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Abstract

This thesis, mainly lie within the area of Model Predictive Control (MPC) which is a well-
known control methodology and the emerging field of event-based control. In particular,
this work has been focused on event-based designs of variousMPC schemes. Although
MPC schemes have conspicuous advantages they are considered to be computationally de-
manding so it seems useful to update the optimal control recalculation as rarely as possible.
To achieve that, we use event-based designs which appear to improve the requirements for
computation resources (eg. more efficient resource allocation), and, at the same time, pre-
serve the stability and the convergence properties of the system. Moreover, extensions on
this approach can in fact be helpful in networks to decrease control traffic.

In the early stages of our research we were first acquainted with the MPC framework for
controlling real robotic systems. We applied the (Nonlinear)MPC framework and tackled
the problem of driving a manipulator that initially does notinteract with the environment
to a desired position and then apply a desired force on a planar surface. The transition
from the no-contact case to the contact case was smooth and noimpact effects occurred,
see Chapter 9. Although MPC can be considered a natural candidate for more “humane-
like” control methodologies, it was apparent that it was computationally demanding. This
realization led us to the question“How often do we need to compute the control law?”. At
that point the idea of using the control trajectory that MPC provides in open-loop fashion
when it is needed, was already known, [Bem98]. However, it did not provide guarantees
on how large delays can be handled without resulting to instability.

The event-based designs for general nonlinear systems was the framework that pro-
vided us with the theoretic tools to tackle the fundamental question on how large the inter-
sampling times of Model Predictive Controllers can be. A stepping stone was to provide
the general event-based control design that was presented for continuous systems, [Tab07],
to its discrete-counterpart. That is given in Chapter 2, where an event-triggered strategy
is proposed for general discrete-time systems and also morespecific results are derived
for linear discrete-time systems. Moreover, some results are given in the context of self-
triggered control. The first approach for event-triggered MPC is also presented for linear
systems.

Using the above framework, in Chapter 3 we combine the event-triggered framework
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with MPC and derive some results on how often to compute the control law. The condi-
tion that is monitored in order to find whether or not the control law should be computed
is not an ad-hoc criterion. On the contrary, the notion of Input-to-State stability (ISS)
is used in order to derive a triggering condition which is based on a measurement error.
This approach results to less conservative results in termsof computation, with respect to
the traditional time-triggering scheme. Also, stability and convergence properties of the
closed-loop system are preserved. In particular, we can derive that the system is ISS with
respect to measurements errors and that the solution of the closed-loop system converges
to a bounded set. Note also, that the systems in hand are constrained nonlinear systems
subject to additive disturbances. In Chapter 3 the centralized, the decentralized case as
well as the linear time invariant case are treated while in Chapter 4, the Event-Triggered
MPC (ET-MPC) is utilized for deriving triggering conditions for a team of agents that are
cooperating in a common environment.

In the aforementioned Chapters we are considering dynamicsin the discrete-time do-
main, while in Chapter 6 the continuous counterpart was presented. Note that, although the
basic idea is the same (the goal is to compute less frequentlythe control law) the derivation
is significantly different.

In Chapter 5, an enhanced ET-MPC scheme is presented. The idea is to measure the
error in order not only to check if the triggering condition still holds, but also to utilize
this error in order to “correct” the control input during theinter-sampling periods. This is
achieved using tools from second variation methodologies (perturbation analysis).

In the subsequent Chapters, the extension of the event-based MPC framework to a Self-
Triggering MPC (ST-MPC) setup is presented. Using this framework the need for con-
tinuously measuring the error and checking the triggering condition is relaxed. Specific
results on ST-MPC are given for an underwater nonholonomic vehicle, see Chapter 7. The
validity of the results have been proven with an experiment in the Control Systems Labo-
ratory, NTUA, [HaEDK13]. Finally, in Chapter 8, a team of agents are considered, that are
being controlled locally through ST-MPC. This set-up provides interesting results in terms
of reduced communication between the agents.

Thesis Supervisor: Kostas J. Kyriakopoulos
Title: Professor
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Chapter 1

Overview

In this Chapter we are going to present the relevant, more recent, literature review with

respect to Event-Based Model Predictive Controllers. Moreover, the motivation and the

contributions of this Dissertation are thoroughly discussed.

Firstly, an overview of the Model Predictive Control framework is given. The attributes

as well as the drawbacks of this particular methodology are highlighted. Then, the relatively

new idea of event-based control is introduced while some recent publications are discussed.

Given these ideas along with a teleoperation scenario leadsus to the main question that

we try to answer in this work, i.e., the motivation is presented. Finally, the Event-Based

Model Predictive Control scheme is outlined and the most fundamental contributions of the

dissertation are discussed as well as some relevant publications.

1.1 Model Predictive Control

The Model Predictive Control framework has been developed considerably over the last

years. The reason for this success can be attributed to the fact that Model Predictive Control

is perhaps, the most general way of posing a control problem in the time domain. Moreover,

as a finite horizon is used, constraints and in general non-linear processes, can be handled.

Literature related to the Model Predictive Control framework is abundant, thus only some

recent books are going to be mentioned, i.e., [Wan09], [GP11], [FFB07], [dRAG+10],

[CLdlPn11], [Mac00], [Zhe10], [BC10], [MAR09], [KH05], [AZ00], [KC] and [CB00].
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We are going to outline the basic idea of a Nonlinear Model Predictive Controller.

Assume the following general nonlinear system:

xk+1 = f (xk,uk) (1.1)

wherexk ∈ R
n denotes the system’s state anduk ∈ R

m is the control vector for each time

instantk∈ Z≥0. Function f : Rn×R
m→R

n is assumed to be continuous and without loss

of generality we also assumef (0,0) = 0. The NMPC involves solving on-line a finite-

horizon, open-loop optimal control problem, based on the state measurementxk provided

by the plant. The optimal control problem involves minimizing a cost functionJN(·) with

respect to a control sequenceuF(k), [u(k|k),u(k+1|k), . . .,u(k+N−1|k)]. The OCP for

the system (1.1), is given by

min
uF (k)

JN(xk,uF(k)) (1.2)

and is subject to system constraints. The positive integerN ∈ Z>0 denotes the prediction

horizon. In the classic NMPC strategy the control law is updated at each time-stepk and

Figure 1-1: Model Predictive Control: The main idea.

the control input that is applied to the system is given byuk = u∗(k|k), whereu∗(k|k) is

the first column of the optimal solution provided by the optimal control problem (1.2). The

algorithm that describes the NMPC is given in the table “Algorithm 1”. Furthermore, the
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whole set-up is borne out in Fig. 1-1. The algorithm for the Predictive Control can be

summarized as follows

Algorithm 1 Classic MPC
1: Time equals tok.
2: while xk /∈ Xf do
3: Measure the current state of the plantxk.
4: Compute the open-loop optimal control sequenceu∗ : [k,k+N].
5: Apply the control input:u(k) = u∗(k|k).
6: k= k+1.
7: end while
8: Continue from 3.

As it is apparent the NMPC framework can deal with nonlinearities as well as con-

straints. Also, it should be pointed out that NMPC have some kind of inherent robustness

due to the (not explicit) feedback policy. These are the attributes that make NMPC to be

widely used. However, there are some drawbacks. These are comprised mainly to the so-

lution of the optimal control problem. It is widely known that the solution of a constraint

optimal control problem can be computationally demanding.In some cases, the computa-

tional cost may be as high, that make the use of NMPC practically prohibitive. This is a

part of the discussion that will take place in the sequel as the computational cost of NMPC

was one of the motivations for this work.

1.2 Event-Based Control

The formulation of event-based control schemes is a flourishing field in the recent years.

The key attribute of these approaches is that the decision for the execution of the control

task is not made ad-hoc, but it is based on a certain conditionof the state of the system.

More particularly, the decision for sampling in event-based schemes takes into account

state or output feedback in order to sample as infrequently as possible. This results to

a more flexible aperiodic sampling, while preserving necessary properties of the system

such as stability and convergence. Notice, that the particular formulation for sampling can

lead to the alleviation of energy consumption, to an improvement on the requirements for

computational resources and may lead to a significant reduction of the network traffic in

13



network control systems. Thus, it can be proven to be less conservative with respect to the

constant sampling where the worst case scenario is considered.

Notice that the event-triggered control for discrete-timesystems is going to be treated

extensively in Chapter 2 of this Thesis, [EDK10]. The formulation of the event-based

control in particular for discrete-time systems is a contribution of this thesis, nevertheless,

quite a few papers have appeared mostly in the continuous-time frame. More specifically,

here we are going to present some of the most recent paper thatdeal with the event and self

triggered control framework.

The time-triggered paradigm is the most dominant scheduling rule for the control com-

munity. This assumes a constant sampling period. There is noparticular policy or rule in

order to reach to this sampling period. The main idea is to sample as frequently as possible

in order to take into account the worst case scenario. The block diagram of the traditional

time-triggered case is depicted in Fig. 1-2.

Figure 1-2: Time-Triggered Case.

Some papers deal with the comparison of the time-triggered versus the event-triggered

policies and reach to conclusions on the pros and cons of bothapproaches. A comparison

of time-driven and event-driven control for stochastic systems favoring the latter can be

found in [AB02], [Åst08].

As it is already mentioned the event-based policies for triggering has gained much

attention in the recent years. The block diagram that depicts the event-based approach is

given in Fig. 1-3. An introductory paper is [HJT12], where many issues on event-triggered

control is outlined. In [Tab07], the control actuation is triggered whenever a certain error
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Figure 1-3: Event-Triggered Case.

norm becomes large enough to overtake the norm of the state ofthe plant. The nominal

system is assumed to be Input-to-State stable [Son08], withrespect to measurement errors

and then, tools from perturbation analysis of nonlinear systems are used in order to analyze

the performance of the event-driven system. The results revealed that the proposed scheme

can maintain desired levels of performance. This frameworkis a stepping stone for this

Thesis, as the discrete-time counterpart is presented and utilized throughout this work. In

a similar context as [Tab07], the authors in [JT08] have resorted to an event-driven policy

for sensor/ actuator networks, which resulted in less energy consumption.

An alternative approach to event-driven control, for perturbed linear systems can be

found in [HSB07]. In the case of event-triggered feedback nonlinear systems another ap-

proach can be seen in [WL08a]. In [CBJ09], an event-driven optimization-based control

of hybrid systems with integral continuous-time dynamics was presented. An adaptive sta-

bilization of Model-Based Networked Control Systems was given in [GA11a]. Some case

studies for event-driven control are given in [SHB07]. Related works can be found also

in [VML08a], [GA11b], [HD13],[JAT09], [JT09], [WL09c], [MH11], [JT11], [SDJ11],

[WL09a], [YZA10].

The event-based approach has been extended to decentralized and multi-agent frame-

works. Event-driven strategies for multi-agent systems are presented in [DJ09a] and a

cooperative scenario in [DJ09b]. Event-triggered and self-triggered stabilization of dis-

tributed networked control systems was given in [PTNA11] aswell as in [DF09]. Moreover,

the event-based framework is utilized to stochastic control also. Stochastic event-triggered
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strategies regarding sensing and actuation for networked control systems have been stated

in [RJJ08].

It was mentioned that most of the works on event-based control are regarding continuous-

time systems. However, some papers have appeared that assume the discrete-time frame-

work, [LL10b] and [MM10].

Event-driven techniques require the constant measurementof the current state of the

plant, in order to decide when the control execution must be triggered. In the case of self-

triggered control [WL09b], [AT10], only the last state measurement needs to be known for

determining the next time instant where the state must be measured again so that the control

law is computed and the actuators are updated. A first attempthas been made for linear

systems in [VFM05] and recently for systems with finite-gainL2 stability, [WL08b]. Some

particular classes of nonlinear systems, namely state-dependent homogeneous systems and

polynomial systems, under self-triggered policy have beenpresented in [AT10]. Related

approaches can be found in [LL09].

In [LCHZ07], the authors present full-information self-triggeredH∞ controllers. In

the context of linear systems the paper [JAT09] deal with thetradeoffs between the the

computational resources required for the self-triggered implementation and the resulting

performance. Moreover, in [JT08] the same approach is used for sensor/actuators networks.

The Input-to-State stability of the self-triggered framework is revisited in [JT09].

1.3 Contributions

The NMPC strategy is a widely used control strategy for constrained systems. Even though

formulating a control problem under NMPC is intuitively attractive, the computation of the

control law is considerably demanding. Motivated by this fact, an event-based framework

for this kind of controllers has been investigated, in orderto reduce the number of times

the control input should be computed. This event-based approach exploits the fact that

predictive controllers provide a control sequence for a prediction horizon. The main idea is

that the control sequence provided by the controller is applied to the system in an open-loop

fashion between actuator updates. Figure 1-4 depicts the main idea for the Event-based
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NMPC framework.

Figure 1-4: Event-Based Model Predictive Control: The mainidea.

It should be pointed out that the triggering conditions depend on an errore(·). This er-

ror, depends on the actual state of the systemx(·) and the predicted state of the system ˆx(·),
that can be calculated by forward integration of the model (1.1). The difference between

the predicted and the actual state is due to disturbances as well as uncertainties induced by

the model of the system. The algorithm for the Event-Based Model Predictive Control can

be summarized as follows

This approach resulted to a number of publications, indicatively, [EDK10], [EDK11a],

[EDK11b], [EDK12b], [EDK12a], [EHaDK13] and [HaEDK13].

1.3.1 Event-Based Model Predictive Control

The field of event-based MPC is quite new, however, some relevant works have already

been presented. In [VKFF09], the NMPC framework for continuous-time Network Con-

trol systems is event-based, but the system is assumed to be nominal and the triggering

condition was not discussed. Also, an event-driven MPC scheme for a particular class of

integral continuous-time hybrid automata was presented in[BCJ06] and in [BB08]. More

recently, an algorithm for event-based optimal feedback control was given in [GM09] and
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Algorithm 2 Event-Based MPC
1: while xk /∈ Xf do
2: Measurexk.
3: Calculate the MPC control law:u∗F(k)

Buffer: (Zero-based Indexing)
u∗F = [u∗(k|k),u∗(k+1|k), . . . ,u∗(k+N−1|k)].
x̂F = [xk, x̂(k+1|k), . . . , x̂(k+N−1|k)].

4: k0← k.
5: Error: e(k|k0) = ||xk− x̂F(k−k0)||= 0.
6: while Error does not violate triggering conditionsdo
7: Apply u∗(k−k0).

At next stepk← k+1.
Measurexk.
Calculate Error:e(k|k0).

8: end while
9: Continue from 3.

10: end while

in [SLH10] an event-based estimator between the sensor and the MPC controller was in-

troduced in order to decouple the triggering events and the control algorithm. Other related

papers for linear systems can be found in [IHF09], [GPW09]. Event-triggered output feed-

back control of finite horizon discrete-time multi-dimensional linear processes [LL10a].

As the event-based set-up for MPC controllers has just started to gain attention only a

few results have been presented for the self-triggered MPC.In the context of self-triggered

MPC, an analysis was presented in [HQSJ12] for Network Scheduling. The authors focus

on discrete-time LTI systems and they propose a cost function of the MPC that depends

on the control performance and the cost for sampling. In [BGH12], a self-triggered MPC

framework was presented for constrained discrete-time linear systems. The MPC controller

is designed to maintain some specific optimality levels while the control input that is sent

to the actuators is the current control value and not the trajectory of the optimal inputs as is

the case in the current paper. An approach for network control systems which is extended

to continuous time systems, but not in the area of MPC, proposes a self-triggered selection

based on quadratic programming, [MOndlPn+11]. There, the authors present an analysis

that leads to an optimization problem for maximizing the intersampling period.
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Chapter 2

Event-Triggered Control for

Discrete-Time Systems

In this Chapter, event-triggered strategies for control ofdiscrete-time systems are proposed

and analyzed. The plant is assumed to be Input-to-State Stable with respect to measurement

errors and the control law is updated once a triggering condition involving the norm of a

measurement error is violated. The results are also extended to a self-triggered formulation,

where the next control updates are decided at the previous ones, thus relaxing the need for

continuous monitoring of the measurement error. The overall framework is then used in

a novel Model Predictive Control approach. Finally, the results are illustrated through

simulated examples.

2.1 Introduction

Traditional approaches to sampling for feedback control involve a time-periodic decision

ruling. However, this might be a conservative choice. In some cases, equidistant sampling

can be prohibitive to attain certain goals. For example, theissues of limited resource and

insufficient communication bandwidth for decentralized control of large scale systems, or

even the case of inadequate computation power for fast systems, are problems that often

have to be dealt with. A recent approach is to sample only whenis needed. Even though we

need to relax the periodicity for computation of the controllaw, we still need to preserve
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necessary properties of the system, such as stability and convergence. It is therefore of great

interest to build mechanisms for sampling that do not rely onperiodicity or time-triggering

techniques. As a result, in recent years the issue of event-driven feedback and sampling,

has been developed. The key attribute of these approaches, is that the decision for the

execution of the control task is not made ad-hoc, but it is based on a certain condition of

the state of the system.

Almost all of the event-based approaches that was mentionedin Chapter 1, Section 1.2,

have been performed in the continuous-time frame. The contribution of this Chapter is to

show how the event-triggered, as well as the self-triggeredtechniques can be implemented

over the discrete-time frame. The main assumption used for the event-triggered policies, is

the Input-to-State property of the plant. For general nonlinear discrete-time systems the ISS

characterization was first introduced in [JSW99], and laterrefined in [JW01]. For sampled-

data systems notions of ISS stability can be found in [NTS99], while in [HJND05] minimal

ISS gains and transient bounds are given for discrete nonlinear systems.

2.2 Event-Triggered Control

In this section we are going to introduce the event-triggered formulation for a general non-

linear system in its discrete-time framework and we will state the general event-triggering

rule for sampling.

Consider a control system in the discrete time-domain of thegeneral form

x(k+1) = f (x(k),u(k)) (2.1)

wherex∈ R
n is the state,x(k+1) ∈ R

n is the successor state, andu∈ R
m are the control

values for each time instantk ∈ Z+. The vector fieldf : Rn×R
m→ R

n is assumed to be

continuous. Also assume without loss of generality, that the origin is an equilibrium point

for (2.1), i.e.,f (0,0) = 0. Let the system (2.1) be continuously stabilizable by a continuous

feedback law of the formu(k) = w(x(k)), with w : Rn→ R
m. Then, system (2.1) is ISS-

stabilizable with respect to measurement errorse(k), i.e., there is feedback control law,
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p : Rn→ R
m of the formu(k) = p(x(k)+e(k)) that renders the closed-loop system

x(k+1) = f (x(k), p(x(k)+e(k))) (2.2)

Input-to-State (ISS) stable with respect to measurement errorse(k), [JW01]. As in classic

Lyapunov theory a system that is ISS-stable, admits an ISS-Lyapunov function, [Kha02].

A continuous functionV : Rn→ R≥0 is an ISS-Lyapunov function for the system (2.2) if

there existK∞ functionsα1,α2, such that

α1(||x||)≤ V(x)≤ α2(||x||) ∀x∈ R
n (2.3)

and for someα that is classK∞ function, andγ that is classK , V(x) also satisfies

V( f (x(k), p(x(k)+e(k))))−V(x(k))≤−α(||x(k)||)+ γ(||e(k)||) (2.4)

Assume, now, that in the event-triggered setup the control is updated at the discrete time

instants

k0,k1,k2, . . .

The control law is then defined as follows

u(k) = p(x(ki)), k∈ [ki ,ki+1) (2.5)

i.e., it remains constant in the inter-execution interval.We assume that at the sampling

instantki with ki > 0, the state variable vectorx(ki) is available through measurement

and provides the current plant information. Defining the state measurement error in this

interval, as follows

e(k) = x(ki)−x(k), k∈ [ki ,ki+1) (2.6)

we get that the stabilizable feedback control law is given by

p(x(ki)) = p(x(k)+e(k))
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with k∈ [ki,ki+1) and the closed-loop equation of system (2.1) becomes

x(k+1) = f (x(k), p(x(k)+e(k))) (2.7)

System (2.7) remains ISS-stable, ife(k) satisfies

γ(||e||)≤ σa(||x||) (2.8)

with 0< σ < 1. Invoking this rule into equation (2.4), it becomes

V( f (x(k), p(x(k)+e(k))))−V(x(k))≤ (σ −1)a(||x||) (2.9)

with V still guaranteed to be decreasing. Hence, the control law should be updated when

the condition

γ(||e||)≤ σa(||x||) (2.10)

is violated.

Theorem 1 Consider the system (2.1) and assume that the previously presented assump-

tions hold. Then the control law (2.5) with the event-triggered ruling (2.10), asymptotically

stabilizes the system to the origin.

2.3 Linear Discrete-Time Systems

Using the general notion for event-trigger policy, presented above, we specialize to discrete-

time, time-invariant linear systems. In this case, the triggering policy is found to be also

linear with respect to the state of the plant. The system under consideration is

x(k+1) = Ax(k)+Bu(k) (2.11)

whereA∈ R
n×n, B∈ R

n×m and the inputu(k) ∈ R
m is defined ink∈ Z+. The pair(A,B)

is considered to be stabilizable, which means that there exists a matrixK so that the eigen-
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values ofA+BK are inside the unit disc, which yields the system (2.11) to bealso ISS-

stabilizable. ISS properties of linear discrete-time systems were provided in [JW01].

Input-to-State stabilizability of system (2.11), impliesthat there exists a stabilizing

feedback control lawu(k) = K(x(k)+e(k)) wheree(·) is the measurement error seen as

a new input andK is an appropriate matrix, defined above. The compensated closed-loop

system can be described by the equation

x(k+1) = (A+BK)x(k)+BKe(k) (2.12)

System (2.12) admits a quadratic ISS-Lyapunov function of the form

V(x) = xTPx (2.13)

FunctionV is considered to be positive-definite, radially unbounded and satisfies prop-

erty (2.3) withα1(r) = λmin(P)r2 and α2(r) = λmax(P)r2, with λmin(P), λmax(P) being

the smallest and the largest eigenvalue of matrix P, respectively. Given a symmetric and

positive-definite matrixQ, let P be the unique positive definite solution to

(A+BK)TP(A+BK)−P=−Q (2.14)

The difference of the ISS-Lyapunov function is

V(x(k+1))−V(x(k)) =−xT(k)Qx(k)+2xT(A+BK)TPBKe(k)+eT(k)KTBTPBKe(k)

(2.15)

Then, the property (2.4), holds with

α(||x||) = 1
2

λmin(Q)||x||2

γ(||e||) = (
2||(A+BK)TPBK||2

λmin(Q)
+ ||KTBTPBK||)||e||2

In an event-triggered formulation of system (2.12), with ISS-Lyapunov equation of the
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form (2.13) the control updates should be enforced when

||e|| ≤ (4
||(A+BK)TPBK||2

σλ 2
min(Q)

+2
||KTBTPBK||

σλmin(Q)
)−1||x|| (2.16)

with 0< σ < 1, is violated. Thus (2.16) is the linear equivalent of (2.10). We are going to

utilize the following notation

µ = (4
||(A+BK)TPBK||2

σλ 2
min(Q)

+2
||KTBTPBK||

σλmin(Q)
)−1

in the next subsections.

2.3.1 Time Elapsed Between Consecutive Executions

In the sequel, a result on the minimum time between two consecutive executions is pre-

sented for the linear case. We note here that non-trivial lower bounds on the inter-execution

times, i.e. bounds strictly larger than one, are not suitable for the systems considered here

due to their discrete time nature. A proposition providing sufficient conditions for non-

trivial inter-execution times is given in the following paragraphs.

We consider now the state as well as the error to evolve with time. In view of equation

(2.6), the system described in equation (2.12) now becomes

x(k+1) = Ax(k)+BKx(ki) (2.17)

whereki is the latest actuation update instant. We set the vectorc1 = BKx(ki) = const., and

thus the solution of (2.17) is

x(k) = Akx(ki)+
k−1

∑
j=0

Ak−1− jc1 (2.18)

It is straightforward to see, that the error at the next discrete time instant is given bye(k+

1) = x(ki)−x(k+1). Thus, equation (2.12) with some manipulation becomes

e(k+1) = (A+BK)e(k)+(I−A−2BK)x(ki) (2.19)
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The solution of this linear nonhomogeneous equation, is given by

e(k) =
k−1

∑
j=0

(A+BK)k−1− jc2 (2.20)

with c2 = (I −A−2BK)x(ki) = const. ande(ki) = 0.

Define now the minimumk= k∗ that violates condition (2.16), i.e.,

k∗ =argmin
k∈N
{||

k−1

∑
j=0

(A+BK)k−1− jc2|| ≥ µ||Akx(ki)+
k−1

∑
j=0

Ak−1− jc1||} (2.21)

Proposition 1 Consider the system (2.12) and assume that (2.21) has a solution k∗ > 1 for

all ki . Then the event-triggered rule (2.16) is non-trivial, in the sense that it takes at least

two steps for the next controller update.

2.3.2 Self-Triggered Control

Another view for finding sampling periods is the self-triggered formulation. Motivated by

the corresponding self-triggered notion which was originally proposed by for the continuous-

time systems in [JT08], here we are going to provide their discrete analogues. Using this

kind of implementation, inter-execution times are provided as in the event-triggered imple-

mentation, but in this case no continuous monitoring of the plant’s state is required. We

shall write the system (2.12) in a state-space representation by eliminating variablex(ki),

while treatinge(k) as a new state variable





xk+1

ek+1



=





A+BK BK

I −A−BK I−BK









xk

ek





We definey= [x(k)⊤e(k)⊤]⊤ and

C=





A+BK BK

I −A−BK I−BK
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This system in a stack vector form becomes a linear homogeneous system. In particular, it

can be rewritten as

y(k+1) =Cy(k) with y0 = yk0 (2.22)

The initial conditions of this system, at each sampling period, isyk0 = [x(ki)
T ,0]T , and the

solution of (2.22) is of the form

y(k) =Ck−ki yk0

As in the general event-triggered formulation, the difference of the ISS-Lyapunov func-

tion must be negative, and an inequality of the form (2.10) must exist. As we saw in (2.16),

at the linear case this inequality becomes also linear. In view of (2.16), while making some

easy manipulations, this inequality can be rewritten as

||e(k)||2+ ||x(k)||2≤ µ2||x(k)||2+ ||x(k)||2⇒ ||y(k)||2≤ (1+µ2)||Ĩy(k)||2 (2.23)

with Ĩ =
[

I 0
]

. Similarly to the derivation of Proposition 1, define the minimum k= k∗∗

that violates condition (2.23), i.e.,

k∗∗ = argmin
k∈N
{||Ck−ki yk0||2≥ (1+µ2)||ĨCk−ki yk0||2} (2.24)

We now can state the following result for the inter-execution times in this formulation:

Proposition 2 Consider the system (2.12) and assume that (2.24) has a solution k∗∗ > 1

for all ki . Then the self-triggered rule (2.23) is non-trivial, in thesense that it takes at least

two steps for the next controller update.

It is worth noting from equation (2.24), that only the current state of the plant is required to

compute the next execution time of the control, thus at each time instant it is known when

the next sampling time is going to take place.
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2.4 Event-Triggered Control: Another Approach

In this section we propose another event-triggered strategy. The approach is valid for a

smaller class of nonlinear systems that satisfy stronger stability conditions. Recall

x(k+1) = f (x(k), p(x(k)+e(k)))

and assume that the following assumption holds:

Assumption 1 There exist positive constants L,L1,a,γ ≥ 0, a C1 function W: Rn→ R≥0,

andK∞ functionsα1,α2 such that

‖ f (x(k), p(x(k)+e(k)))‖ ≤ L‖x(k)‖+L‖e(k)‖ (2.25)

α1(||x||)≤ W(x)≤ α2(||x||) ∀x∈ R
n (2.26)

W( f (x(k), p(x(k)+e(k))))−W(x(k))≤−aW(x(k))+ γ‖e(k)‖ (2.27)

α−1
1 (||x||)≤ L1||x|| (2.28)

Letki be the last update time. For eachk∈ [ki ,ki+1), we can then computee(k+1) = x(ki)−
x(k+1), so that‖e(k+1)‖≤ ‖x(k+1)‖, and thus‖e(k+1)‖≤ L‖x(k)‖+L‖e(k)‖. Further

note thatx(k) = x(ki)− e(k), so that‖e(k+ 1)‖ ≤ 2L‖e(k)‖+ L‖x(ki)‖. Recalling that

e(ki) = 0, the comparison principle for discrete-time systems (seefor example, Proposition

1 in [BG95]) yields

‖e(k)‖ ≤ (2L)k−1
2(2L−1)

‖x(ki)‖ (2.29)

for all k∈ [ki ,ki+1). Equation (2.27) then yields

W( f (x(k), p(x(k)+e(k))))−W(x(k))≤−aW(x(k))+ γ
(2L)k−1
2(2L−1)

‖x(ki)‖ (2.30)

From (2.26), (2.28) we also have

‖x(ki)‖ ≤ α−1
1 (||W(x(ki))||)≤ L1W(x(ki))

27



Denotingψ(k) = γ (2L)k−1
2(2L−1)L1 we getW(x(k+1))≤ (1−a)W(x(k))+ψ(k)W(x(ki)). Using

again the comparison principle of [BG95] and assuminga< 1, we get

W(x(k))≤ 1− (1−a)k

a(1−a)
ψ(k)W(x(ki)) (2.31)

Similarly to [WL08a], assume that events are triggered according to

W(x(k)) =−ξW(x(ki))(k−ki)+W(x(ki)) (2.32)

the right hand side equation is strictly decreasing forξ > 0 and thus convergence is guar-

anteed. Define now the minimumk= k∗∗∗ as follows

k∗∗∗ = argmin
k∈N
{−ξ (k−ki)+1≥ 1− (1−a)k

a(1−a)
ψ(k)} (2.33)

Then, using (2.31), (2.32), a sufficient condition for a nontrivial interexecution time is

given byk∗∗∗ > 1. Note that in this case the result holds only for the restricted class of

nonlinear systems satisfying Assumption 1.

