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Summary

Modelling of water waves is an extensive domain of research which plays an im-
portant role in many engineering applications such as wave run-up on coasts and
structures or wave-body interaction (especially ship dynamics). Water waves (the
terms surface waves and gravity waves are also in use) are created normally by
a gravitational force in the presence of a free surface along which the pressure
is constant. An important feature of this problem is that propagation phenom-
ena take place in horizontal directions, and non-local couplings (wave-wave and
seabed-wave) exist through the vertical structure of the flow field.

In this thesis we consider the problem of evolution of waves on the surface of
an inviscid, incompressible fluid over an arbitrary seabed topography under the
influence of gravity. The Eulerian description of the fluid is adopted, i.e. the
motion of the fluid particles is determined by the velocity field in the domain
occupied by water at every moment of time.

In the first chapter the equations of the physical problem are presented. The
flow is considered irrotational. The unknown physical quantities involved are the
velocity potential and the free surface elevation. The equations governing the phys-
ical problem are, a linear partial differential equation (Laplace), for the velocity
potential, in a time dependent domain bounded from above by the free surface,
and a fixed bottom surface, from below. A homogenous Neumann condition have
to be satisfied on the bottom surface and two non linear boundary conditions on
the free surface. Time differentiation appears only in the two equations on the free
surface.

In the second chapter the Hamiltonian formulation of the problem is presented.
The Hamiltonian which equals the total energy is written in terms of the free
surface elevation and the trace of the velocity potential on the free surface, by
means of an appropriate Dirichlet to Neumann operator. The evolution of the
system is described by means of surface quantities which play the role of generalized
coordinates and momenta. This is possible only if we take into account a priori,
the fact that the flow is incompressible and irrotational and the bottom surface
impermable. We then derive Hamilton’s equations by varying the Hamiltonian.
The resulting system is two non-linear and non-local evolution equations in terms
of surface quantities.

In the third chapter another variational principle of the water wave problem
(Luke’s Variational Principle), is presented. In this formulation, apart from irro-
tationality, no other kinematic conditions have to be satisfied a priori since all the
equations presented in Chapter 1 are derived by the variational principle. The
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Lagrangian density involved is the integral of the pressure over the whole time-
dependent domain. In the last section of this chapter the connection between
Luke’s variational principle and Hamilton’s principle is established.

In the fourth chapter we apply Luke’s variational principle in conjunction with
an accurate consistent representation of the velocity potential. The representation
is an infinite series expansion in terms of vertical functions with fast decaying
coefficients which is compatible with the bottom and free-surface conditions. The
main feature is that it permit us to represent exactly the velocity potential in the
variational principle. The end result is a reformulation of the fully non-linear water
wave problem as a system of two evolution equations and an infinite coupled mode
system of ODE’s (2D-case) or PDE’s (3D-case). A biproduct of this analysis is a
novel representation of the DtN operator, which is exact, general and convenient
for the case of general bathymetry.
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1 Physical context - Differential formulation of

the water wave problem

In this chapter we summarize briefly the formulation of the problem of water waves

which can be found in many books (see eg. [Wit74, Ch. 13, s. 1], [Sto57, Ch. 1, s.

1], [Lam75, Ch. 9, s. 227]) in literature.

Consider an inviscid incompressible fluid (water) in a constant gravitational

field over a general bathymetry. The horizontal and vertical space coordinates are

denoted by x := (x1, x2) and z respectively and the corresponding components

of the velocity vector u by (u1, u2, v). The gravitational acceleration g is in the

negative z direction. We assume in addition that the density ρ remains constant

and that there is an external force F = −ρg(0, 0, 1). We can write the equations

of motion (Euler Equations)

Du

Dt
= ∂tu+ (u · ∇)u = −1

ρ
∇p− g(0, 0, 1),(1.1)

which together with the continuity equation (recall that ∂tρ = 0)

divu = ∂x1u1 + ∂x2u2 + ∂zv = 0,(1.2)

constitute a system of partial differential equations that once appropriate boundary

and initial conditions are specified can provide us the velocity u = (u1, u2, v) and

pressure p.

In the rest of the thesis the fluid flow is assumed to be irrotational (i.e. curlu =

∇×u = 0), so the existence of a singled valued potential Φ(x, z, t) is assured from

which the velocity field is derived

u = ∇Φ ≡ (∂x1Φ, ∂x2Φ, ∂zΦ).(1.3)

From (1.2), Φ satisfies the Laplace equation

∆Φ = ∂2
x1x1

Φ + ∂2
x2x2

Φ + ∂2
zzΦ = 0.(LE)

Substituting (1.3) in (1.1) and integrating over the liquid domain we obtain the

so called Bernoulli’s Principle for irrotational flow

∂tΦ +
1

2
(|∇Φ|2) +

p

ρ
+ gz = f(t),(1.4)
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where f(t) is an arbitrary function of time. The potential equation (LE) can be

used to determine the velocity components and then Bernoulli’s principle (1.4) will

give the pressure p. We note that the pressure p depends on f(t) which is function

only of time and does not depend on the space variables of the fluid domain. This

function added to the pressure does not change the pressure gradient, hence, does

not effect the motion of the fluid. f(t) can be absorbed in Φ simply by introducing

a potential Φ′ = Φ −
∫
f(t)dt. Φ′ is harmonic and satisfies ∇Φ′ = ∇Φ. Taking

(1.4) for Φ′ the right hand side vanishes, thus we may take f(t) ≡ 0 without loss

of generality.

At this point we have to define precisely the fluid domain in order to proceed

to the statements of the boundary conditions. We consider the case of two fluids

(water - air), separated by an interface described by a function η(x, t), over a bot-

tom fixed boundary described by h(x). For t ≥ t0 denote by Dηh(t) the (unknown)

time dependent fluid domain defined by

Dηh = {(x, z) ∈ S × R : z ∈ (−h(x), η(x, t))} ,(1.5)

where S ⊆ R2 is the horizontal projection of the free surface. The bottom bound-

ary (bathymetry) and the unknown free surface that bound the fluid domain ver-

tically are denoted by

Γh = {(x, z) ∈ S × R : z = −h(x)} ,(1.6)

Γη(t) = {(x, z) ∈ S × R : z = η(x, t)} .(1.7)

We denote by N− = 1√
1+|∇xh|2

(−∇xh,−1)T and N+ = 1√
1+|∇xη|2

(−∇xη, 1)T the

outward unit normal vectors to Γh and Γη(t) respectively, where ∇x = (∂x1 , ∂x2)

is the horizontal gradient. On the fixed bottom boundary Γh the normal velocity

of the fluid must vanish

N− · [u]z=−h = 0 for t ≥ 0, x ∈ S.(1.8)

The interface between two fluids is defined by the property that no particles cross

it. This means that the velocity of the fluid normal to the Γη(t) equals the normal

velocity of Γη(t). Hence,

N+ · [u]z=η =
−∂tη√
|∇xη|2 + 1

for t ≥ 0, x ∈ S.(1.9)
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Figure 1.1: The configuration of the fluid domain

Using u = ∇Φ the above conditions yield

∇xh · ∇xΦ + ∂zΦ = 0, on Γh, t ≥ t0,(KC1)

∂tη +∇xΦ · ∇xη − ∂zΦ = 0, on Γη(t), t ≥ t0.(KC2)

Equation (KC1) is a Neumann boundary condition while (KC2) shows that the

particles of the fluid that are initially in the free surface remain there and it is

a kinematic boundary condition. These conditions are not sufficient to determine

both η and Φ and another boundary condition on the free surface is needed. Since

the free surface is massless, the forces in the fluids on the two sides must be equal,

hence, (neglecting surface tension) the pressure in the water and the pressure in

the air must be equal at the surface. Using the fact that the density of air is very

small compared with that of water we can assume that the pressure in air does not

change as the free surface evolves. This way we can prescribe the value p̄ for the

externally applied pressure (due to air) and state the boundary condition p = p̄

on Γη(t). Hence, (1.4) yields the condition

∂tΦ +
1

2
|∇Φ|2 + gη = − p̄

ρ
= 0 on Γη(t), t ≥ t0,(DC)
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where we chose p̄ = 0. Eq. (DC) is called Bernoulli or dynamic boundary condition.

In the horizontal dimensions, Dηh is unbounded so a condition at infinity is needed.

A natural one is that the derivatives of Φ and η stay bounded as |x| → ∞. To sum

up, the formulation of the water wave problem can be stated as follows: Given

the externally applied pressure p̄ and the bottom fixed boundary h(x) find the free

surface elevation η(x, t) and the velocity potential Φ(x, z, t), (x, z) ∈ Dηh, t > t0
that satisfy the following system

∆Φ = 0, in Dηh(t),
∇xh · ∇xΦ + ∂zΦ = 0, on Γh,

∂tη +∇xΦ · ∇xη − ∂zΦ = 0, on Γη(t),

∂tΦ +
1

2
|∇Φ|2 + gη = 0, on Γη(t).

(PWW )

The above system should be supplemented with appropriate initial conditions or

conditions at infinity in the case of an horizontally unbounded liquid or specific

lateral conditions in the case there are lateral boundaries.

Remark 1. Instantaneously, Φ satisfies a boundary value problem which depends

non-linearly on the shape of the domain Dηh which unknown. Thus the geometry

cannot be solved straightforward from the linear equation. Time differentiation is

not applied to the field equation (LE) but in the boundary conditions (KC2) and

(DC). The velocity potential Φ satisfies a linear equation in Dηh and two non-linear

boundary conditions on the free surface, which is in contrast with the usual linear

boundary condition for an elliptic equation, such as (KC1).
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2 Hamiltonian formulation for the water wave

problem

In this chapter we describe the variational structure of the hydrodynamic problem

presented in Chapter 1. In the first section we recall the elementary facts about

the reformulations of Classical mechanics, namely the Lagrangian and Hamiltonian

formalism and give their generalization for systems with a continuous number of

degrees of freedom.

2.1 General background

Some standard books on the theoretical framework of Classical Mechanics are

[Gol80, AM78, MRA01, LL60, Arn78, Gan75]. At first we recall the basic facts

about an ideal classical mechanical dynamical systems with finite degrees of free-

dom.

Lagrangian Formalism: In the case of a classical mechanical dynamical system,

a discrete set of functions of time, denoted by qi(t), i = 1, ..., N can be considered

as a set of generalized coordinates if the following two requirements are satisfied

1. The geometric configuration of the system at any time instant t is fully

described by means of the values of qi(t), i = 1, ..., N and

2. The set {qi(t), i = 1, ..., N} is minimal, in the sense that there is no any

functional relationship of the form

f(q1(t), q2(t), ..., qn(t)) = 0, t ≥ t0

compatible with the totality of the geometric configuration of the system for

all t ≥ t0.

The time derivatives of the generalized coordinates qi, are denoted by q̇i and are

called the generalized velocities of the system. The system of generalized coor-

dinates and velocities {qi(t), q̇i(t), i = 1, 2, ..., N} provides a complete geometric

and kinematic description of the dynamical system. A function

L = L(t, q, q̇)(2.1)
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of 2N+1 arguments is called a Lagrangian function of the mechanical system. The

evolution of the generalized coordinates is governed by the system of equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, ..., N(2.2)

called Lagrange Equations. In classical mechanics the Lagrangian function is given

by the equation

L(t, q, q̇) = K(t, q, q̇)− V (t, q, q̇)(2.3)

where K is the kinetic energy, V is the potential energy and we assumed the ab-

sence of external forces (i.e forces that are not described by the potential energy

V ).

Hamiltonian Formalism: Assuming that a classical mechanical dynamical sys-

tem admits of a Lagrangian formalism, one can define the generalized momenta

p(t) = {pi(t)}Ni=1 corresponding to the generalized coordinates by the equations

pi(t) =
∂

∂q̇i
L(t, q(t), q̇(t)), i = 1, ...N,(2.4)

where ∂/∂q̇i is the partial derivative with respect to q̇i, i = 1...N . The Hamiltonian

of the system is defined by the equation

H(t, q,p) =
N∑
i=1

piq̇i − L(t, q, q̇)(2.5)

The space of all possible states (q,π) of the system is called the phase space of

the system. The basic object of the theory is the Hamiltonian which is a function

(q,π) → H(q,π) of the positions q and momenta p of the system, which equals

the sum of the kinetic and potential energy. i.e the total energy.

H = K + V(2.6)

The system then evolves according to Hamilton’s equations

∂tqi =
∂H

∂pi
,

∂tpi = −∂H
∂qi

.

(2.7)
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Defining the action functional

S =

∫ T

t0

( N∑
i=1

piq̇i −H(t, q,p)
)

(2.8)

one can derive Hamilton’s equations variationally by examining the stationarity of

S.

In the case of a system of classical mechanics the configuration space is an

N -dimensional manifold representing all the kinematically admissible positions

q ∈ M ⊆ RN . For q ∈ M , q̇ = ∂tq is an element of the tangent space Tq(M).

The corresponding Langrangian function L = L(q, q̇, t) is a function on the tan-

gent bundle T (M) = {(q, q̇)|q ∈M, q̇ ∈ Tq(M)} ⊆ R2N . The generalized mo-

menta p lies in the cotangent space T ∗q (M) and the evolution t 7→ (q(t), p(t)) is

described in terms of Hamiltonian function H : T ∗(M) → R, where T ∗(M) ={
(q, p) : q ∈M, p ∈ T ∗q (M)

}
is the cotangent bundle. T ∗(M) is the phase space in

which the system evolves.

The above classical mechanical formalism can be extended in the case of gener-

alized coordinates that are continuously distributed i.e qx(t) = q(x, t), x ∈ D ⊆ Rd.

We then say that the system admits of a Lagrangian formalism if there is a function

L = L(t, q(x, t), q̇(x, t)) such that the governing equations (Lagrange equations)

take the form

∂

∂t

δL

δq̇
− δL

δq
= 0, x ∈ D(2.9)

where δ/δq and δ/δq̇ are the variational derivatives. The configuration space is an

infinite dimensional manifold M and the generalized momenta are defined by

px(t) =
δ

δq̇x(t)
L(qx(t), q̇x(t))(2.10)

where δ/δq̇x(t) is the variational derivative with respect to q̇x(t). Accordingly

Hamilton’s equations are

∂tq =
δH

δp
(2.11)

∂tp = −δH
δq

(2.12)
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or writing u = (q, p)T , ∇H =
(δH
δq
,
δH

δp

)T
{
∂tu = J∇H(u)

u(t0) = u0 ∈M
(2.13)

where

J =

(
0 1

−1 0

)
.

