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Περίληψη 

 
Τα κατανεμημένα συστήματα είναι συστήματα υλικού και λογισμικού, στα οποία, στοιχεία 

ενσωματωμένα σε υπολογιστές, επικοινωνούν και συντονίζουν τις ενέργειές τους με 

ανταλλαγή πληροφοριών μεταξύ τους. Ένα κατανεμημένο σύστημα μπορεί να 

αντιμετωπιστεί ως ένα παράλληλο σύστημα το οποίο βασίζεται σε αυτόνομα υπολογιστικά 

μέρη (με ενσωματωμένη CPU, αποθηκευτικό χώρο, τροφοδοσία, διεπαφές δικτύου κλπ.) 

συνδεδεμένα σε ένα δίκτυο (τοπικό, ευρείας περιοχής ή το Διαδίκτυο). 

 

Σκοπός αυτής της διπλωματικής εργασίας είναι η θεωρητική κατασκευή και προσομοίωση 

της λειτουργίας ενός δικτύου αυτόνομων υπολογιστικών μονάδων, ασύρματα 

συνδεδεμένων μεταξύ τους, με στόχο την πλήρη παρακολούθηση και προστασία μιας 

δασικής έκτασης από πυρκαγιές. Το δίκτυο αυτό αποτελείται από μικρές μονάδες, χαμηλού 

κόστους και ενεργειακής κατανάλωσης, με ενσωματωμένους αισθητήρες. Τέτοια δίκτυα 

είναι γνωστά ως Ασύρματα Δίκτυα Αισθητήρων (WSN), οι κόμβοι των οποίων 

ονομάζονται motes. Βασική δομική μονάδα θα αποτελέσει η ενσωματωμένη πλατφόρμα 

CM5000 της Advanticsys, κατασκευασμένη σε αντιστοιχία με την πλατφόρμα ανοιχτού 

λογισμικού TelosB/Tmote Sky του Πανεπιστημίου Berkeley. Ολοκληρώνεται γύρω από τον 

μικροεπεξεργαστή μικτών σημάτων MSP430 της Texas Instruments και τον πομποδέκτη 

CC2420 της Chipcon, ενώ διαθέτει ενσωματωμένους αισθητήρες θερμοκρασίας, υγρασίας 

και φωτεινότητας. 

 

Ο προγραμματισμός των motes θα γίνει με τη βοήθεια του TinyOS, ενός λειτουργικού 

συστήματος ανοικτού κώδικα κατάλληλα σχεδιασμένου για τον προγραμματισμό 

ενσωματωμένων συστημάτων, γραμμένο σε μια παραλλαγή της γλώσσας προγραμματισμού 

C, με την ονομασία nesC (network embedded systems C). Το TinyOS θα εγκατασταθεί σε 

μια διανομή Linux. Για λόγους ευκολίας χρήσης και συμβατότητας επιλέχθηκε η διανομή 

Ubuntu 13.04. Για την προσομοίωση της λειτουργίας του δικτύου θα χρησιμοποιηθεί ο 

προσομοιωτής Cooja και μέσω αυτού ο MSPSim. 

 

 

 

 

Λέξεις Κλειδιά: Κατανεμημένα Συστήματα, Ενσωματωμένα Συστήματα, Ασύρματα 

Δίκτυα Αισθητήρων, WSN, Δασική Έκταση, Πυρκαγιά, Παρακολούθηση, Προσομοίωση, 

CM5000, TelosB, Μικροελεγκτής Μικτού Σήματος, MSP430, CC2420, TinyOS, nesC, 

Cooja, MSPSim, Eclipse, Yeti 2 
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Abstract 

 
Distributed systems are hardware and software systems, in which, components installed on 

computers, communicate and coordinate their actions by exchanging information. Α 

distributed system can be seen as a system that relies on standalone computing parts (with 

onboard CPU, storage space, power supply, network interfaces etc.) connected to a network 

(local, wide area or the Internet). 

 

The scope of this thesis is the theoretical construction and simulation of operation, of a 

network of standalone computing units, wirelessly connected to each other, targeting the full 

monitoring and protection of a forest area from fires. This network will be composed of 

small, low cost and low power consuming modules with onboard sensors. Such networks 

are known as Wireless Sensor Networks (WSN), the nodes of which are called motes. The 

basic structural module will be the embedded platform CM5000 by Advanticsys, built in 

accordance with the open source platform TelosB/Tmote Sky of the University of 

California, Berkeley. It is built around the MSP430 mixed signal microprocessor by Texas 

Instruments and the CC2420 transceiver by Chipcon, while it embeds temperature, humidity 

and light sensors. 

 

The programming of the motes will be done with the help of TinyOS, an open source 

operating system, specifically designed to program embedded systems and written in a 

dialect of the C programming language, called nesC (network embedded systems C). 

TinyOS will be installed on a Linux distribution. For ease of use and compatibility reasons, 

Ubuntu 13.04 was chosen. For the simulation of the network’s operation, the simulator 

Cooja and within it MSPSim, will be used. 

 

 

 

Keywords: Distributed Systems, Embedded Systems, Wireless Sensor Networks, WSN, 

Forest Area, Fire, Monitoring, Simulation, CM5000, TelosB, Mixed Signal Microprocessor, 

MSP430, CC2420, TinyOS, nesC, Cooja, MSPSim, Eclipse, Yeti 2 
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Chapter 1: Introduction 
 

 

“I’m not sure what solutions we’ll find to deal with all 

our environmental problems, but I’m sure of this: They 

will be provided by industry; they will be products of 

technology. Where else can they come from? 

  

George M. Keller, Nation’s Business 

12 June 1988 (S&S) 

  

  

1.1 Introduction 

 

In times where technology evolves on a daily basis, new inexpensive solutions can be 

created. These new tools overcome the existing ones by requiring less work while achieving 

better results and offering more functionality. These new technologies also allow the 

conception of new tools to previously unsolvable problems. 

 

Wireless Sensor Networks (WSN) are wireless networks formed by small low cost 

autonomous devices called motes, with the ability to sense the surrounding environment. An 

extension to WSN that adds the ability to act besides sensing over the environment is called 

Wireless Sensor and Actor Networks (WSAN). Both WSAN and WSN are possible 

solutions for several problems. Their main characteristics are easy deployment and low cost, 

while having the ability to sense and act without human intervention makes their usage 

highly attractive in many applications. They are being adopted in several fields of work. 

Some examples include: creating effective irrigation systems, fire alarms, structure health 

monitoring and medical or military applications. Throughout this thesis we will deal with 

WSNs for forest fire detection. Our exact purpose will be to design a WSN to monitor a 

forest area, acquire readings from appropriately placed sensors and transmit these readings 

over-the-air so as to detect a fire when it starts and prevent it from spreading. 

 

1.2 Monitoring 

 

Monitoring can be defined as the act of continuously observing something. It generally 

means to be aware of the state of a system. Environmental monitoring describes the 

processes and activities that need to take place to characterise and monitor the quality of the 

environment. 

 

When we refer to monitoring we can differentiate two types: active and passive. The 

difference between these two types is that while active monitoring necessarily involves 

human presence, being performed through field visits to the monitored environment, passive 

monitoring is done by autonomous systems not requiring human intervention. In this case, 
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the monitoring system is placed in the environment, automatically acquiring data and either 

storing it locally for later retrieval or sending it to a remote system. 

 

 
Figure 1.2.1: Active monitoring (left) vs. passive monitoring (right) 

 

Several applications of WSNs in monitoring exist such as animal monitoring used by 

biologists to study animals in the wild, structure health monitoring used to ensure buildings 

or bridges condition, volcano monitoring used to study the seismic activity of volcanic areas 

and obviously forest monitoring mainly used for forest fire detection. 

 

 
Figure 1.2.2: Harvard’s volcano monitoring [8] 

 

1.3 Motes and Sensors 

 

We will cover the motes in more detail in Chapter 2 but an introduction here is necessary, as 

they are the basic building block of a WSN. A sensor node (also known as mote) may be 

described as a small low-cost device with the ability to perform some processing, gather 

sensory information and communicate with other connected nodes in the network [12]. A 

mote is a node but a node is not always a mote. Its main components are a microcontroller, 
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transceiver, external memory, power source and one or more sensors. A typical mote can be 

seen in the picture below. 

 

 
Figure 1.3.1: Typical mote 

 

The microcontroller and memory provide computational power and storage space 

respectively, while the power source – usually a battery – provides energy supply to the 

mote, making it autonomous. The mote captures data through the acquisition system 

composed of a set of sensors. These may be embedded directly in the mote or a separate 

sensor board connected to the mote via its I/O ports. Sensors of any type (e.g. temperature, 

humidity, light, acceleration etc.) can be connected depending on the type of data we intend 

to capture. Using a transceiver, the communication module allows data to be wirelessly 

transmitted and received between nodes. The typical architecture of a mote is depicted 

below [12]. Again, more on this in Chapter 2. 

 

 
Figure 1.3.2: Typical mote architecture 
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1.4 Wireless Sensor Networks 

 

Wireless sensor networks (WSN) are wireless networks formed by motes. The wireless and 

routing technologies in motes allow them to be deployed creating a WSN, where each node 

may capture environmental information and share it with all other motes. The system’s cost 

can be highly reduced by avoiding cabling and instead use wireless technology. This also 

allows both a more flexible deployment and lower maintenance costs. 

 

WSNs intend to provide a low cost solution to problems such as monitoring large areas, 

difficult access or hazardous environments. These networks can replace expensive active 

monitoring with cost effective passive monitoring. It is possible to set the motes to capture 

data for a certain period of time and transmit it to be stored in a central node called sink, 

where a person could be in order to access and monitor the captured information. The 

biggest challenges that WSN designers are faced with nowadays are energy efficiency, 

routing and security [11]. They are presented in more detail below. 

 

1.4.1 Energy Efficiency 

 

Energy management and consumption are critical challenges for WSNs as motes require 

energy to operate each of their composing parts and be autonomous. The main objective of 

studies conducted in this field is to maximize the motes' lifetime. All motes' components 

require a certain amount of energy to operate even when it comes to small amounts. The 

connection of motes to a power source such as a power socket, implies the use of cables, 

thus nullifying the benefits of wireless technology. 

 

Most motes nowadays are battery powered, allowing them to be autonomous and wireless 

but also limiting their lifetime. What WSN designers can do to maximize a mote's lifetime is 

to minimize its hardware energy consumption. The power usage can be reduced by putting 

motes into sleep mode - a state where all mote's activity is stopped and all of its composing 

parts are switched off - or even by putting a single component to sleep when not in use (e.g. 

switch off the radio transceiver), thus reducing its duty cycle - the percentage of time during 

which a device is working. 
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Figure 1.4.1: Heliomote [13] 

 

Research is being done to find alternative or complementary power sources to batteries. 

Environmental energy harvesting methods are being studied as they allow the mote to 

collect energy from the environment. Two of the aforementioned methods include solar 

cells, that allow the conversion of sunlight to electricity through solar panels, and 

piezoelectric ceramic materials that convert environment vibrations to electricity. The use of 

energy harvesting techniques turns everlasting mote lifetime into a possibility. Some 

commercially available products already exist, such as the 

Heliomote. As will be shown in Chapter 2, the mote that will be used 

for this thesis is powered by a pair of batteries. We will not go into 

the process of dealing with alternative power sources for two 

reasons. In order to use a solar cell a mote has to be put under direct 

sunlight, which means on top of a tree. But doing so, i) increases the 

distance of the mote from the ground and because a fire always starts 

from the ground up, the mote gets slower in detecting changes in 

light flux or temperature, thus increasing the duration of the crucial 

first time detection, and ii) may cause the mote and its sensors to 

overheat during the hot summer months and provide false sensor 

readings. Piezoelectric generators do not apply to our case too, as they are best suited to 

seismic oriented applications. 

 

1.4.2 Routing 

 

Routing collected information between sensor nodes in WSNs presents several challenges. 

The different kinds of network topologies and their requirement for different routing 

protocols, the possibility that nodes are randomly deployed or large in quantity are some of 

the faced problems. Energy and computation constraints also impose new requirements to 

routing algorithms. A system failure or power shortage may turn off nodes, requiring new 

Figure 1.4.2: PMG37 

Microgenerator 
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routes to be calculated so as to maintain network connectivity between the rest operating 

nodes. 

 

Requirements such as low energy and memory consumption mean limited routing tables and 

new algorithms. Several routing protocols have been specifically designed for WSNs in 

order to appropriately fulfill these special needs. The existing routing protocols are 

categorized according to the network structure in which they operate and the protocol 

operation. Depending on the network structure they can be classified as flat, hierarchical or 

location-based routing. Depending on their operation they can be multipath-based, query-

based, negotiation-based, QoS -based or coherent-based [11]. 

 

1.4.3 Security 

 

The use of wireless technology in WSNs has numerous benefits but it also introduces 

several security threats that need to be considered. Motes' characteristics of limited 

computing power and low energy resources represent a challenge in producing an effective 

security solution. 

 

Attacks against WSNs are divided into two types: attacks against the security mechanisms 

and against basic mechanisms. Some of the common WSN attacks are denial of service 

(DoS), attacks on information in transit, blackhole/sinkhole attacks, hello flood attacks or 

wormhole attacks. Most of those are caused when a malicious node sends false information 

to other nodes thus compromising the system. Detecting mechanisms to solve these attacks 

are still being developed. 

 

1.5 Operating Systems 

 

Due to specific requirements and constraints of sensor nodes and wireless sensor networks, 

operating systems have been created specifically targeting embedded platforms, their needs 

and objectives. Reconfiguration, energy awareness and optimization, self-configuration, 

multi-hop communications, memory and computation power constraints, are some of the 

requirements these operating systems need to address. 

 

Some of the most popular operating systems used, are Nano-RK [21] developed at Carnegie 

Mellon University, SOS [22] developed at University of California Los Angeles, MANTIS 

[23] developed at the University of Colorado, BTNut [24] developed at ETH Zurich, 

Contiki [25] at Swedish Institute of Computer Science and, the most widely used, as well as 

the one that will be used in this thesis, TinyOS [9] created at the University of California 

Berkeley. 
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Figure 1.5.1: TinyOS 

 

TinyOS is an open source operating system featuring a component-based architecture 

minimizing memory usage and providing an event-driven execution model allowing fine-

grained power management and scheduling flexibility. Software programs developed in 

TinyOS are programmed using nesC, an extension to the C programming language. We will 

examine both TinyOS and nesC, in depth, in Chapter 3. 

 

1.6 Simulators 

 

Simulators are software platforms specifically designed to simulate a WSN's or even a 

single mote's behavior. These platforms allow testing a developed program without having 

to install the software in the actual motes or, as in our case, without even having any 

physical sensor node. Simulators are immensely time-saving when one needs to examine the 

characteristics and operational parameters of a WSN involving hundreds or thousands of 

motes, prior to its installation. 

 

 
Figure 1.6.1: Avrora simulator 
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Using a simulator, it is possible to monitor and analyze every single mote in a simulated 

network and its response during its life cycle. Energy consumption, packets received, sent or 

dropped and the mote's LEDs status are some of the variables usually observed. A large 

number of simulators exist, some of them are: TOSSIM the native simulator from TinyOS, 

Avrora [26] developed at the University of California Los Angeles, Cooja originally created 

at the Swedish Institute of Computer Science as a Contiki simulator but now able to 

simulate nodes programmed in the TinyOS operating system as well [1], and MSPSim, a 

MSP430 simulator [5], also developed at SICS. 

 

 
Figure 1.6.2: Cooja simulator 
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Chapter 2: Motes 
 

 

2.1 Introduction 

 

The term "mote" was coined by researchers in the Berkeley NEST (now WEBS and CENS 

projects) to refer to spatially distributed autonomous devices which use sensors to 

cooperatively monitor physical and/or environmental conditions (e.g. temperature, sound, 

pressure, vibration) at different locations. Practical WSN nodes, henceforth "motes", 

currently range in size from disc-shaped boards having diameters less than 1 cm to enclosed 

systems with typical dimensions less than 5 cm square. 

 

Each mote is composed of a microcontroller, transceiver, memory, power source and one or 

more sensors, either embedded or external to the sensor board. The motes function within a 

WSN and typically fulfil one of two purposes: either data logging, processing (and/or 

transmitting) sensor information from the environment or acting as a gateway in the adhoc 

wireless network formed by all the motes to pass data back to a, usually but not necessarily 

unique, collection point. 

 

In this chapter we present a brief review of several frequently used WSN motes, compared 

and contrasted under a number of different parameters. Then, we will delve into the details 

of Advanticsys CM5000 [27], a TelosB/Tmote Sky based mote, examining each of its 

structural components and explaining why it is our mote of choice for this thesis. 

 

2.2 Common mote platforms 

 

TelosB/Tmote Sky: Wireless sensor modules developed from research carried out at 

University of California Berkeley and currently available in similar form factors from 

Crossbow and Advanticsys. 

 

  
Figure 2.2.1: TelosB/ Tmote Sky (left) & MicaZ (right) motes 
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MicaZ: Second and third generation wireless sensor networking mote family from 

Crossbow. 