2.5 Event-triggered Model Predictive Control for LTI Sys-

tems

In this section, we provide initial results on the main motivation behind the study of event-

driven strategies for discrete-time systems, namely, the application on computing the inter-

sample times in a Model Predictive Control framework.

Consider that the feedback control that we use to stabilize the plant is computed with a

Model Predictive Control (abbr. MPC) formulation. It is widely known that this approach is

computationally demanding, in the sense that at each sampling period a finite-time optimal

control problem must be solved. In this paper we propose an alternative approach based

on the event-triggered framework described previously that may be used to reduce the

computational load of the MPC framework.
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MPC is an implicit feedback policy, thus, the event-triggercondition defined in (2.16),

cannot be directly used. In order to reach in an MPC event-trigger policy, we will use

the results as well as the notation of [JM02], where ISS properties of linear MPC were

investigated. Specifically, in [JM02] the authors deal withlinear systems and they prove

that the closed-loop system with a receding horizon feedback is globally ISS, when the

system is open-loop stable and when input constraints are present. In the case of unstable

system, though, the same results apply, but have local nature.

We consider the same linear system as in (2.11). We assume that the prediction horizon

is N. The solution of the optimization MPC problem is the optimalsequence

uo(x) = {uo(0;x),uo(1;x), . . . ,uo(N−1;x)}

Consider a setXr , over which there exist a feasible and stabilizing control,and thus, ap-

plication of this feasible controller results in feasible state trajectories. Consider, also, a

controllability setXn, i.e., the set of all initial conditions that can be steered into the setXr

in N steps or less, where the MPC feedback controller is defined. The optimization problem

has the following cost function

V∗N(x) = min
N−1

∑
i=0

(x(k)TQx(k)+uT(k)Ru(k)))+F(x(N)) (2.34)

whereQ > 0 andR> 0 are appropriate performance functions. With particular choices

of the terminal state functionF(·) and the setXr , it can be proved that the open-loop sta-

ble system (2.11), under the receding horizon feedbackκN(x) = uo(0;x) can be rendered

exponentially stable. The closed-loop system is a piecewise affine system which is stable

with a piecewise and differentiable quadratic Lyapunov function V∗N(x) = x̄TPi(x)x̄, where

x̄= [x, 1]⊤, andi(·) is a switching function that maps the state space to a finite set of indices

labeling the polytopic partitions of the state space.

In [JM02], the authors proved that the receding horizon scheme globally ISS stabilizes

stable linear systems with input constraints, with respectto additive disturbance. In an

event-triggered formulation, the error, defined as the difference in (2.6), can be considered
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as the additive disturbance. Thus the closed-loop system becomes

x(k+1) = (A−BκN(x))x(k)+BκN(x)e(k) = Āi(x)x(k)+BκN(x)e(k) (2.35)

whereĀi(x) is the closed-loop matrix corresponding to thei− th partition of the state space,

andi is the switching function that maps the state space to a finiteset of indices correspond-

ing to different polytopic regions where the active constraints do not change.

Constant sampling implies a zero error and global exponential stability for the closed-

loop system

V∗N(Ai(x)x)−V∗N(x)≤−Cq||x||2 (2.36)

whereCq > 0 is the rate of the exponential decay. The differentiability of the Lyapunov

function implies

||V
∗
N(x)

x
||= ||Pi(x)x|| ≤ L̃||x|| (2.37)

whereL̃ = maxi λmax(Pi). The maximum is taken over all possible partitions, andλmax is

the largest singular value ofPi. Following a similar procedure as in [JM02] we obtain the

following result, which shows that the Lyapunov function defined in (2.34) is also an ISS

Lyapunov function

V∗N(x(k+1))−V∗N(x(k))≤ (−Cq+ εL̃CA)||x(k)||2+(1+
1
ε
)L̃CACB||e(k)||2 (2.38)

whereCA = maxi ||Āi(x)|| and we letCB to be defined asCB = ||BκN(x)||2. Thus we reach

to a conclusion for the event-triggered formulation for a system under a model predictive

control strategy

Theorem 2 The controller updates with event-triggered formulation for a linear system as

(2.11)under receding horizon control, can be implemented when

||e(k)||2≤ Θ||x(k)||2 (2.39)

is violated, withΘ =
(1+ 1

ε )L̃CACB

σ(Cq−εL̃CA)
and0< σ < 1.
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2.6 Examples

In this section we provide some simulation results in order to assess the efficiency of the

proposed event-triggered, as well as self-triggered stabilizing controllers in the linear case.

The process we consider is a linear, unstable, discrete-time system described by

x(k+1) = Ax(k)+Bu(k) (2.40)

where matrixA=





0.1 1.2

0.007 1.05



 and matrixB=





300 200

0.5 0.001



. The control sequence is

considered to be optimal and can be determined from an LQR problem, which minimizes

a cost function of the form

J(u) =
∞

∑
k=0

[x⊤(k)Qx(k)+u⊤(k)Ru(k)] (2.41)

with performance matricesQ=





0.001 0

0 0.001



 andR=





0.01 0.01

0.01 0.01



. The linear state

feedback control law is written in analytical form asu∗(k) = Kx(k), where the matrixK is

given byK =−[R+B⊤PB]−1B⊤PA. The matrixP is the unique, symmetric, and positive-

definite solution of the discrete-time algebraic Riccati equationP = A⊤P(A+BK) +Q.

We are going to useP in the quadratic ISS-Lyapunov equation, withV(x) = x⊤Px being

the Lyapunov function candidate. We also define another matrix Q̃ which satisfies the

following equation

P− (A+BK)⊤P(A+BK) = Q̃ (2.42)

For the particular problem (2.40) and the event-trigger policy given in (2.16) we choose

σ = 0.98. Then the constantµ has the valueµ = 0.2934. Assume, also, that the initial

state conditions arex0 = [−0.2,0.5]⊤ and that we want to stabilize system (2.40) at the

equilibrium.

Figure 2-1 depicts the norm of the error||e(k)||. This stays below the specified state-

depended threshold, as given in (2.16) and is represented bythe blue solid line in the

figure. It can be witnessed that using this event-trigger policy, which is conservative, we
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Figure 2-1: Evolution of the error norm in the event-triggered case. Red stems represent
the evolution of the error norm||e(k)|| which stays below the state-dependent threshold
µ||x(k)|| which is represented by the blue line in the Figure.

can sample in periodic fashion, every three steps.
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Figure 2-2: Self-trigger framework. The red stems represent ||y(k)||2, while the blue solid
line representsf (k) = (1+µ2)||Ĩy(k)||2 both from (2.23).

The next Figure depicts the sampling of system (2.40) under the self-triggered frame-

work. In order to better visualize when sampling takes place, under the self-trigger policy,
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Figure 2-2, depicts the difference

D , ||y(k)||2− (1+µ2)||Ĩy(k)||2 (2.43)

where we used (2.23). WhenD, represented by the blue stems, is below zero, there is no

need for sampling, or in other words, there is sampling when the blue stems are above

the zero line. From the simulations is apparent that the system converges under the event-

triggered and self-triggered control frameworks.
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Figure 2-3: Blue stems represent the difference given in (2.43).

2.7 Conclusions

In this Chapter, event-triggered strategies for control ofdiscrete-time systems were pro-

posed and analyzed. Similarly to the continuous-time case,the plant is assumed input-

to-state stable with respect to measurement errors and the control law is updated once a

triggering condition involving the norm of a measurement error is violated. We consid-

ered both nonlinear and linear plant and sufficient condition for non-trivial inter-execution

times were derived. The results were also extended to a self-triggered formulation, where

the next control updates are decided at the previous ones, thus relaxing the need for con-
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tinuous monitoring of the measurement error. The overall framework was then used in a

novel Model Predictive Control approach.

A straightforward direction of research involves further integration of the event-triggered

approach with the Model Predictive Control framework. Thiswill be presented in the sub-

sequent Chapters for both the discrete-time and the continuous-time case.
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Chapter 3

Event-Based Methodologies of Model

Predictive Controllers for Discrete-time

Systems

In this Chapter, novel event-triggered strategies for the design of Model Predictive Con-

troller (MPC) are presented. The MPC framework consists in finding the solution to a

constraint optimal-control problem at every time-step. The case of triggering the optimiza-

tion of the MPC only when is needed, is investigated. The centralized case is treated first

and the results are then extended to a decentralized formulation. The event-based frame-

work for the for linear systems is next. Sufficient conditions for triggering the MPC laws

are given and the results are illustrated through simulatedexamples.

3.1 Introduction

The problem addressed here is the event-driven control of general nonlinear discrete-time

systems under NMPC. A number of schemes are treated in this Chapter, namely, the cen-

tralized case for general uncertain systems, a fully decentralized case with no exchange of

information between the agents and finally the linear case. Sufficient conditions for trig-

gering the predictive control law are given for each of thesecases. Since the systems in

consideration are uncertain, in order to prove stability, aprocedure similar to the analysis
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for Input-to-State (ISS) stability for MPC is going to be used. Some relevant citations of

ISS MPC schemes are [MRS06], [MAC02], [PRMP09], [FMP+08], [RMS07], [Laz06].

3.2 Event-based Nonlinear MPC

Given the general nonlinear system (2.1) and under some specifically stated assumptions,

one can design a model predictive controller that stabilizes the system to the origin. NMPC

involves solving on-line a finite-horizon, open-loop optimal control problem (abbr. OCP),

based on the state measurementxk provided by the plant. The OCP consists in minimizing a

cost functionJN(·) with respect to a control sequenceuF(k), [u(k|k),u(k+1|k), . . .,u(k+
N−1|k)]. The OCP for the system (2.1), is given by

min
uF (k)

JN(xk,uF(k)) (3.1)

and is subject to system constraints. The positive integerN ∈ Z>0 denotes the prediction

horizon.

In the classic NMPC strategy the control law is updated at each time-stepk and the

control input that is applied to the system is given byuk = u∗(k|k), whereu∗(k|k) is the

first column of the optimal solution provided by the OCP (3.1). Solving an OCP on-line

is generally a non-trivial task and is considered computationally demanding. The need to

relax the periodicity of the control updates leads to an event-based scheme.

In the event-based setup a portion of the optimal sequence and not necessarily only the

first term, might be applied to the system. The described formulation is depicted in Fig.

3-3. In this case, the optimal control sequence is re-calculated at the discrete time instants

{t0, t1, t2, . . . , ti, . . .} ⊆ {k0,k1,k2, . . . ,k j , . . .} ti ,k j , i, j ∈ Z≥0

Assume that for every triggering instantti a new OCP is triggered too, and thatti coincides

with k j . During the time span[ti, ti+1), whereti+1 is the next triggering instant, the control

law provided atti ≡ k j is implemented in open-loop fashion. For illustrative purposes

assume thatti+1− ti = δi . The time periodδi will then satisfy 1≤ δi ≤ N−1.
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Figure 3-1: The event-triggered NMPC problem formulation.The black doted line repre-
sents the actual state sequence and the black solid line represents the system’s predicted
sequence. For time span[ti, ti+1) the system is controlled in open-loop fashion. The con-
trol sequence applied isu∗(k j+l |ti) for l = 0, . . . ,δi . Violation of the triggering condition,
defines the next triggering instantti+1≡ ki+δi

.

Similarly to the general event-triggered setup that was described in the previous Chap-

ter, an error is defined and a triggering condition is stated.The specifics for particular

systems are given in the sequel Sections.

3.3 Event-based NMPC for Centralized Discrete-time Sys-

tems

In real systems and applications the model that describes the system may be inaccurate as a

result of disturbances or uncertainties. In the subsequentSections we are going to treat the

problem of reaching to a triggering condition for systems with additive disturbance under a

NMPC law. This event-based setup leads to relaxing the periodicity of the control updates

while the system reaches to a desired, bounded, set.

3.3.1 Problem Statement for the Centralized Case of ET-NMPC

The idea is to find a triggering condition for a nonlinear system with additive disturbances

using a similar approach as of the general framework that waspreviously presented in
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Chapter 2. Thus, an ISS stability analysis for a nonlinear system under a NMPC law is

going to be introduced next. In [MAC02] it is rigorously proven that the closed-loop system

of a nonlinear system with a NMP Controller is ISS stable withrespect to the uncertainties.

In the following a modification of the ISS analysis of [MAC02]is properly addressed in

order to attain the triggering condition.

Consider the nonlinear system of the form

xk+1 = f (xk,uk)+wk (3.2)

wherexk ∈ R
n denotes the system’s state,uk ∈ R

m the control variables andwk ∈W ⊆ R
n

is the additive disturbance. Assume thatW is a compact set, containing the origin, and that

the admissible set of uncertainties is bounded for someγ > 0 i.e.,||wk|| ≤ γ. The state and

control variables are constrained as

xk ∈X , uk ∈U k∈ Z≥0 (3.3)

For control design purposes the nominal model of the system (2.1) is used, which is

assumed to be locally Lipschitz inx in the domainX ×U , with Lipschitz constantL f . To

facilitate the analysis, a double subscript notation will be used hereafter

x̂(k+ j +1|k) = f (x̂(k+ j|k),uk+ j)

where the nominal model (2.1) is used. The term ˆx(k+ j+1|k) is the predicted state at time-

stepk+ j +1, based on the measured state of the real system at time-stepk i.e.,xk = x̂(k|k)
and the termuk+ j is the applied control sequence for time-stepk until time-stepk+ j.

The uncertainty term of the real system can cause discrepancies between the predicted

state given from the nominal model (2.1) subject to a specificsequence of inputs and the

actual state, given from (3.2) for the same sequence of inputs. In order to account for

this mismatch the errore is introduced in the analysis. The errore is defined as the norm

of the difference between the predicted and the real evolution of the state. In the sequel,

the double subscript notation will be reserved for the error, too. The errore(k+ j|k) will
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particularly be defined as

e(k+ j|k) = ||xk+ j − x̂(k+ j|k)|| (3.4)

It has been shown in [MAC02] that

([MAC02], Lemma 1) Lemma 1 Given the nominal system(2.1) and the perturbed sys-

tem(3.2)and for a given sequence of inputs, the difference between the nominal prediction

of the statex̂(k+ j|k) and the real state of the system xk+ j is bounded by||x̂(k+ j|k)−
xk+ j || ≤

L j
f−1

L f−1γ.

It is straightforward to prove that the errore(k+ j|k) is also bounded by the same bound,

and thate(k|k)≡ 0.

In the following, the NMP Controller is going to be introduced along with some specific

assumptions that are fundamental in order to prove stability of the overall scheme. The OCP

(3.1), of the NMPC is given by

min
uF (k)

JN(xk,uF(k)) = min
uF (k)

i=N−1

∑
i=0

L(x̃(k+ i|k),u(k+ i|k))+V(x̃(k+N|k)) (3.5a)

subject to

x̃(k+ j|k) ∈X j u(k+ j|k) ∈U x̃(k+N|k) ∈X f ∀ j = 1, . . . ,N−1 (3.5b)

The notation ˜· is used to denote the controller internal variables. Also wehave, ˜x(k|k) = xk.

The setX f denotes the terminal constraint set withX f ⊂X to be closed and 0∈X f .

The system under control is perturbed, thus the terminal constraint set is computed as a

subset of an admissible positively invariant setX n
f for the nominal system, [MAC02].

Notice also, that the state constraint setX of the nominal system, is being replaced by

a restricted constraint setX j . This state constraints’ tightening for the nominal system

guarantees that the evolution of the real system will be admissible for all time, [MAC02].

Given Lemma 1 where a bound on the state prediction error is evaluated, we setX j =X ∼
B j whereB j = {x∈ R

n : ||x|| ≤ L j
f−1

L f−1γ}. This ensures the satisfaction of the original state
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constraints under the worst case uncertainty. The set operator “∼” denotes the Pontryagin

difference, i.e., given two setsA,B ∈ R
n the Pontryagin difference setC, is defined as

C= A∼ B, {x∈ R
n : x+ξ ∈ A,∀ξ ∈ B}.

The following assumptions for the NMPC formulation are stated:

Assumption 2 The stage cost L(x,u) is such that L(0,0) = 0 and L(||x||)≤ L(x,u), ∀x∈
X and ∀u ∈ U where Lis a K∞-function. Furthermore, L(·) is Lipschitz continuous

with respect to x and u inX ×U , with Lipschitz constants Lc ∈ R≥0 and Lcu ∈ R≥0,

respectively.

Assumption 3 Assume that there is a local stabilizing controller h(xk) for the setX n
f . The

associated Lyapunov function V(·) has the following properties

V( f (xk,h(xk))−V(xk)≤−L(xk,h(xk)) ∀xk ∈X
n
f (3.6)

and is Lipschitz in x∈X n
f , with Lipschitz constant LV ∈ R>0.

For the auxiliary control lawh(xk) we make the following assumptions

Assumption 4 There is h(x) ∈ U , ||h(x)|| ≤ Lh||x||, Lh > 0, ∀x ∈ X
n
f . Also, we have

|| f (x,h(x))|| ≤ L fh||x||, L fh > 0, ∀x∈X n
f .

We also assume that:

Assumption 5 The setX n
f is given byX n

f = {x∈ R
n : V(x)≤ α} and the setX f is such

that X f = {x ∈ R
n : V(x) ≤ αv} and that for all x∈X n

f we have f(x,h(x)) ∈X f , with

α ≥ αv.

We are now ready to state the problem statement for the centralized case of the event-

based NMPC:

Problem Statement 1 Consider the system(3.2) that is subject to constraints(3.3). The

objective is(i) to design a feedback control law provided by(3.5a)-(3.5b)such that ISS-

stability with respect to disturbances is achieved while state and control constraints are

satisfied and(ii) to find the event-based condition for triggering the controlupdates while

satisfying convergence and stability criteria.
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3.3.2 Feasibility

Let X MPC be the set containing all the state vectors for which a feasible control sequence

exists, i.e. a control sequence of the form[u(k|k), . . . ,u(k+N−1|k)] that satisfies all the

constraints of the optimal control problem. Assume that atti = k−1 an event is triggered,

thus an OCP is solved and new control sequence is provided. More specifically, solving the

OCP of the NMPC (3.5a)-(3.5b) at a time stepk−1 results in an optimal control trajectory

u∗F(k−1), [u∗(k−1|k−1), . . . ,u∗(k+N−2|k−1)]. Now, consider the control sequences

ūF(k+m), for the subsequent time stepsk+m with m= 0, . . . ,N−1, based on the optimal

solution atk−1, u∗F(k−1), i.e., form= 0, . . . ,N−1

ūF(k+m) = ū(k+ j|k+m) =







u∗(k+ j|k−1) for j = m, . . . ,N−2

h(x̂(k+ j|k+m)) for j = N−1, . . . ,N+m−1

(3.7)

Notice that the time-stepsk+m are the discrete-time instants after the time-step of the

triggering instantti, thus they can be written as[k−1,k,k+1, . . . ,k+N−2]≡ [ti, ti +1, ti +

2, . . . , ti +N−1]. In order to derive feasibility it is essential to show that ˆx(k+N|k+m) ∈
X f for all m= 0, . . . ,N−1. Nevertheless, we begin showing that ˆx(k+N−1|k+m)∈X n

f .

With the help of (3.4) and Lemma 1, it can be obtained that

||x̂(k+N−1|k)− x̂(k+N−1|k−1)|| ≤ LN−1
f e(k|k−1)

||x̂(k+N−1|k+1)− x̂(k+N−1|k−1)|| ≤ LN−2
f e(k+1|k−1)

...

||x̂(k+N−1|k+m)− x̂(k+N−1|k−1)|| ≤ L(N−1)−m
f e(k+m|k−1) (3.8)

From the Lipschitz property ofV(·) (Assumption 3) and (3.8), we get:

V(x̂(k+N−1|k+m))−V(x̂(k+N−1|k−1))≤

LV ||x̂(k+N−1|k+m)− x̂(k+N−1|k−1)|| ≤ LVL(N−1)−m
f e(k+m|k−1) (3.9)
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Noticing thatx̂(k+N−1|k−1) ∈X f and from Assumption 5, we get:

V(x̂(k+N−1|k+m))≤ αv+LVL(N−1)−m
f e(k+m|k−1) (3.10)

It should hold thatV(x̂(k+N−1|k+m))≤ α, i.e., x̂(k+N−1|k+m) ∈X
n
f , thus

αv+LVL(N−1)−m
f e(k+m|k−1)≤ α ⇒ e(k+m|k−1)≤ α−αv

LVL(N−1)−m
f

(3.11)

If this is the case, then by applying the local controllerh(·) we getx̂(k+N|k+m) ∈X f for

all m= 0, . . . ,N−1. It should be pointed out that (3.11) is one of the triggering conditions

that is going to be proposed in the next sections. From the feasibility of the initial trajectory

u∗F(k−1) and Assumption 4, it follows that form= 0, . . . ,N−1 we have ¯u(k+ j|k+m) ∈
U .

Nevertheless, another approach, similar to the [MAC02] would have been as follows:

Remark 1 Taking into consideration Lemma 1, we get that

||x̂(k+N−1|k+m)− x̂(k+N−1|k−1)|| ≤ L(N−1)−m
f

Lm+1
f −1

L f −1
γ

Making similar derivations as above, it can be concluded that

γ ≤ (α−αv)(L f −1)

LVL(N−1)−m
f (Lm+1

f −1)
(3.12)

which states that the setX MPC can be proven to be robustly positively invariant if the

uncertainties are bounded by(3.12) for all m= 0, . . . ,N−1. However, in this section we

consider that the error can be measured, thus we imposed the aforementioned triggering

condition(3.11). Notice that(3.11)-(3.12)should still hold for m= 0, for the problem to

be meaningful, in the sense that it should be feasible at least in the time-triggered case.
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3.3.3 Input-to-State Stability under the Event-based NMPCset-up

In this section, the stability of the proposed event-based NMPC is presented and then the

triggering condition is given using a similar approach as ofChapter 2. The stability proof of

the NMP Controller is based on the initial feasibility property and the decrease of a suitable

Lyapunov function. The former was proven in the previous Section while the latter will be

addressed in this Section.

In [LHT12] it was shown that every discrete-time system thatadmits a continuous Lya-

punov function is inherently ISS on a robustly positively invariant compact set with respect

to both inner and outer perturbations:

Lemma 2 ([LHT12], Theorem IV.4) LetX,E,D ⊆ R
n and letα1,α2,α3 ∈K∞, σ1,σ2 ∈

K , X⊆ R
n with 0∈ int(X). Let J: X→R+ be a function with J(0) = 0 and consider the

following inequalities:

α1(||x||)≤ J(x)≤ α2(||x||) (3.13a)

J(Ψ(x,e,d))−J(x)≤−α3(||x||)+σ1(||e||)+σ2(||d||) (3.13b)

(i) Assume thatX is a robustly positively invariant set for the perturbed system x(k+1) =

Ψ(x(k),e(k),d(k)) for all e(k) ∈ E and d(k) ∈ D and (ii) assume that the inequalities

(3.13a)-(3.13b) hold for all x ∈ X,e∈ E and all d∈ D. Then, the system x(k+ 1) =

Ψ(x(k),e(k),d(k)) is ISS inX for inputs inE andD.

In this Chapter the optimal cost is employed as a Lyapunov function candidate for the

Input-to-State Stability analysis of the event-based MPC.However, notice that here we

only consider outer perturbations. At time stepk−1, the optimal cost is denoted asJ∗N(k−
1) = JN(xk−1,u∗F(k− 1)). Analogously, the optimal cost at a time stepk+m with m∈
{0, . . . ,N−1} is denoted asJ∗N(k+m). Then the difference of these costs is given by:

∆J∗m = J∗N(k+m)−J∗N(k−1) (3.14)

The next lemma can now be stated
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Lemma 3 Consider the system(3.2) subject to(3.3) and assume that Assumptions 2-5

hold. Then, the difference between the optimal cost at time-step k+m and the optimal cost

at time-step k−1, for all m∈ {0,1, . . . ,N−1}, is bounded by:

∆J∗m≤ LZme(k+m|k−1)−
m

∑
i=0

L(||xk−1−i+m||) (3.15)

where LZm is given by LZm = LVL(N−1)−m
f +LC

L(N−1)−m
f −1

L f−1 .

Proof We are going to employ the feasible control law (3.7). From (3.1) and (3.7), we

denoteJ̄N(k+m), JN(xk+m, ūF(k+m)) to be the “feasible” cost. The difference between

the cost of a feasible sequence at time-stepk+m and the optimal cost at timek− 1 is

indicated by:

∆Jm = J̄N(k+m)−J∗N(k−1) (3.16)

First, the difference (3.16) is calculated form= 0. Then the calculation will be repeated

for m= 1, and finally the general rule for randomm will be stated. Finally, the bound of

the difference between optimal costs (3.15) will be provided. Notice that analogously to

the “feasible” cost, we denote as ¯x(k+ j +1|k+m) the state of the nominal system (2.1)

at time-stepk+ j +1 having applied the control sequence (3.7) from time-stepk+m until

k+ j.

Form= 0 the difference (3.16) is given by:

∆J0 = J̄N(k)−J∗N(k−1) =
N−1

∑
i=0
{L(x̄(k+ i|k), ū(k+ i|k))

−L(x̂(k+ i−1|k−1),u∗(k+ i−1|k−1))}+V(x̄(k+N|k))−V(x̂(k+N−1|k−1))

=
N−2

∑
i=0
{L(x̄(k+ i|k), ū(k+ i|k))−L(x̂(k+ i|k−1),u∗(k+ i|k−1))}−L(xk−1,uk−1)

+L(x̄(k+N−1|k),h(x̄(k+N−1|k)))+V(x̄(k+N|k))−V(x̂(k+N−1|k−1)) (3.17)

From definition of (3.7) we have ¯u(k+ i|k) = u∗(k+ i|k− 1) for all i ∈ {0, . . . ,N− 2}.
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Imposing this control law form= 0 to the nominal system, we get:

||x̂(k+ j|k)− x̂(k+ j|k−1)|| ≤ L j
f e(k|k−1) (3.18)

where the error defined by (3.4), is given bye(k|k−1) = ||xk− x̂(k|k−1)||. The following

result can be derived by induction; given (3.18) and the Lipschitz property from Assump-

tion 2, the difference between the running costs is bounded by:

L(x̄(k+ j|k), ū(k+ j|k))−L(x̂(k+ j|k−1),u∗(k+ j|k−1))≤ LcL
j
f e(k|k−1) (3.19)

From the feasibility, it was derived that ˆx(k+N−1|k)∈X n
f . Thus, Assumption 3 can now

be applied as follows:

V(x̄(k+N|k))−V(x̄(k+N−1|k))+L(x̄(k+N−1|k),h(x̄(k+N−1|k)))≤ 0 (3.20)

Consider also (3.9), form= 0, and Assumption 2. Substituting the above expressions to

(3.17), the following can be derived:

∆J0≤ LZ0e(k|k−1)−L(||xk−1||) (3.21)

with LZ0 = LVLN−1
f +Lc

LN−1
f −1
L f−1 .

Form= 1 the difference (3.16) becomes:

∆J1 = J̄N(k+1)−J∗N(k−1) =
N−1

∑
i=0
{L(x̄(k+ i +1|k+1), ū(k+ i +1|k+1))

−L(x̂(k+ i−1|k−1),u∗(k+ i−1|k−1))}+V(x̄(k+N+1|k+1))

−V(x̂(k+N−1|k−1)) =
N−3

∑
i=0
{L(x̄(k+ i +1|k+1), ū(k+ i +1|k+1))

−L(x̂(k+ i +1|k−1),u∗(k+ i +1|k−1))}−L(xk−1,uk−1)−L(xk,uk)

+L(x̄(k+N−1|k+1),h(x̄(k+N−1|k+1)))+V(x̄(k+N+1|k+1))

+L(x̄(k+N|k+1),h(x̄(k+N|k+1)))−V(x̂(k+N−1|k−1)) (3.22)
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Noticing that x̄(k+ N|k+ 1) ∈ X f ⊆ X
n
f and x̄(k+N− 1|k+ 1) ∈ X

n
f , we apply the

inequality from Assumption 2. Thus, we get

V(x̄(k+N+1|k+1))−V(x̄(k+N|k+1))+L(x̄(k+N|k+1),h(x̄(k+N|k+1)))≤ 0

V(x̄(k+N|k+1))−V(x̄(k+N−1|k+1))+L(x̄(k+N−1|k+1),h(x̄(k+N|k+1)))≤ 0

Moreover,

V(x̄(k+N−1|k+1))−V(x̂(k+N−1|k−1))≤ LVLN−2
f e(k+1|k−1) (3.23)

Substituting these expressions to (3.22), it can be concluded that∆J1 is bounded by

∆J1≤ LZ1e(k+1|k−1)−L(||xk−1||)−L(||xk||) (3.24)

with LZ1 = LVLN−2
f +Lc

LN−2
f −1
L f−1 .

