors
Conference, 2009

[4] A. Somov; . Minakov; A. Simalatsar; G. Fontana and R. Passerone, “A Methodology
for Power Consumption Evaluation of Wireless Sensor Networks”

[5] J.Eriksson; A. Dunkels; N. Finne; F. Osterlind; T. Voigt, “MSPSim — an Extensible
Simulator for MSP430-equipped Sensor Boards”, Swedish Institute of Computer Science,
2004

[6] G. Kucuk; B. Kosucu; A. Yavas; S. Baydere, “FireSense: Forest Fire Prediction and
Detection System using Wireless Sensor Networks”, 2008

[7] P. Levis; D. Gay, “TinyOS Programming”, Cambridge University Press, 2009

[8] G. Lorincz and M. Welsh, “Deploying a Wireless Sensor Network on an Active
Volcano”, IEEE Computer Society, 2006

[9] TinyQS, a free and open source component-based operating system and platform
targeting wireless sensor networks, available at www.tinyos.net

[10] C. Merlin, “A tutorial for Programming in TinyOS”, University of Rochester, 2009
[11] J.P. Carneiro, “Environmental Monitoring in Wind Farms based on WSANs”, Instituto
Superior Tecnico, 2009

[12] http://en.wikipedia.org/wiki/Sensor_node

[13] K. Lin; J. Yu; J. Hsu; S. Zahedi; D. Lee, “Heliomote: Enabling Long-Lived Sensor
Networks through Solar Energy Harvesting”, UCLA, 2005

[14] TelosB datasheet, Available at http://www.memsic.com

[15] TI MSP430F1611 Datasheet, Available at http://www.ti.com

[16] CC24240 Datasheet, Available at http://www.ti.com/lit/ds/swrs041c/swrs041c.pdf
[17] Design Note 007, Available at http://www.ti.com/lit/an/swru120b/swru120b.pdf
[18] Design Note 018, Available at http://www.ti.com/lit/an/swral69a/swral69a.pdf

[19] SHT11 Datasheet, Available at http://www.sensirion.com/en/products/humidity-
temperature/humidity-sensor-sht11/

[20] S1087&S108701 Datasheet, Available at http://www.hamamatsu.com/resources/pdf/
ssd/s1087_etc_kspd1039e02.pdf

[21] Nano-RK, http://www.nanork.org/projects/nanork

[22] SOS, https://projects.nesl.ucla.edu/public/sos-2x/doc/

[23] Mantis, http://mantisos.org/index/tiki-index.php.htmi

[24] BTNut, http://www.btnode.ethz.ch/static_docs/doxygen/btnut/

[25] Contiki, http://www.contiki-0s.org/

[26] Avrora Simulator, http://compilers.cs.ucla.edu/avrora/

92

[27] CM5000 specs, http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
[28] Yeti2 project, http://tos-ide.ethz.ch/wiki/index.php

93

Appendix

FireSense source code

FireSenseC.nc

#include "FireSense.h"

module FireSenseC
{

uses

//General Interfaces

interface Boot;

interface Timer<TMilli> as Timerl;
interface Timer<TMilli> as Timer2;
interface Timer<TMilli> as Timer3;
interface Leds;

//Sensor Interfaces
interface Read<uintl6_t> as TempRead;
interface Read<uintl6 t> as LightRead;

//Radio Interfaces

interface Packet;

interface AMSend;

interface SplitControl as RadioControl;
interface Receive;

implementation
{
uint8 t numsensors;
bool radio busy = FALSE;
bool sensor data_packet = FALSE;
message t packet;
FireSenseMsg t data;
uint8 t array[NUMBER OF MOTES+1] = {0};

task void startListening();
task void startSensing();
task void sendReadings();

event void Boot.booted()

{

post startListening();

task void startListening()

{
call RadioControl.start();
call Timerl.startOneShot (LISTEN_DURATION_I) H

event void RadioControl.startDone (error_t error)
{
if (error == FAIL)
{
call RadioControl.start();

94

event void Timerl.fired()

{

post startSensing();

event message t * Recelve.receive (message t *msg, void *payload, uint8 t len)

{

if (len == sizeof (FireSenseMsg t) && (radio busy == FALSE))

{
FireSenseMsg t * incomingPacket = (FireSenseMsg t *) payload;
if (arraylincomingPacket -> node id] == 0)