 

SHIMMER: (Sensing Health with Intelligence, Modularity, Mobility and Experimental 

Reusability) is a wireless sensor platform designed to support wearable applications and is 

mainly used in the medical field. 

 

 
Figure 2.2.2: SHIMMER (left) & IRIS (right) motes 

    

 

IRIS: The latest wireless sensor network module from Crossbow. Incudes several 

improvements over the Mica2/MicaZ family of products. Improvements include increased 

transmission range. 

 

2.2.1 Physical Characteristics 

 

The first parameter which may dictate mote selection for a given application is physical 

size. Table 2.2.1 provides an overall comparison of the physical dimensions of the motes in 

the previous section. This table also lists the motes' weight, which can be a decisive factor 

when choosing a certain WSN, especially in applications where the motes are components 

of a mobile unit or are integrated into wearable health monitoring solutions. 

 

Mote Platform WxLxH [cm] Weight w/o batt [g] Weight with batt [g] 

TelosB/Tmote Sky 3.2 x 6.6 x 0.7 14.93 63.05 

MicaZ 3.2 x 5.7 x 0.6 15.70 63.82 

SHIMMER 2 x 4.4 x 1.3 4.87 10.36 

IRIS 3.2 x 5.7 x 0.6 21.29 69.40 

Table 2.2.1: Physical characteristics of common mote platforms [3] 

 

The SHIMMER platform's advantage is obvious. Its small dimensions and low weight make 

it much more suitable than the other in medical oriented applications. When a mote has to 

be part of a wearable application, its size and weight are of the utmost importance. Its low 

weight also minimizes the effect of the mote’s inertial mass when using the mote's 
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embedded accelerometer. In our case, weight and size is not going to be a deciding factor as 

the motes will be stationary and placed on trees. 

 

2.2.2 Processor and Memory 

 

Table 2.2.2 reviews the microprocessor specifications (bus width and processor clock speed) 

for each of the respective motes examined. It also provides information on available on-

board memory for each mote platform. There is a variety here in available memory sizes, 

possibly a reflection of their different application spaces.  

 

Mote 

Platform 

Microprocessor Bus 

[bits] 

Clock 

[MHz] 

RAM 

[KB] 

Flash 

[KB] 

EEPROM 

TelosB/ 

TmoteSky 

Texas 

Instruments 

MSP430F1611 

16 4 10 48 1M 

MicaZ Atmel Atmega 

128L 

8 8 4 128 512K 

SHIMMER Texas 

Instruments 

MSP430F1611 

16 8 10 48 none 

IRIS Atmel Atmega 

1281 

8 8 8 640 4K 

Table 2.2.2: Microprocessor & memory specifications [3] 

 

In addition to these on-board memory capabilities, some sensor nodes also allow the option 

of saving data to additional external non-volatile memory. 

 

2.2.3 Communications Capabilities 

 

The TelosB/Tmote Sky, MicaZ and SHIMMER motes, employ the 802.15.4 compatible 

CC2420 radio chip from Texas Instruments, while the IRIS Mote uses (again a 802.15.4 

compatible chip) Atmel's AT86RF230. These two radios are packet level radios, with a 

maximum packet length of 127 bytes. In addition to the CC2420, the SHIMMER mote also 

contains a second radio chip, a class 2 Bluetooth radio compatible with the Mitsumi WML-

C46 series. Table 2.2.3 lists the operating specifications of the three radios and Table 2.2.4 

gives the power consumption of each radio in sleep mode/switched off, idle/receive mode 

and when transmitting at a specified power level. 
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Radio 

Module 

Frequency 

[MHz] 

Modulation Data Rate Tx Power 

[dBm] 

Rx 

Sensitivity 

[dBm] 

TI CC2420 2400 - 2483.5 QQPSK 250 Kbps -24 - 0 -95 

Atmel 

AT86RF230 

2405 - 2480 QQPSK 250 Kbps -17 - 3 -101 

Mitsumi 

WML-C46 

2400 - 2483.5 GFSK 721 Kbps -6 - 14 -82 

Table 2.2.3: Radio chip specifications [3] 

 

The CC2420 is a very popular chip for use on wireless sensor nodes, being used on three of 

the motes considered here. The CC2420 was the first 802.15.4 radio chip to be widely 

available in the market. 802.15.4 is very suitable for use in WSNs due to its very low power 

and flexibility. A feature of the CC2420 lacking on the other radios, is its support for 

encryption using AES 128. This feature can greatly reduce the cost, both in terms of power 

and latency, of securing WSN communications. 

 

Radio Module Sleep [μA] Idle/Rx [mA] Tx [mA] 

TI CC2420 1 - 426 18.8 17.4 

Atmel AT86RF230 0.02 15.5 16.5 

Mitsumi WML-C46 50 - 1400 40 60 

Table 2.2.4: Radio chip power consumption [3] 

 

The WML-C46 is a class 2 Bluetooth radio, with a range of approximately 10 meters. 

WSNs were not considered as a target for Bluetooth when it was being designed and as a 

result it is not ideally suited for use with them, being overly complex for most applications. 

However, the presence of Bluetooth allows it to address a current problem faced by 

802.15.4 devices, which is interoperability with existing devices. For many applications a 

Bluetooth enabled mobile phone or laptop can be a very convenient device to use for data 

aggregation or network querying. 

 

2.2.4 Sensor Support 

 

The TelosB/Tmote Sky offers a versatile set of onboard sensors, namely humidity, 

temperature and light sensors. In addition to the onboard sensors, the TelosB/Tmote Sky 

provides access to 6 ADC inputs, a UART and I2C bus and several general purpose ports. 

The MicaZ motes do not have onboard sensors. However, Crossbow offers an extensive set 

of sensor boards that connect directly to the MicaZ mote and are capable of measuring light, 

humidity, temperature, pressure etc. Additionally, actuators such as relays and buzzers can 

be attached too, in case of a WSAN. Intel's SHIMMER mote incorporates a 3 axis 

accelerometer and allows connection of other sensors through its expansion board. As in 

MicaZ, more types of sensors (most of them medically oriented) are available. The IRIS 

mote, in Crossbow tradition, does not offer any embedded sensor capabilities. However, it is 
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equipped with a 51-pin expansion connector that existing MicaZ compatible, Crossbow 

sensor boards can be connected to. 

 

2.2.5 Power Specifications 

 

Both the TelosB and Tmote Sky boards are typically powered from an external battery pack 

containing two AA batteries. AA cells may be used in the operating range of 2.1 to 3.6V 

DC, however the voltage must be at least 2.7V when programming the microcontroller flash 

or external flash. MicaZ and IRIS motes are also powered by a set of two AA batteries in an 

attached battery pack. The SHIMMER mote is powered by a rechargeable 450mAh Li-Ion 

battery. The Shimmer design also includes a Texas Instruments BQ-24080 Smart Li Charger 

for battery management. 

 

2.2.6 Price 

 

Current (August 2013) pricing information for a single mote is shown in Table 2.2.5. 

 

Mote Platform Price 

TelosB/Tmote Sky 77 € 

MicaZ 77 € 

SHIMMER 199 € 

IRIS 87 € 

Table 2.2.5: Cost per mote 

 

2.3 Advanticsys CM5000 

 

Taking into consideration the analysis done in section 2.2 we make the decision to use the 

TelosB/Tmote Sky platform for our purpose. In order to design and simulate our WSN, we 

will be using more than 10 motes. SHIMMER is the easiest one to leave out because of its 

high price and medically oriented field of applications. IRIS is another mote we won't 

consider. We can see from Table 2.2.4 that its radio transceiver may be the most frugal in 

terms of power consumption, but only by a little and as will be shown in Chapter 4, our 

application will not be using the radio for long periods of time. The motes will operate 

mostly in sleep mode, except when they wake up, sample their sensors and send their 

readings using their radio. That means that the microprocessor's behavior has to be taken 

into consideration as well, and by doing that, the IRIS's advantage over a TelosB mote turns 

into a drawback, if we consider that when active, the Atmega 128 microprocessor draws 

7.6mA of current instead of 1.8mA of a MSP430, and when idle, 3.3mA instead of 5.1μA of 

a MSP430 [3]. The same applies in the case of the MicaZ mote. Tmote Sky uses the same 

radio chip as Micaz but the latter is equipped with an Atmega 128 instead of a MSP430. The 

Atmega is a faster processor so it is best suited to more CPU intensive applications.  

 

Another important drawback shared by the MicaZ and IRIS motes, is their lack of onboard 

sensors. This, not only adds to the platform the cost of separate sensor boards, but it makes 
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them harder to program, pack and simulate as well. Modern simulators may be easier to 

calibrate and configure than it was in the past, but in order to do so, a programmer needs to 

be acquainted not only with TinyOS and nesC but possibly Java (in the case of Avrora and 

Cooja) and Python (in the case of TOSSIM) too. 

 

None of the things mentioned above will be a problem in the case of a Tmote Sky mote. It is 

equipped with onboard sensors, making it the cheapest to buy, and has the lowest 

microprocessor power consumption, thus prolonging the mote's life expectancy. Its sensors 

are also perfectly suited to our case, as temperature, humidity and light are crucial variables 

to be measured when trying to detect a forest fire. The mote also works perfectly (expect for 

a small sensor misbehavior) with the Cooja and MSPSim simulators that we will be using. 

 

The Advanticsys CM5000, based on the original open-source TelosB/Tmote Sky, will be 

our mote of choice.  

 

 
Figure 2.3.1: Front and back of the TelosB/Tmote Sky module 
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It has the following general characteristics [27]: 

 

 Texas Instruments MSP430F1611 Microcontroller (MCU) 

 Texas Instruments CC2420 Radio Transceiver 

 Sensirion SHT11 Temperature & Humidity Sensor 

 Hamamatsu S1087 & S1087-01 Light Sensors 

 User & Reset Buttons 

 3 x LEDs (RGB) 

 USB Interface 

 2 x AA Battery Holder 

 TinyOS & ContikiOS compatible 

 

2.3.1 Texas Instruments MSP430F1611 

 

The low power operation of the TelosB module is due to the ultra-low power Texas 

Instruments MSP430F1611 microcontroller featuring 10kB of RAM, 48kB of program flash 

memory and 128B of information storage. This 16-bit RISC processor features extremely 

low active and sleep current consumption that permits Telos to run for months on a single 

pair of AA batteries. 

 

 

The MSP430 includes three clock sources [15]: 

 LFXT1CLK: Low frequency/high frequency 

oscillator that can be used either with low 

frequency 32768Hz = 32KHz watch crystals, or 

standard crystals or resonators in the 450KHz to 8 

MHz range. 

 XT2CLK: Optional high frequency oscillator that can be used with standard crystals, 

resonators, or external clock sources in the 450KHz to 8MHz range. 

 DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type 

characteristics. 

 

There are three clock signals available. The one that we are interested in is the Master Clock 

(MCLK). MCLK is software selectable and is derived from one of LFXT1CLK, XT2CLK 

or DCOCLK. It is used by the CPU and the system. By default it is sourced from DCOCLK 

and its default operating frequency in the case of a TelosB mote is 4.15MHz, while it may 

operate up to 8MHz. In order to achieve frequencies higher than 4.15MHz, a certain 

minimum amount of supply voltage is necessary. Figure 2.3.4 shows the connection 

between operating frequency and minimum supply voltage. 

 

Figure 2.3.2: CM5000 Block 

diagram [14] 

Figure 2.3.3: TI MSP430F1611 
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Figure 2.3.4: CPU Frequency vs. Minimum supply voltage 

 

Although it is software configurable, we will not modify the MCLK from its default value, 

because of the non CPU-intensive nature of our application. If one would like to do so and 

provided they are using TinyOS, the necessary component to look for [15] would be 

MSP430ClockC and more specifically its MSP430ClockInit interface. Operating the mote at 

higher frequencies might be necessary for CPU-intensive programs, but doing so increases 

the mote’s power consumption, while our main objective is to keep it as low as possible. 

 

 
Figure 2.3.5: Block diagram of the TI MSP430 microcontroller and its connection to other peripherals 

in the Telos module 
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The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at 20oC. 

When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. In 

addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC ports. The 

internal ports may be used to read the internal thermistor or monitor the battery voltage. A 

variety of peripherals are available including SPI, UART, digital I/O ports, Watchdog timer 

and Timers with capture and compare functionality. The F1611 also includes a 2-port 12-bit 

DAC module, Supply Voltage Supervisor and 3-port DMA controller. 

 

The MSP430 has one active mode and five software selectable modes of operation. An 

interrupt event can wake up the device from any of the five low-power modes, service the 

request, and restore back to the low-power mode on return from the interrupt program. As 

developers, we will not have to worry about MCU management at all in most situations. 

TinyOS handles everything for us automatically. The low-power modes range from LPM0, 

which disables only the CPU and main system clock, to LPM4, which disables the CPU, all 

clocks and the oscillator, expecting to be woken by an external interrupt source. The power 

parameters of the MSP430F1611 MCU can be seen below (computed at 3.0V supply 

voltage): 

 

State Current draw [μΑ] 

Active 1800 

Sleep [LPM3] 5.1 

Table 2.3.1: Current draw during Active and Sleep modes [15] 

 

2.3.2 Texas Instruments CC2420 

 

The CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver designed 

for low-power and low-voltage wireless applications. CC2420 includes a digital direct 

sequence spread spectrum baseband modem providing an effective data rate of 250Kbps. 

The CC2420 provides extensive hardware support for packet handling, data buffering, burst 

transmissions, data encryption, data authentication, clear channel assessment, link quality 

indication and packet timing information. These features reduce the load on the host 

controller and allow CC2420 to interface low-cost microcontrollers. It is based on 

Chipcon’s SmartRF – 03 technology in 180nm CMOS. 

 

The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port and a 

series of digital I/O lines and interrupts. The radio may be put to sleep for low power duty 

cycled operation. The transceiver also has software configurable output power, which the 

transmission range is obviously dependent on. We will examine this in more detail in later 

chapters, where we deal with different network topologies and where transmission range 

will be a critical parameter in reducing overall power consumption. Its main features are 

summarized below 
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Frequency Band 2400 ~ 2483.5MHz IEEE 802.15.4 Compliant 

Sensitivity -90dBm(min), -95dBm(typ) Receive Sensitivity 

Transfer Rate 250Kbps IEEE 802.15.4 

RF Power -25dBm ~ 0dBm Software Configurable 

Range ~100m (outdoor),  

20~30m (indoor) 

Longer range possible with optional 

SMA antenna attached 

Current Draw 

 

 

 

Receive mode: 18.8mA  

Transmit mode: 17.4mA 0 dBm 

Idle Mode: 426μΑ Oscillator & Voltage Regulator On 

Power Down mode: 20μΑ Voltage Regulator On 

Off mode: 1μΑ Voltage Regulator Off 

RF Power supply 2.1V ~ 3.6V CC2420 Input Power 

Antenna Dipole Antenna/ 

PCB Antenna 

 

Encryption Hardware MAC encryption 

AES-128 

 

Buffer 128(RX) + 128(TX) data 

buffering 

 

Table 2.3.2: CM5000 radio transceiver’s specifications [16] 

 

2.3.3 Sensirion SHT11 

 

The SHT11 is a relative humidity and temperature sensor 

manufactured by Sensirion AG. The sensor integrates sensor 

elements plus signal processing on a tiny footprint and 

provides a fully calibrated digital output. The calibration 

coefficients are stored in the sensor’s onboard EEPROM. A 

unique capacitive sensor element is used for measuring 

relative humidity while temperature is measured by a band-

gap sensor. SHT11 is produced using a CMOS process and 

is coupled with a 14-bit A/D converter [19] [27]. 

 

Temperature 

Operating Range -40 - +123.8oC  

Accuracy  ± 0.4oC Typical 

Resolution 0.01oC Typical 

Humidity 

Operating Range 0 – 100% RH  

Accuracy ± 3% RH Typical 

Resolution 0.05% RH Typical 

Table 2.3.3: Sensirion SHT11 operational parameters 

 

 

Figure 2.3.6: Sensirion SHT11 
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The maximal accuracy limits for relative humidity and temperature are depicted below: 

 

 
Figure 2.3.7: Maximal RH (left) and Temperature (right) tolerance [19] 

 

 

The power characteristics can be seen below: 

 

Parameter Conditions min typ max Units 

Power 

Supply 

 2.4 3.3 5.5 V 

Supply 

Current 

measuring  0.55 1 mA 

average 2 28  μΑ 

sleep  0.3 1.5 μΑ 

Table 2.3.4: SHT11 supply characteristics 

 

The average is calculated at one 12 bit measurement per second [19]. In the case of a 

TelosB mote running on 2 x AA batteries, at a 3V voltage, the current drawn when the 

sensor is measuring has to be a little less than 0.55mA (measured at 3.3V). We can only 

make an assumption here, but due to the current value being small and its active duration 

being equally small, it is safe to assume a 0.5mA current consumption when measuring, 

without loss in accuracy. 