From the above it can be concluded using the same calculations that (3.16) can be

generalized for anym∈ {0, . . . ,N−1}. Moreover, the optimality of the solution results to

J∗N(k+m)−J∗N(k−1)≤ J̄N(k+m)−J∗N(k−1)

and the proof is completed.

Note that, for the optimal cost we have

J∗N(k)≤ J̄N(k)≤ (Lc+LcuLh)
LN

fh
−1

L fh−1
||xk||+LVLN

fh||xk|| (3.25)

Also we have

J∗N(k)≥ L(||xk||) (3.26)

Hence, there existK∞-functionsα1(||xk||) andα2(||xk||) such that (3.13a) is satisfied. We

are going to need a decreasing Lyapunov function to assert the ISS of the overall scheme.

This will me ascertained by the triggering conditions that we will provide next.
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3.3.4 Triggering Conditions for the Event-based NMPC Framework

We are now ready to reach to the triggering condition. The ISSproperty of the system is

utilized based on the general rule given in (2.10). For time stepk, the triggering condition

is

LZ0 ·e(k|k−1)≤ σL(||xk−1||) (3.27)

having considered the inequality (3.21). The next OCP is thus triggered whenever condition

(3.27) is violated, otherwise the control law from (3.7) is used form= 0. However, in order

to ensure that the system remains stable using the control law (3.7) form≥ 0, there are few

more things to consider. In order to maintain stability we must ensure that∆J∗m is strictly

decreasing for allm≥ 0. The system can use the control law (3.7), as long as

∆J∗m+1≤ ∆J∗m (3.28)

In this case the convergence of the closed-loop system is guaranteed, as it is depicted in

Fig.3-2.

Figure 3-2: The triggering condition. The black solid line represents the cost of the feasible
sequencēJN(·) for time stepsk−1,k andk+1, and the blue solid line represents the optimal
costJ∗N(·) at the same time steps.
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Consequently, the triggering rule can be stated as

LZm ·e(k+m|k−1)≤ σ
m

∑
i=0

L(||xk−1−i+m||) (3.29a)

and

LZm+1 ·e(k+m+1|k−1)−σL(||xk−1+m||)≤ LZm ·e(k+m|k−1) (3.29b)

The next OCP is triggered whenever condition (3.29a) or (3.29b) are violated. The

previous analysis guarantees that the closed loop system will have the same convergence

properties as in [MAC02]. We are ready to state the main Theorem

Theorem 3 Consider the system(3.2), subject to(3.3) under an NMPC strategy and as-

sume that the previously presented Assumptions 2-5 hold. Then the NMPC control law

given by(3.5a)-(3.5b)along with the triggering rule(3.29a)-(3.29b)and (3.11), drives the

closed loop system towards a compact set where it is ultimately bounded.

3.4 Event-based NMPC for Decentralized Discrete-time

Systems

In the following, the proposed framework for finding event-triggering condition for sam-

pling is extended to a general system which is composed by theinterconnection ofM local

subsystems, each one controlled by a NMPC law. The frameworkis considered to be fully

decentralized, i.e., there is no information exchange between the subsystems. However,

the effect of interconnections are considered as perturbation terms in the system models.

The ISS stability with respect to the uncertainty imposed bythe neighboring subsystems,

is properly modified in order to reach to a triggering condition, similarly to the previous

Sections.
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3.4.1 Problem Statement for the Decentralized Case of ET-NMPC

Each of the subsystem is modeled as a perturbed dynamic discrete-time nonlinear system

xs(k+1) = fs(xs(k),us(k))+gs(x(k))+ψs(k) ∀k∈ Z≥0 (3.30)

wheres= 1, . . . ,M is the number of the subsystems. The state of thes-th subsystem is

denoted asxs(k) ∈ R
ns, us(k) ∈ R

ms is the control variable andψs(k) ∈ R
ns is the additive

disturbance. The overall state is given asx(k) , [x1(k),x2(k), . . . ,xM(k)] ∈ R
n with n =

∑M
s=1ns. The termgs(·) denotes the influence of theM subsystems on thes-subsystem

and thatgs(0) = 0. Assume that there existM positive constantsLgs, j such that||gs(x)|| ≤

∑M
j=1Lgs, j ||x j ||. The states, the control inputs and the disturbances are required to fulfil the

following constraints

xs∈Xs⊆ R
ns us(k) ∈Us⊆ R

ms ws , {gs(x)+ψs} ∈Ws⊆ R
ns (3.31)

whereXs, Us are compact sets, all of them containing the origin as an interior point. We

assume thatfs(·) are Lipschitz continuous with Lipschitz constantsL fs, for all xs ∈Xs,

us ∈ Us and that fs(0,0) = 0. For each subsystem, the sum of interaction term and the

disturbance term are restricted to belong to a compact setWs, with ||ws|| ≤ γs, while the

overall statex∈X , X1×·· ·×XM.

The whole system formed by theM local subsystems can be written as

x(k+1) = f (x(k),u(k))+g(x(k))+ψ(k) k∈ Z≥0 (3.32)

wheref (x,u), [ f1(x1,u1), . . . , fM(xM,uM)], g(x), [g1(x), . . . ,gM(x)] andψ , [ψ1, . . . ,ψM].

Moreover, the nominal model of the system is also considered

xs(k+1) = fs(xs(k),us(k)) (3.33)

Since there are mismatches between the real subsystem (3.30) and the nominal subsys-
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tem (3.33), we are introducing the errores(k+ j|k) of thes-th subsystem

es(k+ j|k) = ||xs,k+ j − x̂s(k+ j|k)|| (3.34)

wherexs,k+ j is the state of the subsystems, measured at time stepk+ j, andx̂s(k+ j|k) is

the predicted state of the same subsystem computed by (3.33)at the same time step.

Each subsystems, is controlled locally by an MPC law. As follows, each MPC is

computed as the solution of an OCP problem. The OCP for the nominal system (3.33), is

obtained by locally minimizing at time instantk with respect to a control sequenceusF(k),

[us(k|k), . . . ,us(k+Ns−1|k)], the following performance index

min
usF(k)

Js(xs,usF(k)) = min
usF(k)

Ns−1

∑
i=0

Ls(x̃s(k+ i|k),us(k+ i|k))+Vs(x̃s(k+Ns|k)) (3.35a)

subject to

x̃s(k+ j|k) ∈X js us(k+ j|k) ∈Us x̃s(k+Ns|k) ∈X fs (3.35b)

for all j = 1, . . . ,Ns−1. With Ns to be the prediction horizon andX fs to be the terminal

constraint set, for thes-th subsystem. As in the centralized case, the state constraint setXs

is being replaced with a restricted setX js.

The necessary assumptions for the decentralized MPC schemes are stated next.

Assumption 6 The stage cost Ls(xs,us) is Lipschitz continuous inXs×Us, with a Lips-

chitz constant Lcs. Let Ls(0,0) = 0, and assume that Ls(xs,us) > Ls(||xs||) where Ls is a

classK∞-function.

Assumption 7 Let the terminal regionX fs from (3.35b)be a subset of an admissible posi-

tively invariant setXs of the nominal system. Assume that there is a local controller hs for

the terminal stateX fs. The associated terminal penalty Vs(·) has the following property

αVs(||xs||)6Vs(xs)6 βVs(||xs||) for all xs∈X fs, whereαVs andβVs are classK∞-functions.

We also assume that Vs( fs(xs,hs)))−Vs(xs)6−Ls(xs,hs(xs)), ∀xs∈X fs and that Vs is Lip-

schitz inX fs, with Lipschitz constant LVs.
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Problem Statement 2 Consider the system(3.32)formed by a number of subsystems(3.30),

that are subject to constraints(3.31). The objective is to design a feedback control law for

each of the subsystem s, computed by(3.35a)-(3.35b), such that ISS-stability with respect

to uncertainties is achieved. Then find the event-based conditions for triggering the control

updates for each of the subsystems, while satisfying convergence and stability criteria.

3.4.2 Triggering Condition for the Decentralized NMPC Case

Finding the triggering condition for each of the subsystems(3.30) under a decentralized

NMPC control law of the form (3.35a)-(3.35b) can be treated as an extension of the cen-

tralized case. The proof is rather straightforward and is omitted. Therefore, the triggering

rule for each of the subsystemss is given by

LZs, j ·es(k+ j|k−1)≤ σ
j

∑
i=0

Ls(||xs,k−1−i+ j ||) (3.36a)

and

LZs, j+1 ·es(k+ j +1|k−1)−σLs(||xs,k−1+ j ||)≤ LZs, j ·es(k+ j|k−1) (3.36b)

with

LZs, j = LVsL
(Ns−1)− j
fs

+Lcs

L(Ns−1)− j
fs

L fs−1

The next OCP is triggered whenever condition (3.36a) or (3.36b) is violated. The next

Theorem can now be stated

Theorem 4 Consider the subsystem(3.30), subject to(3.31)under a decentralized NMPC

strategy and assume that the previously presented Assumption 4 and Assumption 5, holds.

Then the NMPC control law given by(3.35a)-(3.35b)along with the triggering rule(3.36a)-

(3.36b), drives the closed loop system to a compact set where it is ultimately bounded.
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3.5 Event-triggered MPC for Linear Discrete-time Systems

In this Section we are going to provide the framework of event-based MPC for linear sys-

tems. The approach is an extension of the previously presented event-based MPC schemes

for centralized systems, specifically stated for PiecewiseAffine (PWA) systems. In Chapter

2 we utilized the classic time-triggered MPC where the control law is given by the first term

of the control sequence provided by the OCP of the MPC. However, the triggering is based

on a condition of an error and the control law is not renewed ateach sampling instant as in

the classic MPC. These two different approaches, i.e., the one presented here and the one

that was presented in Chapter 2, differ from each other in thesense that in the former the

control input remains constant between triggering events and is equal to the first term of

the optimal control sequence and in the latter the control sequence from the OCP is applied

to the plant between triggering events.

3.5.1 An Event-Based MPC Scheme for Discontinuous PWA Systems

The event-based setup for centralized MPC that was previously presented, is specified in

this Section for PWA systems. Thus, the main assumptions andthe OCP remains the same

and is not presented here. This Section will be consistent with [FAB07], [Laz06], where an

ISS analysis for PWA systems under MPC laws was presented.

In this section we consider the class of discrete-time piecewise affine systems. Consider

the nominal model of the form

xk+1 = f (xk,uk) = A jxk+B juk (3.37)

Assume that the states are constrained in the compact setX ⊆R
n and the input vectors are

constrained in the compact setU ⊆R
m, both of them containing the origin in their interior.

The perturbed model is of the form

xk+1 = A jxk+B juk+wk (3.38)

wherexk ∈ Ω j . There iswk ∈ W ⊂ R
n, k ∈ Z≥0, A j ∈ R

n×n, B j ∈ R
n×m, j ∈ S with
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S = {1,2, . . . ,s} to be a finite set of indices. The collection{Ω j | j ∈S } defines a partition

of X and there isint(Ω j)∩ int(Ωi) = ∅ for j 6= i. EachΩ j is assumed to be polyhedron.

We assume that the origin is an equilibrium state for (5.1). Let ||wk|| ≤ γ, with γ > 0.

The OCP problem of the MPC is the same as the general centralized case (3.5a)-(3.5b),

where the stage cost is given byL(x,u) = ||Qx||+ ||Ru|| and the terminal cost is given by

V(x) = ||Px||, with Q ∈ R
q×n, R∈ R

r×n, P ∈ R
p×n to be known matrices that have full-

column rank. Due to full-column rank ofQ there existsq> 0 such that||Qx|| ≥ q||x|| for

all x.

In this setting we assume the auxiliary controllerh(·) to be of the form:h(x) = K jx

wherex ∈ Ω j andK j ∈ R
m×n with j ∈ S . Let η = maxj∈S ||A j ||, ξ = ||P|| and define

Bi = {x ∈ R
n : ||x|| ≤ γ ∑i−1

p=0 η p}. The constraints tightening technique is used here as

well, hence we define the constraint set from (3.5b) to beXi = ∪ j∈S {Ω j ∼ Bi} ⊆X , for

i = 1, . . . ,N−1.

It is relatively easy to make the connection of the linear system with the general non-

linear system given in the previous Section. We define the error to be

e(k|k−1) = ||xk− x̂(k|k−1)|| (3.39)

which yields

||x̂(k+ i|k)−x(k+ i|k−1)|| ≤ η ie(k|k−1) (3.40)

For (3.19) and (3.20) we have

L(x̄(k+ i|k), ū(k+ i|k))−L(x̂(k+ i|k−1),u∗(k+ i|k−1))≤ ||Q||η ie(k|k−1) (3.41)

and

V(x̄(k+N−1|k))−V(x̂(k+N−1|k−1))≤ ξ ηN−1 ·e(k|k−1) (3.42)

Conducting the same analysis as in the centralized case of event-based MPC we get the

following triggering rule for systems (5.2)
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Llinear
j ·e(k+ j|k−1)≤ σ

j

∑
i=0

q||xk−1−i+ j || (3.43a)

and

Llinear
j+1 ·e(k+ j +1|k−1)−σq||xk−1+ j || ≤ Llinear

j ·e(k+ j|k−1) (3.43b)

with Llinear
j = ξ η(N−1)− j + ||Q||η(N−1)− j−1

η−1 .

3.6 Simulation Examples

In this Section, two different examples are given in order todepict the efficacy of the

proposed Event-based scheme of Model Predictive Controllers.

3.6.1 Example 1: Robotic Manipulator

In this section, a simulated example of the proposed design on a robotic manipulator is

presented. The objective is to provide an efficient NMPC controller, triggered whenever

(3.29a) or (3.29b) is violated, in order to stabilize the robotic manipulator, in a desired

equilibrium configuration. Consider a general manipulatorof r degrees of freedom (d.o.f.),

which does not interact with the environment. The joint-space dynamic model of these

types of manipulators is described as

B(q)q̈+C(q, q̇)q̇+Fq̇+g(q) = τ (3.44)

whereB is the inertia matrix,C is the Coriolis term,g is the gravity term,F is a posi-

tive definite diagonal matrix of viscous friction coefficients at the joints,q = [q1, . . . ,qr ],

q̇= [q̇1, . . . , q̇r ] andq̈= [q̈1, . . . , q̈r ] are the vectors of the arm joint position, velocity and ac-

celeration, respectively. Finally,τ ∈Rr are the joint torque inputs. We consider a two-link,

planar robotic manipulator,r = 2 with no friction effects for simplicity. For illustrativepur-

poses the numerical values of the parameters are taken as in [LK97]. The NMPC controller
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that is used, is the one described in [Yoo02], with prediction horizonN = 10.

In the control affine, state-space model of the manipulator,the state accounts forx =

[q1,q2, q̇1, q̇2]. The initial state isxinitial = [π/2,0,0,0] and the desired state isxdesired=

[0,0,0,0]. In Fig.3-3, the norm of the distance between the state of thesystem and the

desired state is depicted. The simulation shows that the system (3.44), under a NMPC

strategy, using the triggering condition (3.29a)-(3.29b), converges to the final state in the

nominal case. In the perturbed case the system converges to abounded set around the

origin.
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Figure 3-3: The norm of the distance between the state of the system (3.44) and the desired
state, i.e. dist= ||x− xdesired||. The blue line represents the distance of the nominal sys-
tem, while the red line represents the distance of the perturbed system, under an additive
disturbance.

The next Fig. 3-4, depicts the triggering moments, during the NMPC strategy. It can be

witnessed that using the event-triggered policy, the inter-calculation times are strictly larger

than one when the system is far away from the equilibrium, until about the 80th time step.

After the 80th time step, the system has practically converged to the desired equilibrium.

3.6.2 Example 2: Underwater Vehicle

In this section, a simulated example of the proposed framework for a nonholonomic robot

is presented. The objective is to control the robot using an event-based NMPC law, in
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Figure 3-4: Triggering instants. When the triggering axis has the value 1, the NMPC
algorithm is triggered. For value 0, the NMPC law is implemented on the system in an
open-loop fashion.

order to reach a desired terminal constraint set. Let the motion of the robot be governed by

unicycle kinematics with respect to a global cartesian coordinate frameG. The discrete-

time perturbed kinematic model is given by:











χk+1

yk+1

θk+1











=











χk+dtcosθkυk

yk+dtsinθkυk

θk+dtωk











+











wχ

wy

0











wherex= [χ ,y,θ ]⊤ is the state vector comprised by the position of the robot(χ ,y) and the

orientationθ with respect toG. The vectoru = [υ,ω]⊤ denotes the control inputs. The

robot is equipped with an onboard camera with limited angle-of-view and laser pointers

that provide the state vectorx of the robot with respect toG. The requirements imposed by

the sensors are captured by the following constraints

−y+χ tan(θ − α
2
)−yT ≥ 0

y−χ tan(θ +
α
2
)−yT ≥ 0

R2
max−χ2−y2 ≥ 0
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whereα is the angle-of-view of the camera andRmax is the maximum distance of the

vehicle with respect to the target. These requirements, along with a saturation bound in the

velocity, impose the constraints of the problem, i.e.||ū|| ,
√

υ2+ω2 ≤ 2. Furthermore

we assume that additive disturbances are bounded by||w|| ≤ 0.7. The discretization time

is dt = 0.1 and the cost function is of quadratic form, i.e.,L(x,u) = x⊤Qx+u⊤Ru with

Q= diag[3,4,0.05] andR= diag[0.9,1]. The prediction horizon isN= 20 and the constant

ν is taken equal to 0.9. The initial position of the robot isxinitial = [−7,2,−π/6]⊤ and the

desired position isxd = [0,0,0]⊤. The simulation shows that the states of the perturbed

system under the event-based NMPC framework are convergingto the terminal constraint

set, see Fig.3-5 and Fig.3-6(a). Figure 3-6(b) is capturingthe triggering instants. It can

Figure 3-5: The evolution of the state trajectoriesx= [χ ,y,θ ]⊤ with respect to the sampling
time.

be witnessed that using the event-triggered policy an overall reduction of the computation

times is achieved. Furthermore it is apparent that the inter-calculation times are more scarce

when the system is away from the desired point and that they become more frequent when

the system approaches the terminal set.
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Figure 3-6: (a) The state trajectory of the nonholonomic robot. (b) The triggering instants.
When the vertical axis has the value 1, the NMPC is triggered.For value 0 the control law
is implemented in an open-loop fashion.

3.7 Conclusions

We provided an event-triggered formulation of model predictive control based systems.

The main idea is to trigger the solution of the optimal control problem only when it is

needed, and not at every time-step as in the case of classic discrete time MPC. The event-

based strategy is possible to alleviate the computational burden of a MPC framework. Suf-

ficient conditions for triggering the MPC laws were given in anumber of frameworks. The

results were illustrated through simulated examples.

The next step is to find triggering conditions in a set-up where the information between

the agents is not considered as a disturbance but it is explicitly taken into consideration.

This will be treated in the next Chapter.
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Chapter 4

Event-Based Model Predictive Control

for the Cooperation of Distributed

Agents

This Chapter proposes an event-based framework for the control of a team of cooperating

distributed agents. The agents are dynamically decoupled and they are controlled locally

by Nonlinear Model Predictive Controllers (NMPC). The event-driven framework allows

for triggering the solution of the optimal control problem of the NMPC only when it is

needed. The scheduling of the control updates for each of theagents depends on an error

of the state information received from the neighboring agents. Sufficient conditions for

triggering are provided and the results are illustrated through a simulated example.

4.1 Introduction

The control of many interacting subsystems has gained much interest in the recent years.

Formulating the problem of control of such large-scale systems under a NMPC framework

is an efficient approach because of the inherent virtues of these kind of controllers. NMPC

controllers can handle nonlinearities and offer the possibility of incorporating control and

state constraints. Related results on NMPC for large-scalesystems can be found in [DM06],

[FMP+08], [KBB06], [RHLM09], [RMS07], [RH04] and in the review paper [Sca09] and
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the number of papers quoted therein.

When implementing decentralized control laws, the communication schemes between

interacting subsystems as well as the controllers’ design,are aspects that should be taken

into consideration. The actuation updates can be either periodic or can be determined by

certain events. The first one might be a conservative choice since in this case, stability is

guaranteed based on a worst-case scenario. On the contrary,in the event-based approaches

the decision for the execution of the control task depends onthe state of the system. This

methodology may lead to an overall reduction on the number ofthe control updates which

might be desirable when the system has limited resources. The computation of the control

law of the NMPC controller is rather demanding particularlywhen large-scale systems

are of consideration. Motivated by this fact, an event-based framework for this kind of

controllers is investigated in order to reduce the number oftimes the control input should

be computed. Under the proposed scheme the control law of theNMPC is not updated at

each sampling instant but rather, the already computed control sequence is implemented

to the plant until an event occurs. The problem addressed here is the control of a team of

cooperating agents operating in the same environment. Eachagent is a nonlinear discrete-

time system and no dynamic coupling between the agents is assumed. The agents are

controlled by local NMPC controllers which depend not only on local information, but

also on the information of the neighboring agents.

The contribution of this Chapter relies in finding sufficientconditions for triggering in

the case of a team of cooperative nonlinear subsystems. Eachone of the subsystems has its

own triggering condition which depends on the local state information and an error of the

state information of their neighbors. The stability, and particularly the Input-to-State (ISS)

stability, of a system of cooperating agents under NMPC has been presented in [FMP+08].

The authors consider the classic time-driven NMPC where theoptimization problem is

solved at each sampling instant. In this work we appropriately modify the formulation pre-

sented in [FMP+08] in order to reach a triggering condition. Moreover, unlike [FMP+08]

where the predicted dynamics of the neighbors are considered to be of decreasing “impor-

tance” during the prediction horizon, in this work the errorof the prediction is included in

the triggering condition.
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Notice that in Chapter 3, a triggering condition for a decentralized NMPC was given.

That approach consisted of describing the effect of the interconnection among the subsys-

tems as disturbances acting on local models and a robust NMPCapproach was utilized

in order to reach to the triggering condition. The aforementioned scheme is applicable

to systems where the interaction between the agents is limited, opposed to the proposed

framework of this Chapter, where the interactions between the agents are taken explicitly

into account.

4.2 Problem Statement

In the following, triggering conditions for distributed agents which operate in a common

environment under local NMPC control laws, are going to be presented. This general

framework was used in [FMP+08], where it is proven that each one of the subsystems is

ISS stable with respect to the delayed state information received by a group of neighboring

agents. The aforementioned result is being appropriately modified in this Chapter in order

to reach to the triggering conditions for each one of the subsystems.

Consider a general system which is composed byM local subsystems. The dynamics

of the subsystems are described by a nonlinear discrete-time equation

xi
k+1 = f i(xi

k,u
i
k) (4.1)

with k ∈ Z≥0 and i = 1, . . . ,M. The state of subsystemi is denoted byxi
k ∈ R

ni
, while

ui
k ∈Rmi

denotes the control variable. Assume thatf i(0,0) = 0 and suppose that the agents

evolve on the same discrete-time space. The state and the control vectors are required to

fulfill the following constraints

xi
k ∈X

i ui
k ∈U

i (4.2)

whereX i is a compact set ofRni
andU i is a compact set ofRmi

, all of them containing

the origin as an interior point.
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Given the system (4.1), the predicted state is denoted by

x̂i(k+ l +1|k) = f i(x̂i(k+ l |k),ui
k+l) (4.3)

This notation will be equipped hereafter and it accounts forthe predicted state at time

k+ l +1 with l ∈ Z≥0, based on the measurement of the state at timek+ l while using a

control inputui
k+l .

4.2.1 NMPC for Cooperative Control

As already mentioned, a distributed control structure is assumed in our scenario, where each

one of the subsystems is controlled by a local NMPC controller. Even though the agents are

dynamically decoupled, the fact that they operate in the same environment imposes a “co-

operative” factor. This will be evident in the design of the local NMPC controllers where

cooperative cost functions as well as information exchangebetween agents are assumed.

A partially connected framework is considered in this paper, i.e., the information is

transmitted from any local controller, only to a given subset of the others. More precisely,

each agentA i ,∀i = 1, . . . ,M exchanges state information with a set of neighboring agents

G i , {A j , j ∈Gi}, whereGi denotes the set of indexes identifying the agents belongingto

the setG i. The state information received by an agentA i at time stepk, can be written in

stack vector form as

wi
k , col(x j

k, j ∈Gi) (4.4)

with

wi
k ∈W

i , Π j∈GiX
j (4.5)

Note that any agent knows the state of the agents in its neighborhood without delay. In a

subsequent section, the presence of transmission delays isgoing to be discussed as well.

In the centralized NMPC the control law is computed by solving a finite-horizon, open-

loop optimal control problem (OCP), based on the state measurement provided by the plant.

In the distributed case though, each agentA i solves an OCP based not only on its state

measurementsxi
k, but also on the information vector of the neighborswi

k. The optimal
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Figure 4-1: Team of agents.

problem, consists in minimizing, with respect to a control sequenceui
F(k), [ui(k|k),ui(k+

1|k), . . . ,ui(k+Ni −1|k)], a cost functionJi
N(x

i
k,u

i
F(k),w

i
k). Thus, the OCP for the system

(4.1), is given by

min
ui

F (k)
Ji

N(x
i
k,u

i
F(k),w

i
k) = (4.6a)

min
ui

F (k)

l=Ni−1

∑
l=0

{Li(x̃i(k+ l |k),ui(k+ l |k))+Qi(x̃i(k+ l |k),wi(k+ l |k))}+V i(x̃i(k+Ni |k))

subject to

x̃i(k+ l |k) ∈X
i ∀l = 1, . . . ,Ni−1 (4.6b)

ui(k+ l |k) ∈U
i ∀l = 0, . . . ,Ni−1 (4.6c)

wi(k+ l |k) ∈W
i ∀l = 0, . . . ,Ni−1 (4.6d)

x̃i(k+Ni |k) ∈X
i
f (4.6e)

whereX i
f denotes the terminal constraint set and ˜· denotes the controller internal variables

with x̃i(k|k) = xi
k. The positive integerNi ∈ Z≥0, denotes the prediction horizon.

The vectorwi(k+ l |k) for l = 0, . . . ,Ni −1, denotes the prediction of the neighbors’

states. Since, onlywi(k|k), wi
k is known to the agentA i , the following is assumed

wi(k+ l |k) = wi(k|k) ∀l = 0, . . . ,Ni−1 (4.7)
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Namely, each agent assumes that its neighbors maintain the same state during the prediction

horizon. This assumption is utilized in order to solve the OCP, (4.6a)-(4.6e). Obviously,

this is not the case due to the individual agent dynamics. Theuse of the event-triggered

framework will enable us to overcome this limitation.

Some standard stability conditions for the design parameters of the NMPC must be

introduced, in order to assert that NMPC strategy results ina stabilizing controller.

Assumption 8 The stage cost Li(xi ,ui) is Lipschitz continuous inX i ×U
i and it holds

that Li(0,0) = 0. Moreover, there is aK∞-function ri , such that Li(xi
k,u

i
k)≥ r i(||xi

k||).

Assumption 9 The running cost Qi(xi ,wi) is such that Qi(xi ,wi) ≥ 0. Moreover, Qi is

Lipschitz continuous inX i×W i , with Lipschitz constants Liqx and Li
qw, respectively.

Assumption 10 Let the terminal setX i
f be such thatX i

f ⊂X i , X i
f to be closed, and

0∈X
i
f . Assume that there is a locally stabilizing controller hi(xk) for the terminal set. The

associated Lyapunov function Vi(·) has the following property

V i( f i(xi
k,h

i(xi
k)))−V i(xi

k)≤−Li(xi
k,h

i(xi
k))−Qi(xi

k,w
i
k) ∀xi ∈X

i
f and∀wi ∈W

i

4.3 Event-Based NMPC

In this section a triggering condition for each one of the agents A i , will be provided.

Before tackling this problem though, some concepts about the event-based approach for a

distributed NMPC scheme will be given.

Consider a generic time-instantk. The solution of the OCP (4.6a)-(4.6e) provides an

optimal control sequenceui∗(k+ l |k) for l = 0, . . . ,Ni −1. In the classic NMPC strategy

only the first term of the optimal solutionui(k|k) , ui
k is applied to the system and the

control law is updated for the next time-stepk+ 1. In the event-based framework some

portion of the optimal solution[ui∗(k|k), . . . ,ui∗(k+ l̂ |k)] with l̂ ∈ [0,Ni−1], is applied to

the plant in an open-loop fashion, provided some stability conditions are fulfilled. The
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event-based strategy is used in order to enlarge, as much as possible, the inter-calculation

period of the NMPC. This results to the overall reduction of the control updates which is

desirable in numerous occasions, for example energy consumption reasons.

4.3.1 ISS Stability With Respect to Measurement Errors of the Neigh-

bors

In order to find a triggering condition for the distributed system under the NMPC control

laws, the ISS properties of the systems will be used. A similar problem of cooperative

control of a team of agents under local NMPC controllers, wasaddressed in [FMP+08] and

the stability analysis was carried out using ISS properties. Moreover, the stability of the

team of agents was also proven. A modification of the analysisproposed by [FMP+08]

will be used in the following approach, in order to reach to the triggering condition of each

of the agents.