The solution map t 7→ St(u0) is a mapping that describes the evolution of

the system from an initial state (q(t0), π(t0)) to (q(t), π(t)) in the phase space.

When M is finite dimensional and the Hamiltonian field XH(u) ∈ C1(M → R)

(i.e. H ∈ C2(M → R)) then by the usual theory of ODE’s there exists a unique

solution for the initial value problem (2.13) locally in time.

2.2 Generalized coordinates and kinetic energy

of water waves

In this section we review the Hamiltonian structure of the water wave problem.

i.e the fact that Eqs. (PWW ) can be put in Hamiltonian form (2.11). For the

case of a fluid with infinite depth Zakharov [Zak68] was the first that provided us

the Hamilton’s equations for the free surface evolution equations (infinite depth

water). The observation of Zakharov was that the potential on the free surface and

the free surface elevation are enough to define the fluid flow since the boundary

value problem for the Laplace equation, given the free surface and the value of

the potential on it, is well-posed. Craig and Sulem [CS93] expressed Zakharov’s

equations by means of an appropriate Dirichlet to Neumann (DtN) operator which

is a an operator that maps the potential on the free surface (Dirichlet data) to the

normal derivative of the potential on the free surface (Neumann data) multiplied

by a scalar function. Later Craig et al.[CGS09] generalized this formulation in the

case of variable bathymetry. The Hamiltonian H is regarded as a functional of

(η, ϕ) where η(x, t) is the height of the free surface, and ϕ(x, t) is the trace of the

harmonic function Φ on the free surface, with homogenous Neumann condition on

the bottom. The evolution takes place in the space of harmonic functions on Dηh.
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Recall that the free surface Γη(t) is fully described by the equation, z = η(x, t),

as a graph Γη(t) = {(x, z) ∈ R2 × R : z = η(x, t)}. The configuration space M is

the space of all possible free surface elevations t 7→ qx(t) = η(x, t), x ∈ S ⊂ R2

where S is the projection of Γη on the horizontal plane (x1, x2). Notice that the

generalized co-ordinates and velocities, qx(t) = η(x, t), q̇x(t) = η̇(x, t), respec-

tively, are continuously distributed on S ⊂ R2. To proceed further in developing

a Hamiltonian formalism for the water wave problem, we need to express the La-

grangian density L = K − V with respect to the tangent variables (η, η̇). The

kinetic energy of the fluid domain is given by

K =
1

2

∫
Dηh

|∇Φ|2 dz dx.(2.14)

This is a domain functional since the domain of integration changes as the system

evolves. Via Green’s formula the kinetic energy functional can be written as

K =
1

2

(
−
∫
Dηh

Φ ∆Φ dxdz +

∫
Γh

Φ ∂N−Φ dΓh +

∫
Γη

Φ ∂N+Φ dΓη

)
.(2.15)

Introducing the trace of Φ on the free surface Γη

ϕ(x, t) = Φ(x, η(x, t), t) =: [Φ]z=η,(2.16)

and taking into account the kinematics ,(LE), (KC1) (i.e irrotationality, incom-

bressibility and bottom boundary condition), of the problem, we see that the first

two terms are zero while the third can be expressed as

K =
1

2

∫
S

ϕ∂N+ΦR+ dx.(2.17)

where R+ = (1 + |∇xη|2)1/2. Notice that the integrand depends on surface quan-

tities. The next step is to write the normal derivative of the potential on Γη, that

appears in the above expression, with respect to the potential on Γη. Zakharov (in

the case of deep water) linked the two quantities by means of the Green’s function

associated associated with the boundary value problem for the Laplace equation.

Here we follow [CS93] where an appropriate Dirichlet to Neumann operator is

used which maps the velocity potential on the free surface to the normal derriva-

tive of the potential velocity on the free surface multiplied by the scalar function

R+ = (1 + |∇xη|2)1/2.
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2.2.1 The DtN Operator

Consider the following elliptic boundary value problem in the fluid domain Dηh
∆Φ = 0 in Dηh

[Φ]z=η = ϕ,

N− · [∇Φ]z=−h = 0

(PDtN)

together with appropriate lateral conditions. Supposing that η and h are smooth

enough then there exists a unique Φ in ∈ Hk+2(Dηh), satisfying the essential condi-

tion [Φ]z=η = ϕ, solution (variational, classical) to (PDtN) (for a proof of this state-

ment, see [Lan05, Lem. 2.9, Th . 2.9]).1 The well-posedness of problem (PDtN) de-

termines an one-to-one correspondance between the Dirichlet and Neumann data.

This motivates the definition of an operator which maps the Dirichlet data

(ϕ =
[
Φ
]
z=η

) onto the Neumann data (∂N+Φ) multiplied with a the scalar function

R+ that are involved in the expression of the kinetic energy functional.

Definition 2.1 (DtN Operator). For the fluid domain Dηh defined by the instan-

taneous surface elevation η(·, t), h ∈ C1(R2) for t ≥ t0 and the unique solution Φ

of problem (PDtN) define

G(η, h) : ϕ 7→ R+∂N+Φ|Γη ,(2.18)

where R+ = (1 + |∇xη|2)
1/2

.

Clearly, the DtN operator is linear in ϕ and possitive since

(ϕ,G(η, h)ϕ) =

∫
S

[Φ]z=ηR+∂N+Φ dx

=

∫
Γη

Φ∂N+Φ dΓη

=

∫
Dηh

|∇Φ|2 dV > 0.

Apparently this is not exactly the DtN operator since it maps the Dirichlet data

to the Neumann data multiplied by the scalar function R+. Thus defined, DtN

1Thus the behaviour of ϕ as |x| → ∞ uniquely determines the behaviour of Φ near infinity.

Additionaly if we consider horizontal bottoms h(x) and periodic η(x, t) and ϕ then Φ will be

periodic too.
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operator is self-adjoint.2 Indeed let u, v sufficiently smooth functions on R2 (e.g.

Schwartz) and consider their harmonic extensions U , V in Dηh satisfying (PDtN).

Green’s identity for U , V gives∫
Γη

{
U(∂N+V )− V (∂N+U)

}
dΓη = 0.

Hence

(u,G(η, h)v) = (v,G(η, h)u) , ∀u, v ∈ S(R2),(2.19)

where S(R2) is the Schwartz space.

It is known that such operators depend analytically on the parametrization of

the surface η. Coifman and Meyer in [CM85] considered small Lipschitz perturba-

tions of a line or plane, and Craig et al. [HN05] C1 perturbations of hyperplanes

in any dimension. See also [NR01].

Kinetic energy

From the definition of DtN and (2.17), the kinetic energy functional K can be

written in terms of η and ϕ as

K[ϕ, η] =
1

2

∫
S

ϕG(η, h)ϕdx,(2.20)

which is an integral functional quadratic in ϕ that depends non-linearly and non-

locally on η and h through the DtN operator. Note that till this point the only

information from the fluid interior used, in order to write the kinetic energy in

terms of surface variables, is irrotationality and incombressibility (LE) and im-

permability of the bottom surface (KC1). The kinematic free boundary condition

(KC2) can be written as

∂tη = G(η, h)ϕ.(2.21)

2See also [Mil90] where instead of the DtN operator the operator K̂ is used, defined by

K̂ = R2
+D̂ − ∇xη · ∇x , where D̂ is the operator that reproduces the vertical derivative of the

potential. i.e. D̂ϕ = [∂zΦ]z=η. The operator K̂ equals the DtN operator and eventually is

self-adjoint.

11



Inverting the above linear equation we can write the Lagrangian with the respect

to the tangent variables (η, ∂tη) as

L[η, ∂tη] = K[η, ∂tη]− V [η] =
1

2

∫
S

η̇ G−1(η, h)η̇ dx − 1

2

∫
S

η2 dx,(2.22)

where integration by parts have been performed for the potential energy term.

This expression permits us to derive the canonical coordinates of the water wave

problem from first principles of mechanics ([Cra07, CGK00]). Similar expressions

as the above are derived by Milder in [Mil77a] by means of a suitable Green

function and by Athanassoulis in [Ath97] by means of a Neumann function in the

case of the presence of mouving bodies in the fluid.

2.3 Hamilton’s Equations for the water wave prob-

lem

From (2.22) we can derive the generalised momentum

δL
δη̇

= G−1(η, h)η̇ = ϕ.(2.23)

We then construct the Hamiltonian functional using the Legendre transform

H[η, ϕ] =
1

2

∫
S

ϕG(η, h)ϕdx +
g

2

∫
S

η2dx,(2.24)

It is clear that we need the shape derivative of DtN operator in order to compute

the variation of the kinetic energy functional K. To that direction we use the

formulla from [Lan05].

Theorem 2.1. [Lan05, Th. 3.20] The mapping

η 7→ G(η, h)ϕ,

is well defined and differentiable. For all δη one has

δηG(η, h)ϕ · δη = −G(η, h)
(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
δη
)
−

−∇x ·
[(
∇xϕ−

(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
∇xη

))
δη

]
.
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Lemma 2.1. The first variation of the kinetic energy functional

K[ϕ, η] =
1

2

∫
S

ϕG(η, h)ϕdx,

in the direction δη reads

δηK[ϕ, η; δη] =

∫
S

{
− 1

2
|∇xϕ|2 +

1

2R2
+

(
(G(η, h)ϕ) +∇xϕ · ∇xη

)2
}
δη dx.

Proof. From the preceding theorem we have

δηK[ϕ, η; δη] =
1

2

∫
S

ϕ
(
δηG(η, h)ϕ · δη

)
dx

=
1

2

∫
S

{
− ϕG(η, h)

(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
δη
)
−

− ϕ∇x ·
[(
∇xϕ−

(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
∇xη

))
δη
]}

dx.

Using the self-adjointness of DtN (2.19) for the first term and integration by parts

for the second we obtain

δηK[ϕ, η; δη] =
1

2

∫
S

−G(η, h)ϕ
(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
δη
)
−

−∇xϕ ·
[(
∇xϕ−

(
R−2

+

(
G(η, h)ϕ+∇xη · ∇xϕ

)
∇xη

))
δη

]
dx,

and after some elementary algebra we obtain the result

Taking the variational derivatives of the Hamiltonian H[ϕ, η] = K[ϕ, η] + V [η]

(2.24) one verifies that Hamilton’s Equations (2.11) read


∂tη =

δK
δϕ

= G(η, h)ϕ,

∂tϕ = − gη − δK
δη

= −gη +
1

2
|∇xϕ|2 −

1

2R2
+

(
(G(η, h)ϕ) +∇xϕ · ∇xη

)2
.

(HE)

which is an evolution Hamiltonian system of equations for the elevation of the free

surface η(x, t) and the trace of the velocity potential on the free surface ϕ(x, t).

These equations are equivalent with the boundary conditions (KC2), (DC) while

(LE) and (KC1) are expressed through the definition of the DtN operator.
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Given a procedure for estimating the DtN operator in the instantaneous fluid

domain Dηh (subject to lateral boundary conditions), the water-wave problem is

reduced to the simultaneous time-integration of the kinematic and the dynamic

free surface boundary conditions. Craig and Sulem in [CS93], used a Taylor series

expansion of the DtN operator, for the case of an horizontal bottom. The same

method was extended in the variable bottom case in [CGS09] and applied to small-

amplitude long waves propagating over a randomly varying bottom. Recently

Craig et al. [CLS11] studied these equations in the case of rapidly varying periodic

bottom boundary in the shallow water scaling regime. For a brief review of the

DtN approach see [Sch05].
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3 An unconditional variational principle for the

water wave problem (PWW )(Luke’s Principle)

and its connection with Hamilton’s Principle

The physical situation presented in Chapter 1 is classically described by means of

the fields Φ(x, z, t) and η(x, t) with x ∈ S ⊆ R2, (x, z) ∈ Dηh and t ≥ t0 and the

system of equations (PWW ) together with inital-latteral conditions. This system

was obtained by a variational principle from the observation of Luke in [Luk67],

that the action functional that gives the correct field equation (Laplace equation)

together with all the important boundary conditions is

S[Φ, η] =

∫
I

∫
Dηh

(
∂tΦ +

1

2
|∇Φ|2 + gz

)
dV dt,(3.1)

that is the integral of the pressure over the whole time-dependent domain I ×Dηh.
Here no a priori separation of the kinematic part of the problem is needed as in

the derivation of Hamilton’s equations (Chapter 2). We refer also to [Pet64] where

the case of waves in a finite container is treated (with surface tension). In the

following sections Luke’s principle is rederived as a special case of a more general

functional.

3.1 Notation and Preliminaries

In what follows let Φ ∈ C1
(

[t0, T )→ C2(Dηh)
)
∩C1

(
[t0, T )→ C1(Dηh)

)
≡MΦ be

a field with η ∈ C1
(
[t0, T ]→ C1

0(S)
)
≡Mη and S ⊂ R2 open. The space Ck is the

space of k-differentiable functions and the indice 0 means compact support. The

space of all
(
Φ, η

)
satisfying the above conditions with the additional requirement

that they vanish as |x| → ∞, is called the configuration space and is denoted by

M :=
{(

Φ, η
)
∈MΦ ×Mη : lim

|x|→∞
Φ = lim

|x|→∞
η = 0

}
,
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where ∂S is the lateral boundary of the domain. Given a Lagrangian function

G : R× R2 × R× Jηh → R,

continuously differentiable with respect to all of its arguments we write

(1,~2, 3, 4)→ G(1,~2, 3, 4) ≡ G

and denote the corresponding partial derivatives, with respect to its functional

arguments, by

D1G := D1G(1,~2, 3, 4) :=
∂G

∂1
(1,~2, 3, 4),

~D2G := ~D2G(1,~2, 3, 4) :=
( ∂G
∂21

(1,~2, 3, 4),
∂G

∂22

(1,~2, 3, 4)
)
, ~2 = (21, 22),

D3G := D3G(1,~2, 3, 4) :=
∂G

∂3
(1,~2, 3, 4).

We will assume that the function G(1,~2, 3, 4) is linear in the first argument and

more specifically D1G = 1. The Lagrangian density functional G is the spatial

integral of the Lagrangian function G

G[Φ(·, ·, t), η(·, t)] =

∫
Dη(·,t)
h(·)

G(∂tΦ(·, ·, t),∇xΦ(·, ·, t), ∂zΦ(·, ·, t), z) dV.(3.2)

We define the corresponding action functional S :M→ R as the time integral of

the Lagrangian density functional G

S[Φ, η] =

∫ T

t0

G[Φ(·, ·, t), η(·, t)]dt.(3.3)

In the rest of the thesis, we refer to that functional as the generalized Luke’s

functional, or simply g-Luke’s functional. It is a real number dependent on the

field Φ and the shape of the domain Dηh which is fully determined by the field η.