 

2.3.4 Hamamatsu S1087 & S1087-01 

 

The integrated light sensors S1087 and S1087-01 are ceramic 

package photodiodes that offer low dark current. The ceramic 

package used is light-impervious, so no stray-light can reach the 

photosensitive area from the side or backside. This allows reliable 

optical measurements in the visible to infrared range, over a wide 

dynamic range from low light levels to high light levels. The 

S1087 senses photosynthetically active radiation while the S1087-

01 senses the entire visible spectrum including infrared [20]. 

 
Figure 2.3.8: Hamamatsu 

S1087 
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Figure 2.3.9: Spectral Response 

 

The photodiodes are directly connected to the microcontroller’s ADC and create a current 

through a 100kΩ resistor. 

 
Figure 2.3.10: S1087 (left) & S1087-01 equivalent circuits [27] 

  

 

S1087 (T = 25oC) 

Spectral Response Range 320 – 730nm  

Peak Sensitivity 

Wavelength 

560 nm  

Dark Current 10pA  

Short Circuit Current 160nA 100lx 

S1087-01 (T=25oC) 

Spectral Response Range 320 – 1100nm  

Peak Sensitivity 

Wavelength 

960nm  

Dark Current 10pA  

Short Circuit Current 1.3μΑ 100lx 

Table 2.3.5: S1087 & S1087-01 specifications 

 

Apart from some minimal leakage current, the light sensors consume essentially no power. 
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2.3.5 External Flash 

 

TelosB uses the ST M25P80 40Mhz serial code flash for external data and code storage. 

The flash holds 1024kB of data and is decomposed into 16 segments, each 64kB in size. 

The flash shares SPI communication lines with the CC2420 transceiver, so care must be 

taken when reading or writing to flash. 

 

ST M25P80 (3V) 

Active Current (Read) 4mA 

Active Current (Write/Erase) 20mA 

Standby Current 8μΑ 

Deep Power Down Current 1μΑ 

Table 2.3.6: ST M25P80 power states [14] 

 

We can see that using the external flash can take its toll on power consumption. We will not 

be using the external flash but there is something worth mentioning. The ST M25P series of 

code flash always start in the standby state. For low power applications, the flash must be 

sent a command at boot time to place it in the deep power down mode. Fortunately, if using 

TinyOS, the flash is automatically put into deep power down mode, but during the mote’s 

power analysis we have to include the 1μA current into our calculations nonetheless. 
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Chapter 3: TinyOS & nesC 
 

 

3.1 Introduction 

 

This chapter aims to provide an introduction to the software that will be used in this thesis. 

At first we will give a high-level overview of TinyOS and the nesC language. Then we will 

go into a level sufficient for writing applications. An overview of the Cooja and MSPSim 

simulators will follow and the chapter will conclude with a brief presentation of the Yeti 2 

plugin for the Eclipse IDE. While this chapter will be more thorough than a plain tutorial, 

the diversity and complexity of the examined software leaves several topics outside its 

scope. Should the reader, after reading this chapter, be interested to learn more, there are 

several sources covering the abovementioned software in greater detail [7] [10]. 

 

3.2 TinyOS 

 

TinyOS is a free software and open source software component-based operating system and 

platform targeting wireless sensor networks. It started as a collaboration between the 

University of California, Berkeley in cooperation with Intel Research and Crossbow 

Technology and has since grown to be an international consortium, the TinyOS Alliance. 

 

TinyOS differs from most other operating systems in that its design focuses on ultra-low-

power operation. Rather than a fully-fledged processor, TinyOS is designed for the small, 

low-power microcontrollers, motes have. Furthermore, it has very aggressive systems and 

mechanisms for saving power. It defines a concurrent execution model, so developers can 

build applications out of reusable services and components without having much to worry 

about unforeseen interactions. TinyOS runs on over a dozen generic platforms and its 

structure makes it reasonably easy to port to new ones. 

 

TinyOS applications and systems, as well as the OS itself, are written in the nesC language. 

nesC is a C dialect with features to reduce RAM and code size, enable significant 

optimizations and help prevent low-level bugs like race conditions. At a high level, TinyOS 

provides three things to make writing systems and applications easier: 

 

 A component model, which defines how to write small, reusable pieces of code and 

compose them into larger abstractions. 

 A concurrent execution model, which defines how components interleave the 

computations as well as how interrupt and non-interrupt code interact. 

 Application programming interfaces (APIs), services, component libraries and an 

overall component structure that simplify writing new applications and services. 

 

The component model is grounded in nesC. It allows us to write pieces of reusable code 

which explicitly declare their dependencies. For example a generic user button component 
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that tells us when a button is pressed sits on top of an interrupt handler. The component 

model allows the button implementation to be independent of which interrupt that is, so that 

it can be used on many different hardware platforms without requiring complex callbacks or 

magic function naming conventions. We will examine the basic component model later on 

in this chapter. 

 

The concurrent execution model enables TinyOS to support many components needing to 

act at the same time while requiring little RAM. First, every I/O call in TinyOS is split-

phase [7]. That means, rather than block until completion, a request returns immediately and 

the caller gets a callback when the I/O completes. Since the stack isn’t tied up waiting for 

I/O calls to complete, TinyOS only needs one stack and doesn’t have threads. Instead, as we 

will explain later on, TinyOS uses tasks, which are lightweight deferred procedure calls. 

Any component, can post a task, which TinyOS will run sometime later. Because low-

power devices must spend most of their time asleep, they have low CPU utilization and so 

in practice, tasks tend to run as soon as they are posted (within a few milliseconds). 

Furthermore, because tasks can’t preempt each other, task code doesn’t need to worry about 

data races. 

 

Finally, TinyOS itself has a set of APIs for common functionality, such as sending packets, 

reading sensors and responding to events. It also provides a component structure and 

component libraries. For example, Hardware Abstraction Architecture (HAA) defines how 

to build up from low-level hardware (e.g. a radio chip) to a hardware-independent 

abstraction (e.g. sending packets). This part lies beyond the scope of this thesis though. As 

far as the installation is concerned, there are several installation guides available online for 

all modern operating systems. We will be using TinyOS version 2.1.2, installed on a 

machine running Ubuntu 13.04. Both of these versions are the latest as of July 2013. 

 

3.3 nesC 

 

nesC (network embedded systems C), pronounced  “NES-see”, is a component-based, 

event-driven programming language used to build applications for the TinyOS platform. 

Program structure is the most essential and obvious difference between C and nesC. C 

programs are composed of variables, types and functions defined in files that are compiled 

separately and then linked together. nesC programs are built out of components that are 

connected (“wired”) by explicit program statements; the nesC compiler connects and 

compiles these components as a single unit. The nesC compiler loads and reads in nesC 

components, which it compiles to a C file. This C file is passed to a native C compiler, 

which generates a mote binary [7]. 
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Figure 3.3.1: The nesC compilation model. The nesC compiler loads and reads in nesC components, 

which it compiles to a C file. This C file is passed to a native C compiler, which generates a mote binary. 

 

3.3.1 Components and Interfaces 

 

Whereas C programs are composed of functions, nesC programs are built out of components 

that implement a particular service (e.g. change the state of an LED). Furthermore, C 

functions typically interact by calling each other directly, while the interactions between 

components are specified by interfaces. Components define two scopes: one for their 

specification which contains the names of their interfaces, and a second scope for their 

implementation. A component provides and uses interfaces. The provided interfaces are 

intended to represent the functionality that the component provides to its user in its 

specification. The used interfaces represent the functionality the component needs, to 

perform its job in its implementation. 

 

Interfaces are bidirectional: they specify a set of commands, which are functions to be 

implemented by the interface’s provider, and a set of events, which are functions to be 

implemented by the interface’s user. In other words, the interface’s user makes requests 

(calls commands) on the interface’s provider and the provider makes callbacks (signals 

events) to the interface’s user. Commands and events themselves are like regular functions 

(they can contain arbitrary C code); calling a command or signaling an event is just a 

function call. For a component to call the commands in an interface, it must implement the 

events of that interface. A single component may use or provide multiple interfaces and 

multiple instances of the same interface. The set of interfaces which a component provides, 

together with the set of interfaces that a component uses is considered that component’s 

signature [10]. 

 

There are two types of components in nesC: modules and configurations. Modules provide 

the implementations of one or more interfaces. Configurations are used to assemble other 

components together, connecting interfaces used by components to interfaces provided by 

others. Every nesC application is described by a top-level configuration that wires together 

the components inside. 

 

3.3.2 An Example Application 

 

Let’s try to clear things up with a very basic example application: Example. We will enrich 

it with more elements step by step. This application turns on an LED as soon as the mote 
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powers up. It is composed of two components: a module, called “ExampleC.nc” and a 

configuration, called “ExampleAppC.nc”. Remember that all applications require a top-

level configuration file, which is typically named after the application itself. In this case, 

ExampleAppC is the configuration file for the Example application and the source file that 

the nesC compiler uses to generate an executable file. ExampleC, on the other hand, actually 

provides the implementation of the Example application. Or, to put it simply, ExampleAppC 

is used to wire (using interfaces) the ExampleC component (module) to other components 

that the Example application requires. 

 

The reason for the distinction between modules and configurations is to allow a system 

designer to build applications out of existing implementations. For example, a designer 

could provide a configuration that simply wires together one or more modules, none of 

which they actually designed. Likewise, another developer can provide a new set of library 

modules that can be used in a range of applications. It should also be mentioned that while 

one could name an application’s implementation module and associated top-level 

configuration anything, to keep things simple, it is common naming convention to name the 

module file after the application name, ending with the letter C, and the configuration file 

ending with the letters AppC. If there are more than one modules or configuration files, 

there are several conventions used in TinyOS specified in TinyOS Enhancement Proposal 

(TEP) 3 [9]. 

 

         
 

The nesC compiler compiles a nesC application when given the file containing the top-level 

configuration. Let’s start with that. The first thing to notice is the keyword configuration, 

which indicates that this is a configuration file. Within the first pair of empty braces, it is 

possible to specify uses and provide clauses or as we defined earlier, the component’s 

signature. There is no need to do that in this configuration. A configuration can use and 

provide interfaces, or said another way, not all configurations are top-level applications. 

 

The actual configuration is described within the pair of curly brackets following the 

keyword implementation. The components lines specify the set of components that this 

configuration references. In this case those components are MainC, ExampleC and LedsC. 

There should be no confusion here; the ExampleAppC component is not the same as the 

ExampleC component. Rather, the ExampleAppC component (configuration) is composed 

of the ExampleC component (module) along with MainC and LedsC. 

configuration ExampleAppC { 

} 

implementation { 

   components MainC; 

   components ExampleC; 

   components LedsC; 

 

   ExampleC.Boot -> MainC.Boot; 

   ExampleC.Leds -> LedsC.Leds; 

} 

module ExampleC { 

   uses interface Boot; 

   uses interface Leds; 

} 

implementation { 

   event void Boot.booted() { 

      call Leds.led1On(); 

   } 

} 
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The remainder of the ExampleAppC configuration consists of connecting (wiring) interfaces 

used by components to interfaces provided by others. An interface is denoted by the form 

Component.Interface. The last two lines wire interfaces that the ExampleC component uses 

to interfaces that the MainC and LedsC components provide. The MainC.Boot interface is 

part of TinyOS’s boot sequence and enables the mote to be initialized. The LedsC.Leds 

interface gives the user control over the mote’s LEDs. nesC uses arrows to bind interfaces to 

one another. The right arrow A -> B means “A wires to B”. The left side of the arrow (A) is 

a user of the interface, while the right side of the arrow (B) is the provider. A full wiring is 

A.a -> B.b which means that the interface a of component A is wired to interface b of 

component B. Naming the interface is important when a component uses or provides 

multiple instances of the same interface as we will see later on. When a component only has 

one instance of an interface, we can elide the interface name. For example, the interface 

name Leds doesn’t have to be included in LedsC: 

 

 
 

Because ExampleC only uses one instance of the Leds interface, this line should also work: 

 

 
 

The direction of a wiring arrow is always from a user to a provider. If the provider is on the 

left side, we can use a left arrow. For ease of reading, however, most wirings are left to 

right. To sum up, the ExampleC.Leds -> LedsC.Leds line wires the Leds interface used by 

the ExampleC component to the Leds interface provided by the LedsC component. The 

ExampleC.Boot interface is wired accordingly. 

 

3.3.3 Commands and Events 

 

If we take a look at the ExampleC module’s signature, we can see that it uses the Leds and 

Boot interfaces. This means that ExampleC may call any command declared in the 

interfaces it uses and must also implement any events declared in those interfaces. Let’s take 

a look at those interfaces: 

 

 
 

interface Boot { 

   event void booted(); 

} 

 ExampleC -> LedsC.Leds;   // Same as    ExampleC.Leds -> LedsC.Leds  

ExampleC.Leds -> LedsC;   // Same as    ExampleC.Leds -> LedsC.Leds  
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The first thing to notice is that the Leds interface does not include any events, so ExampleC 

doesn’t need to implement any in order to call the Leds commands. Additionally, ExampleC 

must implement a handler for the Boot.booted() event. So here is what the last two lines of 

the ExampleC code do: when the mote boots, or better, when the event Boot.booted() 

occurs, or even better, when the component that provides the Boot interface (MainC), makes 

a callback (signals the booted() event) to the component that uses the Boot interface 

(ExampleC), then the LED1 of the mote is being turned on, or better, the command 

Leds.led1On is called, or even better, the component that uses the Leds interface 

(ExampleC), makes a request (calls the led1On command) to the component that provides 

the Leds interface (LedsC). The keywords event and call help us understand, where an event 

is signaled or a command is called, in our code. 

 

Now let’s make our application a bit more interesting. We will modify it so that when the 

mote boots up, LED0 and LED1 will start flashing periodically with a period of 1 and 2 

seconds respectively: 

 

 

module ExampleC { 

   uses { 

      interface Boot; 

      interface Leds; 

      interface Timer<TMilli> as Timer1; 

      interface Timer<TMilli> as Timer2; 

   } 

} 

 

interface Leds { 

// Turn LED n on, off, or toggle its present state. 

async command void led0On(); 

async command void led0Off(); 

async command void led0Toggle(); 

 

async command void led1On(); 

async command void led1Off(); 

async command void led1Toggle(); 

async command void led2On(); 

async command void led2Off(); 

async command void led2Toggle(); 

 

/* Get/Set the current LED settings as a bitmask. Each bit 

corresponds to whether an LED is on; bit 0 is LED 0, bit 1 is LED 

1, etc. 

*/ 

async command uint8_t get(); 

async command void set(uint8_t val); 

 

} 
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Starting with the configuration we can see a couple of changes. First of all, the components 

MainC and LedsC are declared with the same components keyword, separated by a comma. 

That’s practical for reducing the number of lines of code. Then we see the declaration of 

two instances of a timer component called TimerMilliC which will be referenced as TimerA 

and TimerB. This is accomplished via the as keyword which denotes simply an alias. We 

also created an alias of the ExampleC module, called App and we used it to do the wiring a 

few lines below. In general, the as keyword can be used both for components and interfaces 

and makes the signature a bit clearer to the reader by using appropriately named aliases. In 

the case of ExampleC, it was optional, but in the case of TimerMilliC it was mandatory as 

we instantiated it twice. 

 

Before checking the wiring, we should take a look at the ExampleC module. We used a set 

of brackets after the uses keyword, and declared all the interfaces inside. That helps up to 

avoid the repeated typing of the uses keyword. The ExampleC module uses two instances of 

the interface Timer<TMilli>, provided by the TimerMilliC component, using the names 

Timer1 and Timer2. The <TMilli> syntax simply denotes that Timer is a generic interface, 

that is, it takes a single type as a parameter which defines what type of timer it is. This one 

in particular is a timer that takes its parameter expressed in milliseconds. Since the 

configuration ExampleAppC { 

} 

implementation { 

   components MainC, LedsC; 

   components ExampleC as App; 

   components new TimerMilliC() as TimerA; 

   components new TimerMilliC() as TimerB; 

 

   App.Boot -> MainC; 

   App.Leds -> LedsC; 

   App.Timer1 -> TimerA; 

   App.Timer2 -> TimerB; 

} 

implementation { 

   event void Boot.booted() { 

      call Timer1.startPeriodic(512); 

      call Timer2.startPeriodic(1024); 

   } 

    

   event void Timer1.fired() { 

      call Leds.led0Toggle(); 

   } 

   event void Timer2.fired() { 

      call Leds.led1Toggle(); 

   } 

} 
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ExampleC module uses the Timer interface more than once, its signature must use the as 

keyword. 

 

Back to the wiring, it is obvious that we elided the interface names on the right side of the 

arrow. As the TimerMilliC components each provide a single instance of Timer, it does not 

have to be included in the wirings. However, as ExampleC has two instances of Timer, 

eliding the name on the user side (left) would be a compile-time error, as the compiler 

would not know which instance of Timer is being wired. Looking over the ExampleC’s 

implementation, we can see that since ExampleC uses the Timer interface, it must 

implement handlers for the Timer.fired() event. So what happens in this application is this: 

when the mote is powered up, two periodic timers are being initiated: Timer1 with a period 

of 0.5sec and Timer2 with a period of 1 sec. The periods are the numbers passed on as 

parameters to the startPeriodic command (1 sec = 1024ms) [7]. When Timer1 fires (i.e. 

every 0.5sec) the state of LED0 is toggled from off to on and vice versa. That means, LED0 

blinks every 1 second and similarly, LED1 blinks every 2 sec. 