Consider an event, triggered at time-stepk− 1, which provide an optimal sequence

ui∗
F (k−1). Consider also, control trajectories ¯ui

F(k+m), for time stepsm= 0, . . . ,Ni −1,

based on the optimal solution ink−1,

ūi(k+ t|k+m) =







ui∗(k+ t|k−1) for t = m, . . . ,Ni−2

hi(x̂i(k+Ni−1|k+m)) for t = m+Ni−1
(4.8)

These control sequences are admissible and in general suboptimal. From the feasibility

of ui∗
F (k− 1) it follows that for all m= 0, . . . ,Ni − 1 we have ¯ui(k+ t|k+m) ∈ U

i and

x̂i(k+Ni |k+m) ∈X i
f .

The optimal cost at the triggering instantk−1 is denoted byJi∗
N (k−1) and the cost of

the feasible sequence at a time stept ∈ [0,Ni−1] is indicated byJ̄i
N(k+ t). The difference

between these costs is

∆Ji
t = J̄i

N(k+ t)−Ji∗
N (k−1) (4.9)

The next lemma can now be stated

Lemma 4 Consider the system(4.1) subject to(4.2) and assume that Assumptions 8-10,
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hold. The difference(4.9) is bounded by

∆Ji
t ≤ (Ni− t−2)Li

qwei
w(k+ t|k−1)−

t

∑
ρ=0
{r i(||xk−ρ+t ||)} (4.10)

with the error eiw defined as

ei
w(k+ l̃ |k−1) = ||wi(k+ l |k+ l̃)−wi(k+ l |k−1)||= ||wi

k+l̃ −wi
k−1|| (4.11)

For all l , l̃ = 0, . . . ,Ni −1 and with l≥ l̃. The state information wik is from (4.4) and is

subject to(4.5).

Proof Firstly it is shown that (4.10) holds fort = 0. The calculation is then repeated for

t = 1, and eventually the general rule for randomt will be stated.

For t = 0 the difference (4.9) is

∆Ji
0 = J̄i

N(k)−Ji∗
N (k−1) =

Ni−1

∑
l=0

{Li(x̄i(k+ l |k), ūi(k+ l |k))+Qi(x̄i(k+ l |k),wi(k+ l |k))

−Li(x̂i(k+ l −1|k−1),ui∗(k+ l −1|k−1))−Qi(x̂i(k+ l −1|k−1),wi(k+ l −1|k−1))}

+V i(x̄i(k+Ni |k))−V i(x̂i(k+Ni−1|k−1)) =
Ni−2

∑
l=0

{Li(x̄i(k+ l |k), ūi(k+ l |k))

−Li(x̂i(k+ l |k−1),ui∗(k+ l |k−1))+Qi(x̄i(k+ l |k),wi(k+ l |k))

−Qi(x̂i(k+ l |k−1),wi(k+ l |k−1))}+Li(x̄i(k+Ni−1|k),hi(x̄i(k+Ni−1|k))

−Li(xi
k−1,u

i
k−1)−Qi(xi

k−1,w
i
k−1)+Qi(x̄i(k+Ni−1|k),wi(k+Ni−1|k))

+V i(x̄i(k+Ni |k))−V i(x̂i(k+Ni−1|k−1)) (4.12)

Wherex̄i(k+ l +1|k+m) is the state of the subsystemi at time stepk+ l +1 with l ∈ Z≥0

andm∈ [0,Ni−1] while using a feasible control input from (4.8). It is important to note

that since stability of the nominal system is considered, the predicted state ˆx(·) and the

“feasible” state ¯x(·), computed at the same time-step are coinciding.
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Using the inequality of Assumption 10, the following resultcan be obtained

V i(x̄i(k+Ni |k))−V i(x̄i(k+Ni−1|k))+Li(x̄i(k+Ni−1|k),hi(x̄i(k+Ni−1|k)))

+Qi(x̄i(k+Ni−1|k),wi(k+Ni−1|k)))≤ 0 (4.13)

Since nominal stability is considered in this case, we have

V i(x̄i(k+Ni−1|k))≡V i(x̂i(k+Ni−1|k−1)) (4.14)

From (4.8) we have ¯ui(k+ l |k) = ui∗(k+ l |k− 1) for l = 0, . . . ,Ni − 2, so imposing this

control law form= 0 to (4.1), we get

Li(x̄i(k+ l |k), ūi(k+ l |k)) = Li(x̂i(k+ l |k−1),ui∗(k+ l |k−1)) ∀l = 0, . . . ,Ni−2 (4.15)

Notice that using Assumption 9 as well as (4.11), we obtain

Qi(x̄i(k+ l |k),wi(k+ l |k))−Qi(x̂i(k+ l |k−1),wi(k+ l |k−1))

≤ ||Qi(·,wi(k+ l |k))−Qi(·,wi(k+ l |k−1))||

≤ Li
qw||wi(k+ l |k)−wi(k+ l |k−1)|| ≤ Li

qw ·ei
w(k|k−1) (4.16)

Substituting (4.11), (4.13), (4.14), (4.15), (4.16) to (4.12) and utilizing Assumption 8, the

following is derived

∆Ji
0≤−Li(xi

k−1,u
i
k−1)−Qi(xi

k−1,w
i
k−1)+

Ni−2

∑
l=0

{Li
qw ·ei

w(k+ l |k−1)}

≤ (Ni−2)Li
qw ·ei

w(k|k−1)− r i(||xi
k−1||) (4.17)
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For t = 1 the difference (4.9) becomes

∆Ji
1 = J̄i

N(k+1)−Ji∗
N (k−1) =

Ni−1

∑
l=0

{Li(x̄i(k+ l +1|k+1), ūi(k+ l +1|k+1))

−Li(x̂i(k+ l −1|k−1),ui∗(k+ l −1|k−1))+Qi(x̄i(k+ l +1|k+1),wi(k+ l +1|k+1))

−Qi(x̂i(k+ l −1|k−1),wi(k+ l −1|k−1))}+V i(x̄i(k+Ni +1|k+1))

−V i(x̂i(k+Ni−1|k−1)) =
Ni−3

∑
l=0

{Li(x̄i(k+ l +1|k+1), ūi(k+ l +1|k+1))

−Li(x̂i(k+ l +1|k−1),ui∗(k+ l +1|k−1))+Qi(x̄i(k+ l +1|k+1),wi(k+ l +1|k+1))

−Qi(x̂i(k+ l +1|k−1),wi(k+ l +1|k−1))}

+Li(x̄i(k+Ni−1|k+1),hi(x̄i(k+Ni−1|k+1))

+Qi(x̄i(k+Ni−1|k+1),wi(k+Ni−1|k+1)−Li(xi
k−1,u

i
k−1)−Qi(xi

k−1,w
i
k−1)

+Li(x̄i(k+Ni |k+1),hi(x̄i(k+Ni |k+1))+Qi(x̄i(k+Ni |k+1),wi(k+Ni |k+1)

−Li(xi
k,u

i
k)−Qi(xi

k,u
i
k)+V i(x̄i(K+Ni −1|k+1))

+V i(x̄i(k+Ni +1|k+1))−V i(x̄i(k+Ni |k+1))−V i(x̂i(k+Ni−1|k−1))

+V i(x̄i(k+Ni |k+1))−V i(x̄i(K +Ni−1|k+1)) (4.18)

Using similar arguments as in the case oft = 0, it can be concluded that the difference∆Ji
1

is bounded by

∆Ji
1≤−Li(xi

k−1,u
i
k−1)−Qi(xi

k−1,w
i
k−1)−Li(xi

k,u
i
k)−Qi(xi

k,u
i
k) (4.19)

+
Ni−3

∑
l=0

{Li
qwei

w(k+1+ l |k−1)} ≤ (Ni−3)Li
qw ·ei

w(k+1|k−1)− r i(||xi
k−1||)− r i(||xi

k||)

From the above it can be concluded using the same procedure, that for randomt ∈ [0,Ni−1]

the difference∆Ji
t = J̄i

N(k+ t)− Ji∗
N (k−1), is given from (4.10), and hence the proof is

completed.

System (4.1), subject to (4.2), which satisfies the Assumptions 8-10, is ISS stable with

respect to measurement errors of the neighboring agents, under an NMPC strategy. This
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can be concluded by the optimality of the solution that results to

Ji∗
N (k)−Ji∗

N (k−1)≤ ∆Ji
0≤ (Ni−2)Li

qw ·ei
w(k|k−1)− r i(||xi

k−1||) (4.20)

Notice thatJi∗
N is an ISS Lyapunov function of the system (4.1) under an NMPC framework.

This result has been proven in [FMP+08] relaying to similar assumptions as in this Chapter,

thus the proof is omitted.

Remark 2 The error(4.11)can be seen as the error between the predicted and the actual

trajectory of the neighboring agents. From equation(4.11)consideringl̃ = 0, then wi(k+

l |k) and wi(k+ l |k−1) are the predicted states of the neighbors at time k+ l. If we set wi
k+l

to be the actual state of the systems at time k+ l, it can be proven that

ei
w(k|k−1) = ||wi(k+ l |k)−wi

k+l − (wi(k+ l |k−1)−wi
k+l )||

which is the difference on the errors between the predicted and the real trajectories of the

neighboring agents.

4.3.2 Triggering Condition for the NMPC

In the following, the triggering condition will be provided. Consider that at timet an event

is triggered. In order to maintain the ISS property (4.20) ofthe system, the Lyapunov

functionJi∗
N (·) must be decreasing. Suppose that the error is restricted to satisfy

(Ni−2)Li
qwei

w(k|k−1)≤ σ r i(||xi
k−1||) (4.21)

with 0< σ < 1. Plugging in (4.21) to (4.20) we get

Ji∗
N (k)−Ji∗

N (k−1)≤ (σ −1)r i(||xi
k−1||) (4.22)

This suggests that providedσ < 1, the ISS property of the system is still guaranteed.

This triggering rule states that when (4.21) is violated, the OCP is solved again using

the current measurement of the state, as the initial state. If (4.21) is not violated, the control
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law from (4.8) is used form= 0.

The triggering rule (4.21), is only valid in the first step. Inorder to ensure that the

system remains stable while using control law (4.8) form≥ 0 some additional restrictions

for the difference (4.9) must be stated. According to [MAC02] and the proof of Theorem

1, optimality of the solution is not necessary to guarantee convergence of the closed-loop

system. Thus, in order to maintain stability we must ensure that∆Ji
t is strictly decreasing

for all m≥ 0. Hence, the system can use the control law (4.8), as long as

∆Ji
t+1≤ ∆Ji

t (4.23)

In this case the convergence of the closed-loop system is guaranteed.

Consequently, the triggering rule can be stated as

(Ni− t−2)Li
qwei

w(k+ t|k−1)≤ σ
t

∑
ρ=0
{r i(||xi

k−ρ+t ||)} (4.24a)

and

(Ni− t−2)Li
qwei

w(k+ t|k−1)−σ r i(||xi
k+t ||)≤ (Ni− t−1)Li

qwei
w(k+ t−1|k−1)

(4.24b)

The next OCP is triggered whenever condition (4.24a) or (4.24b) is violated. Note

that it must hold thatNi ≥ 2. This is a necessity since for prediction horizonsNi < 2, the

controller would only provide one step ahead, thus this would result triggering at every

time step.

The previous analysis guarantees that the closed loop system will have the same con-

vergence properties as in [FMP+08]. However, the OCP in the case of this paper is not

calculated at each time instant, but only when the triggering condition is violated. Thus

the convergence to a compact set and ultimate boundedness properties of [FMP+08] are

preserved in the event-triggered formulation:

Theorem 5 Consider a locally controlled agentA i for all i = 1, . . . ,M with dynamics

described by(4.1), subject to(4.2), and assume also that the previously presented Assump-
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tions 8-10, hold. Then the NMPC control law given by(4.6a)-(4.6e)with the neighboring’

state information(4.4) to be subject to(4.5), along with the triggering rule(4.24a)-(4.24b)

drives the closed loop system towards a compact set where it is ultimately bounded.

4.3.3 Delays

When large scale systems are considered, it is expected thatthere will be a delay during

the exchange of the information between the cooperating agents. Using some assumptions,

a triggering condition of each agent of the distributed dynamic system similar to (4.24a)-

(4.24b), will be defined in the following, in the presence of communication delays.

Assume that agentA i receives from each neighboring agentA j ∈ G i the value of its

state with a delay of∆i j . The delayed state information of the neighbors, received by agent

A i , is

wi
k−∆i j

, col(x j
k−∆i j

, j ∈Gi)

Assume that∆i j is such that

||wi
k−wi

k−∆i j
|| ≤ γi j (4.25)

If delays are present, then (4.10) is modified as follows

∆Ji
t ≤ (Ni− t−2)Li

qwei
wd(k+ t|k−1)−

t

∑
ρ=0
{r i(||xk−ρ+t ||)} (4.26)

with ei
wd(k+ t|k−1) = ||wi

k+t−∆i j
−wi

k−1−∆i j
||. Notice that using the reverse triangle in-

equality, it yields that

ei
w(k+ t|k−1)−ei

wd(k+ t|k−1) = ||wi
k+t −wi

k−1||− ||wi
k+t−∆i j

−wi
k−1−∆i j

|| (4.27)

≤ ||wi
k+t −wi

k−1−wi
k−1−∆i j

+wi
k+t−∆i j

|| ≤ ||wi
k+t −wi

k+t−∆i j
||+ ||wi

k−1−wi
k−1−∆i j

|| ≤ 2γi j

Thus,

ei
w(k+ t|k−1)≤ ei

wd(k+ t|k−1)+2γi j (4.28)
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Substituting (4.28) to (4.26), it can be obtained that

∆Ji
t ≤ (Ni− t−2)Li

qw(e
i
wd(k+ t|k−1)+2γi j)−

t

∑
ρ=0
{r i(||xk−ρ+t ||)} (4.29)

Finding the triggering condition in the presence of communication delays using similar

approach as in the previous section, is straightforward andis omitted.

4.4 Example: Three Cooperating Agents

In this Section, a simulated example of the proposed event-based framework is presented.

Three agents moving inR2 is considered. Each one of the agents is controlled by a local

MPC controller while exchanging state information with theneighboring agents without

delays.
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Figure 4-2: Trajectories of the team of agents. The filled triangles represent the agents
under the event-based NMPC, while the empty triangles represent the agents under time-
based NMPC.

The objective of the agents is to reach a desired configuration, while they keep some

relative distance between them. For illustrative purposes, the numerical values of the pa-

rameters of the system that was taken into account, are takenas in [FPP04], where the

classic time-driven MPC was considered. The simulation results are reported in Fig. 4-2

72



where the trajectories of the three agents are depicted. Thefilled triangles represent the

agents under the event-based framework and the empty triangles represent the agents un-

der classic time-driven MPC. Note, that the orientation of the agents is only depicted in

the event-driven case. It can be witnessed that the event-driven as well as the time-driven

approach results in comparable performance, i.e., clearlyin both cases there is coordinated

behavior of the team of the UAV’s and collision was always avoided.
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Figure 4-3: (a) Trajectory of an agent. The blue solid line represents the trajectory of the
agent under the event-based NMPC, while the black dashed line, represents the trajectory
of the same agent, under the classic NMPC. (b)Triggering instants. When the triggering
axis has the value 1, the OCP of the NMPC is triggered. For value 0, the NMPC law is
implemented on the system in an open-loop fashion. The blue solid stems represent the
triggering instants of the event-based NMPC, while the black dashed stems represent the
sampling instants of the classic time-based NMPC.

The next simulation represents the trajectory of a single agent, in the same cooperative

scenario. In Fig.4-3(a), the trajectory of the agent is shown in both the event-driven and

the time-driven case. Figure 4-3(b) depicts the triggeringinstants. The black dashed line

represents the triggering instants in the time-driven caseand the blue solid line depicts the

event-triggered policy. In this example, it is evident thatthe inter-calculation times are
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strictly larger than one. Namely, with the event-triggeredstrategy the control updates are

significantly lower. Moreover, in both cases, the final configurations of the agents were

reached in the same number of sampling instants.

4.5 Conclusions

In Chapter, an event-based framework for the control of a team of cooperating distributed

agents under NMPC controllers was proposed and analyzed. The event-based formulation

consists of triggering the solution of the OCP of the NMPC, only when an event occurs.

During the inter-event period the control sequence provided from the previous triggering

event is used in an open-loop fashion. This even-based scheme is favorable in a number of

occasions, because it is possible to reduce the number of times the control law should be

computed. This results to the alleviation of the energy consumption.
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Chapter 5

Aperiodic Model Predictive Control via

Perturbation Analysis

In this Chapter, an enhanced event-based scheme for model predictive control (MPC)

of constrained discrete-time systems with additive disturbances is investigated. The re-

calculation of the MPC control law is triggered whenever an event depending on the error

of the measured state with respect to the nominal state of thesystem occurs. Between the

controller updates, the last computed control trajectory is applied to the system, in conjunc-

tion with a correction term. This term consists of a perturbation solution of the nominal

system which itself depends on the aforementioned error. The overall framework yields

less conservative results with respect to the previous Chapters. The results are illustrated

through a simulated example.

5.1 Introduction

The problem addressed here is the event-driven control of a general nonlinear discrete-

time system with additive disturbances, under an NMPC framework. Since the system in

consideration is uncertain, in order to prove stability, a similar procedure as in the case

of Input-to-State (ISS) stability analysis for MPC, is going to be used. As in Chapter 3,

the error between the real state of the system and the predicted state given by the nominal

model, is monitored. However, the control law that is applied to the plant, during the
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inter-event times, is the previously computed control law in conjunction with a correction

term. This term utilizes a perturbation solution of the optimal trajectory and is explicitly

dependent on the aforementioned error. With this approach the controller has some kind

of additional “intelligence” and reacts to the measured error. Thus, the contribution of

this approach relies in finding sufficient conditions for triggering in the case of uncertain

discrete-time systems under an NMPC control law with a correction term. Notice, that

perturbation analysis of predictive controllers has been presented in [GSK07], [GGR05]

and [WHM09].

5.2 Problem Formulation

Consider the nonlinear discrete-time dynamic system

xk+1 = f (xk,uk) (5.1)

wherexk ∈ R
n denotes the system’s state anduk ∈ R

m is the control vector. The state and

control variables are subject to the following constraints

xk ∈ X, uk ∈U, k∈ Z≥0 (5.2)

whereX is a closed subset ofRn andU is a compact subset ofRm, both of them containing

the origin as an interior point. Assume thatf (0,0) = 0 and thatf (x,u) is locally Lipschitz

with respect tox andu in the domainX×U , with Lipschitz constantsL fx andL fu, respec-

tively. The predicted state of the system at a time stepk+ j +1 with j ∈ Z≥0 can be found

by the nominal model of the system i.e. (5.1), and is denoted as

x̂(k+ j +1|k) = f (x̂(k+ j|k),uk+ j)

whereuk+ j is a control sequence for time[k,k+ j], andxk = x̂(k|k) is the measured state of

the system at time stepk.

In a realistic formulation though, modeling errors, uncertainties and disturbances may
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exist. Thus, a perturbed version of (5.1) is going to be considered as well. The perturbed

system is described as

xk+1 = f (xk,uk)+wk (5.3)

with wk ∈W ⊆ R
n to be the additive disturbance andW to be a compact set containing the

origin. The admissible set of uncertainties are bounded, thus

wk ∈W, ||wk|| ≤ γ (5.4)

It is apparent that the uncertainty of system (5.3) can causediscrepancies between the

predicted state sequence given from (5.1) and the actual state sequence of the system. This

divergence can be quantified in terms of an error. Therefor, the errore(k+ j|k) is introduced

in the analysis and is denoted as

e(k+ j|k) = ||xk+ j − x̂(k+ j|k)|| (5.5)

5.3 Event-Based NMPC via Perturbation Analysis

In the classic NMPC strategy, the control law is updated at each time-stepk. The control

input that is applied to the system is the first term of the optimal control sequence provided

by the NMPC. However, in the event-triggered setup the rest of the optimal sequence might

be used as well, provided that the real evolution of the system stays close to the predicted by

means of the nominal model. In Chapter 3 the last computed control sequence was applied

to the system in an open-loop fashion, during the inter-event times. The error between the

real state sequence and the predicted sequence was monitored in order to trigger an event.

On the other hand, in this approach, the last computed control law along with a correction

term is applied to the system during the triggering events. The correction term can be found

as the approximation solution of the MPC, it is easily computable and corrects the nominal

solution. Hence, this term is applied in order to account forthe error on-line.

In the following, a perturbation analysis is conducted in order to reach to the the analytic

expression of the correction term. Moreover, the convergence and stability properties of the
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overall scheme of the NMPC with the neighboring extremals approach are proven.

5.3.1 Neighboring Extremals

The solution of an optimal control problem, when perturbations in the initial state are

present, can be approximated using the optimal perturbation analysis approach. Namely, if

there is a perturbationdx(k) in the initial condition, the resulting optimal solution can be

approximated by ˆx(k)+dx(k) andu∗(k)+du(k). The real state of the systemxk at time

stepk, can be found by

xk = x̂(k|k−1)+dx(k)⇒ dx(k) = xk− x̂(k|k−1) (5.6)

and for time stepk+ j we have respectively

dx(k+ j) = xk+ j − x̂(k+ j|k−1)

The perturbation analysis for constrained, discrete-timeMPC is treated in the Ap-

pendix. The neighboring extremal path method, developed in[BH75], is adopted. It holds

that

du(k+ j) = K∗(k+ j)dx(k+ j) (5.7)

In order to findK∗(k+ j), all quantities are evaluated at the nominal optimal condition,

namely, ˆx(k+ j|k−1), u∗(k−1). The analytic expression ofK∗(k+ j) is derived in the

Appendix and in particular in (5.54). From (5.7) we have

||du(k+ j)|| ≤ ||K∗(k+ j)|| · ||dx(k+ j)|| ≤ ||K∗(k+ j)||e(k+ j|k−1) (5.8)

Suppose an upper bound on||du(·)||. This is a because the system (5.1) is constrained in

the inputs, so we must ensure that while using the neighbors extremals, the input constraints

will be fulfilled. So,

||du(k+ j)|| ≤ γu. (5.9)
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5.3.2 NMPC Strategy

The general form of NMPC consists in solving on-line a finite-horizon, open-loop optimal

control problem (abbr. OCP), based on the current state measurement. A cost functionJN

is minimized with respect to a control sequenceuF(k) , [u(k|k),u(k+1|k), . . .,u(k+N−
1|k)], thus, the OCP for the nominal system (5.1), can be formulated as follows

min
uF (k)

JN(xk,uF(k)) = min
uF (k)

i=N−1

∑
i=0

F(x̂(k+ i|k),u(k+ i|k))+V(x̂(k+N|k)) (5.10a)

subject to

x̂(k+ j|k) ∈ Xj ∀ j = 1, . . . ,N−1 (5.10b)

u(k+ j|k) ∈U j ∀ j = 0, . . . ,N−1 (5.10c)

x̂(k+N|k) ∈ Xf (5.10d)

where the positive integerN ∈ Z≥0, denotes the prediction horizon andXf denotes the

terminal constraint set.

The constraints on the state from (5.2) are being replaced bya restricted constraint

setXj while solving the OCP. It holds thatXj = X ∼ Bx
j whereBx

j = {x ∈ R
n : ||x|| ≤

L j
fx

γ +Lm( j)L fuγu}. This state constraints’ tightening for the nominal systemwith additive

disturbances, while utilizing the correction term from theperturbation analysis, guarantees

that the evolution of the real system will be admissible for all time. This is proven in

Lemma 6 of the Appendix. Furthermore, the constrained setU j is a restricted set in the

same sense as in the state constraint tightening case. Thereis U j =U ∼Bu whereBu =

{u∈ R
m : ||u|| ≤ γu} which guarantees the fulfillment of all input constraints. Notice that,

the set operator “∼” denotes the Pontryagin difference and that we denote

Lm( j) =
j−1

∑
i=0
{Li

fx}

Similarly to the previous Chapters, the following assumptions for the stage costF(·)
and the terminal costV(·) are stated:
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Assumption 11 The stage cost F(x,u) is Lipschitz continuous with respect to x and u

in X×U, with Lipschitz constants denoted by LFx and LFu, respectively. Assume that

F(0,0) = 0 and that there are positive constantsα > 0 and ω ≥ 1, such that L(x,u) ≥
α||(x,u)||ω.

Assumption 12 Let the terminal region Xf from (5.10d)be a subset of an admissible pos-

itively invariant setΦ of the nominal system. Assume that there is a local stabilizing con-

troller h(xk) for the terminal state Xf . The associated Lyapunov function V(·) has the

following properties V( f (xk,h(xk))−V(xk) ≤ −F(xk,h(xk)),∀xk ∈ Φ, and is Lipschitz in

Φ, with Lipschitz constant LV . The setΦ is given byΦ = {xk ∈Rn : V(xk)≤ αΦ} such that

Φ⊆ Xh = {xk ∈ XN−1 : h(xk) ∈U}. The set Xf = {xk ∈ R
n : V(xk) ≤ αν} is such that for

all xk ∈Φ, f(xk,h(xk)) ∈ Xf .

Definition 1 In the following, XMPC will denote the set containing all the state vectors for

which a feasible control sequence exists, i.e. a control sequence u that satisfies all the

constraints of the MPC,(5.10b)through(5.10d).

Consider the control trajectoriesun
F(k+m), for time stepsm= 0, . . . ,N−1, based on

the optimal solution ink−1, i.e.u∗F(k−1), in conjunction with a correction term from the

perturbation solution of the MPC. The “neighboring” control trajectories can be denoted as

un(k+ j|k+m) =







u∗(k+ j|k−1)+du(k+ j) for j = m, . . . ,N−2

h(xn(k+N−1|k+m)) for j = N−1
(5.11)

Furthermore, the state of the system when the control law (5.11) is applied to the system,

is given by

xn(k+ j +1|k+m) = f (xn(k+ j|k+m),un(k+ j|k+m))

Definition 2 A set XMPC ⊆ X is robust positively invariant (RPI) set for system(5.3), if

xk ∈ XMPC, ∀xk−1 ∈ XMPC and∀wk ∈W.

Next, the robust positively invariance of the setXMPC of the closed-loop system will be

shown.
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Lemma 5 Let the system described by(5.3)and is subject to(5.2). Under the Assumption

1, XMPC is RPI for the closed-loop system if the uncertainties are bounded byγ ≤ (αΦ−
αν −LVLm(N−1)L fuγu)/LVLN−1

fx
.

For simplicity, we are going to treat the casem= 0. One can easily verify thatun(k+

j|k) ∈ U j for j ∈ [0,N− 2], andh(x) ∈ U , which yields thatun(·) are feasible control

trajectories. Also it must be shown that if ˆx(k+N−1|k) ∈ Φ, thenxn(k+N|k) ∈ Xf . By

applying Lemma in the Appendix, it holds that

V(xn(k+N|k))≤V(x̂(k+N−1|k−1))+LVLN−1
fx

γ +LVLm(N−1)L fuγu

≤ αν +LVLN−1
fx

γ +LVLm(N−1)L fuγu≤ αΦ

Considering that||xn(k+ j|k)−xn(k+ j|k−1)|| ≤ L j
fx

γ +Lm( j)L fuγu, it can be concluded

thatxn(k+ j|k) ∈ Xj , and the proof is completed.

The next step is to prove convergence of the proposed scheme.In order to do so, an

intermediate result is going to be stated first. The optimal cost at time stepk−1 isJ∗N(k−1)

and the cost of the “neighboring” feasible sequence at a timestep j ∈ [0,N−1] is indicated

by Jn
N(k+ j). Then the difference of these costs is

∆Jj = Jn
N(k+ j)−J∗N(k−1) (5.12)

The next theorem can now be stated:

Theorem 6 Consider the system(5.3)subject to(5.2)and assume that the previously pre-

sented Assumption 1 holds. Then, using the control law from(5.11), the difference between

the cost of a feasible sequence at time step k+ j and the optimal cost of at time step k−1

is bounded by

∆Jj ≤C j
1e(k+ j|k−1)−α

j

∑
i=0
{||xk−i+ j ||ω}+C j

2 (5.13)
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where Cj
1 is given by

C j
1 , LFxLm(N−1− j)+LVLN−1− j

fx
(5.14)

and Cj
2 is given by

C j
2 , (LVLm(N−1− j)+LFx

N−2− j

∑
i=0
{Lm(i)}+1)L fuγu (5.15)

First, the difference (5.12) is calculated forj = 0. Then the calculation will be repeated

for j = 1, and finally the general rule for randomj will be stated.