The system evolves from the point (Φ(·, t0), η(·, t0)) to the point (Φ(·, T ), η(·, T ))

in the configuration space M along the path t→ (Φ(·, t), η(·, t)) that renders the

action functional stationary. Stationarity means that the first variation of S at(
Φ, η

)
is zero. i.e.

δS[Φ, η; δΦ, δη] = δΦS[Φ, η; δΦ] + δηS[Φ, η; δη] = 0,(3.4)
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where δΦS[Φ, η; δΦ] and δηS[Φ, η; δη] are the partial variations of S w.r.t Φ and η,

respectively. In calculating the first variation of the action functional S the space

of admissible variations
(
δΦ, δη

)
is also needed. We define that space as the subset

of M characterized by the property of isochronality

δM = δMΦ × δMη =
{(

Ψ, ζ
)
∈M : Ψ(·, t0) = Ψ(·, T ) = 0, ζ(·, t0) = ζ(·, T ) = 0

}
.

(3.5)

3.1.1 Calculation of the first variation of the g-Luke’s func-

tional S[Φ, η]

By definition, the partial variation of S at
(
Φ, η

)
in the direction δΦ is

δΦS[Φ, η; δΦ] = lim
ε→0

1

ε

[
S[Φ(·, t) + εδΦ(·, t), η]− SG[Φ(·, t), η]

]
=

=

∫ T

t0

lim
ε→0

1

ε

[
G[Φ(·, t) + εδΦ(·, t), η(·, t)]− G[Φ(·, t), η(·, t)]

]
dt

=

∫ T

t0

δΦG[Φ(·, ·, t), η(·, t); δΦ(·, ·, t)]dt

and similarly

δηS[Φ, η; δη] =

∫ T

t0

δηG[Φ(·, ·, t), η(·, t); δΦ(·, ·, t)]dt.

It then suffices to calculate the variations of (dropping the notation (·, ·, t), (·, t))

G[Φ, η] =

∫
S

∫ η

−h
G
(
∂tΦ,∇xΦ, ∂zΦ, z

)
dx dz.(3.6)

To calculate the variation δΦG[Φ, η; δΦ] and δηG[Φ, η; δη], we classically define the

functions

i(ε) := G[Φ + εδΦ, η] =

∫
Dηh

G(∂tΦ + ε∂tδΦ,∇xΦ + ε∇xδΦ, ∂zΦ + ε∂zδΦ, z)dV,

j(ε) := G[Φ, η + εδη] =

∫
Dη+εδηh

G(∂tΦ,∇xΦ, ∂zΦ, z)dV.
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Taking the ε-derivative of i(ε) we obtain (recall that we have assumed that D1G =

1.)

i′(ε) =

∫
Dηh

{
∂tδΦ +

−→
D 2G(∂tΦ + ε∂tδΦ,∇xΦ + ε∇xΦ, ∂zΦ + ε∂zδΦ, z) · ∇xδΦ+

+D3G(∂tΦ + ε∂tδΦ,∇xΦ + ε∇xΦ, ∂zΦ + ε∂zδΦ, z) ∂zδΦ
}
dV.

Since the bounds of integration depend on the function of variation, in order to

calculate j′(ε) we use Leibniz integral rule

j′(ε) =

∫
S

{ d
dε

∫ η+εδη

−h
G
(
∂tΦ,∇xΦ, ∂zΦ, z

)
dz
}
dx

=

∫
S

[
G
(
∂tΦ,∇xΦ, ∂zΦ, z

)]
z=η+εδη

δηdx.

Taking ε = 0 we have

δΦG[Φ, η; δΦ] =

=

∫
Dηh

{
∂tδΦ+

−→
D 2G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
· ∇xδΦ +D3G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
∂zδΦ

}
dV,

(3.7)

δηG[Φ, η; δη] =

∫
S

[
G
(
∂tΦ,∇xΦ, ∂zΦ, z

)]
z=η

δηdx.(3.8)

The second and third terms of the r.h.s of (3.7) can be written, using Green’s

Identity and recalling that δΦ = 0 on the lateral boundaries, as∫
Dηh

{−→
D 2G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
· ∇xδΦ +D3G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
∂zδΦ

}
dV =

=

∫
Γη

(−→
D 2G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
, D3G

(
∂tΦ,∇xΦ, ∂zΦ, z

) )
·N+δΦ dΓη+

+

∫
Γh

(−→
D 2G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
, D3G

(
∂tΦ,∇xΦ, ∂zΦ, z

) )
·N−δΦ dΓh−

−
∫
Dηh

(
divx

−→
D 2G

(
∂tΦ,∇xΦ, ∂zΦ, z

)
+ ∂zD3G

(
∂tΦ,∇xΦ, ∂zΦ, z

))
δΦdV.

The first term of the r.h.s of (3.7) is tranformed using Leibniz integral rule as

follows ∫
Dηh

∂tδΦ dV = ∂t

∫
S

∫ η

−h
δΦdzdx −

∫
S

∂tη [δΦ]z=ηdx.(3.9)
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Due to the isochronality of δΦ the first term of the r.h.s of the last equality

will integrate out to the boundaries of [t0, T ]. Hence we obtain

δΦS[Φ, η; δΦ] =

∫ T

t0

∫
S

{
−
∫ η

−h

(
div(
−→
D 2G,D3G) δΦ

)
dz+

+
[
(
−→
D 2G,D3G)

]
z=η
·R+N+ − ∂tη

)[
δΦ
]
z=η

+
([

(
−→
D 2G,D3G)

]
z=−h ·R−N−

)[
δΦ
]
z=−h

}
dxdt.

(3.10)

Finally from (3.8) we obtain

δηS[Φ, η; δη] =

∫ T

t0

∫
S

[
G
(
∂tΦ,∇xΦ, ∂zΦ, z

)]
z=η

δηdxdt.(3.11)

Equations (3.10) and (3.11), in conjuction with (3.4) and the fundamental lemma

of calculus of variations lead to the following

Theorem 3.1. The pair of fields (Φ, η) ∈M satisfies the variational equation

δS[Φ, η; δΦ, δη] := δΦS[Φ, η; δΦ] + δηS[Φ, η; δη] = 0,(3.12)

for all
(
δΦ, δη

)
∈ δM if and only if it is a solution of the following system of

equations.

div
(−→
D 2G,D3G

)
= ∇x · (

−→
D 2G) + ∂z(D3G) = 0 in Dηh,(3.13a) (

~D2G,D3G
)
·R+N+ − ∂tη = 0 on Γη,(3.13b) (

~D2G,D3G
)
·R−N− = 0 on Γh,(3.13c)

G = 0 on Γη.(3.13d)

3.2 Application to the water wave problem

To recover Luke’s variational principle we define the action functional

S[Φ, η] =

∫
I

L[Φ, η] dt, L[Φ, η] =

∫
Dηh

(
∂tΦ +

1

2
|∇Φ|2 + gz

)
dV.(3.14)

Theorem 3.2 (Luke’s Variational Principle). Let (Φ, η) ∈M satisfy

δS[Φ, η; δΦ, δη] = δΦS[Φ, η; δΦ] + δηS[Φ, η; δη] = 0,(3.15)
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for all (δΦ, δη) ∈ δM, where S is given by (3.14). Then (Φ, η) is a

solution of (PWW ). That is,

∆Φ = 0, in Dηh,(3.16a)

∇xh · ∇xΦ + ∂zΦ = 0, on Γh,(3.16b)

∂tη +∇xΦ · ∇xη − ∂zΦ = 0, on Γη,(3.16c)

∂tΦ +
1

2
|∇Φ|2 + gη = 0, on Γη.(3.16d)

Although this set of equations results as an application of Theorem 3.1 for

G = ∂tΦ + 1
2
|∇Φ|2 + gz, we present here the original proof by Luke.

Proof. Following the usual procedure of calculus of variations we calculate

δΦS[Φ, η; δΦ] =

∫ T

t0

∫
Dηh

{
∂tδΦ +∇xΦ · ∇xδΦ + ∂zΦ ∂zδΦ

}
dV dt.

Green’s identity and Leibniz integral rule imply

δΦS[Φ, η; δΦ] =

∫ T

t0

{
∂t

∫
Dηh

δΦ dV +

∫
Γη

(
−∂tη
R

+N+ · ∇Φ

)
δΦ dΓη+

+

∫
Γh

N− · ∇ΦδΦ dΓh −
∫
Dηh

∆ΦδΦ dV
}
dt.

Using the isochronality of δΦ (i.e. δΦ(·, t0) = δΦ(·, T ) = 0) the first term vanishes

hence,

δΦS[Φ, η; δΦ] =

∫ T

t0

∫
S

{(
∂tη −R+N+ ·

[
∇Φ
]
z=η

) [
δΦ
]
z=η

+

+

∫
S

R−N− ·
[
∇Φ
]
z=−h

[
δΦ
]
z=−h −

∫ η

−h
∆Φ δΦ dz

}
dx dt,

(3.17)

The partial variation of S[Φ, η] w.r.t η is calculated exactly as in the previous more

general case; see (3.11)

δηS[Φ, η; δη] =

∫
I

∫
S

([
∂tΦ
]
z=η

+
1

2

[
∇Φ
]2
z=η

+ gη
)
δη dx dt.
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Substituting the above results, into equation (3.15) we obtain the variational equa-

tion

∫ T

t0

∫
S

{(
∂tη −R+N+ ·

[
∇Φ
]
z=η

) [
δΦ
]
z=η

+R−N− ·
[
∇Φ
]
z=−h

[
δΦ
]
z=−h−

−
∫ η

−h
∆Φ δΦ dz +

[
∂tΦ +

1

2
|∇Φ|2 + gη

]
z=η

δη
}
dx dt = 0.

(3.18)

Choosing first δη = 0 and δΦ = 0 on Γη and Γh we obtain (3.16a). Choosing

δΦ = 0 on Γη we obtain (3.16b) and consequently by the arbitariness of δΦ we

obtain (3.16c). Finally since δη are also arbitary we obtain (3.16d)

This formulation uses the fields Φ and η and produces all the equations of the

water wave problem (PWW ); equations (3.16a)-(3.16d). Especially, annuling the

first variation of Luke’s action functional S with respect to Φ in the direction δΦ

gives all the equations of the kinematical part of the problem (LE), (KC1), (KC2)

while, annuling the variation in η implies (DC). Luke’s variational principle is

an unconstrained principle. Besides irrotationality, none of the kinematic condi-

tions are considered as a priori conditions. This should be contrasted with the

Hamiltonian formulation, which is possible only if one assumes a priori (besides

irrotationality) that the fluid is incompressible (i.e. Φ solves (LE)), the bottom

impermable (i.e Φ satisfies (KC1)) and the kinematic free surface condition (KC1)

holds.

3.3 Recovering Hamilton’s Equations by means

of Luke’s Principle

Consider the action functional introduced by Luke in [Luk67]

S[Φ, η] =

∫
I

L[Φ, η] dt, L[Φ, η] =

∫
Dηh

(
∂tΦ +

1

2
|∇Φ|2 + gz

)
dV.(3.19)

The stationarity of the above functional with respect to independent variations δΦ

and δη that vanish on the lateral boundaries, implies all the equations of (PWW ),
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that we repeat here for convenience

∆Φ = 0, in Dηh,(3.20a)

∇xh · ∇xΦ + ∂zΦ = 0, on Γh,(3.20b)

∂tη = −∇xΦ · ∇xη + ∂zΦ, on Γη,(3.20c)

∂tΦ +
1

2
|∇Φ|2 + gη = 0, on Γη.(3.20d)

Miles in [Mil77b] begins his analysis from an equivalent action functional, ob-

tained the following way. Applying Leibniz integral rule to the first term of Luke’s

functional (3.19) we obtain∫ η

−h
∂tΦdz = ∂t

∫ η

−h
Φ dz − ∂tη

[
Φ
]
z=η

,(3.21)

Integration by parts for the last term gives∫ η

−h
gz dz =

1

2
gη2 − 1

2
gh2.(3.22)

By virtue of (3.21) and (3.22), the action functional (3.19) (after neglecting the

terms that contribute only on the temporal boundaries) takes the equivalent form

S[Φ, η] =

∫ T

t0

L[Φ, η] dt, L[Φ, η] =

∫
S

∂tη [Φ]z=η dx −H[Φ, η],(3.23)

where H is the Hamiltonian functional (total energy) (see Section 2.2 )

H[Φ, η] =
1

2

∫
Dηh

(
∇Φ
)2
dV +

1

2

∫
S

gη2 dx.(3.24)

Observe that the kinetic energy in (3.24) is not expressed in surface variables.

Since stationarity of S imply the full set of equations of the water wave problem

(3.20a)-(3.20d), for the dependent fields Φ and η, we may suppose that solving

the boundary value problem (3.20a), (3.20b) with
[
Φ
]
z=η

= ϕ, we can replace the

solution to (3.24) and invoke Green’s identity to obtain an action functional on

the surface variables ϕ and η [Mil77b, Sec. 2]:

S[ϕ, η] =

∫ T

t0

L[ϕ, η] dt, L[ϕ, η] =

∫
S

∂tη ϕ dx −H[ϕ, η],(3.25)
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where

H[ϕ, η] =
1

2

∫
S

(
ϕR+N+ · [∇Φ]z=η + gη2

)
dx,(3.26)

and Φ = Φ[ϕ, η] is the solution of the boundary value problem (PDtN). Equation

(3.26) is the total energy and can be written more explicitely using the chain rule

to transform the spatial derivative of the potential Φ on the free surface

[∇Φ]z=η =

(
∇xϕ−

[
∂zΦ

]
z=η
∇xη

[∂zΦ]z=η

)
,(3.27)

[∂tΦ]z=η = ∂tϕ−
[
∂zΦ

]
z=η

∂tη.(3.28)

Hence, substituting (3.27) in (3.26) the Hamiltonian energy functional takes the

form

H[ϕ, η] =
1

2

∫
S

(
ϕ
(
−∇xϕ · ∇xη + ζ[ϕ, η]R2

+

)
+ gη2

)
dx,(3.29)

where ζ[ϕ, η] =
[
∂zΦ

]
z=η

acts linearly on ϕ and nonlinearly and non-locally on η.