{

FireSenseMsg t * outgoingPacket;

outgoingPacket = (FireSenseMsg t *) call
Packet.getPayload (&packet, sizeof (FireSenseMsg t));
outgoingPacket -> node id = incomingPacket -> node id;
outgoingPacket -> temperature = incomingPacket -> temperature;
outgoingPacket -> luminance = incomingPacket ->
luminance;
if (call AMSend.send(AM BROADCAST ADDR, &packet,
sizeof (FireSenseMsg t)) == SUCCESS)

{
radio_busy = TRUE;
sensor data packet = FALSE;
array[outgoingPacket -> node id] = 1;

}

return msg;

event void AMSend.sendDone (message t *msg, error t error)
{

radio_busy = FALSE;

if (sensor data packet == TRUE)

{
call Timer2.startOneShot (LISTEN DURATION 2);

task void startSensing()

{
numsensors = 0;
radio busy = TRUE;
call Leds.led0OOn();
call TempRead.read();
call LightRead.read();

event void TempRead.readDone (error_t result, uintlé_t val)
{
data.temperature = val;
if (++numsensors == MAX SENSORS)
{
post sendReadings () ;
call Leds.led0Off();

event void LightRead.readDone (error t result, uintl6 t val)
{
data.luminance = val;
if (++numsensors == MAX SENSORS)
{
post sendReadings () ;
call Leds.ledOQOff();

95

task void sendReadings ()
{
FireSenseMsg t * aux;
aux = (FireSenseMsg t *) call Packet.getPayload (&packet,

sizeof (FireSenseMsg t));

aux -> node_id TOS_NODE_1ID;
aux -> temperature = data.temperature;
aux -> luminance = data.luminance;

if (call AMSend.send(AM BROADCAST ADDR, &packet, sizeof (FireSenseMsg t))

SUCCESS)

radio busy = TRUE;
sensor_data packet = TRUE;
arraylaux -> node id] = 1;

event void Timer2.fired()

{
call RadioControl.stop();

event void RadioControl.stopDone (error t error)

{
call Timer3.startOneShot (SLEEP_DURATION) ;

memset (array, 0, sizeof (array));

event void Timer3.fired()

{
post startListening();

FireSenseAppC.nc

configuration FireSenseAppC{ }

implementation

{

//General

components FireSenseC as App; //Main module file
components MainC; //Boot

components new TimerMilliC() as TimerA;
components new TimerMilliC() as TimerB;
components new TimerMilliC() as TimerC;
components LedsC;

App -> MainC.Boot;
App.Timerl -> TimerA;
App.Timer2 -> TimerB;
App.Timer3 -> TimerC;
App.Leds -> LedsC;

//Radio Communication

components ActiveMessageC;

components new AMSenderC (AM_RADIO) ;
components new AMReceiverC(AM RADIO);

App.Packet -> AMSenderC;

App.AMSend -> AMSenderC;
App.RadioControl -> ActiveMessageC;

96

App.Receive -> AMReceiverC;

//Temperature components
components new SensirionShtl1lC() as TempSensor;
App.TempRead -> TempSensor.Temperature;

//Light components
components new HamamatsuS1087ParC() as LightSensor;
App.LightRead -> LightSensor;

FireSense.h

#ifndef FIRE_SENSE_H
#define FIRE SENSE H

enum
{
NUMBER OF MOTES = 15,
MAX SENSORS = 2,
AM RADIO = 1,
LISTEN DURATION 1 = 1024,
LISTEN DURATION 2 = 1024,
SLEEP DURATION = 28672
}i
typedef nx struct FireSenseMsg
{
nx uintl6 t node id;
nx uintl6 t temperature;
nx uintl6 t luminance;

} FireSenseMsg t;

#endif /* FIRE_SENSE_H */

Makefile

COMPONENT=FireSenseAppC
include $ (MAKERULES)

FireSense 2.0 source code

FireSense2C.nc

#include "FireSense2.h"

module FireSense2C

{

uses

//General Interfaces

interface Boot;

interface Timer<TMilli> as Timer;
interface Leds;

//Sensor Interfaces
interface Read<uintl6_t> as TempRead;

interface Read<uintlé6_t> as LightRead;

//Radio Interfaces

97

interface Packet;
interface AMSend;
interface SplitControl as RadioControl;

implementation

{
uint8 t numsensors;
message_t packet;
FireSenseMsg t data;

task void startSensing();
task void sendReadings () ;

event void Boot.booted()
{

post startSensing();

task void startSensing/()