For j = 0 the difference (5.12) is given by

∆J0 = Jn
N(k)−J∗N(k−1) =

N−1

∑
i=0
{F(xn(k+ i|k),un(k+ i|k))

−F(x̂(k+ i−1|k−1),u∗(k+ i−1|k−1))}+V(xn(k+N|k))−V(x̂(k+N−1|k−1))

=
N−2

∑
i=0
{F(xn(k+ i|k),un(k+ i|k))−F(x̂(k+ i|k−1),u∗(k+ i|k−1))}

+F(xn(k+N−1|k),h(xn(k+N−1|k))−F(xk−1,uk−1)+V(xn(k+N|k))

−V(x̂(k+N−1|k−1))+V(xn(k+N−1|k))−V(xn(k+N−1|k)) (5.16)

Recall from Assumption 11, that the stage cost is Lipschitz continuous inX×U , so

F(xn(k+ i|k),un(k+ i|k))−F(x̂(k+ i|k−1),u∗(k+ i|k−1))

≤ LFx||xn(k+ i|k)− x̂(k+ i|k−1)||+LFu||un(k+ i|k)−u∗(k+ i|k−1)|| (5.17)

From (5.56) of the Appendix, it can be concluded that

LFx||xn(k+ i|k)− x̂(k+ i|k−1)|| ≤ LFxL
i
fxe(k|k−1)+LFxLm(i)L fuγu (5.18)
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Also, using the control law (5.11), we have

LFu||un(k+ i|k)−u∗(k+ i|k−1)||=

LFu||u∗(k+ i|k−1)+du(k+ i)−u∗(k+ i|k−1)||= LFu||du(k+ i)|| ≤ LFuγu (5.19)

The following inequality holds by Assumption 12,

V(xn(k+N|k))−V(xn(k+N−1|k))+F(xn(k+N−1|k),h(xn(k+N−1|k)))≤ 0

(5.20)

Moreover, using (5.56) it follows that

V(xn(k+N−1|k))−V(x̂(k+N−1|k−1))≤ LVLN−1
fx

e(k|k−1)+LVLm(N−1)L fuγu

(5.21)

Let the stage cost to be

F(x,u)≥ α||(x,u)||ω ≥ α||x||ω

Substituting (5.18)-(5.21) to (5.16), the following is derived

∆J0≤
N−2

∑
i=0
{LFxL

i
fxe(k|k−1)+LFxLm(i)L fuγu+L fuγu}

+LVLN−1
fx

e(k|k−1)+LVLm(N−1)L fuγu

≤ (LFxLm(N−1)+LVLN−1
fx

)e(k|k−1)

+(LVLm(N−1)+LFx

N−2

∑
i=0
{Lm(i)}+1)L fuγu−α||xk−1||ω

≤C0
1e(k|k−1)−α||xk−1||ω +C0

2 (5.22)

whereC0
1, C0

2 are constant terms from (5.14) and (5.15) forj = 0, respectively.

83



For j = 1 the difference (5.12) becomes

∆J1 = Jn
N(k+1)−J∗N(k−1) =

N−1

∑
i=0
{F(xn(k+ i +1|k+1),un(k+ i +1|k+1))

−F(x̂(k+ i−1|k−1),u∗(k+ i−1|k−1))}+V(xn(k+N+1|k+1))−V(x̂(k+N−1|k−1))

≤ (LFxLm(N−2)+LVLN−2
fx

)e(k+1|k−1)+(LVLm(N−2)+LFx

N−3

∑
i=0
{Lm(i)}+1)L fuγu

−α||xk−1||ω−α||xk||ω ≤C1
1e(k+1|k−1)+C1

2−α||xk−1||ω −α||xk||ω (5.23)

From the above it can be concluded using the same calculation, that for randomj ∈
[0,N−1] the difference∆Jj = Jn

N(k+ j)− J∗N(k−1), is given from (5.13), and hence the

proof is completed.

5.4 Triggering Condition

The proposed scheme must be convergent to a compact set wherethe system is ultimately

bounded. In the following, a triggering condition for the OCP of the MPC that guaran-

tees that the associate Lyapunov function is decaying at every time step and that all the

constraints are fulfilled, is given.

SinceJ∗N(k) is the optimal cost at time stepk, we haveJ∗N(k)−J∗N(k−1)≤ ∆J0, hence

J∗N(k)−J∗N(k−1)≤C0
1e(k|k−1)−α||xk−1||ω +C0

2 (5.24)

The triggering condition is written in this case as

C0
1e(k|k−1)≤ σ(α||xk−1||ω−C0

2) (5.25)

Invoking this rule into (5.24), with 0< σ < 1, it can be concluded thatJ∗N(·) is strictly

decreasing. The triggering rule (5.25) is valid, though, only in the first step. In order to

maintain stability we must ensure that∆Jj is strictly decreasing for allj ∈ [0,N−1]. The
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control law (5.11), is applied to the system as long as

∆Jj+1≤ ∆Jj (5.26)

In this case the convergence of the closed-loop system is guaranteed.

As we have already discussed, correcting the optimal control law with an approxima-

tion solution given by the neighboring extremals approach,may lead to control inputs that

violate the constraints. To account for that, an upper boundon the norm of the correction

term was assumed in (5.9). In order to assert that this is the case, we will impose an event-

based condition that states that the control update will be triggered whenever the tracking

error will exceed a specific limit. Using (5.7) and (5.9) the following condition can be

derived

||K∗(k+ j)||e(k+ j)≤ γu

In a practical sense, this states that whenever the error is small enough we do not trigger a

new MPC law, otherwise, we measure the state of the system andcompute an appropriate

control law.

Consequently, the triggering condition can be stated as

C j
1e(k+ j|k−1)≤ σ(α

j

∑
i=0
||xk−i+ j ||ω +C j

2) (5.27a)

and

C j
1e(k+ j|k−1)−σ(α

j

∑
i=0
{||xk−i+ j ||ω}+C j

2)≤ (5.27b)

C j−1
1 e(k+ j−1|k−1)−σ(α

j−1

∑
i=0
{||xk−i+ j ||ω}+C j−1

2 )

and

||K∗(k+ j)||e(k+ j)≤ γu (5.27c)

The next OCP is triggered whenever condition (5.27a) or (5.27b) or (5.27c) is violated.
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The previous analysis guarantees that the closed loop system will have the same con-

vergence properties as in [MAC02]. However, the OCP in this paper is not calculated at

each time instant, but only when the triggering condition isviolated. The next theorem can

be stated:

Theorem 7 Consider the system(5.3), subject to(5.2) under an NMPC strategy and as-

sume that the previously presented Assumption 1 holds. The NMPC control law provided

by (5.10a)-(5.10d) is triggered whenever condition(5.27a)-(5.27c) is violated. Between

inter-event times the control law(5.11) is applied to the system. The overall framework

drives the closed loop system towards a compact set where it is ultimately bounded.

The algorithm for the aperiodic NMPC can be summarized as follows

Algorithm 3 Aperiodic MPC with a Correction Term
1: while xk /∈ Xf do
2: Measurexk.
3: Calculate the MPC control law:u∗F(k)

Buffer: (Zero-based Indexing)
u∗F = [u∗(k|k),u∗(k+1|k), . . . ,u∗(k+N−1|k)].
x̂F = [xk, x̂(k+1|k), . . . , x̂(k+N−1|k)].
K∗F = [0,K∗(k+1), . . . ,K∗(k+N−1)].

4: k0← k.
5: Error: e(k|k0) = ||xk− x̂F(k−k0)||= 0.
6: while Error does not violate (5.27a) or (5.27b) or (5.27c)do
7: Apply u∗(k−k0)+δu(k−k0).

At next stepk← k+1.
Measurexk.
Calculate Error:e(k|k0).

8: end while
9: Continue from 3.

10: end while

5.5 Example

5.5.1 Event-Triggered MPCvs. Enhanced Event-Triggered MPC

In this section, a simulated example of the proposed event-based framework is presented.

The system under consideration is a linear system under a quadratic MPC scheme. A com-
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parison is made, between the event-based framework proposed in Chapter 3, and the pro-

posed approach where the last computed control sequence is applied to the system along

with a correction term given by a perturbation solution of the MPC. For illustrative pur-

poses, the numerical values of the parameters of the system that was taken as

A,





























1 0 0 δ 0 0 0

0 1 0 0 δ 0 0

0 0 1 0 0 δ 0

0 0 0 1−δη/m 0 0 0

0 0 0 0 0 1−δη/m 0

0 0 0 0 0 0 1−δη/m





























B,





























0.001 0 0 0 0 0

0 0.001 0 0 0 0

0 0 0.001 0 0 0

0 0 0 δ/m 0 0

0 0 0 0 δ/m 0

0 0 0 0 0 δ/J





























whereδ = 0.1, m= 10, J = 8, andη = 15(m)2/3. Also the associated matrices for the

cost function are taken asPN = P = diag{100, . . . ,100} andR= diag{0.1, . . . ,0.1}. The

disturbance parameter and the length of the prediction horizon is set to||w|| ≤ 0.8rand and

N = 6, respectively.

The simulation results are reported in Fig. 5-1 where the error (5.5) between the real

state and the predicted state of the system given by the nominal model (5.1), is depicted.

The error is zero when an event is triggered. From Fig.5-1 it can be witnessed that both

approaches have comparable results and that with both approaches the inter-calculation

times are strictly larger than one when the system is away from the equilibrium.

The next Fig.5-2, depicts a state sequence of the system under the event-based scheme

given in Chapter 2 and is represented by the blue line. The state sequence of the system

when the event-based scheme that exploits the neighboring extremal approach is applied to
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Figure 5-1: The error given from (5.5). The blue line represents the error when the last
computed MPC law is applied to the system during the inter-event time-steps, while the
red line represents the error when the last computed MPC law is applied to the system in
conjunction with a correction term.
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Figure 5-2: A state sequence of the system. The blue line represents the state sequence
of the system when the last computed MPC law is applied to the system during inter-event
time-steps, while the red line represents the state sequence of the system under the proposed
approach.
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the system is represented by the red line. As it can be seen in Fig.5-2 the system under the

proposed event-based approach of this paper, has faster convergence properties.

5.6 Conclusions

In this Chapter, an event-based framework for the control ofa general nonlinear constrained

system under NMPC was proposed and analyzed. The event-based formulation consists in

triggering the solution of the OCP of the NMPC, only when an event occurs. During

the inter-event period the control sequence provided from the previous triggering event in

conjunction with a correction term is used in an open-loop fashion. This correction term

is provided by a perturbation analysis of the optimal trajectory, and it is used in order to

account for the error between the predicted state of the nominal model of the system and

the real evolution of the system. This event-based scheme isfavorable in a number of

occasions, because it is possible to reduce the number of times the control law should be

computed. This results to the alleviation of the energy consumption.

Formulating the MPC control problem in a self-triggered scheme is one promising di-

rection of research. This approach is presented in the subsequent Chapters, as with this

approach the next control updates are decided at the previous ones, thus, the need for con-

tinuous monitoring of the measurement error can be relaxed.

5.7 Appendix

The perturbation solution for discrete-time MPC problems with state, control and terminal

constraints is derived in this section. The cost function ofthe optimal control problem of

MPC for the nominal system (5.1), is given by

JN(x(0),u) =
N−1

∑
k=0

{F(x(k),u(k))}+V(x(N))

89



Notice that a simpler notation of the cost function of the OCP, given by (5.10a) is used. The

constraints (5.10b) through (5.10d) are assumed to have theform:

C(x(k),u(k))≤ 0 ψ(x(N)) = 0

whereC : Rn+m→ R
l and ψ : Rn→ R

q. This assumption is helpful in the subsequent

analysis, but not restrictive to the general constrained case. We treat the casel = 1 and

q≤ n for simplicity and that in the subsequent analysis, the subscriptsx,u will denote the

partial derivatives vector functions.

Next, the standard procedure of [BH75] and [GSK07] is followed. The augmented

performance index, obtained by adjoining the constraints,is

J̄N =Va(x(N))+
N−1

∑
k=0

{H(x(k))−λ (k+1)⊤x(k+1)}

where

Va =V(x(N))+ν⊤ψ(x(N))

and the Hamiltonian is given by

H(k) = F(x(k),u(k))+λ (k+1)⊤ f (x(k),u(k))+µ(k)⊤C(x(k),u(k))

whereλ (k) andν⊤ are multiplier sequence and a set ofq multipliers, respectively. We will

expand this augmented functional to the second order arounda stationary solutionx∗,u∗

for which the first variationdJ̄N vanishes if the Lagrange multipliers are chosen as the

accompanying multipliers of the stationary solution. Hence,

d2J̄N = 1/2dx(N)⊤(Vxx+ν⊤ψxx)dx(N)+

1/2
N−1

∑
k=0

{
[

dx(k)⊤ du(k)⊤
]





Hxx(k) Hxu(k)

Hux(k) Huu(k)









dx(k)⊤

du(k)⊤



}

90



which is to be minimized subject to the linearized constraints:

dx(k+1) = fxdx(k)+ fudu(k) (5.28)

The termsdx(0) anddψ(N) = ψxdx(N) are specified, and

Cx(k)dx(k)+Cu(k)du(k) = 0 (5.29)

Let us suppose that an optimal control vectoru∗ has been determined, that meets all the

first-order necessary conditions, or in other words satisfies the Euler-Lagrange equations

dλ (k) = Hxxdx(k)+ f⊤x dλ (k+1)+Hxudu(k)+C⊤x dµ(k) (5.30)

also

0= Huudu(k)+Huxdx(k)+ f⊤u dλ (k+1)+C⊤u dµ(k) (5.31)

and

dλ⊤(N) =Va
xxdx(N)+ψ⊤x dν (5.32)

From (5.28) and (5.30), we have





dx(k+1)

dλ (k)



=





fx(k) 0

Hxx(k) f⊤x (k)









dx(k)

dλ (k+1)



+





fu 0

Hxu(k) C⊤x (k)









du(k)

dµ(k)



 (5.33)

Moreover, from (5.29) and (5.31) we have





du(k)

dµ(k)



=−





Huu(k) C⊤u (k)

Cu(k) 0





−1



Hux(k) f⊤u (k)

Cx(k) 0



×





dx(k)

dλ (k+1)



 (5.34)

From (5.33) and (5.34) we get





dx(k+1)

dλ (k)



=





K1 K2

K3 K⊤1









dx(k)

dλ (k+1)



 (5.35)
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where

K1 = fx(k)−
[

fu(k) 0
]





Huu(k) C⊤u (k)

Cu(k) 0





−1



Hux(k)

Cx(k)



 (5.36)

K2 =−
[

fu(k) 0
]





Huu(k) C⊤u (k)

Cu(k) 0





−1



f⊤u (k)

0



 (5.37)

K3 = Hxx(k)−
[

Hxu(k) C⊤x (k)
]





Huu(k) C⊤u (k)

Cu(k) 0





−1



Hux(k)

Cx(k)



 (5.38)

We seek solutions of the form

dλ (k) = S(k)dx(k)+R(k)dν (5.39a)

dψ = R⊤(k)dx(k)+Q(k)dν (5.39b)

Also, we have

dλ (k+1) = S(k+1)dx(k+1)+R(k+1)dν (5.40a)

dψ = R⊤(k+1)dx(k+1)+Q(k+1)dν (5.40b)

Given (5.28), it holds that

dλ (k+1) = S(k+1) fxdx(k)+S(k+1) fudu(k)+R(k+1)dν (5.41a)

dψ = R⊤(k+1) fxdx(k)+R⊤(k+1) fudu+Q(k+1)dν (5.41b)

Plugging (5.41a) to (5.35), we get

dλ (k) = (K3+K⊤1 S(k+1) fx)dx(k)+K⊤1 S(k+1) fudu(k)+K⊤1 R(k+1)dν (5.42a)

92



and

du(k) = ZuuZuxdx(k)+ZuuZuνdν (5.42b)

whereZuu, Zux, Zuν are given by

Zuu = [ fu+K2S(k+1) fu]
−1 (5.43)

Zux = K2S(k+1) fx− fx+K1 (5.44)

Zuν = K2R(k+1) (5.45)

We use (5.42b) to eliminatedu(k) from (5.42a) and (5.41b), thus

dλ (k) = (K3+K⊤1 S(k+1) fx+K⊤1 S(k+1) fuZuuZux)dx(k)+(K⊤1 S(k+1) fuZuuZuν)dν

(5.46)

and

dψ = (R⊤(k+1) fx+R⊤(k+1) fuZuuZux)dx(k)+(R⊤(k+1) fuZuuZuν +Q(k+1))dν

(5.47)

For (5.46) and (5.47) to be equivalent to (5.39a) and (5.39b)the coefficients must be equal:

S(k) = K3+K⊤1 S(k+1) fx+K⊤1 S(k+1) fuZuuZux (5.48)

R(k) = K⊤1 S(k+1) fuZuuZuν (5.49)

Q(k) = R⊤(k+1) fuZuuZuν +Q(k+1) (5.50)

These recursive equations must satisfy the boundary conditions, namelyS(N)=Va
xx, R(N)=
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ψx(x(N)) andQ(N) = 0. It holds that

dν = Q−1(k)[dψ−R⊤(k)dx(k)]

From that, given (5.42b), we get

du(k) = Zuu(Zux+ZuνQ−1(k)R⊤(k))dx(k)+ZuuZuνQ−1(k)dψ (5.51)

In our case the desireddψ = 0, so (5.51) becomes

du(k) = Zuu(Zux+Zuν Q−1(k)R⊤(k))dx(k) (5.52)

Equation (5.52) can be rewritten as

du(k) = K∗(k)dx(k) (5.53)

with

K∗(k), Zuu(Zux+Zuν Q−1(k)R⊤(k)) (5.54)

Hence, (5.53) is the neighboring optimum feedback law, whenthe present deviation from

the optimal pathdx(k), is given, while minimizing the cost function.

Lemma 6 The norm of the difference between the real evolution of the system when the

control law(5.11) is applied to the system and the predicted evolution of the system at the

same time step satisfies:

||x̂(k+ j|k−1)−xk+ j || ≤ L j
fx

γ +Lm( j)L fuγu

In order to prove the statement above, we shall make a slight violation in the notation.
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The real state of the system at time stepk+ j when an optimal control lawu∗(·) is applied

to the system will be denoted asxk+ j(u∗), and the real state of the system at the same time

step, whenu∗(·)+du(·) is applied to the system, will be denoted asxk+ j(u∗+du).

For j = 0:

||x̂(k|k−1)−xk(u
∗)||= e(k|k−1)

because there isdx(k−1) = 0⇒ du(k−1) = 0.

For j = 1:

||x̂(k+1|k−1)−xk+1(u
∗+du)|| ≤ ||x̂(k+1|k−1)−xk+1(u

∗)||

+ ||xk+1(u
∗+du)−xk+1(u

∗)|| ≤ L fxe(k|k−1)+L fu||du(k+1)|| ≤ L fxe(k|k−1)+L fuγu

In Lemma 1 of [MAC02], it has been proven that for a given sequence of inputs, the error

between the nominal prediction of the state and the real state of the system is bounded by

e(k+ j|k−1)≤ Lm( j +1)γ (5.55)

Given (5.55), by induction we get:

||x̂(k+ j|k−1)−xk+ j(u
∗+du)|| ≤ L j

fx
γ +Lm( j)L fuγu

Moreover, having this difference bounded it is easy to show that if x̂(k+ j|k−1) ∈ Xj then

the real state of the system will satisfyxk+ j ∈ X.

Lemma 7 It holds that the norm of the difference between xn(k+ j +m|k+m) andx̂(k+

j +m|k−1) is bounded. Note, that xn(·), as well asx̂(·) are the “neighboring” state of the

system and the predicted one, respectively, and that both are given by the nominal model

(5.1). In particular,

||xn(k+ j +m|k+m)− x̂(k+ j +m|k−1)|| ≤ L j
fx

e(k+m|k−1)+Lm( j)L fuγu (5.56)
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For the sake of simplicity, we are going to treat the casem= 0, but the results can be

easily generalized to the cases form≥ 1.

For j = 1:

||xn(k+1|k)− x̂(k+1|k−1)|| ≤ L fx||xn(k|k)− x̂(k|k−1)||+L fu||un(k|k)−u∗(k|k−1)||

≤ L fxe(k|k−1)+L fu||du(k)|| ≤ L fxe(k|k−1)+L fuγu (5.57)

By induction we get (5.56). Using (5.55), it can be concludedthat

||xn(k+1|k)− x̂(k+1|k−1)|| ≤ L j
fx

γ +Lm( j)L fuγu (5.58)
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Chapter 6

Event-Based Strategies of Model

Predictive Controllers for

Continuous-Time Systems

This Chapter proposes novel event-triggered strategies for the control of uncertain non-

linear continuous-time systems with additive disturbances under robust Nonlinear Model

Predictive Controllers (NMPC). The main idea behind the event-driven framework remains

the same as in the previous Chapters, i.e. the main idea is to trigger the solution of the

optimal control problem of the NMPC, only when it is needed. The updates of the control

law depend on the error of the actual and the predicted trajectory of the system. Sufficient

conditions for triggering are provided and is proven that the closed-loop system evolves to

a compact set where it is ultimately bounded, under the proposed framework. The results

are illustrated through a simulated example.

6.1 Introduction

In [VKFF09], an event-based NMPC approach for nonlinear continuous-time systems with

nominal dynamics, is presented. The approach is used in order to overcome the bounded

delays and information losses that often appear in networked control systems. Although

the formulation is event-driven, a criterion for triggering was not provided. Moreover, most

97



researchers have focused on the discrete-time frame, the ISS stability of a robust NMPC in

continuous-time sampled-data systems was recently presented in [RRFM11].

In this work, the triggering condition of a continuous-timesystem under a robust NMPC

control law is given, while a convergence analysis of an uncertain nonlinear system is also

provided.

6.2 Problem Statement For Continuous-Time Systems

In the following a triggering condition for continuous-time nonlinear systems under NMPC

control laws is going to be presented. The triggering condition is reached following the idea

behind the analysis proposed in the previous Chapters for discrete-time systems, appropri-

ately modified in this case, for continuous-time systems.

Consider a nonlinear continuous time system

ẋ(t) = f (x(t),u(t)), x(0) = x0 (6.1)

x(t) ∈X ⊂ R
n, u(t) ∈U ⊂ R

m (6.2)

We also assume thatf (x,u) is locally Lipschitz inx, with Lipschitz constantL f and that

f (0,0) = 0. The whole statex(t), is assumed to be available. SetsX , U are assumed to

be compact and connected, respectively, and(0,0) ∈X ×U .

In a realistic formulation though, modeling errors, uncertainties and disturbances may

exist. Thus, a perturbed version of (6.1) is going to be considered as well. The perturbed

system can be described as

ẋ(t) = f (x(t),u(t))+w(t), x(0) = x0 (6.3)

where the additive termw(t)∈W ⊂R
n is the disturbance at timet ∈R≥0 andW is a com-

pact set containing the origin as an interior point. Furthermore, note thatw(t) is bounded

because it is defined in a compact setw(t) ∈ W . Thus, there existsγsup∈ R≥0 such that

supt≥0 ||w(t)|| ≤ γsup.

98



Given the system (6.1), the predicted state is denoted as ˆx(ti + τ,u(·),x(ti)). This no-

tation will be equipped hereafter and it accounts for the predicted state at timeti + τ with

τ ≥ 0, based on the measurement of the real state at timeti while using a control trajectory

u(·;x(ti)) for time periodti until ti+τ. It holds that ˆx(ti,u(·),x(ti))≡ x(ti), i.e. the measured

state at timeti .

6.2.1 NMPC for Continuous-Time Systems

The main idea behind NMPC is to solve on-line a finite-horizon, open-loop optimal control

problem, based on the measurement provided by the plant. At the recalculation timeti,

the actual state of the plantx(ti), is measured and the following Optimal Control Problem

(OCP), is solved:

min
ũ(·)

J(ũ(·),x(ti)) =

min
ũ(·)

∫ ti+Tp

ti
F(x̃(τ), ũ(τ)) dτ +E(x̃(ti +Tp)), (6.4a)

subject to

˙̃x= f (x̃(t), ũ(t)), x̃(ti) = x(ti), (6.4b)

ũ(t) ∈U , (6.4c)

x̃(t) ∈Xt−ti t ∈ [ti, ti +Tp], (6.4d)

x̃(ti +Tp) ∈ E f , (6.4e)

where ˜· denotes the controller internal variables, correspondingto the nominal dynamics of

the system.F andE are the running and terminal costs functions, respectively, with E ∈C1,

E(0) = 0. The terminal constraint setE f ⊂ R
n is assumed to be closed and connected.

Assume, also, that the cost functionF is quadratic of the formF(x,u) = xTQx+uTRu,

with Q andRbeing positive definite matrices. Moreover we haveF(0,0) = 0 andF(x,u)≥
λmin(Q)||x||2, with λmin(Q) being the smallest eigenvalue ofQ. SinceX and U are

bounded, the stage cost is Lipschitz continuous inX ×U , with a Lipschitz constantLF .

The state constraint setX of the standard MPC formulation, is being replaced by a
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restricted constraint setXt−ti in (6.4d). This state constraints’ tightening for the nominal

system with additive disturbance is a key ingredient of the robust NMPC controller and

guarantees that the evolution of the real system will be admissible for all time.

Notice that the difference between the actual measurement at time ti + τ and the pre-

dicted state at the same time under some control lawu(ti+τ,x(ti)), with 0≤ τ ≤Tp, starting

at the same initial statex(ti), can be shown [FIAF04] to be upper bounded by

||x(ti + τ)− x̂(ti + τ,u(·),x(ti))|| ≤
γsup

L f
(eL f ·τ −1) (6.5)

Setγ(t), γsup

L f
(eL f ·t −1) ∀t ∈ R≥0.

The restricted constrained set is then defined asXt−ti = X ∼ Bt−ti whereBt−ti = {x∈
R

n : ||x|| ≤ γ(t − ti)}, with t ∈ [ti, ti +Tp]. The set operator “∼” denotes the Pontryagin

difference.

The solution of the OCP at timeti provides an optimal control trajectoryu∗(t;x(ti)), for

t ∈ [ti, ti +Tp], whereTp represents the finite prediction horizon. A portion of the optimal

control that corresponds to the time interval[ti, ti +δi), is then applied to the plant, i.e.,

u(t) = u∗(t;x(ti)), t ∈ [ti, ti +δi) (6.6)

whereδi represents the recalculation period that may not be equidistant for everyti, δi =

δ (ti) = ti+1− ti . A time instantti ∈ R≥0 must be a proper recalculation time, in the sense

defined in [VKFF09], i.e. a time instantti ∈ R≥0 is a proper recalculation time if there

existsβ ∈ R≥0, such that, 0< β ≤ ti+1− ti = δi < Tp, ∀ti , ti+1 ∈ R≥0.

In order to assert that the NMPC strategy results in a robustly stabilizing controller,

some stability conditions are stated for the nominal system. Thus, system (6.1) is supposed

to fulfill the following assumptions

Assumption 13 Let the terminal regionE f from (6.4e)be a subset of an admissible posi-

tively invariant setE of the nominal system, whereE ⊂X is closed, connected and con-

taining the origin.
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Assumption 14 Assume that there is a local stabilizing controller h(x(t)) for the terminal

setE f . The associated Lyapunov function E(·) has the following properties

∂E
∂x

f (x(τ),h(x(τ)))+F(x(τ),h(x(τ)))≤ 0 ∀x∈ E

and is Lipschitz inE, with Lipschitz constant LE.

Assumption 15 The setE is given byE = {x ∈ R
n : E(x) ≤ αE} such thatE ⊆ X =

{x ∈XTp : h(x) ∈ U }. The setE f = {x ∈ R
n : E(x) ≤ αE f } is such that for all x∈ E,

f (x,h(x)) ∈ E f . Assume also thatαE,αE f ∈ R≥0 and is such thatαE ≥ αE f .

Assumption 16 ∃ Tp, such that0< β ≤ δ (t)< Tp, for someβ ∈ R≥0.

Note that Assumptions 13 through 15 are standard assumptions for a NMPC system, see for

example [RRFM11]. Assumption 16 can be verified either experimentally or theoretically

for specific systems and it states that every recalculation time is a proper recalculation time.

The event-triggered strategy presented later in this paper, is used in order to enlarge, as

much as possible, the inter-calculation periodδi for the actual system (6.3). The enlarge-

ment of the inter-calculation period results in the overallreduction of the control updates

which is desirable in numerous occasions, as for example energy consumption reasons. In

an event-based framework the inter-calculation period is not equidistant but is “decided”ex

tempore, based on the error between the actual state measurement of (6.3), and the state tra-

jectory of the nominal system, (6.1). The triggering condition, i.e. how the next calculation

time ti+1, is chosen, is presented next.

6.3 Triggering Condition of NMPC for Continuous-Time

Systems

In this section, the feasibility and the convergence of the closed loop system (6.3), (6.6) are

provided first. Then, the event-triggering rule for sampling is reached.
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6.3.1 Feasibility and Convergence

As usual in model predictive control, the proof of stabilityconsists in two separate parts;

the feasibility property is guaranteed first and then, basedon the previous result, the con-

vergence property is shown. Due to the fact that the system inconsideration is perturbed,

we only require “ultimate boundedness” results.

The first part will establish that initial feasibility implies feasibility afterwards. Con-

sider two successive triggering eventsti andti+1 and a feasible control trajectory ¯u(·,x(ti+1)),

based on the solution of the OCP inti, u∗(·,x(ti))

ū(τ,x(ti+1)) =







u∗(τ,x(ti)) ∀τ ∈ [ti+1, ti +Tp]

h(x̂(ti +Tp,u∗(·),x(ti))) ∀τ ∈ [ti +Tp, ti+1+Tp]
(6.7)

From feasibility ofu∗(·,x(ti)) it follows that there is ¯u(τ,x(ti+1)) ∈ U , and similar to

the procedure in [MAC02] ˆx(ti+1+Tp, ū(τ,x(ti+1)),x(ti+1)) ∈ E f provided that the uncer-

tainties are bounded byγsup≤
(αE−αE f

)·L f

LE·(eL f ·Tp−1)
. Finally, the state constraints must be fulfilled.