Stationarity of S[ϕ, η] means

δS[ϕ, η] =

∫
I

∫
S

{ (
∂tη −

δH
δϕ

)
δϕ −

(
∂tϕ+

δH
δη

)
δη

}
dx dt = 0.

(3.30)

where δH
δϕ

and δH
δη

are the variational derivatives of H with respect to ϕ and η

correspondingly. They are defined by the following equations

δϕH[ϕ, η; δϕ] =

∫
S

δH
δϕ

δϕ dx, δηH[ϕ, η; δη] =

∫
S

δH
δη
δη dx(3.31)

and they have to be determined. This implies the evolution equations

∂tη =
δH
δϕ

, ∂tϕ = −δH
δη
,(3.32)

and thus the second form of Hamilton’s principle is recovered. Miles in [Mil77b] did

not calculate directly this functional derivatives. Instead he deduces the explicit

form of (3.32) by reformulating (3.20c) and (3.20d). This is done by substituting

(3.27) and (3.28) in (3.20c) and (3.20d), obtaining

∂tη =
[
∂zΦ

]
z=η

R2
+ −∇xη · ∇xϕ

∂tϕ = −gη − 1

2

(
∇xϕ

)2
+

1

2

[
∂zΦ

]2
z=η

R2
+

(3.33)
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where
[
∂zΦ

]
z=η

is found by the solution Φ of (PDtN).

Eqs. (3.33) are exactly Hamilton’s equations derived by Craig and Sulem in

[CS93], with the use of the DtN operator (see Chapter 2). In terms of the DtN

operator the action functional whose stationarity gives Eqs. (HE) reads

S[ϕ, η] =

∫ T

t0

L[ϕ, η] dt, L[ϕ, η] =

∫
S

∂tη ϕ dx −H[ϕ, η],(3.34)

where

H[ϕ, η] =
1

2

∫
S

(
ϕG(η, h)ϕ+ g η2

)
dx.(3.35)
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4 Application of Luke’s Principle in conjunction

with the consistent, coupled, local-mode rep-

resentation of the wave potential

The usefulness of Luke’s variational principle is that, being unconditional, it al-

lows us to use any convenient reprentation of the velocity potential, avoiding the

a priori consideration of the kinematics which is neccessary in the Hamiltonian

formulation. Naturally, the representation one chooses, has to satisfy all analyti-

cal and geometrical prerequisities, implied by the a priori smoothness assumptions

and by the peculiarities of the domain.

For the case of linearized waves over general bathymetry regions, the idea of the

sloping-bottom mode has been first introduced by Athanassoulis and Belibassakis

in [AB99] in order to enable the consistent satisfaction of the Neuman boundary

condition on the general bottom topography. This method was further applied -

with the addition of the free surface mode - to weakly nonlinear wave interaction

with large floating structures in [BA06] and to non-linear water waves in [BA11].

In the first section of this chapter we present the consistent, coupled, local-

mode representation of the wave potential and state the essential properties. In

the second section we introduce the represention in the variational principle for the

generalised Luke’s action functional presented in Chapter 3. In the third section

we derive these equations for Luke’s functional, making use of the properties of

the representation. In the two last sections we show the connection of the derived

equations with Hamilton’s equations and express DtN operator in terms of the

local-mode representation.
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4.1 Vertical Expansion of the wave potential

Here we present in detail the consistent local-mode series expansion, in order to

represent the velocity potential field ( [AB02]):

Φ(x, z, t) = ϕ−2(x, t)Z−2(z; η, h) + ϕ−1(x, t)Z−1(z; η, h) +
∑
n≥0

ϕn(x, t)Zn(z; η, h)

=
∑
n≥−2

ϕn(x, t)Zn(z; η, h) =: Φ[ϕ, η],

(4.1)

where we denoted ϕ = (ϕ−2, ϕ−1, ϕ0, ...) = {ϕn}n≥−2. The field ϕ−2 will be reffered

as the free surface mode, ϕ−1 as bottom surface mode, ϕ0 as the propagating mode

and {ϕn}n≥1 the evanecent modes. The vertical functions Zn(z; η, h) are chosen

such that the {Zn}n≥0 is an L2
(
(−h, η)

)
basis which can be obtained as a solution

of a Sturm-Liouville boundary eigenvalue problem ([CL72]) for the self-adjoint

operator d2/dz2 on the family of intervals Jηh = [−h(x), η(x, t)], t ≥ t0

d2

dz2
Zn − k2

nZn = 0,(4.2a) [
∂zZn − µ0Zn

]
z=η

= 0,(4.2b) [
∂zZn

]
z=−h = 0.(4.2c)

The solution of the above above eigenvalue problem leads to a sequence of eigen-

functions {Zn}n≥0 given by

Z0(z; η, h) =
cosh[k0(z + h)]

cosh[k0(η + h)]
, Zn(z; η, h) =

cos[kn(z + h)]

cos[kn(η + h)]
, n = 1, 2, ...,

The numerical parameters µ0 = ω2/g, h0 are positive constants, not subjected to

any a-priori restrictions. Moreover, the z-independent quantities k0 = k0(η, h) and

kn = kn(η, h) are defined as the positive roots of the transcendental equations,

µ0 − k0 tanh(k0(η + h)) = 0, µ0 + kn tan(kn(η + h)) = 0.(4.3)

Note that for n ≥ 0 the functions Zn = Zn(z; η, h) = Zn(z; η, h, kn(η, h)) de-

pend both explixitely and implicitely on η and h. The expressions of Z−2(z; η, h),

Z−1(z; η, h) are given by

Z−2(z; η, h) =
µ0h0 + 1

2h0(η + h)
(z + h)2 − µ0h0 + 1

2h0

(η + h) + 1,(4.4)
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Figure 4.1: Eigenvalue k0 Figure 4.2: Eigenvalues kn

Z−1(z; η, h) =
µ0h0 − 1

2h0(η + h)
(z + h)2 +

1

h0

(η + h) +
2h0 − (η + h)(µh0 + 1)

2h0

,(4.5)

The functions Z−2, Z−1 are second order polynomials in z, satisfying the following

boundary conditions[
∂zZ−2 − µ0Z−2

]
z=η

=
1

h0

, [∂zZ−2]z=−h = 0,

[∂zZ−1]z=η = 0, [∂zZ−1]z=−h =
1

h0

.
(4.6)

Notice that the eigenfunctions spanning L2(−h, η) and the additional functions

Z−2, Z−1 have been selected so that

[Zn]z=η = 1, n ≥ −2.(4.7)

More details about the construction and validity of the expansion (4.1) can be

found in [BA11]. Equation (4.7) implies

[Φ]z=η = [Φ[ϕ, η]]z=η =
∑
n≥−2

ϕn := ϕ.(4.8)

It is easy to verify that the vertical derivatives on the free and bottom surfaves

are given by

[∂zΦ− µΦ]z=η =
ϕ−2

h0

,(4.9a)

[∂zΦ]z=−h =
ϕ−1

h0

.(4.9b)
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The spatial and temporal derivatives of Φ involved in the Lagrangian density take

the following form (denoting ∂/∂η = ∂η etc.)

∂tΦ =
∑
n≥−2

∂tϕnZn + ϕn∂tZn

=
∑
n≥−2

∂tϕnZn + ϕn(∂ηZn)(∂tη),
(4.10)

∇Φ =
∑
n≥−2

(
∇xϕnZn + ϕn∇xZn

ϕn∂zZn

)

=

(
∇xϕnZn + ϕn

(
∇xη(∂ηZn) +∇xh(∂hZn)

)
ϕn∂zZn

)(4.11)

It is usefull to calculate the partial derrivatives of Zn with respect to the surface

elevation η, the bottom surface h and the parameters kn, n ≥ 0. Note that the

functions
{
Zn
}
n=−2,1

depend explicitelly on η and h, while
{
Zn
}
n≥0

depend also

implicitelly on η and h through kn(η, h). Their values for z = η, after taking into

account the dispersion relationships (see Apendix (A)) become[
∂ηZ−2

]
z=η

= − 1

h0

− µ0,
[
∂hZ−2

]
z=η

= 0,[
∂ηZ−1

]
z=η

= −µ0,
[
∂hZ−1

]
z=η

= 0,[
∂ηZ0

]
z=η

= −µ0,
[
∂hZ0

]
z=η

=
[
∂k0Z0

]
z=η

= 0,[
∂ηZn

]
z=η

= −µ0,
[
∂hZn

]
z=η

=
[
∂knZn

]
z=η

= 0,

(4.12)

The above formulae can be written in compact form as follows ([BA11])[
∂ηZn

]
z=η

= −[∂zZn]z=η = −
(δ−2n

h0

+ µ0

)
, n ≥ −2,(4.13)

where δmn denotes Kronecker’s delta. Using the properties of {Zn} given by (4.7)-

(4.12) we obtain the following expressions of ∂tΦ and ∇Φ on the free surface

[∇Φ]z=η =

([
∇xΦ

]
z=η

[∂zΦ]z=η

)
=

(
∇xϕ+

(
− ϕ−2/h0 − µ0ϕ

)
∇xη

ϕ−2/h0 + µ0ϕ

)
,(4.14)

[∂tΦ]z=η = ∂tϕ−
(
ϕ−2/h0 + µ0ϕ

)
∂tη.(4.15)
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4.2 g-Luke’s action functional expressed in terms

of the local mode representation

Introducing the representation (4.1) in the variational principle, we exchange the

unknown field Φ : [t0, T ) × Dηh → R with the infinite unknown coefficients of the

expansion i.e. the fields ϕn : [t0, T ) × S → R, n ≥ −2. In the next subsection

we treat the general functional S̃ as a composition of S with Φ[ϕ, η].

First Variation of Composite Functionals

We briefly recall here some standard facts about differentiation of composite func-

tionals. Let as set

M̃ϕ ×Mη := C1
(
[t0, T )→ C2(S)

)
× C1

(
[t0, T )→ C2(S)

)
...× C1

(
[t0, T )→ C1(S)

)
,

and assume that we have Φ = Φ[ϕ, η] as a mapping M̃ϕ ×Mη → M, which is

also Fréchet differentiable. Consider the action functional S̃ : M̃ϕ ×Mη → R
given by,

S̃[ϕ, η] = S[Φ[ϕ, η], η] =

∫ T

t0

G[Φ[ϕ, η], η]dt.(4.16)

Composing the Lagrangian density functional G[Φ, η] with Φ = Φ[ϕ, η], we obtain

the Lagrangian density G̃ as a functional on ϕ = {ϕn}, n ≥ −2 and η, that is,

G̃[ϕ, η] = G[Φ[ϕ, η], η] =

∫
Dηh

G
(
∂tΦ[ϕ, η],∇xΦ[ϕ, η], ∂zΦ[ϕ, η], z

)
dV.(4.17)

We also assume that the variations δϕ(x, t) = (δϕ−2, δϕ−1, δϕ0, ...) are isochronal.

The variation of S̃ is by definition

δS̃[ϕ, η; δϕ, δη] =
∑
m≥−2

δϕmS̃[ϕ, η; δϕm] + δηS̃[ϕ, η; δη](4.18)

where δϕmS̃[ϕ, η; δϕm] is the partial variation of S̃ in the direction δϕm and

δηS̃[ϕ, η; δη] is the partial variation of S̃ in the direction δη. We proceed by consid-

ering S̃ as the composition of the functional S with Φ = Φ[ϕ, η]. The composition

rule for such a functional reads (see [LV00, Lem. 3.1.1], [MRA01, ])

δϕmS̃[ϕ, η; δϕm] = δΦS
[

Φ[ϕ, η] , η ; δϕmΦ[ϕ, η; δϕm]
]
, m ≥ −2,(4.19a)
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δηS̃[ϕ, η; δη] = δΦS
[

Φ[ϕ, η]; δηΦ[ϕ, η; δη]
]

+ δηS
[
Φ[ϕ, η]; δη

]
,(4.19b)

where δϕmΦ[ϕ, η; δϕm] and δηΦ[ϕ, η; δη] denote the partial variations of Φ[ϕ, η]

with respect to ϕm and η, correspondingly.

Calculation of the partial variations of g-Luke’s functional

expressed in terms of the local-mode representation

In this subsection we apply the previous facts in order to calculate the partial vari-

ations of g-Luke’s functional expressed in terms of the local-mode representation

given by (4.1). From the form of the partial variations (4.19a) and (4.19b) we

already see that the condition of stationarity of the functional S̃:

δS̃ =
∑
m≥−2

δϕmS̃[ϕ, η; δϕm] + δηS̃[ϕ, η; δη] = 0,(4.20)

contains the variation of the representation Φ[ϕ, η] with respect to η. In what

follows we use the notation〈
f, g
〉

=

∫ η(x,t)

−h(x)

f(x, z)g(x, z)dz.(4.21)

We easily see from (4.1) that for every m ≥ −2 the partial Fréchet derivatives of

Φ[ϕ, η] with respect to ϕm are

δϕmΦ[ϕ, η; δϕm] = Zmδϕm, m ≥ −2(4.22)

which implies that the partial Fréchet derivative of Φ[ϕ, η] with respect to ϕ is

δϕΦ[ϕ, η; δϕ] =
∑
m≥−2

Zmδϕm.(4.23)

and the partial Fréchet derivative of Φ[ϕ, η] with respect to η

δηΦ[ϕ, η; δη] =
( ∑
m≥−2

ϕm ∂ηZm

)
δη.(4.24)

The partial derivatives of the functions Zn with respect to η and kn are calculated

in the Appendix (A). Substituting (4.13) in (4.24), we also obtain[
δηΦ[ϕ, η; δη]

]
z=η

= (ϕ−2/h0 + µϕ)δη.(4.25)
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Lemma 4.1. Let S̃ : M̃ → R be a functional such that

S̃[ϕ, η] := S
[
Φ[ϕ, η], η

]
=

∫ T

t0

∫
Dηh

G
(
∂tΦ[ϕ, η],∇xΦ[ϕ, η], ∂zΦ[ϕ, η], z

)
dV dt.

Then the for m ≥ −2 the partial variation of S̃ at (ϕ, η) = (ϕ−2, ϕ−1, ϕ0, ..., η) in

the direction δϕm is

δϕmS̃[ϕ, η; δϕm] =

∫ T

t0

∫
S

{
− ∂tη +

[(−→
D 2G,D3G

)
·R+N+

]
z=η

+

+
〈
− div(

−→
D 2G,D3G) , Zm

〉
+

+
[(−→
D 2G,D3G

)
· R−N−Zm

]
z=−h

}
δϕmdxdt,

(4.26)

where G ≡ G
(
∂tΦ[ϕ, η],∇xΦ[ϕ, η], ∂zΦ[ϕ, η], z

)
, N+ = R−1

+

(
−∇xη, 1

)
and

N− = R−1
−
(
− ∇xh,−1

)T
are the outward unit normal vectors on Γη and Γh

respectively and R+ =
(
(∇xη)2+1

)1/2
, R− =

(
(∇xh)2+1

)1/2
are the corresponding

scalar functions.