 

3.3.4 Tasks and Split-Phase Operations 

 

All of the code we’ve looked at so far is synchronous. It runs in a single execution context 

and does not have any kind of preemption. That is, when synchronous code starts running, it 

does not relinquish the CPU to other code until it completes. This simple mechanism allows 

the TinyOS scheduler to minimize its RAM consumption and keeps sync code very simple. 

However, it means that if one piece of sync code runs for a long time, it prevents other sync 

code from running, which can adversely affect system responsiveness. For example, a long 

running piece of code can increase the time it takes for a mote to respond to a packet. 

 

So far, the code we have seen uses direct function calls. System components such as the 

boot sequence or timers, signal events to a component, which takes some action (perhaps 

calling a command) and returns. In most cases, this programming approach works well. 

Because sync code is non-preemptive, however, this approach does not work well for large 

computations. A component needs to be able to split a large computation into smaller parts, 

which can be executed one at a time. Also, there are times when a component needs to do 

something, but it is fine to do it a little later. Giving TinyOS the ability to defer the 

computation until later can let it deal with everything else that’s waiting first. 

 

Tasks enable components to perform general-purpose “background” processing in an 

application. A task is a function which a component tells TinyOS to run later, rather than 

now, and is declared in the implementation module using the syntax: 

 

 
 

task void taskname() { ... } 
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where taskname( ) is whatever symbolic name we want to assign to the task. Tasks must 

return void and may not take any arguments. To dispatch a task for (possibly later) 

execution, we can use the syntax: 

 

 
 

A component can post a task in a command, an event, or even another task. The post 

operation places the task in an internal task queue which is processed in FIFO order. When a 

task is executed, it runs to completion before the next task is run. Therefore, a task should 

not run for long periods of time. Tasks do not preempt each other, but a task can be 

preempted by hardware interrupts. If one needs to run a series of long operations, they 

should dispatch a separate task for each operation, rather than using one big task. The post 

operation returns an error_t, whose value is either SUCCESS or FAIL. A post fails if and 

only if the task is already pending to run (it has been posted successfully and has not been 

invoked yet). 

 

Another worth-mentioning characteristic of nesC is Split-Phase Operations. Because nesC 

interfaces are wired at compile time, callbacks (events) in TinyOS are very efficient. In C, 

and in most C-like languages, callbacks have to be registered at run-time with a function 

pointer. This can prevent the compiler from being able to optimize code across callback call 

paths. Since they are wired statically in nesC, the compiler knows exactly what functions 

are called where and can optimize heavily. 

 

The ability to optimize across component boundaries is very important in TinyOS, because 

it has no blocking operations. Instead, every long-running operation is split-phase. In a 

blocking system, when a program calls a long-running operation, the call does not return 

until the operation is complete. The program therefore, blocks. In a split-phase system, 

when a program calls a long-running operation, the call returns immediately and the called 

abstraction issues a callback when it completes. This approach is called split-phase because 

it splits invocation and completion into two separate phases of execution. Here is a simple 

example of the difference between the two: 

 

Blocking Split-Phase 

If (send( ) == SUCCESS) { 

   sendCount++; 

} 

send( ); 

 

void sendDone(error_t val) { 

   if (val == SUCCESS) { 

      sendCount++; 

   } 

} 

 

Split-phase code is often a bit more complex than sequential code. But it has several 

advantages. First, split-phase calls do not tie up stack memory while they are executing. 

post taskname(); 
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Second, they keep the system responsive; there is never a situation when an application 

needs to take an action but all of its threads are tied up in blocking calls. Third, it tends to 

reduce stack utilization, as creating large variables on the stack is rarely necessary. 

 

The command Timer.startOneShot is an example of a split-phased call. This command starts 

a timer that will fire only once, sometime in the future. The user of the Timer interface calls 

the command which returns immediately. Sometime later (specified by the argument), the 

component providing Timer, signals the Timer.fired event. To execute the same code in a 

system with blocking calls, a program might use sleep instead. 

 

Blocking Split-Phase 

state = WAITING; 

operation1( ); 

sleep(512); 

operation2( ); 

state = RUNNING; 

state = WAITING; 

operation1( ); 

call Timer.startOneShot(512); 

 

event void Timer.fired() { 

   operation2( ); 

   state = RUNNING; 

} 

 

We will not be especially mentioning them, but tasks and split-phase operations are going to 

be present throughout our code. This section’s goal was to get the reader accustomed to 

these concepts. 

 

3.3.5 Radio Communication 

 

Radio communication between motes is the fundamental and most important aspect of our 

application. Although we are going to examine the radio operation of our motes in the next 

chapter, we think it is necessary to make an introduction here, due to the importance of it. 

 

TinyOS provides a number of interfaces to abstract the underlying communications services 

and a number of components that provide these interfaces. All of these interfaces and 

components use a common message buffer abstraction, called message_t, which is 

implemented as a nesC struct (similar to a C struct). The message_t struct is defined as [7]: 

 

 
 

Before examining the message_t struct, we should take a look at the variable types used in 

nesC. Rather than the standard C names of int, long or char, TinyOS code uses more explicit 

typedef nx_struct message_t { 

   nx_uint8_t header[sizeof(message_header_t)]; 

   nx_uint8_t data[TOSH_DATA_LENGTH]; 

   nx_uint8_t footer[sizeof(message_footer_t)]; 

   nx_uint8_t metadata[sizeof(message_metadata_t)]; 

} message_t; 
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types, which declare their size. In reality, these map to the basic C types, but do so 

differently for diferent platforms. TinyOS code avoids using int for example because it is 

platform specific. For example, on Mica and TelosB motes, int is 16 bytes long, while on 

the IntelMote2, it is 32 bits. Additionally, TinyOS code often uses unsigned values heavily, 

as wraparounds to negative numbers can often lead to very unintended consequences. The 

commonly used types are summarized below: 

 

 8 bits 16 bits 32 bits 64 bits 

Signed int8_t int16_t int32_t int64_t 

Unsigned uint8_t uint16_t uint32_t uint64_t 

Table 3.3.1: Commonly used types in nesC [10] 

 

There is also a bool type. We can use the standard C types, but doing so might raise cross-

platform issues. Most platforms support floating point numbers (float almost always, double 

sometimes). 

 

Returning to the message_t struct, we see that it is composed of 4 fields. The nx_ prefix is 

specific to the nesC language and denotes a network type. Network types have the same 

representation on all platforms. The nesC compiler generates code that transparently 

reorders access to nx_ data types and eliminates the need to manually adjust endianness and 

alignment (e.g. extra padding in structs present on some platforms). The header, footer and 

metadata fields are all opaque and must not be accessed directly. It is important to access the 

message_t fields only through Packet, AMPacket and other such interfaces, as will be 

shown. There are a number of interfaces and components that use message_t as the 

underlying data structure. Let’s take a look at some of those, to familiarize ourselves with 

the general functionality of the communications system: 

 

 Packet: provides the basic accessors for the message_t abstract data type. This 

interface provides commands for clearing a message’s contents, getting its payload 

length and getting a pointer to its payload area. 

 Send: provides the basic address-free message sending interface. This interface 

provides commands for sending a message and canceling a pending message send. 

The interface provides an event to indicate whether a message was sent successfully 

or not. It also provides convenience functions for getting the message’s maximum 

payload as well as a pointer to the message’s payload area. 

 Receive: provides the basic message reception interface. This interface provides an 

event for receiving messages. It also provides, for convenience, commands for 

getting a message’s payload length and getting a pointer to the message’s payload 

area. 

 

Since it is very common to have multiple services using the same radio to communicate, 

TinyOS provides the Active Message (AM) layer to multiplex access to the radio. The term 

“AM type” refers to the field used for multiplexing. AM packets also include a destination 
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field, which stores an “AM address” to address packets to particular motes. Additional 

interfaces were introduced to support the AM services: 

 

 AMPacket: similar to Packet, it provides the basic AM accessors for the message_t 

abstract data type. This interface provides commands for getting a node’s AM 

address, an AM packet’s destination, and an AM packet’s type. Commands are also 

provided for setting an AM packet’s destination and type, and checking whether the 

destination is the local node. 

 AMSend: similar to Send, it providesthe basic Active Message sending interface. 

The key difference between AMSend and Send is that AMSend takes a destination 

AM address in its send command. 

 

Let’s suppose that we want to create and send a message over the radio, and that our 

message’s payload is composed of two fields of data. Rather than directly writing and 

reading the payload area of the message_t with this data, we will use a structure to hold 

them and then use structure assignment to copy the data into the message payload area. 

Using a structure allows reading and writing the message payload much more conveniently 

when our message has multiple fields or multi-byte fields, like uint16_t or greater, because 

we can avoid reading and writing bytes from/to the payload area using e.g. indices and then 

shifting and adding. Even for a message with a single field, a designer should get used to 

using that structure because if they ever add more fields to the message or move any of the 

fields around, they will need to manually update all of the payload position indices if they 

read and write the payload at a byte level. The following defines a message structure with a 

uint16_t data1 field and a uint32_t data2 field in the payload: 

 

 
 

Instead of rewriting our Example application, we will walk through the steps necessary to 

send the message over the radio, mentioning the code lines that need to be added in each 

step. We will use the AMSend interface to send packets as well as the Packet interface to 

access the message_t abstract data type. We also need an interface to start the radio, so we 

will use the SplitControl interface, provided by the ActiveMessageC component. Our 

module’s (ExampleC) signature is modified like this: 

 

 
 

module ExampleC { 

   ... 

   uses interface Packet; 

   uses interface AMSend; 

   uses interface SplitControl as RadioControl; 

} 

typedef nx_struct ExampleRadioMsg { 

   nx_uint16_t data1; 

   nx_uint32_t data2; 

} ExampleRadioMsg_t; 
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Note that the SplitControl interface has been renamed to RadioControl. SplitControl is a 

general interface used for starting and stopping components, but creating an alias with the 

name RadioControl is a good way to remind us that this particular instance of SplitControl 

is used to control the radio, or in other words the ActiveMessageC component. 

 

We need a message_t to hold our data for transmission. The declaration needs to be added in 

the implementation block of ExampleC: 

 

 
 

Next we need to handle the initialization of the radio. It is our choice to start the radio when 

the system boots so we must call the RadioControl.start command, inside the Boot.booted 

event. Now there is something worth mentioning. We plan to send the message over the 

radio every time Timer2 fires (i.e. every 1 sec) but the radio can’t be used until it has 

completed starting up. Due to the split-phase nature of TinyOS, when the program calls the 

RadioControl.start command, the call returns immediately, but the radio signals that it has 

completed starting through the RadioControl.startDone event. To ensure that we don’t start 

using the radio before it is ready, we need to postpone starting Timer2 until after the radio 

has completed starting. That means moving the call to start Timer2, which is now inside the 

Boot.booted event, to RadioControl.startDone. So the Boot.booted event looks like this: 

 

 
 

Inside the module’s implementation we also have to implement the RadioControl.startDone 

and RadioControl.stopDone event handlers, which have the following bodies: 

 

 
 

event void RadioControl.startDone(error_t err) { 

   if (err == SUCCESS) { 

      call Timer2.startPeriodic(1024); 

   } 

   else { 

      call RadioControl.start(); 

   } 

} 

 

event void RadioControl.stopDone(error_t err) { 

} 

   event void Boot.booted() { 

      call Timer1.startPeriodic(512); 

      call RadioControl.start(); 

   } 

implementation { 

   message_t pkt; 

   ... 

} 
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If the radio is started successfully, RadioControl.startDone will be called with the error_t 

parameter set to a value of SUCCESS. Then it is appropriate to start the timer. If, however, 

the radio does not start successfully, then it obviously cannot be used so we try again to start 

it. This process continues until the radio starts, and ensures that the node software doesn't 

run until the key components have started successfully. If the radio doesn't start at all, a 

human operator might notice that the LEDs are not blinking as they are supposed to, and 

might try to debug the problem. For simplicity reasons, we will not use the 

RadioControl.stop command, so the stopDone event is never going to happen, that’s why 

there is no code in this block. 

 

Since we want to transmit our message every time Timer2 fires, we need to add some code 

to the Timer2.fired event handler: 

 

 
 

This code gets the packet’s payload portion and casts it to a pointer to the previously 

declared ExampleRadioMsg type. It can now use this pointer to initialize the packet’s fields, 

and then send the packet by calling the AMSend.send command. The packet is sent to all 

nodes in range by specifying AM_BROADCAST_ADDR as the destination address. 

 

There is one more event we need to worry about, AMSend.sendDone. This event is signaled 

after a message transmission attempt. We’ll toggle LED2 if the transmission was successful: 

 

 
 

Returning to the configuration ExampleAppC, we have to declare new components and wire 

the provided with the used interfaces. ActiveMessageC is a singleton component that is 

defined once for each type of hardware platform. AMSenderC is a generic parameterized 

component. The new keyword indicates that a new instance of AMSenderC will be created. 

The AM_RADIO parameter indicates the AM type of the AMSenderC. We can define this 

parameter along with others, in the accompanying header file as we will see in the next 

chapter. The implementation block of the ExampleAppC configuration file now looks like 

this: 

event void AMSend.sendDone (message_t* msg, error_t err) { 

   if (err == SUCCESS) { 

      call Leds.Led2Toggle(); 

   } 

} 

event void Timer0.fired() { 

   ... 

   ExampleRadioMsg_t* exmplpkt = (ExampleRadioMsg_t*) (call  

   Packet.getPayload(&pkt,sizeof(ExampleRadioMsg_t))); 

   exmplpkt->data1 = DATA; 

   exmplpkt->data2 = DATA; 

   call AMSend.send(AM_BROADCAST_ADDR, &pkt,  

   sizeof(ExampleRadioMsg_t); 

} 
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Receiving a message over the radio works similarly. This, along with other parameters of 

the radio operation will be examined in the next chapter. 

 

3.4 Cooja 

 

Cooja is a java-based simulator initially developed for simulations of sensor nodes running 

the Contiki operating system, but now able to simulate TinyOS motes as well [1]. Cooja 

simulates networks of sensor nodes where each node can be of a different type, differing not 

only in on-board software, but also in the simulated hardware. Cooja is flexible in that many 

parts of the simulator can be easily replaced or extended with additional functionality. 

 

A simulated node in Cooja has three basic properties: its data memory, the node type and its 

hardware peripherals. The node type may be shared between several nodes and determines 

properties common to all these nodes. For example, nodes of the same type run the same 

program code on the same simulated hardware peripherals. Nodes of the same type are 

initialized with the same data memory, except for the node ID. During execution however, 

the data memories of the nodes will eventually differ after reacting to external stimuli. 

 

By clicking on File -> New Simulation the new simulation wizard starts up. Here the user 

can adjust some basic simulation settings, namely the preferred radio medium which 

determines the radio surrounding behavior, the mote startup delay which is the time 

difference between the startup of the first and last mote, and the random seed which controls 

the random behavior such as various delays, node positions etc. 

 

The wireless messages can be sent on different radio mediums; the simulator proposes four 

wireless channels that are: No Radio Traffic, Unit Disk Graph Medium (UDGM) – Constant 

Loss, Unit Disk Graph Medium (UDGM) – Distance Loss, and Directed Graph Radio 

Medium (DGRM) [1]. 

 

 No Radio Traffic does not permit the radio communication on the channel and 

therefore cannot be employed to simulate WSNs. 

 UDGM – Constant Loss is a wireless channel model where the transmission range is 

modelled as an ideal disc where all nodes outside of it do not receive packets, while 

those within receive all messages. The predefined maximum transmission range is 

implementation { 

   ... 

   components ActiveMessageC; 

   components new AMSenderC(AM_RADIO); 

   ... 

   App.Packet -> AMSenderC; 

   App.AMSend -> AMSenderC; 

   App.RadioControl -> ActiveMessageC; 

} 
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multiplied by the ratio of the current output power to the maximum output power of 

the simulated device and the resulting transmission power is compared to the 

distance in the simulation. For example, if the transmission range of the mote is 

200m and the current output power is half of the maximum, the disc has a radius of 

100m. 

 UDGM – Distance Loss is a radio medium similar to the previous one but it extends 

it in two ways. First, the interferences are now considered and, in case of interfered 

packets, they are lost due to the interference range which is larger than the 

transmission range. Second, the success ratio of the transmission and reception can 

be set: a packet is transmitted or received on the basis of two probabilities, 

SUCCESS_RATIO_TX (if unsuccessful, no device receives the packet) and 

SUCCESS_RATIO_RX (if unsuccessful, only the destination of the packet does not 

receive it). 

 DGRM is a model that creates the topology of nodes through edges. It lets the 

programmer fully customize the mote-to-mote relations. 