According to [MAC02] and [RRFM11] and considering that||x(t)− x̂(t,u(·),x(ti))|| ≤ γ(t),

for all t ≥ ti, it is verified that since the ˆx(t,u∗(·),x(ti)) ∈Xt−ti , then x̂(t, ū(·),x(ti+1)) ∈
Xt−ti+1.

The second part involves proving convergence of the state and is being introduced

now. In order to prove stability of the closed-loop system, it must be shown that a proper

value function is decreasing starting from a sampling instant ti. Consider the optimal cost

J∗(u∗(·;x(ti)),x(ti)), J∗(ti) from (6.4a) as a Lyapunov function candidate. Then, consider

the cost of the feasible trajectory, indicated byJ̄(ū(·;x(ti+1)),x(ti+1)) , J̄(ti+1), whereti,

ti+1 are two successive triggering instants. Also, ¯x(τ, ū(τ;x(ti+1)),x(ti+1)) is introduced,

and it accounts for the predicted state at timeτ, with τ ≥ ti+1, based on the measurement
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of the real state at timeti+1, while using the control trajectory ¯u(τ;x(ti+1)) from (6.7). Set

x1(τ) = x̄(τ, ū(τ;x(ti+1)),x(ti+1))

u1(τ) = ū(τ;x(ti+1))

x2(τ) = x̂(τ,u∗(τ;x(ti)),x(ti))

u2(τ) = u∗(τ;x(ti))

The difference between the optimal cost and the feasible cost is

J̄(ti+1)−J∗(ti) =
∫ ti+1+Tp

ti+1

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))−
∫ ti+Tp

ti
F(x2(τ),u2(τ)) dτ−E(x2(ti +Tp))

=
∫ ti+Tp

ti+1

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))+
∫ ti+1+Tp

ti+Tp

F(x1(τ),u1(τ)) dτ

−
∫ ti+1

ti
F(x2(τ),u2(τ)) dτ−

∫ ti+Tp

ti+1

F(x2(τ),u2(τ)) dτ−E(x2(ti +Tp)) (6.8)

From (6.7), we have thatu1(t)≡ u2(t)≡ ū(t) for t ∈ [ti+1, ti +Tp], so imposing this control

law to the system (6.1), it yields

||x1(t)−x2(t)||= (6.9)

||x(ti+1)+
∫ t

ti+1

f (x̄(τ), ū(τ)) dτ−x(ti)−
∫ ti+1

ti
f (x̂(τ),u∗(τ)) dτ−

∫ t

ti+1

f (x̂(τ), ū(τ)) dτ||

Note that for the nominal system (6.1), it holds that

x̂(ti+1,u
∗(·),x(ti)) = x(ti)+

∫ ti+1

ti
f (x̂(τ),u∗(τ)) dτ

Also, we have

||
∫ t

ti+1

f (x̄(τ), ū(τ)) dτ−
∫ t

ti+1

f (x̂(τ), ū(τ)) dτ|| ≤ γ(t− ti+1) ∀t ≥ ti+1 (6.10)

Define the errore(t,x(ti)) as the difference between the actual state measurement at
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time t ≥ ti and the predicted state measurement at the same time, i.e.,

e(t,x(ti)) = ||x(t)− x̂(t,u∗(·),x(ti))|| (6.11)

Obviously we havee(ti,x(ti)) = 0. Then, (6.9) with the help of (6.10), (6.11) andt ∈
[ti+1, ti +Tp] is

||x1(t)−x2(t)|| ≤ e(ti+1,x(ti))+ γ(t− ti+1) (6.12)

The difference between the running costs, with the help of (6.12), is

∫ ti+Tp

ti+1

F(x1(τ),u1(τ)) dτ−
∫ ti+Tp

ti+1

F(x2(τ),u2(τ)) dτ

≤
∫ ti+Tp

ti+1

||F(x1(τ), ū(·))−F(x2(τ), ū(·))|| dτ

≤ LF

∫ ti+Tp

ti+1

||x1(τ)−x2(τ)|| dτ

≤ LF ·e(ti+1,x(ti)) · (ti +Tp− ti+1)+LF ·µ(ti+1) (6.13)

Whereµ(t) , γsup

L f
[ 1
L f
(eL f ·(ti+Tp)−eL f ·(t))− (ti +Tp− t)]. Integrating the inequality from

Assumption 14 fort ∈ [ti +Tp, ti+1+Tp], the following result can be obtained

∫ ti+1+Tp

ti+Tp

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))

−E(x2(ti +Tp))−E(x1(ti +Tp))+E(x1(ti +Tp))

≤ E(x1(ti +Tp))−E(x2(ti +Tp))

≤ LE||x1(ti +Tp)−x2(ti +Tp)||

≤ LE ·e(ti+1,x(ti))+LE · γ(ti +Tp− ti+1) (6.14)

Relying on the fact that functionF is positive definite, it can be concluded that

∫ ti+1

ti
F(x2(τ),u2(τ)) dτ ≥ λmin(Q) ·LQ(ti+1)≥ 0 (6.15)
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with LQ(t), λmin(Q) ·
∫ t
ti ||x̂(τ,u

∗(τ;x(ti)),x(ti))||2 dτ for t ≥ ti. Substituting (6.13), (6.14),

(6.15) to (6.8), the following is derived

J̄(ti+1)−J∗(ti) (6.16)

≤ (LF(ti +Tp− ti+1)+LE) ·e(ti+1,x(ti))+LF ·µ(ti+1)+LE · (ti +Tp− ti+1)−LQ(ti+1)

The optimality of the solution results to

J∗(ti+1)−J∗(ti)≤ J̄(ti+1)−J∗(ti) (6.17)

Thus, it holds that the optimal costJ∗(·) is a Lyapunov function that has been proven

to be decreasing, thus the closed-loop system converges to acompact setE f , where it is

ultimately bounded.

6.3.2 Triggering Condition

In the following, the triggering condition will be provided. Consider that at timeti an event

is triggered. In order to achieve the desired convergence property, the Lyapunov function

J∗(·) must be decreasing. For some triggering instantti and some timet, with t ∈ [ti, ti+Tp],

we have

J∗(t)−J∗(ti) (6.18)

≤ (LF(ti +Tp− t)+LE) ·e(t,x(ti))+LF ·µ(t)+LE · (ti +Tp− t)−LQ(t)

wheree(t,x(ti)) as in (6.11), andx(t) is the state of the actual system, continuously mea-

sured. Suppose that the error is restricted to satisfy

(LF(ti +Tp− t)+LE) ·e(t,x(ti))+LF ·µ(t)+LE · (ti +Tp− t)≤ σLQ(t) (6.19)

105



with 0< σ < 1. Plugging in (6.19) to (6.18) we get

J∗(t)−J∗(ti)≤ (σ −1) ·LQ(t) (6.20)

This suggests that providedσ < 1, the convergence property is still guaranteed.

This triggering rule states that when (6.19) is violated, the next event is triggered at

time ti+1, i.e., the OCP is solved again using the current measure of the statex(ti+1) as the

initial state. During the inter-event interval, the control trajectoryu(t) = u∗(t,x(ti)) with

t ∈ [ti, ti+1], is applied to the plant.

We are now ready to introduce the main stability result for the event-based NMPC

controller.

Theorem 8 Consider the system(6.3), subject to(6.2) under an NMPC strategy and as-

sume that Assumption 1 holds. Then the NMPC control law provided by(6.4a)-(6.4e) is

applied to the plant in an open-loop manner, until the rule(6.19) is violated and a new

event is triggered. The overall event-based NMPC control scheme drives the closed loop

system towards a compact setE f where it is ultimately bounded.

6.4 Conclusions

In Chapter, event-triggered strategies for control of bothcontinuous and discrete-time sys-

tems under NMPC controllers, were proposed and analyzed. Inboth cases, uncertain non-

linear systems with additive disturbances, were considered. The main idea behind the

event-triggered framework is to trigger the solution of theoptimal control problem of the

NMPC, only when it is needed. During the inter-event period the control law provided

from the previous triggering event, is utilized in an open-loop fashion. This event-based

approach is favorable in numerous occasions, because it is possible to reduce the number of

times the control law should be computed, thus it can result to the alleviation of the energy

consumption, or in the case of networks, it can result to amelioration of the network traffic.
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Chapter 7

Self-Triggered Model Predictive Control

for Nonholonomic Systems

This Chapter proposes a Model Predictive Control (MPC) framework combined with a self-

triggering mechanism for constrained uncertain systems. Under the proposed scheme, the

control input as well as the next control update time are provided at each triggering instant.

Between two consecutive triggering instants, the control trajectory given by the MPC is

applied to the plant in an open-loop fashion. This results toless frequent computations

while preserving stability and convergence of the closed-loop system. A scenario for the

stabilization of a nonholonomic robot, subject to constraints and disturbances, is considered

with the aim of reaching a specific triggering mechanism. Therobot under the proposed

control framework is driven to a compact set where it is ultimately bounded. The efficiency

of the proposed approach is illustrated through a simulatedexample.

7.1 Introduction

In this Chapter, a self-triggered MPC strategy is presented. We treat the case of constrained

nonholonomic systems with additive disturbances under a NMPC law. The contribution

relies in finding a framework that will provide control trajectories that lead to stable closed-

loop responses and a mechanism that decides when the controlupdates should occur. In

Chapter 6, a similar analysis was proposed for an event-based MPC framework. In the
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event-based set-up there is the need for continuously taking state measurements, in contrast

to the proposed self-triggered set-up where this need is relaxed. Note, that in [YO09] a

NMPC was applied to a nonholonomic vehicle under a discrete-time framework. However,

the control horizon was decided ad-hoc and no triggering condition was given.

7.2 Problem Formulation

In this section the specifics for the stabilization scenarioare presented. First, the mathe-

matical model of the nonholonomic system is given along withthe constraints that must be

fulfilled. Next, the design and analysis of the proposed controller is provided along with

some assumptions that are necessary in order to achieve stability of the closed-loop system.

7.2.1 Mathematical Modeling

Consider that the motion of the robot is governed by unicyclekinematics with respect to a

global cartesian coordinate frameG. The kinematic model is given by

ẋ= f (x,u)⇒











χ̇

ẏ

θ̇











=











cosθ 0

sinθ 0

0 1















υ

ω



 (7.1)

wherex= [χ ,y,θ ]⊤ is the state vector comprised by the position of the robot(χ ,y) and the

orientationθ with respect toG. The vectoru= [υ,ω]⊤ denotes the control inputs, andυ,

ω are the linear and angular velocity of the robot, respectively, expressed in the body-fixed

frameB.

The robot is equipped with an onboard camera with limited angle-of-view and laser

pointers that provide the state vectorx of the robot with respect toG. The requirements

imposed by the sensors are: (i) The target should always be visible to the camera, i.e.,

[−yT ,yT ] ⊆ [ f1, f2], where 2yT is the width of the target the distance[ f1, f2] is the camera

field of view, (ii) the distance of the vehicle with respect tothe target should not exceed

a maximum range,Rmax, because the laser pointers have limited range, and (iii) there is a
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minimum turning radius of the vehicle,rmin. These requirements along with a saturation

bound in the velocity impose the constraints of the problem.Particularly, the requirements

(i) and (ii) are captured by the connected state constraint set X, given by

x(t) ∈ X ⊂ R
3 (7.2)

which is formed by the following constraints

−y+χ tan(θ − α
2
)−yT ≥ 0 (7.3a)

y−χ tan(θ +
α
2
)−yT ≥ 0 (7.3b)

R2
max−χ2−y2≥ 0 (7.3c)

Figure 7-1 depicts the state constraints of the system. Notethat the whole statex(t) is

assumed to be available, for allt ∈ R≥0. The control constraint setU is assumed to be

compact and it is given by:

u(t), [υ(t),ω(t)]⊤ ∈U ⊂ R
2 (7.4)

The constraints of the input are of the form|υ| ≤ ῡ and|ω| ≤ ω̄ . Therefor we get||u|| ≤
ū, where ū =

√
υ2+ω2. The minimum turning radius of the vehicle imposes another

restriction: | υω | ≥ rmin. We have ¯u, ῡ, ω̄ ∈ R≥0. The nominal system (7.1) is Lipschitz

continuous with Lipschitz constant 0< L f < ∞. More specifically,

Lemma 8 The nominal model f(x,u), given the constraints(7.3a)-(7.3c)and (7.4), is lo-

cally Lipschitz in x for all x∈ X, with a Lipschitz constant Lf ,
√

2ῡ .
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Proof The Euclidean norm is used for the sake of simplicity. We have

|| f (x1,u)− f (x2,u)||2 = ||











υ cosθ1−υ cosθ2

υ sinθ1−υ sinθ2

ω−ω











||2

= |υ|2|cosθ1−cosθ2|2+ |υ|2|sinθ1−sinθ2|2

≤ 2|υ|2|θ1−θ2|2

where the mean value theorem is used. Thus, it can be concluded that|| f (x1,u)− f (x2,u)|| ≤
√

2ῡ ||x1−x2|| for all x1,x2 ∈ X.

We assume that the robot moves under the influence of an irrotational currentw with

respect to the global frame. The current has components withrespect to the axesχ andy

denoted bywχ andwy, respectively. The current is considered to be of constant or slowly-

varying velocitywc with directionβ with respect to the global frame. We have

wχ(t), wccosβ (t) wy(t), wcsinβ (t) (7.5)

Therefor we consider a perturbed system of the form:

ẋ= f (x,u)+w (7.6)

with w(t) = [wχ(t),wy(t),0]⊤ ∈W ⊂ R
3 andW to be a compact set. Since the uncertainty

is assumed to be bounded we set||w|| ≤ w̄, with w̄=
√

2wc.

7.2.2 Control Design and Objective

The goal is to control the actual system (7.6) subject tox(t) ∈ X andu(t) ∈U , to a desired

compact set that includes the desired statexd , [χd,yd,θd]
T ∈ X. A predictive controller

is employed in order to achieve this task. With the NMPC law the state of the system is

proven to converge to the desired set. Inside this set, a terminal controller is used to drive

the system to the desired point. This terminal controller isa state feedback controller using
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Figure 7-1: Modeling of the state constraints (7.3a)-(7.3c) imposed by the sensor system
and the external disturbance (7.5).

dipolar vector fields [PTK11]. Note, that an analytic solution for that controller can be

reached, thus, it is easily computable. The design of an ISS stable controller for system

(7.6) is presented next.

The NMPC consists in solving a finite-horizon, open-loop optimal control problem,

based on the actual state of the plantx(ti), at timeti . The solution is a control trajectory

ũ(t), for t ∈ [ti, ti +Tp], whereTp is the prediction horizon. The Optimal Control Problem

(OCP) of the NMPC is given as

min
ũ(·)

J(ũ(·),x(ti)) =

min
ũ(·)

∫ ti+Tp

ti
F(x̃(τ), ũ(τ)) dτ +E(x̃(ti +Tp)), (7.7a)

subject to

˙̃x= f (x̃(t), ũ(t)), x̃(ti) = x(ti), (7.7b)

ũ(t) ∈U, (7.7c)

x̃(t) ∈ Xt−ti t ∈ [ti, ti +Tp], (7.7d)
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x̃(ti +Tp) ∈ E f , (7.7e)

where ˜· denotes the controller internal variables, correspondingto the nominal dynamics of

the system.F andE are the running and terminal costs functions, respectively. The design

parametersF andE, as well as the setsXt−ti andE f are defined later in the text.

In order to proceed to the subsequent analysis a few definitions and some preliminary

results are presented first.

The predicted state of the nominal system (7.1) at timeti + τ with τ ≥ 0, is denoted as

x̂(ti + τ,u(·),x(ti)) and it is based on the measurement of the actual statex(ti) at timeti,

when a control trajectoryu(·;x(ti)) is applied to the system for time periodti until ti + τ. It

holds that ˆx(ti,u(·),x(ti))≡ x(ti). Moreover the following result is given:

Lemma 9 The difference between the actual state x(ti + t) at time ti + t and the predicted

state at the same time under the same control law u(ti + t,x(ti)), with 0≤ t ≤ Tp, starting

at the same initial state x(ti), can be shown to be upper bounded by

||x(ti + t)− x̂(ti + t,u(·),x(ti))|| ≤ γ(t) (7.8)

whereγ(t), (2
√

2ῡ + w̄)t for all t ∈ [0,Tp].

Proof Set the control trajectoryu(·) , u(ti + t,x(ti)) andx(t) , x(t,u(·),x(ti)) to be

the state trajectory for system (7.6). Also we denote for thesake of simplicity, ˆx(t) ,

x̂(t,u(·),x(ti)) for all t ∈ R≥0. Using the Euclidian norm and the triangular inequality for

system (7.1) and system (7.6), we get

||x(ti + t)− x̂(ti + t)||=

||x(ti)+
∫ ti+t

ti
f (x(τ),u(·)) dτ +

∫ ti+t

ti
w(τ) dτ−x(ti)−

∫ ti+t

ti
f (x̂(τ),u(·)) dτ|| ≤

||
∫ ti+t

ti
f ((x(τ),u(·))− f (x̂(τ),u(·))) dτ||+ ||

∫ ti+t

ti
w(τ) dτ|| ≤

∫ ti+t

ti
||[υ(cosθ(τ)−cosθ̂ (τ)),υ(sinθ(τ)−sinθ̂ (τ)),0]⊤|| dτ +

∫ ti+t

ti
||w(τ)|| dτ

≤ (2
√

2ῡ + w̄)t
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To address to the divergence between the actual state trajectory of system (7.6) and

the predicted state trajectory of the nominal system as given in Lemma 9, we replace the

state constraint setX with the restricted constraint setXt−ti into (7.7d), withXt−ti ⊆ X. We

resort to this constraint’ tightening technique presentedin [MAC02] and [PRMP09] since

the control trajectory that results from (7.7a)-(7.7e) when it is applied to the system (7.6),

results to a state trajectory that does not violate the stateconstraint setX. In particular, the

restricted constraint set is defined asXt−ti = X ∼ Bt−ti whereBt−ti = {x ∈ R
n : ||x|| ≤

γ(t− ti)}, with t ∈ [ti, ti +Tp]. The set operator “∼” denotes the Pontryagin difference, i.e.,

given two setsA,B∈ R
n the Pontryagin difference setC is defined asC = A∼ B , {x ∈

R
n : x+ξ ∈ A,∀ξ ∈ B}.

Assume now that the terminal costE(x) as well as the cost functionF(x,u), are quadratic

of the formE(x) = x⊤PxandF(x,u) = x⊤Qx+u⊤Ru, respectively, withP, Q andR being

positive definite matrices. More specifically we setP=diag{p1, p2, p3}, Q=diag{q1,q2,q3}
and R = diag{r1, r2}. Moreover it can be shown thatF(0,0) = 0 and thatF(x,u) ≥
min{q1,q2,q3, r1, r2}||[x,u]⊤||2≥min{q1,q2,q3, r1, r2}||x||2. SinceX andU are bounded,

it can be concluded that:

Lemma 10 The stage cost F(x,u) is Lipschitz continuous in X×U, with a Lipschitz con-

stant LF , 2(R2
max+π2)1/2σmax(Q), whereσmax(Q) is the largest singular value of matrix

Q.

Proof We have

||F(x1,u)−F(x2,u)||= ||x⊤1 Qx1−x⊤2 Qx2||= ||x⊤1 Qx1−x⊤1 Qx2+x⊤1 Qx2−x⊤2 Qx2||

= ||x⊤1 Q(x1−x2)+(x1−x2)
⊤Qx2|| ≤ (||x1||+ ||x2||)σmax(Q)||x1−x2||

Notice though that∀x∈X we have||x||2≤ |χ |2+ |y|2+ |θ |2≤R2
max+π2, which concludes

the proof.

In order to assert that the NMPC strategy results in a robust stabilizing controller, some

stability conditions are stated in the following:
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Assumption 17 Assume that a setE ⊂ X is an admissible positively invariant set for the

nominal system(7.1), and thatE is such thatE , {x ∈ X : ||x|| ≤ ε0}, with ε0 being a

positive parameter.

Assumption 18 Assume that for the terminal setE f , there exists a local stabilizing con-

troller uT(x(t)) ∈ U, ∀x ∈ E. The associated Lyapunov function E(·) has the following

properties
∂E
∂x

f (x(τ),uT(x(τ)))+F(x(τ),uT(x(τ)))≤ 0 ∀x∈ E

and is Lipschitz inE, with Lipschitz constant LE = 2ε0σmax{P} for all x ∈ E. The proof for

finding the Lipschitz constant LE is the same as the proof of Lemma 3.

Assumption 19 For the setEwe have E(x)= x⊤Px≤αE whereαE=max{p1, p2, p3}ε0
2>

0 and we assume thatE = {x ∈ XTP : uT(x) ∈ U}. TakeαE f ∈ (0,αE) and assume that

E f = {x∈ R
3 : E(x)≤ αE f } is such that∀x∈ E, f (x,uT) ∈ E f .

A state feedback controller using dipolar vector fields is assumed to be the terminal

controlleruT(·). Notice that we assume that this controller fulfills the Assumptions previ-

ously stated for allx∈ E. In order to achieve that, the positive parameterε0 is determined

off-line. Moreover we note thatxd ∈ E. This dipolar-based controller guarantees the con-

vergence of the system trajectories to the desired state [PTK11]. Define the 2-dimensional

vector fieldF(·) = Fχ
ϑ

ϑ χ +Fy
ϑ
ϑy where

Fχ = 2(χ−χd)
2− (y−yd)

2 (7.9a)

Fy = 3(χ−χd)(y−yd) (7.9b)

The vector field is nonsingular everywhere inR2 except for the point(χd,yd) and has

integral curves that all converge to the desired point with directionφ = atan2(Fy,Fχ)→ 0.

The task is to design a feedback control law so that the unicycle aligns to the dipolar vector

field and follows the integral curves until converging to(0,0). This is achieved via a state
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feedback control lawuT(x), [υT ,ωT ]
T : R3→ R

2, given by:

υT = k1tanh((χ−χd)
2+(y−yd)

2) (7.10a)

ωT =−k2(θ −φ)+ φ̇ (7.10b)

wherek1 ∈ (0, ῡ), k2 > 0 andφ = atan2(Fy,Fχ). A reason that the control using dipolar

vector-fields is used only insideE as a terminal controlleruT , is because tracking the vector

field (7.9a)-(7.9b) outsideE could force the robot to loose visibility of the target, i.e., to

violate the constraints.

7.2.3 Problem Statement

The solution of the OCP (7.7a)-(7.7e) at timeti provides an optimal control trajectory de-

noted asu∗(t;x(ti)), for t ∈ [ti, ti +Tp]. A portion this control trajectory, is then applied to

the plant, i.e.,

u(t) = u∗(t;x(ti)), t ∈ [ti, ti+1) (7.11)

During the time interval[ti, ti+1) the control law is applied to the plant in an open-loop

fashion. A question that naturally arises is how large this time interval can be? However,

before we address this question we are going to make some necessary assumptions in order

to make the whole problem feasible. A time instantti ∈R≥0 must be a proper recalculation

time, in the sense defined in [VKFF09], i.e. a time instantti ∈R≥0 is a proper recalculation

time if there existsβ ∈ R≥0, such that, 0< β ≤ ti+1− ti , δi < Tp, ∀ti , ti+1 ∈ R≥0.

Assumption 20 ∃ Tp, such that0< β ≤ δi < Tp, for someβ ∈ R≥0 and∀i ∈ Z≥0.

If this assumption cannot be fulfilled the whole problem would be infeasible.

The self-triggered strategy that will be presented later inthis paper, provides sufficient

conditions for finding the recalculation periods, or in other words sufficient conditions for

triggering the computation of the NMPC law. In particular, the presented framework not

only provides the control law to be applied to the actual system (7.6), but also provides

the time of the next triggering instant,ti+1. This leads us to the statement of the problem

treated in this paper:
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Problem Statement 3 Consider the system(7.6) that is subject to constraints(7.2) and

(7.4). The objective is(i) to design a feedback control law provided by(7.7a)-(7.7e)such

that the system(7.6)converges to the terminal constraint set and(ii) to find a mechanism

to decide when the next control update should be.

7.3 Stability Analysis of NMPC

In this section a stability analysis for the closed-loop system (7.6)-(7.11) is presented. Due

to the fact that the system in consideration is perturbed, weonly require “ultimate bound-

edness” results. Accordingly, it can be proven that the closed-loop scheme is Input to State

stable (ISS) with respect to the disturbances, [Son08]. Moreover, through the ISS analysis

it is possible to reach to a self-triggering mechanism whichprovides the triggering instants.

The proof of stability of a system under a predictive controller consists in guaranteeing

(i) the feasibility property and (ii) the convergence property of the closed-loop system.

We begin by showing that initial feasibility implies feasibility afterwards. Consider two

successive triggering eventsti andti+1. A feasible control trajectory ¯u(·,x(ti+1)), at ti+1,

may be the following:

ū(τ,x(ti+1)) =







u∗(τ,x(ti)) ∀τ ∈ [ti+1, ti +Tp]

uT(x̂(ti +Tp,u∗(·),x(ti))) ∀τ ∈ [ti +Tp, ti+1+Tp]
(7.12)

whereu∗(·,x(ti)) is the optimal solution of the OCP atti .

From feasibility ofu∗(·,x(ti)) and the fact thatuT(x) ∈ U for all x ∈ E, it follows

that ū(τ,x(ti+1)) ∈ U for all τ ∈ [ti+1, ti+1+Tp]. We continue by showing that ˆx(ti+1+

Tp, ū(τ,x(ti+1)),x(ti+1)) ∈ E f . We have

E(x̂(ti +Tp,u(·),x(ti+1))≤ E(x̂(ti +Tp,u(·),x(ti))+LEγ(Tp)

≤ αE f +LE(2
√

2ῡ + w̄)Tp≤ αE

The uncertainties must then be bounded by ¯w+ 2
√

2ῡ ≤
αE−αE f

LETp
. Moreover, the state

constraints must be fulfilled: according to [MAC02] and [RRFM11] and considering that
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||x(t)− x̂(t,u(·),x(ti))|| ≤ γ(t), for all t ≥ ti, it can be verified that since ˆx(t,u∗(·),x(ti)) ∈
Xt−ti , thenx̂(t, ū(·),x(ti+1)) ∈Xt−ti+1.

The convergence of the state is discussed now. A proper valuefunction must be shown

to be decreasing in order to prove stability of the closed-loop system. Consider the optimal

cost J∗(u∗(·;x(ti)),x(ti)) , J∗(ti) from (7.7a) as a Lyapunov function candidate. Then,

consider the cost of the feasible trajectory, indicated byJ̄(ū(·;x(ti+1)),x(ti+1)) , J̄(ti+1).

Note thatti, ti+1 are two successive triggering instants. Also, we introducethe “feasible”

state ¯x(τ, ū(τ;x(ti+1)),x(ti+1)) which accounts for the predicted state at timeτ, with τ ≥
ti+1, based on the measurement of the real state at timeti+1, while using the feasible control

trajectoryū(τ;x(ti+1)) from (7.12). Set

x1(τ) = x̄(τ, ū(τ;x(ti+1)),x(ti+1))

u1(τ) = ū(τ;x(ti+1))

x2(τ) = x̂(τ,u∗(τ;x(ti)),x(ti))

u2(τ) = u∗(τ;x(ti))

The difference between the optimal cost and the feasible cost is:

J̄(ti+1)−J∗(ti) =
∫ ti+1+Tp

ti+1

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))−
∫ ti+Tp

ti
F(x2(τ),u2(τ)) dτ−E(x2(ti +Tp)) =

∫ ti+Tp

ti+1

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))

+
∫ ti+1+Tp

ti+Tp

F(x1(τ),u1(τ)) dτ−
∫ ti+1

ti
F(x2(τ),u2(τ)) dτ

−
∫ ti+Tp

ti+1

F(x2(τ),u2(τ)) dτ−E(x2(ti +Tp)) (7.13)

From (7.12), we have thatu1(t)≡ u2(t)≡ ū(t) for t ∈ [ti+1, ti +Tp]. Imposing this control
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law to the system (7.1) we get:

||x1(t)−x2(t)||=

||x(ti+1)+
∫ t

ti+1

f (x̄(τ), ū(τ)) dτ−x(ti)−
∫ ti+1

ti
f (x̂(τ),u∗(τ))dτ−

∫ t

ti+1

f (x̂(τ), ū(τ))dτ||

= ||x(ti+1)− x̂(ti+1,u
∗(·),x(ti))|| ≤ γ(ti+1− ti) (7.14)

The difference between the running costs, with the help of (7.14), becomes:

∫ ti+Tp

ti+1

F(x1(τ),u1(τ)) dτ−
∫ ti+Tp

ti+1

F(x2(τ),u2(τ)) dτ

≤
∫ ti+Tp

ti+1

||F(x1(τ), ū(·))−F(x2(τ), ū(·))|| dτ ≤ LF

∫ ti+Tp

ti+1

||x1(τ)−x2(τ)|| dτ

≤ LF

∫ ti+Tp

ti+1

γ(ti+1− ti) dτ = LF(2
√

2ῡ + w̄)(ti+1− ti)(ti +Tp− ti+1)≥ 0 (7.15)

Integrating the inequality from Assumption 18 fort ∈ [ti +Tp, ti+1+Tp] results in the fol-

lowing:

∫ ti+1+Tp

ti+Tp

F(x1(τ),u1(τ)) dτ +E(x1(ti+1+Tp))−E(x2(ti +Tp))

−E(x1(ti +Tp))+E(x1(ti +Tp))≤ E(x1(ti +Tp))−E(x2(ti +Tp))

≤ LE||x1(ti +Tp)−x2(ti +Tp)|| ≤ LE(2
√

2ῡ + w̄)(ti+1− ti)≥ 0 (7.16)

Since functionF is positive definite, it can be concluded that

∫ ti+1

ti
F(x2(τ),u2(τ)) dτ ≥ LQ(ti+1)≥ 0 (7.17)

with LQ(t), min{q1,q2,q3, r1, r2} ·
∫ t
ti ||x̂(τ,u

∗(τ;x(ti)),x(ti))||2 dτ for t ≥ ti. Substituting

(7.15), (7.16), (7.17) to (7.13), the following is derived

J̄(ti+1)−J∗(ti)

≤ LF(2
√

2ῡ + w̄)(ti+1− ti)(ti +Tp− ti+1)+LE(2
√

2ῡ + w̄)(ti+1− ti)−LQ(ti+1) (7.18)
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The optimality of the solution yields

J∗(ti+1)−J∗(ti)≤ J̄(ti+1)−J∗(ti) (7.19)

The Lyapunov functionJ∗(·) has been proven to be decreasing, thus the closed-loop system

converges to a compact setE f , where it is ultimately bounded, due to Assumption 3.