Proof. From (3.10) we know that

δΦS[Φ, η; δΦ] =

∫ T

t0

∫
S

{
−
∫ η

−h

(
div(
−→
D 2G,D3G) δΦ

)
dz+

+
[
(
−→
D 2G,D3G)

]
z=η
·R+N+ − ∂tη

)[
δΦ
]
z=η

+
([

(
−→
D 2G,D3G)

]
z=−h ·R−N−

)[
δΦ
]
z=−h

}
dxdt.

(4.27)

From the composition rule (4.19a) we obtain

δϕmS̃[ϕ, η ; δϕm] = δΦS
[

Φ[ϕ, η], η; δϕmΦ̃[ϕ, η; δϕm]
]

=

∫ T

t0

∫
S

{
−
∫ η

−h

(
div(
−→
D 2G,D3G)

) (
δϕmΦ[ϕ, η; δϕm]

)
dz+

+
([

(
−→
D 2G,D3G)

]
z=η
·R+N+ − ∂tη

)[
δϕmΦ[ϕ, η; δϕm]

]
z=η

)
dxdt

+
([

(
−→
D 2G,D3G)

]
z=−h ·R−N−

)[
δϕmΦ[ϕ, η; δϕm]

]
z=−h

}
dxdt

=

∫ T

t0

∫
S

{
−
〈

div(
−→
D 2G,D3G), Zm

〉
+

+
([

(
−→
D 2G,D3G)T

]
z=η
·R+N+ − ∂tη

)[
Zm
]
z=η

+
([

(
−→
D 2G,D3G)T

]
z=−h ·R−N−

)[
Zm
]
z=−h

}
δϕmdxdt
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Where (4.22) have been used. Using the fact that [Zn]z=η = 1 we obtain the

result.

Lemma 4.2. The partial variation of S̃ at (ϕ, η) = (ϕ−2, ϕ−1, ϕ0, ..., η) in the

direction δη is

δηS̃[ϕ, η; δη] =

∫
t0

∫
S

{∑
l≥−2

(
−
〈
div(
−→
D 2G,D3G), ∂ηZl

〉
+

+
([

(
−→
D 2G,D3G)

]
z=η
·R+N+ − ∂tη

)[
∂ηZl

]
z=η

+
[
(
−→
D 2G,D3G)

]
z=−h ·R−N−

[
∂ηZl

]
z=−h

)
ϕl + [G]z=η

}
δηdxdt

where G ≡ G
(
∂tΦ[ϕ, η],∇xΦ[ϕ, η], ∂zΦ[ϕ, η], z

)
, N+ = R−1

+

(
−∇xη, 1

)
and

N− = R−1
−
(
− ∇xh,−1

)T
are the outward unit normal vectors on Γη and Γh

respectively, R+ =
(
(∇xη)2 + 1

)1/2
, R− =

(
(∇xh)2 + 1

)1/2
are the corresponding

scalar functions and ∂ηZl = ∂Zl/∂η are given in the Appendix (A).

Proof. From (3.10) and (4.19b)

δηS̃[ϕ, η; δη] =

∫ T

t0

∫
S

{∫ η

−h
−
(
div(
−→
D 2G,D3G)

)
δηΦ[ϕ, η; δη] dz+

+
([

(
−→
D 2G,D3G)T

]
z=η
·R+N+ − ∂tη

)[
δηΦ[ϕ, η; δη]

]
z=η

)
+

+
([

(
−→
D 2G,D3G)T

]
z=−h ·R−N−

)[
δηΦ[ϕ, η; δη]

]
z=−h +

[
G
]
z=η

δη
}
dxdt

=

∫
t0

∫
S

{ ∑
m≥−2

(
−
〈
div(
−→
D 2G,D3G), ∂ηZm

〉
ϕm+

+
([

(
−→
D 2G,D3G)T

]
z=η
·R+N+ − ∂tη

)[
∂ηZm

]
z=η

ϕm

+
[
(
−→
D 2G,D3G)T

]
z=−h ·R−N−

[
∂ηZm

]
z=−hϕm

)
+
[
G
]
z=η

}
δη dx dt.

where (4.24) have been used.

4.2.1 Stationarity of the g-Luke’s action functional expressed

in terms of the local-mode representation

We can write the variational equation (4.18) as,

δS̃[ϕ, η; δϕ, δη] =

∫ T

t0

∫
S

{ ∑
m≥−2

δG̃
δϕm

δϕm +
δG̃
δη
δη
}
dx dt = 0,(4.28)
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for all δϕm, m ≥ −2 and for all δη, where δG̃/δϕm and δG̃/δη denote the vari-

ational derivatives of G̃[ϕ, η] = G
[
Φ[ϕ, η]

]
and are given by the expressions in

curly brackets in the statements of Lemma (4.1) and Lemma (4.2) correspondigly.

Choosing first δη = 0 and all δϕm to vanish expect one we obtain

δG̃
δϕm∗

= 0, for some m∗ ≥ −2(4.29)

Repeating this procedure we obtain the following infinite system

δG̃
δϕm

= 0, m ≥ −2.(4.30)

Choosing, now, all δϕm to be zero and δη arbitary we obtain

δG̃
δη

= 0.(4.31)

Finally, the Euler-Lagrange equations for S̃ are

δG̃
δϕm

= 0, m ≥ −2 and
δG̃
δη

= 0.(4.32)

4.3 Stationarity of Luke’s functional expressed

in terms of the local mode representation

and the Coupled Mode System (CMS)

Using the expansion (4.1) into the Lagrangian density function introduced in

[Luk67], we obtain

L = L(∂tΦ[ϕ, η],∇Φ[ϕ, η], z) = ∂tΦ[ϕ, η] +
1

2

(
∇Φ[ϕ, η]

)2
+ gz.(4.33)

The Lagrangian density functional then reads

L̃[ϕ, η] = L[Φ[ϕ, η], η] =

∫
Dηh

L(∂tΦ[ϕ, η],∇Φ[ϕ, η], z) dV.(4.34)

Now L̃ can be written

L̃[ϕ, η] =

∫
S

{∫ η

−h

∑
n≥−2

(
∂tϕn Zn + ϕn ∂tZn

)
dz+

+
1

2

∑
n≥−2

∑
m≥−2

(
Amn∇xϕn · ∇xϕm + 2 ~Bmn · ∇xϕnϕm + Cmnϕnϕm +Dmnϕnϕm

)
+ gη2

}
dx,

(4.35)
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where Amn, ~Bmn, Cmn and Dmn are vertical integrals given by

Amn =
〈
Zn, Zm

〉
= Anm,(4.36a)

~Bmn =
〈
Zn,∇xZm

〉
,(4.36b)

Cmn =
〈
∇xZn,∇xZm

〉
= Cnm,(4.36c)

Dmn =
〈
∂zZn, ∂zZm

〉
= Dnm.(4.36d)

Observe that the Hamiltonian energy, appearing in the Lagrangian (4.35), in terms

of the local-mode representation, is given by

H̃[ϕ, η] =

=

∫
S

{1

2

(
Amn∇xϕn · ∇xϕm + 2 ~Bmn · ∇xϕnϕm + Cmnϕnϕm +Dmnϕnϕm

)
+ gη2

}
dx

(4.37)

or alternativelly by,

H̃[ϕ, η] =

=

∫
S

{1

2

(
Amn∇xϕn · ∇xϕm + 2 ~Bmn · ∇xϕnϕm + C ′mnϕnϕm

)
+ gη2

}
dx

,(4.38)

where

C ′mn = 〈∇Zn · ∇Zm〉 .(4.39)

The action functional is the time integral of L̃, i.e.

S̃[ϕ, η] = S[Φ[ϕ, η], η] =

∫ T

t0

L[Φ[ϕ, η], η]dt.(4.40)

Stationarity means that the first variation of S̃ is zero. i.e.

δS̃[ϕ, η; δϕ, δη] =
∑
m≥−2

δϕmS̃[ϕ, η; δϕm] + δηS̃[ϕ, η; δη] = 0.(4.41)

We could proceed by calculating the variations using (4.35). This, indeed, would

be the only way to find the variation δS̃, in the case where simplifications are

made concerning the horizontal velocity ∇xΦ or the bottom. For this simplified

representation, S̃ would not be exactly equal to S and we can only say that S̃ ≈
S ◦Φ[ϕ, η] and we proceed by varying the simplified form of (4.35). For example,
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Klopman et al. in [KGD10], use a simplified Hamiltonian, after introducing a

general series representation for the velocity potential, which contains vertical

integrals of the form of Amn and Dmn. However the integrals given by ~Bmn and

Cmn have simplified forms. Specifically the terms containing the derivatives of the

vertical functions with respect to the depth h and the parameters kn are supressed.

A similar situation is occured in [CD12] where several approximate models are

derived. There, the authors use ansatzes to represent both the potential and the

velocity. In the case of arbitary depth a product of a vertical hyperbolic cosine

function (Z0 in the present notation) with the trace of the potential is chosen to

represent the velocity potential. The partial derivatives with respect to the free

surface elevation, depth and the parameter are not kept in the representation of the

horizontal velocity. This can be seen if one takes the horizontal derivative of the

ansatz for the potential and compares it with the ansatz used for the velocity. We

mention that these terms are important when modelling flows over steep bottoms

and for wave reflections as is described in [DK09] for the case of linearised waves.

Here, since no simplifications are made, and the involved arguments in the

Lagrangian equal exactly their corresponding representations through (4.1), we can

apply directly the previous results, when we vary S̃ = S ◦ Φ[ϕ, η]. The resulting

Euler-Lagrange equations were first appeared in [AB02]. First we calculate the

partial variations of S̃ at (ϕ, η) in the direction δϕm, m ≥ −2 and δη.

Lemma 4.3. The partial variation of the functional S̃[ϕ, η] at (ϕ, η) in the direc-

tion δϕm, for m ≥ −2 is given by

δϕmS̃[ϕ, η; δϕm] =

∫
I

∫
S

{
− ∂tη −∇xη · ∇xϕ+R2

+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

}
δϕm dx dt,

where R+ =
√(
∇xη

)2
+ 1 and

Amn(η, h) = 〈Zn, Zm〉 = Anm,

~Bmn(η, h) =2 〈∇xZn, Zm〉+∇xh[ZnZm]z=−h,

Cmn(η, h) = 〈∆Zn, Zm〉+
[(
∇xh · ∇xZn + ∂zZn

)
Zm

]
z=−h

= 〈∆Zn, Zm〉 −R−N− · [(∇Zn)Zm]z=−h.
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Note that, the matrix Amn is symmetric and for m,n ≥ −2 and the submatrix(
Amn

)
m,n≥0

is diagonal. Furthermore, the elements of ~Bmn are two dimensional

vectors depending on the horizontal derivatives of the vertical functions and the

bottom. The matrix Cmn contains the full Laplacian of the vertical functions as

well as the their outward normal derivative on the bottom surface.

Proof. We apply Lemma (4.1) to the functional

S̃[ϕ, η] =

∫
I

∫
Dηh

LdV dt, L = ∂tΦ[ϕ, η] +
1

2

(
∇Φ[ϕ, η]

)2
+ gz,

and we proceed by calculating the terms involved〈
− div(

−→
D 2L,D3L), Zm

〉
= −

〈
∆Φ[ϕ, η], Zm

〉
= −

〈 ∑
n≥−2

∇2
xϕnZn + 2∇xϕn · ∇xZn + ϕn∆Zn , Zm

〉
= −

∑
n≥−2

〈
Zn, Zm

〉
∇2

xϕn + 2
〈
∇xZn, Zm

〉
· ∇xϕn +

〈
∆Zn, Zm

〉
ϕn

The bottom surface term reads[
(
−→
D 2L,D3L) ·R−N−Zm

]
z=−h =

[
∇Φ[ϕ, η]

]
z=−h ·R−N−Zm

=−∇xh ·
∑
n≥−2

(
∇xϕn

[
ZnZm

]
z=−h + ϕn

[
∇xZnZm

]
z=−h

)
−

−
∑
n≥−2

ϕn
[
∂zZnZm

]
z=−h

=−
∑
n≥−2

∇xh
[
ZnZm

]
z=−h · ∇xϕn−

−
[
(∇xh · ∇xZn + ∂zZn)Zm

]
z=−hϕn

For the free surface term we use (4.14)

[∇Φ[ϕ, η]]z=η =

(
∇xϕ+

(
− ϕ−2/h0 − µ0ϕ

)
∇xη

ϕ−2/h0 + µ0ϕ

)
,
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to obtain[
(
−→
D 2L,D3L) ·R+N+Zm

]
z=η

=
[
∇Φ[ϕ, η]

]
z=η
·R+N+

= −∇xη · ∇xϕ−
(
∇xη

)2
∑
n≥−2

[
∂Zn
∂η

]z=ηϕn +
ϕ−2

h0

+ µϕ

= −∇xη · ∇xϕ+
(
∇xη

)2
(ϕ−2

h0

+ µϕ
)

+
ϕ−2

h0

+ µϕ

= −∇xη · ∇xϕ+
( (
∇xη

)2
+ 1

)(ϕ−2

h0

+ µϕ
)
.

We also have

Lemma 4.4. The partial variation of the functional S̃[ϕ, η] on (ϕ, η) in the di-

rection δη is given by

δηS̃[ϕ, η; δη] =

∫
I

∫
S

{
∂tϕ+ gη +

1

2
(∇xϕ)2 − 1

2
R2

+

(ϕ−2

h0

+ µϕ
)2

+

+
∑
n≥−2

(∑
l≥−2

−anl(η, h)∇2
xϕn −~bnl(η, h) · ∇xϕn − cnl(η, h)ϕn

)
ϕl

}
δηdxdt,

where

anl(η, h) = 〈Zn, ∂ηZl〉 ,
~bnl(η, h) =2 〈∇xZn, ∂ηZl〉+∇xh[Zn(∂ηZl)]z=−h,

cnl(η, h) = 〈∆Zn, ∂ηZl〉+
[(
∇xh · ∇xZn + ∂zZn

)(
∂ηZl

)]
z=−h,

and ∂ηZl = ∂Zl/∂η are given in Apendix (A).