 

 
Figure 3.4.1: New Simulation wizard 

 

The configuration of Cooja is flexible so that many parts of the simulator can be replaced or 

extended with additional functionality. Example parts are the radio mediums just described, 

the interfaces and plugins. The interfaces represent some properties of the node such as the 

position, the serial port and the user button state. The plugins are used to interact with a 

simulation. They often provide the user with a graphical interface to observe something of 

interest in the simulation. 
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Figure 3.4.2: Default plugins 

 

The default plugins are the Network Visualizer, the Timeline, the Mote Output, the 

Simulation Control and the Notes. The Network Visualizer simply lets us configure the 

network’s topology. The user can drag and drop the nodes, change the transmission and 

interference range and show mote information such as LED states, position, mote IDs etc. 

The Timeline displays the radio state for each mote through different colors: on (grey), off 

(no color), packet transmission (blue), packet reception (green) and interference (red). It 

also displays the LED state of each mote. The Mote Output displays the log output for all 

simulated motes. The Simulation Control controls starts, pauses, stops and reloads the 

simulation, and changes the simulation speed. 

 

 
Figure 3.4.3: Extended plugins 
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We will also be using the Radio Messages and PowerTracker plugins. The Radio Messages 

plugin displays all radio messages exchanged between motes along with the contents of the 

message. The PowerTracker is extremely useful and is essentially a mote radio duty cycle, 

showing a list of all motes, along with Radio On, Radio RX and Radio TX percentages. 

 

3.5 MSPSim 

 

 
Figure 3.5.1: Standalone MSPsim running 

 

MSPSim [5] is a cycle-accurate Java based simulator of the MSP430 microcontroller. It is 

able to simulate all motes that embed an MSP430 MCU. It can be run from a terminal or 

from within Cooja by right clicking a mote and choosing MSP Cli. During startup MSPSim 

is composed of five windows showing a picture of the mote, the duty cycle of various 

components, the serial output, a stack monitor and a main control window. 

 

 
Figure 3.5.2: Output of the Profile command in a terminal 
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Several commands can be given in the terminal as well, giving the user the opportunity to 

observe the duty cycle of the radio and the MCU (in numbers), several variables during 

program execution and information on various mote components. When run from within 

Cooja, a single window appears which essentially works like a terminal. 

 

3.6 Yeti 2 plugin for Eclipse IDE 

 

The TinyOS 2.x Plugin for Eclipse, nicknamed “Yeti 2”, was developed by the Distributed 

Computing Group at ETH Zurich [28]. The plugin aims to provide developers with all the 

convenient functions expected from a modern development environment. It can be a very 

useful tool when building an application from scratch or when analyzing existing code. 

 

Its main features include: 

 

Error detection, for example syntactical errors 

or errors that occur when wiring interfaces 

and components. 

 

 

 

 

 

 

 

 

Code completion which can be activated by 

pressing Ctrl + Space. The plugin internally 

builds a model of each file. That model tells 

where and what is available at different 

locations. 

 

 

 

 

 

nesC documentation which is 

activated when the mouse rests 

over an item. A hover pops up and 

shows the nesC documentation 

associated with that element. 

 

 

The elements of every file whether 

Figure 3.6.1: Yeti2 Error Detection 

Figure 3.6.2: Yeti 2 Code Completion 

Figure 3.6.3: Yeti 2 nesC documentation 

Figure 3.6.4: Yeti 2 Outline 
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it is a component or an interface, get represented in the Outline. 

 

 

 

 

 

 

 

 

 

 

 

 

The plugin can also show the contents of a file as a graph. 

 
Figure 3.6.5: Yeti 2 Graph Creation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: WSN 1.0 
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4.1 Introduction 

 

This is the chapter in which we actually build our application. We will start by 

programming motes that perform simple but fundamental tasks. Then we will combine a 

number of these tasks to create motes that operate as a WSN and after a series of 

measurements and observations we will try to extend and enhance our code, so as to make 

the network’s operation more efficient. 

 

4.2 Creating the mote 

 

4.2.1 Sensor operation 

 

The most important attribute of a mote functioning in a forest fire detecting WSN, is its 

ability to utilize the sensors attached to it. In our case the CM5000 mote is equipped with 

three onboard sensors, as described in Chapter 2: two light sensors and a 

temperature/relative humidity sensor. Let’s start with the light sensors first. 

 

The Hamamatsu S1087 and S1087-01 sensors provide visible and infrared light values 

respectively. We are only going to use the first one as it adequately fits our needs. As shown 

in figure 2.3.10 the photodiode is directly connected to the microcontroller’s ADC and 

creates a current through a 100kΩ resistor. 

 

 
 

According to the graph provided by Hamamatsu (fig. 2.3.9), we can deduct a formula, 

which is essentially an approximation at a specific operating temperature, to linealyze the 

output current vs. the incident light level. The temperature of 25oC is a good theoretical 

operating temperature of the WSN, but if we wanted to be more accurate we would have to 

extract the most appropriate constant in the range or ranges that the sensors are going to be 

working; the only available graph in the datasheet was the one drawn at the above 

mentioned temperature and since it suits us we will proceed with that. The incident light 

level is measured in lux and the output current in A. 

 

 
 

The Vsensor value must be calculated by first of all obtaining the raw ADC count value of the 

sensor. This value can vary depending on the microcontroller’s configuration. The default 

TinyOS-2.x configuration assumes the following values for a TelosB/Tmote Sky platform: 
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Vref is the voltage level of the internal reference voltage generator [27]; it is software 

configurable, its default value is 2.5V and it is defined (and can be adjusted) in the 

MSP430ADC12.h header file, located in the /tos/platform/msp430 folder in the TinyOS 

installation directory. Substituting to the equation above we obtain: 

 

 
 

Moving to the Sensirion SHT11 things are simpler. According to the datasheet [19], the raw 

readings can be converted to SI units as follows: 

 

 Temperature 

 

 
 

VDD d1(oC) d1(oF)  SOT d2(oC) d2(oF) 

5V -40.1 -40.2  14bit 0.01 0.018 

4V -39.8 -39.6  12bit 0.04 0.072 

3.5V -39.7 -39.5     

3V -39.6 -39.3     

2.5V -39.4 -38.9     

Table 4.2.1: d1 and d2 in relation to VDD and ADC bits of operation 

 

For TelosB motes the sensor is coupled with a 14-bit converter and in our case it is powered 

by 2xAA batteries connected in series, providing a supply voltage VDD = 3V. SOT is the raw 

ADC value of the sensor. Thus the formula is: 

 

 
 

 Relative Humidity 

 

 
 

SORH c1 c2 c3 

12bit -2.0468 0.0367 -1.5955E-6 

8bit -2.0468 0.5872 -4.0845E-4 

Table 4.2.2: c1, c2 and c3 for 8 or 12bit ADC [19] 

 

 

 

The default value for a CM5000 mote is 12bits [14], and SORH is the raw output of the 

sensor, so the formula is: 
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To test the equations above, we program and simulate a mote, which periodically samples 

its sensors, converts the raw data to SI units and sends these values to its serial port. This is 

what the output looks like in Cooja: 

 

 
Figure 4.2.1: Mote’s Output 

 

Temperature is at a stable 24oC, relative humidity is also stable at 150% and light intensity 

is decreasing at a rate of 27lux/sec, until it reaches zero, then starts from 977lux all the way 

down to zero again. There are no actual sensors to gather data from, and Cooja uses 

parameters defined in its source code. One could modify these predefined values by 

modifying Cooja’s source code, but that would set the modified values valid for the whole 

simulation. In other words, as of the latest version of Cooja included in Contiki 2.6, it is not 

possible to adjust the default sensor values just for a subsection of the simulation area, but 

only for the area as a whole. As will be shown later, this will not prevent us from simulating 

the WSN’s operation, as we will use “dummy motes” with predefined sensor values. What 

we wanted to examine through this test was whether our formulas produced values within 

an acceptable range. The value of relative humidity is acceptable too. Relative humidity 

measures the current absolute humidity relative to the maximum for that temperature, so a 

value of 150%, although large, is possible. We will not use it for the rest of this thesis 

though, as in the case of a fire, temperature is quicker to change and that should be enough. 

One could use the relative humidity measurement to acquire a scope for the forest area as a 

whole, but since we have no physical motes and Cooja produces only stable values, we will 

leave it out. 

 

 

4.2.2 Power Consumption 

 

The typical operation of a fire-detecting mote as part of a WSN, would include sampling its 

sensors, sending the sensor data over the radio and receiving data from nearby motes to 

retransmit it to other nearby motes. Let’s create a mote that samples its sensors once every 
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minute and sends a message containing the sensor data, while having its radio always on 

listening to other motes and retransmitting their messages. A simplified state machine of 

this Prototype mote is depicted in figure 4.2.2. The mote boots and starts listening. It 

periodically samples its sensors and sends the data over the radio. In the event of a received 

message from another mote, it forwards the message to other nearby motes. In order to 

calculate the expected battery life of this (and any) mote, we must first measure each 

component’s duty cycle in all possible power states. 

 

0 1 2

3

listen

boot

message received

sample sensorssend data

message forwarded

 
Figure 4.2.2: Simplified state machine of the Prototype mote 

 

The simulation was run for 30 minutes; adequate time for the duty cycle to reach a steady 

value. The only parameter not clearly visible in Cooja is the sensors’ duty cycle, but there is 

a good workaround to obtain it [2]. When the program calls the command to start sampling 

the sensors, we turn on LED 0, and when the sampling is completed and the packet is about 

to be sent, we turn it off. The LEDs are generally visible in Cooja’s Timeline plugin, which 

apart from showing the LED and radio states, has the ability to print statistical simulation 

facts, to the console. The light sensor’s current consumption is negligible so only the 

temperature sensor contributes to the power consumed. So, printing the statistics in the 

command line we get: 
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Figure 4.2.3: Command line statistics for the Prototype mote 

 

Furthermore, because this mote is simulated alone, radio transmission happens only once 

every 30 seconds and its duty cycle as seen in figure 4.2.4, is less than 0.01%, so Cooja’s 

PowerTracker plugin calculates the transmit-state duty cycle to be actually 0.00% and the 

receive-state to be 100.00%. In general, we are going to use two decimal digits for duty 

cycle values so in this particular example we will consider the transmit-state (TX) duty 

cycle to be zero. 

 

 
Figure 4.2.4: Radio duty cycle for the Prototype mote 

 

As far as the MCU is concerned, by right-clicking on the mote and choosing the Msp CLI 

option we can actually run MSPSim inside Cooja. The command: 

 

 
 

prints the duty cycle of all power states of the MSP430 microprocessor X times/sec [1]. Its 

output looks like this: 

 

duty X MSP430 
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Figure 4.2.5: MSP430 duty cycle for the Prototype mote 

 

The first column represents the active state, the second is the power-off state and the next 

four are the low-power modes, from LPM0 to LPM4 [1]. We see that the MCU spends all of 

its time either in active mode, or LPM3. 

 

Gathering all the data, we are able to create the table below [4]: 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 MCU    

Active 1.8 0.25 0.0045 

Sleep 0.0051 99.75 0.00508725 

CC2420 Tranceiver    

Receive 18.8 100 18.8 

Transmit 17.4 0 0 

Sleep 0.001 0 0 

SHT11 Temp. Sensor    

Measuring 0.5 0.06 0.0003 

Sleep 0.0003 99.94 0.00029982 

ST M25P80 Flash    

Active 20 0 0 

Sleep 0.001 100 0.001 

   18.8112 

Table 4.2.3: Duty cycle and current consumption of all components in a Prototype mote 

 

 

Now to calculate the mote’s expected battery life in relation to its battery capacity, we 

simply have to divide the battery’s mAh by the total current consumption as calculated 

above: 
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Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 26.58 1.11 0.04 

1000 53.16 2.21 0.07 

1500 79.74 3.32 0.11 

2000 106.32 4.43 0.15 

2500 132.90 5.54 0.18 

3000 159.48 6.64 0.22 

3500 186.06 7.75 0.26 

4000 212.64 8.86 0.30 

4500 239.22 9.97 0.33 

5000 265.80 11.07 0.37 

Table 4.2.4: Prototype mote’s battery life for various battery capacities 

 

The most important part of a mote’s power consumption is now obvious. The radio 

transceiver operation represents approximately 99.94% of the mote’s total power 

consumption. A good quality alkaline battery has an effective capacity of 2000mAh, so 

connecting two of those in series, gives us about 4000mAh of battery capacity [6]. Under 

these circumstances, a prototype mote like this would only run for about 9 days before its 

batteries ran out. This is definitely not a good case when a WSN composed of 50 or more of 

those motes monitors a forest area. Having to replace the batteries of each mote every 9 

days is not a good example of an autonomous WSN. We now see that the first thing a 

designer has to do, in a non CPU intensive application like this, is to limit the power-on time 

of the radio chip. 

 

 
Figure 4.2.6: Mote’s battery life vs. battery capacity (Prototype mote) 
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4.2.3 FireSense Mote 

 

Moving on and based on the results we obtained from the previous section, we will try to 

extend the prototype mote into one that would perform better in terms of power 

consumption. We will name this mote FireSense and its simplified state machine is this: 

 

0 1

2

3

listen

boot

message received

sample sensorssend data

message forwarded

4

put to sleep

wake up

sleep

 
Figure 4.2.7: Simplified state machine of the FireSense mote 

 

What’s different than the first mote is that this one can (and will) spend most of its time 

sleeping.  More specifically, we will program this mote to turn on its radio acting as a 

forwarder for messages coming from other motes, then sample its sensors to send their 

readings, then act as a forwarder again, and finally sleep for a certain amount of time. What 

sleep mode does is actually put every component in its lowest power state possible. The 

second listening period, after the sensor sampling, is necessary because the motes in a WSN 

do not start operating at exactly the same time, so for instance, when a mote sends its sensor 

readings over the radio, we have to make sure there is another one listening to forward the 

message. But even if there were a number of people, each one adjacent to every mote and all 

of them programmed and started the motes at the same time, this would create very heavy 

radio traffic (as we will see) that the network could not handle.  

 

We will not present the mote’s code in full, as some of its parts have already been examined 

in detail in Chapter 3. We will just present a few code snippets that show how this mote 

actually works. At first we have to create a header file that works the same way as a C 

header file. It defines constants and type structures and provides a comfortable way of 

quickly modifying applications. 
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In this case, several constants have been defined. The MAX_SENSORS constant determines 

the number of sensors we are using, in our case 2 (SHT11’s temperature and S1087’s 

luminance). The AM_RADIO is an id that will be used to discriminate between different 

kinds of messages. LISTEN_DURATION_1 and 2 represent the duration that the mote will 

have its radio on before and after sampling its sensors respectively. SLEEP_DURATION is 

pretty straightforward. The next lines define our message structure with three data fields 

storing the mote’s ID, temperature and luminance measured, in the payload. 

 

Moving on the module, which we named FireSenseC we have to declare a number of 

variables first: 

 

 
 

The packet variable’s role has been explained in Chapter 3. data is a FireSenseMsg structure 

used to store our data to be sent. radio_busy indicates whether the radio is being used and 

sensor_data_packet indicates whether the message sent is another mote’s readings being 

forwarded or the mote’s own sensor readings. We will show the numsensors use in a while. 

 

 

event void Boot.booted() { 

   post startListening(); 

} 

 

task void startListening() { 

   call RadioControl.start();  

   call Timer1.startOneShot(LISTEN_DURATION_1); 

} 

 

event message_t * Receive.receive(message_t *msg, void *payload, uint8_t 

len) { 

   if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE)) { 

      FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload; 

      FireSenseMsg_t * outgoingPacket; 

      outgoingPacket = (FireSenseMsg_t *) call Packet.getPayload(&packet,  

      sizeof(FireSenseMsg_t)); 

      outgoingPacket -> node_id     = incomingPacket -> node_id; 

uint8_t numsensors; 

bool radio_busy = FALSE; 

bool sensor_data_packet = FALSE; 

message_t packet; 

FireSenseMsg_t data; 

#ifndef FIRE_SENSE_H 

#define FIRE_SENSE_H 

 

enum { 

   MAX_SENSORS = 2, AM_RADIO = 1, LISTEN_DURATION_1 = 1000,        

   LISTEN_DURATION_2 = 1000, SLEEP_DURATION = 28000}; 

 

typedef nx_struct FireSenseMsg { 

   nxuint16_t node_id; 

   nxuint16_t temperature; 

   nxuint16_t luminance; 

} FireSenseMsg_t; 

 

#endif /* FIRE_SENSE_H */ 
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When the mote boots, it dispatches the startListening task, which turns on the radio to 

forward received messages, and starts a timer (not periodic, but a single-shot) to indicate 

when the mote will dispatch the startSensing task, i.e. sample its sensors. The 

Receive.receive event, is signaled whenever the mote receives a packet. At first, this code 

checks if the radio is free and if the packet received is one to be forwarded. The latter is 

actually a security check and a simple way to prevent interference from unwanted sources 

with our WSN. It then gets the packet’s payload portion and casts it to the incomingPacket 

pointer, a pointer to the previously declared FireSenseMsg type. It then creates the 

outgoingPacket pointer for the message to be sent. A simple copy of the incoming packet 

fields to the outgoing ones is the final step towards creating the outgoing message. The rest 

is the same as in Chapter 3. When the AMSend.send command is called, radio_busy is set to 

TRUE and sensor_data_packet  is set to FALSE, since it’s not the mote’s own packet but a 

forwarded one. 