{
numsensors = 0;
call Leds.led0On();
call TempRead.read();
call LightRead.read();

event void TempRead.readDone (error t result, uintlé t val)
{
data.temperature = val;
if (++numsensors == MAX SENSORS)
{
post sendReadings();
call Leds.ledOOff();

event void LightRead.readDone (error t result, uintl6 t val)
{
data.luminance = val;
if (++numsensors == MAX SENSORS)
{
post sendReadings () ;
call Leds.ledQOff();

task void sendReadings ()

{

FireSenseMsg t * aux;

aux = (FireSenseMsg t *) call Packet.getPayload (&packet,
sizeof (FireSenseMsg t));

aux -> node_id = TOS_NODE_1ID;

aux -> temperature = data.temperature;

aux -> luminance = data.luminance;

call RadioControl.start();

event void RadioControl.startDone (error_t error)
{
if (error == FAIL)

call RadioControl.start();

else

98

call AMSend.send(AM BROADCAST ADDR, &packet,

event void AMSend.sendDone (message t *msg, error t error)

{
call RadioControl.stop();

event void RadioControl.stopDone (error_ t error)

{
if (error == FAIL)

{
call RadioControl.stop();

call Timer.startOneShot (PERIOD) ;

event void Timer.fired()

{

post startSensing();

FireSense2AppC.nc

configuration FireSense2AppC

{

}

implementation

{

//General

components FireSense2C as App; //Main module file
components MainC; //Boot

components new TimerMilliC() as Timer;

components LedsC;

App -> MainC.Boot;
App.Timer -> Timer;
App.Leds -> LedsC;

//Radio Communication
components ActiveMessageC;
components new AMSenderC (AM RADIO);

App.Packet -> AMSenderC;
App.AMSend -> AMSenderC;
App.RadioControl -> ActiveMessageC;

//Temperature components
components new SensirionShtllC() as TempSensor;
App.TempRead -> TempSensor.Temperature;

//Light components

components new HamamatsuS1087ParC() as LightSensor;
App.LightRead -> LightSensor;

99

sizeof (FireSenseMsg t));

FireSense2.h

#ifndef FIRE SENSE2 H
#define FIRE SENSE2 H

enum

MAX_SENSORS = 2,

AM RADIO = 1,

PERIOD = 28672
}i

typedef nx struct FireSenseMsg
{
nx uintl6 t node id;
nx uintl6 t temperature;
nx_uintl6_t luminance;
} FireSenseMsg t;

#endif /* FIRE_SENSE2 H */

Makefile

COMPONENT=FireSense2AppC
CFLAGS += -DCC2420 DEF RFPOWER=11
include $ (MAKERULES)

Repeater source code

RepeaterC.nc

#include "Repeater.h"

module RepeaterC

{

uses

//General Interfaces

interface Boot;

interface Timer<TMilli> as Timerl;
interface Timer<TMilli> as Timer2;

//Radio Interfaces

interface Packet;

interface AMSend;

interface SplitControl as RadioControl;
interface Receive;

implementation
{
bool radio busy = FALSE;
message_ t packet;
FireSenseMsg t data;
uint8 t array[NUMBER OF MOTES+1] = {0};

task void startListening();

event void Boot.booted()

100

post startListening();

task void startListening()
{
call RadioControl.start();
call Timerl.startOneShot (LISTEN DURATION) ;

event void RadioControl.startDone (error_ t error)
{
if (error == FAIL)

{
call RadioControl.start();

event message t * Receive.receive (message t *msg, void *payload, uint8 t len)
{

if (len == sizeof(FireSenseMsg t) && (radio busy == FALSE))

{

FireSenseMsg t * incomingPacket = (FireSenseMsg t *) payload;

if (arrayl[incomingPacket -> node id] == 0)

{

FireSenseMsg t * outgoingPacket;

outgoingPacket = (FireSenseMsg t *) call Packet.getPayload (&packet,
sizeof (FireSenseMsg t));

outgoingPacket -> node id

outgoingPacket -> temperature = incomingPacket -> temperature;

outgoingPacket -> luminance = incomingPacket -> luminance;

incomingPacket -> node id;

if (call AMSend.send(AM BROADCAST ADDR, &packet,
sizeof (FireSenseMsg t)) == SUCCESS)

{
radio busy = TRUE;
arrayl[outgoingPacket -> node id] = 1;

}

return msg;

event void AMSend.sendDone (message_t *msg, error t error)

{
radio_busy = FALSE;

event void Timerl.fired()