7.3.1 Self-triggered Framework

In this section the self-triggering mechanism is going to bepresented. Consider that at

time ti an event is triggered. The ISS of the NMPC was proven considering that the time

ti+1, i.e, the next triggering instant, was known. Here, the nextcontrol update timeti+1 is

considered to be unknown and should be found. The next control update timeti+1 should be

such that the closed-loop system does not lose any of its desired properties. Thus, we still

need the Lyapunov functionJ∗(·) to be decreasing, which will preserve the convergence of

the closed-loop system.

Given (7.18) and (7.19), then for some triggering instantti and some timet with t ∈
[ti, ti +Tp] we get

J∗(t)−J∗(ti)

≤ LF(2
√

2ῡ + w̄)(t− ti)(ti +Tp− t)+LE(2
√

2ῡ + w̄)(t− ti)−LQ(t) (7.20)

The time instantt should be such that

LF(2
√

2ῡ + w̄)(t− ti)(ti +Tp− t)+LE(2
√

2ῡ + w̄)(t− ti)≤ σLQ(t) (7.21)

with 0< σ < 1. Plugging in (7.21) to (7.20) we get

J∗(t)−J∗(ti)≤ (σ −1) ·LQ(t) (7.22)

This suggests that providedσ < 1, the convergence property is still guaranteed. Thus, the

next control update time should be triggered when (7.21) is violated. This provides the
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triggering mechanism. Notice that the timeti+1 can be found beforehand at timeti, i.e,

this is a self-triggering mechanism. Moreover, it should bepointed out that the termLQ(t)

includes only predictions of the nominal system that is forming a trajectory and that it can

be found by forward integration of (7.1) for timet ∈ [ti, ti +Tp].

Next we describe the self-triggering mechanism. At timeti a control update is triggered

and a control trajectory for[ti, ti +Tp] is provided. With the help of (7.21) we get

(2
√

2ῡ + w̄)[LF(ti +Tp− t)+LE](t− ti) = σLQ(t) (7.23)

The solution of (7.23) will provide the next update timeti+1. During the time interval

t ∈ [ti, ti+1) the control trajectoryu(t) = u∗(t,x(ti)) is applied to the plant in an open-loop

fashion. Next, at timeti+1 the OCP is solved again using the current measure of the state

x(ti+1) as the initial state. The controller follows this procedureuntil the system converges

to the terminal constraint set.

We are now ready to state the stability result for this self-triggered MPC framework:

Theorem 9 Consider the system(7.6) that is subject to constraints(7.2) and (7.4) under

the NMPC strategy and assume that Assumptions 17-20 hold. The control update times that

are provided by(7.23)and the NMPC law provided by(7.7a)-(7.7e)which is applied to the

system in an open-loop fashion during the inter-sampling periods, drive the closed-loop

system towards a compact setE f where it is ultimately bounded.

7.4 Simulation Results

In this section, a simulated example of the proposed framework for a nonholonomic robot

is presented. The objective is to control the robot through aNMPC law of the form (7.7a)-

(7.7e) in order to reach a desired terminal constraint set. The nominal model of the non-

holonomic system has the form (7.1). Furthermore we assume that disturbances exist and

that they are bounded by||w|| ≤ 0.5. Thus, the actual model is (7.6). The initial position of

the robot isxinitial = [−43,11.5,−pi/6]⊤ and the desired position isxd = [0,0,0]⊤.

In order to evaluate the proposed self-triggered approach we are going to present some
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comparison results. The traditional time-triggered, periodical, scheme is given and the

event-triggered MPC framework that was proposed in Chapter3 given as well. The sim-

ulation shows that the actual system (7.6) under all three schemes, i.e., time, event and

self-triggered NMPC, converges to the terminal set around the desired state, see Fig. 7-2.
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Figure 7-2: State trajectories of the nonholonomic robot under robust MPC. The solid line
represents the trajectory of the robot under periodic MPC. The dashed line as well as the
dash-dotted line represents the trajectories of the robot under the event-triggered MPC and
the self-triggered MPC, respectively. The red triangle is the initial position of the robot,
while the green is the desired state.

In Fig. 7-3, the evolution of the system trajectories under all three schemes is depicted.

It is apparent that all three schemes have comparable results. Finally, Fig. 7-4, is capturing

the triggering instants on both the event-triggered and theself-triggered frameworks. The

time-triggered framework is not depicted because it is trivially triggered at each sampling

period, i.e., the smallest triggering periodβ = 0.1sec.

7.5 Conclusions

We provided a self-triggered formulation for constrained nonholonomic systems under a

model predictive controller. The main idea is to trigger thesolution of the optimal control

problem only when it is needed and not periodically as in the case of classic MPC schemes.

This approach results to an improvement on the requirementson the computation resources.
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Figure 7-3: The evolution of the system trajectories in time. The green line represents
the time-triggered case. The red and blue represent the event-triggered and self-triggered,
respectively.
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Figure 7-4: The triggering instants. When the vertical axishas the value 1, the NMPC
is triggered. For value 0 the control law is implemented on the system in an open-loop
fashion. (a) The event-triggered set-up, (b) The self-triggered set-up.
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With the self-triggered approach both the control input andthe next control update time are

evaluated in order to avoid continuous supervision of the actual state of the system. During

the inter-sampling times the control trajectory from the NMPC is applied to the system

in an open-loop fashion. In this paper sufficient conditionsfor triggering were presented

along with some simulation results that depict the validityof the overall framework.
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Chapter 8

A Self-triggered Model Predictive

Control Framework for the Cooperation

of Distributed Nonholonomic Agents

In this Chapter we propose a decentralized Model PredictiveControl (MPC) framework

with a self-triggering mechanism, for a team of cooperatingagents. The nonholonomic

agents are controlled locally and exchange information with their neighbors. The aim at

scheduling the control updates based on a self-triggering criterion is twofold: to reduce the

updates of the control law for each agent and to reduce the communication effort between

the agents. The input-to-state (ISS) stability of the agents is proven, the condition for

triggering is provided and the theoretic results are then depicted by a simulated example.

8.1 Introduction

The event-based approaches, either it is event-triggered control or self-triggered control has

a particular relevance in network systems and to distributed / decentralized frameworks.

Both approaches are comprised, inter alia, by triggering mechanisms that determine when

the new control update should be. Nevertheless, the event-triggered techniques require a

constant measurement of the state of the plant, or in the caseof distributed schemes, it

requires the continuous monitoring of the state of the neighbors in order to decide when
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the control update must be triggered. In the case of self-triggered control only the latest

state measurement needs to be known for determining the nexttriggering instant, which in

fact can reduce the communication effort between the distributed agents. Related works on

event/ self-triggered control in the distributed frameworks can be found in [DJ09c], [JT11],

[MH11], [NC12], [PSW11] and the references quoted therein.

In this Chapter a distributed framework is considered for a team of cooperating agents

governed by nonholonomic kinematic models. The agents run local predictive controllers

and they are exchanging information with a set of neighboring agents only on their own

triggering instants. The contribution of this work relies in finding sufficient conditions

for triggering in the self-triggered control context: eachone of the agents monitors its

own triggering condition and between the intersampling periods applies in open-loop, the

previously computed control sequence. This cooperative scenario has been introduced in

the classic constant sampling framework, [FMP+08] and in an event-based framework, see

Chapter 4, for general nonlinear systems. However, with theself-triggered approach, the

updates of the local control laws are reduced and additionally the communication effort

between the agents is mitigated.

8.2 Problem Formulation

In this section, the cooperative scenario of multiple agents that work in the same environ-

ment is formulated. We consider a distributed framework, and for this reason, the model,

the constraints and the design of the controllers for each ofthe agents, are given. In the

subsequent sections the overall problem is stated rigorously.

8.2.1 Mathematical Modeling

Consider a general system which is composed byM local subsystems. The subsystems

are all described by the same form of nonholonomic kinematicequations of the following
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form:

xi(k+1) = f (xi(k),ui(k))⇒ (8.1a)










χ i(k+1)

yi(k+1)

θ i(k+1)











=











χ i(k)+dtcosθ i(k)υ i(k)

yi(k)+dtsinθ i(k)υ i(k)

θ i(k)+dtω i(k)











(8.1b)

with k∈ Z≥0 andi = 1, . . . ,M.

The state of the subsystemi is denoted byxi(k) , [χ i(k),yi(k),θ i(k)]⊤, while ui(k) ,

[υ i(k),ω i(k)]⊤ denotes the control variable. Suppose that the agents evolve on the same

discrete-time space, i.e., they are synchronized. The state and the control vectors are re-

quired to fulfill the following constraints

xi(k) ∈ Xi ui(k) ∈U (8.2)

whereXi ⊆ R
3 andU i ⊆ R

2 are compact sets containing the origin as an interior point.In

particular, the constraints of the input are of the form|υ i | ≤ ῡ and|ω i | ≤ ω̄. Therefor we

get ||ui|| ≤ ū, whereū=
√

ῡ2+ ω̄2 for all i = 1, . . . ,M.

The distributed system comprised of theM subsystems is decoupled, but in order to

achieve some degree of cooperation it is assumed that each agentA i for all i = 1, . . . ,M

exchanges information with a set of neighboring agentsG
i , {A j , j ∈ Gi}, whereGi de-

notes the set of indexes identifying the agents belonging tothe setG i . Consider, now, a

generic time-stepk, then, for eachi = 1, . . . ,M the agentA i receives from all neighboring

agentsA j ∈ G i their state vectorsx j(k) and their velocity vectorsu j(k). More precisely,

the information received by an agentA i at time stepk, can be written as

wi(k), col[x j(k)]∀ j ∈Gi (8.3a)

wi
u(k), col[u j(k)]∀ j ∈Gi (8.3b)

with wi(k) ∈Wi , Π j∈GiX j andwi
u(k) ∈Π j∈GiU . It is assumed that (i) this information is

always available and accurate and (ii) can be exchanged without a delay. Notice however
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that we consider a self-triggering framework, so this exchange of information is not not

taking place at each time-step, but whenever it isnecessaryas it will be explained later on.

8.2.2 Control Design and Objective

The goal for each generic agentA i, described by (8.1a) and is subject to (8.2), is to be

driven to a desired state which is included inXi. In order to achieve this task local NMPC

controllers, for each of the agents, are employed. For all the subsystems, it can be proven

that the closed-loop systems are ISS with respect to the information vectors received by

their neighbors and more specifically that the state of each subsystem is converging to a

desired terminal set. Inside this set, an auxiliary terminal controller is employed to drive

the system to the desired point. The design of the local NMPC controllers for a generic

subsystem (8.1a) is presented next.

For each agentA i and at a time-stepk, the local NMPC control law is computed by

solving a finite-horizon, open-loop optimal control problem (OCP), based on its state mea-

surementxi(k) and based on the information received from the neighbors; the state and the

velocity vectorswi(k) andwi
u(k), respectively. The optimal problem consists in minimiz-

ing, with respect to a control sequence{ui(k|k),ui(k+1|k), . . . ,ui(k+Ni −1|k)}, a cost

functionJi
N(x

i(k),wi(k),wi
u(k),N

i). The cost function for the OCP, is given by

Ji
N(x

i(k),wi(k),wi
u(k),N

i) = (8.4a)

Ni−1

∑
t=0
{Li(x̂i(k+ t|k),ui(k+ t|k))+Qi(x̂i(k+ t|k), ŵi(k+ t|k))}+Vi(x̂i(k+Ni |k))

subject to

x̂i(k+ t|k) ∈ Xi ∀t = 1, . . . ,Ni−1 (8.4b)

ui(k+ t|k) ∈U ∀t = 0, . . . ,Ni−1 (8.4c)

ŵi(k+ t|k) ∈Wi ∀t = 0, . . . ,Ni−1 (8.4d)

x̂i(k+Ni |k) ∈ Xi
f (8.4e)
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whereXi
f denotes the terminal constraint set and ˆxi(k|k) = xi(k). The positive integerNi ∈

Z≥0, denotes the prediction horizon. The notation ˆxi(·|·) used in (8.4a), (8.4b) and (8.4e),

denotes the predicted state of the agentA i and is given as

x̂i(k+ t +1|k) = f (x̂i(k+ t|k),ui(k+ t|k)) (8.5)

which accounts for the predicted state at timek+ t +1 with t ∈ Z≥0, based on the mea-

surement of the state at timek while using a control inputui
k+t and the model of the system

from (8.1a). In the same manner, the predicted states of the neighbors of the agentA i are

given as

ŵi(k+ t +1|k) = f (ŵi(k+ t|k),wi
u(k+ t|k)) (8.6)

which is equivalent to

col[x̂ j(k+ t+1|k)] = col[ f (x̂ j(k+ t|k),u j(k+ t|k))], j ∈Gi

The vector ˆwi(k+ t + 1|k) for t = 0, . . . ,Ni − 1 denotes the prediction of the neighbors’

states. However, at a generic time instantk, only ŵi(k|k) , wi(k) as well aswi
u(k) are

known to the agentA i . In order to solve the OCP (8.4a)-(8.4e), the controller of the agent

A i , assumes the following for the prediction horizon: the agentsA j for all j ∈Gi , maintain

the same velocity during the whole prediction horizonNi , i.e., wi
u(k+ t|k) = wi

u(k), ∀t ∈
[0,Ni −1]. This assumption is utilized only for the prediction of the controller, and it is

clear that the trajectories of the neighboring agents will diverge from the predicted ones

due to individual dynamics. However, the closed-loop nature of the overall framework is

able to overcome this limitation, as it will be shown in the stability analysis.

In order to proceed to the subsequent analysis, some standard stability conditions for

the design of the local predictive controllers are introduced, in order to assert that the MPC

strategy results in stabilizing local controllers for eachof the subsystems.

Assumption 21 The stage cost Li(xi ,ui) is Lipschitz continuous in Xi×U and it holds that

Li(0,0) = 0. Moreover, there is aK∞-function ri , such that Li(xi
k,u

i
k)≥ r i(||xi

k||).

Assumption 22 The running cost Qi(xi ,wi) is such that Qi(xi ,wi) ≥ 0. Moreover, Qi is
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Lipschitz continuous in Xi×Wi , with Lipschitz constants Liqx and Li
qw, respectively.

Assumption 23 Let the terminal set Xif be such that Xif ⊂ Xi, Xi
f to be closed, and0 ∈

Xi
f . Assume that there is a locally stabilizing controller hi(xk) for the terminal set. The

associated Lyapunov function Vi(·) has the following property, for all xi ∈ Xi
f and for all

wi ∈Wi ,

V i( f i(xi(k),hi(xi(k))))−Vi(xi(k))≤−Li(xi(k),hi(xi(k)))−Qi(xi(k),wi(k))

8.2.3 Problem Statement

The solution of the OCP (8.4a)-(8.4e) at a time-stepk provides an optimal control sequence.

The classic framework of the MPC consists in applying to the system only the first control

vector, i.e.,u∗i(k|k) and to discard all the remaining elements of the sequence. Atthe next

time-stepk+1, new state measurements are received and the whole procedure is repeated

again. This is iteratively repeated until the system has reached to the desired terminal set.

However, the self-triggering framework suggests that a portion of the computed control

sequence may be applied to the system and not only the first vector. Suppose a triggering

instantki . The control sequence that is applied to the plant is of the form

{u∗(ki |ki),u
∗(ki +1|ki), . . .u

∗(ki + t|ki)} (8.7)

for all t ∈ [0,ki+1− ki − 1], whereki+1 is the next triggering instant. During the time

interval [ki ,ki+1) the control law is applied to the plant in an open-loop fashion, while no

measurements from the neighboring agents are received. A question that naturally arises is

how large this time interval can be? Notice, though, the smallest time interval is obviously

1, that is ifki+1= ki+1. The self-triggered strategy that will be presented laterin this paper,

answers to this question and provides sufficient conditionsfor finding the recalculation

periods, or in other words sufficient conditions for triggering the computation of the NMPC

law. This leads us to the statement of the problem treated in this Chapter:
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Problem Statement 4 Consider a generic subsystem(8.1a)that is subject to constraints

(8.2), while measuring(8.3a)-(8.3b) from the neighboring agents. The objective is(i) to

design a feedback control law provided by(8.4a)-(8.4e)such that the subsystem(8.1a)

converges to its terminal constraint set and(ii) to find a mechanism to decide when the

recalculation instants of the local control law should be. This framework should result to

the overall stability for the team of agents.

8.3 Stability Analysis of NMPC

In this section the stability analysis of the closed-loop system (8.1a)-(8.7) for a generic

agentA i , is presented. The analysis will be using the ISS notion for stability because even

though no disturbances are considered, the influence of the neighboring agents requires

ultimate boundedness results. An approach which considersa similar cooperative scenario

was presented in [FMP+08], but the analysis was performed under the classic MPC set-

up which dictates the calculation of the MPC to be computed ateach time step. Through a

modification of the analysis proposed in [FMP+08] it is possible to reach to a self-triggering

mechanism which will provide the triggering instants of thelocal control laws.

Consider a time-stepk when an event is triggered, then a new OCP (8.4a)-(8.4e) is

solved which provides an optimal control sequence{ui∗(k|k), . . . ,ui∗(k+Ni −1|k)}. The

optimal costJi∗
N (k), is the cost (8.4a) under this optimal control sequence. In order to prove

stability of the closed-loop system, a sufficient conditionis to find a proper value function

that must be shown to be decreasing at every time-step. This value function will in fact be

the optimal costJi∗
N (k). First we are going to evaluate the differenceJi∗

N (k+m)− Ji∗
N (k)

for all m= [1,Ni−1] and then we are going to restrict the optimal cost to decreaseat each

time-step.

Consider now, control sequences ¯ui(·) for time-stepsm= 1, . . . ,Ni −1, based on the

optimal solution at the triggering instantk, given as

ūi(k+ t|k+m) =







ui∗(k+ t|k) for t = m, . . . ,Ni−1

hi(x̂i(k+ t|k+m)) for t = Ni , . . . ,Ni +m−1
(8.8)
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These control sequences are admissible and in general suboptimal. From the feasibility of

the optimal control trajectory at time-stepk it follows that for all t,m= 1, . . . ,Ni −1 we

haveūi(k+ t|k+m)∈U andx̂i(k+Ni |k+m) ∈ Xi
f . Now, letJ̄i

N(k+m) to be the “feasible”

cost at a time stepk+m, ∀m∈ [1,Ni −1]. This cost is derived from (8.4a) for a control

sequence (8.8). This “feasible” cost will help us to obtain the differenceJi∗
N (k+m)−Ji∗

N (k).

First we are going to evaluate this difference form= 1, then form= 2 and finally invoke

the general formulation.

Form= 1 we have

J̄i
N(k+1) = Ji∗

N (k)−Li(xi(k),ui(k))−Qi(xi(k),wi(k))

+
Ni−1

∑
t=1
{Li(x̄i(k+ t|k+1), ūi(k+ t|k+1))+Qi(x̄i(k+ t|k+1), ŵi(k+ t|k+1))

−Li(x̂i(k+ t|k),ui∗(k+ t|k))−Qi(x̂i(k+ t|k), ŵi(k+ t|k))}

+Li(x̄i(k+Ni |k+1),hi(x̄i(k+Ni |k+1))+Qi(x̄i(k+Ni |k+1), ŵi(k+Ni |k+1))

+V i(x̄i(k+Ni +1|k+1))−V i(x̂i(k+Ni |k)) (8.9)

wherex̄i(·) is the state of the agentA i while a feasible control input from (8.8) is being

applied. Notice that we consider nominal stability of the agents, thus, the predicted state

x̂(·) and the “feasible” state ¯x(·), computed at the same time-step are coinciding. Using

Assumption 22, the following result can be obtained

Qi(x̄i(k+ t|k+1), ŵi(k+ t|k+1))−Qi(x̂i(k+ t|k), ŵi(k+ t|k))≤

||Qi(·, ŵi(k+ t|k+1))−Qi(·, ŵi(k+ t|k))|| ≤ Li
qw||ŵi(k+ t|k+1)− ŵi(k+ t|k)|| (8.10)

From the Appendix and in particular from (8.21), it yields

Li
qw||ŵi(k+ t|k+1)− ŵi(k+ t|k)|| ≤ Li

qwdt(m−1) ∑
j∈Gi

{(2(ῡ +υ j
k)

2+ ω̄2)1/2} (8.11)
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Using the inequality from Assumption 23, and substituting (8.11) to (8.9), we obtain

J̄i
N(k+1)≤ Ji∗

N (k)−Li(xi(k),ui(k))−Qi(xi(k),wi(k))

+Li
qwdt(m−1) ∑

j∈Gi

{(2(ῡ + |υ j
k |)2+ ω̄2)1/2} (8.12)

From the optimality of the solution that yieldsJi∗
N (k+1) ≤ J̄i

N(k+1) and with the help of

the Assumption 1, the following is derived

Ji∗
N (k+1)−Ji∗

N (k)≤−r i(||xi(k)||)+Li
qwdt(m−1) ∑

j∈Gi

{(2(ῡ + |υ j
k |)2+ ω̄2)1/2} (8.13)

Form= 2 we get

J̄i
N(k+2)≤ Ji∗

N (k)−Li(xi(k),ui(k)) (8.14)

−Qi(xi(k),wi(k))−Li(x̂i(k+1|k),ui(k+1|k))−Qi(x̂i(k+1|k), ŵi(k+1|k))

+
Ni−2

∑
t=1
{Qi(x̂(k+ t+1|k+2), ŵ(k+ t+1|k+2))−Qi(x̂(k+ t +1|k), ŵ(k+ t+1|k))}

Using similar arguments as before, we obtain the following

Ji∗
N (k+2)−Ji∗

N (k)≤−r i(||xi(k)||)− r i(||x̂i(k+1|k)||)

+Li
qwdt(m−1) ∑

j∈Gi

{(2(ῡ + |υ j
k |)2+ ω̄2)1/2} (8.15)

From the above it can be concluded using the same procedure that for randomm∈ [1,Ni−
1], we get

Ji∗
N (k+m)−Ji∗

N (k)≤ (8.16)

− r i(||xi(k)||)−
m−1

∑
ρ=1
{r i(||x̂i(k+ρ |k)||)}+Li

qwdt(m−1) ∑
j∈Gi

{(2(ῡ + |υ j
k |)2+ ω̄2)1/2}

In (8.16), it is shown that the differenceJi∗
N (k+m)−Ji∗

N (k) is bounded. In order to prove

stability though, the optimal cost must be decreasing at each consecutive time-step. This
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restriction for a decreasing Lyapunov function will enableus to reach to the triggering

conditions, thus, it will be discussed in the next subsection.

8.4 The self-triggered Framework

In this section the self-triggering mechanism is going to bepresented. Consider that at time

ki , an event is triggered. Then (8.16) becomes

Ji∗
N (ki +m)−Ji∗

N (ki)≤ (8.17)

− r i(||xi(k)||)−
m−1

∑
ρ=1
{r i(||x̂i(ki +ρ |ki)||)}+Li

qwdt(m−1) ∑
j∈Gi

{(2(ῡ + |υ j(ki)|)2+ ω̄2)1/2}

Form= [1,Ni−1], and if the following is valid

Li
qwdt(m−1) ∑

j∈Gi

{(2(ῡ + |υ j(ki)|)2+ ω̄2)1/2} ≤ σ(r i(||xi(k)||)+
m−1

∑
ρ=1
{r i(||x̂i(ki +ρ |ki)||)})

(8.18)

for 0 < σ < 1, then the Lyapunov functionJi∗
N (k) is decreasing and the ISS property of

the system is guaranteed. For each agent, the condition (8.18) should be checked for each

consecutive time-step, i.e., form= 1,m= 2, . . . . The time-step that this condition does no

longer holds, should be the next triggering instantki+1.

Next we describe the self-triggering mechanism for a generic agentA i . At time ki a

control update is triggered, the controller reads the localstate measurement and receives

the information from the neighboring agents and finally it provides a control sequence for

[ki ,ki +Ni −1]. The controller checks for how many steps inequality (8.18)is valid, and

applies the optimal trajectory that was computed at time-step ki for all those steps, in an

open-loop fashion, until the next triggering instantki+1. The aforementioned procedure is

repeated until the subsystem converges to the terminal constraint set.

We are now ready to state the stability result for this self-triggered MPC framework:

Theorem 10 Consider the subsystem(8.1a)that is subject to constraints(8.2) under the
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NMPC strategy and assume that Assumptions 21-23 hold. The control update times that

are provided by(8.18)and the NMPC law provided by(8.4a)-(8.4e)which is applied to the

system in an open-loop fashion during the inter-sampling periods, drive the closed-loop

system towards a compact set Xi
f where it is ultimately bounded.

Remark 3 Let Xi
mpc be the set of states of the subsystemA i , where a solution of the OPC

(8.4a)-(8.4e)exists. In [FMP+08], it has been shown that Ji∗
N (·) is an ISS Lyapunov function

of the system(8.1a), relaying to similar assumptions as in this paper. Thus, thesubsystem

(8.1a), subject to(8.2), which satisfies Assumptions 21-23, is ISS stable inside Xi
mpc, with

respect to the information received from the neighboring agents, under the NMPC strategy.

Moreover, in the previous analysis it was shown that this property is guaranteed to be valid

under the self-triggered framework. Furthermore, the proof for the stability of the team of

agents is omitted due to space limitations and the reader is referred in [FMP+08].

8.5 Simulation results

In this section, a simulated example of the proposed framework for a team of three non-

holonomic agents moving inR2 is presented. The objective is to control each agent

through a local NMPC law of the form (8.4a)-(8.4e) to reach the desired position, with-

out colliding. The models of the subsystems are of the form (8.1b). The discretization

time is dt = 0.1 and the cost functions are of quadratic form, i.e.,(xi)⊤Sixi , (ui)⊤Riui

and(wi − xi +di)⊤Qi(wi − xi +di), with S1 = S2 = S3 = diag[3,5,0.1], R1 = R2 = R3 =

diag[1,1] and Q1 = diag[8,8,0.1], Q2 = diag[6,6,0.1], Q3 = diag[5,14,0.1]. The term

d1 = d2 = d3 = [3,3,0] is the minimum desired distance between the agents. The ini-

tial and the desired position of agentA 1 is x1
initial = [−20,7,π/4], x1

desired= [6,−9,0].

For the agentA 2 is x2
initial = [−10,−7,π/3], x2

desired= [14,18,0] and for the agentA 3

is x3
initial = [10,−7,π − π/3], x3

desired= [−14,18,π ]. Finally, the input is bounded by

ū= [10,0.1] and the termσ is taken equal to 0.8.

In Fig.8-1, the trajectories of the agents are depicted. Allthree of them converge to a

terminal constraint set that includes their desired states. It should be noted that the collision
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between the agents is avoided with the proposed framework. This is more apparent in Fig.8-

2, where theχ i andyi positions are depicted. The agents are not coinciding at anysampling

time. The coloring follows the same rule as in Fig., where thethe red lines represent the

−25 −20 −15 −10 −5 0 5 10 15 20
−15

−10
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0
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10

15
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Figure 8-1: Trajectories of the team of agents. The red triangles represent the agentA 1.
The blue triangles represent the agentA 2 and the magenta triangles represent agentA 3.

agentA 1, the blue lines represent the agentA 2 and the magenta lines represent agentA 3.