 

 
 

What startSensing does is simply call two read commands, one for the light sensor and one 

for the temperature sensor. When the sensor value has been read, the corresponding event is 

task void startSensing() { 

   numsensors = 0; 

   //call Leds.led0On(); 

   call TempRead.read(); 

   call LightRead.read(); 

} 

 

event void TempRead.readDone(error_t result, uint16_t val) { 

   data.temperature = val; 

   if (++numsensors == MAX_SENSORS) { 

      post sendReadings(); 

      //call Leds.led0Off(); 

   } 

} 

 

event void LightRead.readDone(error_t result, uint16_t val) { 

   data.luminance = val; 

   if (++numsensors == MAX_SENSORS) 

   { 

      post sendReadings(); 

      //call Leds.led0Off(); 

   } 

} 

      outgoingPacket -> temperature = incomingPacket -> temperature; 

      outgoingPacket -> light       = incomingPacket -> light; 

 

      if (call AMSend.send(AM_BROADCAST_ADDR, &packet,  

      sizeof(FireSenseMsg_t)) == SUCCESS) { 

         radio_busy = TRUE; 

         sensor_data_packet = FALSE; 

      } 

   } 

   return msg; 

} 

 

event void Timer1.fired() { 

   post startSensing(); 

} 
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being signaled, that puts the values in the appropriate fields in the data variable defined 

earlier. When both sensors have been sampled, the sendReadings task is being dispatched. 

Note that we have commented out the commands that toggle LED0. It is something we use 

to assist us with the simulation and not something a designer should include in their code 

when programming a physical mote, as LED operation increases power consumption [2][4]. 

 

The sendReadings task is similar to the process described in Chapter 3. The only thing 

worth mentioning is the way data passed to the packet to be sent. 

 

 
 

TOS_NODE_ID is unique to each mote and represents its ID [10]; it is configured during 

the programming of the mote, but since we are using Cooja we can easily define it when 

creating the simulation. aux is an auxiliary pointer for sending the packet. When the packet 

has been sent the AMSend.sendDone event is signaled: 

  

 
 

It sets the radio free and notifies the mote that the packet sent contained its own sensor 

readings, so the mote continues to act as a forwarder for the duration specified in Timer2. 

When this timer fires, it’s time to put the mote to sleep. 

 

 
 

The radio is turned off and when this happens, the mote sleeps for a duration defined in 

Timer3. When this timer fires, the startListening task is called; the mote wakes up and starts 

its operation all over again. 

 

 

 

 

event void Timer2.fired() { 

   call RadioControl.stop(); 

} 

 

event void RadioControl.stopDone(error_t error) { 

   call Timer3.startOneShot(SLEEP_DURATION); 

} 

 

event void Timer3.fired() { 

   post startListening(); 

} 

event void AMSend.sendDone(message_t *msg, error_t error) { 

   radio_busy = FALSE; 

   if (sensor_data_packet == TRUE) { 

      call Timer2.startOneShot(LISTEN_DURATION_2); 

   } 

} 

aux -> node_id     = TOS_NODE_ID; 

aux -> temperature = data.temperature; 

aux -> luminance   = data.luminance; 
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4.2.4 BaseStation Mote 

 

A WSN consisting of FireSense motes alone would not be any good if there wasn’t a base 

station where all the information would be gathered. A BaseStation node does exactly that; 

it is a CM5000 mote, connected via its USB port to a computer where it prints the sensor 

readings it has received from the FireSense motes. It is not necessary for the user to 

constantly read the values. If the mote receives an abnormal reading it notifies us by turning 

on its LEDs. The green LED means that everything is fine, the blue LED signifies a slightly 

abnormal value and the red LED a dangerously abnormal value. Before printing the values, 

the BaseStation mote is responsible for converting the raw data values in the received 

packets, to SI units, using the formulas we introduced in section 4.2.1. We didn’t program 

the FireSense motes to do that, as we wanted to avoid putting even the slightest unnecessary 

CPU load; battery life is top priority in FireSense motes but it doesn’t concern us in 

BaseStation motes as they are powered through their USB port. 

 

0 1 2

3

listen

boot

message received

temp/light 
abnormal

blink leds

message printed

 
Figure 4.2.8: Simplified state machine of the BaseStation mote 

 

4.3 Testing the WSN 

 

It is time to simulate a WSN consisting of the motes created above. The outdoor range of 

the CC2420 radio chip, using the embedded antenna, is according to TelosB specs, around 

100m, while the indoor range is about 20-30m. A forest area lies somewhere in the middle; 

it can’t be considered indoors but it’s not an outdoor area either as there exist trees and other 

land obstructions that decrease the outdoor range. We will consider a worst-case scenario, 

because it’s preferable that the actual WSN operates better than the simulated one, than the 

opposite, so the default range will be set equal to 50m which we think it’s close to what the 

real one should be [6]. Changing the default radio range in Cooja is as simple as right-

clicking anywhere in the Network Visualizer and changing the value. The wireless channel 

chosen is UDGM – Distance Loss as it’s the most realistic. The interference range is set to 

70m. Furthermore, the FireSense motes will be randomly placed as there is no guarantee 
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that a forest area will provide conditions for symmetrical mote placement.  The motes 

vertical position has been randomly selected between 2 and 3 meters. 

 

A large number of motes is not necessary as the delay between the reception of a packet and 

its forwarding is minimal as we will show. The WSN will consist of 15 FireSense motes and 

1 BaseStation mote. The BaseStation mote will just print the packets as they arrive, for the 

time being. Turning on its LEDs will be better executed when we include a dummy mote. 

The motes will listen for 1 second before and after sampling their sensors, and they will be 

put into sleep mode for 58 seconds; thus they will operate periodically with a period of 

1min. Moreover, the Mote Delay option in Cooja will be set equal to 1000ms. This means 

that the time difference between the first and last mote to boot, is 1 second. 

 

 
Figure 4.3.1: Network topology depicted 

 

Motes 1-15 are FireSense motes, while mote 16 is the BaseStation. Mote 15’s radio and 

interference range is depicted as an example. The gridlines correspond to a length of 10m, 

so the WSN covers an area ~160m x 130m = 20800m2. 

 

We ran the simulation for 30min to ensure stable duty cycles [2][4]. The results may be 

disappointing, but quite interesting. The sensors’ (i.e. the LED0’s) average duty cycle as 

printed in the command line is this: 
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Figure 4.3.2: FireSense onboard sensors’ duty cycle 

 

while the PowerTracker bears no good results either: 

 

 
Figure 4.3.3: Radio duty cycle for the FireSense motes 

 

Choosing a random mote, e.g. 11, and getting its MCU’s duty cycle, we get: 

 

 
Figure 4.3.4: MSP430 duty cycle for the FireSense motes 

 

We expected the mote’s MCU duty cycle to be higher than that of the Prototype mote’s, 

because it now operates in a network where it has to process and forward several incoming 

messages but this is definitely not a good sign. 

 

Fortunately, Cooja makes finding the cause of this easy. If we take a look at the Timeline, 

we see this: 
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Figure 4.3.5: Heavy radio traffic during FireSense motes’ operation 

 

That is an immense amount of radio traffic. It is caused by continuous retransmission of the 

same packet. Let’s take an example. Suppose that Mote 15, transmits its sensor readings. 

Motes 7 and 13 do a good job of forwarding the packet to the sink node, but they are 

actually broadcasting the message to all motes within range who are listening. So motes 3, 

4, 5 and 6 receive the packet as well, and broadcast it to motes 9, 10, 11 and 12 who in turn, 

broadcast the packet to motes 1, 2, 8 and 14 who broadcast the message back in the 

direction of the sink node again. The result is that the first packet to be broadcast, actually 

chokes the entire network leaving very little available space for other packets to be 

transmitted, and this is very well depicted in the figure above. The higher duty cycle of the 

MCU is a direct consequence of that: the constant receiving and transmitting of a packet is 

indeed, apart from radio intensive, a CPU intensive process as well. 

 

Another interesting deduction can be made by noticing that the average radio duty cycle is 

85.10%, even though motes were programmed to sleep for 58 out of 60 seconds. That’s a 

very good way to demonstrate what the split-phase nature of TinyOS can result in, if the 

code is not written properly. When one of the motes above is listening and it’s time to 

dispatch a task, it is actually so busy receiving and sending packets, that it postpones 

dispatching the task, to a time when the radio traffic has decreased; the radio traffic is very 

high all the time though, so the TinyOS scheduler postpones the dispatching of tasks and 

keeps the mote listening indefinitely [7]. 

 

4.4 WSN 1.0 

 

It is obvious that if we want to materialize our WSN, we need to find a way to reduce its 

radio traffic. One solution would be to reduce each mote’s neighboring motes. That creates 

two other problems though: first, the accuracy of the WSN as a whole is reduced because 

each mote would be responsible for a larger area, and second: a mote’s break down, would 

limit the alternative routes of a travelling packet. Another solution, would be to manually 

assign addresses to the motes and program each mote to transmit to certain destinations, but 
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that would make it difficult to modify the network once it has been set up. For example, if 

we wanted to expand it or add new motes in the same area, we would have to reprogram 

every mote to include the addresses of the new motes. A good and viable solution is at the 

same time, the simplest. Every time a mote boots, it will create and initialize to zero a one-

dimensional array, the length of which, will be equal to the number of motes in the WSN. 

The actual size of it will be NUMBER_OF_MOTES + 1, because the first element in an 

array in nesC (and C) is array[0], and there is no mote with a zero ID. We could also 

increase the length of the array to make room for additional motes.  

 

The first time, in a listening period, that a mote receives and forwards a packet from mote 

X, it will set the element array[X] equal to 1. If sometime later in the same period, the mote 

receives the same packet, recycled in the network, it will check the value of array[X]. If it 

isn’t equal to zero, it will not transmit it. When the mote is put to sleep, the array is set to 

zero again. The timeline’s output looks like this now: 

 

 
Figure 4.4.1: Normal radio traffic after code improvement 

 

Things are looking good now. Radio traffic is greatly reduced. Five lines of code can make 

that big a difference. We can clearly distinguish separate radio traffic times in this picture, 

every time a mote samples its sensors and broadcasts the readings (right after the red LED 

turns off). There still exist some packets that have been interfered (marked by red dots 

above the grey line) so in order to determine if we have compromised the WSN’s 

effectiveness in transmitting all packets over the radio we check the serial output of the 

BaseStation mote: 
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Figure 4.4.2: BaseStation receives all FireSense motes’ packets during a sample period 

 

The columns from left to right stand for: the time the output was printed (in ms), the ID of 

the mote that gives the output (we have given BaseStation the MoteID: 16) and the mote’s 

printed message. The BaseStation mote prints the readings of all FireSense motes in a 

sampling period, so the WSN works as expected. 

 

To test the WSN’s response time in case of an abnormal reading and to test the LED 

operation of the BaseStation mote we create a “dummy mote”. That is actually a FireSense 

mote in which we have predefined its sensor readings to be abnormal. The dummy mote has 

been programmed to send a packet only when we press its button. We are going to measure 

how much time it takes for a packet containing sensor samples to reach the sink mote. Let’s 

suppose a measured temperature of 50oC. The dummy mote has been given the ID: 16 and 

the BaseStation is now number 17. 

 

 
Figure 4.4.3: Dummy mote placement 



 

73 

 

The BaseStation mote turns its green LED on when it boots, to indicate the user that it’s 

working. Since 50oC is a very high temperature, we expect the red LED to turn on. We press 

the button on the dummy mote 16 at precisely 34341ms simulation time. The BaseStation 

mote receives the packet at 34370ms. The radio packet covers a distance of more than 200m 

in only 29ms. That is practically real time information and the WSN’s response time is 

excellent. 

 

 
Figure 4.4.4: Packets exchanged while forwarding a dummy mote’s packet. Vertical line depicts 29ms 

 

The mote needs 5 more milliseconds to turn on its red LED as seen in the picture above 

(lower right corner), and forward the packet to its serial port: 

 

 
Figure 4.4.5: BaseStation needs 5ms to forward a radio packet to its serial port 

 

 
Figure 4.4.6: This is what 29ms look like as the WSN forwards the packet from dummy mote to sink 
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We consider the WSN’s behavior a success. The source code of the FireSense mote along 

with the BaseStation mote can be found in the Appendix. It’s now time to examine our 

motes’ energy characteristics. 

 

4.5 Energy Analysis 

 

We saw from the previous tests that two seconds of listening time (1sec before and 1 sec 

after sampling) are adequate for forwarding all motes’ packets to the sink mote. We will not 

try to decrease that time as doing so might increase the chances of lost packets. We will 

adjust the SLEEP_DURATION constant though, in order to examine the way in which the 

WSN’s sampling frequency affects the motes’ battery life. The chosen values for the WSN’s 

sampling period are 30sec, 60sec, and 90sec, so SLEEP_DURATION will be set to 28, 58 

and 88 seconds respectively. We are also going to use the same procedure as in section 

4.2.2. 

 

 Sampling period: 30sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 1.18 0.02124 

Sleep 0.0051 98.82 0.00503982 

CC2420 Tranceiver       

Receive 18.8 7.08 1.33104 

Transmit 17.4 0.04 0.00696 

Sleep 0.001 92.88 0.0009288 

SHT11 Temp. Sensor       

Measuring 0.5 1.69 0.00845 

Sleep 0.0003 98.31 0.00029493 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   1.3750 

Table 4.5.1: Duty cycle and current consumption of all components in a FireSense mote (30sec period) 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 363.65 15.15 0.51 

1000 727.30 30.30 1.01 

1500 1090.95 45.46 1.52 

2000 1454.59 60.61 2.02 

2500 1818.24 75.76 2.53 

3000 2181.89 90.91 3.03 

3500 2545.54 106.06 3.54 

4000 2909.19 121.22 4.04 
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4500 3272.84 136.37 4.55 

5000 3636.49 151.52 5.05 

Table 4.5.2: FireSense mote’s battery life for various battery capacities (30sec period) 

 

 
Figure 4.5.1: Mote’s battery life vs. battery capacity (FireSense mote, 30sec period) 

 

 Sampling period: 60sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.67 0.01206 

Sleep 0.0051 99.33 0.00506583 

CC2420 Tranceiver       

Receive 18.8 3.46 0.65048 

Transmit 17.4 0.02 0.00348 

Sleep 0.001 96.52 0.0009652 

SHT11 Temp. Sensor       

Measuring 0.5 0.86 0.0043 

Sleep 0.0003 99.14 0.00029742 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.6776 

Table 4.5.3: Duty cycle and current consumption of all components in a FireSense mote (60sec period) 
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Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 737.85 30.74 1.02 

1000 1475.69 61.49 2.05 

1500 2213.54 92.23 3.07 

2000 2951.38 122.97 4.10 

2500 3689.23 153.72 5.12 

3000 4427.07 184.46 6.15 

3500 5164.92 215.20 7.17 

4000 5902.77 245.95 8.20 

4500 6640.61 276.69 9.22 

5000 7378.46 307.44 10.25 

Table 4.5.4: FireSense mote’s battery life for various battery capacities (60sec period) 

 

 
Figure 4.5.2: Mote’s battery life vs. battery capacity (FireSense mote, 60sec period) 

 

 Sampling period: 90sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.41 0.00738 

Sleep 0.0051 99.59 0.00507909 

CC2420 Tranceiver       

Receive 18.8 2.29 0.43052 

Transmit 17.4 0.01 0.00174 

Sleep 0.001 97.7 0.000977 

SHT11 Temp. Sensor       

Measuring 0.5 0.53 0.00265 

Sleep 0.0003 99.47 0.00029841 
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ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.4496 

Table 4.5.5: Duty cycle and current consumption of all components in a FireSense mote (90sec period) 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 1111.99 46.33 1.54 

1000 2223.98 92.67 3.09 

1500 3335.97 139.00 4.63 

2000 4447.96 185.33 6.18 

2500 5559.95 231.66 7.72 

3000 6671.94 278.00 9.27 

3500 7783.93 324.33 10.81 

4000 8895.92 370.66 12.36 

4500 10007.91 417.00 13.90 

5000 11119.90 463.33 15.44 

Table 4.5.6: FireSense mote’s battery life for various battery capacities (90sec period) 

 

 
Figure 4.5.3: Mote’s battery life vs. battery capacity (FireSense mote, 90sec period) 
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Chapter 5: WSN 2.0 
 

 

5.1 Intro 

 

Building upon our experience and gathered data from the previous chapter, we aim to 

further enhance the designed WSN, increasing its motes’ lifetime without sacrificing spatial 

or temporal accuracy. To achieve this, we are going to examine a different network 

topology that divides the motes in terms of the operation they execute: fire sensing and 

packet forwarding. But to do that, we first need to examine the effect the supply current has 

on radio range. 