{
call RadioControl.stop();

event void RadioControl.stopDone (error t error)

{
call Timer2.startOneShot (SLEEP DURATION) ;

memset (array, 0,sizeof (array));

event void Timer2.fired()

{
post startListening();

101

RepeaterAppC.nc

configuration RepeaterAppC({}

implementation

{
//General
components RepeaterC as App; //Main module file
components MainC; //Boot
components new TimerMilliC() as TimerA;
components new TimerMilliC() as TimerB;

App -> MainC.Boot;
App.Timerl -> TimerA;
App.Timer2 -> TimerB;

//Radio Communication

components ActiveMessageC;

components new AMSenderC (AM RADIO);
components new AMReceiverC (AM RADIO);

App.Packet -> AMSenderC;

App.AMSend -> AMSenderC;
App.RadioControl -> ActiveMessageC;
App.Receive -> AMReceiverC;

Repeater.h

#ifndef REPEATER H
#define REPEATER H

enum

{

NUMBER OF MOTES = 16,
LISTEN DURATION = 2048,
SLEEP_DURATION = 30720,
AM RADIO = 1

}i

typedef nx struct FireSenseMsg

{
nx uintl6_t node_ id;
nx uintlé t temperature;
nx_uintl6_t luminance;

} FireSenseMsg t;

#endif /* REPEATER_H */

Makefile

COMPONENT=RepeaterAppC
include $ (MAKERULES)

102

BaseStation source code

BaseStationC.nc

#include "BaseStation.h"
#include <stdio.h>
#include <string.h>

module BaseStationC

{

uses

//General Interfaces
interface Boot;
interface Leds;

//Radio Interfaces

interface Packet;

interface AMSend;

interface SplitControl as RadioControl;
interface Receive;

interface Timer<TMilli> as Timer;

implementation

{
uint8 t array[NUMBER OF MOTES+1] = {0};
uintl6 t celsius;
uintlé_t lux;

event void Boot.booted()

{
call Timer.startPeriodic(TIMER RESET);
call RadioControl.start();
call Leds.ledlOn();

event void RadioControl.startDone (error t error)
{
if (error == FAIL)
{
call RadioControl.start();

event message t * Receive.receive (message t *msg, void *payload, uint8 t len)

{

FireSenseMsg t *incomingPacket = (FireSenseMsg t *) payload;
if (arrayl[incomingPacket -> node_id] == 0)
{
uintlé_t vall = incomingPacket -> temperature;
uintlé_t val2 = incomingPacket -> luminance;
uintlé_t val3 = incomingPacket -> node id;
celsius = -39.6 + 0.01 * vall;

lux = 3.815 * val2;

printf ("Mote: %d Temperature: %d Luminance: %d \n", val3, celsius,
lux);

array([val3] = 1;

if (((celsius >= 40) && (celsius <= 45)) || ((lux >= 600) && (lux <=
300)))

call Leds.led20n();

103

else if ((celsius >= 45) || ((lux >= 800)

{
call Leds.ledQOOn();

}

return msg;

event void Timer.fired()

{
memset (array, 0,sizeof (array));
call Leds.ledOOff ();
call Leds.led20ff();

event void RadioControl.stopDone(error t error)

{

event void AMSend.sendDone (message t *msg, error t error)

{

BaseStationAppC.nc

configuration BaseStationAppC

{

implementation

{

components BaseStationC as App;
components MainC;

components LedsC;

components new TimerMillicC();

App -> MainC.Boot;
App -> LedsC.Leds;
App -> TimerMilliC.Timer;

components ActiveMessageC;
components new AMSenderC (AM_RADIO) ;
components new AMReceiverC(AM RADIO) ;

App.Packet -> AMSenderC;
App.AMSend -> AMSenderC;
App.RadioControl -> ActiveMessageC;
App.Receive -> AMReceiverC;

components SerialPrintfC;

BaseStation.h

#ifndef BASE_STATION_H
#define BASE_STATION_H

enum

NUMBER_OF MOTES = 15,

104

&&

(lux <= 100))

)

AM RADIO = 1,
TIMER RESET = 30720

bi

typedef nx struct FireSenseMsg

{
nx uintl6é t node id;
nx_uintl6_t temperature;
nx uintl6 t luminance;

} FireSenseMsg t;

#endif /* BASE STATION H */

Makefile

COMPONENT = BaseStationAppC
PFLAGS += -I$(TOSDIR)/lib/printf
include $ (MAKERULES)

105