Proof. From Lemma (4.1)

δηS̃[ϕ, η; δη] =

∫
t0

∫
S

{∑
l≥−2

(
−
〈
div(
−→
D 2L,D3L), ∂ηZl

〉
+

+
([

(
−→
D 2L,D3L)

]
z=η
·R+N+ − ∂tη

)[
∂ηZl

]
z=η

+
[
(
−→
D 2L,D3L)

]
z=−h ·R−N−

[
∂ηZl

]
z=−h

)
ϕl

+
[
L
(
∂tΦ[ϕ, η],∇xΦ[ϕ, η], ∂zΦ[ϕ, η], z

)]
z=η

}
δη dx dt.

37



We proceed by calculating the terms involved in the above equation〈
div(
−→
D 2L,D3L), ∂ηZl

〉
=
〈

∆Φ[ϕ, η], ∂ηZl

〉
=
∑
n≥−2

〈Zn, ∂ηZl〉∇2
xϕn + 2 〈∇xZn, ∂ηZl〉 · ∇xϕn + 〈∆Zn, ∂ηZl〉ϕn.

For the bottom surface term we have[
(
−→
D 2L,D3L)T

]
z=−h ·R−N−

[
(∂ηZl)

]
z=−h =

=
∑
n≥−2

−[Zn(∂ηZl)]z=−h∇xh · ∇xϕn−

−[(∇xZn)(∂ηZl)]z=−h · ∇xhϕn − [(∂zZn)(∂ηZl)]z=−hϕn.

For the free surface terms we use the fact that (see (4.14))

[∇Φ]z=η =

(
∇xϕ+

(
− ϕ−2/h0 − µ0ϕ

)
∇xη

ϕ−2/h0 + µ0ϕ

)
,

and ∑
l≥−2

ϕl
[
∂ηZl

]
z=η

= −∂z
[
Φ[ϕ, η]

]
z=η

= −ϕ−2/h0 − µ0ϕ,

to obtain ∑
l≥−2

∂tη[∂ηZl]z=ηϕl = −∂tη(
ϕ−2

h0

+ µ0ϕ),

∑
l≥−2

[
(
−→
D 2L,D3L)T

]
z=η
·R+N+

[
∂ηZl

]
z=η

ϕl =
[
∇Φ[ϕ, η]

]
z=η
·R+N+

∑
l≥−2

ϕl
[
∂ηZl

]
z=η

=
(
−∇xϕ · ∇xη + (

ϕ−2

h0

+ µ0ϕ)(∇xη)2 + (
ϕ−2

h0

+ µ0ϕ)
)(
− ϕ−2

h0

− µ0ϕ
)

= ∇xϕ · ∇xη
(ϕ−2

h0

+ µ0ϕ
)
−
(ϕ−2

h0

+ µ0ϕ
)2(

(∇xη)2 + 1
)
,
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[L]z=η = [∂tΦ[ϕ, η]]z=η +
1

2

[
∇Φ[ϕ, η]

]2
z=η

+ gη

= ∂tϕ−
(ϕ−2

h0

+ µ0ϕ
)
∂tη+

+
1

2

(
∇xϕ

)2 −∇xϕ · ∇xη
(ϕ−2

h0

+ µ0ϕ
)

+
1

2

(ϕ−2

h0

+ µ0ϕ
)2(∇xη)2+

+
1

2

(ϕ−2

h0

+ µ0ϕ
)2

+ gη

= ∂tϕ−
(ϕ−2

h0

+ µ0ϕ
)
∂tη+

+
1

2

(
∇xϕ

)2 −∇xϕ · ∇xη
(ϕ−2

h0

+ µ0ϕ
)
+

+
1

2

(ϕ−2

h0

+ µ0ϕ
)2
((
∇xη)2 + 1

)
+ gη.

Taking the sum of the above terms we see that the terms
(
ϕ−2

h0
+ µ0ϕ

)
∂tη and

∇xϕ · ∇xη
(
ϕ−2

h0
+ µ0ϕ

)
cancel out and after some rearrangement we obtain the

result

4.3.1 Stationarity of S̃[ϕ, η]

After the calculation of the partial variations of S̃, the variational equation (4.41)

takes the form, for all δϕ, δη

δS̃[ϕ, η; δϕ, δη] =

∫
t0

∫
S

{ ∑
m≥−2

(
− ∂tη −∇xη · ∇xϕ+R2

+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

)
δϕm+

+
(
∂tϕ+ gη +

1

2
(∇xϕ)2 − 1

2
R2

+

(ϕ−2

h0

+ µϕ
)2

+

+
∑
l≥−2

( ∑
n≥−2

− anl(η, h)∇2
xϕn −~bnl(η, h) · ∇xϕn − cnl(η, h)ϕn

)
ϕl

)
δη
}
dx dt = 0.

(4.42)
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Choosing first δη = 0 and all δϕm to vanish except one, say δϕm∗ , we obtain (using

Lemma 4.3)

δϕmS[ϕ, η; δϕm] =

∫
I

∫
S

{
− ∂tη −∇xη · ∇xϕ+R2

+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

(
Amn∗(η, h)∇2

xϕn + ~Bmn∗(η, h) · ∇xϕn + Cmn∗(η, h)ϕn

)}
δϕm∗dxdt = 0,

which implies the equation

∂tη =−∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Amn∗(η, h)∇2
xϕn + ~Bmn∗(η, h) · ∇xϕn + Cmn∗(η, h)ϕn.

Repeating this procedure consecutively for all m∗ we arrive at the following infinite

system

∂tη =−∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn, m ≥ −2.

(4.43)

Choosing now, δϕm = 0, for all m ≥ −2, equation (4.42) becomes

∫
I

∫
S

{
∂tϕ+ gη +

1

2
(∇xϕ)2 − 1

2
R2

+

(ϕ−2

h0

+ µϕ
)2

−

−
∑
l≥−2

( ∑
n≥−2

anl(η, h)∇2
xϕn +~bnl(η, h) · ∇xϕn + cnl(η, h)ϕn

)
ϕl

}
δη dx dt = 0.

(4.44)

By the arbitariness of δη we obtain

∂tϕ = − gη − 1

2
(∇xϕ)2 +

1

2
R2

+

(ϕ−2

h0

+ µϕ
)2

+

+
∑
l≥−2

( ∑
n≥−2

aln(η, h)∇2
xϕn +~bnl(η, h) · ∇xϕn + cnl(η, h)ϕn

)
ϕl.

(4.45)

The nonlinear CMS, Eqs. (4.43) and (4.45), has been derived by Luke’s variational

principle, and thus it is equivalent to the conventional description of the water

wave problem defined by Eqs. (3.16a)-(3.16b). This system of equations was first
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derived in [AB02]. The difference with the present form, is that the free-surface

terms involved in the definitions of the matrix coefficients Amn, ~Bmn, Cmn, anl, ~bnl,

cnl in [AB02], are summed out of the series using Eqs. (4.12). We state this fact

in the following corollary.

Corollary 4.1. Let A′mn, B′mn, C ′mn, a
(0,2)
nl , a

(1,1)
nl , b

(1,1)
mn , c

(0,0)
mn be the matrix coeefi-

cients defined in [AB02]. Then∑
n≥−2

A′mn∇2
xϕn +B′mn∇xϕn + C ′mnϕn =

= ∇xη · ∇xϕ−R2
+

(ϕ−2

h0

+ µ0ϕ
)

+

+
∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

∑
l≥−2

∑
n≥−2

a
(0,2)
nl ∇2

xϕnϕl − a(1,1)
nl ∇xϕn · ∇xϕl + b(1,1)

mn ∇xϕnϕl + c′mnϕnϕl =

=
1

2
(∇xϕ)2 − 1

2
R2

+

(ϕ−2

h0

+ µϕ
)2

+

+
∑
l≥−2

( ∑
n≥−2

anl(η, h)∇2
xϕn +~bnl(η, h) · ∇xϕn + cnl(η, h)ϕn

)
ϕl

We note that the CMS has been obtained without any essential assumptions

concerning the vertical structure of the wave potential. Furthermore no simplifi-

cations (mild-slope etc) were made and thus, the present CMS, being equivalent

to the complete formulation, is expected to be able to fully account for wave non-

linearity and dispersion.

Further study of the subsystem (4.43)-Reformulation of the CMS as two

evolution equations

The subsystem (4.43) is of peculiar form, since the time derivative of η, ∂tη, appears

as the left hand side of all equations. Writting (4.43) as∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn =

= ∂tη +∇xη · ∇xϕ−R2
+

(ϕ−2

h0

+ µ0ϕ
)
,

(4.46)
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we see that the r.h.s terms cannot, in fact, be dependent on m. We resolve this

controversy as follows [AB02] : Choose the mth
∗ equation and substract it from the

others to obtain the following system

∑
n≥−2

Âmn(η, h)∇2
xϕn + ~̂Bmn(η, h) · ∇xϕn + Ĉmn(η, h)ϕn = 0, m ≥ −2, m 6= m∗.

(4.47)

where

Âmn(η, h) = Amn(η, h)− Am∗n(η, h),

~̂Bmn(η, h) = ~Bmn(η, h)− ~Bm∗n(η, h),

Ĉmn(η, h) = Cmn(η, h)− Cm∗n(η, h),

together with the remaning equation

∂tη = −∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Am∗n(η, h)∇2
xϕn + ~Bm∗n(η, h) · ∇xϕn + Cm∗n(η, h)ϕn.

(4.48)

Theorem 4.1. (PWW ) is equivalent with the following system of evolution equa-

tions for ϕ and η

∂tη = −∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)
−

−
∑
n≥−2

Am∗n(η, h)∇2
xϕn + ~Bm∗n(η, h) · ∇xϕn + Cm∗n(η, h)ϕn,

(4.49)

∂tϕ = − gη − 1

2
(∇xϕ)2 +

1

2
R2

+

(ϕ−2

h0

+ µ0ϕ
)2

+

+
∑
l≥−2

∑
n≥−2

(
anl(η, h)∇2

xϕn +~bnl(η, h) · ∇xϕn + cnl(η, h)ϕn

)
ϕl,

(4.50)

where
{
ϕn
}
n≥−2

are obtained by the infinite coupled mode system

∑
n≥−2

Âmn(η, h)∇2
xϕn + ~̂Bmn(η, h) · ∇xϕn + Ĉmn(η, h)ϕn = 0, m ≥ −2, m 6= m0,

(4.51)

∑
n≥−2

ϕn = ϕ.(4.52)
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where

Âmn(η, h) = Amn(η, h)− Am∗n(η, h),

~̂Bmn(η, h) = ~Bmn(η, h)− ~Bm∗n(η, h),

Ĉmn(η, h) = Cmn(η, h)− Cm∗n(η, h).

Theorem 4.2. The following identity holds∑
n≥−2

Amn(η, h)∇2
xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn =

=

∫ η

−h
∆Φ[ϕ, η]Zm dz −R−N− ·

[
∇Φ[ϕ, η]Zm

]
z=−h.

(4.53)

Theorem 4.3. The following identity holds

∑
n≥−2

(∑
l≥−2

anl(η, h)∇2
xϕn +~bnl(η, h) · ∇xϕn + cnl(η, h)ϕn

)
ϕl =

=

∫ η

−h
∆Φ[ϕ, η]

(∑
l≥−2

(∂ηZl)ϕl
)
dz −R−N− ·

[
∇Φ[ϕ, η]

(∑
l≥−2

(∂ηZl)ϕl
)]
z=−h.

(4.54)

Proof. Recall that

∆Φ[ϕ, η] =
∑
n≥−2

∇2
xϕnZn + 2∇xϕn · ∇xZn + ϕn∆Zn,(4.55)

Using the above equation, the first term of the r.h.s (4.54) becomes〈
∆Φ[ϕ, η], (∂ηZl)ϕl

〉
=

=
∑
l≥−2

( ∑
n≥−2

〈Zn, ∂ηZl〉∇2
xϕn + 2 〈∇xZn, ∂ηZl〉 · ∇xϕn + 〈∆Zn, ∂ηZl〉ϕn

)
ϕl.

where we denoted ∂ηZl = ∂Zl/∂η. Similarly, for the second term in the r.h.s of

(4.54), we have

−R−N− ·
[
∇Φ[ϕ, η]

(∑
l≥−2

(∂ηZl)ϕl

)]
z=−h =

=
∑
l≥−2

( ∑
n≥−2

∇xh · ∇xϕn
[
Zn(∂ηZl)

]
z=−h + ϕn∇xh ·

[
(∇xZn)(∂ηZl)

]
z=−h+

+ϕn
[
(∂zZn)(∂ηZl)

]
z=−h

)
ϕl.
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The sum of the r.h.s of the last two equations is∑
l≥−2

( ∑
n≥−2

〈Zn, ∂ηZl〉∇2
xϕn +

(
2 〈∇xZn, ∂ηZl〉+∇xh

[
Zn(∂ηZl)

]
z=−h

)
· ∇xϕn+

+
(
〈∆Zn, ∂ηZl〉+∇xh ·

[
∇xZn(∂ηZl)

]
z=−h +

[
∂zZn(∂ηZl)

]
z=−h

)
ϕn

)
ϕl.

Using the definitions of anl, ~bnl, cnl found in Lemma (4.4), we obtain the result.

Theorems 4.3 and 4.2 show, that if Φ[ϕ, η] solves the Laplace equation and the

bottom boundary condition, then the double series in the r.h.s of (4.83) vanishes.

4.4 Expression of DtN operator in terms of the

coupled-mode representation

It is interesting to note that the system (4.84) with (4.85), has a specific physical

meaning. In fact, it gives an indirect representation of the DtN operator (see

Chapter 2, Definition 2.1).

Theorem 4.4. Let η be the instataneous surface elevation defining the corre-

sponding fluid domain Dηh. Let Φ(x, z) be a function defined on Dηh, such that

Φ ∈ C2(Dηh) ∩ C1(Dηh) and lim
|x|−→∞

Φ(x, z) = 0. Assuming that ϕn = O(n−4) uni-

formly in x, the velocity potential field Φ(x, z) can be represented in the form

Φ(x, z) =
∑
n≥−2

ϕn(x)Zn(z; η, h)(4.56)

and the series can be termwise differentiated up to two times (at least). Then,

1. If Φ is the solution of (PDtN) then ϕ = (ϕ−2, ϕ−1, ϕ0, ...) is the solution of

(4.84) and (4.85).