 

5.2 Friis Transmission Equation 

 

The Friis transmission equation is used in telecommunications engineering, and gives the 

power received by one antenna under idealized conditions given another antenna some 

distance away transmitting a known amount of power. In its simplest form, the Friis 

transmission equation is as follows. Given two antennas, the ratio of power available at the 

input of the receiving antenna, Pr, to output power to the transmitting antenna, Pt, is given 

by [18]: 

 

 
 

where Gt and Gr are the antenna gains of the transmitting and receiving antennas 

respectively, λ is the wavelength and R is the distance between the antennas. The equation 

in this form, is of little use to us. The antenna gains, in our case, are expressed in decibels, 

so the equation is slightly modified to [18]: 

 

 
 

where gain has units in dB, and power has units in dBm. 

 

TelosB motes come equipped with an internal antenna that is an Inverted-F microstrip 

protruding from the end of the board away from the battery pack. The Inverted-F antenna is 

a wire monopole where the top section is folded down to be parallel with the ground plane. 

It has been examined in detail, in Texas Instrument’s Design Note 7 [17], where its gain has 

been measured in the XY, XZ and YZ plane. We won’t go into such detail in this thesis, so 

we will take into consideration only the horizontal XY plane in our calculations. This has 

been measured to be 1.1dB. We also know from Chapter 2 that the receiving power of 

TelosB is -90dBm at minimum. 
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Let’s restructure the equation above so that we can express R in terms of power: 

 

 
 

c is the speed of light (3x108 m/s) and f is the frequency of the signal (2.4 GHz). 

 

As we have mentioned is Chapter 2, the CC2420 has programmable output power. It is 

adjusted by specifying a parameter called PA_LEVEL in the code’s makefile [7], when 

programming a mote. In order to gain an understanding of the relation between range and 

input power, we will consider two motes. One is transmitting and the other is receiving. 

Both motes’ antenna gain is 1.1dB and the receiver mote’s power is -90dBm [16]. In the 

table below we present typical PA_LEVEL values and their corresponding current 

consumption and output power. In the fourth column we have calculated the maximum 

theoretical distance between a mote transmitting with the corresponding output power and a 

receiver mote. 

 

PA_LEVEL Output Power [dBm] Current Consumption [mA] Range [m] 

31 0 17.4 405.31 

27 -1 16.5 361.23 

23 -3 15.2 286.93 

19 -5 14 227.92 

15 -7 12.5 181.04 

11 -10 11 128.17 

7 -15 9.9 72.07 

3 -25 8.5 22.79 

Table 5.2.1: PA_LEVEL, output power and current consumption in relation to ideal radio range 

 

We see that that the range at output power equal to 0dBm (the default value) is more than 3 

times higher than the one given in the TelosB datasheet. This shouldn’t worry us because 

the calculations above don’t take into account the dimensional parameters of a mote or 

interferences in the radio medium, and also assume idealized conditions. A more in-depth 

analysis has been done in Texas Instruments Design Note 18 [18], in which ground 

reflections and environmental noise have been accounted for. This is not our purpose 

though, as through this theoretical calculation we wanted to examine the relation between 

output power, current consumption and range, in order to adjust the default radio range we 

assumed in the previous chapter. We notice, that halving the radio chip’s supply current, 

from 17.4 to 8.5mA brings radio range down to about 1/18th of its value. 
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Figure 5.2.1: CC2420 ideal radio range vs. current consumption 

 

5.3 WSN 2.0 

 

Based on the results obtained from the previous section, we aim to reconstruct the topology 

of our WSN, by dividing each mote in regard to the work it does. The WSN we designed in 

Chapter 4 was an ad-hoc network. We now want to move towards an “access point” 

orientation. To achieve this we have to, in a way, split the FireSense mote in half. We will 

name the first mote FireSense 2.0 and the second one Repeater. FireSense 2.0 will now be 

responsible only for taking temperature and luminance measurements and transmitting 

them. It will neither keep its radio on for 2 seconds, nor listen to any other mote’s packets. 

In fact we will entirely strip FireSense 2.0 mote off its Receive interface. The Repeater 

mote’s operation is actually implied by its name: it doesn’t use any of its sensors, rather it 

only turns on to listen to radio traffic and forward it to other Repeater motes. Adding the 

operations of the two motes together, creates the original FireSense mote. 

 

We will create our WSN in teams of four: one access point (Repeater) assigned to four peers 

(FireSense 2.0). We have four access points in total, so 16 peers. The access points will 

communicate with each other at default radio power (0dBm), but the peers will not have to 

use their full power obviously. We aim to a range of about 15-16m, which is roughly 32% 

of the full power mode. Going back to Table 5.2.1 we see that, 32% of the original power 

corresponds to 129.6m. The output power closer to that value is -10dBm which corresponds 

to a PA_LEVEL value of 11 and a current consumption of 11mA. Putting these parameters 

into Cooja, we obtain a range of about 17m which is acceptable. The WSN operates 

properly. Radio traffic is very low, the response time is lower than in that in the last chapter 

and the BaseStation mote prints all messages in a period. 
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Figure 5.3.1: BaseStation receives all FireSense 2.0 motes’ packets during a sample period 

 

 
Figure 5.3.2: WSN 2.0 network topology 

 

Nodes 1-16 are FireSense 2.0 motes, 17-20 are Repeater motes and 21 is the BaseStation. 

The two outer circular lines are the 0dBm transmission and interference ranges respectively. 

The source code of the FireSense 2.0 and Repeater motes can be found in the Appendix. 
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5.4 Energy Analysis 

 

5.4.1 FireSense 2.0 

 

Following the same procedure as in Chapter 4, we will consider three sampling periods: 

30sec, 60 sec and 90sec. 

 

 Sampling period: 30sec 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.27 0.00486 

Sleep 0.0051 99.73 0.00508623 

CC2420 Tranceiver       

Receive 18.8 0.03 0.00564 

Transmit 11 0 0 

Sleep 0.001 99.97 0.0009997 

SHT11 Temp. Sensor       

Measuring 0.5 1.71 0.00855 

Sleep 0.0003 98.29 0.00029487 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.0264 

Table 5.4.1: Duty cycle and current consumption of all components in a FireSense 2.0 mote (30sec period) 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 18917.32 788.22 26.27 

1000 37834.65 1576.44 52.55 

1500 56751.97 2364.67 78.82 

2000 75669.29 3152.89 105.10 

2500 94586.62 3941.11 131.37 

3000 113503.94 4729.33 157.64 

3500 132421.27 5517.55 183.92 

4000 151338.59 6305.77 210.19 

4500 170255.91 7094.00 236.47 

5000 189173.24 7882.22 262.74 

Table 5.4.2: FireSense 2.0 mote’s battery life for various battery capacities (30sec period) 
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Figure 5.4.1: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 30sec period) 

 

 Sampling period: 60sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.26 0.00468 

Sleep 0.0051 99.74 0.00508674 

CC2420 Tranceiver       

Receive 18.8 0.01 0.00188 

Transmit 11 0 0 

Sleep 0.001 99.99 0.0009999 

SHT11 Temp. Sensor       

Measuring 0.5 0.88 0.0044 

Sleep 0.0003 99.12 0.00029736 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.0183 

Table 5.4.3: Duty cycle and current consumption of all components in a FireSense 2.0 mote (60sec period) 
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Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 27256.87 1135.70 37.86 

1000 54513.74 2271.41 75.71 

1500 81770.61 3407.11 113.57 

2000 109027.47 4542.81 151.43 

2500 136284.34 5678.51 189.28 

3000 163541.21 6814.22 227.14 

3500 190798.08 7949.92 265.00 

4000 218054.95 9085.62 302.85 

4500 245311.82 10221.33 340.71 

5000 272568.69 11357.03 378.57 

Table 5.4.4: FireSense 2.0 mote’s battery life for various battery capacities (60sec period) 

 

 
Figure 5.4.2: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 60sec period) 

 

 

 

 

 

 

 Sampling period: 90sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.25 0.0045 

Sleep 0.0051 99.75 0.00508725 

CC2420 Tranceiver       

Receive 18.8 0.01 0.00188 

Transmit 11 0 0 

Sleep 0.001 99.99 0.0009999 
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SHT11 Temp. Sensor       

Measuring 0.5 0.55 0.00275 

Sleep 0.0003 99.45 0.00029835 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.0165 

Table 5.4.5: Duty cycle and current consumption of all components in a FireSense 2.0 mote (90sec period) 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 30274.59 1261.44 42.05 

1000 60549.18 2522.88 84.10 

1500 90823.77 3784.32 126.14 

2000 121098.36 5045.77 168.19 

2500 151372.95 6307.21 210.24 

3000 181647.54 7568.65 252.29 

3500 211922.13 8830.09 294.34 

4000 242196.72 10091.53 336.38 

4500 272471.31 11352.97 378.43 

5000 302745.91 12614.41 420.48 

Table 5.4.6: FireSense 2.0 mote’s battery life for various battery capacities (90sec period) 

 

 
Figure 5.4.3: Mote’s battery life vs. battery capacity (FireSense 2.0 mote, 90sec period) 
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5.4.2 Repeater 

 

 Sampling period: 30sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.44 0.00792 

Sleep 0.0051 99.56 0.00507756 

CC2420 Tranceiver       

Receive 18.8 6.74 1.26712 

Transmit 17.4 0.02 0.00348 

Sleep 0.001 93.24 0.0009324 

SHT11 Temp. Sensor       

Measuring 0.5 0 0 

Sleep 0.0003 100 0.0003 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   1.2858 

Table 5.4.7: Duty cycle and current consumption of all components in a Repeater mote (30sec period) 

 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 388.85 16.20 0.54 

1000 777.71 32.40 1.08 

1500 1166.56 48.61 1.62 

2000 1555.42 64.81 2.16 

2500 1944.27 81.01 2.70 

3000 2333.12 97.21 3.24 

3500 2721.98 113.42 3.78 

4000 3110.83 129.62 4.32 

4500 3499.69 145.82 4.86 

5000 3888.54 162.02 5.40 

Table 5.4.8: Repeater mote’s battery life for various battery capacities (30sec period) 
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Figure 5.4.4: Mote’s battery life vs. battery capacity (Repeater mote, 30sec period) 

 

 Sampling period: 60sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.35 0.0063 

Sleep 0.0051 99.65 0.00508215 

CC2420 Tranceiver       

Receive 18.8 3.43 0.64484 

Transmit 17.4 0.01 0.00174 

Sleep 0.001 96.56 0.0009656 

SHT11 Temp. Sensor       

Measuring 0.5 0 0 

Sleep 0.0003 100 0.0003 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.6602 

Table 5.4.9: Duty cycle and current consumption of all components in a Repeater mote (60sec period) 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 

500 757.31 31.55 1.05 

1000 1514.63 63.11 2.10 

1500 2271.94 94.66 3.16 

2000 3029.26 126.22 4.21 

2500 3786.57 157.77 5.26 

3000 4543.89 189.33 6.31 

3500 5301.20 220.88 7.36 

4000 6058.52 252.44 8.41 
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4500 6815.83 283.99 9.47 

5000 7573.14 315.55 10.52 

Table 5.4.10: Repeater mote’s battery life for various battery capacities (60sec period) 

 

 
Figure 5.4.5: Mote’s battery life vs. battery capacity (Repeater mote, 60sec period) 

 

 Sampling period: 90sec 

 

Component Current [mA] Duty Cycle [%] Total current [mA] 

MSP430 Microprocessor       

Active 1.8 0.3 0.0054 

Sleep 0.0051 99.7 0.0050847 

CC2420 Tranceiver       

Receive 18.8 2.32 0.43616 

Transmit 17.4 0 0 

Sleep 0.001 97.68 0.0009768 

SHT11 Temp. Sensor       

Measuring 0.5 0 0 

Sleep 0.0003 100 0.0003 

ST M25P80 Flash       

Active 20 0 0 

Sleep 0.001 100 0.001 

   0.4489 

Table 5.4.11: Duty cycle and current consumption of all components in a Repeater mote (90sec period) 

 

 

 

 

 

Battery Capacity [mAh] Battery Life [h] Battery Life [d] Battery Life [m] 
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500 1113.78 46.41 1.55 

1000 2227.56 92.82 3.09 

1500 3341.34 139.22 4.64 

2000 4455.12 185.63 6.19 

2500 5568.90 232.04 7.73 

3000 6682.68 278.45 9.28 

3500 7796.46 324.85 10.83 

4000 8910.24 371.26 12.38 

4500 10024.02 417.67 13.92 

5000 11137.80 464.08 15.47 

Table 5.4.12: Repeater mote’s battery life for various battery capacities (90sec period) 

 

 
Figure 5.4.6: Mote’s battery life vs. battery capacity (Repeater mote, 90sec period) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Conclusion & Future Work 
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6.1 Conclusion 

 

In this thesis we presented a cost-effective and autonomous solution for passively 

monitoring forest areas. The first chapter served as an introduction to Wireless Sensor 

Networks and their field of applications. In Chapter 2, the reader was presented with the 

basic building block of a WSN, namely the mote. A few of the most popular mote types 

were examined, in search of a mote suited to the needs of an application like this. The 

operating system that made all this possible, TinyOS, along with step-by-step examples and 

a variety of tools that aided our efforts, are introduced and examined in Chapter 3. Chapters 

4 and 5 present what is the main objective of this thesis: the answer to the question “Can an 

area be efficiently monitored for a time long enough, without the presence of a single person 

involved in it?” 

 

It is said that a picture is worth a thousand words: 

 

 
Figure 6.1.1: Logarithmic diagram of all examined motes’ lifetime (60sec period) 

 

In short, yes it can. But since we wanted to be more thorough, we studied two different 

network topologies trying to figure out which one would perform better. An ad-hoc network 

type and one that uses access points. Looking at the figure above, the answer seems logical. 

A FireSense 2.0 mote, may run up to 380 months (that’s 32½ years), sampling its sensors 

and sending the readings over the radio every minute, before its batteries run out. That’s all 

in theory of course, since batteries have an expiration date and the mote’s actual lifetime 

would be around 5 or 6 years [4]. But what matters is that we have actually designed a WSN 

whose fire sensing motes’ energy specification outlasts their batteries’ lifetime. 

That is not the only criterion we should consider though. The ad-hoc WSN is more flexible 

in its deployment and its “resistance” in case of a mote malfunction or end of life. In the 

WSN 2.0 however, in case of a Repeater mote failing to operate, the number of peers that 
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broadcast to it go down as well. What’s more, it is not always certain that the physical 

characteristics of an area will allow for an effective access point distribution. A FireSense 

WSN on the other hand, works as a plug-and-play network, because the motes that compose 

it provide a combination of sensing and packet forwarding. 

 

In the end, it all depends on the needs specific to each case. The first WSN is better suited to 

easily accessible areas with irregularities in its physical formation, and when performing 

maintenance every 10 months is not a problem. WSN 2.0 is better for remote and 

inaccessible areas, in which the motes’ lifetime is the top priority. 

 

6.2 Future Work 

 

The most important enhancement to this thesis would be to test the written source code, on 

real motes. We would like to see whether our simulated results correspond to real mote 

operation. Having a physical mote at hand would enable an engineer to perform tasks that 

are unable to be done in simulation, such as location and time awareness via a GPS 

expansion card or utilization of additional sensors via external sensor boards. Software wise, 

it would enable us to utilize several TinyOS components that a simulator couldn’t use, such 

as the Msp430InternalVoltageC component that gives us the real supply voltage of the 

mote, or the CC2420Config interface that allows us to change the radio range over the air. 