In the following the sampling times are depicted. Notice that when diagram has 1 value,

there is a triggering instant, while when it has the value 0, the agents are controlled open-

loop. Fig.8-3 depicts the triggering instants for agentA 1 and Fig.8-4, Fig. 8-5 depict the

triggering instants for agentsA 2 andA 3, respectively.

It is apparent from the figures, that the updates of the control laws, as well as, the

communication load between the agents is significantly reduced, while the systems have

succeeded to converge to their desired states and to avoid collision.

8.6 Summary

In this Chapter, a cooperative framework for distributed nonholonomic agents under local

model predictive controllers was considered. Also, for each subsystem a self-triggering
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Figure 8-2: Theχ i andyi positions of the agents with respect to sampling times, fori =
1,2,3.
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Figure 8-3: Triggering instants for agentA 1.
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Figure 8-4: Triggering instants for agentA 2.
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Figure 8-5: Triggering instants for agentA 3.

condition was proposed. The main idea is to trigger the solution of the optimal control

problem of the predictive controllers only when it is neededand not periodically as in

the case of classic MPC schemes. During the inter-sampling times the control trajectory

from the NMPC is applied to the system in an open-loop fashion. With the self-triggered

approach both the control input and the next control update time are evaluated in order to

avoid continuous supervision of the states of the neighboring agents. Thus, this approach

results to a reduction of the updates of the control laws for each subsystem, as well to a

reduction of the communication effort between the subsystems.

8.7 Appendix

In this section we are going to evaluate the inequality (8.10), which is crucial in order to

reach to the triggering mechanism. First, the expression for the predicted states at a time-

stepk+ t, with t,m∈ [1,Ni −1], of the neighbors of the agentA i measured from the the

generic triggering instantk, i.e.,ŵi(k+ t|k), is going to be given in Lemma 11 and then the

predicted states ˆwi(k+ t|k+m), measured from the time-stepk+m, i.e., ŵi(k+ t|k+m)

are going to be given in Lemma 12. Finally the expression for (8.10) will be provided.
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Lemma 11 The predicted stateŝwi(k+ t|k) for t ∈ [1,Ni−1], are given as

ŵi(k+ t|k), col[x j(k+ t|k)] = (8.19)

col[χ̂ j(k+ t|k), ŷ j(k+ t|k), θ̂ j(k+ t|k)]⊤ =

col



















χ j
k +dtcosθ j

k υ j
k +dtυ j

k ∑t−1
l=1cos(θ j

k + ldtω j
k)

y j
k+dtsinθ j

k υ j
k +dtυ j

k ∑t−1
l=1sin(θ j

k + ldtω j
k)

θ j
k + tdtω j

k

with j ∈Gi .

Proof At a triggering time-stepk the vectoruk = [υk,ωk]
⊤ is measured and for the

prediction horizon we assume that[uk+1, . . . ,uk+N−1] = [uk, . . . ,uk]. Having that, we get

for t = 2,


















χ̂ j(k+2|k)
ŷ j(k+2|k)
θ̂ j(k+2|k)

=



















χ̂ j(k+1|k)+dtcos(θ̂ j(k+1|k))υ j
k

ŷ j(k+1|k)+dtsin(θ̂ j(k+1|k))υ j
k

θ̂ j(k+1|k)+dtω j
k

Moving forward and by recursion we reach to the general rule (8.19).

Also we have that,

Lemma 12 The predicted stateŝwi(k+ t|k+m) for t ∈ [1,Ni−1] and for m= [1,Ni−1],

are given as

ŵi(k+ t|k+m), col[x j(k+ t|k+m)] = (8.20)

col[χ̂ j(k+ t|k+m), ŷ j(k+ t|k+m), θ̂ j(k+ t|k+m)]⊤ =

col











































χ j
k +dtcosθ j

k υ j
k . . .

+dtῡ ∑t−1
l=1cos(θ j

k +dtω j
k +(l −1)dtω̄)

y j
k+dtsinθ j

k υ j
k . . .

+dtῡ ∑t−1
l=1sin(θ j

k +dtω j
k +(l −1)dtω̄)

θ j
k + tdtω j

k +dt(t−1)ω̄

with j ∈Gi .
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Proof Assume thatm= 1, therefor, at time-stepk+1 which follows the generic trig-

gering time-stepk, it is assumed that[uk+1, . . . ,uk+N−1] = [ū, . . . , ū] with ū= [ῡ, ω̄ ]⊤. The

states of the neighbors of the agentA i , for a time-stepk+ t, with t = 2, are

From (8.1b) we get

[χ j(k+2|k+1),y j(k+2|k+1),θ j(k+2|k+1)]⊤ =

=



















χ j(k+1|k)+dtcos(θ j(k+1|k))ῡ
y j(k+1|k)+dtsin(θ j(k+1|k))ῡ

θ j(k+1|k)+dtω̄

=



















χ i
k+dtcosθ i

kυ i
k+dtcos(θ i

k+dtω i
k)ῡ

yi
k+dtsinθ i

kυ i
k+dtsin(θ i

k+dtω i
k)ῡ

θ i
k+dtω i

k+dtω̄

which yields, by recursion for at ∈ [1,Ni−1], the general form (8.20). The same applies

for all m∈ [1,Ni−1] as we consider nominal stability.

It should be noted that we used the abstraction∑0
1≡ 0.

From Lemma 11 and Lemma 12, while making some easy manipulations that is omitted

due to space limitations, it can be concluded that for an agent A i , the predicted states of its

neighbors at a time stepk+ t are bounded by

||ŵi(k+ t|k+m)−wi(k+ t|k)|| ≤ ∑
j∈Gi

{dt(m−1)(2(ῡ + |υ j
k |)2+ ω̄2)1/2} (8.21)
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Chapter 9

Nonlinear Model Predictive Control for

a Manipulator in Interaction with a

Compliant Environment

In this Chapter, we present a Gradient-based Predictive Control methodology for stabiliza-

tion and force control of a robotic manipulator that is in contact with a compliant environ-

ment. These two objectives are treated simultaneously in the context of parallel control.

The use of the Nonlinear Model Predictive Controller renders the overall scheme more

robust to disturbances due to model uncertainties, compared to classic interaction control

schemes. The efficiency of the proposed framework as well as the advantage over tradi-

tional parallel control, is depicted through simulated examples.

9.1 Introduction

The goal is to stabilize a manipulator’s end-effector in a desired position and apply a de-

sired force on it, when in contact with the environment. We propose a novel parallel-like

control scheme, using a Gradient Based Predictive Controller [LWH99]. The use of the

Nonlinear Model Predictive Control (abbr. NMPC) approach renders the overall scheme

more robust to disturbances due to gravity or model uncertainties. Moreover, using the

proposed methodology, no impact effects, or/and instabilities at the transition phase from
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the no-contact case to the contact case occur.

Controlling the interaction of a robot manipulator with theenvironment is a topic that

has been extensively studied during the past two decades. Many control schemes have been

proposed in order to achieve a good system performance at steady state or to solve a track-

ing problem. Related surveys about the existing interaction control schemes can be found

in [CSV99], as well as in [Yos00], where a summary of proposedcontrol methodologies is

presented. The main drawback of these classic control approaches is the fact that they seem

inadequate for the task of interaction with a compliant environment in the case of scarce

information about its model, or if there exist ambiguities in the model of the robot, as in

most practical cases.

In this Chapter, we aim at enhancing the classic interactioncontrollers in order to tackle

the problem of un-modelled disturbances that may cause unpredicted instabilities. The

methodology of Model Predictive Control seems a suitable candidate for the control of

such systems, since this control strategy has inherent virtues: It is arguably one of the

best control strategies for handling severe nonlinearities and uncertainties, hard and soft

constraints, as well as achieving near-optimal performance. Nevertheless, model predictive

schemes involve finding the repeated on-line solution of constrained (possibly non-convex)

optimization problems, that cause large computation periods. In order to overcome this

problem we used an efficient method that have been proposed in[WJ03], whereas the

stability and robustness of this gradient based algorithm as long as its applicability in real

time experiments have been analyzed in [Yoo02].

There are a few papers that have used the NMPC framework to handle interaction

control problems. In [BSC01a], the authors make use of an impedance controller inte-

grated with a fuzzy predictive algorithm. The proposed scheme incorporates nonlinear

model of the contact and uncertainties in the model of the robot, as well as inaccuracies

in environment location and stiffness characteristics. Bydeploying this strategy, a con-

siderable reduction on the force error compared to classic approaches has been achieved

[BSC01b]. Notice though that the predictive algorithm computes the optimal trajectory for

the impedance controller off-line.

Moreover, NMPC represents a good alternative for the control of systems with chang-
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ing dynamics. In [CN95], the authors have shown that NMPC cansolve the impact-contact

motion control problem in a unified way. A single NMPC controller can be employed for

the free motion control, the contact motion control and the impact control. Even though a

nonlinear model of friction was used, no attention was givento the case of model uncer-

tainties.

In this Chapter, we apply the NMPC framework and tackle the problem of driving a

manipulator that does not interact with the environment to adesired position and apply a

desired force on a planar surface. The transition from the no-contact case to the contact

case is smooth and no impact effects occur. Computer simulations demonstrate the pro-

posed approach. In particular, the proposed algorithm converges to the desired position

and contacts the wall under the desired force for a number of cases, where the stiffness

of the environment is not the expected. We show that under thesame control constraints,

the NMPC algorithm compared to a PD controller with gravity compensation, achieves the

goal without impact phenomena.

Figure 9-1: The integrated block scheme of Nonlinear Gradient Based Predictive Controller
with force feedback loop.
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9.2 Parallel Force/ Position NMPC Scheme - Adopted Mod-

els

In order to combine the features of stiffness control and force control, a parallel force/position

regulator is designed, where PI force control action plus a desired force feed-forward is

used in parallel to a NMPC position control action. In this parallel control scheme a posi-

tion control action acts in parallel to a force control action. Along unconstrained directions

the position referencepd ∈ Ω must be reached by the end-effector’s positionp, where

Ω ⊆ R
2 is the manipulator workspace,p ∈ Ω is the actual position of the end-effector in

the Cartesian space andpd is the desired position that the end-effector aims at reaching. On

the other hand, along those directions where the motion of the manipulator’s end-effector

is constrained,pd is treated as an additional disturbance. The position control scheme

is a NMPC joint space controller. The integrated scheme is depicted in Fig. 9-1. Each

component is specified next.

9.2.1 Environment Model

An interaction between the end effector and a frictionless,elastically compliant environ-

ment is assumed. Contact geometry is also assumed to be known, so that constrained and

unconstrained directions can be clearly identified. The following equations will be used

hereafter, to model the compliant environment:

f = K f (p− pe) (9.1)

whereK f ∈ R
2×2 is the positive semi-definite translational stiffness, which represents the

elastic coefficient of the environment,p is the actual position of the end-effector in the

Cartesian manipulator workspace,pe ∈ Ω is the equilibrium position of the undeformed

environment and finally,f is the force exerted by the end-effector on the environment

during the interaction. In this work, the contact forcef is assumed to be measurable and

available to the controller.

144



9.2.2 PI Controller

Let fd be the desired force that the manipulator should apply in theconstrained direction.

We introduce a frameΣc referred to as the compliant frame which is specified by a position

vector pc ∈ Ω. The end-effector position should follow this frame duringthe interaction

task. Accordingly, the actual end-effector linear velocity ṗ is taken to follow the linear

velocity of the compliant frame ˙pc.

The force error is given by abstracting the desired force from the measured force:

∆ f = fd− f (9.2)

The vectorpc can be chosen as a proportional-integral control on the force error, i.e.

pc = KF∆ f +KI

∫ t

0
∆ f dς (9.3)

whereKF ,KI ∈ R
2×2 are suitable positive definite matrix gains.

The idea of parallel control is to compose the compliant position pc with the desired

positionpd as

pr = pc+ pd (9.4)

and use this reference positionpr ∈Ω as input to the motion control scheme. The parallel

composition can be extended to the velocity as well,

ṗr = ṗc+ ṗd (9.5)

where ˙pr is the velocity that must be followed by the end-effector.

9.2.3 Model Of the Manipulator

Consider an degrees of freedom (abbr. d.o.f.) manipulator in a fixed reference frame. The

joint-space dynamic model of then d.o.f. manipulator in interaction with the environment

is given by:

B(q)q̈+C(q, q̇)q̇+Fq̇+g(q) = τ−JT(q)h (9.6)
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whereq, q̇, q̈∈ R
n are the vectors of position, velocity and acceleration of the joints,B∈

R
n×n is the inertia matrix,C ∈ R

n×n is the centrifugal and Coriolis matrix,Fq̇ ∈ R
n are

the viscous friction torques,g(q) ∈ R
n is the vector of the gravity torques,τ ∈ R

n are the

actuator torques and finallyh∈ R
6 denotes the vector of force exerted by the end effector

on the environment. The analytical JacobianJA(q) ∈ R
6×n of the manipulator relates in a

straightforward way the velocity of the end-effector with the velocity of the joints:

ṗ= JA(q)q̇ (9.7)

whereṗ is the vector that describes the velocity of the end-effector in the operational space.

The inverse kinematics of this particular manipulator and the differential inverse kine-

matics that are used can be found in [SV99].

9.3 A Nonlinear Model Predictive Control Strategy

The parallel scheme is endowed with a position NMPC controller. This section is dedi-

cated to reviewing the particular NMPC strategy. The general principle of model predictive

control schemes is formulated so as to solve on-line a finite horizon open-loop optimal

control problem subject to system’s dynamics and constraints. At each step, the NMPC

scheme generates an optimal control trajectory. This trajectory is applied, as the desired

one, to the system, until the next system measurement is available. The NMPC framework

of [WJ03], [Yoo02] that we are going to describe next, has thevirtue of being applicable

in systems with small sampling period, like torque controlled robotic manipulators. The

computational burden is sufficiently reduced because the algorithm does not try to find the

optimal solution, but only seeks to reduce the error at the end of the prediction horizon.

Although the authors in [WJ03], [Yoo02] have used this strategy for point convergence, we

are going to employ it for trajectory tracking.

Assume that the state of the manipulator is given asx= [q, q̇]T ∈ R
2n and consider the
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general discrete-time nonlinear system:

x(k+1) = f (x(k))+g(x(k))u(k) (9.8)

where thex(k) ∈ R
n, u(k) ∈ R

m represent the state and the control variables respectively.

Also assume that the nonlinear system is subject to state andcontrol constraints,

x(·) ∈X u(·) ∈U

whereU is a convex, compact subset ofR
m andX a convex, closed subset ofRn, each

containing the origin in its interior.

The prediction horizon is the time step ahead, that the algorithm predicts the system

state, and is defined asM. The predictive control vector at timek and for prediction horizon

M is denoted byuk,M:

uk,M = [u1(k), . . . ,uM(k)]T , uk,M ∈ R
m·M (9.9)

The current state of the system is always treated as the initial state at the next iteration. Let

the end-point mapping for the system evolving fromx(k) to the terminal statex(k+M)∈Rn

be denoted asφM(x(k),uk,M). The predicted state error is:

eM(k) = φM(x(k),uk,M)−x∗(k) (9.10)

wherex∗(k), is the desired state of the system at the timek. We can choose the Newton-step

for updating the control signals:

νk,M = uk,M−βk(∇uk,MφM(x(k),uk,M))†eM(k) (9.11)

The Newton-step guarantees that the terminal state is strictly decreasing to the desired

state if a singular control is not encountered, as we can see from [Son95]. In practice, for

strongly accessible systems, it is “generically rare” to encounter singular control, [Yoo02].

The βk factor is a constant that is computed in every iteration, by the rule of Armijo
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[Pol97], which has been proved an efficient line search method. In the Armijo rule, the step

size continues to be reduced in half until the prediction error is reduced. On the other hand,

if a minimum of the step size is reached, only then the variationνk,M is being recomputed.

As in all NMPC strategies, the first element of the control vector is applied into the

system:uk = p1νk,M wherep1 =
[

Im 0m×(M−1)m

]

.

The control vectoruk,M is then, updated forward by one step:

uk+1,M =

















u1(k+1)
...

uM−1(k+1)

uM(k+1)

















=

















ν2(k)
...

νM(k)

u∗(k)

















(9.12)

whereu∗(k) ∈ R
m is the equilibrium control

f (x∗(k))+g(x∗(k))u∗(k) = x∗(k)

Equation (9.12) can be written in stack vector form as:

uk+1,M = Gνk,M +Fu∗(k) (9.13)

with G∈ R
mM×mM , F ∈ R

mM×Mm being defined as:

G=





0m(M−1)×m Im(M−1)

0m×m 0m×m(M−1)



 F =





0m(M−1)×m

Im





Initial predictive control actions are chosen as zero vectors without loss of generality.

Under the assumption that(∇uk,MφM(x(k),uk,M))† is of full rank for all k, it has been

proved in [CN95], that the predicted state error will converge to zero ask→ ∞, although

we have not an a priori time- specifiable convergence. It is also stated that the actual state

x(k) converges tox∗ = const. ask→ ∞. As far as the control signalu(k) is concerned, it is

uniformly bounded for allk and the elements ofuM(k) tend tou∗ = const. ask→ ∞.

The stability of this particular NMPC for point convergencehas been proved using
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Lyapunov theory for driftless, as well as control affine systems, [Yoo02]. The authors in

[Wro04] have rendered it to a trajectory tracking controller that has shown sufficiently good

results. A robust stability analysis of this NMPC strategy,for a general nonlinear system

of the form (9.8), has also been conducted in [Yoo02]. The authors have analyzed the case

of bounded noise and measurement noise. The dynamic equations of the perturbed system,

are

x(k+1) = f (x(k))+g(x(k))u(k)+w(k)

andy(k) is the state measurement used for the feedback

y(k) = x(k)+s(k)

which is also perturbed by a bounded noise. The actual state evolving through this per-

turbed system is bounded provided that the bounds of the noise

wmax= sup
k
||w(k)|| and smax= sup

k
||s(k)||

are sufficiently small. In the subsequent section, we use this property of the proposed

scheme, because force signals can be quite noisy. Moreover the properties of the environ-

ment can also act as a disturbance to the model.

9.4 Simulation Setting & Results

9.4.1 Simulation Setting

A two-link, planar robotic manipulator, withn= 2, is considered in this section, as in Fig.

9-2. For illustrative purposes the numerical values of the parameters of the dynamic model

of the manipulator are taken as in [LK97].

The end-effector geometric JacobianJT(q)∈R2×2 of the dynamic model of the 2 d.o.f.
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Figure 9-2: The 2 d.o.f. planar manipulator in interaction with the environment. The initial
position of the end-effector is(px, py)initial , final destination is(px, py)desired, while position
of the vertical wall is denoted bype.

manipulator is given by:

J(q) =





−α1s1−α2s12 −α2s12

α1c1+α2c12 α2c12



 (9.14)

where only the rows that are relevant to the task appear; these refer to the two components

of linear velocity along the Cartesian axesx0,y0.

The notationssi... j , ci... j denote respectively sin(qi + · · ·+ q j), cos(qi + · · ·+ q j) and

will be used also in the remainder of the paper.

The end-effector position is determined by the two coordinates px, py ∈ Ω, while its

orientation is determined by the angleφ formed by the end-effector with the axisx0. The

direct kinematics equation can be written in the form:

p̃=











px

py

φ











= k(q) =











α1c1+α2c12

α1s1+α2s12

ϑ1+ϑ2











(9.15)

Since there is no desired final orientation, we also definep=
[

px py

]

.

The main objective is to drive the end-effector of the robot which initially does not
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interact with the environment to touch a planar space in a specified positionpd ∈ Ω and a

specified velocity ˙pd and push it with its end-effector until a desired forcefd is achieved.

The environment is assumed to be a vertical wall with a known elastic coefficient.K f

is defined as

K f =





kf 0

0 0



 (9.16)

where the value ofkf = 103N/m. So the interaction forces are parallel only to thex0-axis.

The position reference is used for thex0 andy0 coordinates, i.e.,p=
[

px py

]T
where

p is the actual position of the end effector. The equilibrium position of the environment

without deformation, along thex0-axis, is equal tope = 1.8mas in Fig. 9-2.

The initial position of the end effector in the Cartesian plane is considered to bepinitial =
[

1.75 0.7
]T

. It is apparent that the manipulator is not in contact with the environment.

The final destination of the end-effector is the desired position that is considered to be at

pdesired=
[

1.85 0.5
]T

. The end effector should push the environment with a specified

force that isfdesired=
[

60 0
]T

. It must be pointed out that from (9.1), the desired position

corresponds to a forcefcor =
[

50 0
]T

, which is fdesired6= fcor.

9.4.2 Results

We choose a prediction horizon of 5 steps, i.e.,M = 5, and a fixed step size equal to

δ t = 5×10−3sec. Note, that larger prediction horizon would result to larger computation

periods. The initial guess for the first control input of the NMPC position algorithm is

chosen randomly, while the initial guess for the Armijo parameter is chosen equal toβ0 =

0.1.

We assume that the model does not have ambiguities and is an exact representation of

the actual manipulator. In this nominal case, the end-effector reaches exponentially the

desired position ony0 axis, while a neighborhood of the desired position on thex0-axis is

reached, as we see in Fig. 9-3. This happens because, as it hasalready been mentioned, in

constrained directions the desired position is treated as adisturbance.

Fig. 9-4, shows asui generisproperty of the particular NMPC, that has been described
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Figure 9-3: Nominal case. End-effector’s position inx0 andy0 coordinates. Both reach
a neighborhood of the desired position. The dotted line represents the time step when the
end-effector reaches the vertical wall.
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Figure 9-4: Nominal case. Error of the predicted state and error of the actual state of the
nonlinear robotic system under the NMPC controller.
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in Section ?. The predicted system state error, as well as theactual system state error, has

an asymptotic convergence to zero.
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Figure 9-5: Force of the end-effector in the case of uncertainty of environment. The blue
line represents the nominal case. The red line corresponds to the case where the actual
environment has less stiffness than the modelled one, whilethe green line to the case where
the actual environment stiffness is bigger than expected.

Fig. 9-5 depicts the contact force in three distinct cases. The first case is the nomi-

nal one, represented with the blue line. Using the preliminary results on the robustness

of the proposed scheme we assume some uncertainty on the environment model. The en-

vironment compliance is modelled askf = 1000N/m as in (9.16), which is used for the

computation of the NMPC control law, while the actual stiffness matrix of the environment

has a compliance of̃kf1 = 900N/m in the first perturbed case, andk̃f2 = 1100N/m, in the

second. The first perturbed case is represented with the red line, while the green line depicts

the second perturbed case. All the other parameters are assumed to remain the same.

Notice that the force is zero in the unconstraint movement, i.e., when there is no inter-

action with the environment. The end-effector reaches the obstacle at time stepk = 9 in

all three cases. Simulations show that the algorithm still converges to the desired value.

Actually in all cases, the contact force on the end-effectorconverges smoothly to the de-

sired force as can be seen in Fig.9-5. It is evident that in a less compliant environment, the

impact of the end-effector is bigger than in other cases.
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9.4.3 Comparison

In the case of the common parallel position/force strategy where a PD controller with grav-

ity compensation is used, under the constrained motion, thecontact force reaches the de-

sired value only after a transient period. The peak of this transient may appear due to the

nonzero value of the end-effector velocity at the contact [CSV99]. If instead of the PD con-

troller, we use a NMPC position controller; this peak in the force value during the impact

is compensated.

Fig. 9-6 depicts the contact force of two parallel position/force controllers; the NMPC

controller presented above, and a PD controller with gravity compensation. In order to

compare the two cases, the NMPC controller, has been constrained in the control inputs

with saturation limits, so that in both cases, torques neverexceed the same threshold.

Simulations shows that in both cases, the actual force of theend-effector is obviously

converging to the desired force smoothly. Nevertheless, the NMPC controller is compensat-

ing the external disturbances, i.e., the external force from the interaction of the manipulator

with the environment. The transition from non-contact to contact at non-negligible end-

effector speed under an NMPC controller shows a sufficientlygood performance, while

in the PD controller with gravity compensation case, a bigger impact force is apparent,

something that might be undesirable in a number of situations.

9.5 Conclusion

In this Chapter, a parallel-like framework to stabilize a manipulator’s end-effector to a de-

sired position, and to apply a desired force when it interacts with the environment, has

been presented. For the position control we have used an NMPCmethodology. The moti-

vation was that this control strategy is a natural candidateto compensate for gravity or other

unmodeled uncertainties for which standard PD controllersseem unsatisfactory. Simula-

tion results showed the effectiveness of the approach as well as its smooth behavior in the

transition from the unconstrained to the constrained case.

Further research will exploit the virtues of this NMPC scheme, as the induction of un-

modeled dynamics in the environment model like friction effects and changing payloads.
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Figure 9-6: Contact force. The blue line represents the NMPCcontroller under the parallel
scheme, with control constraints. The red line represents the PD controller with gravity
compensation under the parallel scheme. The dotted line is the desired contact force.

A theoretical analysis of this phenomenon as well as of the general robustness of this algo-

rithm is a topic of current research endeavors. Finally, theproposed real-time closed loop

system will be tested in the experimental set up of the Control Systems Lab involving the

Mitsubishi PA10 robotic manipulator [BAOK07].
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Chapter 10

Contributions and Future Work

In this Chapter we are going to summarize the main contributions of this Dissertation. Also

we are going to indicate some directions and open problems that are left for future research.

10.1 Contributions

The main contribution of this Dissertation is the event-based formulation of Model Pre-

dictive Controllers, as the title dictates. This scheme is first presented here and provides

additional tools for the use of predictive controllers; in particular this formulation relaxes

the time-triggered computation of the control law and provides sufficient conditions for

triggering that can still guarantee the stability and the convergence of the closed-loop sys-

tem.

More specifically the contributions are:

• The Event-Based Control framework particularly given for discrete-time general

nonlinear systems was proposed in this Thesis. Moreover, this methodology was

particularized for Linear Time Invariant systems. In addition, the proposed frame-

work was further relaxed by the formulation of a Self-triggered framework, where no

continuous monitoring of the actual state of the system is assumed.

• We formulated an Event-triggered scheme for Model Predictive Controllers for discrete-

time systems affected by bounded and additive disturbances. This was conducted in
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a centralized manner for both discrete-time and continuous-time general nonlinear

systems.

• Event-based formulation of MPC controllers for decentralized systems where the

effect from the neighboring agents is considered as a perturbation of the nominal

system. Also, this was extended to a distributed scheme where the formulation of the

event-based MPC was regarding local controllers for agentsthat are cooperating in

the same environment.

• Self-triggered formulation of MPC controllers for centralized and decentralized non-

holonomic systems. The efficacy of the proposed scheme was evaluated by an exper-

iment conducted in the Control Systems Laboratory, NTUA.

10.2 Future Work

Even though the Event-based formulation of Model Predictive Controllers was provided

for a number of different scenarios, some extensions were not treated in this Thesis. In the

sequel, we give the directions of our future research.

• In Chapter 2, the event-based formulation of general discrete-time systems was pro-

posed. The simulation results in that Chapter, depict a periodicity that takes place

in the event-triggered as well as in the self-triggered control for discrete-time sys-

tems. This behavior is very interesting but the formal analysis, is a topic of future

research. Notice that some preliminary results have been presented by [VMB12] and

[VML08b], where the notion of equilibrium sampling interval sequences is intro-

duced. The authors suggest that the sampling intervals for event-driven control of

continuous-time systems show different patterns, rangingfrom chaotic behaviors to

periodic oscillatory patterns, named equilibrium sampling interval sequences (ESIS).

This is an indication that similar behavior may be predictedfor discrete-time systems,

too.

• In this Thesis we assumed that the state measurement, eitherfrom the plant or the
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states of neighboring agents is always available and fully known. Thus, a straight-

forward extension would be to assume output-feedback controllers as well as to in-

corporate delays (imposed both by network traffic or computational reasons) in the

measurement. This should result to more practical results.

• In Chapter 4, future work involves finding a triggering condition in a similar cooper-

ative NMPC framework, however in this case the triggering condition should depend

only on local information of the agent, the event-broadcasting state and the predicted

state information of the neighboring agents. This event-based approach should be

able to reduce the load on the communication medium in addition to agents’ energy

consumption.

• The self-triggered formulation in Chapter 7, was provided for the stabilization of a

real nonholonomic vehicle. An extension to this approach will be to utilize the self-

triggering set-up when the camera’s field-of-view loses thetarget (maybe because of

an unexpected disturbance). In this case there is no feedback and the ST-MPC could

be proven to be helpful.

• Future work with respect to Chapter 8 involves an extension of the proposed dis-

tributed framework using less abstractions and having morerealistic formulation.

Namely, finding triggering conditions under the presence ofdisturbances and in the

case where the information received by the neighbors is either delayed or not accu-

rately known.

• The event-based MPC framework with guaranteed performanceis an interesting di-

rection that we will explore in the future.

• The parallel force control scheme via NMPC of Chapter 9, can be formulated as an

event-based parallel scheme.

• Finally, an interesting idea that we currently explore is touse the ET-MPC in a hier-

archical scheme (inner & outer controller) to control a UAV (helicopter).

159



 



Bibliography

[AB02] K.J. Astrom and B. Bernhardsson. Comparison of Riemann and Lebesgue
sampling for first order stochastic systems.41st IEEE Conference on De-
cision and Control, pages 2011–2016, 2002.
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