2. If ϕ = (ϕ−2, ϕ−1, ϕ0, ...) is the solution of (4.84) and (4.85) then Φ is the

solution of (PDtN).

Proof. 1. Let Φ be the solution of (PDtN). Then it satisfies [Φ]z=η = ϕ. By the

construction of Zn we have

[Zn]z=η = 1, for all n ≥ −2,
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and this implies
∑

m≥−2

ϕm =
[
Φ]z=η = ϕ. Furthermore, Φ is the unique solution to

the following variational equation

δI[Φ; δΦ] = 0, for all δΦ : [δΦ]z=η = 0,

where

I[Φ] =
1

2

∫
Dηh

(
∇Φ
)2
dV.(4.57)

Performing the variation in the functional I[Φ], we obtain that Φ is the solution

of the following variational equation

δI[Φ; δΦ] =

∫
Dηh

(
∇Φ
)
·
(
∇δΦ

)
dV = 0, for all δΦ : [δΦ]z=η = 0(4.58)

Integration by parts shows

δI[Φ; δΦ] =

∫
Γh

∂N−Φ δΦ dΓh −
∫
Dηh

∆Φ δΦ dV = 0,(4.59)

or,

δI[Φ; δΦ] =

∫
S

N− ·
[
∇Φ
]
z=−h

[
δΦ
]
z=−hR−dx −

∫
S

∫ η

−h
∆Φ δΦ dV = 0.(4.60)

Replace

Φ = Φ[ϕ] =
∑
n≥−2

ϕn Zn,(4.61)

in the functional I to obtain

Ĩ[ϕ] = I
[
Φ[ϕ]]

=
1

2

∫
Dηh

(
∇Φ[ϕ]

)2
dV

=
1

2

∫
Dηh

(
∇
( ∑
n≥−2

ϕn Zn
) )2

dV.

The variation δΦ becomes

δΦ = δΦ[ϕ; δϕ] =
∑
n≥−2

δϕn Zn.(4.62)
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and [δΦ]z=η = 0 implies
∑

m≥−2

δϕm = 0. Stationarity of Ĩ[ϕ] means

δĨ[ϕ; δϕ] = 0, for all δϕ :
∑
m≥−2

δϕm = 0.

The Fréchet derivative of Ĩ[ϕ] with respect to ϕ, δĨ[ϕ; δϕ], can be calculated

using the formula

δĨ[ϕ; δϕ] = δI
[
Φ[ϕ]; δΦ[ϕ; δϕ]

]
.(4.63)

Hence, substituting (4.61), (4.62) in (4.60) we obtain

δĨ[ϕ; δϕ] =

=

∫
S

∑
m≥−2

{ ∑
n≥−2

(
Amn(η, h)∇2

xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

) }
δϕm dx = 0,

(4.64)

where the matrix coefficients are given by

Amn(η, h) = 〈Zn, Zm〉 ,
~Bmn(η, h) =2 〈∇xZn, Zm〉+∇xh[ZnZm]z=−h,

Cmn(η, h) = 〈∆Zn, Zm〉+
[(
∇xh · ∇xZn + ∂zZn

)
Zm

]
z=−h

.

The variational equation (4.64) holds for all δϕm such that∑
m≥−2

δϕm = 0.(4.65)

Using (4.65) we can write for m0 ≥ −2

δϕm0 = −
∑
m≥−2

δϕm, m 6= m0.(4.66)

Now (4.64) can be written for m 6= m0∫
S

∑
n≥−2

(
Amn0(η, h)∇2

xϕn + ~Bmn0(η, h) · ∇xϕn + Cmn0(η, h)ϕn

)
δϕm0+

+
∑
m≥−2

( ∑
n≥−2

(
Amn(η, h)∇2

xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

))
δϕm dx = 0.
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Substituting (4.66) in the above equation we obtain,∫
S

∑
n≥−2

(
Amn0(η, h)∇2

xϕn + ~Bmn0(η, h) · ∇xϕn + Cmn0(η, h)ϕn

)(
−
∑
m≥−2

δϕm

)
+

+
∑
m≥−2

( ∑
n≥−2

(
Amn(η, h)∇2

xϕn + ~Bmn(η, h) · ∇xϕn + Cmn(η, h)ϕn

))
δϕm dx = 0,

and a factorizing shows that∫
S

∑
m≥−2

( ∑
n≥−2

Âmn(η, h)∇2
xϕn + ~̂Bmn(η, h) · ∇xϕn + Ĉmn(η, h)ϕn

)
δϕm dx = 0,

where

Âmn(η, h) = Amn(η, h)− Amn0(η, h),

~̂Bmn(η, h) = ~Bmn(η, h)− ~Bmn0(η, h),

Ĉmn(η, h) = Cmn(η, h)− Cmn0(η, h).

This implies the system∑
n≥−2

Âmn(η, h)∇2
xϕn + ~̂Bmn(η, h) · ∇xϕn + Ĉmn(η, h)ϕn = 0, m ≥ −2, m 6= m0,

Of cousre the fields ϕ = (ϕ−2, ϕ−1, ...) should satisfy the same latteral conditions

as Φ i.e. lim
|x|→∞

ϕm = 0, for all m ≥ −2.

2. For the inverse, Let ϕ = (ϕ−2, ϕ−1, ...) satisfy the system (4.84) and (4.85).

Observe that the coefficients Âmn, ~̂Bmn, Ĉmn are given by

Âmn(η, h) = 〈Zn, Zm − Zm0〉 ,(4.67a)

~̂Bmn(η, h) = 2 〈∇xZn, (Zm − Zm0)〉+∇xh[Zn(Zm − Zm0)]z=−h,(4.67b)

Ĉmn(η, h) = 〈∆Zn, (Zm − Zm0)〉 −R−N− ·
[(
∇Zn

)
(Zm − Zm0)

]
z=−h.(4.67c)

Multiplying (4.84) with arbitary δϕm and integrating over the horizontal domain

S and denoting Âmn ≡ Âmn(η, h) etc. we can write∑
n≥−2

∫
S

{
Âmn∇2

xϕnδϕm + ~̂Bmn · ∇xϕnδϕm + Ĉmnϕnδϕm

}
dx = 0,(4.68)
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and denote the three terms of (4.68) as

Imn =

∫
S

{
Âmn∇2

xϕnδϕm

}
dx,(4.69a)

IImn =

∫
S

{
~̂Bmn · ∇xϕnδϕm

}
dx,(4.69b)

IIImn =

∫
S

{
Ĉmnϕnδϕm

}
dx.(4.69c)

The first term of (4.68) can be written via integration by parts as

Imn =
∑
n≥−2

∫
S

{
− (∇xÂmn) · (∇xϕn)δϕm − Âmn(∇xϕn) · (∇xδϕm)

}
dx.(4.70)

Using the definition of the matrix coefficient Âmn (Eqs. (4.67)), and invoking

Leibnitz’s integral rule, we see that

∇xÂmn = ∇xη[Zn Ẑm]z=η +∇xh[Zn Ẑm]z=−h +
〈
∇xZn, Ẑm

〉
+
〈
Zn,∇xẐm

〉
,

(4.71)

where we denoted Ẑm = Zm − Zm0 . Using the fact that [Ẑm]z=η = 0, (4.70) can

further be written as

Imn =

∫
S

{(
−∇xh[Zn Ẑm]z=−h −

〈
∇xZn, Ẑm

〉
−
〈
Zn,∇xẐm

〉)
·
(
∇xϕn

)
δϕm−

−
〈
Zn, Ẑm

〉(
∇xϕn

)
· ∇xδϕm

}
dx.

(4.72)

The third term of (4.68) is treated similarlly. First observe that〈
∇2

xZn, Ẑm
〉

= ∇x ·
〈
∇xZn, Ẑm

〉
−

−∇xη · [∇xZn Ẑm]z=η −∇xh[∇xZn Ẑm]z=−h −
〈
∇xZn,∇xẐm

〉
,

(4.73)

and 〈
∂2
zzZn, Zm

〉
= [∂zZnẐm]z=η − [∂zZnẐm]z=−h −

〈
∂zZn, ∂zẐm

〉
.(4.74)

Recall also that

R−N− ·
[(
∇Zn

)
Ẑm
]
z=−h = −∇xh ·

[
∇xZnẐm

]
z=−h −

[
∂zZnẐm

]
z=−h.(4.75)
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Now the third term of (4.68), in virtue of the last three equations and the fact

that [Ẑm]z=η = 0, can be written as

IIImn =

∫
S

{
∇x ·

〈
∇xZn, Ẑm

〉
ϕnδϕm−

−
〈
∇xZn,∇xẐm

〉
ϕnδϕm −

〈
∂zZn, ∂zẐm

〉
ϕnδϕm

}
dx,

and an integration by parts for the first term shows

IIImn =

∫
S

{
−
〈
∇xZn, Ẑm

〉
· ∇x(ϕnδϕm)

−
〈
∇xZn,∇xẐm

〉
ϕnδϕm −

〈
∂zZn, ∂zẐm

〉
ϕnδϕm

}
dx

(4.76)

We can now compose Eq. (4.68) as∑
n≥−2

(
Imn + IImn + IIImn

)
= 0(4.77)

Substituting the expressions (4.72), (4.69b), (4.76) in (4.77) we obtain the following

variational equation∑
n≥−2

∫
S

{〈
Zn, Ẑm

〉
∇xϕn · ∇xδϕm +

〈
Zn,∇xẐm

〉
· ∇x(ϕnδϕm)+

+
〈
∇xZn,∇xẐm

〉
ϕnδϕm +

〈
∂zZn, ∂zẐm

〉
ϕnδϕm

}
dx = 0

(4.78)

Taking the sum over m, one can verify that∫
S

{∫ η

−h
∇
( ∑
n≥−2

ϕnZn

)
· ∇
( ∑
m≥−2

Ẑmδϕm

)
dz
}
dx = 0.(4.79)

Which is exactly the variational equation (4.58) where Φ =
∑
n≥−2

ϕnZn and

δΦ =
∑

m≥−2

Ẑmδϕm. Furthermore for all δϕm one has

[δΦ]z=η =
[ ∑
m≥−2

Ẑmδϕm
]
z=η

=
∑
m≥−2

[Ẑm]z=ηδϕm = 0.(4.80)

and also the following holds

[Φ]z=η = [
∑
n≥−2

ϕnZn]z=η =
∑
n≥−2

ϕn = ϕ.(4.81)
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Now Green’s theorem and the assumption that δϕn vanish outside S for all n,

yields∫
S

{∫ η

−h
∆
( ∑
n≥−2

ϕnZn

)( ∑
m≥−2

Ẑmδϕm

)
dz−

−R−N− ·
[
∇
( ∑
n≥−2

ϕnZn
)( ∑

m≥−2

Ẑmδϕm
)]
z=−h

}
dx = 0.

We deduce that Φ =
∑
n≥−2

ϕnZn solves (PDtN).

By virtue of Theorems (4.3) and (4.2) in conjunction with Theorem (4.4) we

can state the following result

Theorem 4.5. (PWW ) is equivalent with the following system of evolution equa-

tions for ϕ and η

∂tη = −∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)

(4.82)

∂tϕ = − gη − 1

2
(∇xϕ)2 +

1

2
R2

+

(ϕ−2

h0

+ µ0ϕ
)2

(4.83)

where
{
ϕn
}
n≥−2

are obtained by the infinite coupled mode system∑
n≥−2

Amn(η, h)∇2
xϕn + B̂mn(η, h) · ∇xϕn + Cmn(η, h)ϕn = 0, m ≥ −2,(4.84) ∑

n≥−2

ϕn = ϕ.(4.85)

4.5 Implication to the representation of the DtN

operator

In the previous subsection we treated the free suraface elevation η and the trace

of the velocity potential ϕ, as data for the problem (PDtN) expressed in terms of

the local mode representation. When ϕ(·, t) and η(·, t) are known at an instant

t, then we can solve the (CMS) Eqs. (4.84) and (4.85), and obtain a solution

ϕ = ϕ[ϕ, η, h] = (ϕ−2, ϕ−1, ϕ0, ...). The dependence of the solution on the free
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surface η and the fixed bottom surface h is expressed through the coefficients Âmn,

~̂Bmn, Ĉmn. Recall the definition of the DtN operator

G(η, h)ϕ = R+∂N+Φ|Γη ,(4.86)

where Φ solves (PDtN). Having in hand a solutionϕ = ϕ[ϕ, η, h] = (ϕ−2, ϕ−1, ϕ0, ...)

of Eqs. (4.84) and (4.85) we can reconstruct the wave potential Φ =
∑
n≥−2

ϕnZn

and express the DtN operator in terms of the free surface mode ϕ−2 as follows

G̃(η, h)ϕ = −∇xη · ∇xϕ+R2
+

(ϕ−2

h0

+ µ0ϕ
)
.(4.87)

In order to compare the expression of the DtN operator (4.87), derived through

the local mode representation of the velocity potential, we briefly recall the ap-

proach developed in a series of works (see [CS93, Cra07, CLS11, CGNS05]), where

a functional Taylor expansion of the DtN is used. For the case of variable bottom

of the form h(x) = −h0 + β(x) where β(x) denotes the variation of the bottom

of the fluid domain from its mean value −h0, Craig et al. [CGNS05] obtained a

Taylor expansion of the DtN operator given by

G(η, h) =
∞∑
l=0

G(l)(η, β),(4.88)

where

G(0) = |D|tanh(h0|D|) + |D|L(β), D = −i∇x ,(4.89)

and for l odd,

G(l) = |D|l−1D
ηl

l!
·D −

l−1∑
j=2,even

|D|j η
j

j!
G(l−j) −

l∑
j=1,odd

|D|j−1G(0)η
j

j!
G(l−j),(4.90)

and for l even,

G(l) = |D|l−2G(0)D
ηl

l!
·D −

l−1∑
j=2,even

|D|j η
j

j!
G(l−j) −

l−1∑
j=1,odd

|D|j−1G(0)η
j

j!
G(l−j).