 

Another proposal would be to examine the behavior and responsiveness of a mote under 

heavy CPU load. The maximum duty cycle value of the MCU, that we encountered, was 

about 37% during the first attempt to program the FireSense mote (Section 4.3), but that was 

not a good example of CPU performance; rather an example of how very heavy radio traffic 

can take its toll on the CPU. One could create a CPU intensive scenario by e.g. connecting a 

mote to a camera that takes pictures of an area, compresses them and transmits them. 
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Appendix 
 

FireSense source code 

 

FireSenseC.nc 

 
#include "FireSense.h" 

 

module FireSenseC 

{ 

 uses 

 { 

  //General Interfaces 

  interface Boot; 

  interface Timer<TMilli> as Timer1; 

  interface Timer<TMilli> as Timer2; 

  interface Timer<TMilli> as Timer3; 

  interface Leds; 

   

  //Sensor Interfaces 

  interface Read<uint16_t> as TempRead; 

  interface Read<uint16_t> as LightRead; 

   

  //Radio Interfaces 

  interface Packet; 

  interface AMSend; 

  interface SplitControl as RadioControl; 

  interface Receive; 

 } 

} 

 

implementation 

{ 

 uint8_t numsensors; 

 bool radio_busy = FALSE; 

 bool sensor_data_packet = FALSE; 

 message_t packet; 

 FireSenseMsg_t data; 

 uint8_t array[NUMBER_OF_MOTES+1] = {0}; 

  

 task void startListening(); 

 task void startSensing(); 

 task void sendReadings(); 

 

 event void Boot.booted() 

 { 

  post startListening(); 

 } 

  

 task void startListening() 

 { 

  call RadioControl.start();  

  call Timer1.startOneShot(LISTEN_DURATION_1); 

 } 

  

 event void RadioControl.startDone(error_t error) 

 { 

  if (error == FAIL) 

  { 

   call RadioControl.start(); 

  } 

 } 
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 event void Timer1.fired() 

 { 

  post startSensing(); 

 } 

 

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len) 

 { 

  if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE)) 

  { 

   FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload; 

   if (array[incomingPacket -> node_id] == 0) 

   { 

    FireSenseMsg_t * outgoingPacket; 

    outgoingPacket = (FireSenseMsg_t *) call 

Packet.getPayload(&packet, sizeof(FireSenseMsg_t)); 

    outgoingPacket -> node_id     = incomingPacket -> node_id; 

    outgoingPacket -> temperature = incomingPacket -> temperature; 

    outgoingPacket -> luminance       = incomingPacket -> 

luminance; 

    

    if (call AMSend.send(AM_BROADCAST_ADDR, &packet, 

sizeof(FireSenseMsg_t)) == SUCCESS) 

    { 

     radio_busy = TRUE; 

     sensor_data_packet = FALSE; 

     array[outgoingPacket -> node_id] = 1; 

    } 

   } 

  } 

  return msg; 

 } 

  

 event void AMSend.sendDone(message_t *msg, error_t error) 

 { 

  radio_busy = FALSE; 

  if (sensor_data_packet == TRUE) 

  { 

   call Timer2.startOneShot(LISTEN_DURATION_2); 

  } 

 } 

  

 task void startSensing() 

 { 

  numsensors = 0; 

  radio_busy = TRUE; 

  call Leds.led0On(); 

  call TempRead.read(); 

  call LightRead.read(); 

 } 

 

 event void TempRead.readDone(error_t result, uint16_t val) 

 { 

  data.temperature = val; 

  if (++numsensors == MAX_SENSORS) 

  { 

   post sendReadings(); 

   call Leds.led0Off(); 

  } 

 } 

 

 event void LightRead.readDone(error_t result, uint16_t val) 

 { 

  data.luminance = val; 

  if (++numsensors == MAX_SENSORS) 

  { 

   post sendReadings(); 

   call Leds.led0Off(); 
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  } 

 } 

  

 task void sendReadings() 

 { 

  FireSenseMsg_t * aux; 

  aux = (FireSenseMsg_t *) call Packet.getPayload(&packet, 

sizeof(FireSenseMsg_t)); 

  aux -> node_id     = TOS_NODE_ID; 

  aux -> temperature = data.temperature; 

  aux -> luminance       = data.luminance; 

  if (call AMSend.send(AM_BROADCAST_ADDR, &packet, sizeof(FireSenseMsg_t)) == 

SUCCESS) 

  { 

   radio_busy = TRUE; 

   sensor_data_packet = TRUE; 

   array[aux -> node_id] = 1; 

  } 

 } 

  

 event void Timer2.fired() 

 { 

  call RadioControl.stop(); 

 } 

  

 event void RadioControl.stopDone(error_t error) 

 { 

  call Timer3.startOneShot(SLEEP_DURATION); 

  memset(array,0,sizeof(array)); 

 } 

 

 event void Timer3.fired() 

 { 

  post startListening(); 

 } 

} 

 

FireSenseAppC.nc 

 
configuration FireSenseAppC{ } 

 

implementation 

{ 

 //General 

 components FireSenseC as App; //Main module file 

 components MainC; //Boot 

 components new TimerMilliC() as TimerA; 

 components new TimerMilliC() as TimerB; 

 components new TimerMilliC() as TimerC; 

 components LedsC; 

  

 App -> MainC.Boot; 

 App.Timer1 -> TimerA; 

 App.Timer2 -> TimerB; 

 App.Timer3 -> TimerC; 

 App.Leds -> LedsC; 

 

 //Radio Communication 

 components ActiveMessageC; 

 components new AMSenderC(AM_RADIO); 

 components new AMReceiverC(AM_RADIO); 

  

 App.Packet -> AMSenderC; 

 App.AMSend -> AMSenderC; 

 App.RadioControl -> ActiveMessageC; 
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 App.Receive -> AMReceiverC; 

  

 //Temperature components 

 components new SensirionSht11C() as TempSensor; 

 App.TempRead -> TempSensor.Temperature; 

  

 //Light components 

 components new HamamatsuS1087ParC() as LightSensor; 

 App.LightRead -> LightSensor; 

} 

 

FireSense.h 

 
#ifndef FIRE_SENSE_H 

#define FIRE_SENSE_H 

 

enum 

{ 

 NUMBER_OF_MOTES = 15, 

 MAX_SENSORS = 2, 

 AM_RADIO = 1, 

 LISTEN_DURATION_1 = 1024, 

 LISTEN_DURATION_2 = 1024, 

 SLEEP_DURATION = 28672 

}; 

 

typedef nx_struct FireSenseMsg 

{ 

 nx_uint16_t node_id; 

 nx_uint16_t temperature; 

 nx_uint16_t luminance; 

} FireSenseMsg_t; 

 

#endif /* FIRE_SENSE_H */ 

 

Makefile 

 
COMPONENT=FireSenseAppC 

include $(MAKERULES) 

 

 

FireSense 2.0 source code 

 

FireSense2C.nc 

 
#include "FireSense2.h" 

 

module FireSense2C 

{ 

 uses 

 { 

  //General Interfaces 

  interface Boot; 

  interface Timer<TMilli> as Timer; 

  interface Leds; 

   

  //Sensor Interfaces 

  interface Read<uint16_t> as TempRead; 

  interface Read<uint16_t> as LightRead; 

   

  //Radio Interfaces 
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  interface Packet; 

  interface AMSend; 

  interface SplitControl as RadioControl; 

 } 

} 

 

implementation 

{ 

 uint8_t numsensors; 

 message_t packet; 

 FireSenseMsg_t data; 

  

 task void startSensing(); 

 task void sendReadings(); 

 

 event void Boot.booted() 

 { 

  post startSensing(); 

 

 } 

  

 task void startSensing() 

 { 

  numsensors = 0; 

  call Leds.led0On(); 

  call TempRead.read(); 

  call LightRead.read(); 

 } 

  

 event void TempRead.readDone(error_t result, uint16_t val) 

 { 

  data.temperature = val; 

  if (++numsensors == MAX_SENSORS) 

  { 

   post sendReadings(); 

   call Leds.led0Off(); 

  } 

 } 

 

 event void LightRead.readDone(error_t result, uint16_t val) 

 { 

  data.luminance = val; 

  if (++numsensors == MAX_SENSORS) 

  { 

   post sendReadings(); 

   call Leds.led0Off(); 

  } 

 } 

  

 task void sendReadings() 

 { 

  FireSenseMsg_t * aux; 

  aux = (FireSenseMsg_t *) call Packet.getPayload(&packet, 

sizeof(FireSenseMsg_t)); 

  aux -> node_id     = TOS_NODE_ID; 

  aux -> temperature = data.temperature; 

  aux -> luminance       = data.luminance; 

  call RadioControl.start(); 

 } 

  

 event void RadioControl.startDone(error_t error) 

 { 

  if (error == FAIL) 

  { 

   call RadioControl.start(); 

  } 

  else 
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  { 

   call AMSend.send(AM_BROADCAST_ADDR, &packet, sizeof(FireSenseMsg_t)); 

  } 

 } 

  

 event void AMSend.sendDone(message_t *msg, error_t error) 

 { 

  call RadioControl.stop(); 

 } 

 

 event void RadioControl.stopDone(error_t error) 

 { 

  if (error == FAIL) 

  { 

   call RadioControl.stop(); 

  } 

  else 

  { 

   call Timer.startOneShot(PERIOD); 

  } 

 } 

  

 event void Timer.fired() 

 { 

  post startSensing(); 

 } 

} 

 

FireSense2AppC.nc 

 
configuration FireSense2AppC 

{ 

  

} 

implementation 

{ 

 //General 

 components FireSense2C as App; //Main module file 

 components MainC; //Boot 

 components new TimerMilliC() as Timer; 

 components LedsC; 

  

 App -> MainC.Boot; 

 App.Timer -> Timer; 

 App.Leds -> LedsC; 

 

 //Radio Communication 

 components ActiveMessageC; 

 components new AMSenderC(AM_RADIO); 

  

 App.Packet -> AMSenderC; 

 App.AMSend -> AMSenderC; 

 App.RadioControl -> ActiveMessageC; 

  

 //Temperature components 

 components new SensirionSht11C() as TempSensor; 

 App.TempRead -> TempSensor.Temperature; 

  

 //Light components 

 components new HamamatsuS1087ParC() as LightSensor; 

 App.LightRead -> LightSensor; 

} 

 

 



 

100 

 

FireSense2.h 

 
#ifndef FIRE_SENSE2_H 

#define FIRE_SENSE2_H 

 

enum 

{ 

 MAX_SENSORS = 2, 

 AM_RADIO = 1, 

 PERIOD = 28672 

}; 

 

typedef nx_struct FireSenseMsg 

{ 

 nx_uint16_t node_id; 

 nx_uint16_t temperature; 

 nx_uint16_t luminance; 

} FireSenseMsg_t; 

 

#endif /* FIRE_SENSE2_H */ 

 

Makefile 

 
COMPONENT=FireSense2AppC 

CFLAGS += -DCC2420_DEF_RFPOWER=11 

include $(MAKERULES) 

 

 

Repeater source code 

 

RepeaterC.nc 

 
#include "Repeater.h" 

 

module RepeaterC 

{ 

 uses 

 { 

  //General Interfaces 

  interface Boot; 

  interface Timer<TMilli> as Timer1; 

  interface Timer<TMilli> as Timer2; 

   

  //Radio Interfaces 

  interface Packet; 

  interface AMSend; 

  interface SplitControl as RadioControl; 

  interface Receive; 

 } 

} 

 

implementation 

{ 

 bool radio_busy = FALSE; 

 message_t packet; 

 FireSenseMsg_t data; 

 uint8_t array[NUMBER_OF_MOTES+1] = {0}; 

  

 task void startListening(); 

 

 event void Boot.booted() 
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 { 

  post startListening(); 

 } 

  

 task void startListening() 

 { 

  call RadioControl.start();  

  call Timer1.startOneShot(LISTEN_DURATION); 

 } 

  

 event void RadioControl.startDone(error_t error) 

 { 

  if (error == FAIL) 

  { 

   call RadioControl.start(); 

  } 

 } 

 

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len) 

 { 

  if (len == sizeof(FireSenseMsg_t) && (radio_busy == FALSE)) 

  { 

   FireSenseMsg_t * incomingPacket = (FireSenseMsg_t *) payload; 

   if (array[incomingPacket -> node_id] == 0) 

   { 

   FireSenseMsg_t * outgoingPacket; 

   outgoingPacket = (FireSenseMsg_t *) call Packet.getPayload(&packet, 

sizeof(FireSenseMsg_t)); 

   outgoingPacket -> node_id     = incomingPacket -> node_id; 

   outgoingPacket -> temperature = incomingPacket -> temperature; 

   outgoingPacket -> luminance   = incomingPacket -> luminance; 

    

   if (call AMSend.send(AM_BROADCAST_ADDR, &packet, 

sizeof(FireSenseMsg_t)) == SUCCESS) 

   { 

    radio_busy = TRUE; 

    array[outgoingPacket -> node_id] = 1; 

   } 

   } 

  } 

  return msg; 

 } 

  

 event void AMSend.sendDone(message_t *msg, error_t error) 

 { 

  radio_busy = FALSE; 

 } 

  

 event void Timer1.fired() 

 { 

  call RadioControl.stop(); 

 } 

  

 event void RadioControl.stopDone(error_t error) 

 { 

  call Timer2.startOneShot(SLEEP_DURATION); 

  memset(array,0,sizeof(array)); 

 } 

 

 event void Timer2.fired() 

 { 

  post startListening(); 

 } 

} 
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RepeaterAppC.nc 

 
configuration RepeaterAppC{} 

 

implementation 

{  

 //General 

 components RepeaterC as App; //Main module file 

 components MainC; //Boot 

 components new TimerMilliC() as TimerA; 

 components new TimerMilliC() as TimerB; 

  

 App -> MainC.Boot; 

 App.Timer1 -> TimerA; 

 App.Timer2 -> TimerB; 

 

 //Radio Communication 

 components ActiveMessageC; 

 components new AMSenderC(AM_RADIO); 

 components new AMReceiverC(AM_RADIO); 

  

 App.Packet -> AMSenderC; 

 App.AMSend -> AMSenderC; 

 App.RadioControl -> ActiveMessageC; 

 App.Receive -> AMReceiverC; 

} 

 

Repeater.h 

 
#ifndef REPEATER_H 

#define REPEATER_H 

 

enum 

{ 

 NUMBER_OF_MOTES = 16, 

 LISTEN_DURATION = 2048, 

 SLEEP_DURATION = 30720, 

 AM_RADIO = 1 

}; 

 

typedef nx_struct FireSenseMsg 

{ 

 nx_uint16_t node_id; 

 nx_uint16_t temperature; 

 nx_uint16_t luminance; 

} FireSenseMsg_t; 

 

#endif /* REPEATER_H */ 

 

Makefile 

 
COMPONENT=RepeaterAppC 

include $(MAKERULES) 
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BaseStation source code 

 

BaseStationC.nc 

 
#include "BaseStation.h" 

#include <stdio.h> 

#include <string.h> 

 

module BaseStationC 

{ 

 uses 

 { 

  //General Interfaces 

  interface Boot; 

  interface Leds; 

   

  //Radio Interfaces 

  interface Packet; 

  interface AMSend; 

  interface SplitControl as RadioControl; 

  interface Receive; 

   

  interface Timer<TMilli> as Timer; 

 } 

} 

 

implementation 

{ 

 uint8_t array[NUMBER_OF_MOTES+1] = {0}; 

 uint16_t celsius; 

 uint16_t lux; 

 

 event void Boot.booted() 

 { 

  call Timer.startPeriodic(TIMER_RESET); 

  call RadioControl.start(); 

  call Leds.led1On(); 

 } 

 

 event void RadioControl.startDone(error_t error) 

 { 

  if (error == FAIL) 

  { 

   call RadioControl.start(); 

  } 

 } 

 

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len) 

 { 

  FireSenseMsg_t *incomingPacket = (FireSenseMsg_t *) payload; 

  if (array[incomingPacket -> node_id] == 0) 

  { 

   uint16_t val1 = incomingPacket -> temperature; 

   uint16_t val2 = incomingPacket -> luminance; 

   uint16_t val3 = incomingPacket -> node_id; 

   celsius = -39.6 + 0.01 * val1; 

   lux = 3.815 * val2; 

   printf("Mote: %d Temperature: %d Luminance: %d \n", val3, celsius, 

lux); 

   array[val3] = 1; 

   if ( ((celsius >= 40) && (celsius <= 45)) || ((lux >= 600) && (lux <= 

300)) ) 

   { 

    call Leds.led2On(); 

   } 
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   else if ( (celsius >= 45) || ((lux >= 800) && (lux <= 100)) ) 

   { 

    call Leds.led0On(); 

   } 

  } 

  return msg; 

 } 

  

 event void Timer.fired() 

 { 

  memset(array,0,sizeof(array)); 

  call Leds.led0Off(); 

  call Leds.led2Off(); 

 } 

  

 event void RadioControl.stopDone(error_t error) 

 { 

   

 } 

 

 event void AMSend.sendDone(message_t *msg, error_t error) 

 { 

   

 } 

} 

 

BaseStationAppC.nc 

 
configuration BaseStationAppC 

{ 

  

} 

 

implementation 

{ 

 components BaseStationC as App; 

 components MainC; 

 components LedsC; 

 components new TimerMilliC(); 

   

 App -> MainC.Boot; 

 App -> LedsC.Leds; 

 App -> TimerMilliC.Timer; 

  

 components ActiveMessageC; 

 components new AMSenderC(AM_RADIO); 

 components new AMReceiverC(AM_RADIO); 

  

 App.Packet -> AMSenderC; 

 App.AMSend -> AMSenderC; 

 App.RadioControl -> ActiveMessageC; 

 App.Receive -> AMReceiverC; 

  

 components SerialPrintfC; 

} 

 

BaseStation.h 

 
#ifndef BASE_STATION_H 

#define BASE_STATION_H 

 

enum 

{ 

 NUMBER_OF_MOTES = 15, 
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 AM_RADIO = 1, 

 TIMER_RESET = 30720 

}; 

 

typedef nx_struct FireSenseMsg 

{ 

 nx_uint16_t node_id; 

 nx_uint16_t temperature; 

 nx_uint16_t luminance; 

} FireSenseMsg_t; 

 

#endif /* BASE_STATION_H */ 

 

Makefile 

 
COMPONENT = BaseStationAppC 

PFLAGS += -I$(TOSDIR)/lib/printf 

include $(MAKERULES) 