(4.91)
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The bottom variation is expressed through the operator L(β) which also can be

expanded in Taylor series, with the first few terms given by

L0 = 0,

L1 = − D

|D|sech(h0|D|) · βDsech(h|D|),

L2 =
D

|D|sech(h|D|) · βDsinh(h0|D|)L1.
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A Partial derivatives of the vertical functions

The vertical functions Zn, n ≥ −2 are given by

Z−2(z, η, h) =
µ0h0 + 1

2h0(η + h)
(z + h)2 − µ0h0 + 1

2h0

(η + h) + 1,(A.1)

Z−1(z; η, h) =
µ0h0 − 1

2h0(η + h)
(z + h)2 +

1

h0

(η + h) +
2h0 − (η + h)(µh0 + 1)

2h0

,(A.2)

Z0(z; η, h) =
cosh

[
k0(z + h)

]
cosh

[
k0(η + h)

] ,(A.3)

Zn(z; η, h) =
cos
[
kn(z + h)

]
cos
[
kn(η + h)

] , n ≥ 0,(A.4)

where k0 = k0(η, h) and kn = kn(η, h) satisfy the dispersion relations

µ0 − k0tanh(k0(η + h)) = 0, µ0 + kntan(kn(η + h)) = 0.(A.5)

Note that Z−2 and Z−1 depend explicitely on η an h, while Zn , n ≥ 0 depend both

explicitely and implicitely (through (A.5)) on η and h. Their partial derivatives

are given by

∂ηZ−2 =
1 + h0µ0

2h0

− 1 + h0µ0

2h0(η + h)2
(z + h)2,

∂hZ−2 = −1 + h0µ0

2h0

+
1 + h0µ0

h0(η + h)
(z + h)− (1 + h0µ0)(z + h)2

2h0(η + h)2
.

∂ηZ−1 =
−1− h0µ0

2h0

− −1 + h0µ0

2h0(η + h)2
(z + h)2,

∂hZ−1 =
1

h0

− −1− h0µ0

2h0

+
−1 + h0µ0

h0(η + h)
(z + h)− (1 + h0µ0)(z + h)2

2h0(η + h)2
.
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Recalling that for n ≥ 0, the vertical functions Zn = Zn(z; η, h), depend im-

plicitely on kn = kn(η, h), we also obtain

∂ηZ0 =

{
(z + h) sinh

[
k0(z + h)

]
(∂ηk0)−

−cosh
[
k0(z + h)

]
tan
[
k0(η + h)

] (
k0 + (η + h)(∂ηk0)

)} 1

cosh
[
k0(η + h)

] ,

∂k0Z0 =

{
sinh

[
k0(z + h)

]
cosh

[
k0(η + h)

]
(z + h)−

− sinh
[
k0(η + h)

]
cosh

[
k0(z + h)

]
(η + h)

}
1

cosh2
[
k0(η + h)

] ,

∂hZ0 =

 sinh
[
k0(z + h)

]
cosh

[
k0(η + h)

](
(∂hk0)(z + h) + k0

)
−

− sinh
[
k0(η + h)

]
cosh

[
k0(z + h)

](∂k0

∂h
(z + h) + k0

)
 1

cosh2
[
k0(η + h)

] ,

∂ηZn =

{
−(z + h) sin

[
kn(z + h)

]
(∂ηkn)+

+cos
[
kn(z + h)

]
tan
[
kn(η + h)

] (
kn + (η + h)(∂ηkn)

)} 1

cos
[
kn(η + h)

] ,

∂knZn =

{
− sin

[
kn(z + h)

]
cos
[
kn(η + h)

]
(z + h)+

+ sin
[
kn(η + h)

]
cos
[
kn(z + h)

]
(η + h)

}
1

cos2
[
kn(η + h)

] ,

∂hZn =

{
− sin

[
kn(z + h)

]
cos
[
kn(η + h)

](
(∂hkn)(z + h) + kn

)
+

+ sin
[
kn(η + h)

]
cos
[
kn(z + h)

](
(∂hkn)(z + h) + kn

)} 1

cos2
[
kn(η + h)

] .
For the values, of the above derivatives, on the free surface we easily obtain

[∂hZn]z=η = 0, n ≥ −2,

[∂knZn]z=η = 0, n ≥ 0,

[∂ηZ−2]z=η = − 1

h0

− µ0,

[∂ηZ−1]z=η = −µ0,
[∂Z−1

∂h

]
z=η

= 0
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[∂ηZ0]z=η = (η + h) tanh
[
k0(η + h)

]
(∂ηk0)− tanh

[
k0(η + h)

] (
k0 + (η + h)(∂ηk0)

)
= −k0tanh

[
k0(η + h)

]
,

[∂ηZn]z=η = −(η + h) tan
[
kn(η + h)

]
(∂ηkn) + tan

[
kn(η + h)

] (
kn + (η + h)(∂ηkn)

)
= kntan

[
kn(η + h)

]
.

Using the dispersion relations Eqs. (A.5) in the two last equations, we finally

obtain

[∂ηZ0]z=η = −µ0,

[∂ηZn]z=η = −µ0, n ≥ 0.
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B Calculation of the variation of S̃[ϕ, η]

The velocity potential is represented by a series expansion in terms of vertical

functions (4.1) that depend implicitely by the free surface elevation and the depth.

Substituting the representation into (3.14) the action functional S[Φ, η] becomes

a functional on the boundary fields ϕ(x, t) := {ϕn(x, t)}n≥−2 and η(x, t) given by

S̃[ϕ, η] =

∫
I

∫
Dηh

{∑
n

∂tϕnZn + ϕn∂tZn+

+
1

2

( ∑
n≥−2

∇xϕnZn + ϕn∇xZn

)2

+
1

2

( ∑
n≥−2

ϕn∂zZn

)2

+ gz
}
dV dt

= F̃ [ϕ, η] + K̃[ϕ, η] + V [η],

where

F̃ [ϕ, η] =
∑
n≥2

∫
I

∫
Dηh

{
∂tϕnZn + ϕn∂tZn

}
dV dt,

K̃[ϕ, η] =
1

2

∫
I

∫
Dηh

{(∑
n≥2

∇xϕnZn + ϕn∇xZn
)2

+
(∑
n≥2

ϕn∂zZn
)2
}
dV dt,

and

V [η] =

∫
I

∫
Dηh

gzdV dt.(B.1)

These three terms will be reffered as the time derrivative term, the kinetic energy

term and the potential energy term correspondigly and will be treated seperately

for convenience of the reader. The variation of the action functional S̃[{ϕn}n≥−2 , η]

is the sum of the variations of the three terms, with respect to all functional

arguments. The following identities simplify the presentation of the calculations

of the variations of the three terms F̃ , K̃ and V . They are known as Leibnitz’s

integral rule ([Die69]).

Proposition B.1. Let a, b ∈ C1(I → C1
0(R2)) be two functions with graphs Γa,

Γb that define the open bounded domain Dab . Given the functions f, g ∈ C1(I →
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C2(Dab )) ∩ C1(I → C1
0(Dab )) the following identities hold

〈
f, ∂tg

〉
=

d

dt

〈
f, g
〉
− ∂ta[fg]z=a + ∂tb[fg]z=b −

〈
∂tf, g

〉
(B.2a)

〈f, ∂xig〉 = ∂xi 〈f, g〉 − 〈∂xif, g〉 − [fg]z=a∂xia+ [fg]z=b∂xib, i = 1, 2,(B.2b)

〈∇xf,∇xg〉 = ∇x · 〈∇xf, g〉 −
〈
∇2

xf, g
〉
− [∇xfg]z=a · ∇xa+ [∇xfg]z=b · ∇xb

(B.2c)

with the notation
〈
f, g
〉

=

∫ a(x,t)

b(x,t)

f(x, z, t) g(x, z, t) dz.

The partial variation of the kinetic energy term K̃ w.r.t δϕm reads

δϕmK̃[ϕ, η; δϕm] =
d

dε

[
K̃[ϕ1, ..., ϕm + εδϕm, ..., η]

]
ε=0

=

∫
I

∫
Dηh

{( ∑
n≥−2

∇xϕnZn + ϕn∇xZn

)
·
(
∇xδϕmZm + δϕm∇xZm

)
+

+
( ∑
n≥−2

ϕn∂zZn

)
δϕm∂zZm

}
dV dt

=

∫
I

∫
S

{∫ η

−h

( ∑
n≥−2

∇xϕnZn + ϕn∇xZn

)
·
(
∇xδϕmZm + δϕm∇xZm

)
dz+

+

∫ η

−h

( ∑
n≥−2

∂zZn

)
δϕm∂zZm dz

}
dx dt.

For the first term we use (B.2c) with f = ∇x(
∑
ϕnZn) and g =

∑
δϕnZn and for

the second we integrate by parts. Hence, we obtain

δϕmK̃[ϕ, η; δϕm] =

∫
I

∫
S

{
−
∑
n≥−2

∇2
xϕn 〈Zn, Zm〉+ 2∇xϕn 〈∇xZn, Zm〉+ ϕn

〈
∇2

xZn, Zm
〉
−

−
∑
n≥−2

∇xϕn · ∇xh[ZnZm]z=h − ϕn∇xh · [∇xZnZm]z=h−

−
∑
n≥−2

∇xϕn · ∇xη[ZnZm]z=η + ϕn∇xη · [∇xZnZm]z=η+

+
∑
n≥−2

ϕn

(
[∂zZnZm]z=η + [∂zZnZm]z=h −

〈
∂2
zzZn, Zm

〉 )}
δϕmdxdt.
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For the time derivative term one has

δϕmF̃ [ϕ, η; δϕm] =

∫ T

t0

∫
S

−∂tηδϕmdxdt.

and obviously, for the potential emergy term

δϕmV [η; δϕm] = 0(B.3)

After reordering the terms, summing the partial variations of the three terms and

denoting ∆ = ∇2
x + ∂2

zz we obtain the result of Lemma 4.3. Simililarly, for the

variation in η, one has

δηF̃
[
ϕ, η; δη

]
=
d

dε
F̃ [ϕ, η + εδη]

∣∣
ε=0

=
d

dε

[∫
I

∫
Dη+εδηh

( ∑
n≥−2

∂tϕnZn
(
z; η + εδη, h

)
+ ϕn∂tZn

(
z; η + εδη, h

))
dV dt

]
ε=0

=

∫
I

∫
S

{( ∑
n≥−2

∂tϕn
[
Zn
]
z=η

+ ϕn
[
∂tZn

]
z=η

)
δη+

+

∫ η

−h

( ∑
n≥−2

∂tϕn (∂ηZn)δη + ϕn ∂t( (∂ηZn) δη)
)
dz
}
dxdt.

Using idendity (B.2a), we can write∫ η

−h
∂tϕn (∂ηZn)δη dz = ∂t

∫ η

−h
ϕn (∂ηZn)δη dz−

−
∫ η

−h
ϕn∂t

(
(∂ηZn)δη

)
dz − ∂tηϕn[∂ηZn]z=ηδη

(B.4)

The first term of the right hand side of the last equation contributes only to the

temporal boundaries and can be neglected. Using also the fact that

ϕn∂tZn = ϕn
(
∂ηZn + (∂knZn)(∂ηkn)

)
∂tη = ϕn(∂ηZn)(∂tη),(B.5)

we obtain

δηF̃
[
ϕ, η; δη

]
=

∫
I

∫
S

( ∑
n≥−2

∂tϕn[Zn]z=η

)
δη.(B.6)
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For the kinetic energy term we compute

δηK̃
[
ϕ, η; δη

]
=

d

dε

[
K̃[ϕ, η + εδη]

]
ε=0

=
d

dε

[
1

2

∫
I

∫
Dη+εδηh

( ∑
n≥−2

∇xϕnZn
(
z; η + εδη, h

)
+ ϕn∇xZn

(
z; η + εδη, h

))2

+
( ∑
n≥−2

ϕn∂zZn
(
z; η + εδη, h

))2

dV dt

]
ε=0

=

∫
I

∫
S

{{1

2

( ∑
n≥−2

∇xϕn[Zn]z=η + ϕn[∇xZn]z=η

)2

+
1

2

( ∑
n≥−2

ϕn[∂zZn]z=η

)2}
δη

+

∫ η

−h

{( ∑
n≥−2

∇xϕnZn + ϕn∇xZn

)
·
(∑
l≥−2

∇xϕl(∂ηZl)δη + ϕl∇x

(
(∂ηZl)δη

))
+

+
( ∑
n≥−2

ϕn∂zZn

)(∑
l≥−2

ϕl ∂z(∂ηZl)δη
)}
dz

}
dxdt

The first term is computed, using (4.13), as follows

1

2

( ∑
n≥−2

∇xϕn[Zn]z=η + ϕn[∇xZn]z=η

)2

+
1

2

( ∑
n≥−2

ϕn[∂zZn]z=η

)2

=

=
1

2
(∇xϕ)2 −∇xϕ · ∇xη

(ϕ−2

h0

+ µ0ϕ
)

+
1

2

(
(∇xη)2 + 1

)(ϕ−2

h0

+ µ0ϕ)2

(B.7)

For the second term we use (B.2c) with f =
∑
ϕnZn and g =

∑
ϕl(∂ηZl)δη to

obtain

∫ η

−h
∇xf · ∇xg dz =−

〈
∇2

x

(∑
ϕnZn

)
,
(∑

ϕl(∂ηZl)δη
)〉
−

−
[
∇x

(∑
ϕnZn

)(∑
ϕl(∂ηZl)δη

)]
z=η
· ∇xη−

−
[
∇x

(∑
ϕnZn

)(∑
ϕl(∂ηZl)δη

)]
z=−h · ∇xh

=−
〈
∇2

x

(∑
ϕnZn

)
,
(∑

ϕl(∂ηZl)δη
)〉
−

− (∇xη)2
(ϕ−2

h0

+ µ0ϕ)2δη +∇xϕ · ∇xη
(ϕ−2

h0

+ µ0ϕ
)
δη−

−
[
∇x

(∑
ϕnZn

)(∑
ϕl(∂ηZl)δη

)]
z=−h · ∇xh,

(B.8)

where the term contributing only on the latteral boundaries is neglected and also

(4.13) have been used. Finally for the third term we perform an integration by
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parts ∫ η

−h

( ∑
n≥−2

ϕn∂zZn

)(∑
l≥−2

ϕl ∂z(∂ηZl)δη
)
dz = −

(ϕ−2

h0

+ µ0ϕ)2δη−

−
( ∑
n≥−2

ϕn[∂zZn]z=−h

)(∑
l≥−2

ϕl [∂ηZl]z=−hδη
)
−

−
〈
∂z

( ∑
n≥−2

ϕn∂zZn

)
,
∑
l≥−2

ϕl(∂ηZl)δη
〉
.

(B.9)

For the potential energy term one has

δηV [ϕ, η; δη] =

∫
I

∫
S

gηδη dx dt.(B.10)

Taking the sum of (B.6), (B.8), (B.9), (B.10) one can verify the result of Lemma

4.4.
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